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Abstract - A recursive least-squares (LS) state-space 
identification method based on the QR decomposition is 
proposed for non-uniformly sampled-data systems. Both cases 
of measuring all states and only the output(s) are considered 
for model identification. For the case of state measurement, a 
QR decomposition-based recursive LS (QRD-RLS) 
identification algorithm is given to estimate the state 
matrices. For the case of only output measurement, another 
identification algorithm is developed by combining the 
QRD-RLS approach with a hierarchical identification 
strategy. Both algorithms can guarantee fast convergence rate 
with low computation complexity. An illustrative example is 
shown to demonstrate the effectiveness of the proposed 
methods. 

Index Terms - non-uniform sampling; state-space model 
identification; QR decomposition; recursive least-squares. 

 

I.  INTRODUCTION 

A multirate system is labeled by the existence of 
multiple non-uniform sampling rates in terms of an overall 
period denoted by T for system operation, namely, a 
non-uniformly sampled-data system (NUS), which has been 
widely practiced in many industrial and chemical 
applications [2-6]. In the past two decades, multirate systems 
have been increasingly studied for model identification and 
control design [7-11]. 

In fact, a number of different model identification 
methods have been developed for various NUSs. A few 
identification methods [12-15] have been devoted to 
obtaining an autoregressive (AR) or autoregressive 
exogeneous (ARX) models. Owing to the convenience of 
describing multivariable systems, state-space model 
identification methods have attracted a lot of attentions in 
the recent years. Ding et al. [16] proposed a state-space 
identification algorithm for dual-rate systems by using a 
hierarchical identification strategy, and subsequently, 
derived a recursive state-space identification algorithm 
based on the recursive least-squares (RLS) approach for 
multirate sampling systems [17]. Despite the superiority of 
convergence and accuracy, the RLS algorithm [17] involved 

with relatively high computation complexity of 3( )O n (where 

n is the number of sampled data), in comparison with the QR 
decomposition-based RLS (QRD-RLS) identification 
methods [18-20].  

In this paper, two recursive identification algorithms 
based on the QRD-RLS and a hierarchical identification 
strategy are proposed for the identification of NUSs, as 
inspired by a recent study on using the singular value 
decomposition approach for recursive state-space 
identification [21]. When all the states of an NUS can be 
measured, an identification method based on QRD-RLS is 
given to estimate the model parameter matrices. When only 
the system output(s) can be measured, another identification 
algorithm using the hierarchical identification strategy [16] is 
provided which contains two steps, the first step using the 
approximation Kalman filter algorithm to estimate the state 
vectors and second step using QRD-RLS to estimate the 
state matrices. The rest of the paper is organized as follows. 
In Section 2, the state-space model description of NUSs is 
briefly introduced. Section 3, the proposed state-space 
identification algorithms are presented. A numerical example 
is given to illustrate the proposed algorithms in Section 4. 
Conclusions are drawn in Section 5. 

II.  MODEL DERIVATIONS 

Consider a non-uniformly sampled system depicted in 
Fig. 1, of which the input updating and output sampling 
pattern are shown in Fig. 2, 

 

 

 

 

 

Fig. 1 The non-uniformly sampling system 
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Fig. 2 Block diagram of a non-uniformly sampling system 

where cS  is a continuous-time process, H  and TS  denote 

the zero-order-holder (ZOH) and sampler, respectively, 
corresponding to the following input and output format, 
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A non-uniformly sampled continuous-time system with  
state-space representation is studied herein, 
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where ( ) nxx t R , ( ) nuu t R , and ( ) nyy t R  are the state, 

input and output vectors, respectively. The state matrices 
defined byA , B , C , andD . The input and output data are 

collected in the form of  ( ), ( )i iu kT t y kT t  , 
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where cT nx nx
T e  AA R , ( )c i
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From eq. (1), ( )ix kT t can be derived as 
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Correspondingly, the output can be rewritten as 
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where i iC CA , i iD CB , c it
i e AA . 

Hence, a lifted form of the NUS can be written by 
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where ( ) nxx t R , ( ) pnuu kT R , and ( ) pnyy t R . 

In the presence of measurement noise, the model (4) can 
be written by the following form including the white noise 
terms{ ( ), ( )}w kT v kT , 
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III  STATE ESTIMATION AND PARAMETER 

IDENTIFICATION 

With the above formulation, we express the 
non-uniform periodic sampling system by 
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For the convenience of computation, we define the 
parameter matrixș , the information vector0( )kT , the 

augmented output vector )(0 kTZ  and the noise vector 
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The system (6) can thus be transformed into a linear 
regression, 
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A.  The case of state measurement 

Given a persistent excitation to the process input, if the 
system states )(kTx are measured (i.e. )(0 kTZ and 

)(0 kT are known), then we can estimate the parameter 

matrixș by QRD-RLS as below. 
Define the sampled data sequence, 
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The information matrix ( )NT  can be transformed into 

a lower triangular matrix through QR decomposition, 
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It is obvious that minimizing ( )NT  can be realized by 

minimizing 
2

( )Qe NT . In fact, 
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equals zero. Therefore, we obtain the parameter estimation, 
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Hence, the proposed QRD-RLS algorithm is 
summarized as follows: 
1). Collect the identification data 0 0( ), ( )t Z t , and take the 

data length N ; 
2). Initialize 1t  , (0) 0L , and 1 (0) 0Q Z ; 

3). Calculate ( )tQ  through GR as defined in (12), and 

compute ( )tL  and 1 ( )Q tZ  using (16) and (17);  

4). Estimate ( )tș  from (15).  If 1t N  , then increase t  by 

one and go to step 3. 

To demonstrate the merit of the proposed method, the 
computation load for each step is listed in Table 1 in 
comparison with that of ref. [17], where the computation 
efforts of addition, multiplication and division are counted 
for each step, respectively, and n  is the row number of 

0( )kT . It is seen that the proposed algorithm uses 

obviously less computational effort. Moreover, the initial 
values of the proposed QRD-RLS may be set as zero, in 
contrast to the initial values of the RLS algorithm in ref. [17] 
which need to be chosen as large numbers. 

 
Table 1. Comparison of the computation load 

Methods Addit ion Mult iplication Division 
Proposed 4n2+n 8n2+n n2 
Ref.[17] 3n2+3n+1 n3+4n2+n n 

 

B The case of only output measurement 

If only the output(s) can be measured, it can be seen 
that (9) contains both the unknown state vector ( )x kT  

included in )(0 kT  and the unknown parameter matrix ș . 

Thus, the above QRD-RLS algorithm cannot be directly used 
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to identify the model parameters. To circumvent the problem, 
we propose a modified state and parameter estimation 
algorithm using the hierarchical identification principle [16]. 
The key idea is that when estimating ș , ( )x kT  in )(0 kT  

is replaced by its estimate ˆ( )x kT , and when estimating 

( )x kT T , the unknown ș  is replaced by its estimate 

ˆ( )kTș . Hence, the following QRD-RLS algorithm is 

proposed, 
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where ( )kT  denotes the convergence rate,ˆ( )x kT  is an 

estimate of ( )x kT . ˆ ( )T kTA , ˆ ( )T kTB , ˆ ( )T kTC  and 

ˆ ( )T kTD are the estimates of TA , TB , TC and TD , 

respectively. 

Note that the modified estimation algorithm shown by 
(18)-(23) is implemented through hierarchical computation 

since ˆ( )x kT T  depends on ˆ( )x kT and ˆ( )kTș  while 

ˆ( )kT Tș  depends on ˆ( )kTș  and ˆ( )x kT . 

IV. ILLUSTRATION 

Consider a non-uniformly sampled system studied in 
Ref. [17], 

2

0.8

0.8 0.8c

s
S

s s




 
 

which corresponds to the following state space realization, 

 

0.8 0.8 1
( ) ( ) ( )

1 0 0

( ) 1 0.8 ( )

x t x t u t

y t x t

     
     

    
 

 

Let 1T s , 2p , 1 2 1s   , 2 2 2s    

( st 1211  , 2 1t s ), as assumed in ref. [17]. The 

resulting discrete state-space model of the system is 
obtained as 

0.22659 0.48086
( ) ( )

0.60107 0.70745
x kT T x kT

 
   

 
 

1

( )0.15403 0.44665
( )

( )0.22129 0.1444

u kT
w kT

u kT t

  
      

 

1

( ) 1 0.8
( )

( ) 0.93905 0.47557

y kT
x kT

y kT t

   
       

 

1

( )0 0
( )

( )0.40553 0

u kT
v kT

u kT t

  
      

 

The input )(kTu  and )( 1tkTu   are taken as random 

sequences with zero mean and unit variance, ( )w kT  and 

( )v kT  as white noise sequences with zero mean and 

variance .  
Here define the parameter estimation error (PEE) by  

ˆ: ( ) /kT  ș ș ș  

where ș is the true parameter matrix, and ˆ( )kTș  is an 

estimation of ș . 
Apply the proposed QRD-RLS algorithm to estimate 

the state matrices under different noise levels, 0  , 
0.01  , 0.04   and 0.09  , respectively. The 

corresponding PEE results are shown in Fig. 3. The estimated 
system state-space matrices are listed in Table 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Plots of PEE when all the states are measured  

 
The estimated results using the proposed QRD-RLS are 

similar to those of using the RLS algorithm in ref.[17], while 
the initial values of the QRD-RLS are taken as (0) 0L and 

1 (0) 0Q Z , compared with the initial values of the RLS 

taken as 0(0) pP I  (where P is the covariance matrix and 

0p  is a large positive number, e.g., 6
0 10p  ). Fig. 3 shows 

that all the PEE results under different noise levels converge 
to smaller values when increasing t . Table  2 shows that all 
the state matrices under different noise levels converges to 
their true values. These results indicate that the proposed 
QRD-RLS algorithm can give good identification results with 
fast convergence rate and low computation complexity.  

When only the output(s) can be measured, apply the 
proposed QRD-RLS algorithm using the hierarchical 
identification strategy, obtaining the parameter estimation 
results shown in Fig. 4, which again demonstrates that using 
the proposed algorithm can give good performance. 
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Fig.4.  Plots of PEE when only the output is measured 

 

V  CONCLUSION 

Based on the QR decomposition, two recursive 
state-space identification algorithms have been proposed 
for NUSs, one is for the case of state measurement and the 
other for the case of only output(s) measurement. Both 
algorithms can give good identification accuracy and 
convergence rate with less computation effort, compared 
with recently developed RLS algorithms (e.g. ref. [17]). 
Moreover, the proposed QRD-RLS algorithm can improve 
numerical behavior for ill -conditioned NUSs. Simulation 
results have demonstrated the effectiveness of the proposed 
methods.

 

TABLE 2. Estimation of the measured states state matrices under different noise levels 

True 
values 

0.22659 0.48086

0.60107 0.70745T

 
  
 

A  
0.15403 0.44665

0.22129 0.1444T

 
  
 

B  
1 0.8

0.93905 0.47557T

 
  
 

C  
0 0

0.40553 0T

 
  
 

D  

0   0.22661 0.48085ˆ
0.60108 0.70745T

 
  
 

A  
0.15393 0.44606ˆ
0.221 0.14405T

 
  
 

B  
1. 0.8ˆ

0.93906 0.47558T

 
  
 

C  
0 0ˆ

0.40522 0.0003T

 
  
 

D  

0.01   0.2264 0.4808ˆ
0.6013 0.7066T

 
  
 

A  
0.1539 0.4462ˆ
0.2209 0.1440T

 
  
 

B  
0.9993 0.7999ˆ
0.9389 0.4765T

 
  
 

C  
0.0002 0.0001ˆ
0.4054 0.0004T

 
  
 

D  

0.04   0.2258 0.4904ˆ
0.6021 0.7038T

 
  
 

A  
0.1538 0.4467ˆ
0.2207 0.1438T

 
  
 

B  
0.9975 0.7997ˆ
0.9385 0.4790T

 
  
 

C  
0.0007 0.0004ˆ
0.4060 0.0006T

 
  
 

D  

0.09   0.2244 0.4788ˆ
0.6041 0.6991T

 
  
 

A  
0.1538 0.4477ˆ
0.2203 0.1434T

 
  
 

B  
0.9949 0.8002ˆ
0.9379 0.4821T

 
  
 

C  
0.0017 0.0009ˆ
0.4071 0.0010T

 
  
 

D  
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