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Abstract 
Supplier selection plays a key role in the context of supply chain management. As recent 
emphasis has been placed on supply chain resilience, so too should such emphasis be 
placed on resilient suppliers. In particular, this work evaluates how different suppliers enable 
the supply chain to withstand the impacts of a disruption and return performance to a desired 
level in a timely manner. The primary measure of supply chain performance is taken to be 
availability, or the extent to which the products produced by the supply chain are available for 
use (measured as a ratio of uptime to total time of the use of the product). Available systems 
are important in many industries, particularly in the Department of Defense, where weapons 
systems are required in short notice but undergo regular maintenance activities. In addition to 
availability, suppliers are also measured according to their recovery rate, quality, and delivery 
rate. Suppliers are evaluated against these four criteria using a multi-criteria decision analysis 
technique. 

Introduction 
Supply chain management is becoming increasingly significant to achieve 

competitiveness in the business environment, as recently the paradigm for corporate 
management has shifted from competition between individual firms to the competition 
between supply chains (Cho et al., 2008). In supply chain management, relationships with 
suppliers have an impact on the success of the strategic goals of a buyer. Hence, it is 
necessary for a buyer to keep track of these relationships, evaluate supplier performance, 
and optimize its supply base.  

Manufacturing companies need to collaborate with various suppliers to continue their 
business activities. In manufacturing industries, raw materials and component parts can 
amount to 70% of the cost of a finished product (Stueland, 2004). In such a circumstance, 
the acquisition department can have a significant influence on cost reduction, suggesting 
that supplier selection is among the more critical functions of acquisition. 

Supplier evaluation and selection is the process of finding a capable supplier that is 
able to supply high quality products on time at the right price. Supplier selection is a multi-
criteria decision making problem that involves two major tasks: (i) determine the criteria to 
be considered and (ii) compare the eligibility of suppliers. Generally speaking, the traditional 
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criteria associated with supplier selection can be divided into qualitative and quantitative 
categories. Quantitative supplier criteria have included transportation costs, purchasing and 
order costs, delivery time, and product defect rate, while qualitative criteria have included 
product quality, warranties and claim policies, performance history, technical capability, 
geographical location, and labor relations (Luo, Rosenber, & Barnes, 2009; Liao & Kao, 
2011; Arikan, 2013; Lienland, Baumgartner, & Kunbben, 2013; Yu & Wong, 2015). 

Although research efforts have been dedicated to supplier evaluation and selection, 
accounting for resilience-based criteria for supplier selection has not been well explored 
(Hosseini & Barker, 2016). The notion of resilience, or the ability of a company or its supply 
chain to withstand and subsequently recover from a disruption, has become very important 
in the scope of supply chain management. Supplier disruptions can impose significant 
losses to the entire supply chain by discontinuing supply flows. For example, a devastating 
earthquake in central Taiwan in September 1999 had severe consequences for many 
manufacturing industries and organizations, as total industrial production losses were 
approximated at $1.2 billion (Papadakis, 2006). Many large scale semiconductor fabrication 
facilities, estimated to account for roughly 10% of the world’s production of computer 
memory chips, were damaged (Bhamra, Dani, & Burnard, 2011). The impact of the 
earthquake disaster on the PC supply chain was dramatic, as the supply of computer 
components was constrained for several months, affecting technology companies such as 
Dell, Gateway, IBM, Apple, and HP.  

In 2011, the Japanese earthquake and tsunami had similar adverse impacts to the 
global supply chain networks of automobile manufacturers (Manual, 2013). For example, 
automobile manufacturers attempted to find other sources for a special pigment used in 
automobile paint after the Japanese earthquake and tsunami disabled the main facility in 
2011. The availability of new U.S. automobiles was reduced for several months after the 
disruption of key suppliers, including the paint supplier. Availability is a key metric not only in 
industry but also in the DoD. Weapons system availability is critical to the DoD (2005), 
requiring that such systems be operational at a moment’s notice. With smaller maintenance, 
repair, and overhaul (MRO) inventories and as modern supply chains are increasingly 
vulnerable to disruptions, it is important to understand how resilient suppliers are to such 
disruptions so that system availability can be maintained. 

In this paper, we explore supply chain availability as a measure of resilience and use 
this measure in a set of supplier selection criteria. The following section offers some 
background on several components of the research, including the Technique for Order 
Preference by Similarity to an Ideal Solution (TOPSIS). The section following that discusses 
the supplier evaluation and selection criteria used in this work, and the section titled 
Illustrative Example offers an illustrative example of the methodology. Concluding remarks 
are provided in the final section. 

Background  
This section provides methodological background to some components of this 

research, including a paradigm for resilience, recent approaches to comparing suppliers, 
and a particular approach for the multi-criteria comparison of discrete alternatives. 
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Resilience Modeling 

In the last few years, the concept of resilience has been increasingly used to 
describe the behavior of systems under disruption, and several measures of resilience have 
been offered (Park et al., 2013; Hosseini et al., 2015). In particular, this work adopts a 
graphical paradigm of system behavior before, during, and after a disruption is provided in 
Figure 1 (Henry & Ramirez-Marquez, 2012; Barker et al., 2013; Pant et al., 2014). It is 
assumed that system performance, measured with function ߮ሺݐሻ, reduces after a disruptive 
event ݁௞ and improves to an acceptable level over time (e.g., flow along a network, 
availability of a system or supply chain). Figure 1 highlights three dimensions of resilience: 
reliability, vulnerability, and recoverability. The normal behavior of the system in the time 
interval ୣݐ െ  ଴, or in its Stable Original State, ܵ଴, is described by the system’s reliability. Theݐ
vulnerability dimension of resilience describes the extent to which ߮ሺݐሻ degrades to a 
Disrupted State, ܵୢ, during the time interval ୢݐ െ  The recovery of the system to its Stable ୣݐ
Recovered State, ୤ܵ, occurs during the time interval ݐ୤ െ   .ୢݐ

 

 Graphical Depiction of Decreasing System Performance,  (t), Across 
Several State Transitions Over Time 

Supplier Selection Approaches 

Various methods have been implemented to deal with supplier selection problems, 
including multi-criteria decision analysis techniques, mathematical programming, and 
artificial intelligence, among others. Liao and Kao (2011) combined a fuzzy extension of 
TOPSIS and multi-choice goal programming to solve the supplier selection problem, 
allowing decision makers to consider multiple aspiration levels. Kilincci and Onal (2011) 
employed a fuzzy extension of the analytic hierarchy process (AHP) for supplier selection. 
Karsak and Dursun (2014) introduced an approach based on integrating quality function 
deployment and data envelopment analysis for selecting the best among supplier 
alternatives, studying the interdependence among supplier evaluation criteria with the 
construction of a house of quality. Deng and Chen (2011) proposed a methodology based 
on fuzzy set theory and Dempster-Shafer theory to deal with the supplier selection problem. 
Igoulalene, Benyoucef, and Kumar Tiwari (2015) proposed a fuzzy hybrid multi-criteria 
decision analysis approach based on combining fuzzy consensus-based possibility measure 
and fuzzy TOPSIS. Kar (2014) integrated fuzzy AHP and fuzzy goal programming for the 
supplier selection problem. Lee, Cho, and Kim (2014) combined TOPSIS and AHP based on 
fuzzy theory to determine the prior weights of criteria and select the best-fit suppliers by 
taking subjective vague preferences of decision making into account. You, You, Liu, and 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 171 - 

Zhen (2015) developed a new multi-criteria decision model based on using interval 2-tuple 
linguistic variables and an extended VIKOR approach to select the best supplier under 
uncertainty and incomplete information. Dalalah, Hayajneh, and Batieha (2011) adjusted 
DEMATEL to deal with fuzzy rating and assessments by converting the relationship between 
causes and effect of the criteria into an intelligible structural model. Deng, Hu, Deng, and 
Mahadevan (2014) presented a new form of representation for uncertain information 
involved with supplier selection, called D numbers, which the authors then integrated with 
AHP. Fazlollahtabar et al. (2011) proposed a multiobjective mixed integer programming for 
supplier selection with an objective to minimize total supplier costs including cost, total 
defect rate, total penalized earliness and tardiness, and total value of purchase.  

TOPSIS  

TOPSIS, which will be used in this paper for combining supplier performance along 
several criteria, was developed by Hwang and Yoon (1981) for finding the best among 
several discrete alternatives given multiple decision criteria. The basic principle of TOPSIS 
is that the chosen alternative should be the closest to the best (or positive ideal) solution 
and farthest from the worst (or negative ideal) solution. 

Suppose that there are ݊ criteria ሺܥଵ, … ,  ௡ሻ which are considered to discern amongܥ
m discrete alternatives ሺܣଵ, … ,  ௜௝ be the performance of the ݅th alternative for theݔ ௠ሻ. Letܣ

݆th criterion. The weight of importance of the ݆th criterion is ݆, such that ∑ ௝ݓ ൌ 1௡
௝ୀଵ . 

TOPSIS is applied to rank the m alternatives with six steps, as follows: 

Step 1. Calculate the normalized value ݊௜௝ for ݅ ൌ 1,… ,݉ and ݆ ൌ 1,… , ݊ Equation 
1 represents one such approach to normalizing the value of the criteria (which could be of 
different magnitudes) for each alternative.  

݊௜௝ ൌ
௫೔ೕ

ට∑ ௫೔ೕ
మ೘

೔సభ

       (1) 

 

Step 2. Calculate the weighted normalized value ݒ௜௝ with Equation 2. 

௜௝ݒ ൌ  ௝݊௜௝      (2)ݓ
 

Step 3. Determine the positive ideal solution ܣା and the negative ideal solution A^- 
with Equations 3 and 4, where ܵ஻	 and ܵ஼ denote the set of benefit criteria and set of cost 
criteria, respectively. The positive ideal solution has all the best attainable criteria values, 
while the negative ideal solution has all worst possible criteria values. 

Equation 7 suggests that the positive ideal solution consists of those weighted 
performance ratings that maximize benefit criteria and minimize cost criteria. Likewise, the 
negative ideal solution, or the weighted performance ratings that represent the smallest from 
set Cା and largest from set Cି, is provided in Equation 8. 

ାܣ ൌ ሼݒଵ
ା, … , ௡ାሽݒ ൌ ቄቀmax

݅
݆݅ݒ |݆ ∈ ቁ	ܤܵ , ቀmin

݅
݆݅ݒ |݆ ∈  ቁቅ  (3)ܥܵ

 

ିܣ ൌ ሼݒଵ
ି, … , ௡ିሽݒ ൌ ቄቀmin

݅
݆݅ݒ |݆ ∈ ቁ	ܤܵ , ቀmax

݅
݆݅ݒ |݆ ∈  ቁቅ  (4)ܥܵ
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Step 4. Calculate Euclidean distance between each alternative and the positive and 
negative ideal solutions with Equations 5 and 6, respectively, for all ݅. 

௜ܵ
ା ൌ ට∑ ൫ݒ௜௝ െ ௝ݒ

ା൯
ଶ௡

௝ୀଵ      (5) 

 

௜ܵ
ି ൌ ට∑ ൫ݒ௜௝ െ ௝ݒ

ି൯
ଶ௡

௝ୀଵ      (6) 

 

Step 5. Calculate the relative closeness to the ideal solution for all ݅. 

௜ܥܴ ൌ
ௌ೔
ష

ௌ೔
శାௌ೔

ష      (7) 

 

Step 6. Rank the alternatives according to ܴܥ௜ in Equation 7. The larger the value of 
 ௜, the closer alternative ݅ is to the positive ideal solution. As such, alternatives are rankedܥܴ
according to descending values of ܴܥ௜. 

Supplier Selection Criteria 
Dickson (1966) introduced 23 supplier selection criteria still found in literature today, 

including quality, delivery, performance history, and price. Recently, Hosseini and Barker 
(2016) characterized supplier selection criteria into primary (i.e., traditionally used criteria 
with a history in the literature), green (i.e., environmentally-focused criteria recently 
appearing in the literature), and resilience (i.e., dealing with a supplier’s ability to withstand 
and recover from a disruption) categories.  

Availability Criterion 

The performance function for a supply chain,	߮ሺݐሻ ൌ  ሻ, is assumed to be itsݐ଴ሺܣ
availability, measured as a proportional level of service (ratio of uptime to total time) that can 
be attained by the products produced by a supply chain. This work makes use of a 
formulation by Sherbrooke (2004; and extended computationally by Nowicki, Randall, and 
Ramirez-Marquez, 2012) to redistribute supplies coming from a number of suppliers in 
meeting demand in a multi-echelon supply chain.  

An example is provided in Figure 2, where the supply chain has a central depot, two 
intermediate locations (e.g., end-item integrators), and six field locations (e.g., sub-assembly 
suppliers). Each location within an echelon has an input vector that defines the cost, 
reliability, and maintainability of a spare item at that location. The item’s reliability is defined 
in terms of average number of demands per year, and the item’s maintainability is defined 
as mean time to repair in days. Availability measure ܣ଴, as well as the associated spare 
strategy for each supplier, was obtained from the algorithm described in Nowicki et al. 
(2012). The objective of the algorithm is to determine the vendor mix and quantity of spares 
that either maximizes the operational availability subject to a budget constraint (or otherwise 
minimizes cost subject to an operational availability target).  
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 Supply Chain Topology and Characteristics Resulting in an Availability 
of 0.92 

Let E represent the set of echelons in a multi-echelon supply chain, with ݁ ൌ
0,1, … , ݈ ௘ be the set of locations within ݁, with indexܮ Let .|ܧ| ൌ 1,2, … ,  ௟௘ beܫ ௘|, and letܮ|
the set of items at location ݈ within echelon	݁. As the index of an item or product is ݅, the 
demand quantity of item ݅ at location ݈ within echelon ݁ in any fixed interval of length ݐ is 

௜ܰ
௟௘ሺݐሻ. And ݏ௜

௟௘	represents the stock level of item ݅ at location ݈ within echelon ݁.  

To calculate the availability of the multi-echelon supply chain, the expected number 
of backorders must be identified as the expected amount of unfilled demand that exists at a 
point in time. Note that unfilled demand is a function of a particular delay scenario, and as 
such, depends on the number of existing spares at each location; within each echelon they 
can be used as a surrogate measure for operational availability. Therefore, the amount of 
backorders for item ݅ can be calculated with Equation 8 (Nowicki et al., 2012). 

൫ܱܤ ௜ܰ
௟௘ሺݐሻหݏ௜

௟௘൯ ൌ ൜ ௜ܰ
௟௘ሺݐሻ if ௜ܰ

௟௘ሺݐሻ ൐ ௜ݏ
௟௘

0 otherwise
																																								(8) 

Note that a backorder of size ௜ܰ
௟௘ሺݐሻ െ ௜ݏ

௟௘ occurs whenever the number of demands 
exceeds the inventory on-hand, or ௜ܰ

௟௘ሺݐሻ ൐ ௜ݏ
௟௘. As such, the expected number of 

backorders can be calculated with Equation 9, where ݔ is the random variable. 

൫ܱܤൣܧ ௜ܰ
௟௘ሺݐሻหݏ௜

௟௘൯൧ ൌ ෍ ൫ݔ െ ௜ݏ
௟௘൯

ஶ

௫ୀ௦೔
೗೐ାଵ

ܲൣ ௜ܰ
௟௘ሺݐሻ ൌ  (9)																			൧ݔ

Finally, Sherbrooke (2004) demonstrated that the availability of a multi-echelon 
supply chain denoted by ܣ଴ system can be calculated with Equation 10. 

଴ܣ ൌ 100ෑෑ൫1 െ ൫ܱܤൣܧ ௜ܰ
௟௘ሺݐሻหݏ௜

௟௘൯൧/݊൯
௡

ூ೗ಶ

௜ୀଵ

௅ಶ

௟ୀଵ

																					(10) 

In this study, we would like to identify a backup supplier who can improve the 
availability of the supply chain when a primary supplier is disrupted. As such, a more 
resilient supply chain would be able to rebound to an availability value similar to (or 
improved relative to) baseline availability performance in a timely fashion.  

Recovery Time, Quality, and Delivery Rate Criteria 

In addition to the availability measure, other criteria are used to compare suppliers. 
Pairing with availability is recovery time, or the amount of time taken to engage an 
alternative supplier to improve availability. Hence, a supplier with a shorter recovery time 
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(measured in days) is more desirable because it contributes to a more resilient supply chain 
when combined with availability. 

The ability to meet specifications consistently is referred to as quality, a commonly 
used criterion in supplier evaluation. The quality of the product, process, or system is 
defined here as the percentage of products that meet the expectations of manufacturers.  

Dickson (1966) defines delivery rate as the percentage of successful deliveries to 
meet specified delivery schedules. Its meaning is extended into criteria such as freight 
terms, lead time, delivery capacity, shipment quality, cycle time, and JIT delivery capability. 

Availability, recovery time, quality, and delivery rate criteria are integrated together 
using TOPSIS for the comparison of suppliers that can be engaged when a primary is 
disrupted. This idea is illustrated with an example in the next section. 

Illustrative Example 
An example of a three-echelon supply chain of spares illustrates the availability and 

other criteria to evaluate and compare suppliers. Figure 2 illustrates the baseline supply 
chain configuration with the stock of spares assigned in each of the echelons. 

Recall that each location within an echelon has an input vector that defines the cost, 
reliability (average demand per year), and maintainability (mean time to repair in days) of 
spare items at that location. In Figure 2, suppliers 1 and 2 and suppliers 5 and 6 supply to 
intermediate depot locations, while suppliers 3 and 4 supply to the main depot location. Note 
that the availability of the spares supply chain is calculated using Equation 10. More 
information about how the availability of multi-echelons can be calculated can be found in 
Sherbrooke (2004). 

It is assumed that supplier 1 is disrupted and becomes inoperable, as illustrated in 
Figure 3. The availability reduces from 0.92 to 0.80.  

 

 Availability Reduction When Supplier 1 Becomes Inoperable 

Assume that three suppliers (A, B, and C) are evaluated as replacements for supplier 
1. When their cost, reliability, and maintainability information are individually inserted in the 
availability algorithm, the supply chain availability resulting from alternative suppliers A, B, 
and C are 0.95, 0.92, and 0.90, respectively. These availability values, as well as the values 
of the quality, delivery, and recovery time criteria, are found in Table 1. Figure 4 provides an 
illustration of the resilience, or the combination of availability improvement and recovery 
time, of the three suppliers.  
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 Depiction of the Contributions of the Three Alternative Suppliers to 
Supply Chain Resilience 

 

 Criteria Values for the Three Alternative Suppliers to Replace Supplier 1 

 

Criteria weights of w=[0.3,0.3,0.2,0.2] are assumed for availability improvement, 
recovery time, quality, and delivery rate, respectively. The integration of the four criteria and 
their weights using TOPSIS results in the ranking provided in Table 2. As such, supplier A 
would be the best fit to replace supplier 1 in the event that supplier 1 becomes inoperable, 
according to the four criteria and how those criteria are weighted.  

 Closeness Coefficient and Rank for Each of the Alternative Suppliers 

 

Conclusions 
The study provides a means to evaluate and select suppliers based on their ability to 

enhance supply chain resilience when a primary supplier is disrupted. As the availability of 
particular systems is important, availability is chosen as the primary measure of supply chain 
performance. Resilience is addressed with the combination of (i) improvement in supply 
chain availability and (ii) the time required for an alternative supplier to become available to 
the supply chain. Other criteria, including common supply chain characteristics of supplier 
quality and delivery rate, were also included. Ultimately, a multi-criteria decision analysis 
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technique, TOPSIS, was used to rank the alternatives across the multiple criteria and their 
importance. 

A small (initial) illustrative example helps illustrate how an algorithm for multi-echelon 
supply chain availability can be used in a supplier evaluation and selection problem that 
emphasizes supply chain resilience. Future work will expand this initial illustration to a larger 
supply chain while performing a sensitivity analysis of criteria weights.  
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