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In this note, we find constructions of non-splitting Z-bent functions, thus solving an open 
problem of Dobbertin and Leander (2008) [4]. Under some technical conditions, we also 
construct Z-bent functions of level r + 1 that are not splitting into Z-bent functions of 
level r ≥ 0.
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1. Introduction

Let F2 = {0, 1} be the field containing two elements. For 
any positive integer n, the Cartesian product of n copies of 
F2 is Fn

2 = {x = (x1, . . . , xn) : xi ∈ F2, for all i ∈ {1, . . . , n}}. 
The vectors 0, 1 ∈ F

n
2 are the vectors having each compo-

nent equal to 0 and 1, respectively. Let the ring of inte-
gers be denoted by Z and, R, C denote the fields of real 
and complex numbers, respectively. Addition over Fn

2 is 
denoted by ⊕, whereas additions over Z, R and C are de-
noted by +. Any function f from Fn

2 to F2 is said to be 
a Boolean function on n variables. The set of all Boolean 
functions on n variables is denoted by Bn . We associate 
the character form of f (we borrow the notation from [1]), 
namely χ f : Fn

2 → F2 defined by χ f (x) = (−1) f (x) . For a 
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detailed study of Boolean functions (and their character 
forms) we refer to Carlet [1,2], and Cusick and Stănică [3].

An inner product (dot product) on Fn
2 is defined by x ·

y = ⊕n
i=1 xi yi , where x = (x1, . . . , xn), y = (y1, . . . , yn). The 

Hamming weight of x ∈ F
n
2 is wt(x) = ∑n

i=1 xi , that is, the 
number of nonzero components of x.

Definition 1.1. Suppose g : Fn
2 → C. The Fourier transform 

of g at u ∈ F
n
2 is defined as

ĝ(u) = 2− n
2

∑
x∈Fn

2

g(x)(−1)u·x. (1)

The multi-set consisting of the values of ĝ(u) for all 
u ∈ F

n
2 is said to be the Fourier spectrum of the function g

and each ĝ(u) is referred to as a Fourier coefficient of g . 
The set of Fourier coefficients is denoted by Spec(g). The 
connection between the Fourier transforms of f ∈ Bn and 
of χ f is given by the well known identity [3], χ̂ f (x) =
−2 f̂ (x) + 2n/2δ(x), where δ(x) = 1 if x = 0 and 0, other-
wise.
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Definition 1.2. A Boolean function g ∈ Bn is said to be 
bent (notion introduced by Rothaus [6]) if the Fourier co-
efficients of χg are in the set {−1, 1}.

Bent functions are particular cases of functions having 
avalanche features: if any collection of the n input bits of 
f are complemented, the output changes with probability 
1/2. That means that bent functions f do not have what 
is called a linear structure, which is a vector a such that 
f (x + a) + f (x) is constant. In fact, this last expression 
(called a derivative) is always balanced for bent functions. 
As a consequence, bent functions are resistant to linear and 
even differential cryptanalysis (albeit, not being balanced). 
In spite of that, a simple modification of bent functions 
(flipping some bits to make them balanced, for example) 
retains many of their good cryptographic properties (for 
more on this, the reader can consult [1–3] and the ref-
erences therein).

That being said, as the interest in bent functions is very 
high, even after extensive study for several decades, the 
complete characterization of the entire class of bent func-
tions remains elusive. Dobbertin and Leander [4] pointed 
out that “a main obstacle in the study of bent functions 
is the lack of recurrence laws”, and “it seems that most 
bent functions appear without any roots to bent functions 
in lower dimensions, which could explain their existence.” 
In the same paper, they proposed a way to embed bent 
functions into the framework of more general Z-bent func-
tions. The Z-bent functions are those functions from Fn

2
to Z whose Fourier transforms are also in Z. The Z-bent 
functions can be separated in different levels and higher 
level Z-bent functions can be used to construct lower level 
Z-bent functions, in a recursive fashion, finally produc-
ing Z-bent functions of level 0 which are bent functions. 
A Z-bent function of level 1 is an integer valued func-
tion on Fn

2 which along with its Fourier transforms takes 
the values from the set {−1, 0, 1}. It can be checked eas-
ily that given any two bent functions on Fn

2, the average 
of their corresponding character forms at each point of Fn

2
produces a Z-bent function of level 1. These functions are 
said to be splitting. Finding constructions of non-splitting 
Z-bent functions is stated as an open problem by Dob-
bertin and Leander [4]. In this note we propose some 
constructions of non-splitting Z-bent functions, thus an-
swering in the affirmative that open question. Under some 
technical conditions, we also construct Z-bent functions of 
level r + 1 that are not splitting into Z-bent functions of 
level r ≥ 0.

2. Z-bent functions

Throughout this paper n = 2k where k ∈ Z and k > 1. 
Let

W0 = {−1,1},
Wr = {z ∈ Z : −2r−1 ≤ z ≤ 2r−1}, for r ≥ 1.

Definition 2.1. A function f : Fn
2 → Wr ⊆ Z is said to be a 

Z-bent function of size k level r if f̂ (x) ∈ Wr for all x ∈ F
n
2. 

The set of all Z-bent functions of size k level r is denoted 
by BFk
r . Any function belonging to 

⋃
r≥0 BFk

r is said to be 
a Z-bent function of size k.

Dobbertin and Leander [4] observed that given two 
bent functions g, h ∈ BFk

0 on n = 2k variables, the func-
tion

f (x) = χg(x) + χh(x)

2
∈ {−1,0,1}, (2)

for all x ∈ F
n
2. The Fourier transform of f at u ∈ F

n
2 is then

f̂ (u) = χ̂g(u) + χ̂h(u)

2
∈ {−1,0,1}, (3)

for all u ∈ F
n
2, since g, h ∈ BFk

0. If a Z-bent function of 
level 1 can be written as in (2) then it is said to be split-
ting, otherwise it is said to be non-splitting. The notion 
of non-splitting Z-bent functions was introduced by Dob-
bertin and Leander in [4] and the following open problem 
is proposed:

Problem 2.2 ([4], Problem 4). Find constructions of non-
splitting Z-bent functions f with level r = 1.

In Section 3 we provide some constructions of non-
splitting Z-bent functions of level 1, thus answering in the 
affirmative the previous open problem.

3. Non-splitting Z-bent functions

In this section we investigate the possibilities of gener-
ating Z-bent functions of level 1 and answer positively the 
existence problem of so-called non-splitting Z-bent func-
tions of level 1 posed by Dobbertin and Leander in [4].

3.1. Construction from semibent functions with disjoint spectra

The first construction is based on the concept of dis-
joint spectra functions. Two Boolean functions f1, f2 ∈ Bn

are called disjoint spectra functions if χ̂ f1 (u) · χ̂ f2 (u) = 0, 
for any u ∈ F

n
2. It turns out that one can generate non-

splitting Z-bent functions of level 1 from disjoint spectra 
semibent functions.

Definition 3.1. A function f ∈ Bn is semibent if χ̂ f (u) ∈
{0, ±2}, when n even, and χ̂ f (u) ∈ {0, ±√

2}, when n odd, 
for all u ∈ F

n
2.

Thus, the Fourier spectrum of a semibent function on 
n variables consists of values from the set {0, ±2} or 
{0, ±√

2}, depending on whether n is even or odd, respec-
tively.

Theorem 3.2. Let f1, f2 ∈ Bn be two disjoint spectra semibent 
functions with n even number of variables. Then the function, f , 
defined by

f (x) = χ f1(x) + χ f2(x)

2
, for all x ∈ F

n
2, (4)

is a non-splitting Z-bent function of level 1.
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Proof. The Fourier spectra of f1 and f2 consist of val-
ues from the set {−2, 0, 2}. The Fourier spectrum of each 
χ f i (i = 1, 2) has 2n−2 nonzero values, using the Parseval’s 
identity 

∑
u∈Fn

2
χ̂g(u)2 = 2n , for any g ∈ Bn . Since f1 and 

f2 have disjoint Fourier spectra, the number of x ∈ F
n
2 for 

which f̂ (x) = χ̂ f1(x)+χ̂ f2 (x)

2 ∈ {−1, 1} is 2n−1, while at the 
remaining points of Fn

2 the Fourier transform f̂ (x) = 0. It 
is clear that f is a Z-bent function of level 1.

Assuming that f splits, then there exist two bent func-
tions g and h say, such that

χg(x) + χh(x)

2
= χ f1(x) + χ f2(x)

2
= f (x), for all x ∈ F

n
2.

Therefore for all x ∈ F
n
2

χg(x) + χh(x) = χ f1(x) + χ f2(x)

⇐⇒ 2− n
2

∑
x∈Fn

2

(χg(x) + χh(x))(−1)u·x

= 2− n
2

∑
x∈Fn

2

(χ f1(x) + χ f2(x))(−1)u·x

⇐⇒ χ̂g(u) + χ̂h(u) = χ̂ f1(u) + χ̂ f2(u)

=⇒ (χ̂g(u) + χ̂h(u))2 = (χ̂ f1(u) + χ̂ f2(u))2

⇐⇒ χ̂g(u)2 + χ̂h(u)2 + 2χ̂g(u)χ̂h(u)

= χ̂ f1(u)2 + χ̂ f2(u)2 + 2χ̂ f1(u)χ̂ f2(u)

⇐⇒ 2 + 2χ̂g(u)χ̂h(u) = 4 + 2χ̂ f1(u)χ̂ f2(u)

⇐⇒ χ̂g(u)χ̂h(u) = 1 + χ̂ f1(u)χ̂ f2(u) = 1.

Thus, for all u ∈ F
n
2 the Fourier transform values χ̂g(u)

and χ̂h(u) have the same sign forcing f̂ (u) = χ̂g (u)+χ̂h(u)

2 ∈
{−1, 1}, for all u ∈ F

n
2. This contradicts the fact that f̂ (u) is 

0 for 2n−1 values of u ∈ F
n
2. Therefore f is a non-splitting 

Z-bent of level 1. �
Nevertheless, the existence problem of disjoint spectra 

semibent functions remains to be resolved. Disjoint spectra 
functions were used originally in [5], where for instance 
two disjoint spectra semibent functions in 6-variables were 
utilized in the construction of (7, 2, 4, 56) functions.1 How-
ever, finding disjoint (semibent) spectra functions appears 
to be quite trivial using some well known facts regarding 
functions defined as a direct sum of two functions on dif-
ferent variable spaces.

Theorem 3.3. Let f0, g0 ∈Bn be a pair of disjoint spectra func-
tions. Then, the functions

f (x,y) = f0(x) + s(y) and g(x,y) = g0(x) + t(y),

where s, t ∈Bk are arbitrary disjoint spectra k-variable Boolean 
functions, are disjoint spectra functions. In particular, if f0 and 
g0 are disjoint spectra semibent (respectively, plateaued – see 
Section 3.2) functions and s, t are arbitrary bent functions then 

1 The notation used here refers to the specification of the function be-
ing a 7-variable, 2-resilient, degree 4, with nonlinearity 56 function.
f and g are disjoint spectra semibent (respectively, plateaued) 
functions.

Proof. For any z1 ∈ F
n
2, it holds χ̂ f0 (z1)χ̂g0 (z1) = 0. Let z =

(z1, z2) ∈ F
n+k
2 , where z1 ∈ F

n
2 and z2 ∈ F

k
2. Then, we have

2(n+k)/2χ̂ f (z) =
∑

(x,y)∈Fn+k
2

χ f (x,y)(−1)z·(x,y)

=
∑

(x,y)∈Fn+k
2

χ f0(x)χs(y)(−1)z1·x+z2·y

=
∑
x∈Fn

2

χ f0(x)(−1)z1·x ∑
y∈Fk

2

χs(y)(−1)z2·y

= 2(n+k)/2χ̂ f0(z1)χ̂s(z2). (5)

Similarly,

χ̂g(z) = χ̂g0(z1)χ̂t(z2). (6)

Multiplying (5) and (6), we deduce that χ̂ f (z)χ̂g(z) = 0, 
that is, f and g are disjoint spectra functions.

In particular, if f0 and g0 are disjoint spectra semibent 
functions then χ̂ f0(z1), χ̂g0 (z1) ∈ {0, ±2}, for n even, 
ĝ0(z1) ∈ {0, ±√

2}, for n odd, and furthermore

χ̂ f0(z1)χ̂g0(z1) = 0,

for any z1 ∈ F
n
2. Then, since s, t are bent we have k is even 

and χ̂s(z2), ̂χt(z2) = ±1. Therefore, using (5) and (6), we 
have χ̂ f (z), ̂χg(z) ∈ {0, ±2}, for n even, and χ̂ f (z), ̂χg(z) ∈
{0, ±√

2}, for n odd, and thus f and g are disjoint spec-
tra semibent functions. Certainly, the argument can be re-
peated for plateaued functions. �
Remark 3.4. To obtain a pair of disjoint spectra semibent 
functions f0 and g0 for odd n, the easiest approach is to 
take a bent function h ∈ Bn+1 and consider its restric-
tions to Zn

2. That is, writing h(x, xn+1) = f0(x)(xn+1 + 1) +
g0(x)xn+1 it can be easily verified (using the fact that h
is bent) that f0 and g0 are necessarily disjoint spectra 
semibent functions.

Thus, there are infinitely many examples of non-
splitting Z-bent functions of level 1 which completely re-
solves the problem posed by Dobbertin and Leander in [4].

3.2. Construction from general plateaued functions

A concept which generalizes bent and semibent func-
tions was introduced by Zheng and Zhang [7]. A function 
f : Zn

2 → Z2 is called s-plateaued if Spec(χ f ) = {0, ±2s/2}, 
for some s ∈ Z. If s = 1 (thus n must be odd), or s = 2
(thus n must be even), then we recover the semibent 
functions. For any s-plateaued function f ∈ Bn , we write 
χ̂ f (x) = ε2s/2, for some ε ∈ {0, ±1} dependent upon x. 
(Recall that Theorem 3.3 is also true for plateaued func-
tions.)

Theorem 3.5. Let n be even, and f1, f2 ∈ Bn be s1-, respec-
tively, s2-plateaued functions that are neither bent nor both 
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semibent, and so, Spec(χ f i ) = {0, ±21+ri }, ri := si/2 − 1 ≥ 0
(i = 1, 2). Let α, β be arbitrary nonzero integers with α ≡
β (mod 2). If r1 = 0, r2 = 1, α = ±1 (or r2 = 0, r1 = 1, β =
±1), we assume 2βε2 + αε1 /∈ {−1, 1} (respectively, 2αε1 +
βε2 /∈ {−1, 1}), for at least one value of x ∈ F

n
2; if r1 > 0, r2 > 0, 

we assume that αχ̂ f1(x) + βχ̂ f2 (x) /∈ {0, ±2}, for at least one 
value x ∈ F

n
2 . Then

f (x) = αχ f1(x) + β χ f2(x)

2
, for all x ∈ F

n
2, (7)

is a Z-bent function of level � := ⌈
log2 M

⌉
, where M =

max
u∈Fn

2

{|αχ̂ f1(u) + βχ̂ f2 (u)|}, which cannot be split into (that 

is, it is not the average of) two bent functions.

Proof. Applying the Fourier transform on (7) and

Spec(χ f i ) = {0,±21+ri }
we have

f̂ (x) = αχ̂ f1(x) + βχ̂ f2(x)

2
= αε12r1+1 + βε22r2+1

2
= αε12r1 + βε22r2 ∈ [−2�−1,2�−1],

(recall that εi ’s depend upon x) and so, f is a Z-bent 
function of level �. If f splits, then there exist two bent 
functions g , h, such that

f (x) = χg(x) + χh(x)

2
= αχ f1(x) + β χ f2(x)

2
,

for all x ∈ F
n
2. (8)

Therefore, for a fixed x ∈ F
n
2, for easy writing we la-

bel χ̂g(x) = η1, χ̂h(x) = η2 (with ηi ∈ {±1} dependent 
upon x), equation (8) implies

χg(x) + χh(x) = αχ f1(x) + β χ f2(x)

⇐⇒ χ̂g(x) + χ̂h(x) = αχ̂ f1(x) + βχ̂ f2(x)

=⇒ (
χ̂g(x) + χ̂h(x)

)2 = (
αχ̂ f1(x) + βχ̂ f2(x)

)2

⇐⇒ 2 + 2η1η2 = 4(αε12r1 + βε22r2)2

⇐⇒ 1 + η1η2 = 2(αε12r1 + βε22r2)2. (9)

First, we consider the case when both f1, f2 are 
strictly plateaued (thus, not semibent), and so r1 > 0, 
r2 > 0. Then, for all x ∈ F

n
2, equation (9) renders αε12r1 +

βε22r2 ∈ {0, ±1}, which implies that αχ̂ f1 (x) + βχ̂ f2 (x) =
2(αε12r1 + βε22r2 ) ∈ {0, ±2}, but this last assertion cannot 
hold for all x, given our imposed condition.

Next, we assume (without loss of generality) that f1
is semibent, hence, r1 = 0, and f2 is strictly plateaued 
(plateaued, but not semibent), and so, r2 > 0. Then (9)
becomes {0, 1}  1+η1η2

2 = (αε1 + βε22r2 )2, forcing αε1 +
βε22r2 ∈ {0, ±1}, for all x ∈ F

n
2. Consider a value x such 

that ε1 = 0, which would force βε22r2 ∈ {0, ±1} (recall 
that r2 > 0), and that is a contradiction, unless, ε2 = 0. 
However, since f1 is semibent, it is known that there are 
exactly 2n−1 + 2n−2 values of x for which ε1 = 0. Also, 
since f2 is strictly plateaued, by Parseval’s identity, we 
know that there are fewer than 2n−2 nonzero values for 
ε2, and so more than 2n−1 + 2n−2 values of x for which 
ε2 = 0. Take such a value x0 for which ε2 = 0, ε1 �= 0. Then, 
for such x0, we get (αε1)

2 ∈ {0, 1}, which forces α = ±1, 
and so, β ≡ 1 (mod 2). Now take a value of x such that 
ε2 �= 0. Then (9) transforms into (αε1 + βε22r2 )2 ∈ {0, 1}
(recall that α = ±1). If r2 > 1, this is obviously false, and 
if r2 = 1, our condition 2βε2 + αε1 /∈ {−1, 1} (for at least 
one value of x) shows also that the previous claim cannot 
hold. �
Remark 3.6. The imposed condition in the above theo-
rem is easily satisfied since, given the spectrum of two 
plateaued functions f1, f2, we can flexibly choose α, β so 
that the necessary condition is satisfied at an input x, for 
the considered plateaued functions.

For easy writing, we use the notations

c · {x1, x2, . . .} := {cx1, cx2, . . .} and

c + {x1, x2, . . .} := {c + x1, c + x2, . . .}.
Corollary 3.7. The level � in Theorem 3.5 is

� ∈ 1 + { 0, r1 + �log2(|α|)�, r2 + �log2(|β|)�,
�log2(|2r1α ± 2r2β|�}

(with the convention that if the last expression’s argument is 0, 
then we disregard that set element).

Proof. First, we observe that

α χ̂ f1(x) + β χ̂ f2(x) ∈ 2

·{0,±2r1α,±2r2β,±2r1α ± 2r2β}
(any sign combinations),

and so (using the notations of our previous theorem),

M ∈ 2 · {0,2r1 |α|,2r2 |β|, |2r1α + 2r2β|, |2r1α − 2r2β|}.
It follows that

log2 M ∈ 1 + {0, r1 + log2(|α|), r2 + log2(|β|),
log2(|2r1α ± 2r2β|}. �
Our next result extends our previous Theorem 3.2 by 

constructing Z-bent functions of level r + 1 that are not 
splitting into Z-bent functions of level r, under some tech-
nical conditions. Given two Z-bent functions f , g , we say 
that they have unitary spectra quotient if |̂ f (x)| = |̂g(x)|, for 
all x ∈ F

n
2. Obviously, the two functions have non-unitary 

spectra quotient if |̂ f (x0)| �= |̂g(x0)|, for some x0 ∈ F
n
2.

Theorem 3.8. Let n be even, 0 ≤ r < n/2 and f1, f2 be dis-
joint spectra plateaued functions with Spec(χ f i ) = {0, ±21+r}
(obviously, then both f1, f2 are (2r + 2)-plateaued functions). 
Then

f (x) = χ f1(x) + χ f2(x)

2
, for all x ∈ F

n
2

is a Z-bent function of level r + 1, which is non-splitting into 
Z-bent functions of level r, satisfying the non-unitary spectra 
quotient if r > 0.
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Proof. The level of f (under the disjoint spectra condi-
tion) is easily seen to be r + 1. Now, we assume that 
f can be split into two level r functions g, h. Writing 
χ̂ f i (x) = εi21+r , ̂g(x) = η12r , ̂h(x) = η22r (with εi ∈ {0, ±1}
and real |ηi | ≤ 1, all dependent upon x),

(̂g(x) + ĥ(x))2 = (χ̂ f1(x) + χ̂ f2(x))2

(η1 + η2)
2 = 4ε, where ε ∈ {0,1} is dependent on x.

If ε = 1 (which happens if ε1 �= 0, or ε2 �= 0, and, since 
the two sets of such values x are not overlapping, by our 
disjoint spectra condition, there are 2 × 2n−2r−2 = 2n−2r−1

such values of x, all belonging to a set, call it S1), then 
η1 = η2 = ±1. If ε = 0 (which happens if ε1 = ε2 = 0, and 
so, there are 2n − 2n−2r−1 such values of x, all belonging 
to the set S0 = F

n
2 \ S1), then η1 = −η2. Thus, both values 

ε = 0, 1 are attained, forcing |η1| = |η2|, for any value of x, 
but then g, h would have unitary spectra quotient, contra-
dicting our assumption. �
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