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Highlights 

 

 Mitochondrial dysfunction is one of the earliest pathophysiological events 

in amyotrophic lateral sclerosis (ALS). 

 ALS-associated mutant proteins accumulate in mitochondria and cause 

mitochondrial damage 

 Mitochondrial dysfunction occurs at multiple levels, including 

mitochondrial respiration and ATP production, calcium handling, 

apoptotic signalling and mitochondrial dynamics. 
 

ABSTRACT 

Mitochondria are unique organelles that are essential for a variety of cellular processes 

including energy metabolism, calcium homeostasis, lipid biosynthesis, and apoptosis. 

Mitochondrial dysfunction is a prevalent feature of many neurodegenerative diseases 

including motor neuron disorders such as amyotrophic lateral sclerosis (ALS). 
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Disruption of mitochondrial structure, dynamics, bioenergetics and calcium buffering 

has been extensively reported in ALS patients and model systems and has been 

suggested to be directly involved in disease pathogenesis. Here we review the 

alterations in mitochondrial parameters in ALS and examine the common pathways to 

dysfunction. 
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1 Amyotrophic lateral sclerosis  

Motor neuron disease (MND) describes a group of neurological disorders 

characterised by the selective loss of motor neurons. Amyotrophic lateral sclerosis 

(ALS), the most common subtype of MND, is characterised by a progressive 

degeneration of both upper and lower motor neurons, resulting in muscle atrophy, 

gradual paralysis, and death, usually resulting from respiratory failure. ALS has a 

worldwide prevalence of 4-6 in 100,000, with differences noted between populations 

[1, 2]. The average age of onset is between 55-65 years of age, however familial cases 

are frequently associated with an earlier age of onset [3]. The average survival is 2-3 

years from diagnosis, with only 25% of patients surviving 5 years and 5-10% surviving 

10 years post-diagnosis [4].  

ALS clinically overlaps with frontotemporal dementia (FTD). FTD is a common cause 

of dementia in adults under the age of 65 that is characterised by neurodegeneration 

of the frontal and temporal cortex [5]. Around 50% of ALS patients display evidence of 

frontal and temporal lobe dysfunction on detailed neuropsychological testing and up to 

5-10% of ALS cases present with clinically diagnosed FTD. Similarly, while 

approximately 15% of FTD patients go on to develop ALS, about half display some 

degree of motor involvement [6].  

Approximately 10% of ALS cases follow a familial, mostly autosomal dominant 

inheritance pattern (familial ALS). The remaining 90% of cases have no clear genetic 
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basis (sporadic ALS). To date mutations in over 20 genes have been associated with 

ALS, including superoxide dismutase 1 (SOD1), TAR DNA binding protein (TARDBP; 

TDP-43), Fused in sarcoma (FUS), and C9orf72 (Table 1; [7]). Together mutations in 

these genes account for approximately 60% of familial ALS and 11% of sporadic ALS. 

In agreement with the clinical overlap between ALS and FTD, the GGGGCC (G4C2) 

repeat expansion mutation in C9orf72 was found to be the most common genetic 

cause of both ALS and FTD, accounting for approximately 40 and 25% of familial 

cases, respectively [8-10; reviewed in Ref. 11]. The genes affected in ALS have been 

implicated in a wide range of cellular pathways, suggesting that ALS is a multi-factorial 

disease. Possible pathogenic mechanisms underlying motor neuron degeneration 

include RNA toxicity, excitotoxicity, disruption of proteostasis, defective axonal 

transport, oxidative stress, and mitochondrial dysfunction [reviewed in Ref. 12].  

2 The role of mitochondria in ALS pathogenesis 

Mitochondria play a central role in cell survival and metabolism. In addition to their 

well-known role as producers of ATP via oxidative phosphorylation, mitochondria play 

important roles in phospholipid biogenesis, calcium homeostasis, and apoptosis. 

Mitochondria are of particular importance in neurons. Neurons have high metabolic 

requirements – the brain consumes 20% of the body’s resting ATP production despite 

being only 2% of its mass [reviewed in Refs. 13, 14]. Moreover, mitochondria are 

essential calcium buffering organelles in neurons that modulate local calcium 

dynamics to, for example, modulate neurotransmitter release [reviewed in Ref. 15] . 

Neurons are long-lived cells that persist throughout the lifespan of the individual and 

as such are more susceptible to the accumulating damage arising from mitochondrial 

dysfunction [reviewed in Ref. 16]. Accordingly, the maintenance of a healthy pool of 

correctly localised mitochondria is essential for neuronal survival and function. It is not 

surprising therefore that mitochondrial dysfunction has been linked to a large number 

neurodegenerative disorders including ALS. Many of the identified ALS genes have a 

role in mitochondrial-associated functions (Table 1) and evidence gathered from in 

vitro and in vivo disease models and from patient studies strongly implicates the 

dysfunction of mitochondria as a core ALS disease component.  

ALS associated mitochondrial dysfunction comes in many guises, including defective 

oxidative phosphorylation, production of reactive oxygen species (ROS), impaired 

calcium buffering capacity and defective mitochondrial dynamics. Furthermore, with 

the possible exception RNA toxicity, mitochondrial dysfunction appears to be directly 

or indirectly linked to all of the postulated “non-mitochondrial” mechanisms of toxicity 
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associated with ALS, including excitotoxicity, loss of protein homeostasis and defective 

axonal transport.  

2.1 Structural evidence of damaged mitochondria 

Structurally altered and aggregated mitochondria, with a swollen and vacuolated 

appearance, were one of the first changes observed in ALS patient motor neurons [17, 

18] and in Bunina bodies [19]. Sporadic ALS cases occasionally additionally display 

axonal swellings consisting of neurofilament accumulations, swollen mitochondria and 

secondary lysosomes [20]. Morphologically abnormal mitochondria are also 

consistently reported in animal and cell models of ALS, with a tendency towards a 

fragmented mitochondrial population being observed. Expression of wild type or ALS 

mutant TDP-43 (M337V, Q331K, A315T) resulted in aggregated, fragmented and 

vacuolated mitochondria [21-23]. Overexpression of SOD1 G93A had similar effects 

and mitochondria were significantly less elongated and more spherical in motor 

neurons isolated from SOD1 G93A transgenic mice [24-26] and in vivo in motor 

neurons of early symptomatic SOD1G37R and SOD1G85R transgenic mice [27]. 

Furthermore, in SOD1 G93A transgenic mice mitochondria were found in abnormal 

clusters along the axon [22]. 

Overexpression of ALS mutant FUSR521G or R521H in cultured motor neurons 

resulted in mitochondrial shortening which was exacerbated by the presence of FUS 

in the cytosol [28]. Similar results were seen in both HT22 cells and primary cortical 

neurons expressing mutant FUS P525L which causes a juvenile form of ALS, and in a 

FUS P525L transgenic mouse model [29, 30]. Subtle fragmentation of the 

mitochondrial network has also been identified in fibroblasts of ALS patients with 

C9orf72 repeat expansions [31], and swollen mitochondria were reported in an iPSC 

model of C9orf72-associated ALS [32]. Aggregation of structurally altered 

mitochondria was reported in cortical neurons from Alsin knockout mice [33]. Similarly, 

mitochondria co-aggregated with TDP-43 in heterozygous knock-in mice bearing a 

ALS-associated R155H mutation in valosin-containing protein (VCP; also called p97, 

cdc48 in yeast – further referred to as VCP/p97) [34, 35].  

Direct evidence that disruption of mitochondrial structure (and as a consequence 

function; see below) may contribute to the aetiology of ALS comes from the discovery 

of causative mutations in the mitochondrial protein CHCHD10 which is localised to 

contact sites between the inner and outer mitochondrial membrane [36]. ALS-

associated mutations in CHCHD10 disrupt mitochondrial cristae and have a profound 

effect on mitochondrial structure [37]. Deformation and loss of mitochondrial cristae 

have also been reported in C9ALS/FTD patient fibroblasts, in vitro and in vivo in SOD1 
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G93A, TDP-43A513T and FUS P525L ALS models and in Alsin knockout mice [29, 

31-33, 38, 39]. In SOD1 G93A and FUS P525L transgenic mice dilated cristae are 

already present at disease onset stage [30, 40]. 

Thus, mitochondrial structure and the mitochondrial network appears to be disrupted 

in most if not all models of familial ALS and in ALS patients. Moreover, the structural 

damage to mitochondria and fragmentation of the mitochondrial network was reported 

to occur in early disease stages in in vivo models of ALS indicating that mitochondrial 

morphological alterations occur potentially as an upstream source of degeneration 

rather than a consequence, and may contribute to ongoing degenerating phenotype 

[22, 23, 27]. 

2.2 ALS-associated proteins interact with mitochondria 

A number of proteins that have been linked to familial and sporadic ALS, including 

SOD1, TDP-43, FUS, C9orf72, and the C9orf72 GGGGCC repeat expansion-

associated glycine/arginine (GR) dipeptide repeat protein (DPR), have been shown to 

interact with mitochondria [29, 41-45]. The interaction of these ALS-associated 

proteins with the mitochondria appears to be instrumental to the induction of 

mitochondrial damage associated with ALS.  

Mutant SOD1 localises to the intermembrane space (IMS), where it has been shown 

to aggregate, and reduce the activity of the electron transport chain (ETC) complexes 

(see below) [46, 47]. Furthermore, SOD1 aggregates have been proposed to interfere 

with the activity of voltage-dependent anion channel 1 (VDAC1) which is responsible 

for the exchange of ATP, ADP and other respiratory substrates across the outer 

mitochondrial membrane (OMM) [reviewed in 48]. Direct interaction of ALS mutant 

SOD1 with VDAC1 inhibits channel conductance and reduces its permeability to ADP 

at both presymptomatic and symptomatic disease stages in the spinal cord of SOD1 

G93A transgenic rats. Furthermore, an approximately 25% reduction in VDAC1 activity 

accelerated disease in SOD1G37R transgenic mice [49]. Mutant misfolded SOD1 has 

also been and interact with Bcl-2 family proteins on the OMM, leading to pro-apoptotic 

changes (see below) [50]. 

TDP-43 and to a greater extend ALS mutant TDP-43 accumulates in mitochondria 

where it preferentially binds the mRNAs of the mtDNA-encoded complex I subunits 

ND3 and ND6 and causes complex I disassembly by impairing their transcription. 

Accumulation of ALS mutant TDP-43 in mitochondria appears to be mediated by 

internal mitochondrial targeting sequences in TDP-43 [42]. Since cytoplasmic TDP-43 

accumulation is a hallmark pathology in most ALS (but not SOD1 or FUS-related ALS), 
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this may also explain mitochondrial defects observed in sporadic ALS and other 

familial ALS cases.  

Both wild type FUS and ALS mutant FUS P525L co-purify with mitochondria and this 

is at least in part due to their interaction with the mitochondrial chaperone heat shock 

protein (HSP) of 60 kDa (HSP60) [29]. Mitochondrial localisation of FUS correlated 

with augmented ROS levels [29], and overexpression of FUS has been shown to 

reduce mitochondrial ATP production [51]. Reducing the association of FUS with 

mitochondria by ablating HSP60 expression ameliorated neurodegeneration in FUS 

transgenic Drosophila [29]. 

Several mitochondrial proteins have been identified as possible C9orf72-interacting 

proteins in a BioIP proteomics screen, including members of the IMM solute carrier 

family, VDAC3 and translocase of the inner mitochondrial membrane 50 (TIMM50). 

Furthermore, C9orf72 was detected in mitochondria-enriched fractions [44]. The 

relevance of this association is not yet clear. Another link between C9ALS/FTD and 

mitochondria comes from the finding that poly(GR) DPRs preferentially bind to 

mitochondrial ribosomal proteins [43]. 

2.3 Defective mitochondrial respiration and ATP production 

Reductions in cellular respiration and ATP production are well documented in ALS 

(Fig. 1). In post-mortem spinal cord of sporadic ALS patients the activity of all ETC 

complexes, complex I, II, III, and IV was found to be reduced [52, 53]. In addition, the 

activity of complexes I and IV were reported to be impaired in skeletal muscle [54-56] 

while complex I activity and ATP levels were reduced in lymphocytes of sporadic ALS 

patients [57]. Counterintuitively, in fibroblasts obtained from skin biopsies of sporadic 

ALS patients the mitochondrial membrane potential (MMP) was increased compared 

to healthy controls. Possibly the increased MMP observed in fibroblasts reflects an 

attempt to rescue inefficient ATP synthesis or the metabolic differences between skin 

fibroblasts and CNS cells [58]. Indeed, similar to fibroblasts obtained from sporadic 

patients, MMP was increased in C9orf72 patient fibroblasts [31] but was significantly 

decreased in iPSC-derived motor neurons reprogrammed from C9orf72 patient 

fibroblasts [32].  

In SOD1 G93A transgenic mice impaired ATP synthesis and depressed mitochondrial 

respiration rates in the brain and spinal cord were found well before disease onset and 

they persist throughout the course of the disease [39, 45]. Associated with these 

changes decreased complex I+III, II+III and IV activity were observed in the spinal cord 

of 17-week old symptomatic SOD1 G93A transgenic mice [45] and complex IV activity 

was reduced in forebrain mitochondria isolated from presymptomatic, symptomatic 
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and end-stage SOD1 G93A transgenic mice [39, 45]. Analysis of regional changes in 

ETC complex activities further showed a selective decrease of complex I and IV activity 

in the ventral horn of the spinal cord of these mice prior to the onset of disease which 

further declined as disease progressed [59]. In these cases, the reduced activity of 

complex IV may relate to impaired association of cytochrome c with the IMM 

membrane [39, 45]. A decrease in complex I activity was also confirmed in ex vivo 

motor cortex slices from SOD1 G93A mice [60] (Fig. 1). 

Analysis of mutant SOD1 ALS cell models recaptured the defects found in SOD1 G93A 

mice. SOD1I113T patient fibroblast lines showed reduced oxidative phosphorylation 

compared to non-disease controls [61]. Stable low level expression of SOD1 G93A or 

G37R in NSC-34 motor neuron-like cell lines reduced the activity of complex II and IV 

[62, 63] accompanied by reduced MMP [64] while doxycycline induced expression of 

SOD1 G93A, A4V, H46R, H80R, D90A, or D123H in the same cell line caused a 

decrease in complex I, II+III and IV activity which was accompanied by reduced cellular 

ATP levels [46]. In N2A neuroblastoma cells overexpression of SOD1G37R resulted 

in reduced complex I activity which correlated with a drop in MMP and reduced levels 

of cytosolic ATP, but complex II, III and IV activities were unaffected [63]. 

In contrast to these studies, Bowling et al. found increased complex I activity in post-

mortem frontal cortex of familial ALS patients with an SOD1 A4V mutation [65] and the 

same group reported an increase in complex I activity in the forebrain of SOD1 G93A 

transgenic mice [66]. Furthermore, when they assessed mitochondrial respiration 

solely via complex II, the mitochondrial respiration rate was not different in SOD1 G93A 

transgenic mice compared to wild type SOD1 transgenic mice [67]. Similarly, others 

found no evidence for reduced mitochondrial respiration via complex I or II in 

presymptomatic SOD1 G93A transgenic mice [68]. It is not readily apparent what 

accounts for the discrepancy between these studies, but these measurements are 

particularly sensitive to variations in experimental conditions and differences between 

the SOD1 G93A mouse strains cannot be excluded.  

Nevertheless, despite differences between studies and cell models, the overarching 

trend is that ALS mutant SOD1 decreases ETC activity and causes impaired ATP 

production. Moreover, the presymptomatic occurrence of oxidative phosphorylation 

disruption in SOD1 G93A transgenic mice suggests it may have a causative role in this 

ALS model. 

Defective mitochondrial respiration and ATP production have also been observed in 

models of non-SOD1 related familial ALS. Depolarisation of mitochondria was 

described in NSC-34 cells expressing wild type or mutant TDP-43 (Q331K and M337V) 

and primary motor neurons expressing TDP-43 M337V [21, 23, 69, 70]. In NSC-34 
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cells TDP-43-associated MMP reduction was accompanied by decreased complex I 

activity [70]. Similarly, in TDP-43 G298S and A382T patient fibroblasts reduced MMP 

was accompanied by decreased complex I activity, reduced oxygen consumption and 

decreased ATP levels [42]. However, this may not always be the case as others 

reported reduced MMP, but no changes in mitochondrial respiration or ATP content in 

3 independent TDP-43 A382T patient fibroblast lines [31]. 

As was the case for TDP-43, overexpression of wild type or mutant FUS P525L caused 

a reduction in MMP in HEK293 cells [29] and ATP production was impaired upon 

expression of wild-type or ALS mutant FUS R521C or R518K in NSC-34 cells [51]. 

Similarly overexpression of the sigma non-opioid intracellular receptor 1 (Sig1R) 

E102Q mutant in N2A cells reduced ATP production [71]. Decreased MMP was further 

observed in SQSTM1 knockout MEFs and in SH-SY5Y, mouse cortical neurons and 

astrocytes in which VCP/p97 expression was ablated using siRNA to model ALS-

associated loss of function mutants in p62/sequestosome1 and VCP/p97, respectively 

[72, 73]. In case of VCP/p97 the same results were obtained in VCP/p97 R155C, 

R155H and R191Q ALS patient fibroblast lines [73]. In these cell models of VCP/p97-

associated ALS the decrease in MMP was accompanied by a decrease in ATP levels 

but an increase in the rate of mitochondrial respiration and oxygen consumption, 

suggesting that depletion of MMP is due to uncoupling rather than ETC activity deficits 

[73]. Finally, analysis of fibroblasts from patients with mutations in the mitochondrial 

protein CHCHD10 revealed impaired ETC activity at complexes I, II, III and IV which 

was accompanied by a severe bioenergetics deficit [36, 37]. 

Neurons do not operate as isolated units, but depend on the surrounding cellular 

environment and supporting cells such as microglia and astrocytes for survival and 

function. Accordingly, it is now clear that ALS is a non-cell-autonomous disease with 

astrocytes in particular associated with disease progression [74, reviewed in Refs. 12, 

75]. One way in which glia support neurons is by shuttling of lactate, produced by 

conversion of the glycolysis product pyruvate, to the neighbouring neuron where it is 

converted back to pyruvate which is subsequently converted to acetyl-CoA and enters 

the Krebs cycle [76, reviewed in Ref. 77]. In fact, evidence suggests that glial lactate 

is the main energy source of neurons (i.e. the Astrocyte-Neuron Lactate Shuttle 

Hypothesis (ANLSH)). Several lines of evidence suggest that impairment of the 

ANLSH may be involved in the bioenergetics deficits observed in ALS. The expression 

of phosphoglycerate kinase 1 (PGK1) which transfers phosphate from 1,3-

bisphosphoglycerate (1,3-BPG) to ADP to produce 3-phosphoglycerate (3-PG) and 

ATP during glycolysis, as well as of the monocarboxylate transporter 4 (MCT4; 

Slc16a4), which is involved in the transport of lactate are downregulated in SOD1 
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G93A astrocytes [78]. Similarly, MCT1 (Slc16a1) expression is downregulated in 

oligodendrocytes in the spinal cord of SOD1 G93A transgenic mice. Furthermore, 

consistent with a possible role in neurodegeneration knock down of MTC1 caused 

motor neuron death in vivo [79]. Hence reductions in neuronal respiration and ATP 

production may be caused by failure of glia to provide respiratory substrates. 

Despite differences in mechanisms and specific observations depending on the 

models studied, decreased ETC activity and ATP levels emerge as a common feature 

in ALS. It is conceivable that, in line with the high energy demands of neurons, gradual 

depletion of ATP due to reduced respiration may trigger degeneration.  

2.4 Oxidative stress 

ROS are a natural by-product of oxidative phosphorylation. The ETC is responsible for 

the majority of ROS produced in a cell, with free radicals, mainly superoxide anion 

(O2˙–), produced at complexes I, II and III as a result of incomplete, premature 

reduction of oxygen [reviewed in Refs. 80, 81] (Fig. 1). Dismutation of O2˙–, a reaction 

catalysed by SOD1 and SOD2, gives rise to H2O2 which can further generate hydroxyl 

anions (OH˙) by partial reduction. O2˙– can also react with nitric oxide (NO˙) to form 

peroxynitrite (ONOO–). ROS generated in cells can act as signalling molecules, but 

when excessively produced can lead to cellular damage to DNA, proteins and lipids 

and result in reduced efficiency of cellular processes, induction of inflammatory 

pathways, excitotoxicity, protein aggregation and endoplasmic reticulum (ER) stress 

or cell death [reviewed in Refs. 82, 83]. By proximity, mitochondria are particularly 

susceptible to ROS induced damage to mtDNA, proteins and lipids. Especially mtDNA 

appears vulnerable and this is exacerbated by limited DNA repair mechanisms in 

mitochondria. Resultant mitochondrial damage has been shown to affect mitochondrial 

function and is implicated in ageing [reviewed in Refs. 84, 85]. 

Increased levels of ROS and ROS-associated damage have been widely reported in 

ALS [reviewed in Ref. 86]. Increased markers of ROS damage have been found in 

biofluids of patients with sporadic ALS [87-90] as well as in post-mortem tissue [91-

94]. Similarly, increased ROS levels were reported in lymphoblasts of familial ALS 

cases with SOD1 mutations [95] and fibroblasts of patients with C9orf72 repeat 

expansions [31]. In contrast, analysis of lymphoblasts and fibroblast cell lines from 

sporadic ALS patients or familial ALS patients with a TDP-43 A382T mutation did not 

show evidence of increased ROS production or oxidative damage [31, 95-97], but 

some were more sensitive to NO˙ generating chemicals [98]. Possibly specific culture 

conditions and respiratory substrates (glucose v galactose) used in these studies can 
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explain the variation in observations. Alternatively, peripheral tissues may not fully 

model CNS disease. 

Oxidative damage to DNA, RNA, proteins and lipids has been widely reported in SOD1 

G93A rodent models and cell models [reviewed in Ref. 86]. DNA and RNA appear to 

be especially vulnerable to oxidation, and mRNA oxidation has been shown to precede 

motor neuron degeneration and cause reduced expression of the encoded proteins in 

SOD1 G93A transgenic mice [94]. Interestingly mRNAs coding for ETC complexes and 

ATP synthase were selectively susceptible to oxidation [94]. Furthermore, SOD1 itself 

is a target of oxidative damage [99] and this has been linked to its misfolding and 

aggregation [100]. Since misfolded, aggregated SOD1 has been shown to disrupt 

mitochondrial function and increase superoxide production [49, 101, 102] a vicious 

cycle mechanism emerges in which mitochondrial damage and oxidative stress 

caused by misfolded SOD1 leads to exacerbation of SOD1 misfolding and downstream 

mitochondrial damage. Interestingly using monoclonal antibodies to misfolded SOD1, 

misfolded wild type SOD1 species have been shown to be present in sporadic ALS 

patients [103, 104] although this has been disputed by others [105]. 

Oxidative damage has also been proposed to promote aggregation of TDP-43 via 

cysteine oxidation and disulphide bond formation and acetylation [106, 107]. In 

agreement, treatment of COS-7 cells with 4-hydroxynonenal (HNE), which is produced 

in cells by lipid peroxidation, was shown to cause insolubilisation, phosphorylation, and 

partial cytosolic localisation of TDP-43 [108]. Overexpression of wild type and mutant 

TDP-43 M337V and Q331K or its C-terminal fragments in NSC34 have been shown to 

increase ROS and cause oxidative damage [21]. In addition to these deleterious 

effects TDP-43 also appears to have a protective function in response to oxidative 

stress. Indeed, oxidative stress has been shown to induce recruitment of TDP-43 to 

stress granules [109-111]. 

Other ALS-associated proteins that have been linked to oxidative stress include FUS 

P525L which has been shown to augment ROS levels when overexpressed in HEK293 

cells [29], and poly(GR) DPRs which have been shown to increase oxidative stress 

[43]. Interestingly as was the case for TDP-43, an oxidative environment increased 

FUS inclusions, again pointing toward a detrimental feed-forward loop [112]. 

2.5 Calcium mishandling 

Loss of calcium homeostasis has been observed in in vitro and in vivo models of 

mutant SOD1, vesicle-associated membrane protein-associated protein B (VAPB), 

TDP-43, and FUS-related ALS and in the motor nerve terminals ALS patients [51, 68, 

113-119]. In SOD1 G93A transgenic mice a significant decrease in mitochondrial 
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calcium loading capacity in the CNS was observed long before disease onset, 

suggesting an early loss of calcium buffering may be causal in disease [68]. Similarly, 

analysis of calcium handling in vulnerable hypoglossal motor neurons identified a 

reduction of uniporter-dependent mitochondrial calcium uptake which was not 

observed in resistant oculomotor neurons [120]. How these defects in mitochondrial 

calcium uptake affect motor neurons is not completely clear, but SOD1 G93A motor 

neurons show a delay in the recovery to basal level of the calcium increase following 

g-amino-5-methyl-3- hydroxisoxazolone-4-propionate (AMPA) receptor activation 

[121]. 

Loss of ER–mitochondria communication has emerged as a major cause of loss of 

calcium homeostasis in ALS. An estimated 5–20% of mitochondria are closely 

associated with the ER at contact sites called mitochondria-associated ER membranes 

(MAM). Several protein complexes that tether ER to mitochondria have been 

proposed, including homo and heterotypic interactions between mitofusin (Mfn) 1 and 

2, interaction of inositol 1,4,5-trisphosphate receptor (IP3R) with VDAC via glucose-

regulated protein 75 (Grp75), and the integral ER protein VAPB that binds to protein 

tyrosine phosphatase-interacting protein 51 (PTPIP51) on the OMM (Fig. 2). Among 

other functions, ER–mitochondria contact sites allow calcium exchange between the 

two organelles [reviewed in Refs. 122, 123]. Disruption of ER–mitochondria 

interactions have been reported in mutant SOD1, Sig1R, TDP-43, and FUS-related 

ALS [51, 115, 124]. In the case of mutant TDP-43 and FUS-related ALS, reduced ER–

mitochondria communication was caused by a GSK3ß-dependent reduction in VAPB-

PTPIP51 interaction [51, 115]. In contrast, ALS mutant VAPBP56S was shown to have 

greater affinity for PTPIP51 and to increase ER–mitochondria association [118]. 

However, since in ALS8 patient-derived iPSC neurons VAPB expression is down-

regulated because of reduced expression of the VAPBP56S mutant allele [125], it is 

likely that in VAPBP56S-related ALS ER–mitochondria contacts are actually 

decreased as well. Whether VAPB–PTPIP51 interaction is also disrupted in mutant 

SOD1 and Sig1R-related ALS is not known, but in SIGMAR1 knockout mice which 

model loss of Sig1R function, the interaction between IP3R and VDAC was decreased 

in motor neurons [124]. Interestingly VAPB expression levels in the spinal cord of 

sporadic ALS cases are significantly lower compared to healthy controls [126]. Thus, 

disrupted ER–mitochondria communication may be a general feature in ALS.  

In ALS mutant FUS and TDP-43 models, impaired ER–mitochondria communication 

leads to reduced calcium uptake in mitochondria and an associated rise in cytosolic 

calcium upon triggering of calcium release from the ER [51, 115]. Similarly, in 

SIGMAR1 knockout mice cytosolic calcium levels were elevated and the time to return 
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to basal levels was significantly longer [124]. As mentioned above, similar loss of 

calcium homeostasis has been reported in SOD1 G93A transgenic mice. Whether 

these are due to reduced ER–mitochondria communication has not been formally 

shown, but neuronal overexpression of wild-type human VAPB has been shown to 

slow disease and increase survival in SOD1 G93A transgenic mice [127]. It is tempting 

to speculate, that restoring ER–mitochondria contacts is the basis of this protective 

effect. 

Dysregulation of calcium, possibly by miscommunication between ER and 

mitochondria, may be a primary cause of motor neuron death in ALS. Indeed, motor 

neurons possess several properties that make them more vulnerable to calcium 

dysregulation compared to other neuronal populations. They express a high number 

of calcium permeable AMPA receptors at the postsynaptic terminal, which results in a 

greater vulnerability to excitotoxicity thorough excessive calcium influx during 

excitatory neurotransmission events [117, 128, 129]. In addition, motor neurons have 

reduced cytosolic buffering capacity because they express low levels of calcium 

buffering proteins such as parvalbumin and calbindin D-28k and this makes them more 

dependent on mitochondria for calcium buffering [130-132, reviewed in Refs. 133, 

134]. Furthermore, loss of calcium homeostasis may contribute to a number of other 

ALS-associated toxic mechanisms, such as axonal transport defects and oxidative 

stress, and loss of protein homeostasis [135, 136, reviewed in Ref. 86]. Mitochondrial 

calcium regulates ATP production by activating the rate-limiting enzymes of the Krebs 

cycle and regulates oxidative phosphorylation and ATP synthesis to match local 

energy demand. As discussed above, reduced ATP production is a common feature 

in ALS. Diminished ATP levels may directly impact on axonal transport of 

mitochondria, vesicles and other cargoes by starving molecular motors of ATP. At the 

same time, elevated levels of cytosolic calcium may disrupt axonal transport of 

mitochondria by interacting with the mitochondrial kinesin-1 receptor Miro1 and in turn 

exacerbate axonal transport deficits and local ATP levels. Indeed, elevated cytosolic 

calcium levels were shown to disrupt axonal transport of mitochondria in ALS mutant 

VAPBP56S expressing neurons [114, reviewed in Ref. 135]. 

In ALS motor neurons, mitochondrial calcium overload may result from the 

physiological activity of AMPA receptors with pathologically increased calcium 

permeability. The resulting chronic calcium overload in mitochondria and concomitant 

abnormal oxidative phosphorylation has been shown to increase ROS production and 

oxidative stress [45, 137] . Mitochondrial calcium overload is predicted to result in 

depletion of calcium in the ER which causes protein misfolding and induces ER stress 

[reviewed in Refs. 133, 136]. Elevated cytosolic calcium levels activate calpain, which 
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has been shown to cleave TDP-43 to generate aggregation-prone fragments and could 

account for the TDP-43 pathology observed in ALS [138, 139]. Finally, chronic 

mitochondrial calcium overload and protein misfolding both induce apoptosis.  

2.6 Pro-apoptotic signalling 

Apoptosis is a last resort mechanism employed by cells upon suffering irreparable 

damage [reviewed in Ref. 140]. Apoptosis serves to remove a damaged cell from the 

environment in a controlled manner so as to not induce large-scale degeneration. 

Mitochondria are integral to apoptosis. Upstream apoptotic signalling cascades 

converge on mitochondria to bring about cytochrome c release, which activates 

downstream executioner caspases [reviewed in Ref. 140] (Fig. 3). Apoptosis is 

regulated by pro- and anti- apoptotic proteins of the Bcl-2 family, which control release 

of caspase-activating factors from mitochondria [reviewed in Refs. 140, 141]. 

Activation of apoptotic signalling cascades has been observed in most ALS models, 

but this is mostly an indirect consequence of other toxic events. However, ALS mutant 

SOD1 has been shown to directly influence apoptotic signalling by interaction with Bcl-

2. Wild-type and ALS mutant SOD1 (A4V, G37R, G41D and G85R) have been shown 

to bind the anti-apoptotic factor Bcl-2 in spinal cord samples [50]. When bound to 

mutant SOD1, the BH3 domain of Bcl-2 is exposed and this causes a pro-apoptotic 

gain of function of the Bcl-2 protein in both cell and animal models of mutant SOD1 

G93A ALS and in mutant SOD1 A4V patient spinal cord [142] (Fig. 3). The toxic mutant 

SOD1–Bcl-2 complex inhibits mitochondrial permeability to ADP and induces 

mitochondrial hyperpolarization due to reducing the interaction of SOD1 and VDAC1 

[143] (Fig. 3). 

2.7 Impaired mitochondrial dynamics 

Mitochondria are dynamic organelles that undergo fusion and fission events and 

undergo directed transport. Several lines of research indicate that impaired 

mitochondrial dynamics may contribute to the aetiology of ALS.  

2.7.1 Aberrant mitochondrial fission and fusion 

Mitochondria form a dynamic network that evolves according to the energetic 

requirements of the cell. An individual mitochondrion can fuse to or fission from the 

mitochondrial network in response to various cues [144]. Fusion allows mitochondria 

to share mitochondrial metabolites, DNA and proteins, and allows for dissipation of 

small changes in MMP. Fission facilitates mitochondrial motility and allows the isolation 

of damaged parts of the network prior to disposal by mitophagy. In healthy cells, 

mitochondrial network morphology is governed by the interplay between dynamin-
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related protein 1 (Drp1) and Fission 1 (Fis1) that promote fission, and Mfn1, Mfn2 and 

Optic atrophy 1 (Opa1) that promote fusion [reviewed in Ref. 145] (Fig. 4). Evidence 

points towards imbalances in these two opposing pathways in ALS.  

In SOD1 G93A expressing SH-SY5Y and NSC-34 cell models, a decrease in Opa1 

and increase in Drp1 levels resulting in a fragmented mitochondrial network were 

reported [146]. In vivo, the levels of Mfn1 and Opa1 progressively decreased while the 

levels of activated Drp1 phosphorylated at Ser616 and Fis1 remained stable in in the 

spinal cord of SOD1 G93A transgenic mice [147] (Fig. 4). In contrast, in SOD1 G93A 

mouse muscle fibres there was no reported change in Mfn1, Mfn2 or Drp1 levels [148]. 

Overexpression of wild type TDP-43 and to a greater extend ALS mutant TDP-43 

Q331K and M337V resulted in reduced mitochondrial length in primary motor neurons 

which was sensitive to Mfn2 levels [23]. Transgenic mice expressing wild type TDP-43 

exhibited increased levels of Fis1 and activated phosphor-Ser616 Drp1 and a 

reduction in Mfn1, which correlated with aberrant mitochondrial morphology and 

clustering [149]. In contrast, the same group reported no changes in the levels of 

phospho-Ser616 Drp1, Fis1 or Mfn1 in mutant TDP-43 M337V transgenic mice, 

despite a similar mitochondrial phenotype [150]. Possibly different pathways lead to 

fragmentation of the mitochondrial network in wild type and mutant TDP-43 transgenic 

mice, or, alternatively, external factors linked to disease such as changes in apoptotic 

factors result in mitochondrial fragmentation. Nevertheless, analysis of TDP-43 A382T 

patient fibroblasts showed that Fis1 levels were significantly increased compared to 

control cells [31] (Fig. 4). Counter-intuitively, mitochondrial network fragmentation in 

C9ALS/FTD patient fibroblasts was associated with an increase in Mfn1 levels [31]. 

Possibly Mfn1 expression is increased to compensate for dysregulation of other fusion 

and fission factors. 

Mitochondria–ER contact sites have been shown to regulate mitochondrial 

morphology. Mitochondrial fission occurs at ER–mitochondria contact sites where ER 

tubules wrap around and constrict mitochondria to aid division [151]. As discussed 

above reduced ER–mitochondria contacts are a common observation in various ALS 

models. Consistent with reduced fission, decreased ER–mitochondria contacts in 

motor neurons of SIGMAR1 knockout correlated with elongated mitochondria 

compared to controls [124] whereas, in VAPB P56S overexpressing cells increased 

ER–mitochondria contacts correlated with fragmented mitochondria [118] (Fig. 4). 

However, in SOD1, TDP-43 and FUS ALS models reduced ER–mitochondria contacts 

appear to correlate with fragmented mitochondria [23, 26, 51, 115, 152, 153]. 

Therefore, there is no straightforward correlation between ALS-associated disruption 

of ER–mitochondria contacts and changes in mitochondrial network morphology.  
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The relevance of exacerbated mitochondrial fission in the aetiology of ALS is not clear. 

Perhaps, smaller mitochondria, which tend to be less energetically favourable and 

more prone to accumulating ROS induced damage if they cannot fuse back to the 

network [154], may exacerbate mitochondrial damage. Thus, the fragmented 

mitochondrial network observed may correlate directly with the reduced MMP, ATP 

levels and increased ROS reported in ALS. Alternatively, mitochondrial fragmentation 

may merely reflect mitophagy, a physiological quality control response to mitochondrial 

damage (see below). Indeed, it is well established that one of the first steps of 

mitophagy is to isolate damaged mitochondria from the mitochondrial network 

[reviewed in Ref. 155]. However, as disease progresses and mitochondrial damage 

accumulates, mitophagy may become unable to cope and as a consequence 

mitochondrial fragmentation could become self-propagating. In any case, evidence 

suggests that mitochondrial fragmentation participates in ALS. Inhibition of 

mitochondrial fission by overexpression of dominant negative Drp1 K38A rescued 

SOD1 G93A induced mitochondrial fragmentation and trafficking defects as well as 

motor neuron viability [156]. Similarly, Promotion of mitochondrial fusion by co-

expressing Mfn2 in wild type or TDP-43 M333V expressing primary motor neurons 

rescued mitochondrial fragmentation [23]. Whether rescuing mitochondrial network 

morphology is sufficient to improve neuron survival in vivo remains unclear. 

2.7.2 Disrupted mitochondrial quality control 

As discussed above, accumulation of fragmented, rounded mitochondria is a common 

feature in ALS, and may indicate failure of mitophagy to clear damaged mitochondria. 

The molecular mechanisms of mitophagy have been reviewed in detail elsewhere 

[157], but briefly, loss of MMP results in accumulation of full length PINK1 on the OMM 

where it phosphorylates ubiquitin, which in turn promotes the recruitment of the E3 

ligase Parkin. Parkin ubiquitinates and promotes the VCP/p97-dependent degradation 

of various OMM proteins such as Mfn1/2 and Miro1 to isolate and immobilise the 

damaged mitochondrion. Ubiquitinated mitochondria are then recognised by the 

canonical autophagy machinery and are delivered to the lysosome for degradation 

(Fig. 5).  

TDP-43 and FUS directly regulate the expression of Parkin [158, 159]. Loss of TDP-

43 or FUS was shown to decrease Parkin levels [158], and consistent with loss of TDP-

43 function in the nucleus decreased Parkin protein levels were observed in sporadic 

ALS spinal cord motor neurons containing cytoplasmic TDP-43 aggregates [158]. 

Parkin protein levels were found to be decreased in TDP-43 A513T transgenic mice 

[38] but this was not observed by others [160]. Thus, since cytosolic TDP-43 
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aggregation is a near universal phenomenon in ALS, loss of parkin may impair 

mitophagy in most ALS cases. Furthermore, since, as discussed above, TDP-43 

accumulates in mitochondria and causes mitochondrial damage, a two-hit scenario 

emerges in which loss of mitophagy exacerbates the consequences of mitochondrial 

damage. Of note, Parkin has been shown to ubiquitinate TDP-43 and to promote its 

translocation from the nucleus to the cytosol in an HDAC6-dependent process [160]. 

Even though the latter is likely to be a reflection of the role of parkin and HDAC6 in 

aggrephagy rather than mitophagy, it does emphasise a close link between Parkin and 

TDP-43 that merits further examination. 

The Type II AAA+ ATPase VCP/p97 is involved in a multitude of processes, but its 

main function is to dislodge damaged ubiquitinated proteins from large protein 

complexes and membranes for degradation by the proteasome [reviewed in Refs. 161, 

162]. VCP/p97 is recruited to the OMM of damaged mitochondria following parkin 

recruitment and extracts ubiquitinated Mfn1 and 2 from the OMM to allow their 

degradation by the proteasome [163]. As such VCP/p97 is essential for mitophagy 

[164]. Missense mutations in VCP/p97 cause of 1-2% of familial ALS cases as well as 

inclusion body myopathy (IBM) with Paget's disease (PDB) and frontotemporal 

dementia (FTD) [165, 166]. Although it is not known exactly how disease-associated 

mutations in VCP/p97 alter its cellular functions, most mutations appear to convey 

varying degrees of loss of function [reviewed in Ref. 167]. Consistent with loss of 

function, MEFs expressing mutant VCP/p97 A232E do not clear mitochondria following 

damage, despite labelling with Parkin [164]. As discussed above, pathogenic 

mutations in VCP/p97 induce mitochondrial uncoupling and impair ATP production 

[73]. Possibly, this phenotype is caused by accumulation of damaged, uncoupled 

mitochondria that should have been degraded.  

Interestingly, not unlike Parkin, VCP/p97 has been linked to TDP-43 metabolism. In 

SHSY-5Y cells expressing mutant VCP/p97 (R95G, R155H/C, R191Q, A232E) TDP-

43 redistributed from the nucleus to the cytoplasm [168]. Similarly, in VCP/p97 R152H 

or A229E transgenic Drosophila and spinal cord motor neurons of VCP/p97 R155H or 

A232E transgenic mice expression of mutant VCP/p97 induced TDP-43 pathology 

[169]. Furthermore, in Drosophila, TBPH, the fly homolog of TDP-43 was identified as 

a genetic modifier that suppressed mutant VCP/p97 toxicity, indicating that VCP 

toxicity is at least in part mediated by a toxic gain of function of TDP-43 [169]. We now 

know that TDP-43 accumulates in mitochondria and causes damage to the ETC (see 

above; [42]). Hence a possible explanation for this genetic interaction is that 

accumulation of cytoplasmic TDP-43 exacerbates loss of mitochondrial quality control 

by mutations in VCP/p97.  
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Mitophagy requires autophagy receptors such as optineurin and p62/sequestosome-1 

that accumulate on ubiquitinated mitochondria and deliver them to the autophagosome 

by interaction with LC3-II on autophagic membranes. Optineurin and 

p62/sequestosome-1 are substrates of tank-binding kinase 1 (TBK1); phosphorylation 

by TBK1 promotes ubiquitin and LC3 binding and enhances mitophagy [reviewed in 

Refs. 170, 171;172].  

Mutations in the OPTN, SQSTM1 and TBK1 genes which encode optineurin, 

p62/sequestosome-1, and TBK1, respectively, have been associated with ALS [173-

175, reviewed in Ref. 11] (Table 1). ALS-associated mutations in these genes appear 

to cause loss of function phenotypes. The ALS-associated optineurin E478G mutation 

maps to the ubiquitin binding domain of optineurin and the mutant protein is no longer 

recruited to damaged mitochondria [176, 177]. Along the same lines, the ALS-

associated L341V mutation in p62/sequestosome-1 maps to the LC3-interacting 

region (LIR) domain and disrupts interaction with LC3 [178]. The ALS mutant forms of 

TBK1, TBK1 del690-713 and E696K, prevent the interaction between TBK1 and 

optineurin and impair clearance of LC3 labelled autophagic cargos [179, 180]. If ALS-

associated TBK1 mutants also affect mitophagy remains to be determined, but the role 

of TBK1 in mitophagy is well established. Furthermore, the activation of TBK1 is 

dependent on the activity of the upstream activity of PINK1/Parkin which as discussed 

above is affected in ALS [179, 180]. Consistent with failure to deliver damage 

mitochondria to the lysosome, LC3-II positive mitochondrial aggregates have been 

observed in wild type and ALS mutant TDP-43 Q331K and M337V expressing NSC-

34 cells as well as in SOD1 G93A mouse spinal cord [21, 181]. In case of SOD1 G93A 

the observed failure to clear damaged mitochondria appears to be caused by 

lysosomal deficits caused by impairment of retrograde trafficking of late endosomes 

rather than specific mitophagy deficits [182].  

Interestingly TBK1 has also been found to interact with C9orf72 in complex with 

SMCR8 and WDR41, and C9orf72 controls autophagy via regulation of the small Rab 

GTPases Rab1a, Rab8a and Rab39b [183-186, reviewed in Ref. 187]. Another ALS 

and autophagy-associated regulator of small Rab GTPases is Alsin, a guanine 

nucleotide exchange factor (GEF) for Rab5. Loss-of-function mutations in Alsin cause 

a recessive juvenile form of ALS, ALS2 [188, 189]. Loss of Alsin in mice impairs 

autophagy and corticospinal motor neurons exhibit fused mitochondria engulfed by 

vacuole structures consistent with failure to remove damaged mitochondria by 

mitophagy [33, 190]. Interestingly loss of Alsin in corticospinal motor neurons 

correlated with a progressive decline in Rab1a levels suggesting a direct link to 
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C9orf72 [33]. Thus, a number of ALS-associated insults appear to converge on 

autophagy and mitophagy. 

2.7.3 Impaired axonal transport of mitochondria 

Motor neurons are highly polarised cells and require membrane-bound vesicles, 

organelles, proteins, lipids and RNA to be transported from the soma to the axon 

terminal and vice versa. Impaired axonal transport of mitochondria is a well-

documented phenomenon in ALS. In fact, axonal transport defects are one of the 

earliest pathophysiological events in ALS motor neurons, indicating that they may be 

a primary cause of motor neuron loss [reviewed in Refs. 135, 191].  

Long distance transport of mitochondria is mediated by the molecular motors kinesin-

1 (previously referred to as conventional kinesin or KIF5) and cytoplasmic dynein that 

move along microtubules. Kinesin-1 moves toward the faster growing plus end of 

microtubules whereas cytoplasmic dynein moves toward the opposite minus end. 

Because axonal microtubules are uniformly orientated with their plus ends pointing 

away from the cell body, kinesin-1 transports mitochondria toward the axon terminal 

(anterograde transport) and cytoplasmic dynein ferries mitochondria to the cell body 

(retrograde transport) (Fig. 6). 

Defects in both anterograde and retrograde transport of mitochondria have been 

reported in a number of in vitro and in vivo experimental models. ALS mutant SOD1 

G93A, A4V, G85R or G37R caused reduced anterograde but not retrograde axonal 

transport of mitochondria in cultured cortical neurons and an identical phenotype was 

observed in embryonic motor neurons isolated from SOD1 G93A transgenic mice [26]. 

Similarly, overexpression of the ALS mutant VAPBP56S caused a selective block in 

anterograde transport of mitochondria [114]. Reduced overall mitochondrial transport 

was observed in primary motor neurons expressing wild-type TDP-43 and to a greater 

extent ALS mutant TDP-43 Q331K or M337V [23] and in Sig1R deficient motor 

neurons [124]. Interestingly, normal levels of axonal transport of mitochondria were 

reported in cortical neurons expressing wild type or mutant TDP-43 M337V or A315T 

at 5ದ7 days in culture, suggesting a possible cell type specificity [192]. Subsequent 

time-lapse recordings in single axons in the intact sciatic nerve of presymptomatic 

SOD1 G93A and TDP-43 A315T transgenic mice and rats confirmed deficits axonal 

transport of mitochondria in vivo [22, 193-195].  

Mitochondrial transport defects result in redistribution of mitochondrial in axons. In 

vitro, the number of axonal mitochondria was significantly reduced and the remaining 

mitochondria were spaced further apart in primary neurons expressing ALS mutant 
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SOD1 [26]. In vivo the number of axonal mitochondria was reduced in motor neurons 

of early symptomatic SOD1 G37R and SOD1 G85R transgenic mice and the motor 

axon terminals of SOD1 G93A transgenic rats and TDP-43 transgenic mice [27, 194, 

196]. Furthermore, the distribution of the remaining mitochondria was no longer 

homogeneous throughout the axons, with abnormal mitochondrial clusters observed 

along the axon [22, 27, 196, 197]. Similar mislocalisation and aggregation of 

mitochondria has been observed in the soma, dendrites and proximal axons of motor 

neurons in spinal cord sections from ALS patients, suggesting that disruption to 

mitochondrial transport is a general phenomenon in ALS [18]. 

A number of possible mechanisms underlying mitochondrial axonal transport defects 

have been proposed. In rare cases, pathogenic mutations in the axonal transport 

machinery, such as cytoplasmic dynein, kinesin-1 and g-tubulin directly disrupt axonal 

transport. In most cases however the disruption of axonal transport of mitochondria 

appears to be indirect; proposed mechanisms include microtubule destabilisation, 

pathogenic kinase signalling, protein aggregation, and mitochondrial damage 

[reviewed in Ref. 135]. Axonal transport of mitochondria is controlled by the integral 

OMM protein Miro1 [reviewed in Ref. 198]. Miro1 is an atypical Rho GTPase comprised 

of two GTPase domains separated by two calcium-binding E-helix-loop-F-helix (EF)-

hand motifs [199]. Miro1 is anchored in the OMM and connects mitochondria to 

kinesin-1 and cytoplasmic dynein via the adapter proteins TRAK1 and 2 [200-205]. 

Miro1 regulates mitochondrial trafficking in response to physiological calcium stimuli 

and mitochondrial damage. Binding of calcium to the Miro1 EF-hand motifs modulates 

the interaction of kinesin-1 with Miro1 and impedes anterograde transport of 

mitochondria [206, 207]. During mitophagy, PINK1 phosphorylates Miro1 in response 

to mitochondrial damage [208-210]. Phosphorylation marks Miro1 for Parkin-

dependent proteasomal degradation and results in detachment of kinesin-1 from 

mitochondria and arrested mitochondrial movement [209]. 

As discussed above, mitochondrial calcium handling is dysregulated in ALS. Hence 

ALS-associated mitochondrial axonal transport defects may be the direct result of 

aberrant calcium-mediated regulation of Miro1. In agreement with such a mechanism, 

cytosolic calcium levels are elevated in cellular ALS models and in motor neurons from 

transgenic ALS models [114, 119] and, at least in case of VAPB P56S there is direct 

evidence that elevated calcium disrupts transport of mitochondria via Miro1 [114] (Fig. 

6). Similarly, ALS mutant SOD1, TDP-43, and Sig1R-associated reductions in ER–

mitochondria contacts result in transiently elevated cytosolic calcium levels due to 
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reduced calcium-uptake in mitochondria that coexist with axonal transport deficits, but 

the possible involvement of Miro1 remains to be determined [115, 124, 152]. 

Decreased levels of Miro1 have been reported in SOD1 G93A and TDP-43 M337V 

transgenic mice, as well as in the spinal cord of ALS patients [211]. Since both SOD1 

G93A and TDP-43 M337V damage mitochondria (see above), these results suggest 

that ALS-associated mitochondrial damage leads to halting of mitochondrial transport 

via PINK1/Parkin-dependent degradation of Miro1. 

In some cases, ALS-associated proteins may directly affect the axonal transport 

machinery. Both TDP-43 and FUS have been shown to regulate the expression of 

several kinesins, including kinesin-1, and TDP-43 binds TRAK1 mRNA [159, 212, 213]. 

ALS-mutant SOD1 directly binds to cytoplasmic dynein in SOD1 G93A and G37R cell 

and mouse models and the interaction becomes more prevalent through disease 

progression [214-216]. Thus, in case of mutant SOD1, axonal transport defects may 

in part be due to sequestration of dynein.  

There are several ways in which defective axonal transport of mitochondria may 

contribute to disease. Defective axonal transport of mitochondria may lead to 

imbalances in ATP generation and calcium buffering at the post-synaptic terminal. In 

conjunction with mitochondrial damage this may cause the dying back of the axon, a 

feature implicated in ALS [217] (Fig. 6). Retrograde transport defects are associated 

with defects in the removal of damaged organelles by mitophagy, which could explain 

the mitochondrial aggregates found in the axons of ALS patients [20, 218]. 

Furthermore, defective axonal transport of mitochondria may also affect the transport 

of other axonal cargoes such as signalling endosomes which appear closely linked to 

ALS pathology [reviewed in Ref. 135]. 

3 Mitochondria as therapeutic targets in ALS  

Finding a cure for ALS has thus far been unsuccessful. Targeting mitochondrial 

dysfunction presents an attractive treatment option due to the widespread prevalence 

of mitochondrial dysfunction in disease. Potential therapeutic strategies have aimed to 

decrease ROS generation, increase mitochondrial biogenesis, inhibit apoptotic 

pathways or dampen excitotoxicity.  

The only FDA drug approved for use in ALS is Riluzole. However, Riluzole only 

extends survival by approximately 3-month. The mechanism by which Riluzole acts to 

improve survival is unclear. Some evidence suggests that Riluzole decreases ROS 

through induction of glutathione synthesis [219]. However little effect was observed on 

basal levels of ROS, and therefore Riluzole may only act in this way in the context of 
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elevated ROS levels. Riluzole has been found to display a range of effects on 

glutamatergic signalling at the synapse, leading ultimately to attenuation in calcium 

handling requirements. Indeed, treatment in vitro with Riluzole prevents motor and 

cortical neuron loss induced by sustained glutamate increase and elevated ROS levels 

[220]. Furthermore, Riluzole has been demonstrated to reduce inward calcium currents 

and rescue the axonal transport of neurofilaments [221, 222]. Attenuation of inward 

calcium currents is predicted to alleviate stresses on cytosolic and mitochondrial 

calcium buffering mechanisms and potentially decrease cytosolic calcium levels with 

knock-on effects on ROS generation and mitochondrial function. However, with the 

limited effect on prognosis offered by Riluzole, alternative therapies are required for 

the treatment of ALS.  

Despite many drug-based and gene therapy approaches targeting mitochondrial 

dysfunction in ALS, neither treatments aimed at increasing mitochondrial function and 

survival nor those aimed at reducing oxidative stress have yielded significant results 

in clinical trials, despite early promising trials in animal models [223]. For example, 

several drugs targeting mitochondrial function and/or ROS such as Coenzyme Q10, 

Dexpramipexole, Olesoxime and Creatine all showed initial success in animal models 

but were unsuccessful in human clinical trials [224-231]. Reducing ROS using 

Edaravone, a free radical scavenger had initial success in mouse models but only a 

small decrease in human disease progression [232, 233]. Similarly, minocyline, an 

anti-apoptotic and anti-inflammatory drug which extended survival in mouse models, 

failed in a human phase III randomised trial [234]. The disparity between the results 

seen between initial studies mouse models and the results from human trials highlights 

the disparity between models and the human disease, and the need for better disease 

models [235]. In addition, the wide range of mitochondrial dysfunction in ALS means 

that a single therapy is unlikely to attenuate all aspects of dysfunction. Therefore, 

identifying which of the mitochondrial dysfunctions are relevant to disease causation 

and progression will continue to be important for the development of neuroprotective 

therapies in ALS. Targeting specific proteins dysregulated in ALS may provide 

alternative therapy avenues. Indeed a blocking peptide that prevents the abnormal 

interaction between mutant SOD1 and Bcl-2 has been shown to prevent apoptosis and 

improve mitochondrial function in SOD1 G93A transgenic mice [143].  

4 Conclusions 

Despite the surge in the number genes found to be associated with ALS since the turn 

of the millennium, the aetiology ALS remains largely unknown. Mitochondrial 
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dysfunction has emerged as a common, early phenomenon in ALS. The appearance 

of deficits in oxidative phosphorylation, calcium buffering and mitochondrial transport 

prior to the onset of disease symptoms in vivo in disease models suggests an important 

role for loss of mitochondrial integrity in the aetiology of ALS.  

Nevertheless, clinical trials targeting mitochondria have been disappointing, indicating 

that mitochondrial dysfunction alone may not be a primary cause of disease. Possibly 

the widespread presence of mitochondrial dysfunction in ALS models and patients, 

may be secondary to other disease-related insults such as protein aggregation and 

excitotoxicity. In such a scenario, mitochondrial function would gradually decay until a 

point-of-no-return threshold is reached and the motor neuron dies. Such a mechanism 

would be predicted to conspire with age-associated decline in mitochondrial function 

and may explain the late onset of the majority of ALS cases. In any case, since, with 

the possible exception of Riluzole, treatments targeting other proposed causes of ALS 

have been equally unsuccessful in clinical trials, it transpires that any successful 

therapeutic strategy may have to address multiple targets in a combination therapy. 

Importantly, mitochondrial dysfunction has also been widely reported in other 

neurodegenerative diseases such as Parkinson’s, Huntington’s and Alzheimer’s 

disease [236-238]. Similarities in defects in mitochondrial clearance and bioenergetic 

functions exist between these diseases and ALS despite different clinical presentation. 

Therefore, neurodegenerative conditions appear to be group of diseases with common 

dysfunction but with varying endpoints. Possibly discovery and study of common 

mechanisms underlying these diseases, including mitochondrial dysfunction, will 

increase our understanding of the essential requirements for neuronal survival that can 

inform future neuroprotective therapies. 
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Figure 1: Defective mitochondrial respiration, ATP production and oxidative 

stress 

The efficient activity of the electron transport chain is required for the generation of 

cellular ATP. The activity of the complexes involved in the electron transport chain 

have been shown to be decreased in SOD1, TDP-43 and CHCHD10-related ALS. This 

results in decreased MMP and ATP generation, and increased generation of ROS. 

See text for details. 

 



 48 

Figure 2: Loss of calcium homeostasis 

Calcium homeostasis is achieved though the exchange of calcium between the ER 

and mitochondria at ER–mitochondria contacts. ER–mitochondria contacts are 

disrupted in SOD1, TDP-43, VAPB, Sig1R and FUS ALS. Disruption of the contacts 

may lead to increases in cytosolic calcium levels and disruption of calcium dependent 

cellular processes, including axonal transport, ATP generation and protein 

homeostasis. MCU, mitochondrial calcium uniporter. See text for details. 

 

 

Figure 3: Pro-apoptotic signalling 

Mitochondrial stress is increased due to dysfunctional cellular pathways resulting in 

increased ROS generation, and mitochondrial damage. Mutant SOD1 contributes to 

apoptotic signalling in ALS by binding the anti-apoptotic factor Bcl-2 and promoting a 

pro-apoptotic conformation of the protein. The Bcl2-SOD1 complex inhibits VDAC ADP 

permeability and induces mitochondrial hyperpolarisation. See text for details. 

 

 

Figure 4: Aberrant mitochondrial fission and fusion 

Mitochondrial network dynamics are required for correct mitochondrial function. 

Fission is mediated by Drp1, which is recruited to mitochondria by Fis1. Fusion of the 

OMM is mediated by Mfn1/2 and the fusion of the IMM by Opa1. Mitochondrial fission 

is promoted in SOD1 and TDP-43 ALS by increases in the fission factors Fis1 and 

Drp1 and a decrease in the fusion factors Mfn1 and Opa1. Decreased ER–

mitochondria contact sites may also lead to decreased mitochondrial fission events. 

Finally, dysfunctional removal of damaged organelles through the mitophagy pathway 

may also contribute to accumulation of fragmentation mitochondria. See text for 

details. 

 

 

Figure 5: Disrupted autophagy/mitophagy 

Mitophagy removes dysfunctional mitochondria from the cell. Mitochondria are 

exposed to high levels of stress due to elevations in ROS levels and aggregates of 

mutant ALS protein associated with mitochondria. Mitophagy is impaired at multiple 

stages in ALS. Mutant TDP-43 and FUS mislocalisation may affect parkin levels. The 

removal of ubiquitinated Mfn1/2 may be impaired by mutant VCP/p97. Recognition of 

ubiquinated mitochondrial cargos by nascent autophagosomes may be impaired by 
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mutations in p62/sequestosome-1, optineurin and TBK1. Other ALS genes such as 

SOD1, Alsin, and C9orf72 have also been linked to autophagy. See text for details. 

 

 

Figure 6: Disrupted axonal transport 

Neurons depend on axonal transport of mitochondria for their ATP requirement and 

calcium buffering. Axonal transport of mitochondria is impaired in ALS. Miro1, the 

OMM protein involved in mitochondrial trafficking, is reduced in SOD1 and TDP-43-

associated ALS. Mutant SOD1 binds the dynein/dynactin complex required for 

retrograde transport sequestering it in the cytosol. FUS and TDP-43 are proposed to 

regulate kinesin expression levels. Increases in cytosolic calcium levels due to 

decreased ER–mitochondria contacts in SOD1, TDP-43, FUS, Sig1R and VAPB-

related ALS may contribute to detachment of the mitochondria from kinesin, through 

aberrant Miro1 regulation. Loss of mitochondria from the axon terminal may lead to the 

dying back of the axon. See text for details. 
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Table 1: Impact of ALS-associated genes on mitochondrial function. Pathogenic variants of proteins implicated in ALS have been linked to 

altered mitochondrial function (Ref. http://alsod.iop.kcl.ac.uk/home.aspx; [7]) 

ALS locus Gene Protein Potential consequence of mutation on mitochondrial function 

ALS 1 SOD1 Cu, Zn superoxide dismutase 1 Mutant protein aggregates in IMS; decreased ATP generation; 

increased cellular ROS and ROS induced cellular damage; 

imbalance in calcium homeostasis and disruption of ER–

mitochondria contacts; induction of apoptosis via VDAC inhibition 

and Bcl-2 binding; disrupted mitochondrial architecture; impaired 

mitochondrial network dynamics and axonal transport; impaired 

mitochondrial clearance by mitophagy; disrupted ER–mitochondria 

contacts 

ALS 2 ALS2 Alsin Reduced autophagosome formation and decreased mitophagy 

ALS 6 FUS RNA-binding protein FUS Decreased ATP generation; increased ROS levels; loss of calcium 

homeostasis and disruption of ER–mitochondria contacts; reduced 

mitophagy-related gene expression; disrupted mitochondrial 

architecture; impaired mitochondrial transport via disrupted kinesin 

gene expression 

ALS 8 VAPB Vesicle-associated membrane 

protein-associated protein B 

Impaired calcium homeostasis and disrupted ER–mitochondria 

contacts; decreased anterograde axonal transport; disrupted ER–

mitochondria contacts 

ALS 10 TARDBP TAR DNA-binding protein 43 TDP-43 aggregates in mitochondria and disrupts mtDNA 

transcription; decreased ATP generation; impaired calcium 

homeostasis and disrupted ER–mitochondria contacts; disrupted 

http://alsod.iop.kcl.ac.uk/home.aspx
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mitochondrial architecture; altered mitochondrial network dynamics 

and impaired mitochondrial axonal transport; reduced mitophagy 

related gene expression; impaired mitochondrial clearance by 

mitophagy 

ALS 12 OPTN Optineurin Reduced mitochondrial clearance by mitophagy 

ALS 14 VCP Valosin-containing protein Decreased ATP levels; mitochondrial uncoupling; reduced 

mitochondrial clearance by mitophagy 

ALS 16 SIGMAR1 Sigma non-opioid intracellular 

receptor 1 

Reduced ATP generation; disrupted ER–mitochondria contacts; 

dysregulated calcium homeostasis; reduced axonal transport 

ALS-FTD1 C9orf72 Chromosome 9 open reading 

frame 72 

DPR proteins interact with mitochondrial ribosomal proteins; altered 

MMP; increased cellular ROS levels; poly(GR) DPR induced 

oxidative stress; impaired autophagy; disrupted mitochondrial 

architecture and altered mitochondrial network dynamics 

ALS-FTD2 CHCHD10 Coiled-coil-helix-coiled-coil-helix 

domain containing 10 

Disrupted mitochondrial architecture; decreased electron transport 

chain activity  

ALS SQSTM1 p62/Sequestosome 1 Reduced mitochondrial clearance by mitophagy; reduced MMP 

Abbreviations: ATP - adenosine triphosphate; DPR - dipeptide repeat protein; IMS - intermembrane space; MAM - mitochondrial associated 

membrane; MMP - mitochondrial membrane potential; ROS - reactive oxygen species 

 

 


