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Abstract 

We develop an algorithm for computing approximations to the stationary distribution 
of a discrete birth-and-death process, provided that the infinitesimal generator is a 
banded matrix. We begin by computing stationary distributions for processes whose 
infinitesimal generators are Hessenberg. Our derivation in this special case is different 
from the classical case but it leads to the same result. We then show how to extend 
these ideas to processes where the infinitesimal generator is banded (or half-banded) and 
to quasi-birth-death processes. Finally, we give an example of the application of this 
method to a nearly completely decomposable Markov chain to demonstrate the general 
applicability of the technique. 
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1. Introduction 

A birth and death process is characterized by a population of individuals whose number 
changes according to the outcome of two other stochastic processes, consisting of births which 
increase the population and deaths which decrease the population. The transition probabilities 
for these two processes can, in general, depend on both time and population size. The model 
for this stochastic dynamical system is usually described by a master equation for the transition 
probability for population size at a given time. 

Let N(t) denote the population size at time t and define the transition probability for N(t) 
as P(n, t) = Pr{N(t) = n N(t') = n'}. The transition probabilities for births and deaths are 

usually modeled as Markovian processes by assuming that 

r(n, t) = Pr{N(t + dt) = k + 1 N(t) = k}, 
l(n, t) = Pr{N(t + dt) = k - 1 I N(t) = k}, 

where dt represents the fundamental time unit. Time can be treated as either a discrete 
or continuous variable. In many situations it is reasonable and convenient to model these 
transition probabilities as being time independent and to assume that the probability that more 
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Computing stationary distributions for discrete Markov processes 1087 

than a single birth or death occurs in the fundamental time unit is zero. With these assumptions 
the master equation for P(n, t) can be written as 

P(n, t + dt) = r(n - 1)P(n - 1, t) + l(n + 1)P(n + 1, t) 

+ [1 - (r(n) + l(n))]P(n, t). (1) 

The first approach to investigating (1) is to assume that 

lim P(n, t + dt) - P(n, t) = 0, t- oo 

and write the equation for the stationary transition probabilities, p(n), the probability that the 
population will eventually stabilize at n individuals, as 

0 = -(r(n) + l(n))p(n) + r(n - 1)p(n - 1) + l(n + 1)p(n + 1). (2) 

This stochastic balance equation leads to the infinitesimal generator for the discrete-time 
Markov process, which has the following stationary distribution 

nr (j -1) p(n) = p(0)J r(j) (3) 

j=-1 

In this paper we develop an algorithm for computing the solution to this problem and show 
how it can be generalized to compute approximate solutions for birth-and-death processes 
where both multiple births and multiple deaths can occur in the fundamental time unit. These 
methods are developed by converting stochastic balance equations like (2) to matrix form and 
applying techniques from linear algebra. 

The virtue of the linear algebra approach is two-fold. First, the use of finite precision 
calculations in linear algebra is well understood and many algorithms have been developed 
that can control the ill effects of round-off and other errors. Second, generalizations of the 
simple birth and death model give rise to generalizations of the master equations (1) and (2) 
for which solutions are not known. In this case, the methods we develop are still applicable. 
To motivate what follows, we now show how (3) results from solving an appropriate linear 
system. 

2. A matrix formulation 

We are interested in finding the stationary distribution p(n) which satisfies (2). We begin 
by converting (2) to matrix form. In what follows, vectors will be denoted by lower-case bold 
letters and will be assumed to be column vectors. We shall denote by 0 the vector of all zeros, 
by e the vector of all ones, and by ei the ith axis vector, a vector whose ith element is 1 and 
all others are zero. The sizes of these vectors, when they appear, shall be taken from context. 

To proceed, we represent the stationary distribution p(n) as a semi-infinite column vector p 
whose ith element pi = p(i - 1) where i = 1, 2, ..., c0. Note that if there were a maximum 
population size N then p would be an element of IRN+1 

The infinitesimal generator matrix QT is a semi-infinite tridiagonal matrix, with entries 

-(r(i -1) + l(i -1)) if i = j 
QT r(j-1) ifi- 1=j 

if = (4) 
(j - 1) ifi+ 1 = j 

0 otherwise. 
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1088 C. F. BORGES AND C. S. PETERS 

With these definitions, equation (2) becomes 

QTp = 0. (5) 

And we see that QT must be rank-deficient and p in its null-space (or equivalently, p is an 
eigenvector of QT associated with the eigenvalue X = 0). Equation (5) implies that any 
element of the null-space of Q T solves the equation. To get the stationary distribution we 
normalize using the law of total probability, so that eT p = 1. 

3. Truncated solutions 

It is not generally possible to solve semi-infinite systems of equations, or find eigenvectors 
of semi-infinite matrices, so we consider truncating the system of equations. Graphically, we 
truncate the semi-infinite system by partitioning it in the following way: 

x x 0 

x '. ' '.p(0) 
p(1) 0 . x 

x x p(n- 1) =0, 
x x X p(n) 

x 

and then dropping all but the first n equations. 
Letting 

Q7n 
be the principal n x n sub-matrix of QT, and pn be the principal n-element 

sub-vector of p, we get 

Q 
pn 

= -l(n)p(n)en. 

In effect, this is a matrix representation of the first n equations from (5). Letting pn = l(n)p(n) 
fn and rearranging yields 

Q' fn = -en. (6) 

So, provided that Qf is non-singular and that l(n)p(n) O, we can solve directly for a 

scalar multiple of the truncated stationary distribution pn. 
In particular, the truncated infinitesimal generator matrix is 

-r(0) 1(1) 
r (0) 

--r(1) 
- l(1) 1(2) 

QT 
_ 

r(1) 

"(n 
- 1) 

r(n -- 2) -r(n - 1) - (n - 1) 
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Computing stationary distributions for discrete Markov processes 1089 

and has the following explicit LU factorization 

- 1 r(0) -1(1) 

". =r(1) L= l , U= 

-1 ". -(n- 1) 
1 -1 r(n - 1) 

To find the stationary distribution we solve, in succession, the triangular systems 

LZn = -en 

Ufn = Zn. 

Since L is unit lower triangular we see that Zn = en (indeed, in general one need only know 
U) and fn is just the solution of U fn = en. Finally, backward substitution yields the known 
solution of equation (3). 

Note that this formula does not give the values of the stationary distribution since it involves 
the unknown scaling factor p(0). However, it does allow us to determine exactly the shape of 
the stationary distribution for values up to n. 

4. Populations with multiple births 

Now consider populations in which multiple births can occur. Although one approach to 
problems of this type is to re-scale the birth rate, r(n), in some appropriate way and solve 
the single-step problem, it is not difficult to derive the solution using traditional methods. We 
show that, as before, the matrix approach gives the formal solution when solved analytically. 

Let r(n, k) be the rate at which births of k individuals occur given that the population size 
is n. Equation (2) becomes 

0 =- hr(n,k)+(n) p(n) + r(n - k,k) p(n -k)+l(n + )p(n+ ). (7) 
k=l k=l 

The infinitesimal generator is a semi-infinite lower Hessenberg matrix whose elements are 
given by 

--( 
_k=l r(i, k) + 1(i)) ifi = j 

, r(j, i - j) ifi > j Q f(8) 
l(j) if i + 1 = j 
0 otherwise. 

The truncated system has the same form as before except that QT is now lower Hessenberg 
instead of tridiagonal. In particular, letting pn = l(n)p(n) fn we have 

Qn fn = -en. (9) 

Clearly, we need only know U from the LU factorization of QT to find fn. The key to the 
lower Hessenberg case (which includes the tridiagonal case) is that the right-hand side in the 
truncated system is a rank-1 matrix (i.e. a single column). 

This content downloaded from 205.155.65.56 on Mon, 23 Dec 2013 12:35:49 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1090 C. F. BORGES AND C. S. PETERS 

5. Processes with multiple births and multiple deaths 

In the cases considered so far, the infinitesimal generator matrix is lower Hessenberg and the 
solution algorithms are equivalent to the classical solution by recursion algorithm for finding 
truncated solutions. The derivations we have shown are different from the classical approach 
but are useful because they will allow us to look at more general birth and death models in a 
natural way. We now consider a process in which both multiple births and multiple deaths are 
allowed. We will assume that jumps as large as +K occur in both directions (in what follows 
it is straightforward to extend to processes where the maximum possible number of births is 
not the same as the maximum possible number of deaths). The stochastic balance equation is 

K 

0 L 
E{-(r(n, k) + l(n, k))p(n) + r(n - k, k)p(n -k) + l(n + k, k)p(n + k)}. (10) 
k=l 1 

The infinitesimal generator matrix is banded, with half-bandwidth K, and takes the form 

- /?k=1 (r(i, k) + l(i, k)) ifi = j 

T 
r(j, i 

-- 
j) if i > j 

(jj-i) ifi < j 

0 otherwise. 

The truncated system can be written 

Qn Pn + S(n) p(n) = 0, 

where p(n) = [p(n) p(n + 1) ... p(n + K - 1)]T and S(n) E RnxK has elements 

s(n) _ 
(j,j+n-i) ifi >n-K+j-1 o 0 otherwise. 

We shall call Sc(n) the homogeneous complement of Qn in QT. 
Rearranging the truncated system yields 

Q pn = -S(n)p(n) 

Now, let F be the solution to 

Qn 
F = 

-S(n). It follows that 

Pn = F p(n), (12) 

and we see that pn is in the range of F. If rank(F) = 1 then we have found pn up to an 
unknown scaling. This is the essence of solution by recursion since in those cases F surely 
has rank 1 Notice that F exists if and only if Q7 is non-singular; in that case F = - Qn S(n) 
and it is clear that rank(F) = rank(S(n)). 

This leads us to consider the singular value decomposition (SVD) of F; a standard approach 
to rank-estimation. Briefly, the SVD of a matrix F Rn nxm is a factorization of the form 

F = UEVT 
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where both U e I~nxn and Ve IRmxm are orthogonal, and E Rnxm is diagonal. The 
columns uj of U are called left singular vectors, the columns 

vj 
of V are called right singular 

vectors, and the diagonal entries ai, U2, ... , am of I are called singular values. The singular 
values of a matrix are real and non-negative and are assumed to be ordered U1 > 

02 
?U 

"' 
. 

am > 0. 
It is an important fact that if rank(F) = r then the SVD of F has exactly r non-zero singular 

values and the left singular vectors, {ul, u2, ... , r), form an orthogonal basis for the range 
of F. 

Replacing F in equation (12) with its SVD yields 

Pn = U VTp(n); 

which, if rank(F) = r, can be rewritten in the form 

r 

Pn = Luii(vT P(n)). (13) 
i=1 

There are several possible approaches at this point but we propose the estimate pn = a Fx 
where x is the solution to 

max IIFxll2, 
Ilx 12=1 

and a is a normalization parameter. This approach has much in common with the method 
known as principal components analysis. It is well known, and apparent from (13) that x = v1 
is the solution to this problem and hence that our estimate of pn is 

Ul 
Pn= uTe is e 

It is worthwhile to note that this approach implies that v1 is a normalized estimate of p(n) 
and hence, if v1 contains all non-negative entries this is an indication that the estimate is based 
on reasonable assumptions. If, however, v1 contains any negative entries then there is reason 
to believe that this is not a good estimate and we might consider trying a larger value of n. 

Based on the preceding analysis, we propose the following algorithm to find p(0), p(1), ... 
p(No) for a birth and death process that can have from 1 to K deaths in each time step. We 
assume that No > K. 

1. Let n = No. 

2. Using the truncated infinitesimal generator Qn and its homogeneous complement S(n) 
solve Q Fn = - S(n) 

3. Compute the singular value decomposition of Fn, that is U E VT = Fn. 

4. Construct the approximation pn " aul where a is some unknown constant and ul is 
the first column of U. 

5. If a(n), the largest singular value of Fn, is sufficiently greater than o(n) then stop and 
accept the approximation. Otherwise set n := n + 1 and return to step 2. 
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A key step in this algorithm is computing the singular value decomposition of Fn, where 

Fn = - QJS(n). It sometimes happens that Qn is remarkably ill-conditioned (as it ap- 
proaches singularity) and hence the computation of Fn may be numerically challenging. For- 
tunately, it is possible to completely bypass the computation of Fn by using the generalized 
singular value decomposition. The form of this decomposition is outlined in the following 
theorem [1, 8]. 

Theorem. (Generalized SVD.) If A E Rmxn (m > n) and B E Rpfxn then there exist 
orthogonal matrices U E Rnmxm and V E Rpx p, and an invertible matrix X E ]Jnxn such that 

UTAX =C, 

VTBX = S, 

where both C E Rmxn and S E 1pxn are diagonal matrices (not necessarily square). This 
decomposition is known as the generalized singular value decomposition (GSVD) of (A, B). 

The utility of this decomposition for our problem is as follows. If B is square and invertible 
then so is S and hence we can write 

UTAX(VTBX)- = CS-'. 

which leads to 

UTAB-1 V = CS-, 

from which we get 
AB-1 = U(CS-)VT 

In other words, the generalized SVD of (A, B) gives us all of the components of the SVD of 
AB -' without needing to perform the inversion (i.e. solving a linear system). For our problem, 
it can be shown that given the GSVD of (- Qn,, (S(n))1) then 

_QnTS(n) 

= V(S-TCT)UT, 

so that we can use the GSVD to compute the SVD of - QTS(n) without performing the 
inversion and multiplication (i.e. solving a linear system). In those cases where Qn is ill- 
conditioned, this approach can help us to avoid many of the numerical difficulties. 

6. A brief example 

As an example we look at a simple birth-and-death process in which as many as two births 
or deaths can occur in the fundamental time unit. The specific model we will look at is an 
extension of a common insect population model characterized by the following transition rates 

r(n, 1) = 0.237(n + 1) e-0.0165n 

r(n, 2) = 0.105(n + 1) e-0.0165n 

l(n, 1) = 0.088n, 

I(n, 2) = 0.018n. 

Note that the birth rate remains positive even when the population size is zero due to 
migration. The exponential factor in the birth rate function represents cannibalism of pupae 
by adult insects. 
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FIGURE 1: A plot of the first 140 elements of the approximate stationary distribution. The vector has 
been normalized so that pT e = 1. 

To compute the stationary distribution of the process analytically we would need to find 
the null-vector of the full infinitesimal generator Q, a semi-infinite matrix. Since this problem 
is generally intractable it is common to approximate the stationary distribution by looking at 
the eigenvector associated with the smallest-magnitude eigenvalue of Qn, the truncated infin- 
itesimal generator. Under proper conditions, this eigenvector will converge to the stationary 
distribution, as n -+ o0. Because of the excellent computational properties of the SVD, 
it is even better to use the right singular vector of Qn associated with the smallest singular 
value. (All experimental calculations for this paper were made using MATLAB 4.0.) As Qn 
approaches rank deficiency this singular vector gives a good approximation to the stationary 
distribution. Furthermore, the onset of rank deficiency can best be detected by examining the 
magnitudes of the small singular values which can be computed to high precision. This is not 
the case with small eigenvalues, which can be of low accuracy due to accumulated roundoff 
errors. 

For this example, when n = 250 the smallest singular value of Q250 is approximately 
2.486 x 10-15 and we see good convergence of the singular vector (i.e. there is very little 
change in the shape of the distribution as we increase n). Figure 1 contains a plot of the first 
140 elements of the singular vector which we shall henceforth denote as p. 

We with now explore the application of the methods described in this paper. First of all, 
working with the matrix truncated at the first 100 equations we take the homogeneous comple- 
ment, solve and return the left singular vector associated with the largest-magnitude singular 
value. The ratio of the largest to the second-largest singular value is roughly 2.5651 x 103. To 
determine how well the maximal singular vector v we have just computed approximates the 
shape of p, it is appropriate to normalize it so as to minimize Ip - avlI2. Solving this least- 
squares problem yields a = pTv/vTv and so we set k = av. We shall call this process shape 
normalization. Figure 2 contains a plot of the logarithm of the absolute difference between the 
approximations after shape normalization. 

Notice that the difference between the two is extremely small. It is most pronounced at the 
truncation point, but it is only 3.6777 x 10-5 at the worst point. Moreover, the relative error 
in the approximation for all n such that p(n) > 0.000 01 never exceeds 1.13 x 10-2 
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FIGURE 2: A plot of the log of the absolute error Ip - pi1. 

If we truncate the infinitesimal generator so that it covers population sizes ranging from 50 
to 100 only, then, working with the homogeneous complement, the singular values of F are 
roughly at = 102.2727, U2 = 5.7208, 03 = 0.0678, and a4 = 0.0245. The ratio of at to 

cr2 is 
roughly 17.8774. We can see that the method works quite well in this case, as can be seen in 
Figures 3 and 4. 

It is interesting to try to determine how well different truncated approximations fit the 
stationary distribution. In order to analyse this consider the following experiment. Given p, a 
shape-normalized approximation to the stationary distribution for populations ranging from 0 
to n, define the relative error of the approximation in the following way: 

-=in o p(i) - I | 

io 
p(i) 

We will consider three different truncated approximations to the stationary distribution: the 
minimal eigenvector of 

Qn, 
the minimal right singular vector of 

Qn, 
and the approximation 

based on the homogeneous complement method described in this paper. For each population 
size from n = 1, 2,..., 120 we compute all three approximations to the stationary distribution 
(in the range 0 to n) and then shape normalize them. In Figure 5 we plot the relative errors of 
the approximations versus truncation length. 

7. Generalization to quasi-birth-death processes 

The method developed above can be put into a much more general framework. We begin 
by noting that any Markov process whose infinitesimal generator is banded is a quasi-birth- 
death (QBD) process. Provided we choose the block size correctly (it must be no less than the 
bandwidth) the infinitesimal generator can be written as a block tridiagonal matrix: 

Q = 
D I A 

2 QT= B1 D1 A2 
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FIGURE 3: A comparison of the estimated stationary distribution in the segment 50 to 100 (dashed line) 
with p in the same region (solid line). 

If we partition p = 
[0o 

7l ... ]T so that it is compatible for block multiplication, then the 
stochastic balance equations can be written in the following form: 

Doro + Alirl = 0 

and 

Biri-1 + 
Diri + Ai+lri+l 

= 0, 

for i = 1, 2 .... 
There are two common approaches to problems of this type. First, if the Markov pro- 

cess represented by this matrix is nearly completely decomposable (NCD), that is, if the off- 
diagonal blocks are sufficiently small in some sense, one can disregard them and assume that 
the Markov chain is completely decomposable (some justification for this can be found in [5]). 
Then 7i are solutions for Di xi = 0 and can be solved individually. This yields approximations 
to the segments of p, which must then be carefully assembled to get the stationary distribution 
(see [6] for a beautiful treatment of these methods). The problem with this approach is that 
it is hard to tell how good the approximations for the 7i are, since it is not clear what effect 
disregarding the Ai and Bi will have on the solution. 

A second approach is called stochastic complementation [4]. This method also computes 
the segments 7i, but does so exactly using block Gaussian elimination. This method does not 
throw anything away so it is exact (at least on paper), but unfortunately, it is quite costly. 

Our method can be extended quite naturally to this more general framework. In particular, 
given the block tridiagonal matrix QT shown above, we define the homogeneous complement 
of Di in QT to be Si = [Bi-1 Ai], where Ai is a matrix composed of only the non-zero 
columns of Ai. Bi is defined similarly, and Bo is taken to be a zero matrix. We then solve 
Di Fi = -Si and approximate ri, with the left singular vector associated with the largest 
singular value of Fi. This is a simple process and allows us to estimate the quality of our 
approximations by examining the ratios of the largest and second-largest singular values of 
each Fi. This method is embarrassingly parallel. 
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FIGURE 4: A plot of the log of the absolute error of the comparison in Figure 3. 

We believe this method can also be used to generate starting guesses for those algorithms 
known generally as iterative aggregation/disaggregation (IAD). These are efficient multi-grid- 
like methods and include the well-known KMS [3] and Takahashi [7] algorithms. We can also 
develop an adaptive variation by using the algorithm described in Section 5 to solve for Jro first. 
We then apply this same algorithm to solve for each successive segment using the more general 
definition of the homogeneous complement. This allows us to vary the block sizes adaptively 
so that each estimate of a segment will be a good one. This approach lacks parallelism but 
would give both an initial guess and a partitioning for IAD algorithms. 

8. An application to NCD Markov chains 

To demonstrate the general utility of the methods outlined here we will show how they can 
be applied to the multilevel aggregation method for nearly completely decomposable matrices. 
We consider an example from [6, pp. 288-294] which looks at the following NCD matrix 
from [2]: 

0.85 0.1 0.1 0 0.0005 0 0.00003 0 
0 0.65 0.8 0.0004 0 0.00005 0 0.00005 
0.149 0.249 0.0996 0 0.0004 0 0.00003 0 

pT - 0.0009 0 0.0003 0.7 0.399 0 0.00004 0 
0 0.0009 0 0.2995 0.6 0.00005 0 0.00005 
0.00005 0.00005 0 0 0.0001 0.6 0.1 0.1999 
0 0 0.0001 0.0001 0 0.2499 0.8 0.25 
0.000 05 0.000 05 0 0 0 0.15 0.0999 0.55 

Following the indicated partitioning we consider the block matrix 

[Pu1 P12 P13 
P21 P22 P23 

? P31 P32 P33 

The fundamental steps in the algorithm are: 

1. Approximate the probability distribution of the ith block with ui, where 

Piiui = 
.iui 

and uTe = 1, 
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FIGURE 5: The relative error of three truncated approximations: the minimal eigenvector (solid line), the 
minimal right singular vector (dotted line), and the homogeneous complement method from this paper 

(dashed line). 

where Xi is the Perron root of Pii. 

2. Approximate the block aggregation matrix A by 

[ 0 eT 00 P21 P22 P23 0 u2 0 . 
O 0 e" P31 /32 /33 0 0 u3 

3. Compute p, the stationary distribution of A, 

Atp = p and pTe = 1, 

where X is the Perron root of A. 

4. Approximate the stationary distribution of P with 

P2u2 . 
p3U3 J 

To integrate the techniques we have outlined into this algorithm we modify step 1 to use 

homogeneous complementation. In particular, we let u 1 be the left singular vector associated 
with the largest singular value of 

(Pll 
- I)- [P12 P13]. 

Similarly, we let u2 and u3 be the left singular vectors associated with the largest singular 
values of 

(P22 - )-1 [P21 P23] and (P33 - I)-[P31 P32], 

respectively. 
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FIGURE 6: The solid line shows the absolute error in approximating the stationary distribution of the 
Courtois matrix using the method described in [6], the dashed line is the absolute error of our modification 

of this method. 

If we compute the stationary distribution of P we find that 

r = [0.08928 0.09276 0.04049 0.15853 0.11894 0.12039 0.27780 0.10182]. 

The approximate stationary distribution using the standard method as described in [6] is 

i = [0.08932 0.09273 0.04046 0.15855 0.11893 0.12037 0.27781 0.10182]. 

Finally, the approximate stationary distribution using the method just described is 

fr = [0.08938 0.09266 0.04050 0.15853 0.11894 0.12038 0.27780 0.101 82]. 

In Figure 6 we plot the absolute errors of the two approximations. Note that both methods 
have errors of comparable magnitude (10-4). 

Now consider what happens if we modify the Courtois matrix with a parameterized per- 
turbation as shown below 

0.85 0.1 0.1 0 0.0005 0 0.00003 0 
0 0.65 - E 0.8 - E 0.0004 E 0.000 05 E 0.000 05 
0.149 0.249 0.0996 0 0.0004 0 0.000 03 0 

T 0.0009 E 0.0003 0.7- c 0.399 - c 0.00004 0 
P (E) 

- 

0 0.0009 0 0.2995 0.6 0.00005 0 0.00005 
0.00005 0.00005 c c 0.0001 0.6 - c 0.1 0.1999 
0 0 0.0001 0.0001 0 0.2499 0.8 - c 0.25 
0.00005 0.00005 0 0 0 0.15 0.0999 0.55 

If we allow E to vary over the interval [0, 0.399] (we can do this without violating the 
stochasticity of the matrix) we can compare how well the two methods approximate the sta- 
tionary distribution of P(E) over the range of E. Figure 7 shows a log plot of the errors where 
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FIGURE 7: Log plot of the error of approximation for the parameterized Courtois matrix. The solid line 
shows log II p - Pji12 and the dashed line shows log IIp - • I2. 

one can see that the second approximation is quite good over the entire range of E while the 
standard one degrades as the magnitude of the perturbation grows. 

Of course, we expect growth in the error of the first approximation because as E grows, the 
matrix begins to violate the NCD assumption. However, the second approximation continues 
to work well because the homogeneous complement approach takes into account the structure 
of the off-diagonal blocks as well as their magnitude. Note that the homogeneous complement 
of the Pu1 block in this matrix is 

O 0.0005 0 0.00003 0 

[P12P13]= 0.0004 E 0.00005 E 0.00005 . O 0.0004 0 0.00003 0 

As E grows this matrix approaches a rank-1 matrix. In fact, when E = 0.399 the singular 
values of this matrix are al = 0.5643, 

r2 
= 0.4230 x 10-3, and a3 = 0.5106 x 10-8, so 

that although it is full-rank, it is quite close to a rank-1 matrix. Since we can think of the 
homogeneous complement as a coupling to the other states in the chain, we call a situation 
like this a weak geometric coupling. We might also call it a low-rank coupling except that 
in this, and most such cases, the homogeneous complement does have full rank. The term 
weak geometric coupling expresses the fact that the real problem here is that the columns of 
the homogeneous complement are geometrically quite nearby. Note that for this example the 
homogeneous complements of all blocks exhibit weak geometric coupling as E gets large. 

Of course, when E = 0 our method still works well even though none of the homogeneous 
complements exhibit weak geometric coupling in that case. Indeed, it is possible to gain some 
insight into why this should generally be the case for an NCD matrix. We begin by noting 
that if the matrix is NCD then each diagonal block, Pii, will be very nearly stochastic and so 
will have a Perron root Xi such that 0 < 1 - 1 << 1. It follows that -(Pii - I)-' exists 
and has a maximal eigenvalue 41 = (1 - ~11)-' > 1. Moreover, if X2, the second-largest 
eigenvalue of Pii, is sufficiently well separated from X1 then gil will be much larger than any 
of the remaining eigenvalues of -(Pii - I)-1 
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Now let Sii be the homogeneous complement of Pii and denote its jth column by sj. For 
each column of Sii we can write 

sj = aljVl + Cj, 

where vi is the Perron vector of -(Pii - I)-1 (and hence also of Pii) and cj is the projection 
of s j onto the orthogonal complement of v l. Now we can write 

Sii = 7l[&l o2 ...] + C, 

where C = [Cl c2 ...]. From which it now follows that 

-(Pii - I)-'Sii = 
g171[a1 

'2 
...] 

- (Pii - I)-1C. 

Now, since the columns of C are in the orthogonal complement of vl it follows that the 
elements of (Pii - I)-'C can have magnitude no greater than g2 max |Cij . So, if L1 is 
sufficiently larger than g2 then we would expect that the most dominant component of the 
columns of -(Pii - I)-1Sii will be close to vi. If this is true then the left singular vector of 
-(Pii - I)-'Sii associated with the largest singular value will also be close to vi. And we see 
that we can reasonably expect that our method will return a vector that is quite close to that 
returned by the standard algorithm in this case. 

In fact, if g1 is sufficiently dominant then -(Pii - I)-'1Sii will tend to approach the rank-1 
matrix gi • i[al 2 ...], which implies that the approximation will become exact. This is a 

simple way of seeing why the standard method works. 
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