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a b s t r a c t

We extend in this paper an optimal family of three-step eighth-order methods developed
by Džunić et al. (2011) with higher-order weight functions employed in the second and
third sub-steps and investigate their dynamics under the relevant extraneous fixed points
among which purely imaginary ones are specially treated for the analysis of the rich
dynamics. Their theoretical and computational properties are fully investigated along with
a main theorem describing the order of convergence and the asymptotic error constant
as well as proper choices of special cases. A wide variety of relevant numerical examples
are illustrated to confirm the underlying theoretical development. In addition, this paper
investigates the dynamics of selected existing optimal eighth-order iterativemapswith the
help of illustrative basins of attraction for various polynomials.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Root-finding problems arise in many areas of natural and physical sciences, which include initial- and boundary-value
problems, heat and fluid flow problems, electrostatics problems as well as problems associated with global positioning
systems(GPS). We find it valuable to develop an efficient algorithm finding accurate numerical roots of the governing
equation under consideration. It has been about half a century since Traub [1] performed in the 1960s the extensive analyses
on qualitative as well as quantitative viewpoints of iterative methods locating numerical roots for nonlinear equations. A
number of authors [2–7] have developed high-order multipoint methods to solve a given nonlinear equation in the form of
f (x) = 0. In 2011, Džunić et al. [5] extensively investigated a family of optimal three-point methods for solving nonlinear
equations using two parametric functions. In 2012, Petković et al. [8] collected and updated the state of the art of multipoint
methods. They showed that many new methods are just special cases or reformulation of known methods. A numerical
scheme is said to be optimal according to Kung–Traub’s conjecture [9] that any multipoint method [8] without memory can
attain its convergence order of at most 2r−1 for r functional evaluations with r ∈ N. For the purpose of comparison, we
employ several existing eighth-order methods in [3,4,7], being respectively presented by (1.1), (1.5), and (1.6).
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• Cordero–Torregrosa–Vassileva method (CTV)

yn = xn −
f (xn)
f ′(xn)

,

zn = yn −
1

1 − 2s
f (yn)
f ′(xn)

,

xn+1 = wn −
f (zn)
f ′(xn)

3(β2 + β3)(wn − zn)
β1(wn − zn)+ β2(yn − xn)+ β3(zn − xn)

,

(1.1)

where

s =
f (yn)
f (xn)

, (1.2)

u =
f (zn)
f (yn)

, (1.3)

wn = zn −
f (zn)
f ′(xn)


1 − s
1 − 2s

+
u

2(1 − 2u)

2

, (1.4)

and β1, β2, and β3 are real parameters with β2 + β3 ≠ 0.

• Liu–Wang method (LW)

yn = xn −
f (xn)
f ′(xn)

,

zn = yn −
1

1 − 2s
·
f (yn)
f ′(xn)

,

xn+1 = zn −

 1 − s
1 − 2s

2
+

u
1 − α1u

+
4su

1 + α2su


·
f (zn)
f ′(xn)

, α1, α2 ∈ R.

(1.5)

• Sharma–Arora method (SA)

yn = xn −
f (xn)
f ′(xn)

,

zn = yn −
f (yn)

2f [yn, xn] − f ′(xn)
= yn −

1
1 − 2s

·
f (yn)
f ′(xn)

,

xn+1 = zn −
f [zn, yn]
f [zn, xn]

·
f (zn)

2f [zn, yn] − f [zn, xn]
= zn −

(1 − s)2(1 − u)
(1 − 2s)(1 − su)(1 − 2s − 2u + 3su)

·
f (zn)
f ′(xn)

,

where f [r, t] =
f (r)− f (t)

r − t
.

(1.6)

Definition 1 (Error Equation, Asymptotic Error Constant, Order of Convergence). Let x0, x1, . . . , xn, . . . be a sequence of
numbers converging to α. Let en = xn − α for n = 0, 1, 2, . . . . If constants p ≥ 1, c ≠ 0 exist in such a way that
en+1 = c enp +O(ep+1

n ) called the error equation, then p and η = |c| are said to be the order of convergence and the asymptotic
error constant, respectively. It is easy to find c = limn→∞

en+1
enp

. Some authors call c itself the asymptotic error constant.

In this paper, our special attention is paid to the dynamics of a generic family of three-point eighth-order methods. To
this end, we extend an optimal eighth-order family of iterative methods developed by Džunić et al. [5] with higher-order
weight functions employed in the second and third sub-steps in the following form:

yn = xn −
f (xn)
f ′(xn)

,

zn = yn − Lf (s) ·
f (yn)
f ′(xn)

,

xn+1 = zn − Qf (s, u) ·
f (zn)
f ′(xn)

,

(1.7)

where s and u are given by (1.2) and (1.3), respectively and Lf : C → C is a weight function being analytic [10] in a
neighborhood of 0 and Qf : C2

→ C is a weight function being holomorphic [11,12] in a neighborhood of (0, 0). Note that
(1.1), (1.5) and (1.6) are special cases of (1.7) with Lf (s) = 1/(1 − 2s) and Qf (s, u) as shown in their respective equations.
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It is interesting to see that (1.6) can be expressed by means of fifth-order rational weight function Qf (s, u) without using
divided differences.

Our primary aim of this paper is not only to extend the existing optimal eighth-order methods by considering more
generic forms of both weight functions Lf (s) and Qf (s, u), but also to investigate their dynamics by means of basins of
attractions behind the extraneous fixed points (to be described in Section 4) when applied to a wide variety of prototype
polynomials.

Iterative methods for nonlinear equations in general require suitable initial guesses close to exact roots of the equations
in order to guarantee the desired convergence. It is, however, a difficult matter to select such suitable initial guesses due
to the chaotic nature inherent in many environments including computational precision, error bound, the exact root and
the equation under consideration. The basin of attraction is the set of initial guesses leading to long-time behavior that
approaches the attractors (e.g., periodic, quasi-periodic or chaotic behaviors of different types) under the action of the
iterative function. Hence, convergence behavior of global character can be conveniently observed on the basin of attraction.
The basic topological structure of such a basin of attraction as a region can vary greatly from system to systemwith a variety
forms of weight functions. If both weight functions Lf and Qf contain multiple parameters, then the basin of attraction of
the iterative methods will vary depending on the selection of free parameters.

Our secondary aim of this paper is to choose proper parameters giving the basin of attraction with a larger region of
convergence. The presence of extraneous fixed points may induce attractive, indifferent, repulsive as well as other chaotic
orbits influencing the relevant dynamics of the iterative methods. Notice that the imaginary axis symmetrically divides the
whole complex plane into two half planes. Since we observe the convergence behavior in the dynamical planes through the
basins of attraction in the form of a square region centered at the origin, the resulting dynamics behind the extraneous fixed
points on the symmetry (imaginary) axis is expected to be less influenced by the possible periodic or chaotic attractors.
Thus, it would be preferable to choose free parameters in such a way that the extraneous fixed points should be located on
the imaginary axis.

In Section 2, the main theorem regarding the convergence behavior is described with appropriate forms of two weight
functions Lf and Qf . Section 3 investigates some special cases of Qf (s, u). Section 4 fully discusses the extraneous fixed
points among which purely imaginary ones are specially treated. Section 5 presents numerical experiments along with the
illustration of the relevant dynamics and concluding remarks.

2. Main theorem

Wewill state in this section the main theorem without details of its proof describing the methodology and convergence
behavior on iterative scheme (1.7), due to the detailed self-explanatory proof given in [8]. With more generic forms of Lf (s)
and Qf (s, u) introduced, the resulting error equation becomes more extended, which is remarked after the theorem below:

Theorem 2.1. Assume that f : C → C has a simple root α and is analytic in a region containing α. Let cj =
f (j)(α)
j!f ′(α) for

j = 2, 3, . . . . Let x0 be an initial guess chosen in a sufficiently small neighborhood of α. Let Lf : C → C be analytic in a
neighborhood of 0. Let Li =

1
i!

di

dsi
Lf (s)


(s=0) for 0 ≤ i ≤ 4. Let Qf : C2

→ C be holomorphic in a neighborhood of (0, 0).

Let Qij =
1
i!j!

∂ i+j

∂si∂uj
Qf (s, u)


(s=0,u=0) for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 2. If L0 = 1, L1 = 2,Q00 = 1,Q01 = 1,Q10 = 2,

Q20 = 1 + L2,Q11 = 4,Q30 = 2L2 + L3 − 4 are satisfied, then iterative scheme (1.7) defines a family of eighth-order methods
satisfying the error equation below: for n = 0, 1, 2, . . .,

en+1 = c2{c3 + c22 (L2 − 5)}

−c2c4 + c23 (Q02 − 1)+ c22c3φ1 + c42φ2


e8n + O(e9n), (2.1)

where φ1 = 19− 10Q02 + L2(2Q02 − 1)−Q21 and φ2 = −2L3 − L4 + L2{(L2 − 10)Q02 −Q21 + 9}+ 5(5Q02 +Q21 − 9)+Q40.

Remark 2.2. Since Lf (s) is expanded up to fourth-order terms in s, and Qf (s, u) expanded up to fourth- and second-order
terms in s and u, respectively, we obtain a more general form of the error equation shown in the above theorem. Indeed,
we find that a special case of selected parameters with L2 = 2, L3 = L4 = Q30 = Q40 = 0 immediately yields the error
equation claimed in [8].

3. Special cases of weight functions

As a result of Theorem 2.1, we easily find Lf (s) and Qf (s, u) in the form of Taylor polynomials as follows.
Lf (s) = 1 + 2s + L2s2 + L3s3 + L4s4 + O(e5),

Qf (s, u) = 1 + u + Q02u2
+ s(2 + 4u)+ s2(Q20 + Q21u)+ Q30s3 + Q40s4 + O(e5),

(3.1)

where Q20 = 1 + L2 and Q30 = 2L2 + L3 − 4, while L2, L3, L4,Q02,Q21,Q40 may be free parameters.
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Table 1
Parameter values of L2, A2, B2, a1, a2, a3, a4, a5, a6, b0, b1, b2, b3, b4, b5, b6 for all cases.

Case (L2, A2, B2) a1 a2 a3 a4 a5 a6 b0 b1 b2 b3 b4 b5 b6

1A (0, 0, 0) −4 7 −6 0 0 0 1 −2 0 0 1 0 0
1B (0, 4, 0) −2 3 8 −1 0 0 1 0 0 0 0 0 0
1C (4,−4, 0) −2 −1 0 0 0 0 1 0 0 0 1 2 0

1D (3, 0, 0) −2 3
4 0 −1 0 0 1 0 3

4 0 0 0 0
1E (3, 0, 0) −2 0 0 −1 0 0 1 0 0 −

3
2 0 0 0

1F (5, 0, 0) −4 0 0 0 0 0 1 −2 −2 −
11
2 1 0 0

1G (3,−3, 0) −2 −2 −
5
2 −1 0 0 1 0 0 0 0 0 0

1H (5, 10, 2) −
9
2 5 −

3
2 −1 5

2 0 1 −
5
2 2 0 0 0 0

1I (5, 10, 2) −2 0 −
77
8 −1 0 0 1 0 2 −

25
8 0 0 0

1J (5, 10, 2) −
29
10 −

1
5 −

7
10 −1 19

10 0 1 −
9
10 0 0 0 1 0

2A1 (0, 0,−8) −2 3 0 −1 0 3 1 0 0 0 0 0 0
2A2 (0, 0,−8) −4 4 0 0 0 0 1 −2 −3 0 1 0 3
2A3 (0, 0,−8) −2 3 0 0 0 3 1 0 0 0 1 2 0
2B1 (4, 8, 0) −2 −1 0 −1 0 1 1 0 0 0 0 0 0
2B2 (4, 8, 0) −2 0 −2 0 −2 0 1 0 1 0 1 0 1
2B3 (4, 8, 0) −2 −1 0 0 0 0 1 0 0 0 1 2 2
2C1 (8, 16, 8) −

9
2 0 −

7
2 −1 5

2 −
3
2 1 −

5
2 0 0 0 0 0

2C2 (8, 16, 8) 0 0 0 −2 0 0 1 2 9 44 −1 0 −18

2C3 (8, 16, 8) −
26
5

7
5 0 0 0 1 1 −

16
5 0 0 1 −

6
5 0

2D1 (12, 24, 16) −2 −9 −48 0 −2 −9 1 0 0 0 1 0 0
2D2 (12, 24, 16) 0 0 0 0 −4 0 1 2 13 92 1 0 13

2D3 (12, 24, 16) −
22
3

5
3 0 0 0 −1 1 −

16
3 0 0 1 −

10
3 0

3Aia (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 (10, 25, 35) 0 b4 b5 b6
3Bi (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 (3, 2909

684 , 6) 0 b4 b5 b6
3Ci (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 (1, 1.5, 2) 0 b4 b5 b6
3Di (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 (−1, 0, 2

11 ) 0 b4 b5 b6
3Ei (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 (6, 11 347

1444 , 18) 0 b4 b5 b6
3Fi (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 ( 187 , 3, 3.1) 0 b4 b5 b6
3Gi (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 (0.4, 0.5, 0.9) 0 b4 b5 b6
3Hi (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 ( 1531244 , 8, 10) 0 b4 b5 b6
3Ii (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 (1, 1.5, 2.5) 0 b4 b5 b6
3Ji (4, 8, 0) a1 a2 a3 a4 a5 a6 1 b1 (3.5, 4, 22

5 ) 0 b4 b5 b6
4A (0, 0, 0) 6 21 96 −2 1 4 −1 0 0 0 1 0 1
4B (0, 4, 0) −2 0 0 −

4
3 −2 1 0 0 3 −20 3 1 −2

4C (4,−4, 0) 0 0 0 −3 4 −1 3 3 6 13 −1 0 −1
4D (3, 0, 0) −4 19

2 0 0 −4 0 0 1 0 0 1 1 1

4E (5, 0, 0) −
29
20 0 0 −1 0 1 0 −2 129

10 0 1 0 1

4F (3,−3, 0) −3 0 0 −2 −2 −1 0 0 2 0 1 −1 1
a 3Ai = (3A1, 3A2, 3A3). For Cases 3Ai–3Pi, values for a1–b6 other than b2 and b3 = 0 are not explicitly displayed due to their lengthy expression

dependent on b2 . Sub-cases of Case 3 are listed in order with a triplet of b2 values. In addition, for Cases 4A–4F, parameter values of a triplet (b7, b8, b9)
are to be separately listed in order with (b7, b8, b9) ∈ {(0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 4), (0, 0, 2)}.

Although various forms of weight functions Lf (s) and Qf (s, u) are available, in this paper we will first limit ourselves to
considering only low-order rational weight functions with real coefficients in the form below.

Lf (s) =
1 + B1s + B2s2

1 + A1s + A2s2
,

Qf (s, u) =
b0 + b1s + b2s2 + b3s3 + u(b4 + b5s + b6s2)
1 + a1s + a2s2 + a3s3 + u(a4 + a5s + a6s2)

,

(3.2)

whereA2, B2, ai, bi ∈ R and B1 =
1
2 (B2−A2−L2)+2, A1 = B1−2, b0 = 1, b1 = −2−2a4−a5+b5, b4 = 1+a4, a1 = −4−

2a4−a5+b5, a2 = 7+4a4+2a5+b2−2b5−L2, a3 = −6−6a4−3a5−2b2+b3+3b5+A2(2−
L2
2 )+(4+2a4+a5+

B2
2 −b5)L2−

L22
2 ,

with 10 free parameters L2, A2, B2, a4, a5, a6, b2, b3, b5, b6 being available.
In the current investigation, we will select 4 cases whose free parameters are suitably chosen for simplified forms of

weight functions. The parameters chosen for each case are summarized in Table 1.
We first consider Case 1 for a rational weight function Qf (s, u)with a6 = b6 = 0 and investigate its sub-cases as follows.
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Case 1: Cubic-order rational weight function Qf (s, u)with a6 = b6 = 0.
Lf (s) =

1 + B1s + B2s2

1 + A1s + A2s2
,

Qf (s, u) =
b0 + b1s + b2s2 + b3s3 + u(b4 + b5s)
1 + a1s + a2s2 + a3s3 + u(a4 + a5s)

.

(3.3)

Case 1A: When L2 = A2 = B2 = a4 = a5 = b5 = b2 = b3 = 0,
Lf (s) = 1 + 2s,

Qf (s, u) =
1 − 2s + u

1 − 4s + 7s2 − 6s3
.

(3.4)

Case 1B: When L2 = B2 = b5 = b2 = b3 = a5 = 0, A2 = 4, a4 = −1,
Lf (s) =

1
1 − 2s + 4s2

,

Qf (s, u) =
1

1 − 2s + 3s2 + 8s3 − u
.

(3.5)

Case 1C: When L2 = 4, A2 = −4, B2 = a4 = a5 = b2 = b3 = 0, b5 = 2,
Lf (s) =

1
1 − 2s

,

Qf (s, u) =
1 + u + 2su
1 − 2s − s2

.

(3.6)

Case 1D: When L2 = 3, A2 = B2 = 0, b5 = b3 = a5 = 0, a4 = −1, b2 = 3/4,
Lf (s) =

2 + s
2 − 3s

,

Qf (s, u) =
4 + 3s2

4 − 8s + 3s2 − 4u
.

(3.7)

Case 1E: When L2 = 3, A2 = B2 = 0, b5 = b2 = a5 = 0, a4 = −1, b3 = −3/2,
Lf (s) =

2 + s
2 − 3s

,

Qf (s, u) =
2 − 3s3

2(1 − 2s − u)
.

(3.8)

Case 1F: When L2 = 5, A2 = B2 = 0, b5 = a4 = a5 = 0, b2 = −2, b3 = −11/2,
Lf (s) =

2 − s
2 − 5s

,

Qf (s, u) =
2 − 4s − 4s2 − 11s3 + 2u

2(1 − 4s)
.

(3.9)

Case 1G: When L2 = 3, A2 = −3, B2 = 0, a4 = −1, b5 = a5 = b2 = b3 = 0,
Lf (s) =

1 + 2s
1 − 3s2

,

Qf (s, u) =
1

1 − 2s − u
.

(3.10)

Note that this sub-case 1Gwas already studied in [13].
The following three typical sub-cases 1H, 1I, 1J are obtained with further constraints L2 = 5, Q02 = 1, Q21 = 14,Q40 =

2L3 + L4, for which the corresponding error equation reduces to a simplified form of

en+1 = −c22c3c4 e8n + O(e9n).

For further simplicity of Lf (s), we also take A2 = 10 and B2 = 2 in these three sub-cases. As a result, coefficients
b1, b4, b5, a1, a2, a3, a4, a5 of Qf (s, u) can be expressed in terms of two parameters b2 and b3.
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Case 1H: When L2 = 5, A2 = 10, B2 = 2, b2 = 2, b3 = 0; b1 =
1
10 (−9 − 8b2 − 8b3), b4 = 0, b5 = 1 −

b2
2 , a1 =

−29−8b2−8b3
10 , a2 =

−1+13b2+8b3
5 , a3 =

−7−4b2+26b3
10 , a4 = −1, a5 =

19+3b2+8b3
10 .

Lf (s) =
2 − s
2 − 5s

,

Qf (s, u) =
2 − 5s + 4s2

2 − 9s + 10s2 − 3s3 − 2u + 5su
.

(3.11)

Case 1I: When L2 = 5, A2 = 10, B2 = 2, b2 = 2, b3 = −
25
8 ; b1 =

1
10 (−9 − 8b2 − 8b3), b4 = 0, b5 = 1 −

b2
2 , a1 =

(−29−8b2−8b3)
10 , a2 =

(−1+13b2+8b3)
5 , a3 =

1
10 (−7 − 4b2 + 26b3), a4 = −1, a5 =

19+3b2+8b3
10 .

Lf (s) =
2 − s
2 − 5s

,

Qf (s, u) =
−8 − 16s2 + 25s3

−8 + 16s + 77s3 + 8u
.

(3.12)

Case 1J: When L2 = 5, A2 = 10, B2 = 2, b2 = 0, b3 = 0; b1 =
1
10 (−9 − 8b2 − 8b3), b4 = 0, b5 = 1 −

b2
2 , a1 =

−29−8b2−8b3
10 , a2 =

−1+13b2+8b3
5 , a3 =

−7−4b2+26b3
10 , a4 = −1, a5 =

19+3b2+8b3
10 .

Lf (s) =
2 − s
2 − 5s

,

Qf (s, u) =
−10 + 9s − 10su

−10 + 29s + 2s2 + 7s3 + 10u − 19su
.

(3.13)

As Case 2, we are going to deal with a generic rational weight function of up to cubic-order given by (3.2).

Case 2: Cubic-order rational weight function Qf (s, u)with free parameters A2, B2, L2, a4, a5, a6, b2, b3, b5, b6
Lf (s) =

1 + B1s + B2s2

1 + A1s + A2s2
,

Qf (s, u) =
b0 + b1s + b2s2 + b3s3 + u(b4 + b5s + b6s2)
1 + a1s + a2s2 + a3s3 + u(a4 + a5s + a6s2)

.

(3.14)

The 10 free parameters A2, B2, L2, a4, a5, a6, b2, b3, b5, b6 with a6 and b6 non-vanishing simultaneously will be selected
in such a way that the governing equations yielding extraneous fixed points of proposed map (1.7) might possess lower-
degree polynomials. In view of the analysis on extraneous fixed points to be shown in the next section, we consider four
sub-cases Case 2A, Case 2B, Case 2C, Case 2D with four values of L2 ∈ {0, 4, 8, 12} along with a selected pair of (A2, B2)-
values giving simplified forms of Lf (s) in order. Note that two parameters a2 = 7 + 4a4 + 2a5 + b2 − 2b5 − L2 and

a3 = −6 − 6a4 − 3a5 − 2b2 + b3 + 3b5 + A2(2 −
L2
2 )+ (4 + 2a4 + a5 +

B2
2 − b5)L2 −

L22
2 are dependent upon L2 and need

to be explicitly displayed in each sub-case which contains 7 free parameters a4, a5, a6, b2, b3, b5, b6.

Case 2A: L2 = 0, A2 = 0, B2 = −8, a2 = 4a4 + 2a5 + b2 − 2b5 + 7, a3 = −6a4 − 3a5 − 2b2 + b3 + 3b5 − 6.
Lf (s) = 1 + 2s,

Qf (s, u) =
b0 + b1s + b2s2 + b3s3 + u(b4 + b5s + b6s2)
1 + a1s + a2s2 + a3s3 + u(a4 + a5s + a6s2)

.
(3.15)

Case 2A1: a4 = −1, a5 = 0, a6 = 3, b2 = 0, b3 = 0, b5 = 0, b6 = 0.

Qf (s, u) =
1

1 − 2s − u + 3s2(1 + u)
.

Case 2A2: a4 = 0, a5 = 0, a6 = 0, b2 = −3, b3 = 0, b5 = 0, b6 = 3.

Qf (s, u) =
1 − 2s + 3s2(u − 1)+ u

(1 − 2s)2
.

Case 2A3: a4 = 0, a5 = 0, a6 = 3, b2 = 0, b3 = 0, b5 = 2, b6 = 0.

Qf (s, u) =
1 + u + 2su

1 − 2s + 3s2(1 + u)
.
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Case 2B: L2 = 4, A2 = 8, B2 = 0, a2 = 4a4 + 2a5 + b2 − 2b5 + 3, a3 = 2a4 + a5 − 2b2 + b3 − b5 + 2.
Lf (s) =

1
1 − 2s

,

Qf (s, u) =
b0 + b1s + b2s2 + b3s3 + u(b4 + b5s + b6s2)
1 + a1s + a2s2 + a3s3 + u(a4 + a5s + a6s2)

.

(3.16)

Case 2B1: a4 = −1, a5 = 0, a6 = 1, b2 = 0, b3 = 0, b5 = 0, b6 = 0.

Qf (s, u) =
1

1 − 2s + s2(s − 1)− u
.

Case 2B2: a4 = 0, a5 = −2, a6 = 0, b2 = 1, b3 = 0, b5 = 0, b6 = 1.

Qf (s, u) =
(1 + s2)(1 + u)

1 − 2s3 − 2s(1 + u)
.

Case 2B3: a4 = 0, a5 = 0, a6 = 0, b2 = 0, b3 = 0, b5 = 2, b6 = 2.

Qf (s, u) =
1 + u + 2su + 2s2u

1 − 2s − s2
.

Case 2C: L2 = 8, A2 = 16, B2 = 8, a2 = 4a4 + 2a5 + b2 − 2b5 − 1, a3 = 10a4 + 5a5 − 2b2 + b3 − 5b5 − 6.
Lf (s) =

1 − 2s
1 − 4s

,

Qf (s, u) =
b0 + b1s + b2s2 + b3s3 + u(b4 + b5s + b6s2)
1 + a1s + a2s2 + a3s3 + u(a4 + a5s + a6s2)

.

(3.17)

Case 2C1: a4 = −1, a5 = 5/2, a6 = −3/2, b2 = 0, b3 = 0, b5 = 0, b6 = 0.

Qf (s, u) =
2 − 5s

2 − 9s − 7s3 − (1 − s)(2 − 3s)u
.

Case 2C2: a4 = −2, a5 = 0, a6 = 0, b2 = 9, b3 = 44, b5 = 0, b6 = −18.

Qf (s, u) =
1 + 2s + 44s3 + 9s2(1 − 2u)− u

1 − 2u
.

Case 2C3: a4 = 0, a5 = 0, a6 = 1, b2 = 0, b3 = 0, b5 = −6/5, b6 = 0.

Qf (s, u) =
5(1 + u)− 2s(8 + 3u)
5 − 26s + s2(7 + 5u)

.

Case 2D: L2 = 12, A2 = 24, B2 = 16, a2 = 4a4 + 2a5 + b2 − 2b5 − 5, a3 = 18a4 + 9a5 − 2b2 + b3 − 9b5 − 30.
Lf (s) =

1 − 4s
1 − 6s

,

Qf (s, u) =
b0 + b1s + b2s2 + b3s3 + u(b4 + b5s + b6s2)
1 + a1s + a2s2 + a3s3 + u(a4 + a5s + a6s2)

.

(3.18)

Case 2D1: a4 = 0, a5 = −2, a6 = −9, b2 = 0, b3 = 0, b5 = 0, b6 = 0.

Qf (s, u) =
1 + u

1 − 48s3 − 2s(1 + u)− 9s2(1 + u)
.

Case 2D2: a4 = 0, a5 = −4, a6 = 0, b2 = 13, b3 = 92, b5 = 0, b6 = 13.

Qf (s, u) =
1 + 2s + 92s3 + u + 13s2(1 + u)

1 − 4su
.

Case 2D3: a4 = 0, a5 = 0, a6 = −1, b2 = 0, b3 = 0, b5 = −10/3, b6 = 0.

Qf (s, u) =
2s(8 + 5u)− 3(1 + u)
−3 + 22s + s2(3u − 5)

.

As Case 3, in the current study, we begin by an extensive investigation of Case 2B, an appropriate selection of whose
free parameters leads us to purely imaginary extraneous fixed points. To this end, instead of random selection of 7 free
parameters a4, a5, a6, b2, b3, b5, b6, we will seek feasible relationships among the free parameters by imposing some
constraints on simplifying the numerator of the resulting expression F(t) to be described in (4.3). Further detailed analysis
of such relationships will be discussed later in Section 4.
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Case 3: A special case of Case 2B leading to purely imaginary extraneous fixed points.
Lf (s) =

1
1 − 2s

,

Qf (s, u) =
b0 + b1s + b2s2 + b3s3 + u(b4 + b5s + b6s2)
1 + a1s + a2s2 + a3s3 + u(a4 + a5s + a6s2)

,

(3.19)

where b1 = −2 − 2a4 − a5 + b5, b4 = 1 + a4, a1 = −4 − 2a4 − a5 + b5, a2 = 3 + 4a4 + 2a5 + b2 − 2b5, a3 =

2+2a4 +a5 −2b2 +b3 −b5. A possible combination of free parameters leading to purely imaginary extraneous fixed points
will be described in Section 4 with L2 = 4, B2 = 8, A2 = 0. We will determine 6 free parameters a4, a5, a6, b3, b5, b6 in
terms of a remaining single parameter b2. According to the possible values of σ , r6 ∈ {0, 1, 2, 3, 4, 5, 6} to be extensively
discussed in Section 4, we are able to consider a number of cases as well as their sub-cases with selected pairs of (σ , r6) as
described below.
Case 3A: (σ , r6) = (2, 1).

a4 =
3226 − 103b2

399
, a5 =

−101 + 2b2
3

, a6 =
593 + 4b2

21
,

b3 = 0, b5 =
10(−911 + 2b2)

399
, b6 =

124(10 + b2)
133

;

53
8
< b2 <

319
8
.

Case 3A1: b2 = 10.
Case 3A2: b2 = 25.
Case 3A3: b2 = 35.

Case 3B: (σ , r6) = (2, 2).

a4 =
−398 + 113b2

55
, a5 = −

3(−749 + 194b2)
55

, a6 =
−2909 + 684b2

55
,

b3 = 0, b5 = −
18(−7 + 2b2)

5
, b6 =

4(−70 + 17b2)
11

;

49
24
< b2 <

53
8
.

Case 3B1: b2 = 3.
Case 3B2: b2 =

2909
684 .

Case 3B3: b2 = 6.
Case 3C: (σ , r6) = (2, 3).

a4 = −
58
9

+
5b2
3
, a5 =

161 + 6b2
9

, a6 = −3(1 + 4b2), b3 = 0,

b5 =
2(35 + 6b2)

9
, b6 = −

28(−2 + 3b2)
9

;

19
24
< b2 <

49
24
.

Case 3C1: b2 = 1.
Case 3C2: b2 = 1.5.
Case 3C3: b2 = 2.

Case 3D: (σ , r6) = (2, 4).

a4 = −
3(10 + 37b2)

23
, a5 = 1 + 22b2, a6 =

83 − 468b2
23

, b3 = 0, b5 =
2(5 + 122b2)

23
,

b6 = −
4(−2 + 11b2)

23
;

−
9
8
< b2 <

19
24
.

Case 3D1: b2 = −1.
Case 3D2: b2 = 0.
Case 3D3: b2 =

2
11 .
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Case 3E: (σ , r6) = (3, 1).

a4 =
−742 + 123b2

509
, a5 =

6489 − 898b2
509

, a6 =
−11347 + 1444b2

509
, b3 = 0,

b5 = −
2(−1803 + 386b2)

509
, b6 =

4(−1570 + 263b2)
509

;

51
16
< b2 <

611
32
.

Case 3E1: b2 = 6.
Case 3E2: b2 =

11347
1444 .

Case 3E3: b2 = 18.
Case 3F: (σ , r6) = (3, 2).

a4 = −6 +
5b2
3
, a5 = 5 +

2b2
3
, a6 = 25 − 12b2, b3 = 0, b5 = −2 +

4b2
3
, b6 = 24 −

28b2
3

;

2.56066 ≤ b2 < 3.1875.

Case 3F1: b2 =
18
7 .

Case 3F2: b2 = 3.
Case 3F3: b2 = 3.1.

Case 3G: (σ , r6) = (3, 3).

a4 =
5(−2 + b2)

3
, a5 =

23 + 2b2
3

, a6 = 1 − 12b2, b3 = 0, b5 =
2(5 + 2b2)

3
,

b6 = −
4(−2 + 7b2)

3
;

0.3125 < b2 ≤ 0.93934.

Case 3G1: b2 = 0.4.
Case 3G2: b2 = 0.5.
Case 3G3: b2 = 0.9.

Case 3H: (σ , r6) = (4, 1).

a4 =
−346 + 47b2

137
, a5 =

1497 − 218b2
137

, a6 =
−1531 + 244b2

137
,

b3 = 0, b5 = −
6(−113 + 30b2)

137
, b6 = −

4(−130 + 43b2)
137

;

21
8
< b2 <

1095
104

.

Case 3H1: b2 =
1531
244 .

Case 3H2: b2 = 8.
Case 3H3: b2 = 10.

Case 3I: (σ , r6) = (4, 2).

a4 = −2 +
b2
7
, a5 = 9 −

6b2
7
, a6 = −11 +

12b2
7
,

b3 = 0, b5 = 6 −
12b2
7
, b6 = −8 +

20b2
7

;

7
8
< b2 <

21
8
.

Case 3I1: b2 = 1.
Case 3I2: b2 = 1.5.
Case 3I3: b2 = 2.5.

Case 3J: (σ , r6) = (5, 1),

a4 =
−10 + b2

7
, a5 =

145
21

−
6b2
7
, a6 =

−227 + 36b2
21

,

b3 = 0, b5 = −
2(−25 + 6b2)

7
, b6 =

4(−22 + 5b2)
7

;

3.2622 ≤ b2 < 5.47917.
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Case 3J1: b2 = 3.5.
Case 3J2: b2 = 4.
Case 3J3: b2 =

22
5 .

As a last case, we now consider Qf (s, u) being different from that of (3.2) in the form of the sum and product of univariate
weight functions. Due to its inherent complicated algebraic structure, we will not attempt to locate purely imaginary
extraneous fixed points in this case.
Case 4: Sum and product of univariate weight functions

Qf (s, u) = w1(s)+ w2(u)+ w3(s)× w4(u).
Lf (s) =

1 + B1s + B2s2

1 + A1s + A2s2
,

Qf (s, u) =
b0 + b1s + b2s2 + b3s3

1 + a1s + a2s2 + a3s3
+

b4 + b5u
1 + a4u

+


b6 + b7u
1 + a5u


·


b8 + b9s
1 + a6s


,

(3.20)

where b0 = 1 − b4 − b6b8, b1 = 2 + a6b6b8 − a1(−1 + b4 + b6b8)− b6b9, b2 = 1 − a2(−1 + b4 + b6b8)+ a6b6(−a6b8 +

b9) + a1(2 + a6b6b8 − b6b9) + L2, b3 = −4 + 2a2 + a2a6b6b8 + a36b6b8 − a3(−1 + b4 + b6b8) − (a2 + a26)b6b9 + 2L2 +

a1(1 + a6b6(−a6b8 + b9)+ L2)+
1
2 (A2(L2 − 4)+ L2(L2 − B2)), a4 =

(b5−1)
b4 +

4b8
b4(−a6b8+b9)

, a5 =
b7
b6 −

4
b6(−a6b8+b9)

.

Case 4A: When L2 = A2 = B2 = 0, b5 = b7 = b9 = 0, b4 = b6 = b8 = 1, a6 = 4, a1 = 6, a2 = 21, a3 = 96,
Lf (s) = 1 + 2s,

Qf (s, u) = −
1

1 + 6s + 21s2 + 96s3
+

1
1 − 2u

+
1

1 + 4s + u + 4su
.

(3.21)

Case 4B: When L2 = B2 = 0, A2 = 4, b7 = b9 = 0, b5 = b8 = a6 = 1, b6 = −2, b4 = 3, a1 = −2, a2 = a3 = 0,
Lf (s) =

1
1 − 2s + 4s2

,

Qf (s, u) =
(3 − 20s)s2

1 − 2s
+

2
(1 + s)(−1 + 2u)

+
9 + 3u
3 − 4u

.

(3.22)

Case 4C: When L2 = 4, A2 = −4, B2 = 0, b5 = b7 = b9 = 0, b8 = 1, a6 = b4 = b6 = −1, a1 = a2 = a3 = 0,
Lf (s) =

1
1 − 2s

,

Qf (s, u) = 3 + 3s + 6s2 + 13s3 +
1

3u − 1
+

1
(s − 1)(4u + 1)

.

(3.23)

Case 4D: When L2 = 3, A2 = B2 = 0, b4 = b5 = b6 = b9 = 1, b7 = b8 = a6 = 0, a1 = −4, a2 = 19/2, a3 = 0,
Lf (s) =

2 + s
2 − 3s

,

Qf (s, u) = 1 + s


2
2 − 8s + 19s2

+
1

1 − 4u


+ u.

(3.24)

Case 4E: When L2 = 5, A2 = B2 = 0, b9 = 4, b4 = b6 = b7 = a6 = 1, a1 = −29/20, b5 = b8 = a2 = a3 = 0,
Lf (s) =

2 − s
2 − 5s

,

Qf (s, u) = −
2s(−20 + 129s)
(−20 + 29s)

+
1

1 − u
+

4s(1 + u)
(1 + s)

.

(3.25)

Case 4F: When L2 = 3, A2 = −3, B2 = 0, b4 = b6 = 1, b9 = 2, b5 = a6 = −1, a1 = −3, b7 = b8 = a2 = a3 = 0,
Lf (s) =

1 + 2s
1 − 3s2

,

Qf (s, u) = −
4s2

1 + 3(2s − 1)
+

2s
(s − 1)(2u − 1)

+
u − 1
2u − 1

.

(3.26)

Despite the availability of rich sub-cases considered thus far, we typically select cases 1A–1F, 1G, 2A1, 2B1, 2C1, 2C3, 2D1
as well as 3A2, 3B2, 3C1, 3C2, 3D2, 3D3 3E2, 3F1, 3F3, 3G2, 3H1, 3I1, 3I3, 3J3, 4A, 4C, 4F, whose extraneous fixed points are
listed in Table 3 together with those extraneous fixed points of existing methods SA, CTV, LW.
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4. Extraneous fixed points and their dynamics

We in this section will devote ourselves to investigating the extraneous fixed points [14] of iterative map (1.7) and
relevant dynamics associated with their basins of attraction. The dynamics underlying basins of attraction was initiated
by Stewart [15] and followed by works of Amat et al. e.g. [16,17], Scott et al. [18], Chun et al. [19], Chun–Neta [20], Chicharro
et al. [21], Cordero et al. [22], Neta et al. [23,24], Argyros-Magreñan [25], Geum et al. [26] and Andreu et al. [27]

We usually locate a zero α of a nonlinear equation f (x) = 0 by means of a fixed point ξ of iterative methods of the form

xn+1 = Rf (xn), n = 0, 1, . . . , (4.1)

where Rf is the iteration function under consideration. In general, Rf might possess other fixed points ξ ≠ α. Such fixed
points are called the extraneous fixed points of the iteration function Rf . It is well known that extraneous fixed points may
result in attractive, indifferent or repulsive cycles as well as other periodic orbits influencing the dynamics underlying
the basins of attraction. Exploration of such dynamics as well as discovery of its complicated behavior gives us a valuable
motivation of the current analysis. In connection with proposed methods (1.7), we obtain a more specific form of iterative
maps (4.1) as follows:

xn+1 = Rf (xn) = xn −
f (xn)
f ′(xn)

Hf (xn), (4.2)

where Hf (xn) = 1 + s · [Lf (s) + u · Qf (s, u)] can be regarded as a weight function of the classical Newton’s method. It is
obvious that α is a fixed point of Rf . The points ξ ≠ α for which Hf (ξ) = 0 are extraneous fixed points of Rf .

For ease of analysis of the relevant dynamics, we limit ourselves to considering only combinations of weight functions
Lf (s) and Qf (s, u) in the form of low-order rational functions as described by (3.2). Other types of combinations have
empirically shown poor convergence as indicated in the existing studies by [28–32]. A special attention will be paid to
cases 1A–1J, 1G, 2A1, 2B1, 2C1, 2C3, 2D1 including some sub-cases of Case 3 as well as cases 4A–4F in order to pursue
further properties of extraneous fixed points and relevant dynamics associated with their basins of attraction. The existence
of such extraneous fixed points would affect the global iteration dynamics, which was demonstrated for simple zeros via
König functions and Schröder functions [14] applied to a family of functions {fk(x) = xk − 1, k ≥ 2} according to the joint
work of Vrscay and Gilbert published in 1988. Especially the presence of attractive cycles induced by the extraneous fixed
points of Rf may alter the basins of attraction due to the trapped sequence {xn}. Even in the case of repulsive or indifferent
fixed points, an initial value x0 chosen near a desired root may converge to another unwanted remote root. Indeed, these
aspects of the Schröder functions were observed in an application to the same family of functions {fk(x) = xk − 1, k ≥ 2}.

For simplified dynamics related to the extraneous fixed points underlying the basins of attraction for iterativemaps (4.2),
we first choose a simple quadratic polynomial from the family of functions {fk(x) = xk − 1, k ≥ 2}. By closely following
the works of Chun et al. [28,29] and Neta et al. [23,24,32], we then construct Hf (xn) = 1 + s · [Lf (s)+ u · Qf (s, u)] in (4.2).
We now apply a prototype quadratic polynomial f (z) = (z2 − 1) to Hf (xn) and construct H(z), with a change of a variable
t = z2, in the form of

H(z) = Λ(t) · 0(t), (4.3)

where both Λ(t) and Γ (t) are rational functions of t , with Λ(t) independent of coefficients of Lf (s) or Qf (s, u) and with
Γ (t) that may possess the extraneous fixed points H . Since H is a rational function, it would be preferable for us to deal
with the underlying dynamics of iterative map (4.2) on the Riemann sphere [33] where points ‘‘0(zero)’’ and ‘‘∞’’ can be
treated as the desired extraneous fixed points. If such points arise, we are interested in only the finite extraneous fixed point
0 under which the relevant dynamics can be described in a region containing the origin by investigating the attractor basins
associated with iterative map (4.2).

Indeed, the extraneous fixed points ξ of H can be found from the roots t of Γ (t) via relation below:

ξ =


t
1
2 , if t ≠ 0,

0(double root), if t = 0.
(4.4)

Consequently, Γ (t) = 0 can be solved by annihilating its numerator with known polynomial root-finding methods.

4.1. Purely imaginary extraneous fixed points

We now pay a special attention to the dynamics underlying purely imaginary extraneous fixed points of iterative map
(4.2). One should be aware that the boundary of two basins of attraction of two roots for the prototype quadratic polynomial
f (z) = z2 − 1 is the imaginary axis of the complex plane. Hence it is worth to explore how the extraneous fixed points
on the imaginary axis influence the dynamical behavior of iterative map (4.2). It is our important task to find a possible
combination of Lf and Qf in Case 3 leading to purely imaginary extraneous fixed points, whose investigation was done by
Chun et al. [28]. As a preliminary task, we first describe the following lemma regarding the negative real roots of a quadratic
equation, which would play a role in determining the desired purely imaginary extraneous fixed points in connection with
the prototype quadratic polynomial f (z) = z2 − 1. The following lemma holds according to the analysis of [34].
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Table 2
A (t), F(t;a4,a5,...,b6)

Ω(t;a4,a5,...,b6)
and ν(the degree of F ) for the selected values of L2 .

L2 A (t) F(t;a4,a5,...,b6)
Ω(t;a4,a5,...,b6)

νa

0 256 t5 −b6+(4b5+19b6)t+···+(14 096a4+16(9169−2072a5+550a6+804b2+377b3)+70 852b5+625b6)t11

a6−2(2a5+5a6)t+···+(352+48a4−76a5+25a6+32b2+16b3+176b5)t6
11

16 t(1 + t)2 b3+(−16−16a4−8a5+12b2−12b3+8b5−b6)t+···+(384+32a4−88a5+24a6+52b2+25b3+188b5+b6)t8

−2−2a4−a5+2b2−b3+b5+(14+18a4+9a5+a6+2b2+b3−9b5)t+···+(14+2a4−3a5+a6+2b2+b3+7b5)t5
8

8 256 t3 −b6+(16b3+4b5+35b6)t+···+(16+16a4+4b5+b6)t11

a6−2(−48+80a4+42a5+9a6−16b2+8b3−40b5)t+···+(16a4+4a5+a6)t6
11

12 16 t3(t − 3)2 −b6+(9b3+4b5+31b6)t+···+4(−104+296a4+52a5+16a6+12b2+5b3+28b5+4b6)t11

a6+(270−162a4−85a5−16a6+18b2−9b3+81b5)t+···+(−50+66a4+17a5+4a6+2b2+b3−b5)t6
11

a ν represents the degree of F(t).

Lemma 4.1. Let q(x) = ax2 + bx + c be a quadratic equation with real coefficients a ≠ 0, b, c satisfying b2 − 4ac ≥ 0. Let r1
and r2 be the two roots of q(x) = 0. Then both roots r1 < 0 and r2 < 0 hold if and only if all three coefficients a, b, c have the
same sign.

To begin the detailed study regarding the purely imaginary extraneous fixed points, we now consider Case 2 described
by (3.14) to discuss another selection of 10 free parameters L2, A2, B2, a4, a5, a6, b2, b3, b4, b6 for simplifiedweight functions
Qf . Applying f (z) = (z2 − 1) yields

s =
1
4


1 −

1
z2


,

Lf =
B2 + 2(−4 + A2 − 2B2 + L2)z2 + (24 − 2A2 + 3B2 − 2L2)z4

A2 + (−2B2 + 2L2)z2 + (−A2 + 2(8 + B2 − L2))z8
.

(4.5)

Besides, we are able to express Qf in terms of z, A2, B2, L2 and free parameters a4, a5, . . . , b6 with the use of

u =
1
16


1 −

1
z2

2

·
B2
2 − 4B2(4 + A2 + 2B2 − L2)z2 + σ2z4 + σ3z6 + (2A2 − 5(8 + B2)+ 6L2)2z4

A2 + 2(B2 − L2)z2 + (A2 − 2(8 + B2 − L2))z4
, (4.6)

where σ2 = 2(2A2
2 + 19B2

2 + B2(56 − 18L2) + 2(−4 + L2)2 − 2A2(−8 + 3B2 + 2L2)) and σ3 = −4(96 + 2A2
2 + 2B2(62 +

7B2) + A2(−9B2 + 4(−8 + L2)) − 64L2 − 23B2L2 + 10L22). Although such lengthy expression of Qf is not explicitly shown
here, the simplified second-order form of Lf will greatly reduce the complexity of Qf as well as the desired Hf given by (4.3).
To fulfill the simplification, we annihilate the coefficients of quartic-order terms in Lf by setting 24 − 2A2 + 3B2 − 2L2 = 0
and−A2 +2(8+B2 − L2) = 0, fromwhich two coefficients A2 = 2L2 and B2 = 2(−4+ L2) are found and give us the desired
weight function

Lf =
4 − L2 + (L2 − 12)z2

−L2 + (L2 − 8)z2
. (4.7)

Substituting these two coefficients A2, B2 into both Lf and Qf , we are finally able to express Hf = 1 + s · (Lf + u · Qf ) in
terms of z, L2 and 7 free parameters a4, a5, a6, b2, b3, b5, b6. In view of the form of Lf , we consider four special values of
L2 ∈ {0, 4, 8, 12}. As can be seen in Table 1, the explicit form of the relevant H(z) given by (4.3) becomes

H(z) =
1

A (t)
·
F(t; a4, a5, . . . , b6)
Ω(t; a4, a5, . . . , b6)

, (4.8)

where F andΩ are polynomials in t = z1/2 withno common factors andwith their coefficients dependent on free parameters
a4, a5, a6, b2, b3, b5, b6, while A is a polynomial in t with its coefficients free of parameters a4, a5, a6, b2, b3, b5, b6 (see
Table 2).

The cases when L2 ∈ {0, 8, 12} have degrees of no less than 11, which can yield quartic-degree polynomials at lowest
without any spare free parameters after imposing some constraints on 7 coefficients of F(t). Certainly such cases show
lack of our freedom of selecting free parameters. Therefore, in these cases we rather choose 7 free parameters arbitrarily as
already done in Section 3.

On the other hand, the case of L2 = 4 (highlighted in yellow, being already named as Case 2B) gives us more freedom
to select several parameters among 7 free parameters. Due to the fact that F defines a polynomial of degree 8, a generic
second-order polynomial factor can be induced with its coefficients involving one of 7 free parameters by annihilating six
coefficients in an appropriate manner.

We now investigate Case 2B described by (3.16) inmore detail to discuss purely imaginary extraneous fixed points. From
now on, Case 3will exclusively refer to the case whose extraneous fixed points are all purely imaginary in connection with
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Table 3
Extraneous fixed points ξ and their stability for selected cases.

Case ξ No. of ξ

1A ±0.54 9428±0.895494i, ±0.558197±0.476595i, ±0.459252±0.208066i,±0.455608, ±0.342642±0.185031i 18

1B ±0.572046±1.03078i, ±0.609678±0.462502i, ±0.498122±0.508812i,±0.526338±0.380357i, ±0.504029 18

1C ±0.537618 ± 1.32538i, ± 0.380324 ± 0.801195i, ± 0.354143i, ± 0.311856 12
1D ±2.17331i, ± 0.327121 ± 0.587002i, ± 0.332521 ± 0.324986i, ± 0.343352, ± 0.163886 ± 0.246072i 16

1E


±2.44418i, ± 0.366123 ± 0.599852i, ± 0.513406i, ± 0.385693 ± 0.249839i,
±0.414739, ± 0.184477 ± 0.238685i


18

1F


±8.4711i, ± 1.83039i, ± 0.404361 ± 1.1344i, ± 0.893068i,
±0.317259 ± 0.36722i, ± 0.374099 ± 0.108666i, ± 0.20014


20

1G ±2.41868i, ± 0.308077 ± 0.658553i, ± 0.570582, ± 0.547435, ± 0.540697, ± 0.310588i 14
1H ±2.74844i, ± 1.03355i, ± 0.30536 ± 0.735255i, ± 0.188225 ± 0.222285i, ± 0.228333 14

1I


±3.32629i, ± 0.38279 ± 1.05547i, ± 0.823764i,
± 0.544849 ± 0.272033i, ± 0.218001 ± 0.165235i, ± 0.217402


18

1J


±2.68374i, ± 1.49394i, ± 0.350059 ± 1.08981i, ± 0.678353i,
±0.286711 ± 0.22839i, ± 0.240835,±0.220365i, ± 0.126975


20

2A1 ±0.442037 ± 1.04276i, ± 0.478056 ± 0.300391i, ± 0.514061 ± 0.140131i, ± 0.419885 ± 0.188045i 16
2B1 ±2.5775i, ± 0.28956 ± 0.794825i, ± 0.45147i, ± 0.303403 10
2C1 ±3.59332, ± 2.63027i, ± 1.60145 ± 1.16519i, ± 0.417526 ± 0.327678i, ± 0.328874, ± 0.130214 16

2C3


±4.28873, ± 2.72647 ± 1.71352i, ± 2.22183,±1.64363i,
±0.237655 ± 0.332434i, ± 0.300555, ± 0.259423 ± 0.114063i


20

2D1 ±2.11279, ±1.71957, ±1.70779, ±1.56624±0.288202i, ±0.6784±0.189179i, ±0.385912, ±0.125124 18

3A2 ±1.32868i, ± 0.278833i 4
3B2 ±1.29391i, ± 0.488498i, 0(double) 6
3C1 ±1.24541i, ± 0.359088i, (quadruple) 8

3C2 ±1.66022i, ± 0.688790i, (quadruple) 8

3D2 ±2.15785i, ± 0.843864i, (sextuple) 10

3D3 ±2.38604i, ± 0.937146i, (sextuple) 10

3E2 ±i, ± 0.729708i, ± 0.236140i 6
3F1 ±1i, ± 0.829574i, ± 0.665013i, 0(double) 8(2)
3F3 ±i, ± 3.72092i, ± 0.393411i, 0(double) 8
3G2 ±i, ± 2.41421i, ± 0.414214i, 0(quadruple) 10
3H1 ± (double), ±1.16737i, ± 0.220055i 8

3I1 ± (double), ±1.79075i, ± 0.154879i, 0(double) 10

3I3 ± (double), ±6.45664i, ± 0.558426i, 0(double) 10

3J3 ± (triple), ±1.42896i, ± 0.257255i 10

4A


±2.44361i, ± 0.398228 ± 0.207352i, ± 0.448447 ± 0.287632i, ± 0.400622 ± 0.181815i,
±0.640194 ± 0.415578i, ± 0.658881, ± 0.776714 ± 0.294264i, ± 0.719238, ± 0.753684


28(14)

4B

 ±7.48865i, ± 0.400261 ± 1.14448i, ± 0.607591 ± 0.673767i,
±0.473386 ± 0.490478i, ± 0.499763 ± 0.495657i, ± 0.50246 ± 0.495814i,

±0.305438, ± 0.416286, ± 0.588053 ± 0.371073i, ± 0.581994 ± 0.0864181i

 34(4)

4C


±4.06812i, ± 0.571955 ± 0.933907i, ± 0.580408i, ± 0.267356i,
±0.677407 ± 0.700235i, ± 0.432144 ± 0.378015i, ± 0.461984 ± 0.111271i


22(16)

4D

 ±0.356736 ± 0.916153i, ± 0.403627 ± 0.504148i, ± 0.138638 ± 0.277396i,
± 0.185092 ± 0.244852i, ± 0.174271 ± 0.165477i, ± 0.764157 ± 0.662963i,

±0.49578 ± 0.0315927i, ± 4.19349

 30(12)

4E

±1.9569i, ± 0.370871 ± 1.37357i, ± 0.308741 ± 1.15681i, ± 0.734706i,
±0.395223i, ± 0.362074 ± 0.528924i, ± 0.0709408i, ± 0.163974,

± 0.200115,±0.427141 ± 0.180876i, ± 0.485609

 30(10)

4F


±2.23679i, ± 1.55521i, ± 0.996549i, ± 0.200713 ± 0.63981i,
±0.231673 ± 0.239224i, ± 0.217517, ± 0.54455,±0.547048,±0.55837,±0.598399


24(14)

SA ± 2.74748i, ± 1.19175i, ± 0.57735i, ± 0.176327i 8(6)

CTV


±0.111081 ± 2.34413i, ± 0.458316 ± 1.31875i, ± 0.37733 ± 0.868071i,
± 0.125467 ± 0.598632i, ± 0.122706 ± 0.449599i, ± 0.252528 ± 0.123626i


24(8)

LW


±2.39114i, ± 0.430878 ± 1.12787i, ± 0.783628i, ± 0.208823 ± 0.339322i,
±0.443429 ± 0.404034i, ± 0.298401, ± 4.29517


20(12)

In the table, bold-face values represent attractive extraneous fixed points, while framed-values indifferent extraneous fixed points.
Besides, the bold-face numbers in the parentheses of the last column indicate the number of attractive extraneous fixed points.
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Case 2B. With the aid of symbolic operation of Mathematica, we are able to obtain F(t) andΩ(t) as follows:

F(t) =

8
i=0

βi t i, (4.9)

whereβ0 = b3, β1 = −16−16a4−8a5+12b2−12b3+8b5−b6, β2 = 16+48a4+24a5+8a6+92b2−20b3−20b5+7b6, β3 =

928+864a4+408a5+76b2+28b3−464b5−21b6, β4 = 3488+1792a4+760a5−56a6−132b2+62b3−732b5+35b6, β5 =

5168 + 432a4 + 360a5 + 64a6 − 188b2 − 20b3 − 248b5 − 35b6, β6 = 4560 − 1616a4 − 696a5 + 24a6 − 12b2 − 68b3 +

692b5 + 21b6, β7 = 1856 − 1536a4 − 760a5 − 64a6 + 100b2 + 4b3 + 576b5 − 7b6, β8 = 384 + 32a4 − 88a5 + 24a6 +

52b2 + 25b3 + 188b5 + b6.

Ω(t) =

5
i=0

ωi t i, (4.10)

whereω0 = −2−2a4 − a5 +2b2 − b3 + b5,ω1 = 14+18a4 +9a5 + a6 +2b2 + b3 −9b5, ω2 = 2(34+18a4 +7a5 −2a6 −

2b2 + b3 − 9b5), ω3 = 2(50+ 6a4 + 5a5 + 3a6 − 2b2 − b3 + b5), ω4 = 62− 66a4 − 29a5 − 4a6 + 2b2 − b3 + 17b5, ω5 =

14 + 2a4 − 3a5 + a6 + 2b2 + b3 + 7b5.
It is interesting for us to observe that none of ωi (0 ≤ i ≤ 5) contains coefficient b6.
We now seek the desired extraneous fixed points ξ of map (4.2) when applied to f (z) = z2 − 1 by locating the roots

t of F(t) = 0 and using the relation ξ = t1/2. To make all such extraneous fixed points ξ purely imaginary, we further
require that t should be real and negative. If the degree of F(t) is higher than 3 or 4, then algebraic complexity would
hinder our ability of imposing conditions on coefficients of F(t) to make all its roots real. Hence it is an important task to
reduce the degree to 2 or 3, preferably 2 for easier treatment in the current study. To this end, we first inspect 9 coefficients
βi(0 ≤ i ≤ 8) for their linear independency on 7 parameters a4, a5, a6, b2, b3, b5, b6. Suppose that we annihilate all the 9
coefficients βi(0 ≤ i ≤ 8), which give a set of linear relations in matrix–vector form below:

0 0 0 0 1 0 0
−16 −8 0 12 −12 8 −1
48 24 8 92 −20 −20 7
864 408 76 0 28 −464 −21
1792 760 −56 −132 62 −732 35
432 360 64 −188 −20 −248 −35

−1616 −696 24 −12 −68 692 21
−1536 −760 −64 100 4 576 −7

32 −88 24 52 25 188 1





a4
a5
a6
b2
b3
b5
b6

 =



0
16

−16
−928
−3488
−5168
−4560
−1856
−384


. (4.11)

The rank of the coefficient matrix on the left side of (4.11) is found to be 7 by elementary row operations. This fact allows
us to independently annihilate up to any 7 out of 9 coefficients. To extract a one-parameter family of quadratic polynomial
from F(t), we consider a specific form of F(t) as follows:

F(t) = (1 + t)σ t r6(βr6 + βr7 t + βr8 t
2), (4.12)

where 0 ≤ σ ≤ 6, 0 ≤ r6 ≤ 6 are integers satisfying a constraint 0 ≤ σ + r6 ≤ 6 (to maintain F(t) as a polynomial of
degree of at most 8) and r6, r7, r8 are three consecutive integers. Thus, given a value of σ , we are ready to annihilate (6−σ)
coefficients in order to obtain the desired quadratic polynomial. One way of doing so is to let the (6 − σ) consecutive
coefficients vanish, say, starting with a known subscript index i(0 ≤ i ≤ 9 − σ) as follows:

βi = βi+1 = βi+2 = βi+3 = · · · = βi+5−σ = 0, (4.13)

where βi+j = βrj with i + j ≡ rj(mod (9 − σ)) for 0 ≤ i + j ≤ 8 − σ . In view of linear independency from (4.11),
we conveniently solve (4.13) for a4, a5, a6, b3, b5, b6 in terms of parameter b2, when annihilating some coefficients βi.
Substituting these a4, a5, a6, b3, b5, b6 into F(t) and simplifying H(z) in (4.8) after canceling out common factors of A (t),
we immediately obtain the following with t = z2:

H(z) =
(1 + t)σ−2t r6−1(βr6 + βr7 t + βr8 t

2)

16Ω(t)
, (4.14)

provided that σ ≥ 2 and r6 ≥ 1. Let us denote the numerator of (4.14) by Φ(t) = (1 + t)σ−2t r6−1(βr6 + βr7 t + βr8 t
2).

Then the desired extraneous fixed points can be found from the roots of Φ(t) = 0. One should note that four coefficients
βr6 , βr7 , βr8 contain only one parameter b2. It is clear that the value of t = −1 gives purely imaginary extraneous fixed
points ±i with multiplicity of (σ − 2). In addition, t = 0 gives an extraneous fixed point 0 with multiplicity of 2(γ6 − 1).
We are interested in other desired extraneous fixed points from the roots of the quadratic equation denoted by

ψ(t) = βr6 + βr7 t + βr8 t
2 (4.15)
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on the right side of (4.14). Note that the discriminant D ofψ(t) can be expressed in terms of parameter b2. We denote a set

D = {b2 ∈ R : D ≥ 0}. (4.16)

We further denote a set

B = {b2 ∈ R : βr6βr7 > 0 and βr7βr8 > 0} (4.17)

whose elements make all three coefficients βr6 , βr7 , βr8 have the same sign. We now use Lemma 4.1 to locate all two
negative roots of ψ(t) = 0 for purely imaginary extraneous fixed points. After a lengthy algebraic process, we are able
to find coefficients a4, a5, a6, b3, b5, b6 of Qf (s, u) and Φ(t), in addition to the desired set D ∩ B containing b2-values for
which purely imaginary extraneous fixed points can be located.

In view of the numerator Φ(t) of H(z) in (4.14), we select integer pairs of (σ , r6) satisfying σ ≥ 2, r6 ≥ 1, 0 ≤

σ + r6 ≤ 6, to make H(z) free of poles at t = 0 (i.e., z = 0) and t = −1 (i.e., z = ±i). Such a pole-free H(z)
would give rise to better convergence behavior. Consequently, 10 such desired pairs of (σ , r6) are explicitly given by
(2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2) and (5, 1).

Based on these pairs of (σ , r6), we classify the sub-cases of Case 3 into 10 sub-cases ranging from Cases 3A through 3J
as follows. The determined coefficients a4, a5, a6, b3, b5, b6 have been already shown in each of the sub-cases of Case 3 of
Section 3. Thus, they will not be repeatedly shown here. We list here only the desired sets D, B and D∩B as well as function
Φ(t), besides the three selected values of b2 for its three sub-subcases of each sub-case. The sub-subcases are denoted by
sub-case numbers at the end of which sequential Arabic numerals are appended such as Case 3A1, Case 3A2, · · ·, etc.
Case 3A: (σ , r6) = (2, 1).

(1) Φ(t) = 32

53 − 8b2 + (−374 − 64b2)t + 9(−319 + 8b2)t2


.

(2) D = R, B = {b2 :
53
8 < b2 < 319

8 }.
(3) D ∩ B = {b2 :

53
8 < b2 < 319

8 }.

The three sub-subcases Cases 3A1, 3A2, 3A3 are identified with b2 ∈ {10, 25, 35} in order.
Case 3B: (σ , r6) = (2, 2).

(1) Φ(t) = 32 t

49 − 24b2 − 2(59 + 16b2)t + 7(−53 + 8b2)t2


.

(2) D = R, B = {b2 :
49
24 < b2 < 53

8 }.
(3) D ∩ B = {b2 :

49
24 < b2 < 53

8 }.

The three sub-subcases Cases 3B1, 3B2, 3B3 are identified with b2 ∈ {3, 2909
684 , 6} in order.

Case 3C: (σ , r6) = (2, 3).

(1) Φ(t) = 32 t2

19 − 24b2 − 42t + (−49 + 24b2)t2


.

(2) D = R, B = {b2 :
19
24 < b2 < 49

24 }.
(3) D ∩ B = {b2 :

19
24 < b2 < 49

24 }.

The three sub-subcases Cases 3C1, 3C2, 3C3 are identified with b2 ∈ {1, 1.5, 2} in order.
Case 3D: (σ , r6) = (2, 4).

(1) Φ(t) = 32 t3

−7(9 + 8b2)+ (−102 + 32b2)t + (−19 + 24b2)t2


.

(2) D = R, B = {b2 : −
9
8 < b2 < 19

24 }.
(3) D ∩ B = {b2 : −

9
8 < b2 < 19

24 }.

The three sub-subcases Cases 3D1, 3D2, 3D3 are identified with b2 ∈ {−1, 0, 2
11 } in order.

Case 3E: (σ , r6) = (3, 1).

(1) Φ(t) = 16(1 + t)

51 − 16b2 + (154 − 208b2)t + 7(−611 + 32b2)t2


.

(2) D = R, B = {b2 :
51
16 < b2 < 611

32 }.
(3) D ∩ B = {b2 :

51
16 < b2 < 611

32 }.

The three sub-subcases Cases 3E1, 3E2, 3E3 are identified with b2 ∈ {6, 11347
1444 , 18} in order.

Observe that this sub-case yields additional extraneous fixed points ±i.
Case 3F: (σ , r6) = (3, 2).

(1) Φ(t) = 16t(1 + t)

−3 + (30 − 16b2)t + (−51 + 16b2)t2


.

(2) D = {b2 : b2 ≤ 0.43934 or b2 ≥ 2.56066}, B = {b2 :
15
8 < b2 < 51

16 }.
(3) D ∩ B = {b2 : 2.56066 ≤ b2 < 3.1875}.
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The three sub-subcases Cases 3F1, 3F2, 3F3 are identified with b2 ∈ {
18
7 , 3, 3.1} in order.

Observe that this sub-case yields additional extraneous fixed points ±i.
Case 3G: (σ , r6) = (3, 3).

(1) Φ(t) = 16 t2(1 + t)

−5 + 16b2 + (26 − 16b2)t + 3t2


.

(2) D = {b2 : b2 ≤ 0.93934 or b2 ≥ 3.06066}, B = {b2 :
5
16 < b2 < 13

8 }.
(3) D ∩ B = {b2 : 0.3125 < b2 ≤ 0.93934}.

The three sub-subcases Cases 3G1, 3G2, 3G3 are identified with b2 ∈ {0.4, 0.5, 0.9} in order.
Observe that this sub-case yields additional extraneous fixed points ±i.

Case 3H: (σ , r6) = (4, 1).

(1) Φ(t) = 8(1 + t)2

21 − 8b2 + (−22 − 96b2)t + (−1095 + 104b2)t2


.

(2) D = R, B = {b2 :
21
8 < b2 < 1095

104 }.
(3) D ∩ B = {b2 :

21
8 < b2 < 1095

104 }.

The three sub-subcases Cases 3H1, 3H2, 3H3 are identified with b2 ∈ {
1531
244 , 8, 10} in order.

Observe that this sub-case yields additional extraneous fixed points ±i of multiplicity 2.
Case 3I: (σ , r6) = (4, 2).

(1) Φ(t) = 8t(1 + t)2

7 − 8b2 − 42t + (−21 + 8b2)t2


.

(2) D = R, B = {b2 :
7
8 < b2 < 21

8 }.
(3) D ∩ B = {b2 :

7
8 < b2 < 21

8 }.

The three sub-subcases Cases 3I1, 3I2, 3I3 are identified with b2 ∈ {1, 1.5, 2.5} in order.
Observe that this sub-case yields additional extraneous fixed points ±i of multiplicity 2.

Case 3J: (σ , r6) = (5, 1).

(1) Φ(t) = 4(1 + t)3

−7 + (102 − 48b2)t + (−263 + 48b2)t2


.

(2) D = {b2 : b2 ≤ 0.404464 or b2 ≥ 3.2622}, B = {b2 :
17
8 < b2 < 263

48 }.
(3) D ∩ B = {b2 : 3.2622 ≤ b2 < 5.47917}.

The three sub-subcases Cases 3J1, 3J2, 3J3 are identified with b2 ∈ {3.5, 4, 22
5 } in order.

Observe that this sub-case yields additional extraneous fixed points ±i of multiplicity 3.

4.2. Stability of extraneous fixed points and dynamics behind the polynomials

As a result of the case studies pursued thus far for f (z) = z2 − 1, we include in Table 3 the desired purely imaginary
extraneous fixed points in typical sub-cases of Case 3. With the help of Mathematica [35], by direct computation of absolute
values of multipliers R′

f (ξ) for iterative map (4.2) with f (z) = z2 − 1, we find that most of the extraneous fixed points ξ
of H in each of the listed cases in Table 3 are found to be repulsive. Among all the listed extraneous fixed points, the ones
for Cases 3C1, 3C2, 3D2, 3D3, 3H1, 3I1, 3I3, 3J3 are found to be indifferent and highlighted by framed-values, while 98 of
them are found to be attractive and highlighted in bold-face in Cases 3F1, 4A–4F and SA, CTV, LW. Interestingly all of the
extraneous fixed points of cases 4A–4F and existing methods SA, CTV, LW are found to be nearly indifferent but none of
them is indifferent, i.e., they are all found to be hyperbolic [36]. Since absolute values of their multipliers are so close to 1,
they have been computed at the expense of 128 precision digits to determine their stability.

In case that f (z) is a generic polynomial rather than z2 − 1, it would be certainly interesting to investigate the dynamics
underlying the relevant extraneous fixed points. However, due to the increased algebraic complexity, we would encounter
difficulties in describing the dynamics underlying the extraneous fixed points. An effective way of exploring such dynamics
is to illustrate basins of attraction under iterative map (4.2) with f (z) as a generic polynomial. We will illustrate the basins
of attraction to pursue the dynamics of the iterative map Rp of the form

zn+1 = Rp(zn) = zn −
p(zn)
p′(zn)

Hp(zn), (4.18)

for a generic polynomial p(zn) and aweight functionHp(zn). Indeed, basins of attraction for the fixed points or the extraneous
fixed points as well as their attracting periodic orbits would reflect complex dynamics whose illustrative description will be
made for various polynomials in the latter part of Section 5.

Before closing this section, we denote iterative maps in Table 3 corresponding to cases 1A–1J, 2A1, 2B1, 2C3, 2D1 as
well as all 3A2, 3B2, 3C1, 3C2, 3D2, 3D3 3E2, 3F1, 3F3, 3G2, 3H1, 3I1, 3I3, 3J3, 4A–4F respectively by W1A–W1F, W2A1,
W2B1,W2C3,W2D1 andW3A2,W3B2,W3C1,W3C2,W3D2,W3D3W3E2,W3F1,W3F3,W3G2,W3H1,W3I1,W3I3,W3J3,
W4A–W4F with W-prefixed for later use. In addition, we identify map CTV for method (1.1) with β1 = β3 = 0, β2 = 1,
map LW for method (1.5) with α1 = 5, β2 = −7 and map SA for method (1.6).
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5. Numerical experiments and complex dynamics

In this section, we first deal with computational aspects of proposed methods (1.7) for a variety of test functions in
comparison with other existing methods; then we discuss the dynamics underlying extraneous fixed points based on
iterative maps (4.18) by illustrating the relevant basins of attraction. Selected cases 1A, 1B, 1C, 1G, 2A1, 2B1, 2C3, 2D1
as well as 3A2, 3B2, 3C1, 3C2, 3D2, 3D3 3E2, 3F1, 3F3, 3G2, 3H1, 3I1, 3I3, 3J3, 4A, 4C, 4F have been implemented to verify
the theoretical convergence. Later on in this section, the complex dynamics will be explored along with illustrated basins of
attraction of selected rational iterative maps W1A, W1B, W1C, W1G, W2A1, W2B1, W2C3, W2D1 as well as W3A2, W3B2,
W3C1, W3C2, W3D2, W3D3 W3E2, W3F1, W3F3, W3G2, W3H1, W3I1, W3I3, W3J3, W4A, W4C, W4F and existing three
methods CTV, LW, SA.

A number of numerical experiments have been implemented with Mathematica programming to confirm the developed
theory. Throughout these experiments, we have maintained 160 digits of minimum number of precision, via Mathematica
command $MinPrecision = 160, to achieve the specified accuracy. In case thatα is not exact, it is replaced by amore accurate
value which has more number of significant digits than the preassigned number $MinPrecision = 160.

Definition 2 (Computational Convergence Order). Assume that theoretical asymptotic error constant η = limn→∞
|en|

|en−1|p

and convergence order p ≥ 1 are known. Define pn =
log |en/η|
log |en−1|

as the computational convergence order. Note that
limn→∞ pn = p.

Remark 5.1. Note that pn requires knowledge at two points xn, xn−1, while the usual COC (computational order of
convergence) log(|xn−xn−1|/|xn−1−xn−2|)

log(|xn−1−xn−2|/|xn−2−xn−3|)
does require knowledge at four points xn, xn−1, xn−2, xn−3. Hence pn can be handled

with a less number of working precision digits than the usual COC whose number of working precision digits is at least p
times as large as that of pn.

Computed values of xn are accuratewith up to $MinPrecision significant digits. Ifα has the same accuracy of $MinPrecision
as that of xn, then en = xn−αwould benearly zero andhence computing |en+1|/e

p
n|wouldunfavorably breakdown. To clearly

observe the convergence behavior, we desire α to have more significant digits that areΦ digits higher than $MinPrecision.
To supply such α, a set of following Mathematica commands are used:

sol = FindRoot[f (x), {x, x0}, PrecisionGoal → Φ + $MinPrecision,WorkingPrecision → 2 ∗ $MinPrecision];
α = sol[[1, 2]]

In this experiment, we assign Φ = 16. As a result, the numbers of significant digits of xn and α are found to be 160 and
176, respectively. Nonetheless, we list both of them with up to 15 significant digits for proper readability. The error bound
ε =

1
2 × 10−128 is assigned to satisfy |xn − α| < ε.

Iterativemethods (1.7) associatedwith case numbers are identified byW-prefixed names. Typicalmethodswith cases1D,
2A2, 3A1, 3B1 are respectively identified byW1D,W2A2,W3A1,W3B1. These four typical methods have been successfully
implemented with test functions F1–F4 below:

W1D : F1(x) = cos
πx

2


+ x2 − 4, α ≈ −2.22250743480067,

W2A2 : F2(x) = cos(x2 − 1)+ log(x2 − 3π)+ 1, α =
√
3π + 1,

W3A1 : F3(x) = cos−1(x − 1)+ ex
2
− 5, α ≈ 1.12632039674987,

W3B1 : F4(x) = x3 − log(1 + sin x), α = 0,
where log z(z ∈ C) represents a principal analytic branch such that − π < Im(log z) ≤ π.

Table 4 clearly confirms eighth-order convergence. The values of computational asymptotic error constant agree up to
10 significant digits with η. It appears that the computational convergence order well approaches 8.

Table 5 lists additional test functions to ensure the convergence behavior of proposed scheme (1.7).
In Table 6, we compare numerical errors |xn − α| of proposed methods W1A, W1B, W1C, W1G, W2A1, W2B1, W2C3,

W2D1,W3A2,W3B2,W3C1,W3C2,W3D2,W3D3W3E2,W3F1,W3F3,W3G2,W3H1,W3I1,W3I3,W3J3,W4A,W4C,W4F
with those of methods CTV, LW and SA. The least errors within the prescribed error bound are highlighted in bold face.
Althoughwe are limited to the selected current experiments, within two iterations, a strict comparison shows that Methods
W3E2,W3J3,W3B2,W2C3,W3F3,W4F display slightly better convergence for test functions f1, f2, f3, f4, f5, f6, respectively.

In view of a close inspection of the asymptotic error constant η(θi, Lf ,Qf ) =
|xn+1−α|

|xn−α|8
, we should be aware that the

local convergence is dependent on the function f (x), an initial value x0, the zero α itself and the weight functions Lf and Qf .
Accordingly, for a given set of test functions, the convergence of one method is hardly expected to be better than the others.

With p as the order of convergence and d as the number of functional or derivative evaluations per iteration, the efficiency
index [1] defined by EI = p

1
d is found to be 81/4

≈ 1.68179 for the proposed methods (1.7), which evidently show a better
performance than that of classical Newton’s method. Weight functions Lf and Qf dependent on two function-to-function
ratios

 f (yn)
f (xn)


and

 f (wn)
f (xn)


undoubtedly contribute to establishing eighth-order convergence.
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Table 4
Convergence for test functions F1(x)− F4(x)with typically selected methodsW1D, W2A2,W3A1, W3B1.

MT F n xn |F(xn)| |xn − α| |en/e8n−1| η pn

W1D F1

0 −2.12 0.487887 0.102507
1 −2.22250743512851 1.633 × 10−9 3.278 × 10−10 0.02689144381 0.01786270393 7.82040
2 −2.22250743480067 1.187 × 10−77 2.383 × 10−78 0.01786270390 8.00000
3 −2.22250743480067 0.0 × 10−159 0.0 × 10−159

W2A2 F2

0 3.2 0.187272 0.0287425
1 3.22874247630269 1.751 × 10−8 2.711 × 10−9 5822.046718 385.6014409 7.23519
2 3.22874247359082 7.283 × 10−66 1.127 × 10−66 385.6015782 8.00000
3 3.22874247359082 0.0 × 10−160 0.0 × 10−159

W3A1 F3

0 1.2 0.590134 0.0736796
1 1.12632050629632 7.670 × 10−7 1.095 × 10−7 126.1304876 60.99176928 7.72141
2 1.12632039674987 8.856 × 10−54 1.264 × 10−54 60.99180149 8.00000
3 1.12632039674987 0.0 × 10−159 0.0 × 10−159

W3B1 F4

0 0.02 0.0197933 0.02
1 −2.077 × 10−15 2.077 × 10−15 2.077 × 10−15 0.08116479822 0.07687289562 7.98611
2 −2.670.797 × 10−119 2.670 × 10−119 2.670 × 10−119 0.07687289562 8.00000
3 0.0 × 10−368 0.0 × 10−368 0.0 × 10−354

MT = method.

Table 5
Additional test functions fi(x)with zeros α and initial guesses x0 .

i fi(x) α x0

1 1 + sin(x2)− x 1.58601884916183 1.65
2 4x − π − cos(2x) · log(4x2 + x + 1) π

4 0.7
3 x2 + ex + sin(x3 − x + 3)− 2 −1.12126661425687 −1.07
4 cos( πx6 )+

1
x3−x+1

−
1
25 3 2.75

5 (x − 1)2 +
3
16 + e

1
x3 · log[(x − 1)4 +

247
256 ]

1+i
√
3

4 0.98 + 0.4i
6 log(x2)− (x2 + x − 1)

√
x + 2x3 − 1 1 1.12

Here log z (z ∈ C) represents a principal analytic branch with −π ≤ Im(log z) < π .

Proper initial values generally influence the convergence behavior of iterative methods. To guarantee the convergence of
Newton-like iterative map (4.18) with a weight function Hp(z), it requires good initial values close to zero α. It is, however,
not a simple task to determine how close the initial values are to zero α, since initial values are generally sensitive to
computational precision, error bound and the given function f (x) under consideration. One effective way of selecting stable
initial values would be directly using visual basins of attraction. Since the area of convergence can be seen on the basins of
attraction, it would be reasonable to say that a method having a larger area of convergence implies a more stable method.
It is no doubt for us to employ a quantitative analysis for measuring the size of area of convergence.

To this end, we present Tables 7–9 featuring a statistical data giving the average number of iterations per point, CPU time
(in seconds) and number of points requiring 40 iterations. In the following examples, we take a 6 by 6 square centered at
the origin and containing all the zeros of the given functions. We then take 601 × 601 equally spaced points in the square
as initial points for the iterative methods. We color the point based on the root it converged to. This way we can figure out if
the method converged within the maximum number of iteration allowed and if it converged to the root closer to the initial
point.

We noware ready to discuss the complex dynamics of selected iterativemaps in Table 3 includingW1B,W1C,W1E,W1G,
W2B1,W2C3,W2D1, andW3A2,W3B2,W3C1,W3C2,W3D2,W3D3W3E2,W3F1,W3F3,W3G2,W3H1,W3I1,W3I3,W3J3,
W4A, W4C, W4F, SA, CTV, LWwhen applied to various polynomials pk(z), k ∈ N.

Example 1. As a first example, we have taken a quadratic polynomial with all real roots:

p1(z) = (z2 − 1). (5.1)

Clearly the roots are ±1. Basins of attraction for W1B–W4F are given in the top seven rows of Fig. 1. The last row presents
the basins of attraction for SA, CTV and LW. It is clear that the worst methods are W3A2 and W4C. Consulting Tables 7–9,
we find that the method SA uses the least number of iterations per point on average, it also uses the least amount of CPU
time and has the least number of black points. The worst isW3A2with 16.75 iterations per point on average and the highest
number of black points (133,923). The next isW4C using 3.92 iterations per point on average. All othermethods use nomore
than 3.1 iterations per point. In the following examples we will not showW3A2.
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Table 6
Comparison of |xn − α| for selected methods applied to various test functions.

Method |xn − α| f (x); x0
f1; 1.65 f2; 0.7 f3; − 1.07 f4; 2.75 f5; 0.98 + 0.4i f6; 1.12

W1A |x1 − α| 1.28e−8 1.03e−8 1.16e−9 1.10e−11 6.23e−9 5.60e−10
|x2 − α| 9.81e−62 1.89e−64 4.13e−71 4.09e−94 1.00e−63 2.39e−75

W1B |x1 − α| 2.80e−9 4.886e−10 1.39e−10 1.00e−11 1.11e−9 3.43e−9
|x2 − α| 4.12e−68 6.01e−76 7.89e−80 1.19e−94 2.10e−70 6.62e−69

W1C |x1 − α| 2.37e−9 1.21e−9 1.81e−10 4.16e−12 1.09e−9 1.11e−10
|x2 − α| 1.31e−68 1.40e−72 4.20e−78 8.37e−98 2.31e−70 1.64e−73

W1G |x1 − α| 1.98e−9 2.07e−9 3.42e−10 5.14e−12 8.28e−10 4.54e−9
|x2 − α| 5.79e−69 7.22e−71 5.95e−76 3.36e−97 7.97e−72 8.93e−69

W2A1 |x1 − α| 1.00e−8 1.28e−8 1.06e−9 1.08e−11 6.32e−9 3.13e−8
|x2 − α| 1.49e−62 9.09e−64 9.11e−72 2.73e−94 8.54e−64 4.11e−61

W2B1 |x1 − α| 9.43e−10 6.57e−10 1.80e−10 3.81e−12 2.61e−10 8.26e−10
|x2 − α| 5.11e−72 3.28e−75 2.52e−78 2.67e−98 2.85e−76 8.02e−75

W2C3 |x1 − α| 1.30e−9 6.12e−10 7.86e−11 2.07e−11 2.76e−10 1.61e−7
|x2 − α| 4.97e−71 1.55e−75 9.66e−82 6.47e−101 3.01e−76 8.65e−55

W2D1 |x1 − α| 2.40e−7 1.21e−7 7.18e−9 2.18e−11 4.64e−8 9.19e−6
|x2 − α| 3.14e−50 5.17e−55 1.23e−64 3.36e−92 4.29e−56 3.69e−39

W3A2 |x1 − α| 7.77e−10 1.64e−10 1.59e−10 3.82e−12 1.28e−10 1.74e−8
|x2 − α| 6.89e−73 4.51e−80 3.72e−79 3.27e−98 9.33e−79 4.03e−63

W3B2 |x1 − α| 2.39e−10 3.61e−10 5.84e−11 3.93e−12 3.35e−10 2.05e−9
|x2 − α| 5.69e−77 1.41e−77 3.51e−82 5.27e−98 8.34e−75 2.79e−71

W3C1 |x1 − α| 4.04e−9 2.06e−9 6.20e−10 3.43e−12 1.52e−9 8.25e−10
|x2 − α| 1.37e−66 1.69e−70 2.78e−73 5.38e−100 5.02e−69 1.41e−74

W3C2 |x1 − α| 2.29e−9 9.63e−10 3.97e−10 3.63e−12 7.59e−10 7.01e−10
|x2 − α| 6.17e−69 2.24e−73 5.59e−75 5.35e−99 1.14e−71 3.86e−75

W3D2 |x1 − α| 6.13e−11 1.21e−10 6.84e−11 3.91e−12 2.49e−10 1.05e−9
|x2 − α| 1.28e−82 8.83e−82 6.73e−82 3.52e−98 3.03e−76 9.57e−74

W3D3 |x1 − α| 9.54e−10 5.23e−10 2.22e−10 3.79e−12 2.55e−10 1.01e−9
|x2 − α| 3.44e−72 7.02e−76 2.63e−77 1.97e−98 5.90e−76 7.13e−74

W3E2 |x1 − α| 1.53e−11 2.23e−10 1.07e−10 3.89e−12 1.56e−10 3.64e−9
|x2 − α| 2.85e−87 3.66e−80 8.91e−82 3.97e−98 7.98e−78 3.98e−69

W3F1 |x1 − α| 2.50e−9 1.30e−9 3.49e−10 3.64e−12 7.70e−10 3.14e−10
|x2 − α| 2.23e−68 2.31e−72 1.23e−75 1.28e−98 9.27e−72 1.40e−78

W3F3 |x1 − α| 3.22e−10 3.16e−10 1.46e−10 3.86e−12 1.21e−10 6.38e−10
|x2 − α| 3.15e−76 4.54e−78 3.70e−79 3.10e−98 2.80e−79 4.05e−76

W3G2 |x1 − α| 1.089e−9 5.49e−10 2.47e−10 3.77e−12 3.17e−10 9.51e−10
|x2 − α| 9.13e−72 1.22e−75 7.18e−77 1.70e−98 4.35e−75 4.30e−74

W3H1 |x1 − α| 1.36e−9 7.24e−10 2.17e−10 3.76e−12 3.69e−10 2.39e−9
|x2 − α| 9.24e−71 1.03e−74 1.22e−77 2.45e−98 9.03e−75 1.04e−70

W3I1 |x1 − α| 1.05e−10 1.22e−10 1.07e−10 3.90e−12 1.65e−10 8.01e−10
|x2 − α| 3.63e−80 2.29e−82 4.46e−80 3.01e−98 3.97e−78 9.97e−75

W3I3 |x1 − α| 2.09e−9 1.10e−9 3.12e−10 3.68e−12 6.34e−10 2.42e−10
|x2 − α| 4.48e−69 5.19e−73 4.47e−76 1.50e−98 1.60e−72 1.08e−79

W3J3 |x1 − α| 1.12e−10 3.90e−12 1.00e−10 3.90e−12 1.37e−10 8.66e−10
|x2 − α| 3.88e−80 8.78e−95 1.35e−80 3.52e−98 1.97e−78 9.81e−75

W4A |x1 − α| 1.35e−10 2.07e−9 2.92e−10 9.64e−12 9.38e−10 2.12e−8
|x2 − α| 3.20e−78 2.41e−71 3.66e−76 6.12e−95 1.31e−71 1.40e−62

W4C |x1 − α| 3.88e−9 5.44e−9 3.57e−10 4.32e−12 2.72e−9 7.87e−9
|x2 − α| 3.41e−66 3.26e−67 7.16e−76 5.95e−98 2.71e−67 5.66e−66

W4F |x1 − α| 2.92e−9 1.78e−9 4.60e−10 3.57e−12 1.17e−9 5.01e−11
|x2 − α| 9.84e−68 3.71e−71 1.41e−74 8.87e−99 3.69e−70 1.07e−84

SA |x1 − α| 9.09e−10 4.69e−10 2.13e−10 3.79e−12 2.28e−10 6.80e−10
|x2 − α| 2.04e−72 2.72e−76 1.73e−77 2.08e−98 2.14e−76 2.09e−75

CTV |x1 − α| 4.19e−10a 3.19e−10 1.00e−10 3.92e−12 2.40e−10 9.02e−10
|x2 − α| 5.11e−75 1.65e−78 3.07e−80 3.00e−98 9.57e−77 3.22e−74

LW |x1 − α| 1.10e−9 1.02e−9 1.51e−10 3.97e−12 4.88e−10 1.47e−9
|x2 − α| 4.16e−71 4.77e−74 1.81e−78 1.64e−98 3.97e−74 3.61e−72

a 4.19e−10 denotes 4.19 × 10−10 .
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Fig. 1. The top row for W1B (left), W1C (center left), W1E (center right) and W1G (right). The second row for W2B1 (left), W2C3 (center left), W2D1
(center right) andW3A2 (right). The third row forW3B2 (left),W3C1 (center left),W3C2 (center right) andW3D2 (right). The fourth row forW3D3 (left),
W3E2 (center left),W3F1 (center right) andW3F3 (right). The fifth row forW3G2 (left),W3H1 (center left),W3I1 (center right) andW3I3 (right). The sixth
row for W3J3 (left), W4C (center left), W4E (center right) and W4F (right). The bottom row for SA8 (left), CTV (center) and LW (right) for the roots of the
polynomial (z2 − 1).
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Example 2. In our second example, we have taken a cubic polynomial:

p2(z) = (z3 + 4z2 − 10). (5.2)

We consult the tables to find that the method with the fewest number of iterations on average is SA with 2.46 iteration
followed byW3D2 (2.58),W3G2 (2.62),W3D3 andW3F3 (2.63). Theworst isW4Cwith 5.14 iterations. All the others require
between 2.71 and 3.69. In terms of CPU time in seconds, the fastest is SA and the slowest is W4C. The method W3E2 has
the most black points andW3C1,W3C2,W3B2 andW3F3 have less than 10 black points. In the following examples we will
remove from further consideration the methodW3E2 because it has the highest number of black points.

Example 3. As a third example, we have taken another cubic polynomial:

p3(z) = (z3 − z). (5.3)

Now all the roots are real. Based on Table 7 we see that again SA has the lowest number of iteration per point on average
followed by W3D2 and W3F3. The fastest method is again SA (231.116 s) and the slowest are W3H1 (690.975 s) and W4C
(479.204 s). Most of the methods have no black points except W3H1 with 21210, W4C with 402, W4E with 174 and W1E
with 4 black points. We will eliminateW3H1 because of the number of black points and the computational cost.

Example 4. As a fourth example, we have taken a quartic polynomial:

p4(z) = (z4 − 1). (5.4)

We consult the tables and find that SA has the lowest number of iterations per point (2.98) andW4C has the highest number
(13.94). The fastest is again SA using 293.968 s and the slowest is W4C using more than 4 times that, i.e., 1388.628 s. W4C
has also the highest number of black points (73,077) and therefore will be eliminated from the rest of the examples. The
next highest isW4Ewith 20,833 points. Many of the methods have 1201 black points.

Example 5. As a fifth example, we have taken a quintic polynomial:

p5(z) = (z5 − 1). (5.5)

Upon examining Table 7, we find that SA using only 3.03 iteration per point on average andW3F1 using 3.21 iterations. The
worst in this sense are W3I3 with 27.39 iterations and W2B1 with 20.58 iterations. In terms of CPU time (see Table 8), SA
was the fastest using 338.74 s followed byW1B (441.03 s). The slowest areW2B1with 2680.41 s andW3I3 with 3627.944 s.
This is not surprising, since thesemethods required the highest number of iterations per point on average and have themost
black points (see Table 9). We will exclude these two from our last example. There are seven methods with only one black
point, one method each with 2, 5, 8 and 9 black points.

Example 6. As a last example, we have taken a sextic polynomial with complex coefficients:

p6(z) = z6 −
1
2
z5 +

11(i + 1)
4

z4 −
3i + 19

4
z3 +

5i + 11
4

z2 −
i + 11

4
z +

3
2

− 3i. (5.6)

Based on Table 7 we find that SA requires the least number of iterations per point followed by W3D2 and W3D3 and the
worst is W4F (8.46 iterations) followed by W4E with 7.58 iterations. In terms of CPU time, we find in Table 8 that SA is the
fastest andW4F and LW are the slowest.W4F has the highest number of black points (48747) followed byW4E andW3F1.
There are 6 methods with no black points, namely SA, W3F3, W3D3, W3D2, W1G and W1B. Method W3B2 has only one
black point andW3I1 has 3 black points.

6. Conclusions

In summary, we find that SA is best method overall. The worst in terms of the number of black points and the number
of iterations per point isW4E and in terms of CPU time is LW. Of course this is excluding the methods eliminated along the
way, namely W2B1, W3A2, W3E2, W3H1, W3I3 and W4C. To summarize the results of the 6 examples, we have averaged
the results in Tables 7–9 across examples. Based on Table 7we find that SA uses the least number of iterations per point (2.69
on average) followed closely by W3D2 (2.88) and W3D3 (2.97). All other methods use more than 3 iterations per point on
average. Themethod requiring the highest number of iterations per point isW4E (5.52). The fastestmethod is SA (468.810 s)
followed by W1G (521.381 s). The slowest is LW (1070.164 s). As for the number of black points (see Table 9) we find that
SA has the lowest number (309 points) followed byW1G (329 points).

We conclude the current study as follows. Convergence order of proposed methods (1.7) has been improved with the
introduction of weight functions expressed in terms of function-to-function ratios. Computational aspects through a variety
of test equations in a number of selected cases well agree with the developed theory, verifying the convergence order and
asymptotic error constants. To determine what type of initial values of the proposed methods chosen near the zero α must



52 S.D. Lee et al. / Journal of Computational and Applied Mathematics 317 (2017) 31–54

Table 7
Average number of iterations per point for each example (1–6).

Map Example
1 2 3 4 5 6 Average

W1B 2.81 3.47 3.50 4.38 4.55 4.22 3.82
W1C 2.61 3.23 3.54 4.39 4.36 4.46 3.76
W1E 2.42 3.08 3.18 4.87 5.02 4.18 3.79
W1G 2.37 2.88 3.02 3.45 3.39 3.24 3.06
W2B1 2.32 2.74 2.90 3.82 20.58 – –
W2C3 3.08 3.40 3.73 4.65 4.78 4.58 4.03
W2D1 3.10 3.41 3.74 4.41 4.59 4.34 3.93
W3A2 16.75 – – – – – –
W3B2 2.35 2.83 3.11 3.55 3.59 3.42 3.14
W3C1 2.68 3.00 2.89 3.85 4.12 3.93 3.41
W3C2 2.29 2.99 3.39 4.05 4.34 4.08 3.52
W3D2 2.36 2.58 2.77 3.25 3.25 3.09 2.88
W3D3 2.38 2.63 2.81 3.40 3.39 3.24 2.97
W3E2 2.60 3.49 – – – – –
W3F1 2.61 2.80 3.21 3.37 3.21 5.95 3.52
W3F3 2.45 2.63 2.76 3.35 3.58 3.75 3.09
W3G2 2.22 2.62 2.82 3.84 4.34 3.50 3.22
W3H1 2.47 3.06 5.85 – – – –
W3I1 2.38 2.80 3.03 3.59 3.72 3.52 3.17
W3I3 2.40 2.71 3.21 3.26 27.39 – –
W3J3 2.97 3.03 3.12 4.25 4.34 4.08 3.63
W4C 3.92 5.14 4.95 13.94 – – –
W4E 2.69 3.69 3.82 7.18 8.16 7.58 5.52
W4F 2.36 2.90 3.08 3.86 4.47 8.46 4.19
SA
CTV 2.43 3.20 3.47 5.17 5.83 5.07 4.19
LW 2.99 3.58 3.72 5.56 6.05 5.09 4.50

Table 8
CPU time (in seconds) required for each example (1–6) using a Dell Multiplex-990.

Map Example
1 2 3 4 5 6 Average

W1B 239.072 454.400 385.385 512.775 591.727 1816.273 666.605
W1C 232.098 422.170 396.320 525.521 568.967 1912.244 676.220
W1E 215.718 409.472 351.985 574.487 658.683 1775.463 664.301
W1G 202.942 371.829 334.326 399.815 441.030 1378.346 521.381
W2B1 205.376 373.575 321.237 452.107 2680.41 – –
W2C3 274.421 471.341 434.385 567.735 654.424 1979.278 730.264
W2D1 287.463 470.078 425.290 540.887 629.402 1886.068 706.531
W3A2 1500.371 – – – – – –
W3B2 229.945 404.464 382.203 460.001 515.084 1499.123 581.803
W3C1 264.453 423.902 344.232 497.175 574.364 1720.581 637.451
W3C2 225.547 416.865 397.459 502.900 601.836 1777.803 653.735
W3D2 233.471 363.794 333.873 420.844 474.461 1359.580 531.004
W3D3 235.406 381.391 333.218 438.877 482.027 1411.949 547.145
W3E2 253.049 489.562 – – – – –
W3F1 251.505 394.136 391.297 424.479 453.246 2555.062 744.954
W3F3 237.277 368.724 329.006 420.907 510.763 1658.446 587.520
W3G2 214.049 367.149 339.006 480.717 611.024 1531.945 590.648
W3H1 239.586 439.798 690.975 – – – –
W3I1 239.445 406.133 374.715 464.633 521.699 1533.521 590.024
W3I3 233.097 389.222 375.635 417.880 3627.944 – –
W3J3 292.596 435.025 374.371 530.590 621.664 1772.811 671.176
W4C 288.056 601.898 479.204 1388.628 – – –
W4E 206.218 445.726 383.497 736.792 980.373 3123.624 979.372
W4F 190.072 360.284 319.022 435.103 563.522 3534.063 900.344
SA
CTV 231.333 503.244 435.929 687.200 873.527 3220.391 991.937
LW 257.308 573.101 443.620 712.519 915.648 3518.789 1070.164

be given for their ensured convergence, we have not only carefully investigated the extraneous fixed points of the proposed
maps applied to a polynomial f (z) = (z2 − 1)motivated by the earlier work of Vrscay and Gilbert [14], but also extensively
illustrated relevant complex dynamics of selected methods from Cases 1–4 and existing methods CTV, LW, SA behind the
basins of attraction for a wide variety of polynomials pk(z). Among thosemethods selected from Case 3, twomethodsW3D2
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Table 9
Number of points requiring 40 iterations for each example (1–6).

Map Example
1 2 3 4 5 6 Average

W1B 737 96 0 1201 8 0 340.3
W1C 757 27 0 1233 306 794 519.5
W1E 767 53 4 5733 9520 1784 2976.8
W1G 721 53 0 1201 1 0 329.3
W2B1 749 48 0 1201 168265 – –
W2C3 761 10 0 1201 66 142 363.3
W2D1 997 95 0 1201 32 64 398.2
W3A2 133923 – – – – – –
W3B2 893 8 0 1201 1 1 350.7
W3C1 3281 5 0 1201 2 18 751.2
W3C2 999 6 0 1201 15 54 379.2
W3D2 1625 24 0 1201 1 0 475.2
W3D3 2023 12 0 1201 1 0 539.5
W3E2 1073 6196 – – – – –
W3F1 2335 89 0 1201 1 19678 3884
W3F3 961 8 0 1201 1 0 361.8
W3G2 749 24 0 1545 3911 17 1041
W3H1 2283 3472 21210 – – – –
W3I1 907 15 0 1201 5 3 355.2
W3I3 885 61 0 1201 238158 – –
W3J3 6269 10 0 1201 9 22 1251.8
W4C 737 684 402 73077 – – –
W4E 757 300 174 20833 32922 22131 12852.8
W4F 731 66 0 2217 3563 48747 9220.7
SA 601 54 0 1201 1 0 309.5
CTV 605 64 0 4765 9846 2308 2931.3
LW 799 123 0 2893 5866 777 1743

and W3D3 performed reasonably well in view of the average number of iterations and CPU time. It seems that a method
will not perform well unless its extraneous fixed points are on the imaginary axis.

We have tried to find connection between location and multiplicity of the extraneous fixed points (see Table 3) and the
performance of the methods. In fact, the list of the fastest eight methods in order is found to be: {SA, W1G, W3D2, W3D3,
W3B2, W3F3, W3I1 andW3G2}. These same 8 methods also use the least number of iterations per point on average (not in
the same order though). Five of those 8 methods are also amongst the 8 having the least number of black points. In view of
Table 3, we find that except W1G all of these 8 methods have only purely imaginary extraneous fixed points (EFPs). These
maymean that purely imaginary extraneous fixed points are necessary but not sufficient to guarantee a better performance.
Besides, it is interesting to note that W3F1 has the highest CPU time (744.954 s) but its purely imaginary extraneous fixed
points ±i are found to be attractive.

In the current study, we have focused on the dynamics ofmethodswith purely imaginary extraneous fixed points that are
found from the roots of quadratic equationψ(t) = 0 in (4.15). As a future study of the dynamics behind the purely imaginary
extraneous fixed points to be found from the roots of a cubic equation ψ(t) = 0, we will continue to pursue other possible
combinations of parameters a4, a5, a6, b2, b3, b5, b6 described by (4.9). Hopefully, some of such combinations would give
different weight functions Qf (s, u) enhancing the relevant dynamical behavior as desired.
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