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Overview

Assist decision maker/acquisition practitioner with a decision support
framework

— Determine requirements for — and suggest design of —a new system that will optimize
fleet-level objectives

Motivated by a lack of processes to capture effects of fuel-saving
measures on fleet-level performance metrics

Address combined platform design (here, aircraft) and fleet operations
problem

— Fleet-level objectives are functions of new platform requirements

Used the approach to generate tradeoffs between fleet productivity and
cost

— Use simple network extracted from Air Mobility Command operations

— Representation of demand constraint

— New aircraft design requirements change across range of best tradeoff solutions
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Motivation

* Current requirements or acquisition processes do not accurately explore tradeoff
opportunities for fleet-level fuel (cost) and performance*.

* Lack of a framework that captures the effect that fuel-saving measures can have
on fleet-level performance metrics*.

* Fleet-level energy efficiency poses significant risks and operational constraints on
military operational flexibility**

e Determining design requirements of ‘yet-to-be-designed’ systems is difficult
— Tightly coupled nature of the system design problem with the resource assignment problem

— Non-deterministic nature of AMC operations
* Demand is highly asymmetric
e Demand fluctuation on a day to day basis
* Routes flown vary based on demand

*Energy Efficiency starts with the acquisition process
http://www.acq.osd.mil/asda/docs/fact sheets/energy efficiency starts with the acquisition process.pdf

**Saving fuel secures the future — one gallon at a time. Inside AMC
http://www.amc.af.mil/news/story.asp?id=123292555
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Air Mobility Command

e Air Mobility Command (AMC) - One of
the major command centers of the U.S.
Air Force

e AMC is the largest consumer of aviation

fuel in the Department of Defense
— AMC Operations

¢ Uncertainty in cargo demand
e Limited aircraft types

e  AMC’s mission profile includes

— Worldwide cargo and passenger transport

— Air refueling
— Aeromedical evacuations

B747-f chartered from Civil Reserve Air Fleet
*Our work only addresses cargo transport

Source: www.amc.af.-mil
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 Our methodology

— Helps determine the requirements for — and
describe the design of —a new aircraft for use in
the AMC fleet

— Optimize fleet-level metrics that address
performance and fuel use
* Describe how design requirements of the new
aircraft would change for different tradeoff
opportunities between productivity and cost
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Scope and Method of Approach rurou

e Consider this as an optimization problem

— Objectives
e Fleet Productivity (speed of payload delivery)
e Fleet Operating cost (strongly driven by fuel use)

— Variables
 New aircraft requirements
 New aircraft design variables
e Assignment variables

— Constraints

e Cargo demand
e Aircraft performance
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Top Level * Design subspace
: Uncertain
Design :
Operations |
Operations
Stochastic
Mixed Integer Resource
Nonlinear —,\ allocation/assignment
Programming subspace Sampling|
Problem
E (performance metric)
Monolithic Subspace
Formulation Decomposition
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Scope and Method of Approach rueoue

e Subspace Decomposition approach
— Breaks down the computational complexity
— Solve a series of smaller sub-problems

e Controlled by a top level optimization problem

e Addresses the issue of tractability of solving a
monolithic, stochastic mixed integer nonlinear
programming (MINLP) problem
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Subspace Decomposition
Approach
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Top Level Aircraft Sizing Subspace
_ productivi Pallet, | DOC te (R )
: » minimize: on route (Range
maximize roductivity Range, gey

variable:  Pallet, Rangey, Speed, Speedy | subject to: takeoff distance

1 variables: ARy, (T/W)y, (W/S)y

Coki

Pa”etx v

— | AMC Assignment Subspace
maximize: productivity

subject to: pallet capacity,
scheduling constraints,

fuel/cost limits
Productivity

variables: Xokij
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Multi-Objective Formulation  ruroue

 Two objectives

— Maximize fleet-level productivity
— Minimize fleet-level cost
e Epsilon (Gaming) constraint formulation
— Converts multi-objective to single objective
— ldentify a primary objective

— Place limits on other objectives (inequality constraints)

A
&) 3 High cost

] g & Medium cost
Su bJeCt to f| (X) S gl I = 1_ . nObj (I %+ p) 4:' \\\I\Z\\\\\\\\\\\\\\\‘ ALLLLLALALER AL LR LAY
(7p]
g j(X) <0 S &|1  Low cost ;
2 T T T
h k (X) =0

Productivity
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Maximize Productivity

Subject to 14 < Palletx <38

2400 < Range, <3800

350 < Speed, <550

Productivity = Speed x Capacity

Pallet Capacity Bounds

Range at maximum payload
bounds (nm)

Cruise speed bounds (knots)

e Pallet capacity, Range and Speed bounds are set by strategic air lift

aircraft description

e Bounds for aircraft design variables similar to current military cargo

aircraft

13
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Aircraft Sizing Subspace

Minimize f= (DOCpaIIet,range,speed )x Direct Operating Cost
Subject to 6.0<(AR), <95 Wing aspect ratio bounds
65£(W/S)X <161 Wing loading bounds (lb/ft?)
0.18<(T/W), <0.35 Thrust-to-weight ratio bounds
S0 (Pallet, ,(AR), ,(W/S), .(T/W), )<D Aircraft takeoff distance

e Bounds for aircraft design variables similar to current military cargo
aircraft

14
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Fleet Assignment Subspace  runoue

. . P K N N
Maximize E{Z;;Zl;xp,k,i,j -(Speeolplk,i,j : Pa||9tp,k,i,j)} Productivity = Speed x Capacity
b ko
Subject to Zzzzxp,k,i,j Copii =M Fleet-level DOC or fuel limits

D X = i Xpori; Vk=123.K,

i=1 i=1

Node balance constraints
vp=123..P, Vvj=123..N

P K
2. 2-Capy ki Xoki; > dem, Demand constraints

N Starting location of aircraft
constraints

K N N ] :
NS X4 BH ki <Bs Vp=12,3..P Trip constraints
k=1 i1 j=1

X5 €10.1} Binary Variable

15
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Number of Pallets Transported between Representative Base Pair in 2006.
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Histogram of Pallets Transported between Representative Base Pair in 2006.
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Addressed using Monte Carlo sampling methods
— Repeated deterministic calculations for statistical distribution of input

parameters
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Top Level Aircraft Sizing Subspace
_ . Pallet, |
maximize:  E(productivity) Range, minimize: DOC on route (Range,)
variable:  Pallet, Range,, Speed Speedy | subject to: takeoff distance
1 variables: ARy, (T/W)y, (W/S)x
Cpkij
Pallet,
AMC Assignment Subspace
maximize: productivity
subject to: pallet capacity,
scheduling constraints,
fuel/cost limits
E(productivity) variables: Xokij
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Filtered route network from GATES

dataset
— Demand for subset served by C-5, C-17 and
747-F (~75% of total demand)
Simple three-base problem consisting
of 6 directional routes
— Extracted from the GATES dataset
— Most flown routes in March 2006

Existing fleet for AMC e
— Three C-5: 36 pallet capacity
— Three C-17: 18 pallet capacity
— Three B747-F: 29 pallet capacity

3 new aircraft X are introduced to the
existing baseline fleet . 13 PLT "3

5623 nm 2193 nm

13 PLT 9 PLT

28 PLT 3PLT

KDOV 31PLT ETAR
3438 nm
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Uncertain Demand

P New Aircraft X:
Pallet capacity =24
"""" Design range
Cruise speed

....... AR - 66
T/W =0.28
.. W/S

=139.26 Ib/ft?

=2600 nm
=550 knots

1.5 2

25 3 3.5

Normalized Expected- Productivity

New Aircraft X:
Pallet capacity =38

Designrange =2400 nm
Cruise speed =550 knots
AR =6.3

T/W =0.26

W/S =130.72 Ib/ft?
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Uncertain Demand
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Optimum pallet capacity varies based on fleet-level productivity /DOC
values

— Pallet capacity increases with fleet-level productivity
Optimum design range varies between 2400 nm to 3200 nm

— Design range increases when sampled demand instances are higher than average
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CONCLUSIONS
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Summary/Conclusions

 Developed a framework that identifies the
tradeoffs between fleet-level cost and
productivity

— Each tradeoff solution describes the design
requirements, and design variables for the new
aircraft

— Uncertainty in demand addressed using Monte Carlo
sampling techniques
 Demonstrates the viability and applicability of the
subspace decomposition framework

— Assist acquisition practitioners
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Demonstrate the decomposition framework for a
larger, i.e. realistic network

Aircraft sizing accounts for outsized/oversized cargo

Reduce computational cost associated with sampling
demand uncertainty

Generalize to other systems
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Questions?

25
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BACKUP SLIDES
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Asymmetric Demand

Prior work assumed symmetric demand*

Developed metric calculates the asymmetry in demand between
bases

Demand,, , — Demand,, | 100
X

N N
Demand asymmetry =
4 Y ;; max(Demand, ,, Demand, )

e Calculates demand asymmetry between origin-destination pairs

e The AMC network reconstructed from the 2006 GATES dataset
shows 65.15% demand asymmetry

e Symmetric demand assumption is not suited for AMC operations

*Choi, J., Govindaraju, P., Davendralingam, N., & Crossley, W. (2013). Platform Design for Fleet-Level Efficiency:
Application for Air Mobility Command (AMC). In 10th Annual Acquisition Research Symposium.
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e Used Global Air
Transportation Execution
System (GATES) dataset

e Filtered route network from
GATES dataset
— Demand for subset served
by C-5, C-17 and 747-F
(~75% of total demand)

— Fixed density and dimension
of pallet (463 L)

e Qur aircraft fleet consists of
only the C-5, C-17 and 747-F.

ISU =1 (INTERVAL) S (SLINGABLE) U (UNIT)

Source: www.amc.af.-mil
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