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Abstract

We consider the random walk attachment graph introduced by Saramäki and Kaski
and proposed as a mechanism to explain how behaviour similar to preferential at-
tachment may appear requiring only local knowledge. We show that if the length of
the random walk is fixed then the resulting graphs can have properties significantly
different from those of preferential attachment graphs, and in particular that in the
case where the random walks are of length 1 and each new vertex attaches to a single
existing vertex the proportion of vertices which have degree 1 tends to 1, in contrast
to preferential attachment models.
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There is currently great interest in the preferential attachment model of network

growth, usually called the Barabási-Albert [2, 1] model, though it dates back at least

to Yule [11], and was discussed also by Simon [10]. In the simplest version of this an

existing graph is incremented at each stage by adding a single new vertex which then

attaches to a single pre-existing vertex; this latter is chosen from amongst those of the

pre-existing graph with probability proportional to the degree of that vertex. In the

Barabási-Albert model the new vertex will connect to m vertices, where m is fixed and

is a parameter of the model, but here we only consider the case m = 1. One of the best

known properties of the model is that it produces a power law degree distribution, as

shown rigorously by Bollobás et al [3].

One weakness of this model and its generalisations is that this implicitly requires a

calculation across all the existing vertices, or at least a knowledge of the total degree

(sum of the vertex degrees) of the graph. This requirement then destroys the potential

for this model to have emergent properties from local behaviour.

A possible solution to this was proposed by Saramäki and Kaski [9]. In their model

the new vertex simply chooses a single vertex from the graph and then executes a ran-

dom walk of length ℓ step initiated from that vertex. Saramäki and Kaski [9] and Evans

and Saramäki [6] claim that this reproduces the Barabási-Albert degree distribution,

even when ℓ = 1. It is clear that this is the case if the random walk is run for long

enough to have converged to its stationary distribution. However we will prove that in

the particular case ℓ = 1 the degree sequence does not converge to a power law dis-

tribution, but rather to a degenerate limiting distribution in which almost every vertex

has degree 1.
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Random walk attachment graphs

1 The Model

Let G0 be an arbitrary (perhaps connected) graph, with v0 vertices and e0 edges.

Form Gn+1 from Gn by adding a single vertex. This vertex chooses a single vertex (i.e.

this corresponds to m = 1 in the Barabási-Albert model) to connect to by picking a ver-

tex uniformly at random in Gn and then, conditional on the vertex chosen, performing

a simple random walk of length ℓ on Gn, starting from the randomly chosen vertex, and

then choosing to connect to the destination vertex. Most of the time we will assume

that ℓ is deterministic, but we will also consider a particular case where ℓ is replaced

by a random variable.

2 Number of leaves

We first consider the number of leaves in the graph. Let p
(n)
d be the proportion of

vertices in Gn with degree d, and let Ln = p
(n)
1 , i.e. the proportion of leaves. The

number of edges in Gn will be n + e0, the total degree will thus be 2(n + e0), and the

number of vertices will be n+v0. Let Vn be the vertex initially chosen at random at step

n, and let Wn be the vertex selected by the random walk, so the new vertex connects to

Wn. We now prove the main result, which applies to the case where ℓ = 1.

Theorem 2.1. When ℓ = 1, as n → ∞, Ln → 1, almost surely.

Proof. We assume that G0 is not a star. If G0 is a star, then it is clear that, with probabil-

ity 1, Gn will eventually not be a star, so we can just wait until this happens and re-label

the first non-star graph as G0. If Gn is not a star each vertex has at least one neighbour

which is not a leaf, and in particular no leaves have a leaf as their neighbour. If Vn is

a leaf, which has probability Ln, then Wn will be one of its neighbours, which will not

be a leaf, so in this case the number of leaves increases by 1. Hence, considering the

conditional expectation of the number of leaves in Gn+1,

E((n+ v0 + 1)Ln+1|Gn) ≥ (n+ v0)Ln + Ln = (n+ v0 + 1)Ln, (2.1)

and so E(Ln+1|Gn) ≥ Ln and so (Ln)n∈N is a submartingale taking values in [0, 1], and

thus converges almost surely and in L2 to a limit, which we call L∞.

To show that L∞ = 1 almost surely, note that conditional on Vn having degree d the

probability of Wn not being a leaf is at least 1/d, so we can make (2.1) sharper, getting

E(Ln+1|Gn) ≥ Ln +

∞
∑

d=2

p
(n)
d

(n+ v0 + 1)d
. (2.2)

The total degree of non-leaves in Gn is 2(n + e0) − Ln(n + v0) = (2 − Ln)(n + v0) +

2(e0 − v0), and the number of non-leaves is (1 − Ln)(n + v0), so the average degree of

non-leaves is 2−Ln

1−Ln

+ 2(e0−v0)
(n+v0)(1−Ln)

. Hence at least half the non-leaves have degree at

most 2
(

2−Ln

1−Ln

+ 2(e0−v0)
(n+v0)(1−Ln)

)

and so

E(Ln+1|Gn) ≥ Ln +
1− Ln

2(n+ 1)

(

2

(

2− Ln

1− Ln

+
2(e0 − v0)

(n+ v0)(1− Ln)

))−1

(2.3)

and so

E(Ln+1) ≥ E(Ln) +
1

2(n+ 1)
E

(

1− Ln

2

(

2− Ln

1− Ln

+
2(e0 − v0)

(n+ v0)(1− Ln)

)−1
)

. (2.4)

If E(L∞) = limn→∞ E(Ln) < 1, then for some fixed c < 1 we must have Ln ≤ c

with positive probability. The expectation on the right of (2.4) is then bounded away
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Random walk attachment graphs

from zero for large n, giving a contradiction and showing that E(L∞) = 1 and thus that

L∞ = 1 almost surely.

It should be noted that the argument for Theorem 2.1 is dependent on the walk

length being fixed at 1. For example, define a sequence of random variables (Xn)n∈N

which are independent and identically distributed with P (Xn = 0) = p and P (Xn = 1) =

1− p, and let the walk length from Vn to Wn be Xn, rather than a fixed ℓ as previously.

Then, by the same argument as before

E(Ln+1 − Ln|Gn, Xn+1 = 1) ≥
1− Ln

2

1− Ln

2(n+ v0 + 1)(2− Ln)
+O(n−2).

As there can be at most one more leaf in Gn+1 than in Gn, we also have

E(Ln+1 − Ln|Gn, Xn+1 = 1) ≤
1− Ln

n+ v0 + 1
+O(n−2).

Also, if there are no random walk steps from the initially chosen vertex the proba-

bility that the new vertex connects to a leaf is simply Ln, so

E((n+ v0 + 1)Ln+1|Gn, Xn+1 = 0) = (n+ v0)Ln + 1− Ln,

and hence

E(Ln+1 − Ln|Gn, Xn+1 = 0) =
1

n+ v0 + 1
(1− 2Ln).

So, if we have Xn = 0 with probability p and 1 with probability 1 − p for all n inde-

pendently of each other

E(Ln+1 − Ln|Gn) ≥
1

n+ v0 + 1

[

p(1− 2λ) + (1− p)
(1− λ)2

4(2− λ)

]

+O(n−2). (2.5)

Similarly,

E(Ln+1 − Ln|Gn) ≤
1

n+ v0 + 1
[1− λ(1 + p)] +O(n−2). (2.6)

The right hand side of (2.5) is negative if

Ln <
1 + 9p− 2

√

8p2 + p

1 + 7p

and n is sufficiently large and the right hand side of (2.6) is negative if Ln > 1
1+p

and n

is sufficiently large.

Note that
1 + 9p− 2

√

8p2 + p

1 + 7p
−

1

1 + p
≥ 0

for p ∈ [0, 1] with equality only at p = 0 and p = 1, and that

1 + 9p− 2
√

8p2 + p

1 + 7p
≤ 1,

with equality only if p = 0.

A version of the argument of Lemma 2.6 of [8] now shows that, almost surely,

lim inf
n→∞

Ln ≥
1

1 + p

and

lim sup
n→∞

Ln ≤
1 + 9p− 2

√

8p2 + p

1 + 7p
.

So we do not get a similar result to Theorem 2.1 in this setting.
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3 G0 Bipartite

We now consider a special case which demonstrates that, for all odd ℓ, the random

walk model of [9] differs fundamentally from that of the Barabási-Albert model.

Assume that G0 is a bipartite graph, with the two parts coloured as red and blue.

Then, in both models, for all n the graph Gn will be bipartite, and the parts can be

coloured red and blue consistently for each n. Let the proportion of red vertices in Gn

be Rn. We begin with the random walk model.

Theorem 3.1. We have R∞ such that Rn converges almost surely to R∞. If ℓ is even,

then R∞ = 1
2 , almost surely, while if ℓ is odd R∞ is a random variable with a Beta

distribution.

Proof. Conditional on Gn, Vn will be red with probability Rn. If ℓ is odd Wn will be of

opposite colour to Vn, which implies that the new vertex (which connects to Wn) will

be of the same colour as Vn, and thus, conditional on Gn, will be red with probability

Rn and blue with probability 1 − Rn. Hence in this case the colours of vertices are

equivalent to the colours of the balls in a standard Pólya urn (where when a ball is

drawn two of the same colour are returned), and so by classical results on the Pólya urn

(see, for example, Theorem 2.1 in [8]) Rn converges almost surely to R∞ where R∞ has

a Beta distribution whose parameters depend on G0.

If ℓ is even then Wn is of the same colour as Vn and so the new vertex is of opposite

colour to Vn. Hence this case corresponds to a two-colour generalised Pólya urn where

a ball is selected and a ball of the opposite colour is added, namely a Friedman urn with

α = 0 and β = 1. In this case Rn → 1
2 almost surely; see for example Freedman [7], and

Theorem 2.2 in [8].

Theorem 3.2. In the Barabási-Albert model R∞ = 1
2 almost surely.

Proof. In this model it is possible to associate the selection of a vertex with an urn

model by considering half-edges, and giving each half-edge the colour of its associated

vertex, i.e. each edge is split into a red half and a blue half. The selection of a vertex

with probability proportional to its degree is then equivalent to selecting a half-edge

uniformly at random and then selecting the associated vertex. As the new edge added

in Gn+1 will always consist of a blue half and a red half, the proportion of red half-edges

must converge to 1
2 , and as a red vertex is added if and only if a blue vertex is selected,

the proportion of red vertices will converge to 1
2 , almost surely.

So in this respect the behaviour of the random walk model is different from the

Barabási-Albert model when ℓ is odd, regardless of the size of ℓ.

4 Discussion

We have demonstrated that the model of Saramäki and Kaski is fundamentally dif-

ferent from that of Barabási and Albert, unless we allow an indefinite length for the

random walk component. It does have the advantage of not requiring a global cal-

culation, retaining the local behaviour characteristic which is desirable in models of

emergent behaviour. An alternate approach might be to imagine that the addition of

edges is affected by the vertices in Gn, rather than by the new vertex. Thus each vertex

in Gn could link to a new vertex as it arises with probability proportional to its degree,

independently of all other vertices, as in the variant of preferential attachment studied

by Dereich and Mörters [4, 5]. This, of course, destroys one of the usual assumptions

of the preferential attachment model that the number of new links is some fixed value

m, though we could substitute the condition that the average number added was fixed.
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The urn model approach is interesting particularly since there is much known about

these (see for example the survey paper by Pemantle [8]). We might generalise the

model to consider directed graphs where there are k colours ci; i = 0, k − 1, with

directed edges only between a vertex of colour ci and one of colour c(i+1)(mod k). When

a new vertex is added it links at random to a vertex and then takes ℓ random steps along

directed edges, its colour then being determined. The case ℓ 6= 0(mod k) will have the

proportions of each colour converging to 1/k, whereas for ℓ = 0(mod k) there will be a

Dirichlet distribution with parameters depending on G0.
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