
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2008-07

Vision-based tracking and motion estimation
for moving targets using unmanned air vehicles

Dobrokhodov, Vladimir N.; Kaminer, Isaac I.; Jones, Kevin
D.; Ghabcheloo, Reza
AIAA

V.N. Dobrokhodov, I.I. Kaminer, K.D. Jones, R. Ghabcheloo, "Vision-based tracking
and motion estimation for moving targets using unmanned air vehicles," Journal of
Guidance, Control and Dynamics, v.31, no.4, (July-August 2008), pp. 907-917.
http://hdl.handle.net/10945/53776

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



Vision-Based Tracking and Motion Estimation for Moving
Targets Using Unmanned Air Vehicles

Vladimir N. Dobrokhodov,∗ Isaac I. Kaminer,† and Kevin D. Jones‡

Naval Postgraduate School, Monterey, California 93943

and

Reza Ghabcheloo§

Instituto Superior Técnico (IST), 1049-001 Lisbon, Portugal

DOI: 10.2514/1.33206

This paper addresses the development of a vision-based target tracking system for a small unmanned air vehicle.

The algorithm performs autonomous tracking of a moving target, while simultaneously estimating geographic

coordinates, speed, and heading of the target. Tight real-time integration of unmanned air vehicle’s video and

telemetry data streamswith georeferenced database allows for reliable target identification, increased precision, and

shortened time of target motion estimation. A low-cost off-the-shelf system is used, with a modified radiocontrolled

aircraft airframe, gas engine, and servos. Tracking is enabledusing a low-cost,miniature pan-tilt gimbal. The control

algorithm provides rapid target acquisition and tracking capability. A target motion estimator was designed and

shown in multiple flight tests to provide reasonable targeting accuracy. The impact of tracking loss events on the

control and estimation algorithms is analyzed in detail.

Nomenclature

c� = parameter characterizing region of attraction
e1, e2 = stability margins
f = focal length of the camera
g’� = nonlinear transformation
H = Jacobian of nonlinear transformation
fIg, fBg, fCg = inertial, body, and camera coordinate frames
K1, K2 = nonlinear estimator coefficients
k1, k2 = feedback control law coefficients
p, p̂ = vector, position of target with respect to UAV

and its estimate
pb = vector, position of UAV in local tangent plane

(LTP)
pc, p̂c = vector, position of camera center with respect

to target and its estimate
pt = vector, position of target in LTP
qc, rc = pitch and yaw rate commands
I
CR,

I
BR,

B
CR = coordinate transformation matrices

s = tracking loss event
t, � = time
u, v = camera measurements
V, V = airplane velocity vector and its magnitude
Vg, Vg = airplane ground velocity speed vector and its

magnitude
Vp = velocity vector tangent to the line of sight

(LOS)

Vt, Vt, V̂t = target velocity vector, its magnitude and
estimate

wy = process noise
x = state vector
ym = camera and altitude measurements
� = rate of tracking loss events
� = derivative constant, function of c�
" = angle between the LOS and the camera heading
� = angle between Vg and �p vectors
� = LOS angle
�g = LOS vector
�min, �max = eigenvalues
�p = vector perpendicular to the LOS
� = state vector of linear system
� = horizontal range from the air vehicle to the

target
�� = reciprocal of �
�d = desired horizontal range to target
�e = range error
’c, �c = roll and pitch angles of the camera orientation

in inertial frame
 , _ = UAV’s heading and turn rate
 h = gimbal pan angle
 t = heading of moving target

I. Introduction

T HE past decade has witnessed a remarkable increase in the
utilization of unmanned air vehicles (UAVs) both in the United

States and abroad. This growth is a result of recent advances in
communications, solid state sensors, and power supply technologies
that have made miniature autopilots (AP) and various sensing
payloads a reasonable solution for many autonomous applications.
Modern UAV applications include a wide variety of intelligence and
reconnaissancemissions, search and rescue, emergency services, fire
scouting, small payload delivery, and potentially many others.

Althoughmanyof the largeUAVsystems are capable of executing
complex missions, their cost is very high and as a result their
availability is limited. Consequently, there is much interest in the
development of small, low-cost platforms which can perform some
of the tasks normally assigned to larger UAVs, for example, vision-
based (VB) target tracking and motion estimation. (The term motion
refers to position, speed, and heading of the moving target. It is used
here to distinguish the presented results from the algorithms
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previously published in [1] where only position estimation filter was
described.) This paper addresses the development and flight testing
of such a system for a small UAV and extends previous work
reported in [1,2].

The complete system consists of a modified remotely controlled
(RC) small aircraft equipped with an AP and a miniature pan-tilt
gimbaled camera built using commercial off-the-shelf (COTS)
components (see Fig. 1). In a typical operational scenario when the
UAV is in autonomous flight, the system operator may select a target
of interest using a joystick that steers the onboard camera. Once a
target is identified by the operator, the image processing algorithm
[3] computes the target tracking box and provides the position of the
centroid of this box in the image frame to the control algorithm. This
information is used by an integrated UAV-gimbal control algorithm
to steer the UAV and the gimbal to keep the target in the center of the
camera frame (i.e., drive the position of the centroid to zero). As
shown in Sec. II this control strategy results in an orbital motion of
the UAV around the target. In parallel with the control algorithm the
centroid position provided by the image processing software is used
by a real-time nonlinear filter to obtain estimates of the target motion
including position, speed, and heading.

Thus this paper addresses two problems. The first one includes the
development of a vision-based control algorithm for integrated
control of the UAV and gimbaled camera tomaintain the target in the
center of the image frame. Because the target position is not known, it
is preferable that for feedback this algorithm relies exclusively on the
information obtained by the image processing software (centroid
position in the camera frame). Ideally, the proposed algorithm should
be able to maintain a desired range to the target, although the actual
range is not known. The second problem addressed in the paper
involves estimating the target position and velocity using the
information provided by the image processing software and the
onboard global positioning system (GPS) and inertial measurement
unit (IMU). Estimation of the target position is usually referred to in
the literature as target geolocation, whereas combined position and
velocity estimation is known as target motion estimation. A critical
issue that must be addressed by any vision-based estimation
algorithm is the presence of tracking loss events defined here as any
event that causes the image processing software to lose track of
the target.

Vision-based control of robotic manipulators is a mature field as
evidenced by an excellent survey paper [4], where the two most
popular approaches to this problem are outlined. In the first approach
the control task is defined using the information obtained in the
image frame only, while the second approach involves two steps:
1) using the image frame information to estimate target position and,
possibly, velocity in a global coordinate system, and then 2) using
these target motion estimates to define a control task. Because
estimation introduces lag into the feedback system, avoiding it, if at
all possible, makes the first approach preferable.

More recently, the problem of vision-based control and target
geolocation has been addressed by the UAV community; see, for
example, [5–17], and references therein. For vision-based control,
the majority of the papers use an existing capability of modern AP to
establish circularmotionwith respect to an orbital waypoint (selected
by the operator at the proposed target position) at a fixed altitude and
radius. During the target localization (the process of estimating target
position) a UAV may adjust its flight path by changing the
coordinates and radius of the orbital waypoint [15] which is the

simplest technique for low altitude and low speed UAVs. For high
altitudeUAVs, because the target is unlikely to leave theUAV’sfield
of view in a short period of time, there are no time constraints for
target localization and therefore coordinated UAV-gimbal control is
not considered [16,17]. Thus, the main focus of these papers is target
geolocation.

Target geolocation for airborne applications is done using two
approaches. The first one involves finding an intersection of the
camera line of sight (LOS) with a local Earth surface [18]. This
approach is often referred to as a “geolocation via ray intersection.”
The second approach [19] employs variations of triangulation for a
set of bearing-only measurements or estimates of distances to the
target. Triangulation requires two measurements of the target
position in the camera frame. Therefore, the distance between two
consecutive measurements (baseline) must be sufficiently large to
guarantee low dilution of precision (DOP). Clearly, for a small UAV
flying around a target, any of the triangulation approaches will result
in a large wait time between the measurements. Moreover, high
levels of noise in the LOS attitude measurements amplified by the
distance to the target produce errors of the target position estimates
that are on the order of 15–25% of the entire LOS length. Therefore,
target geolocation from a small UAV flying sufficiently close can be
effectively estimated using triangulation. On the other hand, target
geolocation from large distances requires more sophisticated
techniques.

Target motion estimation based on image measurements from a
fixed-wing UAV has been recently addressed in [15–17]. A square-
root implementation of the sigma point filter is used in [16,17] to
estimate target position and velocity together with a confidence
bound for estimation. The confidence bounds for the position
estimates are obtained using a priori known noise distributions for all
sensors including gimbal angles and camera measurements. The
“measurement” of the target is assumed to be constantly at the center
of the image frame, therefore significantly limiting applicability of
the solution. Performance results converge to a 95% confidence
interval over a period of 40 and 80 s for fixed and moving targets,
respectively. However, coordinated control of the UAV and
gimbaled camera is not considered. Similar research is presented in
[15]where the authors consider target localization from theminiature
high-wing loading UAV. A simple and elegant solution that uses
camera measurements of the target, IMU, and GPS and provides a
geometric calculation of the LOS intersecting flat ground is
proposed. Special emphasis is placed on the analysis of the noise and
uncertainty propagation. Interestingly, most of the papers discussed
so far do not address a critical issue that always arises in vision-based
applications – tracking loss events.

On the other hand, this issue has been addressed extensively in
robotics literature. See, for example, [14] and references therein,
where the authors extensively discuss effects of nonhomogeneous
illuminations and occlusions on tracking loss events. Traditional
methods to deal with occlusions as suggested in [14] are to use
multiple cameras or to predict the movement of the target using a
track memory containing the history of the previous locations of the
target. Another approach reported in [20] includes automatic camera
placement that increases the feasible region, circumvents occlusions,
and provides uninterrupted tracking. Alternative to pure vision or
image processing techniques is a variety of optical flow algorithms
[7,21–23] addressing the task of 3-D motion reconstruction from the
fast sampled 2-D image samples. The computation of optical flow
(velocity field) involves several assumptions resulting in numerical
issues of differentiation (ill-posed problem); however, the
framework is initially designed to succeed in the presence of
occlusions.

Although a single UAV is capable of carrying multiple cameras,
the techniques reported in robotics literature cannot be easily
extended to airborne applications due to highly dynamicUAV-target
relative motion. One solution [21] to this problem consists of
employing multiple UAVs that can maintain an uninterrupted view
of the target from different locations and angles. Another involves a
swarm ofmicro UAVs deployed from amother ship that can provide
imagery of the hidden targets. However, because each approach uses

Fig. 1 Modified RC UAV with a gimbaled camera and customized
avionics.
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limited throughput wireless communication to deliver compressed
video [24] and telemetry to the human operator, the tracking loss
events are unavoidable and must be explicitly addressed. This issue
has been central to the design of the particle filter reported in [6].
Results show that the particle filter can estimate the target bearing
efficiently, even if the image processing algorithm loses track of the
target for as many as four consecutive frames.

Previous work by the authors addressed the issue of tracking loss
events in [25,26]. In [26] a technique for the design of nonlinear
vision-based estimators was proposed and applied to the estimation
of a UAV position and velocity with respect to a moving ship. The
problem was cast in the linear parameter-varying (LPV) framework
and the paper provided sufficient conditions for regional stability and
performance of the resulting nonlinear estimators. An important
feature of the proposed estimators was to complement the vision-
based information with the onboard GPS and IMU measurements.
The paper suggested dead reckoning as an informal way to deal with
tracking loss events, that is, when vision-based measurements are
unavailable the estimator integrates GPS/IMU information to
provide estimates of the ship position and velocity. These ideas were
formalized in [27] where a concept of brief instabilities was
introduced (the paper showed that tracking loss events can be
modeled as brief instabilities) and sufficient conditions for stability
and performance of LPV systems with brief instabilities were given.
These conditions were then used to extend the results in [25] to
include brief instabilities in the nonlinear estimator design.
Furthermore, both works [25,26] have shown that the lower bound
on the estimator performance is related to DOP.

The nonlinear estimator used in this paper to estimate target
motion is based on the work previously reported in [25–27]. In [27]
results obtained in [26] were used to develop a vision-based
estimator that complements the onboard Doppler velocity and vision
measurements for underwater applications. Furthermore, a small
change in the structure of the estimator was introduced that provided
better convergence properties. In this paper we apply results of [27]
to the estimator proposed in [26] to obtain a nonlinear estimator that
integrates vision-basedmeasurements with the information provided
by the onboard IMU and GPS to estimate target motion in the
presence of tracking loss events. The resulting estimator is
extensively tested in simulations, exhibits solid performance in the
absence of tracking loss events, and is shown to provide smooth
degradation of performance as the duration of tracking loss events
increases. These findings are supported by flight test results.

Finally, this paper introduces a novel nonlinear control algorithm
for integrated control of the UAV and the gimbaled camera that
maintains a target in the center of the image frame. For feedback, this
algorithm relies exclusively on the information obtained by the
image processing software (centroid position in the camera frame),
thereby avoiding any lags caused by introducing estimators in the
feedback loop. Furthermore, a critical feature of the proposed
algorithm is that it can maintain a desired range to target, when the
actual range is not known. The paper provides conditions for
asymptotic stability of this vision-based system for the case of
stationary targets and conditions for ultimate boundedness if the
target is moving. The proposed control algorithm is shown to exhibit
good performance both in simulation and in flight test.

This paper is organized as follows. The design of the UAV control
algorithm is discussed in Sec. II. The development of the target
motion estimator is included in Sec. III. The systems integration,
flight test setup, and results of flight experiments with stationary and
moving targets are discussed in Sec. IV. The paper ends with some
concluding remarks.

II. Control System Development

Consider Fig. 2, illustrating the horizontal projection of the UAV-
target kinematics in the inertial frame fIg. (It is assumed that the
onboard AP is capable of maintaining level flight of the UAV and
that the onboard 2-axis gimbal is inertially stabilized. This justifies
formulation of the target tracking and UAV control tasks in a
horizontal plane.) Let � denote the horizontal range from the UAV to

the target, Vg, the UAV ground speed, �g, the LOS vector, and �p,
the vector perpendicular to �g. Furthermore, let " denote the angle
between the LOS vector and the camera centerline (" represents a
target error in frame fCg connected to the camera), �, the LOS angle,
 , the UAV heading,  h, the gimbal pan angle, and �, the angle
between the Vg and �p vectors. In addition, suppose the target is
moving with constant speed Vt, and heading,  t as shown in Fig. 2.

The following set of basic kinematical relations is derived directly
from the kinematics of Fig. 2. First, observe that

��  � �� � 	=2� (1)

Next, projecting the UAV and target speed vectors onto the LOS
results in the time derivative of the horizontal range to the target

_���Vg sin �� Vt sin� t � � � ��� (2)

Similarly, projecting the same vectors onto the line orthogonal to
the LOS produces the rotation speed of the LOS

_��
Vg cos �

�
� Vt cos� t � � � ���

�
(3)

Finally, an expression for the tracking error " is given by

"� ��  �  h (4)

Substituting Eq. (3) into time derivatives of Eqs. (1) and (4)
produces the following set of equations describing the kinematics of
the tracking problem:

_���
Vg cos � � Vt cos� t � � � ���

�
� _ 

_"�
Vg cos � � Vt cos� t � � � ���

�
� _ � _ h

_���Vg sin �� Vt sin� t � � � ���

(5)

Note that the two angles � and " constitute the UAV guidance and
gimbal control errors (see Fig. 3). Therefore, the control objective is

to drive " and � to zero using theUAV turn rate _ and gimbal pan rate
_ h as control inputs. This results in the UAV circling around the
target whilemaintaining the target in the center of the image obtained
by the camera.

To achieve this, the following control law is proposed:

_ �
Vg
�d

cos � � k1�; _ h � k1�� k2" (6)

where �d denotes a desired horizontal range to the target to be
selected by the operator, and k1, k2 are the feedback coefficients.
Control law Eq. (6) is an extension of the one initially used in [1],
where an operator selected bias was used instead of the term
�Vg=�d� cos �. Furthermore, the control law Eq. (6) uses information

Fig. 2 Moving target tracking for the control law Eq. (2).
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obtained in an image frame only (estimated target motion is not used)
and therefore it avoids introducing additional lag in the feedback
loop—a feature whose benefits were discussed in the Introduction.

Remark 1: The nonlinear control law Eq. (6) includes an
interesting feature. As shown below, it drives the range to the target
�, to the desired value �d. This is done for the unknown �. Intuition
suggests that this can be achieved by driving the UAV’s yaw rate to
the desired value Vg=�d. This emphasizes the fact that the vision-
based control law Eq. (6) does not require knowledge of the distance
to the target and is thus consistent with the design philosophy
discussed in the Introduction: for feedback use vision only.

Define �e � �1=�� � �1=�d�, ��� �e � �1=�d�, and _�e�
��1=�2� _�. Assuming that target heading is constant and can be
arbitrarily chosen, without loss of generality, we chose  t � 0 deg;
the first equation in Eq. (6) is not affected because the control law is
chosen for the turn rate of the UAV. Then it can be shown that the
feedback system consisting of Eqs. (5) and (6) is given by

_���Vg�e cos � � k1�� Vt cos�� �  r� ��
_�e � ��2Vg sin � � Vt sin�� �  r� ��2

_"� Vg�e cos � � k2" � Vt cos�� �  r� ��
(7)

where  r represents relative heading  �  t of the UAV with
respect to the target.

Note that the system Eq. (7) is a cascaded interconnection of two
subsystems

_�
_�e

� �
� �Vg�e cos �� k1�� Vt cos�� �  r� ��

��2Vg sin � � Vt sin�� �  r� ��2
� �

(8)

and of

_"� Vg�e cos � � k2" � Vt cos�� �  r� �� (9)

For stability analysis, it is convenient to rescale � by introducing a
new state variable �̂� �=�d:

_x :�
_̂�
_�e

� �

� �Vg�e cos��̂�d�=�d � k1�̂� Vt cos��̂�d �  r� ��=�d
��2Vg sin �̂�d � Vt sin��̂�d �  r� ��2

� �
(10)

where x� ��̂ �e�T . The following two propositions address stability
of the subsystem Eq. (10).

Proposition 1: Consider a linear time-invariant system G:

_�� �k1 �Vg=�d
Vg=�d 0

� �
� �: A0�

where Vg 2 �Vgmin
; Vgmax

� and �d 2 ��dmin; �dmax�. ThenG is globally
exponentially stable for any k1 > 0.

Proof: Define a symmetric matrix

P�
1
k1

�d
2Vg

�d
2Vg

k2
1
�2
d
�2V2

g

2k1V
2
g

" #

Then P is positive definite (P > 0) for any k1 > 0 and
AT0P� PA0 ��I, which completes the proof.

Proposition 2: Define a compact set �c � f& : &TP& � c2g,
where the matrix P is given above and c� �c2�=�2d��min�P�,
0< c� < 1.

i) Suppose Vt � 0 m=s and

�max�P�<
�d

2�Vg
�Condition 1�

holds for all constant Vg 2 �Vgmin
; Vgmax

� and �d 2 ��dmin; �dmax�,
where

� � c�

�����������������������������������������������������
c2�
4

�
�
�
2� c� �

c�
6

�
2

s

Then the origin of Eq. (10) is exponentially stable equilibrium for any
x�0� 2 �c.

ii) Suppose, Condition 1 holds and

c� �

�����������������
�max�P�
�min�P�

s
2Vt�1� c��

�����������������������������
1� �1� c��2

q
�max�P�

�d � 2�Vg�max�P�
> 0

�Condition 2�

is valid for all Vt: supt	0jVt�t�j � Vtmax
, Vg 2 �Vgmin

; Vgmax
�, and

�d 2 ��dmin; �dmax�. Then system Eq. (10) is ultimately bounded for
any x�0� 2 �c.

Proof: See the Appendix.
Remark 2: Because �̂� �=�d, we conclude that stability and

ultimate boundedness of the system Eq. (10) imply stability and
ultimate boundedness of feedback system Eq. (8).

Remark 3: Consider system Eq. (9): _"� Vg�e cos ��
k2" � Vt cos�� �  r� ��. Notice that the homogeneous system _"�
�k2" is globally uniformly exponentially stable and therefore Eq. (9)
is “bounded-input/bounded-output” stable. Suppose Vt � 0 m=s.
Then it [28] follows from Proposition 2 that Vg�e cos �! 0 and
therefore "! 0 rad. On the other hand, if Vt ≠ 0 m=s the term
�Vt=�d� cos�� �  r� �� in Eq. (5) is bounded in �c and therefore
so is ".

Remark 4: We notice that Condition 1 guarantees that �d �
2�Vg 
 �max�P�> 0 for all constant Vg 2 �Vgmin

; Vgmax
� and

�d 2 ��dmin; �dmax�. Therefore, Condition 2 can always be satisfied
for sufficiently small Vt.

Remark 5: Conditions 1 and 2 are used to select an appropriate
value for the gain k1 as illustrated in Fig. 4 for the cases of stationary
and moving targets. Let

e1 � �max�P� �
�d

2�Vg

and

e2 � c� �

�����������������
�max�P�
�min�P�

s


2Vt�1� c��

�����������������������������
1� �1� c��2

q
�max�P�

�d � 2�Vg�max�P�

Figures 4a and 4b correspond to the case of a stationary target, where
Fig. 4a includes a 3-D plot of e1 vs k1 and c� for typical values of
Vg � 25 m=s and �d � 200 m. Figure 4b shows the intersection of
the plain e1 � 10�4 with the 3-D surface shown in Fig. 4a for
increasing values of �d (Vg � 25 m=s). These intersections result in
a family of 2-D graphs of k1 vs c�. [We observe that c� represents the
size of the region of attraction (RA). For example, if c� � 0:1, then
exponential convergence to the origin is guaranteed for initial values
j��0�j< 0:1 rad and 0:9�d � ��0� � 1:1�d.] Clearly, e1 � 10�4

implies that Condition 1 is satisfied for c� � 0:14 at the selected
nominal flight condition and for a range of values of the gain k1.
Furthermore, Condition 1 illustrated in Fig. 4a provides an optimal
choice of k1 that maximizes the size of the RA. For example, for

Fig. 3 Illustration of the control strategy.
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�d � 200 m and maximum c� the best choice of feedback gain is
k1 � 0:15.

The case of the moving target (Condition 2) is illustrated in
Figs. 4c and 4d. Figure 4c includes a 3-Dplot of e2 vs k1 and c� for the
same values ofVg and�d as above and for a targetmovingwith speed
Vt � 1 m=s. Analysis of the size of the RA characterized by the
range of c� shows that it is significantly smaller (an order of
magnitude)when the target ismoving,which is expected. The impact
of �d on the size of the RA is almost identical to the case of a
stationary target (see Fig. 4a) except for the fact that the maximum c�
is about 0.04 (vs 0.14 for the fixed target). The dependence of the size
of RA on �d is illustrated in Fig. 4c, where the 3-D surfaces in Fig. 4d
are plotted for different values of �d. This analysis shows that the
gain k1 must increase as the range to the target decreases. This
observation is rooted in the kinematics of the problem: the turn rate of
the LOS is bounded by �jVt � Vgj=�d; jVt � Vgj=�d� and is therefore
inversely proportional to �d. Because Vt is unknown, the greater
values of k1 are required to achieve the necessary turn rate [see
Eq. (6)]. Finally, we note that this numerical analysis resulted in
Vtmax
� 2:5 m=s. This value is conservative as is shown in simulation

results later (Fig. 7).
Next, plots of the steady-state trajectories of the entire nonlinear

system Eq. (7) in response to a number of initial conditions are
included in Fig. 5. The impact of increasing the gains k1, k2 for afixed
Vt on the trajectories of the feedback system Eq. (7) is illustrated in
Fig. 5a. In turn, the influence of increasing Vt for fixed k1 and k2 is
demonstrated in Fig. 5b. The figures show that the navigation and
target tracking errors of the feedback system Eq. (7) are proportional
to Vt and inversely proportional to k1 and k2.

The control system architecture implementing control law Eq. (6)
is presented in Fig. 6. It consists of an AP and a gimbal driven by the

Fig. 4 Stability regions for fixed and moving targets. Fig. 5 Steady-state trajectories.
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control inputs _ and _ h. The onboard camera provides real-time
video to the image tracking software [3]. This software, when the
target lock is engaged, computes the tracking error ", while the
onboard GPS and inertial systems provide a solution for the
navigation error �.

Results of a 6-degree-of-freedom (DOF) nonlinear simulation
(Fig. 7) of target tracking for two different target speeds show that the
control law performs remarkably well when tracking amoving target
while using information obtained from the onboard camera and the
UAV velocity available from the onboard GPS. The second subplot
(Fig. 7b) shows the dynamics of the range to the tracking object when
the UAV is orbiting the target; this demonstrates the effectiveness of
the designed control law. Analysis shows that the higher the UAV
speed over the speed of the target, the more effective the range
holding capability is.

The results above are obtained for continuous tracking conditions
and, therefore, do not include the effect of target loss events. In the
presence of tracking loss events, the control system uses the latest
estimates of target position and velocity provided by the target
motion estimator to continuously compute the UAV turn rate and
gimbal control commands. A target motion estimator that is robust in
the presence of target loss events is discussed next.

III. Target Motion Estimation

In this paper we assume that the UAV’s altitude above the target is
known, and we use it as an additional measurement. To obtain this
measurement we use the filter developed in [1] to get the target
latitude and longitude. The target altitude is then obtained in real time
from a geographic information system (GIS)made available from the
Perspective View Nascent Technologies (PVNT) software package
[29] by providing it with the estimated target latitude and longitude.
The key contribution of this paper is to obtain a precise estimate of
target velocity by integrating the filtering solution provided in [1],

PVNT altitude estimates and a nonlinear estimator that integrates
vision and onboard GPS velocity measurements, which are
discussed next.

Consider Fig. 8, which depicts an aircraft equipped with a
gimbaled camera pointing at a moving target. Let fIg denote an
inertial reference frame, fBg a body-fixed frame that moves with the
UAV, and fCg a gimbaled-camera frame that is attached to the origin
of fBg but rotates with respect to fBg.

Suppose that the target inertial velocity Vt and heading  t are
constant. Following the notation introduced in [25], let pc �
�xc yc zc�T denote the relative position of the center of fCg with
respect to the target resolved in fCg and let ICR denote the coordinate
transformation from fCg to fIg as ICR� I

BR 
 BCR. The transformation
B
CR is computed onboard the UAV using known pan and tilt angles
provided by the gimbal, and I

BR is calculated using roll, pitch, and
yaw angles of the UAV provided by the AP.

The expression for measurements provided by the image
processing software is obtained using a simple pinhole cameramodel
with an assumption of fixed zoom and known camera geometry

u
v

� �
� f

xc

yc
zc

� �
(11)

where f is the focal length of the camera and �u v�T are the
coordinates of the centroid of the target image in fCg. These
measurements are provided by the image tracking software when the
target lock is engaged. Because the camera onboard is gimbaled, the
target is always located in front of the camera image plane, that is,
xc > 0. As discussed above in addition to measurements in Eq. (11)
we use the UAV altitude above the target:

z��xc sin �c � yc sin’c cos �c � zc cos’c cos �c (12)

where ’c, �c represent the total roll and pitch angles that determine
orientation of fCg with respect to fIg. Define

g’��pc� �
f
xc
yc

f
xc
zc

�xc sin �c � yc sin ’c sin �c � zc cos’c cos �c

2
4

3
5
(13)

Then the process model considered in this paper has the following
form: 8><

>:
d
dt
p��V � Vt

d
dt
Vt � 0

y � g
��pc�; pc � I
CR:p

(14)

where p is the position of the target with respect to the UAV,
y � �u v z�T denotes ideal camera and altitude measurements, V is

Fig. 6 System architecture of vision-based (VB) control.
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Fig. 7 UAV motion versus target motion.

Fig. 8 UAV target relative kinematics.
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the inertial velocity of the UAV and the target velocity, Vt,
(kVtk � Vtmax

) is assumed to be constant.
The practical problem now consists of determining the relative

position and velocity of the moving target with respect to the UAV
using IMU, GPS, and camera measurements complemented by the
altitude above the target provided in real time by the PVNT system
[29]. During numerous flight tests [1] the image tracking software
(Sec. IV) lost track of the target on a regular basis primarily due to the
dynamic change of lighting conditions and radio frequency
interference in video and control links (see more details in [3]). This
prompted the following question: can the filtering solution maintain
stability in the presence of tracking loss events? In fact, the ideas
presented in [25–27] are used in this paper to derive a nonlinear filter
that provides estimates of target motion using the process model
Eq. (14) in the presence of such events.

Following the development in [26], define a tracking loss as a
binary signal s: �0;1� ! f0; 1g

s� s�t� �
�
0: tracking loss event at time t
1: camera tracks the target at time t

For a given binary signal s and t > � > 0, let Ts��; t� denote the
length of time in the interval ��; t� that s� 0. Then formally

Ts��; t� :�
Z
t

�

�1 � s�l�� dl

The signal s is said to have brief tracking loss events if
Ts��; t� � T0 � ��t� ��, 8 t 	 � 	 0, for some T0 	 0 and
� 2 �0; 1�. Note that � represents an upper bound on the ratio
�Ts��; t� � T0�=�t� ��, that is, the total time the target is lost on a
given interval as a fraction of the interval duration.

The nonlinear estimator used in this paper is given next (see Fig. 7)8>><
>>:

d
dt
�p̂� � �V � V̂t � s 
 K1 
 ICR 
H�1�p̂c� 
 �g
��p̂c� � ym�

d
dt
V̂t � s 
 K2 
 ICR 
H�1�p̂c� 
 �g
��p̂c� � ym�

p̂c � C
I R 
 p̂

(15)

whereH�pc� is the Jacobian of the nonlinear transformation g’��pc�:

H�pc� �
� fyc

x2c

f
xc

0

� fzc
x2c

0 f
xc

� sin �c cos �c sin’c cos �c cos’c

2
64

3
75 (16)

and ym represents the noisymeasurements of y. It is easy to check that
det�H� � f2zc=x3c and therefore H�pc� is always invertible for all
admissible values of pc, ’c, and �c except at the relative altitude
zc � 0 m.

The estimation solution Eq. (15) extends results proposed in [27]
to include tracking loss events. Theorems 1 and 2 in [26]were used to
obtain the gains K1, K2 that guarantee regional stability and
performance of the estimator Eq. (15) in the presence of brief
tracking loss events characterized by the parametersT0 and�. In fact,
in [26] it is shown that the best achievable performance of the filter
Eq. (15) is bounded below by a DOP-like quantity

� � f�T0; ��max
pc2Pc
fk�HT�pc�H�pc���1kg

where Pc represents a bounded set of all the allowable values of the
vectorpc and the function f�T0; �� is proportional toT0 and� (recall,
T0 and � characterize the duration of tracking loss events). In fact, as
� approaches 1, f�T0; �� goes to infinity. Therefore, as the Jacobian
matrix H becomes ill conditioned (due to poor geometry) the lower
bound on the achievable performance goes to infinity. The same is
true for longer duration of the tracking loss events. Indeed, as �
approaches 1—no tracking—� blows up.

Implementation of the estimator Eq. (15) is shown in Fig. 9.When
the tracking loss event occurs, the estimator integrates the UAV
velocity measurements to obtain an estimate of the relative position

(dead reckoning). When target tracking is reestablished, the
integrators are reinitialized based on the real-time vision-based
measurements ym, provided through the feedback.

Next, the entire system including the control law Eq. (6) and the
estimator Eq. (15) was tested in a full scale 6DOF nonlinear
simulation in the presence of measurement noise and modeled wind
(Dryden Wind Turbulence Model). The scenario used in the
simulation (Fig. 10) assumed identification of a moving target and a
start of target tracking at 2.5 s after the beginning of the flight. This is
followed by initialization of the position estimation filters at 26 s
when the object of interest was at 50 deg starboard. Between 2.5 and
26 s, the UAV experiences transient of the control law that brings the
UAV to an orbital motion around the moving target. The target is
moving with a constant ground speed of 14 m=s and heading 45 deg.
Based on the analysis of measurements from numerous flight
experiments with the Piccolo AP [30], the following sensor noises
were applied to the simulation: IMU noise for each channel with 0-
deg mean and 0.2-deg variance, camera noise for both channels with
0-deg mean and 2.5-deg variance, and measurements of altitude
above the target with 0-m mean and 20-m variance. (Here we
assumed theworst case scenario onlywhenGPSmeasurements were

Fig. 9 Implementation of estimator Eq. (12).

Fig. 10 2-D and 3-D projections of relative motion.
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available and the target was moving on flat ground at a known
altitude.)

The results of this simulation for the ideal case when no tracking
loss events occur (�� 0) are presented next. Figure 10 shows plane
and 3-D projections of the target, UAV trajectories, and the
projection of the estimated target position obtained with estimator
Eq. (15). The filter is initialized with the horizontal coordinates of the
UAV but with the altitude of the target. Analysis shows that except
for the very short convergence interval the estimated target position
closely follows the true motion of the target. Figure 11 represents the
filtering results for position, speed, and heading estimation errors. It
can be seen that in an ideal scenario with �� 0 the convergence time
for the positional error (Fig. 11a shows convergence to 10 m) does
not exceed 5.5 and 11 s for both speed and heading (Fig. 11b shows
convergence to 5 m=s and 5 deg).

Analysis of the same experiment with a variable tracking loss
parameter � is presented next in Fig. 12. Speed of convergence was
the metric used to evaluate the performance of the filter as �
increases. Specifically, this was defined to be the first time instant
past which the estimate stayswithin 10%of the true value. HerePconv

represents the position metric and Vconv the velocity metric.
The analysis shows that the filter exhibits stable convergence

times for both position and velocity estimates in the presence of
tracking loss events characterized by � as high as 0.45 (the target is

lost 45% of the time). The target position estimator (TPE)
convergence timePconv, for the nonlinear filter reported earlier in [1],
is also included in Fig. 12 for comparison purposes. In fact, TPE is a
Kalman filter with values of the gains obtained for a specific set of
horizontal distances to the target. Filter Eq. (15) outperforms the TPE
for the entire range of values of � considered, as illustrated in Fig. 12.

IV. Flight Test Results

The flight test setup to test the filter Eq. (15) is almost identical to
the one described earlier in [1] and is shown in Fig. 13. A customized
low-cost RC model aircraft (see Fig. 1) was used to house the
gimbaled camera, wireless video, and serial links as well as the
Piccolo Plus AP [30] with its dedicated 900-Mhz control link.

A low-cost pan–tilt–zoom (PTZ) gimbal was designed and
manufactured around an inexpensive black-and-white closed circuit
television (CCTV) camera. The 330-g servo-based unit provides a
�180- deg pan and a 0–90-deg tilt operation, with better than 10-bit
resolution and speeds of 200 deg =s in pan, and 600 deg =s in tilt.
All airborne hardware, including the AP cost less than $10K. The
image obtained by the onboard camera was broadcast on a 2.4-GHz
analog link and processed on the ground by the off-the-shelf
PerceptiVU image processing software [3].

PerceptiVU allows the user to select and lock on a target displayed
on a ground station screen. In the configuration used in this
experiment, PerceptiVU provided coordinates of the centroid of the
target selected by the user with an update rate of 30 Hz. These
coordinates were then employed by the control and filtering
algorithms introduced in previous sections that were implemented on
the custom built at the Naval Postgraduate School (NPS) ground
control station (GCS).

Multiple flight tests of the complete system were conducted.
During the tests the target (whiteminivan)wasmoving along the side
of the runway with a fixed speed of 4–5 m=s and heading 296 deg
(parallel to the runway). When the tracking lock was manually
engaged the target was framed by the red tracking gate (color coded

Fig. 11 Convergence results for filter Eq. (15): position, velocity, and

heading errors.

Fig. 12 Convergence time vs variable �%.

Fig. 13 Flight test setup.
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for intuitive interaction with a human operator), the coordinates of
the center of the gate were then sent to the NPS GCS (see a sequence
of frames in Fig. 14). To evaluate the system performance the
position, direction, and speed of the target were continuously
measured by a GPS receiver.

Results of tracking and motion estimation are summarized in
Fig. 15. For the sake of comparison they also represent
implementation of two estimation algorithms: an original TPE filter
reported in [1] and a motion estimation (TME) filter Eq. (15).
Figure 15 includes a 3-D plot of the UAV trajectory (at the top) as
well as the estimates of the target position (at the bottom). The UAV
trajectory is color coded to display the time intervals where the target
track was lost. Because of the low speed of the target, the control law
maintains a circular motion with the turn radius of about 200m and a
slowly moving center as predicted by the analysis presented in
Sec. II.

Range estimation errors are shown in Fig. 16, and velocity
estimation errors of the TME filter are shown in Fig. 17.
Superimposed on the position estimation error plot is the time history
of the tracking loss events; tracking is enabled when the signal is at a
high level and the track is lost when it is at zero.

As can be seen from Fig. 16, the TME filter Eq. (15) performs
significantly better than the TPE filter [1], while the velocity
estimation error obtained with the filter Eq. (15) does not exceed
0:5 m=s.

V. Conclusions

A system capable of tracking a moving target and estimating its
position and velocity was developed. Straightforward nonlinear
analysis was used to motivate a simple control system for
coordinated control of a UAV and of a gimbaled camera. An
interesting aspect of this algorithm is that for feedback it relies on the
information obtained from the onboard camera directly, thereby
eliminating any lags caused by introducing an estimator in the
feedback loop. In addition, a critical feature of the proposed
algorithm is that it can maintain a desired range to target, when the
actual range is not known. Results of the stability analysis for both
stationary and moving target cases provided explicit means of
choosing the control gains.

Furthermore, a nonlinear filter for target motion estimation was
introduced. The filter performance was analyzed in the presence of
tracking loss events. It was shown that the filter exhibited graceful
degradation of performance in the presence of these events. The
extensive results of multiple flight tests for moving targets supported
this conclusion.

Having been implemented onboard a low-cost (<10K) generic
UAV system and tested in numerous flight experiments the entire
system shows remarkable robustness to unpredictable flight
conditions and human operator related factors. Overall, the control
system and target motion estimator were shown to perform well in
both nonlinear simulation and in numerous flight tests.

Future work will address improving performance of the target
tracking and motion estimation algorithms by decreasing conver-
gence times, reducing occurrence of tracking loss events, and
minimizing their impact on the filter performance.

Appendix: Proof of Ultimate Boundedness

Proof of Proposition 2: Define a candidate Lyapunov function
V � xTPx and consider the system

_x� A0x��f�x� (A1)

where �f�x� � f�x� � A0x. Clearly Eq. (A1) is equivalent to
Eq. (10). Then

_V � d

dt
�xTPx� � �xTx� 2�fT�x�Px (A2)

where

�f�x� � Vg�e�1 � cos �̂�d�=�d � Vt �� cos��̂�d �  r�=�d
Vg ��

2 sin �̂�d � Vt ��2 sin��̂�d �  r� �
Vg
�d
�̂

" #

(A3)

Since �min�P�kxk2 � xTPx � �max�P�kxk2, we obtain that in
x 2 �c ) kxk � c�=�d, and thus

j�ej �
����1�� 1

�d

����� c��d )
�1 � c��2
�2d

� ��2 �
�1� c��2

�2d
; 8 x 2 �c

(A4)

SetVt � 0 in Eq. (A3). By applying the identity 1 � cos �� 2 
 sin2 �
2

to �f�x� we obtain that

�f�x� � Vg�e�1 � cos �̂�d�=�d
Vg ��

2 sin �̂�d �
Vg
�d
�̂

" #
�
Vg
�2d

2 
 �d�esin2 �2
�2d ��

2 sin � � �

� �
(A5)

Then

Fig. 14 An example of visual tracking.

Fig. 15 Flight test result of tracking a moving target.

Fig. 16 Flight test range estimation errors for two algorithms.

Fig. 17 Flight test velocity estimation error.
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k�f�x�k2 �
�
Vg
�2d

�
2
��

2�d�esin
2
�

2

�
2

� ��2d ��2 sin �� ��2
�

(A6)

By applying Eq. (A4) to k�f�x�k2 we obtain the following upper
bound:

k�f�x�k2 �
�
Vg
�2d

�
2
�
4c2�

�
�2

4

�
2

� ��1� c��2 sin � � ��2
�

�
�
Vg
�2d

�
2
�
c2�

�
�2

2

�
2

� �c��2� c�� sin �� sin � � ��2
�

�
�
Vg
�2d

�
2
�
c2�

�
�2

2

�
2

� �c��2� c��j�j � j sin � � �j�2
�
;

8 x 2 �c (A7)

It follows fromLemma 1 in [31] that j sin � � �j � j�j3=6. Using this
bound we obtain that

k�f�x�k2 �
�
Vg
�2d

�
2
�
c2�

�
�2

2

�
2

�
�
c��2� c��j�j �

j�j3
6

�
2
�

�
�
Vg
�2d

�
2
�
c2�

�
c2�
4

�
�2 � c2�

�
�2� c��j�j �

c�
6
j�j
�

2
�

�
�
Vg
�2d

�
2
�
c2�

�
c2�
4

�
� c2�

�
�2� c�� �

c�
6

�
2
�
�2

� c2�
�
Vg
�d

�
2
��
c2�
4

�
�
�
2� c� �

c�
6

�
2
�
�̂2; 8 x 2 �c

(A8)

where we used the fact that

x 2 �c ) j�̂j �
c�
�d
) j�j � c�

Using Eq. (A8) we derive an upper bound on k�f�x�k:

k�f�x�k � c�
�
Vg
�d

� �����������������������������������������������������
c2�
4

�
�
�
2� c� �

c�
6

�
2

s
j�̂j

� c�
�
Vg
�d

� �����������������������������������������������������
c2�
4

�
�
�
2� c� �

c�
6

�
2

s
kxk

:�
�
Vg
�d

�
�kxk; 8 x 2 �c (A9)

Therefore,

_V � �xTx� 2�

�
Vg
�d

�
kPk kxk2 ��

�
1 � 2�

�
Vg
�d

�
kPk

�
kxk2 < 0

is negative definite 8 x 2 �c if

kPk < �d
2�Vg

holds. Therefore,�c is a compact positively invariant set and origin
of Eq. (4) is an exponentially stable equilibrium for any x�0� 2 �c.

On the other hand, if supt	0jVt�t�j � Vtmax
, then

�f�x� � Vg�e�1 � cos �̂�d�=�d
Vg ��

2 sin �̂�d �
Vg
�d
�̂

" #
� Vt �� cos��̂�d �  �=�d
�Vt ��2 sin��̂�d �  �

� �

(A10)

Using Eq. (A9) we obtain that for 8 x 2 �c

k�f�x�k �
�
Vg
�d

�
�kxk

�
������������������������������������������������������������������������������������������������
�Vt �� cos��̂�d �  �=�d�2 � �Vt ��2 sin��̂�d �  ��2

p
�
�
Vg
�d

�
�kxk �

���������������������������������������
Vt ��

�d

�
2

� �Vt ��2�2
s

�
�
Vg
�d

�
�kxk

� jVtj ��
�d

�������������������
1� �2d ��2

q
�
�
Vg
�d

�
�kxk

�
Vtmax
�1� c��
�2d

�����������������������������
1� �1� c��2

q
(A11)

Now from Eq. (A1) an upper bound on _V�x�, 8 x 2 �c can be
derived:

_V�x� � �
�
1 � 2�

�
Vg
�d

�
kPk

�
kxk2

� 2
Vtmax

�2d
�1� c��

�����������������������������
1� �1� c��2

q
kPk kxk

� �kxk
��

1 � 2�

�
Vg
�d

�
kPk

�
kxk

� 2
Vtmax

�2d
�1� c��

�����������������������������
1� �1� c��2

q
kPk

�
(A12)

Therefore, _V�x�< 0, 8 x 2 �c such that

kxk 	
2
Vtmax

�2
d

�1� c��
�����������������������������
1� �1� c��2

q
kPk

1 � 2��Vg
�d
�kPk

that is,

_V�x�< 0;
2
Vtmax

�2
d

�1� c��
�����������������������������
1� �1� c��2

q
kPk

1 � 2��Vg
�d
�kPk

� kxk �
c�
�d

(A13)

Note Eq. (A13) is true if Conditions 1 and 2 hold since�����������������
�min�P�
�max�P�

s
� 1

Let

� :�
2
Vtmax

�2
d

�1� c��
�����������������������������
1� �1� c��2

q
kPk

1 � 2��Vg
�d
�kPk

and �� �max�P��2. Define �� � fx: kxk � �g. Conditions 1 and 2
guarantee that � < c and therefore�� � �c. As a result we conclude
that Eq. (10) is ultimately bounded in�c; more details can be found
in [28].
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