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1 Introduction

Computing the Galois group of the splitting field of a given polynomial with integer coef-
ficients over the rationals is a classical problem in modern algebra. A theorem of Van der
Waerden [Wae] asserts that almost all (monic) polynomials in Z[x] have associated Galois
group Sn, the symmetric group on n letters. Thus, cases where the associated Galois group
is different from Sn are rare. Nevertheless, examples of polynomials where the associated
Galois group is not Sn are well-known. For example, the Galois group of the splitting field
of the polynomial xp − 1, p ≥ 3 prime, is cyclic of order p − 1. For the polynomial xp − 2,
p ≥ 3, the Galois group is the subgroup of Sp generated by a cycle of length p and a cycle
of length p − 1. One interest in this paper is to find other collections of polynomials with
integer or rational coefficients whose Galois groups are isomorphic to these groups.

Using circulant matrices and determinants, for each prime p ≥ 3 and positive integer m,
we construct a degree p polynomial fp,m in Q[x] having all real roots. For m = 1 and p ≥ 5,
we show that the Galois group of fp,1 is cyclic of order p − 1. For m ≥ 2 and p ≥ 5, the
Galois group of fp,m is the subgroup of Sp generated by a cycle of length p and a cycle of
length p− 1.

It is interesting to note that the polynomials defined with the help of a circulant matrix
are connected with Chebyshev (or Dickson) polynomials. This was observed in the course
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of proving that a certain trinomial in our investigations is irreducible. A proof of the irre-
ducibility of these trinomials is presented and connections are made to recent work of Bilu,
Hanrot, and Voutier [BHV] (with an appendix by Mignotte) on Lucas and Lehmer num-
bers. The latter leads to two alternative approaches for establishing the irreducibility of our
trinomials. For one approach, we solve the Diophantine equation

axn+2` − 1

axn − 1
= y2,

where y is rational and a, x, n, and ` are positive integers with x > 1.

2 Polynomials with Real Roots and Cyclic Galois Groups

Consider the n× n circulant matrix

circ(a1, a2, . . . , an) =


a1 a2 a3 . . . an

an a1 a2 . . . an−1

an−1 an a1 . . . an−2
...

...
a2 a3 a4 . . . a1

 .

The determinant of circ(a1, a2, . . . , an) is given by the formula

det(circ(a1, a2, . . . , an)) =
∏
µ

(
a1 + a2µ + a3µ

2 + · · ·+ anµ
n−1

)
, (1)

where the product runs over all n of the nth roots of unity.
Let n be ≥ 3, and consider the n × n circulant matrix A = circ(a, b, c, 0, . . . , 0). In this

case, Ore [O] has computed the expansion of (1). Let bxc denote the greatest integer less
than or equal to x.

Proposition 1 (Ore). The determinant of A is

det(A) = an + (−1)n+1bn + cn − n

bn/2c∑
i=1

(−1)n+i 1

n− i

(
n− i

i

)
(ac)ibn−2i.

Corollary 2. If n is odd, then

det(A) = an + cn + bn +

(n−1)/2∑
i=1

(−1)i n

n− i

(
n− i

i

)
(ac)ibn−2i.

Take n = p ≥ 3 prime. We consider a and c satisfying ap + cp = 1 with m = ac a positive
integer. It follows that ap and cp are the roots of the quadratic g(x) = x2 − x + mp and,
hence, (1 ±

√
1− 4mp)/2. We define fp,m(x) to be the determinant of the p × p circulant

matrix circ(a, x, c, 0, 0, . . . , 0). Observe that a and c are necessarily algebraic integers (being
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roots of g(xp)) so that the coefficients of fp,m(x) are algebraic integers. Also, Corollary 2
implies that

fp,m(x) = xp − p

p− 1

(
p− 1

1

)
m xp−2 + · · ·+ (−1)(p−1)/2p m(p−1)/2 x + 1

so that, in particular, the coefficients of fp,m are rational. We deduce that fp,m ∈ Z[x].
Next, we explicitly describe the zeros of fp,m.

Proposition 3. Let m ≥ 1 be a positive integer, and let p be a prime ≥ 3. Set γm =
(1 +

√
1− 4mp)/2. The roots of fp,m are precisely the p numbers of the form −λ− λ where

λ runs over the pth roots of γm.

Before going to the proof, we note that the p numbers −λ− λ are distinct. This follows,
in fact, from the observations that the p choices for λ all lie on the same circle centered
at the origin and no two of them are complex conjugates (since they are the pth roots of a
non-real complex number).

Proof of Proposition 3. Fix λ as above, and let ζn = e2πi/n. Observe that

λp + λ
p

= 1 and λλ = |λ|2 = |γm|2/p = m.

Thus, fp,m is the determinant of the p × p circulant matrix circ(λ, x, λ, 0, 0, . . . , 0). Using
formula (1), fp,m(x) factors as

fp,m(x) =

p−1∏
j=0

(λ + xζj
p + λζ2j

p ).

We deduce that −λ− λ is a root of fp,m (consider j = 0). Since this is true for an arbitrary
λ as in the proposition, the result follows.

We will not be using it explicitly, but we make the observation that

fp,m(x) = 2mp/2Tp(x/(2m1/2)) + 1,

where Tp(x) is a Chebyshev polynomial of the first kind (see (1.10) and (1.96) in [Ri]).
Alternatively, fp,m(x) can also be viewed as being connected to Dickson polynomials with
this work being motivated in part by work of Abhyankar, Cohen, and Zieve [ACZ].

Before proceeding, we note that |γm| = mp/2 implies that each root of fp,m is a real
number with absolute value < 2

√
m. Furthermore, it is not too difficult to show that as p

varies, the roots of fp,m are dense in the interval [−2
√

m, 2
√

m].
We specialize to the case when m = 1 in the definition of fp,m. In this case, the roots of

fp,m are in the interval (−2, 2). Also, for p ≥ 5, −1 is a root of fp,1. To see this, observe that

γ1 =
(
1 + i

√
3
)
/2 = ζ6.

From Proposition 3, we have that the zeros of fp,1 are of the form −λ− λ where λ runs over
the pth roots of ζ6. Observe that λ = ζp

6 ∈ {ζ6, ζ
5
6} is a pth root of ζ6. Furthermore, for this

λ, we have −λ− λ = −1, so −1 is a root of fp,1.
A polynomial f(x) ∈ Z[x] is called Eisenstein if Eisenstein’s criterion applies to a trans-

lation of f(x). In particular, Eisenstein polynomials are irreducible over Q.
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Proposition 4. The polynomial f3,1(x) is Eisenstein, and for each p ≥ 5 the polynomial
fp,1(x)/(x + 1) is Eisenstein.

Proof. We have f3,1(x) = x3 − 3x + 1, and one checks that Eisenstein’s criterion applies to
f3,1(x + 2). For p ≥ 5, define hp(x) = fp,1(x)/(x + 1). Observe that

hp(x− 1) = fp,1(x− 1)/x

=
1

x

(
(x− 1)p − p

p− 1

(
p− 1

1

)
(x− 1)p−2 + · · ·+ (−1)(p−1)/2p(x− 1) + 1

)
.

We deduce that hp(x − 1) is a monic polynomial in Z[x] with every coefficient except the
leading coefficient divisible by p. To complete the proof, we show that p2 does not divide
the constant term of hp(x− 1). Proposition 3 implies that the roots of fp,1(x− 1) are of the
form

1− λζj
p − λζ−j

p for j ∈ {0, 1, . . . , p− 1},

where λ is any fixed pth root of γ1 = ζ6. We consider λ = ζp
6 . Thus, λ − λ2 = 1, λ2 = −λ,

and consequently 1 − λζj
p − λζ−j

p = 0 for j = 0. In particular, the root corresponding to
j = 0 accounts for the factor x in fp,1(x− 1). Thus, the constant term in hp(x− 1) is

p−1∏
j=1

(
1− λζj

p − λζ−j
p

)
=

p−1∏
j=1

(
λζ−j

p

(
λ + ζj

p

)(
1− ζj

p

))
= λp−1

p−1∏
j=1

(
λ + ζj

p

) p−1∏
j=1

(
1− ζj

p

)
.

Using Φm(x) to denote the mth cyclotomic polynomial, the last product above is simply
Φp(1) = p. We also use that Φ3p(1) = 1 (indeed, Φm(1) = 1 whenever m is not a prime
power). From λ = ζp

6 = −ζ2p
3 , we obtain

λ + ζj
p = λ

(
1− ζ3j−2p2

3p

)
and 3j − 2p2 is relatively prime to 3p for 1 ≤ j ≤ p− 1. As

1 = Φ3p(1) =
∏

1≤j≤3p−1
gcd(j,3p)=1

(
1− ζj

3p

)
,

each λ + ζj
p for 1 ≤ j ≤ p − 1 is λ times a unit in Z[ζ3p]. Also, λ is a unit in Z[ζ3p]. It

follows that the constant term of hp(x− 1) is a unit in Z[ζ3p] times p. Since it is also in Z,
we deduce that the constant term is ±p, concluding the proof.

As indicated earlier, Proposition 4 implies that the polynomials considered there are
irreducible over Q. There are alternative approaches to establishing the irreducibility of
these polynomials. We describe such a method next which also provides us some additional
information, in particular about the polynomials’ associated Galois groups.
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Observe that if λ is as in Proposition 3 with m = 1, then −λ is a pth root of ζ2
3 and,

hence, a (3p)th root of unity. For p = 3, these pth roots of ζ2
3 are primitive (3p)th roots of

unity. For p ≥ 5, one can check directly that ζ2p
3 is the only pth root of ζ2

3 which is not a
primitive (3p)th root of unity. We deduce from Proposition 3 that the splitting field K of
fp,1 over Q is precisely the maximal real subfield of Q(ζ3p). The degree of this extension is
φ(9)/2 = 3 in the case of p = 3 and is φ(3p)/2 = p − 1 for p ≥ 5. The irreducibility of the
polynomials f3,1(x) and fp,1(x)/(x + 1) for p ≥ 5 follows. Note that the Galois group of the
maximal real subfield of Q(ζ3p) over Q is cyclic. This gives us the following result.

Proposition 5. Let p ≥ 3 be prime. Let K be a splitting field of fp,1(x) over Q. If p = 3,
then the Galois group of K/Q is cyclic of order 3. If p ≥ 5, then the Galois group of K/Q
is cyclic of order p− 1.

It is of some interest to describe a generator for these Galois groups. If λ is a pth root of
ζ6 = −ζ2

3 , then Proposition 3 and

(−λ− λ)2 = λ2 + 2 + λ
2

imply that σ(x) = 2−x2 is an automorphism of K over Q. For p = 3, one can check directly
that σ generates the Galois group of K over Q. For p ≥ 5, the automorphism σ may or
may not generate the Galois group. In particular, if the order of 2 modulo p is even and
< p− 1, then σ will not be a generator for the Galois group (for example, consider p = 17 or
p = 41). To obtain an automorphism that generates the Galois group for all p ≥ 5, for each
j ∈ {1, 2, . . . , p − 1}, we consider an integer k = k(j) satisfying k ≡ 1 (mod 3) and k ≡ j
(mod p). The automorphism σj of Q(ζ3p) over Q defined by σj(ζ3p) = ζk

3p has the property
that σj(ζ3) = ζ3 and σj(ζp) = ζj

p . In other words, the p − 1 different σj are precisely the
automorphisms of Q(ζ3p) over Q(ζ3). We now consider a primitive root g modulo p and fix

λ = −ζ2p
3 . Define σ

(t)
g to be the composition of t copies of σg. Then

σ(t)
g

(
− λζp − λζ−1

p

)
= −λζgt

p − λζ−gt

p .

We deduce from Proposition 3 that the restriction of σg to K, the maximal real subfield of
Q(ζ3p), is a generator for the Galois group of K over Q.

The above explicit construction of the generator leads naturally to a further conclusion.

Proposition 6. The polynomial f3,1(x) and the polynomials fp,1(x)/(x + 1), for p ≥ 5, are
irreducible over Q(ζ3).

One checks the above result directly for p = 3. For p ≥ 5, we use that for 2 ≤ j ≤ p− 1,
the roots of fp,1(x)/(x + 1) are images of the root −λζp − λζ−1

p under applications of the
automorphism σg of Q(ζ3p) over Q(ζ3). Since this automorphism fixes the elements of Q(ζ3),
the above result follows. The result for p ≥ 5 also follows from the proof of Proposition
4 (from the fact that fp,1(x)/(x + 1) is Eisenstein with respect to a prime which does not
ramify in Q(ζ3)).
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3 The Galois Groups of General fp,m

For p a prime ≥ 5 and m an integer ≥ 2, we establish the irreducibility of fp,m over the
rationals and compute the Galois group of the splitting field K/Q of fp,m. Multiplying the
relation λp + λ

p
= 1 of Proposition 3 by λp shows that the roots of fp,m are associated with

the roots of pm(x) = x2p − xp + mp. Our investigations here begin with a closer look at the
polynomials pm(x).

Proposition 7. Let p be an odd prime and let m be an integer with m ≥ 2. Then the
polynomials x2p + xp + mp and x2p − xp + mp are irreducible.

Proof. We prove the result only for the polynomial pm(x) = x2p − xp + mp, the remaining
case following as pm(−x) = x2p + xp + mp. Let N = 1 − 4mp and γ = (1 +

√
N)/2. Thus,

Q(γ) = Q(
√

N) = Q(
√

D), where D < 0 is a squarefree integer, D|N , and N/D is a square.
Let λ be a pth root of γ. Thus, λ is a root of pm(x). We show that xp − γ is irreducible over
Q(γ). This will imply [Q(λ) : Q(γ)] = p. Since [Q(γ) : Q] = 2, we deduce [Q(λ) : Q] = 2p
and, hence, that pm(x) is irreducible.

Assume xp−γ = g(x)h(x) where g(x) and h(x) are in Q(γ)[x] with r = deg g ∈ [1, p−1].
Since the p roots of xp − γ are of the form ζjλ, where ζ = ζp and j ∈ {0, 1, . . . , p − 1}, we
deduce that the constant term of g(x) is of the form ±ζkλr. Thus, ζkλr ∈ Q(γ). Let x and
y be integers satisfying rx + py = 1. Since γ = λp, we deduce(

ζkλr
)x

γy = ζkxλrx+py = ζkxλ ∈ Q(γ).

Setting α = ζkxλ, we see that α is an algebraic integer in Q(
√

N) and

αp =
1 +

√
1− 4mp

2
=

1 +
√

N

2
. (2)

Observe that α is a root of x2p − xp + mp. Let β be the conjugate of α. Then

βp =
1−

√
N

2
.

Since αβ is a real number satisfying (αβ)p = mp, we have αβ = m. Next, we determine
α + β. Note that

1 = αp + βp = (α + β)
(
αp−1 − αp−2β + · · · − αβp−2 + βp−1

)
.

Each one of the two factors on the right is an algebraic integer expressed as a symmetric
function of α and β. Hence, each of these factors must be a rational integer. We deduce
that α + β = ±1. We justify that α + β = 1. Writing α = (a + b

√
D)/2, it suffices to show

that a 6= −1 (i.e., that α + β 6= −1). Observe that

2p−1 + 2p−1
√

N = 2pαp = (a + b
√

D)p = A + B
√

D,

where A ≡ ap (mod p). Hence,

ap ≡ 2p−1 ≡ 1 (mod p).
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As p is odd, a 6= −1. Thus, α + β = 1. It follows that α and β are both roots of x2 − x + m.
Writing α = seiθ with s > 0 and θ ∈ [0, 2π), we have β = se−iθ and cos θ = 1/(2

√
m).

On the other hand, (2) and αp = speipθ imply cos(pθ) = 1/(2mp/2). Using that cos(pθ) =
Tp(cos θ), where Tp is the pth Chebyshev polynomial, we get that

cos(pθ) = 2p−1(cos θ)p − 2p−3p(cos θ)p−2 + · · · , (3)

where what remains on the right is a sum of smaller odd powers of cos θ times p times
rational integers (see, for example, (1.10) and (1.96) in [Ri]). Furthermore, the coefficient of
each term (cos θ)j on the right is divisible by 2j−1 (an immediate consequence of Exercise
1.4.45 in [Ri]). Given that cos θ = 1/(2

√
m) and cos(pθ) = 1/(2mp/2), we see that the

expression on the left of (3) equals the first term on the right of (3). Thus, the remaining
terms on the right must sum to zero. After factoring out the common factor of p cos θ in
each term and multiplying through by −1, we deduce w1(cos2 θ) = 0 where w1(x) ∈ Z[x]
and deg w1(x) = (p − 3)/2. Further, the leading coefficient of w1(x) is 2p−3 and 22j divides
the coefficient of xj for each j. We deduce that w2(x) = w1(x/4) is a monic polynomial with
integer coefficients that has 4 cos2 θ as a root. Since rational roots of monic polynomials with
integer coefficients are rational integers and since 4 cos2 θ = 1/m, we obtain a contradiction
to m ≥ 2.

Before continuing, we note that one can replace the argument leading to (2) by an
application of Capelli’s theorem (see [Sc1] and Lemma 28 of [Sc2]). The second part of
the argument above (as well as the end of our next proof) is similar to an approach of
Lebesgue [Le].

As in the proof of Proposition 7, we set γ = (1 +
√

1− 4mp)/2 and fix λ to be a pth root
of γ. By Proposition 7, we have [Q(λ) : Q] = 2p. We consider the cyclotomic polynomial
Φp(x) = xp−1 +xp−2 + · · ·+1 which is irreducible over Q. We show that it is also irreducible
over Q(λ).

Proposition 8. Let p be a prime ≥ 5, and let m be an integer ≥ 2. Then Φp(x) is irreducible
over Q(λ).

Proof. By way of contradiction, assume Φp(x) is reducible over Q(λ). Then Q(ζ) contains a
subfield of Q(λ) of degree 2, p or 2p over Q. The latter two are not possible since [Q(ζ) : Q] =
p−1. Thus, Q(ζ) contains Q(γ) which is the subfield of Q(λ) of degree 2 over Q. Recall that
the quadratic subfield in Q(ζ) is Q

(√
(−1)(p−1)/2p

)
. Thus, Q(γ) = Q

(√
(−1)(p−1)/2p

)
. Since

γ is imaginary, the quadratic field Q
(√

(−1)(p−1)/2p
)

must contain imaginary numbers. We

deduce that p ≡ 3 (mod 4). Since Q(γ) = Q(
√

1− 4mp), the equality of Q(γ) and Q(
√
−p)

implies that there is a solution to the Diophantine equation

px2 = 4mp − 1,

where m is an integer ≥ 2, p is a prime ≡ 3 (mod 4) that is ≥ 5, and x is an integer. We
conclude the proof by showing that this is impossible.

The Diophantine equation leads to

1 + x
√
−p

2
· 1− x

√
−p

2
= mp.
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Let ω = (1+x
√
−p)/2, and let ω be its conjugate. We work in the ring of algebraic integers

in Q(
√
−p). Since ω + ω = 1, the principal ideals (ω) and (ω) are coprime. Therefore, each

of these ideals is a pth power of some ideal. Let A be an ideal for which (ω) = Ap. The
class number h of Q(

√
−p) is less than p (see, for example, [BS]) and, hence, not divisible

by p. Thus, there is an integer p′ such that pp′ ≡ 1 (mod h). We deduce the fractional ideal
equation (

ωp′)
= (ω)p′

= App′
= A(β),

for some β ∈ Q(
√
−p). It follows that β′ = ωp′

/β is an algebraic integer in Q(
√
−p) and

that A = (β′). Since (ω) = (β′)p and since the only units in the ring of algebraic integers in
Q(
√
−p) are ±1, we obtain (1 + x

√
−p)/2 = αp where either α = β′ or α = −β′.

Let a and b be integers, necessarily of the same parity, such that α = (a + b
√
−p)/2.

Comparing real parts of the equation (1 + x
√
−p)/2 = αp, we deduce

2p−1 = ap −
(

p

2

)
pap−2b2 +

(
p

4

)
p2ap−4b4 − · · · −

(
p

p− 1

)
p(p−1)/2abp−1. (4)

As a and b have the same parity, if a is even, then b is even and the right-hand side of (4)
is divisible by 2p. As the left-hand side is not divisible by 2p, we deduce that a and b are
odd. Since a divides the right-hand side of (4), a divides 2p−1 so that a = ±1. Also, (4)
implies ap ≡ 2p−1 ≡ 1 (mod p). Therefore, a = 1. Clearly, b 6= 0. We complete the proof by
showing that with a = 1, (4) has no solutions in nonzero integers b.

Assume (4) has a solution with p a prime ≥ 5, a = 1 and b a nonzero integer. The
right-hand side of (4) corresponds to the real part of (2α)p where α = (a + b

√
−p)/2 =

(1 + b
√
−p)/2. It follows that

2p = (1 + b
√
−p)p + (1− b

√
−p)p.

We divide each term in this equation by (1 + b2p)p/2. With θ satisfying

cos θ =
1√

1 + b2p
and sin θ =

b
√

p√
1 + b2p

,

we deduce

2p

(1 + b2p)p/2
= (cos θ + i sin θ)p + (cos θ − i sin θ)p = eipθ + e−ipθ = 2 cos(pθ).

Thus,

cos(pθ) =
2p−1

(1 + b2p)p/2
.

With p and θ as above, we appeal to (3) and follow the argument after (3) in the proof of
Proposition 7. We deduce that 4 cos2 θ = 4/(1 + b2p) is a rational integer. Since b 6= 0 and
p ≥ 5, this is a contradiction.

Proposition 9. If p is a prime ≥ 5 and m an integer ≥ 2, then fp,m(x) is irreducible over
Q.
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Proof. By Proposition 7, the polynomial pm(x) = x2p−xp +mp is irreducible. We show now
that we have the identity

−xpfp,m

(
−x− m

x

)
= pm(x). (5)

Both polynomials are monic and have the same degree, namely 2p. Therefore it suffices to

show that the roots of pm are also roots of −xpfp,m

(
−x− m

x

)
. Take a root λζj of pm where

ζ = ζp and λ = γ1/p denotes an arbitrary pth root of (1 +
√

1− 4mp)/2. Note that mλ−1ζ−j

is the conjugate of λζj. Proposition 3 implies

−λpζpjfp,m(−λζj −mλ−1ζ−j) = 0.

Thus, λζj is a root of the left-hand side of (5). Since λζj is a root of the left-hand side of
(5) if and only if its conjugate mλ−1ζ−j is, (5) follows.

Now, assume that there exist two polynomials f1 and f2 in Q[x] of degrees d1 and d2,
respectively, such that each dj < p and

fp,m(x) = f1(x)f2(x).

It follows that
xpfp,m

(
x +

m

x

)
= xpf1

(
x +

m

x

)
f2

(
x +

m

x

)
.

Since p = d1 + d2, each

xdjfj

(
x +

m

x

)
is a nonconstant polynomial in Z[x] dividing pm(−x) of degree < 2p. This contradicts the
fact that pm(x) is irreducible, and the result follows.

Let γ, λ and ζ be as above. Since fp,m is irreducible over Q, we have [Q(λ + λ) : Q] = p.
Also, [Q(ζ + ζ−1) : Q] = (p− 1)/2. Hence,

[Q(λ + λ, ζ + ζ−1) : Q] = p(p− 1)/2. (6)

Observe that −λζ − λζ−1 satisfies the quadratic polynomial

q(x) = x2 + x(λ + λ)(ζ + ζ−1) + (λ + λ)2 − 4m + m(ζ + ζ−1)2,

over Q(λ + λ, ζ + ζ−1).

Proposition 10. The polynomial q(x) is irreducible over Q(λ + λ, ζ + ζ−1).

Proof. By way of contradiction, assume that

r = −λζ − λζ−1 =

(p−3)/2∑
j=0

aj(ζ + ζ−1)j,

where each aj ∈ Q(λ+λ). By Proposition 8, the mapping taking ζ to ζ−1 is an automorphism
of Q(λ, ζ) over Q(λ). Under this automorphism, r is mapped to −λζ−1 − λζ 6= −λζ − λζ−1

while the right-hand side above remains fixed, which is impossible.
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By Proposition 8, Φp(x) is irreducible over Q(λ). Thus, the extension field Q(λ, ζ) has
degree 2p(p− 1) over Q. Its maximal real subfield must therefore have degree ≤ p(p− 1).

Proposition 11. Let p be a prime ≥ 5, and let m be an integer ≥ 2. The splitting field of
fp,m is the maximal real subfield of Q(λ, ζ) and can be written as

K = Q(λ + λ, ζ + ζ−1, λζ + λζ−1).

Proof. Observe that K is a real subfield of Q(λ, ζ) and that all the roots of fp,m are real
numbers in Q(λ, ζ). From (6) and Proposition 10, [K : Q] = p(p − 1). Since K is a real
field of degree p(p − 1) over Q, it is the maximal real subfield of Q(λ, ζ), and consequently
fp,m splits in K. If L is the splitting field of fp,m, it follows that L ⊆ K. Note that λ + λ,
λζ + λζ−1 as well as λζ−1 + λζ are roots of fp,m and, hence, in L. To show then that L = K
it suffices to show that ζ + ζ−1 ∈ L, and this follows from

ζ + ζ−1 =
(λζ + λζ−1) + (λζ−1 + λζ)

λ + λ
.

This completes the proof.

We are now ready to describe the Galois group of the splitting field K of fp,m over Q.
As K ⊆ Q(λ, ζ), an automorphism of K can be described by its actions on λ and ζ.

Proposition 12. Let p be a prime ≥ 5, and let m be an integer ≥ 2. Let g be a generator
of the multiplicative group (Z/pZ)∗. The Galois group of the splitting field K/Q of fp,m is
the subgroup of the symmetric group Sp generated by the automorphisms σ and γ, where
σ(λ) = λζ, σ(ζ) = ζ, τ(λ) = λ, and τ(ζ) = ζg.

Proof. One has that σ is an automorphism of K which fixes Q, whose order is p. Moreover,
τ is an automorphism of K which fixes Q of order p−1. Since [K : Q] = p(p−1), we deduce
that Gal(K/Q) is as claimed.

4 A Ubiquitous Trinomial

In the previous section, we encountered the trinomial pm(x) = x2p ± xp + mp, which we
proved to be irreducible. In this section, we describe an alternative approach to establishing
the irreducibility of many of the more general trinomials

ax2p − bxp + c ∈ Z[x],

where p is a prime and a, b, and c are integers with abc 6= 0. One can multiply the trinomial
by a2p−1, replace x by x/a, obtaining a monic trinomial. So, we assume throughout that
a = 1. Our interest then is in the irreducibility of the trinomial tp(x) = x2p − bxp + c. There
are four cases where reducibility is easily established:

(i) If b2 − 4c is a square, then x2 − bx + c factors so that tp(x) is the product of two
polynomials of degree p.
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(ii) If p ≥ 5 and b = up for some integer u and c = b2, then tp(x) is divisible by x2−ux+u2

(with roots ζ±1
6 u).

(iii) If p ≥ 3 and b = 2(p+1)/2up for some integer u and c = b2/2, then tp(x) is divisible by
one of x2 − 2ux + 2u2 (with roots

√
2ζ±1

8 u) or x2 + 2ux + 2u2 (with roots
√

2ζ±3
8 u)

depending on whether p ≡ ±1 (mod 8) or p ≡ ±3 (mod 8), respectively.

(iv) If p ≥ 5 and b = 3(p+1)/2up for some integer u and c = b2/3, then tp(x) is divisible by
one of x2 − 3ux + 3u2 (with roots

√
3ζ±1

12 u) or x2 + 3ux + 3u2 (with roots
√

3ζ±5
12 u)

depending on whether p ≡ ±1 (mod 12) or p ≡ ±5 (mod 12), respectively.

The latter three cases can be shown, for example, by establishing that a root of the claimed
quadratic factor is a root of tp(x). In this section, we establish a result implying that if
b2 − 4c is not a square and p is sufficiently large depending on b, then tp(x) is irreducible.

Our approach in this section takes advantage of recent work of Bilu, Hanrot, and Voutier
[BHV]. A Lucas pair (α, β) is a pair of algebraic integers for which αβ and α+β are nonzero
coprime rational integers and α/β is not a root of unity. A Lehmer pair (α, β) is a pair
of algebraic integers for which αβ and (α + β)2 are nonzero coprime rational integers and
α/β is not a root of unity. The Lucas numbers un and Lehmer numbers ũn are defined for
non-negative integers n by

un =
αn − βn

α− β

and

ũn =


αn − βn

α− β
if n ≡ 1 (mod 2)

αn − βn

α2 − β2
if n ≡ 0 (mod 2).

A prime p is called a primitive divisor of un provided that p divides un and p does not divide
(α−β)2u1u2 · · ·un−1. A prime p is called a primitive divisor of ũn if p divides ũn and p does
not divide (α2 − β2)2ũ1ũ2 · · · ũn−1. The work of Bilu, Hanrot, and Voutier [BHV] settles a
long-standing problem of classifying all cases of α, β, and n where a primitive divisor of un

or a primitive divisor of ũn does not exist. Two consequences of their work that we will make
use of here are as follows. In the next section, we will use

Result 1. For odd n ≥ 5, a Lehmer number ũn defined from a Lehmer pair of the form

(α, β) = (
√

a +
√

a + 1,
√

a−
√

a + 1)

for some rational integer a has a primitive prime divisor.

In the current section, we will make use of

Result 2. If p 6∈ {2, 3, 5, 7, 13} and p is a prime, then each of u2p and ũp contains at least
one primitive prime divisor.

Both of these follow from Theorem C, Theorem 1.3, and Theorem 1.4 in [BHV]. For conve-
nience in a moment, we note that the condition p 6∈ {2, 3, 5, 7, 13} can be reworded as p does
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not divide (q − 1)(q + 1) when q is the prime 181. Also, it follows from (3), Proposition 2.1
(i) and Corollary 2.2 all from [BHV] that if p is an odd prime, then every primitive prime
divisor q of u2p or ũp satisfies p divides (q − 1)(q + 1).

We establish the following.

Proposition 13. Let p be a prime and b and c be integers not satisfying the conditions in
(i), (ii), (iii), and (iv) above. Then the trinomial tp(x) = x2p−bxp +c is irreducible provided

p -
∏

q prime
q|(181·b)

(
(q − 1)(q + 1)

)
.

Proof. We consider p not dividing the above product. In particular, p 6∈ {2, 3, 5, 7, 13}.
Initially, we begin along the lines of the proof of Proposition 7. Let γ = (b +

√
N)/2 where

N = b2 − 4c, and let λ be a pth root of γ. Following the proof of Proposition 7, it suffices
to show that xp − γ is irreducible over Q(γ). Assuming xp − γ = g(x)h(x) where g(x) and
h(x) are in Q(γ)[x] with r = deg g ∈ [1, p− 1], we deduce

αp =
b +

√
N

2
and βp =

b−
√

N

2

for some distinct α and β in Q(
√

N) with αβ and α + β in Z satisfying (αβ)p = c and α + β
divides b. In particular, c is a pth power. Our goal is to show that under the conditions of
the theorem, we obtain a contradiction.

We claim that α/β is not a root of unity. Assume otherwise. Since b2−4c is not a square,

(α/β)p =
b +

√
N

b−
√

N
=

b2 + N + 2b
√

N

b2 −N
=

b2 − 2c + b
√

b2 − 4c

2c

is a quadratic irrational that is a root of unity. It follows that the last expression above is one
of the six numbers ±i, (±1±

√
−3)/2. Hence, b2 − 2c ∈ {0,±c} so that c ∈ {b2, b2/2, b2/3}.

One checks that c being a pth power now implies that one of the conditions in (ii), (iii), or
(iv) holds, contrary to our conditions on b and c. Thus, α/β is not a root of unity.

We consider two cases depending on whether the rational integers αβ and α + β are
relatively prime. First, suppose that they are. Consider the Lucas number

u2p =
α2p − β2p

α− β
=

αp − βp

α− β
· (αp + βp) =

αp − βp

α− β
· b.

As p 6∈ {2, 3, 5, 7, 13}, we deduce from Result 2 that u2p has a primitive prime divisor q
dividing b. As then p divides (q − 1)(q + 1) and q|b, we obtain a contradiction.

Now, suppose that s = αβ and r = α + β are not coprime. Note that α and β are roots
of x2 − rx + s. Let d = gcd(r2, s), and set

α′ =
α

d1/2
, and β′ = − β

d1/2
.

Then

s′ = α′β′ = −s

d
and r′ = (α′ + β′)2 =

r2 − 4s

d
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are nonzero rational coprime integers. As α′/β′ = −α/β, we also have that α′/β′ is not a
root of unity. Thus, (α′, β′) is a Lehmer pair. Observe that

d(p−1)/2(α + β)ũp = d(p−1)/2(α + β) · (α′)p − (β′)p

α′ − β′ = αp + βp = b.

It follows that the Lehmer number ũp divides b. As before, we obtain a contradiction as ũp

must have a primitive prime divisor q dividing b for which p divides (q − 1)(q + 1).

The reduction going from Lucas numbers to Lehmer numbers at the end of the argu-
ment above is not new. The idea is used, for example, by Shorey and Tijdeman [ST, see
Lemma A.10].

Before ending this section, we note that the condition in Proposition 13 that p not divide
the product appears too strong as typically the trinomial tp(x) is irreducible even when p
divides the product. In the case that p ∈ {2, 3, 5, 7, 13}, a closer analysis based on the work
in [BHV] is possible. Also, the argument above implies tp(x) is irreducible whenever c is not
a pth power, so examples of reducible tp(x) should take this into consideration. Among the
more interesting examples of reducible tp(x) we found are

x10 − 2x5 + 35, x22 − 67x11 + 211, x22 − 394x11 + 311, and x34 − 101x17 + 217.

5 A Ljunggren-Type Diophantine Equation

In the previous section, we established an irreducibility result for ax2p − bxp + c ∈ Z[x],
partially generalizing our earlier demonstration of the irreducibility of the trinomial pm(x) =
x2p ± xp + mp where m ≥ 2. Our consideration of the more general trinomial in the last
section required some restrictions on the primes leading to irreducibility. However, it did
present an alternative approach to dealing with the irreducibility of pm(x) as well as a more
general class of similar polynomials. In this section, we present yet another approach which
associates the irreducibility of pm(x) with a certain Diophantine equation. We will make use
of Result 1 of the previous section.

Recall that we showed in the proof of Proposition 7 that if pm(x) is reducible, then there
are α and β in Q(

√
N), where N = 1− 4mp, that are roots of a quadratic x2 − x + m. The

discriminant of this quadratic is D = 1− 4m < 0 and, hence, not a square. We deduce that
Q(
√

N) = Q(
√

D). This equality can hold if and only if there is a rational number x ∈ Q
such that

4mp − 1

4m− 1
= x2.

Thus, the irreducibility of pm(x) follows as a consequence of the following result.

Proposition 14. The equation
axn+2` − 1

axn − 1
= y2,

holds for some positive integers a, x, n, and ` with x > 1 and some rational number y if and
only if

2|`, a =
3`−1 + 1

4
, x = 3, n = 1 and y = ±(3` + 2).
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Proof. The above equation implies that there exist positive integers u and v satisfying

axn − 1 = du2 and axn+2` − 1 = dv2

with d a positive squarefree integer dividing gcd(axn+2` − 1, axn − 1). We then have the
equation

axn(x`)2 − dv2 = 1.

Therefore,
(du2 + 1)(x`)2 − dv2 = 1.

Let A = axn = du2 + 1 and B = d, and let (X1, Y1) be the minimal solution in positive
integers of the Pell equation

AX2 −BY 2 = 1. (7)

Define
α0 = X1

√
A + Y1

√
B and β0 = X1

√
A− Y1

√
B. (8)

It is well-known (see [Wal]) that if A 6= 1 and A and B are positive integers with at least
one of A and B not a square, then all the positive integer solutions of (7) are of the form

(X, Y ) = (Xt, Yt),

for some odd integer t ≥ 1, where

(Xt, Yt) =
(αt

0 + βt
0

α0 + β0

X1,
αt

0 − βt
0

α0 − β0

Y1

)
.

We now use this description of the solutions to (7). Observe first that A > 1. Also, d
is squarefree so that B = d is not a square unless d = 1. In that case, A = u2 + 1 cannot
be a square (as both A and A − 1 would be consecutive positive integral squares, which is
impossible). Hence, at least one of A and B is not a square. It is not difficult to see that
(1, u) is the minimal solution to (7) with A and B as above (both X and Y are larger for
any other solution in positive integers to (7)); thus, X1 = 1 and Y1 = u. We deduce that
there is an odd positive integer t for which

x` = Xt =
(
√

du2 + 1 + u
√

d)t + (
√

du2 + 1− u
√

d)t

2
√

du2 + 1

=
(
√

axn +
√

axn − 1)t + (
√

axn −
√

axn − 1)t

2
√

axn
. (9)

As x > 1 and ` > 0, we must have t > 1.
Fix α = α0 and β = −β0. Observe that αβ = −1 and (α+β)2 = 4(axn−1) are relatively

prime nonzero rational integers. One checks that α/β is a real number less than −1, so
clearly α/β is not a root of unity. Thus, (α, β) is a Lehmer pair. As t is odd, (9) implies
x` = ũt, a Lehmer number as defined in the previous section. We show that t = 3. Assume
t ≥ 5. By Result 1, ũt must have a primitive prime divisor. On the other hand, x|(α2−β2)2.
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By the definition of being a primitive prime divisor of a Lehmer number, ũt in fact has no
primitive prime divisor. We obtain a contradiction; hence, t = 3.

Using the binomial theorem in (9) and reducing modulo x we get

0 ≡ t · (axn − 1)(t−1)/2 (mod x).

Hence, x|t. As x > 1 and t = 3, we deduce x = 3. Substituting t = 3 into (9), we obtain

x` = axn + 3(axn − 1) = 4axn − 3.

Therefore, 3` = 4a3n − 3. Working modulo 4, we see that ` 6= 1. It follows that ` > 1 and,
hence, n = 1. We obtain 3`−1 = 4a−1 from which we deduce a = (3`−1 +1)/4. As 3`−1 +1 is
divisible by 4, we get 2|`. Rewriting the equation in the statement of the theorem, we have

y2 =
33` + 32`+1 − 4

3` − 1
= (3` + 2)2.

The theorem follows.

We note that Ljunggren [Lj] previously solved the case of a = 1 and n = 1 of Proposition
14. A related result with y integral can also be obtained from the following nice theorem of
Bennett [Be].

If a, b and m are integers with ab 6= 0 and m ≥ 3, then the equation
|axm−bym| = 1 has at most one solutions in positive integers (x, y).

The application we have in mind of Bennett’s theorem is the following.

Proposition 15. Let m ≥ 3, and consider the Diophantine equation

axr − 1

axn − 1
= ym. (10)

(i) Suppose r and n are integers with r > n > 0 and m|(r−n). Then there are no solutions
to (10) in integers a, x, and y with a > 0 and x > 1.

(ii) Suppose r and n are integers with r > n > 0. Then there are no solutions to (10) in
integers a, x, and y with a > 0 and x > 1 if also xr−n = zm for some integer z.

Proof. (i) Assume (10) holds with the variables satisfying the conditions in (i). We have
r = n + m` for some positive integer `. Then

axn+m` − 1 = (axn − 1)ym ⇒ axn(x`)m − (axn − 1)ym = 1. (11)

Therefore, (x`, y) is a solution of the Diophantine equation

AXm −BY m = 1, (12)

where A = axn and B = axn−1. But (1, 1) is also a solution of the above equation. Observe
that the conditions in (i) imply axn > 1, x` > 1, and y > 0 (where we have used (11)
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for this last inequality). In particular, (x`, y) 6= (1, 1). By Bennett’s theorem, we obtain a
contradiction.

(ii) Assume (10) holds with the variables satisfying the conditions in (ii). Then (10) can
be written as

axnzm − (axn − 1)ym = 1.

Thus, (z, y) is a solution of (12), together with (1, 1). Using Bennett’s theorem, we again
obtain a contradiction.
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