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Executive Summary 

The Department of Defense (DoD) has placed a growing emphasis on the pursuit of agile 

capabilities via net-centric operations. The breadth of technological advancements in 

communication and sensing has generated exciting opportunities for battlefield systems to 

exploit collaboration to multiple effects. In this setting, systems able to interoperate along several 

dimensions increase the efficiency of the overall system-of-systems (SoS) manifold. However, 

the manner in which these SoS are acquired (designed, developed, tested, and fielded) hasn’t 

completely kept pace with the shift in operational doctrine. In our current project, we have 

attempted to unravel the layers of complexities in an SoS acquisition program, outline an 

acquisition strategy better suited for such programs, and develop an exploratory analysis tool to 

provide insights into the acquisition process.  

The research efforts during the one year study period have focused on the development and 

consequent extension of prior frameworks of the Computational Exploratory Model (CEM) —a 

discrete event simulation model— and its associated analytical representation, the Markov 

approach, to investigate the impact of development dependencies on the successful acquisition of 

an SoS. These efforts also include a complementary decision analysis tool that is based on 

investment portfolio theory. The conceptual model for acquisition strategy proposed in our 

project is based on the 16 technical management and technical system-engineering processes 

outlined in the Defense Acquisition Guidebook  (DAG), often referred to as the 5000-series 

guide. Our conceptual model for acquisition is centered on the revised processes of the 2007 

System-of-Systems System Engineering (SoS-SE) manual. The Markov-based analytical 

approach seeks to augment the CEM approach by developing a method that enables the 

comparison of networks of systems that are interconnected and quantifying the cascading effects 
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of development risk. The goal of this research work is to allow acquisition professionals to 

develop intuition for procuring and deploying an SoS.  The investment portfolio-based approach 

pursues this goal by providing a means of objectively choosing baskets of systems that comprise 

an SoS, which balances performance against developmental cost and risk from resulting system 

interdependencies. 

Applications of the Markov network analysis method and investment portfolio approach 

enables the identification of optimal SoS network topologies and provides a tool for acquisition 

professionals to identify the features of an SoS that contribute most to the successful progression 

(or delays) in the development process. 

This report summarizes the progress made during the previous year’s work that enhanced 

the ability to address systems-specific risk, its propagation to interdependent systems, and the 

comparison of SoS alternatives. This analysis of alternatives is made possible by both the 

Markov-based model as well as the investment portfolio-based optimization approach developed 

by the researchers during this period.  Example studies presented in this report illustrate both the 

Markov approach and investment portfolio approach for constructed sample problems. The 

Markov analytical model is demonstrated for a conceptual coffee maker example (summarized 

from our published journal article). The investment portfolio-based method is applied to an 

acquisition scenario for the Littoral Combat Ship (LCS) initiative. 

 

Outreach & Collaboration 

Our work during the project period has resulted in one external journal publication, one 

conference paper/presentation, and one submitted conference paper (for the 2012 NPS 

Acquisition Symposium). 
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First and foremost was a journal article submission that was accepted and published in the 

ASME Journal of Mechanical Design (Mane et al., 2011). The article included updated work that 

extends the Markov perspective to also include time-varying elements of the Markov model. The 

article and associated research received valuable feedback through the review process and 

provided additional insight. The feedback included suggestions for transition probability 

estimations and issues on scalability of the method to larger sized problems. Second, we 

delivered an earlier conference paper and presentation on the Markov approach at the IEEE 

System, Man, and Cybernetics (SMC) Conference in Anchorage, AK, in October 2011. 

Feedback from both journal article reviewers and presentation attendees has enhanced the 

knowledge base developed for further proliferation of the Markov-based model in this research. 

Third, we submitted the investment portfolio work for presentation and proceedings publication 

at the upcoming NPS Acquisition Research Symposium, May 15–17, 2012, in Monterey, CA. 

We anticipate that the contributed work will warrant further collaboration and additional 

discourse, particularly with members of the NPS community who conduct research in portfolio 

methodologies and investment valuation research.  

Additionally, we have identified key figures both in the NPS and PEO-LCS communities 

who we feel are instrumental for collaboration in the ongoing research work.  The identified 

figures include current lead system integrators for the Navy’s LCS endeavor and draws potential 

for further enrichment of the current portfolio example that is based on current LCS efforts. We 

intend to incorporate an added dimension of realism to the currently developed methods through 

collaborations with these connections and receiving direct feedback from real-world acquisition 

practitioners. This will serve as a rich basis for further ideations and the development of the 

portfolio-based approach into a mature decision-making platform. 









Introduction 

The purpose of capabilities-based acquisition, as described by Charles and Turner (2004), is 

to acquire a set of capabilities instead of acquiring a family of threat-based, service-specific 

systems.  The Missile Defense Agency (MDA), for example, uses capability-based acquisition to 

evaluate the success of a program based on its ability to provide a new capability for a given 

cost, and not on its ability to meet specific performance requirements (Spacy, 2004).  The Joint 

Mission Capability Package (JMCP) concept is another example that aims to create a joint 

interdependency between systems to combine capabilities in order to maximize reinforcing 

effects and minimize vulnerabilities (Durkac, 2005).  The goal of the JMCP effort is a more 

efficient utilization of both human- and machine-based assets and, in turn, improved combat 

power.   

To accomplish the desired capability, systems are increasingly required to interoperate along 

several dimensions, which characterizes them as SoS (Maier, 1998).  SoS most often consist of 

multiple, heterogeneous, distributed systems that can (and do) operate independently but can also 

collaborate in networks to achieve a goal. Examples of  SoS include civil air transportation 

(DeLaurentis et al., 2008), battlefield ISR (Butler, 2001), missile defense (GAO, 2007b), etc.  

According to Maier (1998), the distinctive traits of operational and managerial independence are 

the keys to making the collaboration work.  The network structure behind the collaboration, 

however, can contribute both negatively and positively to the successful achievement of SoS 

capabilities and, even earlier, to the developmental success.  Collaboration via interdependence 

may increase capability potentials, but it also contains concealed risk in the development and 

acquisition phases.  Brown and Flowe (2005), for instance, have investigated the implications of 

the development of SoS to understand the drivers that influence cost, schedule, and performance 
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of SoS efforts.  Results of their study indicate that the major drivers—as indicated by subject-

matter-experts—include systems standards and requirements, funding, knowledge, skills and 

ability, system interdependencies, conflict management, information access, and environmental 

demands.   

Disruptions in the development of one system can have unforeseen consequences on the 

development of others if the network dependencies are not accounted for.  The goal of a single 

system’s program manager is the mitigation of risk leading to successful development of that 

specific system.  While program managers nearly always consider direct or immediate 

consequences of decisions, they often don’t consider the cascading second- and third-order 

effects that result from the complex interdependencies between constituent systems in an SoS.  It 

falls on acquisition managers and systems engineers (or SoS engineers) to understand and 

manage the successful development of a system, or family of systems, to produce the targeted 

capability in this challenging setting.  

Abundant evidence suggests that SoS-oriented endeavors have struggled to succeed amidst 

the development complexity.  The Future Combat System (FCS) is the most recent example 

(Gilmore, 2006).  Civil programs have not been spared either, for example, the Constellation 

Program (Committee on Systems Integration for Project Constellation, 2004) and NextGen 

(NextGen Integration and Implementation Office, 2009).  Rouse (2007) summarizes the 

complexity of a system (or model of a system) as related to the intentions with which one 

addresses the systems, the characteristics of the representation that appropriately accounts for the 

system’s boundaries, architecture, interconnections and information flows, and the multiple 

representations of a system. 
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The research work our group has conducted under funding from the NPS Acquisition 

Research Program, including this present report,  specifically targets complexities stemming 

from system development risk, the interdependencies among systems, and the span-of-control of 

the systems or SoS managers and engineers.  The objective of the research is to quantify the 

impact of system-specific risk and system interdependency complexities using (a) our evolving  

computational exploratory modeling approach and (b) an analytical Markov approach for 

quantifying the same effects)an investment portfolio framework for facilitating acquisition 

decisions.  The work documented in this report comprises new improvements to an analytical 

component of the CEM previously introduced in prior Acquisition Research Program Symposia 

(Mane & DeLaurentis, 2009, 2010). The aim of the CEM is to provide decision-makers with 

insights into the development process by propagating development risk in the SoS network and 

capturing the impact that system risk, system interdependencies, and system characteristics have 

on the timely completion of a program. We also introduce extended work related to the Markov 

approach to treat the same complexities via computations on conditional probabilities that relate 

to the transmission of risk in network dependent systems. Furthermore, an investment portfolio-

based approach complements the Markov approach with a decision tool framework as a means of 

leveraging performance against risk and cost. 

 

 

 

 

 

 









Markov Analytical Approach 

Additional complexity in the model, carefully selected, will likely increase the efficacy of 

the CEM. However, as a simulation-based approach, it too has limitations.  Therefore, in 

conjunction with the further development of the CEM, the researchers are also developing an 

analytical approach that captures the characteristics of a network that results from the 

developmental interdependencies of systems.  This Markov analytic approach uses a network-

level metric to treat the same complexities via computations on conditional probabilities that 

relate to the transmission of risk in networks of interdependent systems.  The Markov approach 

provides means to compare networks in their ability to arrest the propagation of delays caused by 

random disturbances and can be used as a figure of merit when designing SoS architectures that 

aim to achieve some desired capability.   

While typical networks like the World Wide Web, social networks, and communication 

networks are a result of evolution, the networks created by the development of interdependent 

systems can be designed to achieve a desired performance.  Being able to quantify the 

performance of such networks enables comparison of networks and, ultimately, the design of 

networks that optimize that performance.  During development, the ability of a network of 

systems to propagate or arrest disruptions can be an important performance parameter when 

selecting a family of systems to provide a certain level of capability. 

Network analysis tools can help to describe the properties of a network and to identify 

critical component systems.  The number of links and nodes in a network, for instance, can 

indicate the complexity of a network by measuring the number of systems and their link.  

Similarly, network average degree, which describes the average number of links of each node, 

can indicate the level of connectivity in a network and help identify critical systems.  These 
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traditional network measures, however, are unable to describe the performance of the entire 

network and, consequently, comparison of networks in their ability to arrest the propagation of 

disruptions that can create development delays.   

Delay propagation modeling is common in the airline industry, where delays at one airport 

can easily propagate in the aviation network and impact dependent airports.  Approaches for 

modeling and estimating these delays, however, center on regression analysis (Xu et al., 2005; 

AhmadBeygi et al., 2008).  AhmadBeygi et al. (2008), for instance, investigates the relationship 

between the potential propagation of flight delays to subsequent flights and the utilization levels 

of air service providers.  Even though the delays can propagate indefinitely, the delay 

propagation structure is acyclic.  A delay caused by mechanical problems to an aircraft will 

always propagate forward.  In the system development process, delays can be cyclic, which 

increases the complexity of the problem and limits the ability of current approaches to quantify 

the total delay. 

This research presents a network-level metric that captures the characteristics of a network 

that results from the development interdependencies of systems and provides means to compare 

networks in their ability to arrest the propagation of delays caused by random disturbances. As 

previously stated, we present, in this paper, an approach that aggregates the system and system 

interdependency characteristics of a development network of systems into a single metric—

expectation and standard deviation of delays or costs—and enables a meaningful comparison of 

alternate networks in their ability to arrest the propagation of developmental delays.  

The Markov approach characterizes the propagation of delays in a network of systems as a 

Markov Process. A Markov chain is an indexed collection of random variables used to model a 

sequence of dependent events such that the probability of the occurrence of a given event is 
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solely dependent on the previous event (Sheskin, 2011). While the mathematics are well 

developed, we propose the application of the classical lost-miner problem (or gambler-ruin 

problem; Ross, 2007) to the development of a network-level metric that enables comparison of 

networks. The metric measures the ability of a network to arrest the propagation of delays in 

terms of the expected total delay and the standard deviation. The values associated with this 

metric captures the cascading effects of delay transmissions through transition probabilities. 

The delay propagation is modeled as a Markov chain, where the states are defined as the 

constituent systems and the transition probabilities as the dependency strengths between systems. 

Of relevance is the computation of the probability of the passage in n time steps from any of the 

states to an absorbing state—a state from which one cannot exit. is the computation of this 

probability is analogous to a disruption due to delays being arrested after n time steps or the 

disruption being arrested after a cost of n dollars. Consider the development of a generalized 

three-system network of interdependent systems (see Figure 1). Development of system-1 

(denoted by x1) depends on the development of system-3 (x3), and vice-versa, while development 

of system-2 (x2) depends on the development of system-1. The interconnectivity between 

systems implies that information or design decisions in one system impact the development of a 

dependent system.       

 

Figure 1. A Three-System Development Network 
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Assume that the network is modeled by an interdependency matrix T. The entries of T are 

positive and correspond to the conditional probability of a delay propagating to system j, given 

that it is in system i,  |ji j iT P x x .  Note that T is not necessarily symmetric. Modeling this 

network as a Markov chain implies that the columns of T must sum to a value less than or equal 

to one. In the implementation of the PageRank® algorithm, a damping d with a value between 

[0,1) is used to ensure that (I-dT) is invertible. Motivated by PageRank®, let state xF represent an 

absorbing state and  iFFi xxPTc |   represent the probability of a delay transitioning from a state 

xi to state xF and arresting the propagation of a delay. Note that c is defined as a row vector. This 

is essentially the damping term d in the PageRank® algorithm, and the transition probability 

matrix T can thus be defined as  











Ic

A 0
T  

(

(1)

where the matrix A, defined as 

    nxnxPA ikki |1
,
 

(2)

represents the transition probabilities of a delay being in state xk at time n+1, given that 

there was a delay in xi at time n. The entries of A contain all the transition probabilities of T 

except the transitions to the absorbing state xF. In particular, (I-A) is invertible and the 

eigenvalues of A are contained in the unit disc.  

To compute the location of the delays at any given time n, let  

    nxPn j  
(3)

be the probability of delay at location xj at time n and let 



Final Report: NPS award N00244-11-1-0003 

  19

  0jj xPb   
(

(4)

be the vector indicating the probability that the initial delay occurs in system xj at time n=0.  

Note that a delay can occur only in one system at any given time; therefore, 
j jb 1 . This 

quantity can be described as the likelihood of a system to experience a delay. Additionally, let 

    nxnxPc iFi |1  
(

(5)

be the row vector indicating the probability of a delay being arrested at time n+1, given that 

it is in state xi at time n. So the state space form of the probability of the location of delays at any 

given time is 

     
    ncxnF

bnAn

j 





0|

0 subject to  1      
 

(6)

where F is the probability of a delay transitioning to the absorbing state (e.g., the probability 

of a delay being arrested), given that it starts at any location xj (see Equation 7).   

 

       0|0| jFj xnxPxnF   
(

(7)

The probability of delays being arrested at time n can thus be expressed as 

        bcAxnxPxnF n
jFj  0|0|

.
 

(

(8)

The developed set of Equations 1-8  is the implementation of a modified PageRank® 

algorithm that can be employed to rank the vulnerability or criticality of the constituent systems 

in a network of systems. As previously mentioned, system or product development can be 
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disrupted by endogenous and/or exogenous factors that can result in development delays. Due to 

the network structure of the development process and system-specific characteristics, delays in 

one system can result in disruptions to dependent systems, which can result in further delays and 

the propagation of these to adjacent systems. The parameters described here provide a 

quantitative representation of these characteristics.  The probability of the initial occurrence of a 

delay,   0jj xPb  , can be seen as a descriptor of the risk associated with the development of a 

system j. For instance, if the design of system j involves the development of new technologies 

with a low Technology Readiness Level (TRL), the probability of disruptions occurring during 

its development (i.e., technology setbacks, failure to meet milestones or gate reviews) is 

expected to be high. Conversely, if the design of system j is based on mature technology or off-

the-shelf-parts, the likelihood of disruptions during its development process can be expected to 

be low. In the method presented for the Markov analytical approach, these probabilities are 

normalized so that 
j jb 1 . The conditional probability of the arrest of a delay,

    nxnxP iF |1 , can be interpreted as the ability of a system to absorb delays (e.g., a delay in 

upstream systems does not disrupt the development process of the system of interest) and not 

propagate them to dependent systems; the disruption can be a function of the size of the 

development program, its funding, its schedule slack, or other technological or political 

attributes. For instance, an underfunded, highly visible, and controversial program may be less 

likely to absorb delays and more likely to pass those to dependent systems, disrupting their 

development and causing additional delays. Alternatively, a well-funded program may be more 

likely to absorb delays and not propagate them to dependent systems by hiring additional 

personnel, acquiring more resources, or any other response that could be achieved by increasing 

expenditures. The transition probabilities in matrix A can be seen as descriptors of the 
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dependency strength between systems. We assume that methods similar to the ones proposed by 

Sosa et al.(2003) and Sharman and Yassine (2004) can be used to quantify dependency strengths 

between systems based on spatial, structural, energy, material, and information interactions. The 

goal of this work is not to quantify these factors but to provide a means to aggregate these 

descriptors to compute a network-level metric that facilitates comparison of design alternatives 

while considering both the direct and indirect impacts of interactions between systems.  

Impact of Disruptions 

While the likelihood of delay propagation can help to describe the performance of a 

network, not all disruptions are equally important.  The development risk of a network of 

systems can be high because of the large likelihood of disruptions (due to development delays) 

but also because of the impact of those disruptions. In this section, we present an extension to the 

proposed method that enables the quantification of risk in terms of development delay, which is 

well correlated with cost. Consider the same three-system network in Figure 2, but now assume 

that we can quantify the impact of disruptions between any two systems.   

 

Figure 2. Three-System Development Network with Disruption Impact 

The matrix Dji is defined as the time delay caused by a disruption in system i, which causes 

a delay and a resulting disruption to system j. For example, system-1 may experience a budget 
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cut, with some probability   01xP , that disrupts its development schedule. Four possibilities of 

disruption outcomes emerge: (1) the disruption can have no impact in the development of 

system-1 with probability  11 | xxPT FF  , and nothing is affected; (2) the disruption can cause a 

development delay of D11= 2 time units with probability  1111 | xxPT   in the development of 

system-1 that is not sufficiently large enough to impact dependent systems; (3) the disruption can 

result in a delay of D31 =1 time unit with probability  1331 | xxPT   that impacts the development of 

system-3; or (4) the disruption can result in a delay of D21 = 2 time units with probability 

 1221 | xxPT   that impacts the development of system-2. Depending on the affected system and 

the likelihood of the delay propagating to additional systems, this process will continue until 

state xF is reached and the propagation of the delay is arrested.   

To determine the probability of a delay being arrested at time n, the definition of the states 

in the Markov approach is modified such that each transition corresponds to the accumulation of 

one time unit of delay, while ensuring that the transition probability matrix A retains its Markov 

properties and (I-A) is invertible. When the duration of the delay caused by a disruption is larger 

than one time unit, additional states are created to represent the one-step transition from one state 

to the next. Figure 3 presents a numerical example of this transformation for the three-system 

network.   
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Figure 3. Re-Definition of States for Three-System Development Network 

For instance, because D21 is of two time units, state x5 is created so that we now have D’51 

and D’25, each of duration one time unit.  Additionally, the transition probabilities are modified 

to accommodate this change in syntax.  For instance, the probability of transitioning from state x1 

to state x2 (T21) is now represented by the probability of transitioning from state x1 to state x5 

(   2115
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'
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j
jijiji 

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












  

 1 1

  
(

(9)

where δij is defined as 

  
,  1   0

,  1   1









JjiDif

JjiDif

ji

ji
ji  

(10)

and J is the number of the states (or systems) in the original problem. Now the definition of 

the probability of the delay being arrested at time n can be computed using the definition in 

Equation 8, where Sj . Note that this approach requires that the impact of disruptions be 

positive and represented as integer values.  
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Expected Delay and Standard Deviation 

Computation of the conditional probability of delay arrest at time n, given that a disruption 

(due to a delay) starts in a given system j, provides the basis for ranking systems in a network 

based on their vulnerability and critically to the network by considering the direct and indirect 

impacts of disruptions. The posed questions are as follows: What is the expected time until a 

delay is arrested? What is the standard deviation? Answers to these questions provide a means to 

compare the criticality or performance of individual systems in a network as well as a network-

level metric that describes the entire network in its ability to arrest the propagation of delays.  

The expectation of delay time provides a single-value metric while the standard deviation 

provides a means to quantify the risk associated with a given expectation. 

The expected total delay, given that a disruption starts in system j, is computed as 

       

 
















1

2

0

                   

0|0|

n

n

n
jFj

AIcAbncA

xnxnPxFE

 
(11)

while the variance is defined as 

      22 0|0| jj xFExFEV   
(12)

where 

       

  
















1

32

0

22

                     

0|0|

n

n

n
jFj

bAIAIcAbcAn

xnxPnxFE

 
(13)

Thus, the standard deviation is computed as  
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     223 bAIcAbAIAIcAV    
(14)

The mean and standard deviation computation yields values for each system in the network. 

Comparison of these values with each other provides a means to compare the performance of 

each system in the network. Therefore, one can identify the most critical or vulnerable system in 

the network by ranking the mean and/or standard deviation. This is essentially the same approach 

used by the PageRank® algorithm to rank the importance, or relevance, of web pages. While the 

PageRank® algorithm uses the transition probabilities to weigh the importance of links, the 

approach presented here uses both the transition probabilities as well as the impact of a 

transition. Thus, the criticality of a system is measured by both the likelihood of propagating a 

delay resulting from a disruption event as well as the quantified impact of the delay when the 

indirect, propagated consequences are captured. This provides a richer understanding of 

interdependent systems that can aid system engineers and designers of complex systems in the 

tasks of identifying critical component systems and estimating the potential schedule and cost 

overruns of a given system development program 

The ultimate goal of the research, however, is to be able to compare the performance of 

entire networks. While in networks like the World Wide Web, this question may not be relevant, 

in the development of networks of systems, the designer has the option to design the network. 

Hence, a metric that enables comparison of alternatives can be quite powerful. The metric we 

present in this section is the total expected time and standard deviation of arresting a delay. This 

metric is the weighted sum of the conditional expectation of the delay time, given that a 

disruption starts in system j:  
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Similarly, the standard deviation for the entire network is defined as 
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Utilization of this method to analyze large problems (e.g., an increased number of systems 

and interdependencies) hinges on the ability to quantify the transition probabilities. As the 

system to be analyzed grows—with more subsystems and more dependencies—the amount of 

information required to describe the transition probability matrix can be as low as the number of 

subsystems (e.g., no interdependencies) or on the order of the number of subsystems squared 

(e.g., all subsystems depend on all subsystems). But once the probabilities are defined, a solution 

to the problem becomes a matter of inverting a matrix, whose computational complexity is O(n3) 

for a fully populated matrix, using Gauss-Jordan elimination (Dekker & Hoffmann, 1989); 

therefore, computationally, solving the matrix inverse problem is the most “expensive” aspect of 

the proposed method. However, if the transition probability matrix is sparse and taking 

advantage of the fact that its eigenvalues are smaller than one, a person could solve the matrix 

inversion problem via expansion by   


 

0

1

k

kAAI . 
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Time-Dependent Delay Propagation 

The approach presented so far assumes constant transition probabilities. The probabilities of 

delay propagation, however, may vary with time.  As the design maturity of systems increases, 

development risk may decrease or increase along with changes in the interdependency strength 

between systems.  Similarly, budget and schedule perturbations may cause changes in the 

probability of delay propagation in the later stages of a program that are quite different from the 

ones at the beginning of a program. Therefore, it would be useful to be able to describe and 

compare networks as interdependency characteristics change.  

The proposed Markov approach can be easily extended to compute both the probability of 

delay arrest and the expected total delay and standard deviation as a function of changing 

interdependency characteristics. The state-space definition now becomes 

       
      nncxnF

bnnAn

j 





0|

0 subject to  1      

.

 (17)

The transition probability matrix A and probabilities of delay arrest for each system, c, are 

now a function of time n and the probability of the delay propagation being arrested after a total 

delay of n time units is  

           btAncxnxPxnF
n

t
jFj 




1

0|0|
.

 (18)

From this formulation, the expected delay, total delay time and standard deviation caused by 

a disruption due to a delay in an upstream system given that it starts in system xj,, can be 

computed. The difficulty in implementing this time-dependent evaluation of the performance of 

a network lies in quantifying the various parameters—transition probabilities, probabilities of 

disruption occurrence due to delays, and the conditional probabilities of delay propagation 

arrest—as a function of time. One possible approach would be to use gate-reviews as discrete 
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events that mark the changes in risk level of a given program.  Additionally, one might estimate 

probability of initial development delay and disruption occurrence as a function of TRLs, 

perhaps as a function of time.  

Comparison of Alternatives  

There may be many different system design configurations that achieve the same capability-

level.  However, each configuration represents a different network comprised of different 

subsystems, different interdependencies, and different interdependency strengths. Among all 

these alternatives, which option minimizes the risk from disruptions that can result in delays? For 

illustration purposes, we present an example application of the proposed Markov approach to 

compare networks based on a preliminary case study by Asikoglu and Simpson (2010).  

Asikoglu and Simpson (2010) consider a number of electro-mechanical household 

appliances to present their electric circuit analogy method, by which they are able to rank the 

components of a product based on their vulnerability to design changes. We use their example 

since it provides a basis for comparison of the proposed method. In their coffee maker 

application, they identify its 16 components, develop a Design Structure Matrix (DSM), and 

quantify the interdependency strengths between components by using the Module Complexity 

Score (MCS) of component interfaces to develop a weighted-MCS that they employ in the 

electric circuit analysis.  

We consider the same problem and pose it in the context of development time. We assume 

that the development of the coffee maker is divided between different design teams that are 

dependent on each other for the development of the coffee maker. We interpret the 

interdependency weights between the coffee maker components defined by Asikoglu and 

Simpson (2010) in the weighted-MCS as the interdependency strengths that indicate the relative 
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difference in the likelihood of each component propagating its delays to dependent components. 

We use the weighted-MCS matrix to compute the transition probability matrix Tij by normalizing 

the entire matrix by the sum of its entries. By this process, we are using the data gathered and 

analyzed by Asikoglu and Simpson as an indicator of the relative likelihood of delay 

transmission between systems. Components that are connected by multiple types of interfaces 

and have more interfaces will have a higher probability of transmitting delays to dependent 

systems. This is a reasonable assumption because tighter coupling between components increases 

the likelihood of disruptions in one component having an impact on dependent components. 

Furthermore, we assume that the disruption impact is of one time unit for all 

interdependencies (e.g., Dji has entries of one), that all components are equally likely to arrest the 

propagation of a delay with probability 0.1 (e.g., TFi = 0.1), and that all components are equally 

likely to experience an initial disruption that results in a delay (e.g.,    16
110  JxP i ). Note that 

because the electric circuit analogy does not include all these attributes, a comparison of the 

performance of the two methods (electric circuit analogy versus the approach proposed  in this 

section) is not expected to be identical. Having generated Tji and Dji, we can easily compute the 

expected delay and standard deviation for this coffee maker network of components and identify 

the (direct and indirect) vulnerability to developmental disruptions via network-level metric.  

Table 1 presents these results along with a comparison against the change-resistance (CR) and 

the weighted-MCS results presented by Asikoglu and Simpson (2010). 
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  Table 1. Component Criticality Ranking and Comparison 

Component 

Change 
Resistance 

Ranking[Error! 
Bookmark not 

defined.] 

Weighted-
MCS 

Ranking 
[Error! 

Bookmark 
not defined.] 

Our 
Approach 
Ranking 

Our Approach 
[Exp, Std Dev] 

Component-1 9 8 8 [0.0030,  0.0597] 
Component-2 6 5 5 [0.0044,  0.0716] 
Component-3 12 11 11 [0.0010,  0.0324] 
Component-4 16 15 15 [0.0002,  0.0131] 
Component-5 13 12 12 [0.0010,  0.0321] 
Component-6 11 10 10 [0.0013,  0.0387] 
Component-7 7 14 14 [0.0003,  0.0190] 
Component-8 1 1 2 [0.0139,  0.1326] 
Component-9 3 3 3 [0.0085,  0.1079] 
Component-10 4 4 4 [0.0073,  0.0992] 
Component-11 2 2 1 [0.0141,  0.1367] 
Component-12 8 6 6 [0.0036,  0.0676] 
Component-13 10 9 9 [0.0016,  0.0416] 
Component-14 14 13 13 [0.0005,  0.0221] 
Component-15 15 16 16 [0.0002,  0.0127] 
Component-16 5 7 7 [0.0035,  0.0681] 

Total    [0.0040, 0.2806] 
 

Concerning which components are most vulnerable, our method reaches similar conclusions 

to the two approaches presented by Asikoglu and Simpson (2010). The ranking values presented 

in Table 1 indicate which components contribute most to the expected total delay and, hence, are 

the most critical components in the coffee maker. The coffee maker example assumes that all 

interdependencies are undirected (e.g., the weighted-MCS matrix is symmetric).  While this may 

be true for the coffee maker example, other systems may have directed dependencies or 

dependencies that have asymmetrical magnitudes.  For instance, the design of the housing in a 

coffee maker may impact the design of the carafe more than the design of the carafe may impact 

the design of the housing.  Our approach can model this type of interdependency as well as 

provide a network-level metric—in terms of expectation and standard deviation—that evaluates 
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the entire network in its resilience to delay propagation.  This modeling of network 

interdependencies can be useful if one is interested in the direct comparison of two or more 

designs.  

To demonstrate this network-comparison ability, we consider an alternate coffee maker that 

has only eight components (e.g., J = 8) and which has a combination of directed and undirected 

dependencies, and wish to compare the performance of the two designs. The components of this 

design are presented in this section as groupings of the components in the original coffee maker. 

We construct the weighted-MCS matrix by combining the values of the original 16-component 

weighted-MCS matrix and use this asymmetric network to generate the transition probability 

matrix by normalizing the entries of the modified weighted-MCS matrix by the sum of it entries. 

The normalization of entries results in the probability matrix presented in Table 2. For instance, 

the probability of a delay in the development of Component-6,8,12 transitioning (propagating) to 

Component-11 and causing a disruption is 0.2235, while the probability of a delay in the 

development of Component-11 propagating to Component-6,8,12 is 0.0930.  

   Table 2. Transition Probability Matrix for Alternate Coffee Maker Design 
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Component-1 - 0.131 0.0902 0.0074   0.0301 0.0065
Component-3,4 0.0131 -       
Component-
6,8,12 

0.0902 
 -  0.0930  0.0372  

Component-13 0.0065   -  0.0065   
Component-11  0.2235  -    
Component-15   0.0065  -   
Component-10 0.0301  0.0800    - 0.0800
Component-9 0.0065      0.0080 - 
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Furthermore, we assume that all eight components are equally likely to experience a 

disruption (e.g.,    8
110  JxP i ). The question we pose is, which architecture is best in the 

context of development time if the alternate coffee maker design has the dependency 

characteristics of Table 2 (e.g., expected delays and standard deviation due to development 

disruptions caused by the occurrence and propagation of delays)? Table 3 presents the 

expectation and standard deviation of the total delay time for the alternate coffee maker along 

with a ranking of the importance of each component.  

   Table 3. Performance of Alternate Coffee Maker Design 

Component 
Alternate Coffee Maker 

[Exp, Std Dev] 
Ranking 

Component-1     [0.0224,  0.1783] 4 

Component-3,4     [0.0019,  0.0513] 6 

Component-
6,8,12 

    [0.0339,  0.2203] 2 

Component-13     [0.0018,  0.0463] 7 

Component-11     [0.0355,  0.2301] 1 

Component-15     [0.0008,  0.0292] 8 

Component-10     [0.0282,  0.1957] 3 

Component-9     [0.0132,  0.1370] 5 

Total      [0.0172, 0.4427]  

 

The total expected delay of this alternate design is 0.0172, higher than the total expected 

delay of the original coffee maker. This value of expected delay indicates that, for the assumed 

transition probabilities, the original coffee maker design outperforms the alternate design, even 

though the latter contains half the number of components. Therefore, the interdependency 

characteristics of this seemingly less complex product make it a less desirable design from a 

development perspective. Furthermore, the standard deviation adds to this poor performance, 
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indicating a higher risk and less certainty in the expected performance when faced with 

developmental disruptions due to delays.  

Although a simple example, this network comparison brings forth the difficulties and lack of 

intuition in quantifying complexities of interdependent systems. While the method relies on the 

estimation of several parameters, it does provide a means to quantitatively compare networks of 

interdependent systems. 

 









Investment Portfolio Approach 

A key component of our proposed research under this project was the development of an 

ability to balance capability and risk in acquiring systems in an SoS context. Research work 

accomplished in this phase and described in this report section centers on an investment 

decision-making tool that provides a means of balancing capability development against cost and 

interdependent risks through the use of Modern Portfolio Theory (MPT). Prior works from 

surveyed literature have seen the successful use of portfolio management techniques to address 

strategic level asset acquisition and are extendable to include multi-period considerations. Real 

options analysis, for example, has been shown to be effective and is widely used across various 

industries to evaluate discrete, long-term investment strategies. Komoroski (2006), for example, 

has developed a methodology that addressees strategic financial decisions through an eight-phase 

process using a toolbox of financial techniques—including portfolio optimization techniques. 

These frameworks are geared toward financial uncertainty considerations of strategic projects 

and do not explicitly address technical architecture and/or evolving SoS-wide capabilities.  

The investment portfolio approach this section does not attempt to replace but rather 

complements existing methodologies by more directly addressing issues of integration and 

acquisition from a robust portfolio theory standpoint. Robust methodologies have been widely 

used by financial engineering practitioners to manage portfolios in the face of market volatility 

and uncertainties. The developed approach in this section is also aimed at improved means of 

performing acquisition, integration, and development decisions while maintaining advantages in 

balancing systems acquisition against evolving capability requirements. The research work in 

this section also addresses more recent efforts in acquisition that have emphasized the 
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implementation of open architectures and modularity to facilitate competition (to lower cost) and 

innovation.  

Open architecture (OA) involves the design and implementation of systems that conform to 

a common and unified set of technical interfaces and business standards. This form of 

architecture results in the development of modular systems and increases opportunities for 

innovation and rapid development of new technologies that can be readily integrated/swapped 

into current architectures. The Littoral Combat Ship (LCS) platform, for example, has 

recognized the need for multivendor acquisitions and OA implementations to ensure greater 

technological adaptability. The LCS program exploits the benefits of dual award contracting 

under fixed price initiatives (FPI), along with rapid technology insertion processes and open 

architectures, to fulfill evolving technological and mission requirements of littoral warfare. The 

combination of dual contracting and system modularity helps achieve the necessary cost 

reductions while maintaining a greater degree of adaptability towards changing mission 

requirements. Although the platform is not, strictly speaking, an SoS, it nevertheless is an 

excellent representative microcosm of what constitutes an SoS and carries many comparable 

salient features.  
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Figure 4. Littoral Combat Ship Layout  
(“LCS: The USA’s New Littoral Combat Ships,” 2011) 

 

The benefits of open architectures and competitive contracting are intuitively clear and have 

been shown to generate notable cost savings as exhibited in previous development projects such 

as joint direct attack munitions (JDAM; GAO 2007b) . However, system integrators and program 

managers are often faced with the challenge of leveraging the potential benefits of introducing 

new and improved systems against potential developmental disruptions and cost considerations. 

Although the LCS program had significant success through the dual contracting scheme, it still 

experienced cost overruns due to a variety of problems. The problems included risks from a 

simultaneous design and build strategy due to schedule constraints, unrealistic budget 

expectations, and market risk from the greatly increased price of steel during the development 

period (O’Rourke, 2011). There have also been revisions in the requirements of fleet capabilities 

and refocusing of intended capabilities (O’Rourke, 2011). 

Concept Acquisition Portfolio: Littoral Combat Ship Example 

The littoral combat ships are designed and developed by two primary contractors—General 

Dynamics and Lockheed Martin—as a result of the Navy’s dual contract award strategy that 

seeks to minimize costs through competitive contracting.  The ships are designed to serve as 
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primary units in close coastal littoral warfare and take advantage of modularized onboard 

packages (systems) that are interchangeable for different operational requirements. These 

packages include the Anti-Submarine Warfare (ASW), Mine Counter Measure (MCM) and 

Surface warfare (SUW) packages. More recent developments have seen the introduction of an 

irregular warfare package for assistance and general support missions. Although the LCS is not, 

strictly speaking, an SoS, it nevertheless exhibits striking resemblance to one where the 

conglomeration of systems provide the intended overarching capabilities.  The ongoing work in 

this demonstration assumes a representative acquisition problem using the LCS acquisition case 

where the objective is to achieve desired combat effectiveness and operational capabilities while 

minimizing cost and development risk. The simple model inputs and characteristics are described 

in Table 4. 

Table 4. Individual System Information 

 

 

 Table 4 is a hypothetical and simplified catalogue of individual systems available to the 

Navy in its pursuit of achieving desired capabilities. Although the numbers are hypothetical and 

do not explicitly illustrate live data, the salient features of the acquisition problem are still 

System Capabilities System  Develop. Acq.

Req. Time Cost

Weapon Threat Anti Mine Comm. Air/Sea State Air/Sea Comm. (Years) ($)

Strike Detection  Detection Capacity Capacity State

Range Range Speed

Package

ASW Variable Depth 0 50 999 0 0 0 300 3 3000000

Multi Fcn Tow 0 40 999 0 0 0 200 2 2000000

Lightweight tow 0 30 999 0 0 0 100 4 4000000

MCN RAMCS II 0 0 40 0 0 3 100 1 1000000

ALMDS (MH‐60) 0 0 10 0 0 4 200 2 2000000

SUW N‐LOS Missiles 25 0 999 0 0 0 300 3 3000000

Griffin Missiles 3 0 999 0 0 0 200 4 4000000

Seaframe Package System 1  0 0 999 100 0 0 0 5 5000000

& Combat Package System 2 0 0 999 200 4 0 0 4 4000000

Management Package System 3 0 0 999 300 3 0 0 3 3000000



Final Report: NPS award N00244-11-1-0003 

  41

preserved. Table 4 lists systems that are available for each of the three mission packages—ASW, 

MCM, SUW—along with an individual rating of system capabilities and requirements for the 

systems to operate. Additionally, Table 4 provides the system development time and associated 

acquisition costs. Systems that are unable to provide a particular capability (or do not have a 

particular requirement) have a zero entry.  Although the sea frame is typically a single system, 

the current sample problem couples the sea frame with battle management software as a base 

system that provides intra system capabilities. The development of these systems is based on a 

projected time schedule that is inherently subject to overruns and risk. This element is captured 

in the covariance matrix shown in Table 5. 

Table 5. System Interdependency and Development Risk (Covariance) 

 

Table 5 shows the risk and interdependency aspects of the decision process. The diagonal 

terms represent the variance (degree of deviation from expected time) in development time. The 

off-diagonal terms are the variances due to interdependencies between individual systems that 

have commonly developed subsystems. For example, since the N-LOS and Griffin missile 

systems are both developed by Northrop Grumman, it is conceivable that they have common 
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parts or undergo similar processes in development and manufacturing. The covariance value in 

the cross term therefore represents joint development risk for the two systems.  

Estimation of these quantities can come directly from manufacturing and development data. 

In the case of new systems, the quantities can be estimated heuristically using basic rules similar 

to those used in project management techniques such as PERT and other CPM methods. The 

entries of the matrix in Table 5 are typically inferred from data; in this case, the values are 

hypothetically developed for the concept example problem.  Most of the individual systems do 

not bear many interdependencies, with the exception of the sea frame and combat management 

support systems that are interlinked more explicitly to other listed systems in Table 5.. 



Investment Model Formulation and Solution  

The problem statement for the given acquisition problem is formulated as a mathematical 

optimization problem, which requires the definition of two primary segments. The objective 

function is the equation that describes the primary metric to be optimized. This typically 

translates to, for example, the maximization of profits or minimization of costs/risk in the 

commercial sense. The second important aspect deals with the formulation of constraints, which 

are equations that typically describe resource (e.g., time, cost) constraints on the system and can 

be manipulated to reflect the salient conditions of the problem to be solved.  The investment 

portfolio problem presented in the formulation shown below seeks to maximize the aggregate 

capabilities of an SoS architecture while minimizing cost, developmental time, and integration 

risks. The mathematical model for the concept problem can be written as the following:  

   max
Tqc c B F F B

q q ij q q q
q qc

S R
w X X X C X

R


  
         

      (19) 

(Portfolio Fractions)
B
q qF

q

X C
X

B
        (20) 

B (Budget Constraint)B
q q

q

C X          (21) 

 (Satisfy All System Requirements)B B
qC q qR q

q q

S X S X             (22) 

1 1 1 1  (ASW  System Compatibility)B B BX X X        (23)  

4 5 1  (M CM  System Compatibility)B BX X        (24) 
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6 7 1  (SUW  System Compatibility)B BX X        (25)  

8 9 10 1  (Package System Compatibility)B B BX X X        (26)  

{0,1}(binary)B
qX           (27) 

The mathematical model shown by Equations 19–27 represents the formulation of a traditional 

single-stage optimization problem that is typical of operations research and financial engineering 

circles. The current form for the portfolio model at hand is known as a quadratic integer program 

(QIP) and is based on the Markowitz formulation that seeks to generate optimal portfolios that 

balance potential expected rewards against risk. Equation 19 is the objective function—in this 

equation, the objective is to maximize overall capability while minimizing cost and development 

risk. Equation 20 is the fraction of the budget invested in individual systems. Equation 21 is the 

budgeting constraints, where the sum of all investments in individual systems (and savings) must 

be equal to the total budget allotted. Equation 22 ensures that all requirements of individual 

systems must be met.  Equations 23–26 are the individual system compatibilities. In Equations 

23–26, this translates to the selection of one system from each mission package (ASW, MCM, 

SUW) and a seaframe and combat management package that services the mission modules.  

These packages are mutually exclusive and therefore warrant a total selection of summation 

equal to 1, which ensures that no two packages per category are selected to satisfy the respective 

requirements. The covariance matrix, as denoted by ij , represents variations in development 

time due to system interdependencies.  The ij  formulation is amenable to several methods of 

solution using both freeware and commercially available solvers that are written with system 

integration and IT considerations in mind. Models using these solver platforms are readily 
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integrated into IT environments and enterprise systems, providing a model-centric environment 

for the decision-making process. 

 









Preliminary Results 

The portfolio optimization problem is modeled and solved using a commercial solver by 

varying the risk aversion parameter, , to generate the performance efficiency frontier. By 

changing this parameter, the portfolio’s aversion to risk is increased as the penalty effect of   is 

more pronounced with increasing value. The increase in the value of risk aversion forces the 

portfolio to select assets (systems) that are lower risk, which consequently results in a lower but 

less risky performance, as exhibited in Figure 5. 

 

Figure 5. Portfolio Reward to Risk Ratio 

Error! Reference source not found.Error! Reference source not found. shows what is 

known as the Markowitz efficiency frontier, where a collection of optimal portfolios that 

maximizes performance are shown for decreasing values of risk aversion. Each labeled portfolio 

point on the frontier is comprised of selected systems, as shown in the given Figure 5. In a more 
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realistic setting, Figure 5 can be used to explore the benefits of introducing higher-performing, 

though potentially riskier, systems into the conglomeration. For instance, the highest-risk 

portfolio includes the use of the N-LOS missile system. In reality, the N-LOS system was 

extricated from the LCS program due to poor consistency in performance and replaced by the 

shorter-ranged (and cheaper) but more reliable Griffin missile system. This tradeoff of 

performance due to poor consistency is exhibited in Figure 5, where reduced performance is 

complemented by reduced risk. The results show the potential valuation of risk taken with the 

introduction of each system for increased performance. It also identifies critical systems that are 

common across the performance index, such as the Airborne Laser Mine Detection System 

(ALMDS) that is a fixed asset across all ranges of performance.. The results from this portfolio 

frontier serve as a complement to the CEM methodology; the CEM can be used to explore 

inherent network dynamics for each portfolio that exists on the frontier.  

 



Future Work  

Robust Portfolio Method 

It is well known in financial engineering circles that the Markowitz formulation, as used in 

the simplified LCS scenario, is sensitive to changes in estimated quantities of the covariance 

matrix (system interdependencies) and expected return (system performance). The sensitivity 

due to poor covariance estimations can result in highly inefficient portfolios due to errors in 

estimation or market shifts. Such sensitivity issues has prompted the development of a variety of 

robust methods in portfolio analysis to ensure that the chosen portfolio of assets are stable 

against potential changes in market conditions/expected volatility. 

The generalized version of the current portfolio formulation as dictated in Equations 19-27 

can be reformulated using robust optimization techniques; this includes Semi-Definite 

Programming (SDP) approaches (Fabozzi et al., 2007; Tutuncu & Cornuejols, 2007) that are 

extensions of modern portfolio and control theory. The reformulation allows for possible 

changes in estimated quantities (e.g., due to market shifts in pricing, volatility, system 

interdependencies) are taken into consideration more explicitly as uncertainty sets.  The resulting 

portfolio allocation will not change appreciably, even if salient estimated quantities or benefits 

change (within prescribed limits). In the context of an acquisition problem, the use of a robust 

formulation translates to reduced transaction costs associated with having to extricate legacy 

systems and robustness against market estimation errors, volatility, and changing requirement 

conditions.  The general form of the portfolio problem in this research can be reposed as a 

robust, SDP problem, as given by Equation 28 (Fabozzi et al., 2007): 
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 Although the complexity of the optimization problem increases, it is nevertheless very 

amenable to a collection of numerical methods and provides good performance for realistic 

portfolio problems, especially under highly volatile conditions (Fabozzi et al., 2007). Equations 

29 and 30 in the following section represent the uncertainty bounds of the performance 

(capability) of each system and the associated risk of interdependencies.  

 

Multi-Period Investment Portfolio 

 

The general portfolio formulation in this section considers a static portfolio approach 

without consideration for sequential, multi-period investment horizons.  An addition of multi-

step considerations into the decision process makes the problem amenable to dynamic 

programming and control theory methods. The extension of the investment portfolio approach 

generally amounts to rewriting the objective of the optimization problem as the following: 
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q q ij q q q t t t t
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A t
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(29)
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The objective function now reflects consequential effects where current acquisition 

decisions affect latter decisions, as denoted by the expectation term of Equation 29.  The 

stochastic nature of the mathematical problem in Equation 29 is a stochastic control problem, 

which has a variety of efficient and industry-tested solutions, such as approximate dynamic 

programming (ADP) and Model Predictive Control (MPC). Thus, the current motivation of 

extending the established research framework is to bring these tools (such as ADP amd MPC) to 

bear upon the immediate acquisition problem, keeping enterprise, model-centric architectures of 

decision-making processes in mind.  

 

Markov Model Extensions 

The analytical Markov model will be extended to include dynamic analysis of failure modes 

that are associated with the Markov approach presented in this report. The extension of the 

Markov approach will include the framework of identifying delay time metrics at each node to 

the analysis of eigenmodes (connected trees/networks) of disruption sequences. The 

identification of disruption eigenmodes is particularly useful in model-centric enterprise systems, 

where clear visualization of connectivity between individual systems is crucial to the design and 

diagnosis of underlying problems. 

 









Biographies of Investigators  

 

 

Daniel DeLaurentis is an Associate Professor in the School of Aeronautics 
and Astronautics Engineering at Purdue University. He received his PhD in 
Aerospace Engineering from Georgia Institute of Technology in 1998. His 
current research interests are in mathematical modeling and object-oriented 
frameworks for the design of system of systems, especially those for which air 
vehicles are a main element, and approaches for robust design, including robust 
control analogies and uncertainty modeling/management in multidisciplinary 
design. 

 
Muharrem Mane is a Research Scientist in the School of Aeronautics and 

Astronautics Engineering at Purdue University. He received his PhD in 
Aerospace Engineering from Purdue University in 2008. His current research 
interests are in risk analysis and propagation, resource allocation and design 
under uncertainty, and network modeling and analysis. He currently works in the 
System of Systems Laboratory led by Dr. DeLaurentis. 
 

 

Navindran Davendralingam is a Post-Doctoral Researcher in the School of 
Aeronautics and Astronautics Engineering at Purdue University. He received his 
PhD in Aerospace Engineering from Purdue University in 2011. His current 
research interests are analysis and architecture of system of systems, design 
under uncertainty, operations research, financial engineering, and network 
modeling and analysis.  He currently works in the System of Systems Laboratory 
led by Dr. DeLaurentis. 

 

 

 

 

 

 





References 

AhmadBeygi, S., Cohn, A., Guan, Y., & Belobaba, P. (2008, September). Analysis of the 

potential for delay propagation in passenger airline networks. Journal of Air Transport 

Management, 14(5), 221–236. 

Asikoglu, O., & Simpson, T. W. (2010, September). A new approach for evaluating design 

dependencies in product architectures. In Proceedings of the Thirteenth AIAA/ISSMO 

Multidisciplinary Analysis Optimization Conference. Fort Worth, TX. American Institute of 

Aeronautics and Astronautics (AIAA) 

Brown, M., & Flowe, R. (2005). Joint capabilities and systems of systems solutions: A 

multidimensional approach to understanding cost drivers. Defense Acquisition Review 

Journal, 12(2), 138–154. 

Butler, J. T. (2001, April). UAVs and ISR sensor technology (Research Report No. 

AU/ACSC/033/2001-04). Retrieved from 

https://research.maxwell.af.mil/papers/ay2001/acsc/01-033.pdf 

Charles, P. and Turner, P., 2004. “Capabilities Based Acquisition…From Theory to Reality”, 

CHIPS magazine, [online database]: http://www.chips.navy.mil/archives/04_summer 

/web_pages/GEMINII.htm [accessed 21 January, 2010]. 

Committee on Systems Integration for Project Constellation, 2004. “Systems Integration for 

Project Constellation”, The National Academies, [online source] http://nap.edu/html/proj-

constella tion/ltr-rep.pdf [accessed 15 January 2009]. 

Dekker, T. J., & Hoffmann, W. (1989). Rehabilitation of the Gauss-Jordan Algorithm. 

Numerische Mathematik, 54, 591–599. 



Final Report: NPS award N00244-11-1-0003 

  60

DeLaurentis, D., Han, E-P., & Kotegawa, T. (2008). Network-theoretic approach for analyzing 

connectivity in air transportation networks. AIAA Journal of Aircraft, 45(5), 1669–1679. 

Department of Defense (DoD). (2008a). Defense acquisition guidebook (Ver 1.0 ). Retrieved 

from https://akss.dau.mil/ dag/ 

Durkac, L.M., March 2005. “Joint Mission Capability Packages: The Future of Joint Combat”, 

10th International Command and Control Research and Technology Symposium, [online 

database]: http://www.dodccrp.org/events/10th_ICCRTS/CD/papers/063.pdf, [accessed 25 

January, 2010]. 

 Fabozzi, F. Kolm P.,Pachamanova D.,Focardi, S.,. (2007). Robust portfolio optimization and 

management (1st ed.). Hoboken, NJ: John Wiley & Sons. 

Gilmore, M. J. (2006, April). The Army’s Future Combat System Program [CBO testimony]. 

Retrieved from http://www.cbo.gov/ftpdocs/71xx/doc7122/04-04-

FutureCombatSystems.pdf 

Government Accountability Office (GAO). (2007b, April). Defense acquisitions: Missile 

Defense Agency’s flexibility reduces transparency of program cost (GAO-07-799T). 

Retrieved from http://www.gao.gov/products/GAO-07-799T 

Government Accountability Office (GAO). (2007b, March). Defense acquisitions: Assessments 

of Selected Weapon Programs  (GAO-07-406SP).  

        Retrieved from www.gao.gov/new.items/d08467sp.pdf  

Komoroski, C.  Housel, T., Hom, S., Mun,J., (2006, September). A methodology for improving 

the shipyard planning process: Using KVA analysis, risk simulation and strategic real 

options. In Proceedings of the Third Annual Acquisition Research Symposium. Monterey, 

CA: Naval Postgraduate School. 



Final Report: NPS award N00244-11-1-0003 

  61

LCS: The USA’s new Littoral Combat Ships. (2011, December 19). Defense Industry Daily. 

Retrieved from http://www.defenseindustrydaily.com/the-usas-new-littoral-combat-ships-

updated-01343/  

Maier, M. (1998). Architecting principles for system-of-systems. Systems Engineering, 1(4), 

267–284. 

Mane, M., & DeLaurentis, D. (2009, May). Acquisition management for systems of systems: 

Exploratory model development and experimentation. In Proceedings of the Sixth Annual 

Acquisition Research Symposium. Monterey, CA: Naval Postgraduate School. 

Mane, M., & DeLaurentis, D. (2010, May) System development and Risk Propagation in 

System-of-Systems. In Proceedings of the Seventh Annual Acquisition Research 

Symposium. Monterey, CA: Naval Postgraduate School. 

Mane, M., DeLaurentis, D. A., & Frazho, A. (2011). A Markov perspective on development 

interdependencies in networks of systems. ASME Journal of Mechanical Design, 133(10), 

101009(1-9). 

NextGen Integration and Implementation Office. (2009). NextGen Implementation Plan 2009. 

Retrieved from the Federal Aviation Administration website: 

http://www.faa.gov/nextgen/media/ng2009_implementation_plan.pdf 

O’Rourke, R. (2011). Navy littoral combat ship (LCS) program: Background, issues, and options 

for Congress. Retrieved from http://www.fas.org/sgp/crs/weapons/RL33741.pdf 

Ross, M. S. (2007). Introduction to probability models (9th ed.). Burlington, MA: Academic 

Press. 

Rouse, W. (2007). Complex engineered, organizational and natural systems. Systems 

Engineering, 10(3), 260–271. 



Final Report: NPS award N00244-11-1-0003 

  62

Sharman, D. M., & Yassine, A. A. (2004). Characterizing complex product architectures. 

Systems Engineering, 7(1) 35-60. 

Sheskin, T. J. (2011). Markov Chains and Decision Processes for Engineers and Managers. 

Boca Raton, FL: CRC Press. 

Sosa, M. E., Eppinger, S. D., & Rowles, C. M. (2003). Identifying modular and integrative 

systems and their impact on design team interactions. Journal of Mechanical Design, 125. 

241-252 

Spacy, W. L., II. (2004). Capability-based acquisition in the defense agency and implications for 

Department of Defense acquisition. Journal of Contract Management, 10–19. 

Tutuncu, R., & Cornuejols, G. (2007). Optimization methods in finance (1st ed.). New York, 

NY: Cambridge University Press. 

K. B., Chen, C. H. (2005, June). Estimation of delay propagation in the national aviation system 

using Bayesian networks. In Proceedings of the Sixth USA/Europe Air Traffic Management 

Research and Development Seminar. Baltimore, MD. Institute of Electrical and Electronics 

Engineers (IEEE) 



 

 

 

 

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

  www.acquisitionresearch.net


