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A B S T R A C T

Mitochondria use oxygen as the final acceptor of the respiratory chain, but its incomplete reduction can also
produce reactive oxygen species (ROS), especially superoxide. Acute hypoxia produces a superoxide burst in
different cell types, but the triggering mechanism is still unknown. Herein, we show that complex I is involved in
this superoxide burst under acute hypoxia in endothelial cells. We have also studied the possible mechanisms by
which complex I could be involved in this burst, discarding reverse electron transport in complex I and the
implication of PTEN-induced putative kinase 1 (PINK1). We show that complex I transition from the active to
‘deactive’ form is enhanced by acute hypoxia in endothelial cells and brain tissue, and we suggest that it can
trigger ROS production through its Na+/H+ antiporter activity. These results highlight the role of complex I as a
key actor in redox signalling in acute hypoxia.

1. Introduction

Eukaryotic organisms use oxygen (O2) as the final electron acceptor
in the mitochondrial electron transport chain, producing water (H2O)
and driving the production of the high-energy molecule ATP through
oxidative phosphorylation (OXPHOS). The OXPHOS system is located
in the mitochondrial inner membrane and is composed of five
complexes which couple the pumping of H+ to the transfer of electrons
from different substrates, such as NADH (oxidised by complex I) and
succinate (oxidised by complex II). The difference in charges and pH
generated across the mitochondrial inner membrane establish the
mitochondrial membrane potential (ΔΨmt) and the pH gradient
(ΔpH), respectively. Both parameters determine the protonmotive force
(Δµmt) essential to drive OXPHOS. A series of reactive oxygen species
(ROS) is also formed from the incomplete reduction of O2 during
respiration [1,2]. ROS can oxidise the majority of cellular components

including nucleic acids, lipids and proteins, and are known to be
associated with cell damage, particularly in conditions of oxidative
stress [3]. Mitochondrial ROS are involved in many pathological
scenarios [4] such as stroke [5], cancer [6], Parkinson's [7], Alzheimer's
[8] or cardiovascular diseases, where its overproduction may contri-
bute to disease progression. However, it is acknowledged that mito-
chondrial ROS also act as second messengers in cell signalling processes
in a variety of physiological conditions [9–15].

Among the five complexes comprising OXPHOS, complex I is the
largest and performs a reversible NADH-ubiquinone oxidoreductase
reaction coupled to pumping four H+ across the mitochondrial inner
membrane. Complex I is formed by a hydrophilic arm which incorpo-
rates one flavin mononucleotide (FMN) and eight iron-sulfur clusters
involved in electron transfer across this structure. The hydrophilic
domain is attached to a hydrophobic arm involved in the H+-pumping
function of the complex. Energy transfer to the hydrophobic domain
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occurs through the stabilization of the oxidised quinone in the
ubiquinone-binding site which allows a series of conformational
rearrangements necessary for H+ pumping [16]. Complex I can also
undergo a deactivation process named active/‘deactive’ transition (A/D
transition) which implies a switch from a NADH-ubiquinone oxidor-
eductase activity to a Na+/H+ antiporter through its hydrophobic arm
[17,18]. Importantly, deactivation includes a series of conformational
changes in which the Cys39 of the complex I subunit ND3 becomes
exposed. This exposure has been used as a marker of deactivation
[19,20]. In addition, complex I can be modulated by proteins and lipids
[21] whose deregulation can lead to pathophysiological scenarios.
Among them, a genetic variant of Parkinson's disease involves the
mutation of the PTEN-induced putative kinase (PINK1) gene which has
been associated with lower complex I activity and increased ROS
production [22,23].

Mitochondrial complex I is also a major site of superoxide anion
production in the mitochondria [1,24] through both forward and
reverse reactions (electron transfer from NADH to ubiquinone, or from
reduced ubiquinone to NAD+, respectively). The reverse reaction or
reverse electron transfer (RET) needs a large pool of reduced ubiqui-
none which is normally generated from succinate oxidation through
mitochondrial complex II, can be inhibited by rotenone and is
dependent on high ΔΨmt [25,26]. RET has been implicated in
exacerbated ROS production in reperfusion after ischemia [27,28].

Cells are frequently subjected to changes in oxygen availability and
must adapt in order to survive. A decrease in oxygenation (hypoxia)
induces a series of acute and long-term cellular, tissue-specific and
systemic adaptive responses [29]. Both types of responses have been
linked to the production of ROS. Whether ROS generation increased or
decreased in hypoxia was strongly debated for years [30,31]. We have
recently described that superoxide anion is produced in the first
minutes of hypoxia by the mitochondria in different cell types, and
correlates in endothelial cells with the oxidation of protein thiols
[32,33].

More recently, it has been described that complex I is involved in
the specialized acute response to hypoxia that takes place in the carotid
body [34], where it triggers a ROS signal that activates ion channels
provoking the release of neurotransmitters and hyperventilation [35].
Herein, we describe that complex I is involved in the ROS burst
produced in acute hypoxia, in endothelial cells but also in brain tissue,
and the mechanism by which complex I may be involved in triggering
this response.

2. Materials and methods

2.1. Animals, cell culture and transfection

All animal experiments were performed following the Guide for the
Care and Use of Laboratory Animals and were previously approved by
the institutional ethics committee of the Universidad Autónoma de
Madrid, Spain, according to the European guidelines for the use and
care of animals for research in accordance with the European Union
Directive of 22 September 2010 (2010/63/UE) and with the Spanish
Royal Decree of 1 February 2013 (53/2013). All efforts were made to
minimize the number of animals used and their suffering.

Cells were routinely maintained in cell culture incubators (95% air,
5% CO2 in gas phase, 37 °C). Bovine aortic endothelial cells (BAECs)
were isolated as previously described [36] and cultured in RPMI 1640
supplemented with 15% heat-inactivated foetal bovine serum (FBS),
100 U/mL penicillin and 100 μg/mL streptomycin. BAECs were used
between passages 3–9. Endothelial morphology was assessed by visual
inspection.

Transfection of 30 nM siRNA or 0.25 µg pHyPer-Cyto (CytoHyPer),
C199S pHyPer-Mito (mitosypHer) or C199S pHyPer-Cyto (cytosypHer)
vector DNA per 0.8 cm2 well was carried out using Lipofectamine 2000
(Invitrogen) according to the manufacturer's instructions. Experiments

were carried out 48 h after transfection.

2.2. siRNA preparation

Doubled-stranded siRNAs against bovine NDUFS4, NDUFS2 and
PINK1 were designed and purchased from Integrated DNA Technologies
(NDUFS4 sense sequence GCUGCCGUUUCCGUUUCCAAGGUUUTT;
NDUFS2 sense sequence TCGGACAGTCGACATTGGGATT; PINK1 sense
sequence GGCUGCUAAUGUGCUUCAUUU). siSCR was purchased from
Santa Cruz Biotechnology.

2.3. Detection of superoxide by fluorescence microscopy in fixed cells

BAECs were seeded on glass coverslips one day before experimenta-
tion. In some experiments, 1 µM rotenone or 1 µM carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) was added 30 min before
experimentation and maintained during the experiment. For treatments
in hypoxia, all the solutions were pre-equilibrated in hypoxic conditions
before use; plated cells were introduced in an Invivo2 400 workstation
(Ruskinn) set at 1% O2, 5% CO2, 37 °C, and incubated for the indicated
times (0, 15, 30, 45 and 60 min) in fresh medium, washed three times
with Hank's Balanced Salt Solution with Ca2+/Mg2+(HBSS+Ca/Mg)
and incubated with 5 µM dihydroethidium (DHE) in HBSS+Ca/Mg for
10 min in the dark. Excess probe was removed by three washes with
HBSS+Ca/Mg, the cells were fixed with 4% paraformaldehyde (PFA),
and incubated in the dark at 4 °C for 15 min. After fixation, the cells
were again washed three times with HBSS+Ca/Mg and coverslips were
placed on slides. For normoxic treatments, the medium was changed for
fresh normoxic medium, and treated as hypoxic cells, but in a standard
cell incubator. Images (three images per each coverslip; the number of
independent experiments is described in the figure legends) were taken
with a Leica DMR fluorescence microscope with a 63x objective, using
the 546-12/560 excitation/emission filter pairs and quantified using
ImageJ software (NIH). The same threshold was set for all the images
and the mean value from histograms was averaged for the three images
of each coverslip.

2.4. Detection of intracellular ROS by live imaging fluorescence microscopy

BAECs were seeded in 6-well plates one day before experimentation.
Plated cells were washed three times with HBSS+Ca/Mg and incubated
with DHE for 20 min at 37 °C in the dark. 1 µM FCCP was also added at
this time and maintained during the experiment. DHE was then washed
out and new HBSS+Ca/Mg was added. After this time, the plate was
placed into a Leica DM 16000B fluorescence microscope equipped with
a Leica DFC360FXcamera, an automated stage for live imaging and a
thermostated hypoxic cabinet. The planes were focused for image
capture, and images were taken with a 20x objective every 2 min
during 40 min, providing a total of 21 cycles. Normoxia experiments
started and ended at 20% O2 and 5% CO2, whereas hypoxia experi-
ments started at 20% O2 and 5% CO2 and then were switched to 2% O2

and 5% CO2 in cycle 2 (due to technical limitations of the hypoxia
cabinet, it was not possible to set O2 concentration below 2%). The
excitation/emission filter pair used was 546-12/560. Images were
quantified with Image J software. Three independent experiments were
performed for each condition. For each experiment and condition, four
regions of interest (ROIs) were created, each ROI surrounding an
individual cell, and the mean fluorescence of each ROI for each time
cycle was collected. In some analyses, for each experiment and
condition, four identical linear ROIs were created and the maximum
peak value of cycles 0, 5, 10, 15 and 20 were collected for each ROI.

2.5. Detection of intracellular ROS and intramitochondrial pH by live
imaging confocal microscopy

To detect intramitochondrial pH, BAECs were transfected with the
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ratiometric probe mitosypHer in 8-well plates two days before the
experiment. 1 µM rotenone or 1 µM FCCP were added 30 min before
and maintained during the rest of the experiment. The plate was then
placed into a Leica SP-5 confocal microscope, an automated stage for
live imaging and a thermostated hypoxic cabinet. The planes were
focused for image capture and images were taken with a 63x objective
every 5 min during 30 min. Normoxia experiments started and ended at
20% O2 and 5% CO2, whereas hypoxia experiments started at 20% O2

and 5% CO2 and then were switched to 1% O2 and 5% CO2 in cycle 1.
Excitation was performed with a 405 diode laser for 405 nm line and
Ar/Kr for 488 nm line and fluorescent emission was recorded at
515–535 nm range. To assess mitochondrial colocalization, transfected
cells were incubated with 25 nM MitoTracker CMTMRos for 20 min at
37 °C in HBSS+Ca/Mg in the dark, washed again three times with
HBSS+Ca/Mg and fixed with 4% PFA; samples were excited with a Ar/
Kr laser using the 488 nm line for mitosypHer and a He/Ne laser using
the 543 nm line for MitoTracker. Fluorescence emission of mitosypHer
was detected in 515–535 nm range and MitoTracker in 575–590 nm
range.

For intracellular ROS detection, BAECs were transfected with the
cytosolic version of HyPer (CytoHyPer) following the same procedure
for live imaging as with mitosypHer.

Images were quantified with ImageJ software. Three or four
independent experiments were performed for each condition. For each
experiment and condition in loaded cells, four identical linear regions
of interest (ROIs) were quantified, and for each time point the mean of
these ROIs was obtained.

2.6. Submitochondrial particles (SMPs) isolation and blue native
polyacrylamide gel electrophoresis (BN-PAGE)

BAECs were washed twice in ice-cold PBS, scraped off the plate and
centrifuged for 5 min 600g at 4 °C. To obtain SMPs, cells were
resuspended in 200 µL of PBS, mixed with 200 µL of 8 mg/mL digitonin
and incubated for 10 min on ice. After this, 1 mL PBS was added and the
samples were centrifuged 5 min at 10,000g, 4 °C. The resulting pellet of
SMPs was washed and resuspended in 100 µL of 1.5 M aminocaproic
acid, 50 mM Bis-Tris/HCl pH 7.0. Protein concentration was quantified
by BCA assay. SMPs were centrifuged 2 min 13,500g at 4 °C and the
pellet was resuspended at 10 µg/µL with 1.5 M aminocaproic acid,
50 mM Bis-Tris/HCl pH 7.0. SMPs were solubilized with 4g of digitonin
per gram of protein, incubated 5 min on ice and centrifuged 30 min
16,000g at 4 °C. Supernatant was collected and mixed with sample
buffer (Coomassie brilliant blue G-250 5% in 1 M aminocaproic acid
solution). For each sample, 100–150 µg was loaded and run on a 3–20%
gradient BN-PAGE gel as described [37]. Gel transfer was performed
onto PVDF membranes, which were then washed with methanol for
3 min before western blotting.

2.7. Western blot analysis

Protein samples were extracted with non-reducing Laemmli buffer
without bromophenol blue and quantified by the BCA assay. Extracts
were then loaded onto 10% standard polyacrylamide gel electrophor-
esis after adding 5% 2-mercaptoethanol, and transferred to nitrocellu-
lose membranes or PVDF membranes for BN-PAGE. The following
antibodies were used: monoclonal anti-HIF-1α antibody (#MAB1536;
R & D Systems), monoclonal anti-NDUFS4 antibody (ab87399; Abcam),
monoclonal anti-NDUFS2 antibody (ab110249; Abcam), anti-NDUFB6
antibody (16037-1-ap, Proteintech), anti-ubiquinol-cytochrome c re-
ductase core protein I antibody (ab110252; Abcam), anti-PINK1 (sc-
33796, Santa Cruz Biotechnology) and monoclonal anti-α-tubulin anti-
body (T6199, Sigma). Antibody binding was detected by chemilumi-
nescence with species-specific secondary antibodies labelled with
horseradish peroxidase (HRP), and visualized on a digital luminescent
image analyzer (Fujifilm LAS-4000).

2.8. Fluorescent labelling of ND3 Cys-39 from isolated mitochondrial
membranes

For cell extracts and ex vivo samples, the procedure previously
described for SMPs preparation was used. For in vivo samples, brain
mitochondria isolation was performed using the Mitochondrial
Isolation Kit for tissue (ab110168; Abcam) according to the manufac-
turer's protocol. Briefly, brain tissue was washed and minced in
Isolation Buffer and cells were disrupted using a Dounce tissue grinder
pestle (Sigma). Then, homogenized tissue was centrifuged at 1000g for
10 min at 4 °C and the supernatant was centrifuged at 12,000g for
15 min at 4 °C, yielding the enriched mitochondria and cytosol fractions
in the pellet and the supernatant, respectively. SMP or mitochondrial
protein amount was determined by the BCA assay and then proteins
were solubilized with 4g of digitonin per gram of protein, incubated
5 min on ice and centrifuged 30 min at 16,000g, 4 °C. Samples from cell
cultures were split into two parts, one part was incubated at 37 °C for
60 min to fully deactivate complex I and the other part was kept on ice.
Samples were then incubated with Bodipy-TMR C5-maleimide
(Invitrogen) for 20 min at 15 °C in the dark; then, 1 mM cysteine was
added and the samples were further incubated for 5 min. After this
time, the samples were precipitated twice with acetone, centrifuged at
9500g for 10 min at 4 °C in the dark, and the resulting pellet was
resuspended in non-reducing Laemmli loading buffer. For each sample,
100 μg was loaded onto 10% Tricine-SDS-PAGE gels as previously
described [38]. Total protein staining was performed with Sypro Ruby
(Invitrogen) following the manufacturers' instructions. The images of
the different fluorophores were obtained using a digital fluorescent
image analyzer (Fujifilm LAS-4000). Images were quantified using
ImageQuant TL7.0 software.

2.9. Protein mass spectrometry analysis

After drying, electrophoretic bands were cut in pieces, destained in
acetonitrile: water (ACN:H2O, 1:1), reduced with 10 mM DTT for 1 h at
56 °C, alkylated with 50 mM iodoacetamide for 1 h at room tempera-
ture in the dark and digested in situ with sequencing grade trypsin
(Promega, Madison, WI) as described by Shevchenko et al. [39] with
minor modifications. The gel pieces were shrunk by removing all liquid
using sufficient ACN. Acetonitrile was pipetted out and the gel pieces
were dried in a speedvac. The dried gel pieces were re-swollen in
50 mM ammonium bicarbonate (AB) pH 8.8 with 12.5 ng/µL trypsin for
1 h in an ice-bath. The digestion buffer was removed and gels were
covered again with 50 mM AB and incubated at 37 °C for 12 h.
Digestion was stopped by the addition of 1% TFA. Whole supernatants
were dried down and then desalted onto ZipTip C18 Pipette tips
(Millipore) until the mass spectrometric analysis.

The desalted protein digest was dried, resuspended in 10 µL of 0.1%
formic acid and analyzed by RP-LC-MS/MS in an Easy-nLC II system
coupled to an ion trap LTQ-Orbitrap-Velos-Pro mass spectrometer
(Thermo Scientific), as previously described [40] with minor modifica-
tions. The peptides were concentrated (on-line) by reverse phase
chromatography using a 0.1 mm×20 mm C18 RP precolumn (Prox-
eon), and then separated using a 0.075 mm×250 mm C18 RP column
(Proxeon) operating at 0.3 µL/min. Peptides were eluted using a 240-
min dual gradient from 5% to 25% solvent B in 180 min followed by
gradient from 25% to 40% solvent B over 240 min (Solvent A: 0.1%
formic acid in water, solvent B: 0.1% formic acid, 80% acetonitrile in
water). ESI ionization was carried out using a Nano-bore emitters
Stainless Steel ID 30 µm (Proxeon) interface.

The mass spectrometer was operated in the selected MS/MS ion
monitoring mode (SMIM mode [41]). In this mode, the LTQ-Orbitrap-
Velos-Pro detector was programmed to perform, along the same entire
gradient, a continuous sequential operation in the MS/MS mode on the
doubly or triply charged ions corresponding to the peptide selected
previously from the theoretical prediction.
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Peptides were detected in survey scans with a mass range of
400–1600 u (in mass-to-charge ratio units, m/z), followed by ten
data-dependent MS/MS scans (Top 10), using an isolation width of
2 u (m/z), normalized collision energy of 35%, and dynamic exclusion
applied during 30 s periods. The Orbitrap resolution was set at 30,000.
Peptide identification from raw data was carried out using the
SEQUEST algorithm (Proteome Discoverer 1.4, Thermo Scientific).
Database search was performed against handmade database and search
against decoy database (integrated decoy approach) using false dis-
covery rate (FDR)< 0.01. The following constraints were used for the
searches: tryptic cleavage after Arg and Lys, up to two missed cleavage
sites, and tolerances of 20 ppm for precursor ions and 0.8 Da for MS/MS
fragment ions, and the searches were performed allowing optional Met
oxidation, Cys carbamidomethylation and Cys N-ethylmaleimide mod-
ification.

2.10. Preparation of mouse hippocampal slices

Three-month-old C57BL/6 mice were anesthetized with 1.5% iso-
flurane in oxygen under spontaneous respiration, then decapitated and
forebrains were rapidly removed from the skull and placed into ice-cold
Krebs bicarbonate dissection buffer (pH 7.4), containing (in mM): NaCl
120, KCl 2, CaCl2 0.5, NaHCO3 26, MgSO4 10, KH2PO4 1.18, glucose 11
and sucrose 200. The hippocampi were dissected, and slices (250-µm
thick) were prepared using a McIlwain Tissue Chopper. Then, the slices
were transferred to vials containing sucrose-free dissection buffer to
allow tissue recovery from slicing trauma before experimentation
(equilibration period). Both solutions were gassed with 5% CO2 at least
30 min before use to ensure pH 7.4.

Hippocampal slices were placed into an Invivo2 400 workstation
(Ruskinn) set at 1% O2, 5% CO2, 37 °C, incubated for 30 min,
disaggregated in PBS and SMPs extracted as previously described. For
western blot analysis, slices were incubated for 4 h and lysed in non-
reduced bromophenol-free Laemmli buffer inside the chamber.

2.11. Detection of superoxide in hippocampal slices by confocal microscopy

For treatments in hypoxia, all solutions were pre-equilibrated to
hypoxic conditions before use; when necessary, 10 µM antimycin A was
added 30 min before the experiment and maintained during the rest of
the procedure. Hippocampal slices were placed into an Invivo2 400
workstation (Ruskinn) set at 1% O2, 5% CO2, 37 °C, and incubated for
30 min in fresh medium, washed three times with HBSS+Ca/Mg and
incubated with 5 µM DHE for 10 min in the dark. After incubation,
excess probe was removed by three washes in HBSS+Ca/Mg, slices
were fixed with 4% paraformaldehyde, and incubated in the dark at
4 °C for 15 min. After fixation, wells were washed again three times
with HBSS+Ca/Mg and the slices placed on slides with coverslips on
top. For normoxic treatments, medium was exchanged for fresh
normoxic medium, and treated as above, but in a standard cell
incubator. Images of CA1 region of hippocampal slices were taken with
a Leica SP-5 confocal microscope with a 40x objective. Samples were
excited with aAr/Kr laser using the 488 nm line for hydroxyethidium
(OH-Eth) and 496 nm line for ethidium (Eth). Fluorescence emission of
OH-Eth was detected at 560–570 nm and Eth at 570–600 nm following
previously-reported methods [42]. Three-dimensional image stacks
were processed using ImageJ software. For each stack, the background
was subtracted from the fluorescence intensity of the CA1 region, and
two hippocampal slices were averaged in each independent experiment.

2.12. In vivo photothrombotic stroke

Three-month-old male C57BL/6 mice (30–35 g) were anesthetized
with 1.5% isoflurane in oxygen under spontaneous respiration. Mice
were then placed in a stereotaxic frame (David Kopf Instruments,
Tujunga, CA, USA) and physiological temperature (37±0.5 °C) was

maintained by a servo-controlled rectal probe heating pad (Cibertec,
Madrid, Spain). A small incision in the midline was made and, after
removal of the periosteum, bregma and lambda points were identified.
A cold light (Zeiss KL 1500 LCD, Jena, Germany) was centred using a
micromanipulator at 0.2 mm posterior and 1.5 mm lateral to bregma on
the right side using a fiber optic bundle of 2 mm in diameter. One
milligram of the photosensitive dye Rose Bengal (Sigma Aldrich, St.
Louis, MO, USA) dissolved in sterile saline (0.1 mL) was injected i.p.
and 5 min later the brains were illuminated during 20 min. After
completion of the surgical procedures, the incision was sutured and
the mice were allowed to recover for 24 h.

Twenty-four-hours after stroke induction, mice were anesthetized
and sacrificed by decapitation and brains were quickly removed. Then,
coronal sections of 1-mm-thickness were cut and slices were incubated
in a 2% solution of triphenyltetrazolium chloride and then fixed in a
buffered formalin solution. Infarcted tissue was defined by the un-
stained area.

2.13. Statistics

Normality and homoscedasticity tests were carried out before
applying parametric tests. For comparison of multiple groups, we
performed one-way ANOVA followed by Tukey test for all the groups
of the experiment. For comparison of two groups, we used Student's
two-tailed t-test; when the data did not pass the normality test, we used
a non-parametric t-test (Mann-Whitney U test). Variations were con-
sidered significant when the p value was less than 0.05. Statistical
analysis was performed with SigmaPlot 11.0 software.

Fig. 1. Silencing of complex I subunits specifically affects the assembly of complex
I-containing supercomplexes (a and b) Protein extracts from BAECs treated with siSCR,
siNDUFS4 or siNDUFS2 were immunoblotted for NDUFS4 or NDUFS2 proteins with
tubulin as loading control. Up: representative image; down: quantification of three
independent experiments (mean± s.e.m.). (c and d) BN-PAGE of siSCR-treated or
siNDUFS4-treated BAECs, analyzed by western blotting with antibodies against
NDUFB6 (complex I; c) or Core I (complex III; d). Representative image of three
independent experiments.
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Estimated Pearson and Mander's correlation coefficients for coloca-
lisation of fluorescent signals in Fig. 6b were calculated using coloca-
lisation plug-in of Image J software.

3. Results

3.1. ROS increase in acute hypoxia is dependent on complex I function

We have recently assessed by several methods that different types of
cells produce a superoxide burst in the first minutes of the transition
from normoxia to hypoxia [32]. In order to analyse the relationship
between the superoxide burst in acute hypoxia and complex I function,
we silenced in bovine aortic endothelial cells (BAECs) the expression of
genes encoding for either an accessory or a core complex I subunit,
NDUFS4 and NDUFS2 respectively. We checked the reduction in the
amount of each subunit and the stability of mitochondrial complexes
and supercomplexes (Fig. 1). NDUFS4 knockdown destabilised complex
I and its corresponding supercomplexes including complex III-contain-
ing supercomplexes, while preserving isolated complex III and some
bands corresponding to other complex III-related supercomplexes
(Fig. 1c-d). Both interventions inhibited the superoxide burst in hypoxia
(Fig. 2a-b) and increased superoxide levels in normoxia (Fig. 2a-b). We
also used rotenone, an inhibitor of complex I, obtaining similar results
(Fig. 2c).

We also assessed ROS levels in acute hypoxia using the ratiometric
fluorescent protein HyPer. HyPer is reversibly oxidised in cysteine
residues due to hydrogen peroxide production; this oxidation alters its

fluorescence signal, allowing the detection of changes in the redox state
of cell compartments [43]. We transfected BAECs with a targeted
cytosolic version of the protein, CytoHyPer, measuring its signal in
living cells; the oxidation signal decreased upon treatment with
dithiothreitol and increased after mitochondrial ROS production in-
duced by antimycin A (Fig. 2d). Hypoxia induced CytoHyper oxidation
during the first twenty minutes, which decreased thereafter (Fig. 2e).
This hypoxic ROS production was abolished upon treatment with 1 µM
rotenone (Fig. 2f).

3.2. Complex I role in the hypoxic superoxide burst does not rely on reverse
electron transport or modification by PINK1

We next wanted to assess the mechanism by which complex I is
involved in the ROS burst in acute hypoxia. Reverse electron transport
(RET) in complex I (from ubiquinol to NAD+) is associated with high
ROS production after ischemic accumulation of succinate [27], the
substrate of cII. Thus, we explored whether RET was required for the
superoxide burst in the transition from normoxia to hypoxia through
two different approaches. Since superoxide production in complex I
reverse mode, either by complex I itself or by dehydrogenases from the
TCA cycle, relies on high mitochondrial membrane potential, which can
be easily abolished by treatment with an OXPHOS uncoupler [24,44],
we treated BAECs with the uncoupler FCCP, finding that the superoxide
burst was barely affected (Fig. 3a). We also analyzed superoxide
production in the transition from normoxia to hypoxia by live imaging
with DHE [32], finding that FCCP did not reduce the increase in the

Fig. 2. Interference or inhibition of complex I prevent the increase in ROS production triggered by hypoxia. (a-c) Detection of superoxide production by fluorescence microscopy
in fixed cells. Cells were incubated for 60 min in normoxia (Nx), for 30 min in normoxia with antimycin A (AA 10 µM) or incubated with pre-hypoxic medium in a hypoxia chamber at 1%
O2 (Hp) for 0, 15, 30, 45 or 60 min. DHE (5 µM) was added for additional 10 min and cells were fixed in the hypoxia chamber. (a and b) BAECs were treated with scramble siRNA (siSCR;
black bars) or siRNA against NDUFS4 (a) or NDUFS2 (b). (c) BAECs were untreated (Control) or treated with 1 µM rotenone (Rot 1 µM). Data are presented as the mean± s.e.m. of three
independent experiments. n.s. non-significant difference, *p< 0.05, **p<0.01 and ***p< 0.001 (ANOVA with Tukey post hoc test); only the significances between control normoxia
and control hypoxia 0–10 min or treated hypoxia 0–10 min groups are shown. (d-f) Detection of ROS by the ratiometric fluorescent protein HyPer. (d) BAECs were transfected with
CytoHyPer, treated with 2 mM of dithiothreitol (DTT) and with 30 µM antimycin A (AA). (e and f) CytoHyPer-transfected BAECs either untreated (e) or treated with 1 µM rotenone (f)
were subjected to normoxia (Nx, •) or hypoxia (1% O2; Hp, ○). Data are presented as the mean± s.e.m. of four independent experiments. n.s. non-significant difference, *p< 0.05 Hp vs.
Nx (Mann-Whitney U test).
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probe signal (Fig. 3b-c).
Since the production of mitochondrial ROS in hypoxia is associated

with hypoxia-inducible factor 1α (HIF-1α) stabilization [30,32], we
reasoned that if RET was operating under hypoxia FCCP should abolish
it. However, treatment with FCCP had no effect on HIF-1α stabilization
in normoxia or in hypoxia (Fig. 3d-e). These results show that reverse
electron transport through complex I is not the main mechanism of
superoxide production in acute hypoxia.

PINK1 mutation has been associated with alteration in complex I
function [22] and with ROS production and HIF-1α stabilization in
hypoxia [23]. Therefore, we wondered whether PINK1 was involved in
the hypoxic superoxide burst. We silenced the expression of PINK1 in
BAECs (Fig. 3f) and observed that the ROS levels in normoxia were
higher than in the non-interfered cells, but they still rose in the
transition to hypoxia (Fig. 3g). Thus, PINK1 is not involved in the

superoxide burst in acute hypoxia.

3.3. Acute hypoxia deactivates mitochondrial complex I

Complex I exists in two conformations that are associated with
catalytically active (A) or inactive -‘deactive’- (D) forms [17,20]. A/D
transition can be induced in vitro by thermal deactivation since complex
I deactivates with the lack of substrates. In addition, a physiological
stimulus shown to trigger A/D transition is prolonged ischemia or
anoxia [20,45], therefore we wondered whether acute hypoxia could
also promote deactivation of complex I.

A/D transition involves a conformational rearrangement of complex
I resulting in the exposure of Cys-39 within the bovine mitochondrial
subunit ND3 [16,46]. Labelling of this thiol group with thiol-specific
reagents thus constitutes a suitable marker for deactivation of complex I

Fig. 3. ROS production in acute hypoxia is not due to reverse electron transport or PINK1 function. (a) Untreated (black) or BAECs treated with 1 µM FCCP (white) were subjected
to the same protocol as in Fig. 2a. Data are presented as the mean± s.e.m. of three independent experiments. n.s. non-significant difference, *p<0.05, **p< 0.01 (ANOVA with Tukey
post hoc test); only the significances between control normoxia and control hypoxia 0–10 min or treated hypoxia 0–10 min groups are shown. (b and c) Detection of ROS production by
live fluorescence microscopy with DHE. BAECs untreated (b) or treated with 1 µM FCCP (c) were subjected to normoxia (Nx, •) or hypoxia (2% O2; Hp, ○). (Insets) Slopes considering all
time points of each replicate (n=3). The slope for each replicate was estimated by linear regression of the data for all the ROI and time points. Data are presented as the mean± s.e.m. of
three independent experiments. n.s. non-significant difference, *p<0.05, ***p< 0.001 (Student's t-test). (d and e) HIF-1α stabilization measured by western blotting in BAECs treated or
not with 1 µM FCCP and exposed for 4 h to normoxia (Nx), normoxia with 1 mM DMOG or to hypoxia (1% O2, Hp). Tubulin was used as loading control. (d) Representative images; (e)
quantification of three independent experiments (mean± s.e.m.). (f) Protein extracts from BAECs treated with siSCR or siPINK1 were immunoblotted for PINK1 protein with tubulin as
loading control. Up: representative image; down: quantification of three independent experiments (mean± s.e.m.). (g) BAECs were treated with scramble siRNA (siSCR; black bars) or
siRNA against PINK1 (white bars) and subjected to the same protocol as in Fig. 2a. Data are presented as the mean± s.e.m. of three independent experiments. n.s. non-significant
difference, **p<0.01 (ANOVA with Tukey post hoc test); only the significances between control normoxia and control hypoxia 0–10 min or treated hypoxia 0–10 min groups are shown.
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[18,19,46]. We attempted to detect the exposed Cys-39 residue of ND3
using a fluorescent maleimide reagent under non-denaturing condi-
tions. Using this technique, exposed cysteines were labelled in mito-
chondrial membrane preparations from bovine aortic endothelial cells
(BAECs) subjected to normoxia or hypoxia, allowing the detection of
both the exposed Cys labelling and total protein signal for each
electrophoretic band in the same gel (Fig. 4a-b). The exposed Cys
signal of a protein species of approximately 10 kDa was clearly
increased after thermal deactivation [19,46] and, more interestingly,
in samples from hypoxia-treated BAECs (Fig. 4b, left and bottom). The
total protein signal of that band was similar in all gel lanes (Fig. 4b,
right). Mass spectrometry analysis of this band identified a peptide of
ND3, confirming that this band corresponded to ND3 (Supplementary
Fig. 1). Quantification of the ratio of TMR/Sypro signals (exposed Cys
vs total protein) for this band clearly showed that Cys-39 (the only Cys
of this protein) was more exposed after 5 min of hypoxia in BAECs
(Fig. 4c) or in the hepatocyte cell line HepG2 (Fig. 5a). Furthermore,
increased exposure of ND3 Cys-39 was maintained from 5 to 30 min of

hypoxia (Fig. 5b) and increased gradually with decreasing oxygen
tension (Fig. 5c).

Since the deactive form of complex I is associated to a Na+/H+

antiporter (NHE) activity we wondered whether this could be the
situation under acute hypoxia. Originally, the antiporter activity of the
deactive form of complex I was measured by changes in Bos taurus heart
submitochondrial particles (SMPs) ΔpH [18]. We measured mitochon-
drial matrix pH as a readout of NHE activity in BAECs transfected with
the ratiometric mitochondrial pH indicator mitosypHer [47]. We
validated the ability of the fluorescent protein to respond to pH changes
(Fig. 6a), the subcellular localisation of its mitochondria-targeted
version (Fig. 6b) and its ability to measure mitochondrial matrix
acidification after incubation of cells with FCCP, an uncoupler of the
OXPHOS system (Fig. 6c). Acute hypoxia acidified the mitochondrial
matrix (Fig. 6d). Acidification was abolished by rotenone, a Q-site
complex I inhibitor (Fig. 6e). Although this approach does not exclude
other mechanisms that could also contribute to matrix acidification, the
results are compatible with the hypothesis of an increase in the NHE

Fig. 4. Acute hypoxia deactivates complex I in BAECs. (a) Cys-39 of ND3 remains buried in active complex I (yellow), while it is exposed in deactive complex I (red). Mal-Bodipy-TMR
was used to label exposed Cys before electrophoretic protein separation. TMR fluorescence signal for the ND3 band was higher when complex I was deactive (grey picture). Protein
amount for the same band is detected with Sypro Ruby staining (red picture). (b, c) Mitochondrial membranes from BAECs treated for 5 min in normoxia (Nx) or hypoxia (1% O2, Hp or
H5) were split in two equal parts; one part was incubated for 1 h at 37 °C to fully deactivate complex I (Thermal deactivation), whereas the other was kept on ice. (b) Bodipy-TMR signal
reflects exposed Cys (left) and Sypro Ruby signal detects total protein (right). Arrows (➙) mark the band corresponding to ND3 identified by LC-MS/MS; the lower image on the left is a
more exposed photograph of the Bodipy-TMR signal. (c) Band corresponding to TMR-labelled ND3 was quantified and normalized to total ND3. Data are presented as the mean± s.e.m.
of six independent experiments. n.s. non-significant difference, **p<0.01 H5 vs. Nx (Mann-Whitney U test). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article).
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activity of complex I.
Taken together, these results show that acute hypoxia induces

complex I deactivation, exposing ND3 Cys-39, and acidifies the
mitochondrial matrix probably by enhancing its NHE activity.

In order to assess whether Na+/H+ exchange could trigger ROS
production and imitate the hypoxic response, we treated BAECs with
the Na+/H+ exchanger monensin in normoxia. This treatment clearly
increased ROS production (Fig. 6f) and also stabilised HIF-1α in

normoxia (Fig. 6g-h), strongly suggesting that Na+/H+ exchange by
deactive complex I could be a mechanism involved in ROS signalling in
acute hypoxia.

3.4. Complex I deactivation is involved in the hypoxic response in neuronal
cells and brain tissue

Since most of the preceding experiments were carried out in non-
excitable primary endothelial cells, we questioned whether the hypoxic
superoxide burst and complex I deactivation could also be observed in
excitable cells, such as neurons. For this, we used an ex vivo model: we
exposed isolated mouse hippocampal slices to acute hypoxia, finding
increased superoxide levels after 30 min (Fig. 7a). In this condition,
complex I is deactivated (Fig. 7b), suggesting its implication in ROS
production.

Finally, we addressed whether complex I deactivation could occur
in an in vivo model of photothrombotic ischemic injury. Complex I
deactivation was clearly observed in the infarcted area of mice
subjected to an ischemic insult and, interestingly, also in the ipsilateral
area, the area where reduced blood flow arrives (Fig. 7c). Overall, these
results highlight the relationship of complex I deactivation and ROS
production, in neurons in ex vivo and in vivo models.

4. Discussion

There has been a long-standing debate about the increase or
decrease in ROS levels in response to hypoxia. We have recently shown
by different methodologies that superoxide levels are increased for a
limited time in the response of different cell types to acute hypoxia,
what we called a superoxide burst [32]. Recently, it has been shown
that mitochondrial complex I is involved in acute oxygen sensing by the
glomus cells of the carotid body through ROS production [34]. Since
carotid body is a very specialised tissue and could have a unique
machinery for oxygen sensing, we wondered whether complex I was
also necessary for ROS production in other cell types and tissues. By
means of pharmacological and genetic inhibition, we show that
complex I is involved in ROS production in endothelial cells under
acute hypoxia. Interestingly, with these interventions the ROS levels
correlate with the oxygen concentration, with a high ROS production in
normoxia that diminishes in the transition to hypoxia.

We have further analyzed different properties of complex I that
could be implicated in the mechanism triggering the hypoxic super-
oxide burst. Complex I can produce ROS by both forward and reverse
reactions, and the latter (reverse electron transfer, RET) is implicated in
ROS production in reperfusion [27]. RET relies on large amounts of
succinate which reduce the pool of ubiquinone and drive electrons
through complex I when the mitochondrial inner membrane is hyper-
polarised [24,25]. Treatment with OXPHOS uncouplers, such as FCCP,
depolarise mitochondria so that the electron transport chain can
operate at maximal capacity and RET is abolished [24,44]. However,
the superoxide burst in endothelial cells was not abolished after
treatment with FCCP, neither in fixed cells or live imaging experiments
(Fig. 3a-c). This suggests that RET is not the mechanism triggering
superoxide production in acute hypoxia.

We also hypothesised that PINK1 could have a role in altering
complex I in the transition from normoxia to hypoxia. It has been
recently described that PINK1 regulates ecomplex I [22] and its
deficiency in neurons produces higher ROS and HIF-1α stabilization
in normoxia [23]. When we interfered PINK1 expression, we also
observed higher ROS levels in normoxia, but a clear increase remained
in the first minutes of hypoxia (Fig. 3g), discarding PINK1 as a key
component in triggering the superoxide burst.

It should be noted that ROS detection has some limitations that need
to be considered. Although we have previously specifically detected
that superoxide anion is produced in the first minutes of hypoxia [32]
we cannot discard that the interventions made in this paper alter the

Fig. 5. Acute hypoxia deactivates complex I. (a) Mitochondrial membranes from
HepG2 treated as in Fig. 4. Up: representative image; down: quantification of ND3 Cys
exposure (mean± s.e.m. of four independent experiments). *p< 0.05, H5 vs. Nx (Mann-
Whitney U test). (b) Mitochondrial membranes of BAECs treated for 5 min in normoxia
(Nx) or in hypoxia (1% O2) for 5 (H5), 15 (H15) or 30 min (H30) and treated as in Fig. 4.
Up: representative image showing; down: quantification of ND3 Cys exposure (mean±
s.e.m. of three independent experiments). (c) Mitochondrial membranes of BAECs
subjected to normoxia or different hypoxia conditions (3% or 0.5% O2) for 5 min; NxD:
thermal deactivation of normoxic sample. Up: representative image; down: quantification
of ND3 Cys exposure (mean± s.e.m. of four independent experiments). Arrows (➙) mark
the band corresponding to ND3 in total protein.
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specific reaction of DHE and superoxide, by altering for example redox
intermediates. Therefore, in this case DHE could behave as a general
ROS indicator rather than a specific superoxide probe [42]. In addition,
HyPer fluorescent proteins detect changes in ROS levels by oxidoreduc-
tion of Cys 199 thiol group which promotes a shift in their spectral
properties [43]. Since oxidation of thiols can be achieved by several
oxidants, including hydrogen peroxide or peroxynitrite, we cannot
identify which ROS is specifically being detected by HyPer. Thus,
although we cannot point out which ROS is detected in each case, the
increase in ROS production in acute hypoxia and its modulation by
complex I presence and function is clear from the experiments
presented herein.

Another intrinsic property of complex I that we have explored in
relation with ROS production is A/D transition. We have been able to
detect complex I deactivation by labelling the thiols in the submito-

chondrial particle (SMPs) samples with a novel protocol adapted from
Galkin et al. [19]. Upon deactivation a conformational change re-
arranges several subunits of complex I and Cys39 of ND3 becomes
exposed [16,19]. We label exposed thiols in the SMPs samples with a
fluorescent maleimide, so that the difference in fluorescence intensity
correlates with increased exposure of ND3-Cys39 reflecting complex I
deactivation (Fig. 4a). Thus, we observed a clear increase in ND3
exposure upon thermal deactivation, and a partial increase starting at
5 min of hypoxia (1% O2), probably as the start of deactivation, in
consistence with previous reports that showed that a more prolonged
ischemia or anoxia (at least 20 min) was necessary to deactivate
complex I. Interestingly, the degree of complex I deactivation nega-
tively correlated with the amount of oxygen, showing that progressive
oxygen depletion is sufficient to induce complex I deactivation, starting
from a rather slight hypoxia (3% O2). Of note, in the stroke model, we

Fig. 6. Acute hypoxia enhances complex I Na+/H+ antiporter activity. (a) A cytosolic version of sypHer was transfected in BAECs to analyse pH change in control conditions. BAECs
were treated with two subsequent additions of 30 µM NaOH and one of 8 mM HCl. Data are represented as mean± s.e.m. of eight different ROIs. (b) BAECs transfected with mitosypHer
were incubated with 25 nM MitoTracker CMTMRos for 20 min and fixed. Representative fluorescence confocal microscopy images show mitochondrial localisation of mitosypHer.
Estimated Pearson and Mander's correlation coefficients for colocalisation of both signals are shown. (c) 488/405 signals ratio reflecting intramitochondrial pH in BAECs transfected with
mitosypHer either untreated (No treat) or treated with 1 µM FCCP (FCCP). Data are represented as mean± s.e.m. of five independent experiments. ***p< 0.001 (Student's t-test). (d and
e) Intramitochondrial pH measured with mitosypHer by live confocal microscopy in BAECs either untreated (d) or treated with 1 µM rotenone (e) and subjected to normoxia (Nx, •) or
hypoxia (1% O2; Hp, ○). Data are represented as mean± s.e.m. of the ratio between the fluorescence signals with excitation at 488 nm and 405 nm of four independent experiments.
(Insets) Slopes considering all time points of each replicate (n=4) are plotted as mean± s.e.m. The slope for each replicate was estimated by linear regression of the data for all the ROI
and time points. *p< 0.05 (Student's t-test). (f) Non treated BAECs or treated with 10 µM monensin for 30 min in normoxia were subjected to the same procedure as in Fig. 2a. Data are
represented as mean± s.e.m. of three independent experiments. **p< 0.01 (ANOVA with Tukey post hoc test); only the significance between non-treated normoxia and monensin-
treated normoxia is shown. (g) HIF-1α stabilization measured by western blotting in BAECs treated or not with 10 µM monensin (Mon) or with 1 mM DMOG and exposed for 4 h to
normoxia (Nx). Tubulin was used as loading control. Representative images of three independent experiments are shown. (h) Quantification of (g); mean± s.e.m. of three independent
experiments.
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found a profound deactivation of complex I in the anoxic infarcted area,
while the hypoxic ipsilateral area showed partial complex I deactiva-
tion, correlating with results obtained in cell culture. Interestingly, it
has been recently shown that greater complex I deactivation in brain
cells correlated with higher ROS levels [48].

Complex I deactivation could trigger ROS production by several
means. It would imply an arrest in NADH consumption and its
accumulation; this could reverse the reaction of the tricarboxylic acid

(TCA) cycle dehydrogenases which are known to produce ROS by this
reaction [49]. On the other hand, complex I A/D transition could
modify ubiquinone pool redox state and trigger the production of
superoxide by complex III; this would be in accordance with previous
reports showing the involvement of complex III in hypoxic ROS
production [30]. Another possible explanation arises from complex I
switch to a Na+/H+ antiporter.

We propose that this activity could be involved in superoxide
production by mitochondria; this hypothesis is supported by the fact
that treatment with the Na+/H+ antiporter monensin increased super-
oxide levels and HIF-1α stabilization (Fig. 6f and g). From the energetic
point of view, Na+/H+ antiporter activity would dissipate the H+

gradient across the mitochondrial inner membrane without affecting
ΔΨmt. Given that ΔΨmt represents around 90% of the Δµmt [50,51]
and that among the OXPHOS complexes only deactive complex I is
permeable to Na+, the Na+/H+ antiporter activity would serve to
maintain ΔΨmt removing ΔpH. This could, for instance, keep complex
V unable to depolarise mitochondria by translocating H+ back to the
matrix. Alteration of the Na+ gradient could directly affect other ROS-
producing complexes or influence mitochondrial ion homeostasis which
could have consequences on superoxide production [48], although this
requires further investigation.

This hypothesis is still mainly correlative and we have not provided
a definitive causal proof. Of note, we are not aware of any procedure or
complex I mutant form capable to exacerbate or inhibit deactivation or
Na+/H+ antiporter activity, without affecting the rest of activities of
complex I. The mechanism underlying A/D transition in hypoxia is not
well known and whether it is intrinsic to complex I or involves other
cellular components remains to be discovered. In addition, since it has
been proposed that the pumping H+ subunits in complex I are the ones
that carry out Na+/H+ exchange [18] and these subunits are encoded
by the mitochondrial DNA, it is not possible to modify the expression of
such subunits specifically. Therefore, we can only suggest the link
between deactivation and ROS production, since it is not possible to
provide an actual connection through mutagenesis studies or genetic
manipulation.

In addition, it is not known whether hypoxia is the primary stimulus
deactivating complex I (in that case, it would behave as an oxygen
sensor), or if it needs the participation of other players. Proteins, lipids
and ions [21,22,52] regulate complex I activity, thus different tissues,
physiological conditions and diseases can influence complex I activa-
tion status, which is predicted to have important consequences from the
point of view of bioenergetics and ROS production. Given that complex
I deficiency underlies several diseases, and hypoxia and anoxia are
present in many physiological and pathophysiological scenarios, the
study of the influence of complex I deactivation in mitochondrial ROS
production in hypoxia becomes more important as a new player in
mitochondrial homeostasis.
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