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Abstract— Multidimensional optical imaging systems for 

information processing and visualization technologies have 

numerous applications in fields such as manufacturing, medical 

sciences, entertainment, robotics, surveillance, and defense. 

Among different three-dimensional (3D) imaging methods, 

integral imaging is a promising multiperspective sensing and 

display technique. Compared with other 3D imaging techniques, 

integral imaging can capture a scene using an incoherent light 

source and generate real 3D images for observation without any 

special viewing devices. This review paper describes passive 

multidimensional imaging systems combined with different 

integral imaging configurations. One example is the integral 

imaging based Multidimensional Optical Sensing and Imaging 

Systems (MOSIS), which can be used for 3D visualization, seeing 

through obscurations, material inspection, and object recognition 

from micro scales to long range imaging. This system utilizes 

many degrees of freedom such as time and space multiplexing, 

depth information, polarimetric, temporal, photon flux and 

multispectral information based on integral imaging to record 

and reconstruct the multidimensionally integrated scene. Image 

fusion may be used to integrate the multidimensional images 

obtained by polarimetric sensors, multispectral cameras, and 

various multiplexing techniques. The multidimensional images 

contain substantially more information compared with 

two-dimensional (2D) images or conventional 3D images. In 

addition, we present recent progress and applications of 3D 

integral imaging including human gesture recognition in the time 

domain, depth estimation, mid-wave infrared photon counting, 

3D polarimetric imaging for object shape and material 

identification, dynamic integral imaging implemented with liquid 

crystal devices, and 3D endoscopy for healthcare applications. 
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I. INTRODUCTION 

HERE have been significant technological advancements in 

sensors, devices, materials, algorithms, and computational 

hardware. Therefore, sensing and visualization capabilities 

applied to real world objects have improved extensively. In 

recent decades, three-dimensional (3D) imaging technology 

has received interest from many research groups. Instead of 

conventional two-dimensional (2D) sensing techniques, which 

record the intensity of the scene, passive 3D imaging also 

includes depth and directional information. Many techniques 

for 3D imaging have been proposed, such as holography and 

interferometry [1][2], two-view based stereoscopy [3][4], and 

multi-view techniques for autostereoscopic 3D imaging [5][6], 

to cite a few.  

Integral imaging [7] is an autostereoscopic 3D sensing and 

imaging technique, which provides true 3D images with full 

parallax and quasi-continuous viewing angles [8]. In addition, 

integral imaging can work well for long range objects [9]. In 

contrast, some other 3D sensing techniques, such as the 

time-of-flight camera [10] or structured light techniques 

[11][12], may not work well for long range objects. Integral 

imaging is a promising technique that has been used in various 

fields, such as 3D sensing [13], 3D displays [14][15][16][17], 

holographic display [18], 3D imaging of objects in turbid water 

[19], 3D tracking [20] and 3D target detection and recognition 

[21][22], photon counting 3D sensing and visualization 

[23][24][25], 3D microscopy [26][27][28][29][30][31] and 

endoscopy for micro scale 3D imaging and display [32][33], 

head tracking 3D display [34], 3D augmented reality 

[35][36][37][38], to cite a few.  

Originally developed for space-based imaging [39], 

multispectral imaging captures the information corresponding 

to specific wavelengths of light. The spectrum for an imaging 

system can be extended from the visible range to the near 

infrared (NIR) range, mid-wave infrared (MIR) range, or 
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long-wave infrared (LWIR) range. Applications of 

multispectral imaging range from remote sensing [40][41][42] 

to medical imaging [43], to name a few. 

    One of the fundamental properties of light is its state of 

polarization [44][45]. From this information, we may obtain 

optical and physical properties of materials using noninvasive 

optical probes [46][47]. This information can be helpful for 

material inspection and classification in manufacturing, remote 

sensing and security applications [48][49][50]. The 

polarization state of light allows the sensor to capture 

information about an object’s surface material, such as 

birefringence, photoelastic effect. When this information is 

combined with other sensor data, the overall effectiveness of a 

multidimensional imaging system, such as the integral imaging 

based Multidimensional Optical Sensing and Imaging Systems 

(MOSIS) [51], is enhanced. In MOSIS, polarimetric 

characteristics from a real-world scene are extracted from a 

polarimetric imaging system.  

Integrating features from multidimensional and multimodal 

imaging, that is, 3D imaging, multispectral imaging and 

polarization imaging, etc., provides unique information about a 

scene. In this paper, we present an overview of some recent 

work on multidimensional sensing and integrated visualization 

with 3D integral imaging technology. In addition, new work on 

using Multidimensional Optical Sensing and Imaging Systems 

(MOSIS) 2.0 for 3D object shape, material inspection, and 

recognition such that similar objects with different materials 

can be discriminated is presented. To the best of our 

knowledge, this is the first time that all of these degrees of 

freedom are integrated in a passive 3D integral imaging system. 

This paper is organized as follows: the original concept of 

MOSIS [51] is first reviewed in Section II, followed by the 

principle and recent progress of the integral imaging technique 

in Section III. Section IV presents the development of the 3D 

polarimetric integral imaging sensing and visualization. 

Integral imaging techniques in the infrared domain are 

presented in Section V. 3D human gesture recognition using 

integral imaging videos is discussed in Section VI, and recent 

progress of MOSIS 2.0 is given in Section VII. Section VIII 

presents a brief overview of MOSIS in micro scales for medical 

applications and dynamic integral imaging systems with time 

multiplexing implemented with liquid crystal devices. 

Conclusions are given in Section IX. Progress in these topics 

have grown substantially in the recent years, and therefore it is 

difficult to give a complete overview of all the reported work. 

Thus, we apologize if some relevant work has been omitted in 

this review.  

II. MULTIDIMENSIONAL OPTICAL SENSING AND IMAGING 

SYSTEMS (MOSIS)  

 

In this section, the integral imaging based Multidimensional 

Optical Sensing and Imaging Systems (MOSIS) is reviewed. 

MOSIS is an extension of the conventional 3D integral imaging 

technique to incorporate multimodality into image sensing and 

reconstruction. Additional information obtained by the system 

can be further used for object recognition, material inspection 

and integrated 3D visualization, etc., which can significantly 

enhance the amount of information extracted from a scene.  

The concept of MOSIS [51] is to use different degrees of 

freedom from photons of a scene, such as polarization, angular 

information, spectral, time variation, etc., to reveal new 

information of the scene. It is a more advanced imaging sensor 

and visualization system compared with a conventional integral 

imaging system. Although some experiments can be done with 

different imaging setups, MOSIS can increase the amount of 

information extracted from the scene due to the multimodal and 

multidimensional measurements. As shown in Fig. 1(a), 

MOSIS can record a scene with separate sensors corresponding 

to various optical properties. In one modality, by moving a 

lenslet array with the moving array lenslet technique (MALT) 

[52] within a period of the lenslet, time multiplexed integral 

imaging pickup with an increased sampling rate can be 

obtained to improve 3D visualization.  

 

 
Fig. 1. (a) Overview of the Multidimensional Optical Sensing and Imaging 
Systems (MOSIS). The proposed system fuses the polarimetric information, 

multispectral sensing, and multidimensional visualization with integral 

imaging. MOSIS may use the moving array lenslet technique (MALT) to 
improve resolution. (b) Elemental images fusion with wavelet decomposition in 

MOSIS [51]. 

 

In addition, the image sensor can capture multispectral 

imaging and polarized information with specific filters and 

optical components. For polarimetric 3D sensing, an object is 

first illuminated using linearly polarized light. The light 

reflected from the object’s surface passes through the lenslet 

array, an imaging lens, and a rotating linear analyzer. The light 

then forms an array of elemental images, which is recorded by 

an image sensor. The reflected light’s polarimetric information 

is determined through the Jones vector by using the rotation 

linear polarizer analyzer [46]. To optically visualize the 

polarimetric object, the polarization-selected elemental images 
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are displayed in a spatial light modulators (SLM) with two 

quarter-wave plates. The multi-wavelength information in the 

visible and infrared range, including NIR, can be captured 

using a specific light source and a series of bandpass filters 

added in front of the image sensors.  

 The multidimensional data needs to be integrated for 

visualization. MOSIS may use wavelet decomposition to fuse 

the elemental images. The elemental images are decomposed 

into various channels guided by their local frequency content 

[53][54][55]. Fig. 1(b) depicts an example of the image fusion 

process with a 3-level wavelet decomposition. A 2D wavelet 

decomposition measures intensity fluctuations in the elemental 

images, along the horizontal, vertical and diagonal directions 

using wavelet filters. This is achieved by applying a low pass or 

a high pass filter from a wavelet family to an image’s rows. 

After filtering, the image columns are down sampled by a factor 

of 2 such that only the even indexed columns are kept. A low 

pass or a high pass filter, from the wavelet family previously 

used, is then applied to the columns of the previously filtered 

images. This is then followed by down sampling the rows by a 

factor of 2 such that only the even indexed rows are kept. Three 

of the resulting images are the ith level decomposition 

corresponding to the image’s frequency information in the 

horizontal, vertical, or diagonal direction. The fourth image can 

then be inputted into the wavelet decomposition process 

producing another set of (i+1)th decomposition. For image 

fusion, the jth decomposition level of the image and another 

image, can be combined using image fusion rules, such as a 

weighted sum of the two levels. After fusion, an inverse 

wavelet transform is applied to obtain the fused elemental 

images.  
 

III. PRINCIPLE AND RECENT PROGRESS OF INTEGRAL IMAGING  

 

The original concept of integral imaging was proposed by 

Lippmann in 1908 [7], and called integral photography. The 

principle of this technique is to record a 3D scene from multiple 

perspectives by using a lenslet array and a 2D recording 

medium, such as film [56][57][58], since optoelectronic image 

sensors were not available at the time. Thanks to the rapid 

technological improvement in optoelectronic sensors, materials 

and devices, such as CCD and CMOS cameras, LC display 

screens, and the commercialization of computers, integral 

imaging has been revived in the recent decades 

[59][60][61][62][63]. There are two procedures in a typical 

integral imaging system for 3D information acquisition and 

visualization, known as the pickup and reconstruction stages, 

respectively.  

 

A. Pickup Stage of Integral Imaging  

 

1) Lenslet Based Pickup Stage 

 

Figure 2(a) shows the characteristics of the integral imaging 

pickup stage. A lenslet array is placed in front of a 2D image 

sensor. Light scattered by the 3D scene surface passes through 

each lenslet, and is then recorded by the sensor. Compared to 

the single lens imaging system, integral imaging obtains 

multiple 2D images (named as elemental images) of the 3D 

scene corresponding to each lenslet with different perspectives. 

Moreover, the image sensor, known as an elemental image 

array, captures both intensity and directional information of the 

light rays emitted by the scene. 

The resolution of the captured elemental images may be 

limited by the configuration of the lenslet array and the pixel 

size of the sensor. The moving array lenslet technique was 

proposed in [52] to improve the resolution of the elemental 

images. There are many computational super resolution 

methods, but the moving array lenslet technique naturally 

increases the number of samples of the optical field which is 

available to improve the spatial sampling. By moving the 

lenslet array in the integral imaging pickup stage, the upper 

resolution limitation given by the Nyquist sampling theorem 

can be overcome. The parallax barriers (the dashed lines in Fig. 

2) are needed on the image forming side of the lenslet array. 

Each of the captured elemental images corresponds to a specific 

lenslet, and should only record the light information passing 

through it. If an elemental image records the light from the 

adjacent lenslet, the crosstalk phenomenon will happen on the 

elemental image and the 3D display quality may be 

substantially degraded [64].  

 

 
Fig. 2.  Principle of integral imaging. (a) Pickup stage, and (b) reconstruction 

stage. Each object point in the pickup stage goes to a different pixel position in 

the 2D sensor. During the 3D reconstruction, those contributions make it 
possible for 3D visualization of the object. 

 

2) Synthetic Aperture Integral Imaging Pickup Stage 

 

Elemental images with high resolution, large field of view 

and extended depth-of-field can be achieved by using the 

synthetic aperture integral imaging technique [65] with the 

configuration of an array of imaging sensors or a moving image 

sensor array (an image sensor with a lens translated on a 2D 

plane). A CCD or CMOS sensor records the scene with high 
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resolution images. Furthermore, since the image sensor lens 

parameters (e.g. focal length and aperture, etc.) are 

controllable, synthetic aperture integral imaging provides 

flexibility for specific 3D sensing requirements, which makes it 

more practical than the lenslet based integral imaging pickup 

technique. Synthetic aperture integral imaging may be 

implemented using a single camera on a moving platform or a 

camera array. Fig. 3(a) shows an example of a synthetic 

aperture integral imaging pickup stage by using a camera array. 

The period between adjacent image sensors, the number of 

sensors on the horizontal and vertical directions, and the sensor 

parameters can be adjusted in contrast to the conventional 

lenslet array. Synthetic aperture integral imaging allows the 

integral imaging pickup stage to increase the parallax of the 

captured images. 

 

 
Fig. 3.  (a) An example of synthetic aperture integral imaging (SAII) with a 

camera array in the pickup stage of integral imaging. A single camera on a 
moving platform may implement synthetic aperture integral imaging. (b) An 

example of a different passive 3D imaging known as the axially distributed 

sensing (ADS) method, with a camera moving along its optical axis. Si are the 
index of the camera positons and EIi are the corresponding captured elemental 

images. 

 

3) Axially Distributed Sensing and Flexible Sensing 

 

Recently, 3D sensing techniques based on synthetic aperture 

integral imaging were modified for the case that the image 

sensor may not be distributed in a planar and regular grid 

configuration. A multi-perspective 3D imaging architecture 

named as the axially distributed sensing (ADS) method is 

presented in [66]. For the 3D sensing process, various 

perspectives of the scene are acquired by either moving the 

sensor along a common optical axis or the object of interest is 

translated parallel to the optical axis. This method can be used 

for 3D information computational extraction and reconstruction, 

since its acquisition capability is not uniform over the field of 

view. To simplify the configuration, elemental images based on 

the axially distributed sensing method are obtained by 

translating a single camera longitudinally along its optical axis 

as shown in Fig. 3(b).  

In [67], a new integral imaging methodology for randomly 

distributed sensors was proposed assuming no rotation amongst 

the sensors; however, they may be at different x-, y- and 

z-coordinates relative to a reference camera position. Similar 

arrangements can be implemented with ADS.  

 

B. Reconstruction Stage of Integral Imaging 

 

1) Lenslet Based Optical Display 

 

Figure 2(b) depicts the concept of the integral imaging 

optical reconstruction stage. By displaying the acquired 

elemental images on a display device (LCD), light from the 

display device retraces through the lenslets and projects the 

elemental images onto the focal plane of the lenslet array. The 

overlap between all the projected elemental images converges 

in the 3D space to form a real 3D image. Since the observer’s 

perspective is opposite to the lenslet array, the convex and 

concave portions of the 3D image appear reversed for viewers 

as a pseudoscopic 3D image.  

In order to convert a pseudoscopic (depth inverted) 3D image 

to an orthoscopic (correct depth) 3D image, one solution is to 

rotate each elemental image by 180°along its center. The 3D 

image will form behind the lenslet as a virtual image [68]. A 

more general digital method named smart 

pseudoscopic-to-orthoscopic conversion is presented in 

[69][70]. As shown in Fig. 4, smart 

pseudoscopic-to-orthoscopic conversion first performs a 

simulated display for the captured elemental images on a 

specific reference plane, then a new set of elemental images is 

generated by synthetic capture through a virtual pinhole array. 

Smart pseudoscopic-to-orthoscopic conversion allows for 

pseudoscopic to orthoscopic transformation of the 3D image 

capable of adjusting the display parameters, which makes it a 

robust approach with various applications [34][71][72].  

 

 
Fig. 4.  Concept of the smart pseudoscopic-to-orthoscopic conversion method. 

 

2) Computational Volumetric Reconstruction 

 

Three-dimensional integral imaging visualization can be 
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accomplished by computational volumetric reconstruction 

[73][74][75]. Since reconstruction is the inverse process of the 

pickup stage, volume pixels can be reconstructed at arbitrary 

distances from the display plane by computationally simulating 

optical reconstruction based on ray optics. As illustrated in Fig. 

5, the captured 2D elemental images are inversely mapped 

using a computationally synthesized virtual pinhole array and 

superimposed into the object space. For a specific 

reconstruction plane (z), the computationally reconstructed 

image R(x, y; z) can be expressed as: 

 

,,
,

1 1

1
( , ; ) x , y ,

i ji jM N
yi j x

i j z z

cc
R x y z EI

M N r r 

 
      

  (1) 

where M, N are the number of elemental images in the x and y 

coordinates, EIi, j is the intensity of the elemental image in the ith 

column and jth row, (cx
i,j , cy

i,j) represents the position of the  i jth 

image sensor, and rz = z / g is the magnification factor. The 3D 

image is represented by a collection of all the reconstructed 

planes within the depth range (Zrange). Note that for the 

computational reconstruction, we have not considered the 

effects of diffraction. If we do so, it will deteriorate the 

reconstruction. For optical reconstruction, the pinhole array 

would deteriorate the reconstruction due to diffraction effects.   

In certain 3D pickup geometries, the accurate sensor position 

and rotation may be difficult to measure if the sensors are on a 

moving or flexible surface, or if they are randomly distributed 

[76]. A camera pose estimation algorithm to estimate a 

camera’s position without rotation was combined with an 

integral imaging reconstruction method in [77][78]. By using 

two known sensors’ positions and rotations, the position and 

rotation of the rest of the sensors can be estimated using the 

two-view geometry theory and the camera projective model. 

The estimation method can be used to improve the quality of 

the 3D reconstruction if measurement errors exist. 

 

 
Fig. 5.  Computational volumetric reconstruction of integral imaging.  

   

3) 3D Profilometric Reconstruction 

 

Three-dimensional information can be visualized as a 3D 

profile of the scene. In [79], a method is proposed to estimate 

the depth information of a scene using a minimum variance 

(Min-Var) criterion. Considering a spectral radiation pattern 

function in the 3D scene and relating it to various perspective 

elemental images, the depth of a convex surface under 

Lambertian illumination can be statistically inferred. Let us 

consider that the radiation intensity propagation in direction       

(, ϕ) and with wavelength, 𝜆, is represented by the spectral 

radiation pattern function, defined as L (, ϕ, 𝜆), which 

corresponds to a certain point (x, y; z) in the 3D space. Suppose 

that a set of elemental images are captured within an M × N 

planar grid. The variance of the spectral radiation pattern 

function is: 

3

1 1 1

21 , ,
( , ; ) ( , , ) ( , , ) ,

( , ; )3

M N

w i j

i j i j w wD x y z L L
x y z

     
  

  
  



  

                                                                                                (2) 

where L  is the mean value of the spectral radiation pattern 

function over all of the directions (perspectives), and w 

represents the color channel of the digital elemental images.  

The variance along the depth range (Zrange) of the 3D scene 

will reach a minimum value when the point is located on an 

object surface. Depth information can be computed by 

searching the minimum variance of D(x, y) throughout Zrange: 

 ˆ( , ) arg min ( , ; )
rangez Z

z x y D x y z


 . (3) 

Combining the depth information and the 2D elemental 

images, a 3D profile of the scene can be reconstructed.  

 

4) Depth Estimation using a Photoconsistency - Based 

Criterion 

 

Recently, a depth estimation method through a 

photoconsistency criterion based on a voting strategy has been 

presented in [80]. The proposed approach, (hereafter called 

Max-Voting method) is based on a soft-voting procedure that 

takes into account the level of agreement (similarity) among the 

different camera views, using a similar strategy to those 

presented in [81][82]. The main idea for the voting process is 

that when an object is in focus at a certain depth level z, the 

pixels of each camera corresponding to that object should have 

a close color or intensity value among them, i.e., they should 

accomplish a so called photoconsistency criterion. Although 

the concept of the Max-Voting method is similar to the 

minimum variance (Min-Var) criterion [Eq. (3)], the proposed 

method takes into account the local information around each 

pixel, i.e., a weight is given depending on color or grey scale 

values of the pixels in the neighborhood of another one. 

However, the Min-Var method does not take this into account. 

Consider an integral imaging reconstruction process. At a 

certain depth range z ∈ Zrange, the pixel at the position (i, j) of 

the image I and its square surrounding window W are defined as 

Wij = {I (i + x, j + y):  − τ ≤ x, y ≤ τ}, where τ defines the 

window size. Suppose a squared camera array, where ||C|| is 

the number of cameras whose central camera is R ∈ C and I is 

the depth reconstruction at depth z. For each pixel (i, j) and its 

neighboring pixels (x, y) within the window Wij (i.e. ∀(x, y) ∈ 
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Wij), we proposed in [80] a criterion based on a voting 

procedure where each camera votes in favor of the pixel (i, j) at 

depth level z depending on the similarity of the pixel intensities 

of each camera as compared to camera R. A threshold value 

(THR) is also assigned that denotes whether this similarity is 

good enough. 

Similarity is measured using the Euclidean distance d 

between the a*b* values (from the L*a*b* color space) for 

each pixel. For the voting strategy, each camera’s vote is 

weighted depending on the distance d, which is equal to 1 when 

the distance is zero, and decreasing exponentially until 0 when 

d is greater than the threshold (THR). 

We can mathematically model the camera array elemental 

images E(p1, p2, p3), where p1 and p2 are the pixel coordinates 

and p3 is the camera number. Thus, centered on the pixel 

position (i, j), for each neighborhood pixel (x, y) ∈ Wij and ∀ Ck 

∈ C, the distance dij is defined as the Euclidean distance among 

the pixel (i, j) from camera R and the pixels (x, y) from each 

camera Ck: 

  
2

( , ) ( , , ) ( , , ) . 
C

k

ij

k

d x y E x y C E i j R  (4) 

The camera R never changes, distance dij is obtained for the 

pixel (i, j) at each position of the window Wij and summed up as 

follows, 

 

 
2

,

( , )
( , , )

  




ij

ij

d x y
W

THR

x y

ij

e
V i j z

O

. (5) 

The voting value is also weighted by Oij to consider only the 

cameras that “see” the pixel (i, j), because some parts of the 

scene in R do not appear in other cameras. Thus a correct 

weight should only include those cameras that really contribute 

during the process. 

Several experiments were conducted on synthetic images 

generated in 3ds Max software to computationally create two 

3D scenes where we can put a camera array and synthetically 

generate elemental images. It is generated in this way because it 

allows us to have the depth ground truth for the objects in the 

scene. We can then use the RMSE error to evaluate the depth 

estimation methods. 

 The experimental set-up conditions for each one of the 

synthetic scenes can be found in Table 1. The second and third 

columns show the camera square array configuration and the 

depth range from Zmin to Zmax with a step size of Zstep. The fourth 

and fifth columns give the physical size of the camera sensor 

(cx, cy) in each direction (“x” and “y”), and the period of the 

cameras (p). The units for columns 3 - 5 are centimeters for the 

bathroom scene and millimeters for the Beethoven scene. The 

focal length of the camera is f = 50 mm. 

 
TABLE 1 

EXPERIMENTAL SET-UP FEATURES FOR THE SYNTHETIC IMAGES CREATED IN 

3DSMAX [80]. 

Image name Camera configuration Zmin:Zstep:Zmax  (cx, cy) p 

Bathroom 7 × 7 220:10:830 (36, 36) 5 

Beethoven 7 × 7 139:1:341 (36, 36) 5 

 

Figure 6(a) shows the elemental image corresponding to 

camera R for the Bathroom and the Beethoven synthetic 

images. The first column in Fig. 6(b) shows the depth map 

obtained using 3ds Max. The synthetic images show the indoor 

spaces (Bathroom) and a foreground image of a Beethoven 

bust. The second and third columns of Fig. 6(b) show the depth 

estimation results of the Min-Var and Max-Voting methods for 

the Bathroom and Beethoven images for a 5 × 5 window size 

and THR=1. 

 

 
Fig. 6. (a) Synthetic images. Bathroom (left) and Beethoven (right) images. (b)  

Obtained depth maps. From left to right columns, ground-truth of the depth 
map, Min-Var method, and Max-Voting method [80]. 

 

Figure 7 shows the results for the Bathroom image, where 

different window sizes have been applied, for THR=1. From 

left to right, we show the generated depth map by the 

Max-Voting algorithm considering the following window 

sizes: 3 × 3, 7 × 7 and 13 × 13. We can see how the increase in 

the window size makes the results smoother; however, some 

details are lost.  

 

 
Fig. 7. Effect of the window size on the depth estimation for the Bathroom 

scene. From left to right, window sizes of 3 × 3, 7 × 7 and 13 × 13 [80]. 
 

The Root Mean Square Error (RMSE) figure of merit has 

been chosen to evaluate the depth estimation results. Table 2 

shows that the error is progressively lower when a bigger 

window size is used. 
 

TABLE 2 
RMSE RESULTS FOR THE BATHROOM IMAGE WHILE THE WINDOW SIZE 

INCREASES. FROM LEFT TO RIGHT, THE WINDOW SIZE IS INCREASING FROM  3×3 

TO 13×13 [80]. 

Window size 3×3 5×5 7×7 9×9 11×11 13×13 

Bathroom 
(RMSE) 

77.98 64.45 59.09 56.32 54.89 54.02 
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Tables 3 and 4 show the depth estimation error results 

obtained using the Min-Var method and the Max-Voting 

methods. Table 3 shows how errors in the scene are distributed. 

In particular, it shows the number of pixels (in percentage) 

whose errors are substantially large. The threshold value for 

considering large errors has been set to 100 cm for the 

Bathroom image and 50 mm for the Beethoven image. 

 
TABLE 3 

QUANTITATIVE RESULTS ON SYNTHETIC IMAGES (I). FROM LEFT TO RIGHT, IN 

BLOCKS, IMAGES, RESULTS FOR THE MIN-VAR APPROACH AND RESULTS FOR 

THE MAX-VOTING APPROACH [80]. 

Scene name Min-Var Large Error Max-Voting Large error 

Bathroom (cm) 12.60% 8.32% 

Beethoven (mm) 49.01% 6.29% 

 
TABLE 4 

QUANTITATIVE RESULTS ON SYNTHETIC IMAGES (II). SECOND AND THIRD 

BLOCKS SHOW THE RMSE VALUES OBTAINED ON EACH IMAGE (RMSE 

COLUMN) AND THE RMSE OBTAINED IF PIXELS WITH HIGH ERRORS ARE NOT 

TAKEN INTO ACCOUNT (RMSE* COLUMN) [80]. 

Scene name Min-Var Max-Voting 

RMSE RMSE* RMSE RMSE* 

Bathroom (cm) 85.14 28.10 64.45 27.16 

Beethoven* (mm) 81.85 45.66 43.63 34.25 

 

Table 4 shows the RMSE values (expressed in centimeters or 

millimeters depending on the image) and the RMSE obtained if 

those pixels with high errors are not taken into account, 

showing that most of the RMSE error made by the algorithms is 

concentrated on a few pixels. Table 4 also shows that the real 

performance of the methods substantially improves if these 

pixels are not taken into account.  

IV. 3D POLARIMETRIC INTEGRAL IMAGING 

A passive polarimetric integral imaging technique has been 

used for 3D polarization measurement, and optical or 

computational 3D visualization [46][47][83][84]. In this 

section, we present the results obtained by polarimetric 3D 

sensing and visualization systems under various conditions.  

 

A. Linear Illumination Condition and Optical 3D Integral 

Imaging Display 

 

The reflected light from a scene illuminated using linearly 

polarized light can be recorded as an elemental image array 

using a linear polarizer and a lenslet array (Fig.1).  By placing a 

rotating linear polarizer between the acquisition system and the 

lenslet array, the Jones vector of the polarized light reflected 

from the object surface can be determined for the measurement 

of the polarization state of light. The elliptically polarized light 

can be modeled in terms of the Jones vector as:   

 
cos exp( )

,
     sin

i
E

 



 
  
 

 (6) 

where θ represents the rotation between the principal axes of 

the polarization vector in relation to the horizontal axis and δ is 

the phase retardation between the orthogonal polarimetric 

components [46].  

Once the elemental images are captured, and the polarization 

state is obtained, the 3D scene with a particular polarization 

distribution can be optically reconstructed. An optical system, 

as shown in Fig. 8, can generate arbitrary states of polarization 

for each elemental image [85]. The elemental images can be 

displayed using spatial light modulators (SLMs) with two 

quarter-wave plates. The SLMs can be any type of LC-modes 

which can switch between 0 - λ/4. The sample used in this 

experiment is TN-mode due to its large aperture ratio. In the 

future, FFS mode can be implemented to further enlarge the 

viewing angle. Moreover, the 3D objects can be visualized with 

the polarimetric information. In this case, the mathematical 

expression for the Jones vector is [46]: 
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 (7) 

where  is the angle along the direction of polarization, and δ 
represents the phase retardation between the two orthogonal 

components [46][85],  and  denote the amount of phase 

retardation between the orthogonal axes and the rotation angle 

of the polarization direction, respectively. The variable rotation 

angle  of the principal axes at each pixel can be realized by 

combining two quarter-wave plates and a phase-only liquid 

crystal SLM. 

  

 
Fig. 8.  Diagram of the optical system to obtain an arbitrary state of elliptical 

polarization from the elemental images. The lines in the quarter-wave plate and 
LC-SLM (liquid-crystal spatial light modulator) denote the principal axes [46].  

B. Natural Illumination Condition and Computational 3D 

Integral Imaging Reconstruction  

 

A 3D polarimetric computational integral imaging system 

has been presented in [83]. This system can measure the 

polarimetric information of the 3D scene with natural 

illumination using the Stokes parameters. The Stokes vectors 

[44]  can be defined as follows: 

 

2 2
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2 2
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3 0 0

,
2 cos

2 sin





  


 



 
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 (8) 

where E0x and E0y are the instantaneous amplitudes of the 
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orthogonal components of the electric field, and δ is the 

instantaneous phase factor of the plane wave. The Stokes 

parameters of interest are denoted as , 0,...,3iS i . The Stokes 

parameters enable us to describe the degree of polarization 

(DoP) for any state of polarization: 

             
 2 2 2

1 2 3

0

   0 1,
 

   
pol

tot

S S SI
DoP DoP

I S
 (9) 

where Ipol is the sum of the polarized intensity of the light beam, 

and Itot is the total intensity of the light beam. When DoP is 1, 

the measured light is completely polarized, and when DoP is 0, 

the light is unpolarized. The degree of linear polarization 

(DoLP) and the degree of circular polarization (DoCP) can be 

expressed as: 
2 2

1 2 0 DoLP S S S  and
2

3 0DoCP S S , 

respectively. 

 The 3D polarimetric sensing system based on the moving 

sensor array synthetic aperture integral imaging [65] technique 

is shown in Fig. 9(a). A linear polarizer and a quarter-wave 

plate are combined and placed in front of a digital camera for 

polarimetric imaging [86][87]. Using Eq. (8), the Stokes 

parameters are measured as: 
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 

  


 

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 (10) 

where I is the intensity of captured polarimetric images, 
,0I  

represents the linear rotating polarizer with an angle of α 

degrees in relation to the x axis. 
, /2 I indicates that a 

quarter-wave plate is combined with the polarizer. When light 

passes through the quarter-wave plate, one-quarter of a wave 

phase shift between the orthogonal components is introduced. 

In the measurement, the wave plate is fixed with its fast axis 

along the x axis and the transmission axis of the linear polarizer 

is rotated with α°. A total of six sets of polarimetric elemental 

images are needed for each sensor position. 

 

 
Fig. 9.  (a) Schematic of the polarimetric 3D pickup system based on synthetic 
aperture integral imaging. (b) An example of captured elemental images. (c) 

Polarimetric elemental image with the degree of polarization corresponding to 

(b). 
 

In Fig. 9(a), an experiment is depicted where two cars were 

placed at a distance of 530 mm from the sensor and a moving 

camera was used to record images. A car was occluded by a tree 

approximately 450 mm from the sensor while two trees were 

located approximately 720 mm away. A total of 6 × 6 elemental 

images were taken at different positions for 3D sensing. Figure 

9(b) gives an example of the captured elemental image. The 

polarimetric image with the measured degree of polarization is 

illustrated in Fig. 9(c). The degree of polarization of the light 

reflected from the surface of the occluded car is larger than the 

degree of polarization of the occlusion and the background 

[83].   

The 3D integral imaging computational reconstruction 

algorithm was modified to combine the polarization 

information and the original pixel information of the captured 

elemental images. 3D reconstruction can be implemented with 

a threshold (THR) applied to the degree of polarization images. 

Only pixels whose respective degree of polarization is higher 

than the threshold will contribute to the reconstruction. The 

reconstructed 3D images contain both the depth information of 

the scene and the polarization state of the light reflected from 

the object surface. The experimental results of the 3D 

polarimetric reconstruction are given in Fig. 10. The 3D images 

obtained by the conventional integral imaging computational 

reconstruction method are shown in Fig. 10(a). The objects in 

the 3D scene are in focus at their respective depth positions. 

Figure 10(b) illustrates the 3D polarimetric reconstructed 

images at the respective depth with a threshold of THR = 0.2. 

With this threshold, only the surface (cars) with higher degree 

of polarization reflected light is reconstructed, and the 

occlusion and background can be avoided because of the 

relatively lower degree of polarization information. The 3D 

computational polarimetric integral imaging can be used for 

material inspection and detection which will be discussed in 

Section VII (A). 

 

 
Fig. 10.  Integral imaging depth reconstruction results at 450 mm, 530 mm and 

720 mm. (a) 3D reconstructions using conventional integral imaging. (b) 3D 

reconstructions using the polarization state of each pixel. The degree of 
polarization threshold is 0.2 [83].  

 

C. 3D Polarimetric Integral Imaging in Photon Starved 

Conditions 

 

In [84], a method for polarimetric 3D integral imaging in 

photon starved conditions was proposed. As the photon 

counting images captured under low light illumination 
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conditions are very sparse, the Stokes parameters and the 

degree of polarization are difficult to measure with 

conventional methods. By using the maximum likelihood 

estimation method, polarimetric 3D integral images are 

generated [88]. In order to obtain high quality polarimetric 

reconstructed images, a total variation denoising filter is 

implemented to efficiently remove the noise from the image 

and preserve the signal corresponding to the scene [89][90]. 

The extracted polarimetric features can be used in pattern 

recognition algorithms.  

As discussed in Section IV (B), a quarter-wave plate and a 

linear polarizer can be combined and placed ahead of the sensor 

for polarimetric imaging. 3D polarimetric elemental images can 

be obtained by capturing the polarimetric distributions 0 ,0

,k l
i



,

90 ,0

,k l
i



, 45 ,0

,k l
i



, 135 ,0

,k l
i



, 45 , /2

,k l
i



and 135 , /2

,k l
i



 at each camera 

position (k, l). For the case of an integral imaging acquisition 

process in photon starved conditions, the photon counting 

model should be used. The detected photons in the captured 

images can be simulated using the Poisson distribution function 

[91]: 

     
   , ,

, ,, exp ,
; , ,

!

         


m

k l k ln x y n x y
P m x y

m
          (11) 

where (x, y) is the pixel index, m represents the number of the 

photons that have been detected. α is the degree of the linear 

rotating polarizer in relation to the x axis, and β represents the 

quarter-wave plate. If β = π/2, a quarter-wave plate is placed in 

front of the linear polarizer, otherwise (β = 0) only the linear 

polarizer is used for the acquisition.  ,

, ,
k l

n x y
 

is the 

normalized irradiance [84]: 

                      
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where Np is the number of photon counts predetermined in the 

scene. As discussed in [92], using the maximum likelihood 

estimation for integral imaging, the 3D reconstruction can be 

obtained by averaging the normalized photon counting 

irradiance ( ,

,
ˆ
k l

i
  ) from the captured polarimetric elemental 

images (
,

,k l
i
 

). Using Eq. (12) and Eq. (1), the photon counting 

3D polarimetric reconstructed image can be expressed as: 

        
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, ,
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yx

k l

k l z z

cc
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r r
 (13) 

The Stokes parameters and degree of polarization can be 

calculated using Eqs. (10) and (9), respectively. 

Experiments were performed with the same setup described 

in Section IV (B). Photon counting imaging was 

computationally applied to the elemental images shown in Fig. 

9(b). The model of the recording device used for generating the 

polarimetric photon counting elemental images is a binary 

photon counting camera and the elemental images were 

statistically transformed by the Poisson distribution. As a result, 

we were able to determine the number of photons per pixel. We 

arbitrarily chose 0.01 and 0.05 photons per pixel, as images 

with such few photons have limited information. The 

reconstructed results using maximum likelihood estimation are 

noisy and have a low dynamic range. Figures 11(a) and (b) 

show the 3D reconstructed results using the maximum 

likelihood estimation. The elemental images used for the 3D 

reconstruction contained few photons. In the 3D reconstruction 

process, noise will be dominant under the photon starved 

conditions due to the low SNR value, and noise may degrade the 

quality of the measurement of the recorded polarization. 

Figures 11(c) and (d) illustrate the degree of polarization 

measured by the maximum likelihood estimation using Eqs. 

(10) and (13). As shown in Fig. 11(c), when the number of 

photons is relatively low, (0.01 photons / pixel), the whole 

scene was measured with high polarized characteristics. For the 

case where the number of photons per pixel increases to 0.05, as 

shown in Fig. 11(d), the degree of polarization result improves. 

However, the background areas, as shown in Fig. 11(d), still 

have high degree of polarization values compared to the results 

with Fig. 9(c). 

 

 
Fig. 11.  3D integral imaging reconstruction results for photon counting 
conditions using maximum likelihood estimation at z = 530 mm: (a) 0.01 

photons per pixel, and (b) 0.05 photons per pixel. The degree of polarization for 

integral imaging with photon counting: (c) 0.01 photons per pixel, and (d) 0.05 
photons per pixel [84].  

 

The Mean Structural Similarity Index Measure (MSSIM) [93] 

was implemented to quantitatively compare two reconstructed 

images using the 3D integral imaging computational 

reconstruction method. In order to compare two images (X and 

Y), MSSIM considers a set of M 8 × 8 pixels sub-images {xj} 

and {yj} obtained from X and Y. The local Structural Similarity 

Index Measure (SSIM) between the respective sub-images xj 

and yj is [84]: 
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  
1 2

2 2 2 2

1 2

2 2
, ,
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   

 


   

xj yj j xyj j

j j

xj yj j xj yj j

c c
SSIM x y

c c
          (14) 

where μxj and μyj are the averages of the sub-images xj and yj, 

respectively. σxj, σyj and σxyj are the variances of xj, yj and the 

covariance, respectively. c1j and c2j are two tuning parameters 

which correspond to the square of the dynamic range (D), i.e.  

c1j = (k1j D)2 and c2j = (k2j D)2. The dynamic range of an image 

depends on the maximum and minimum pixel values, the k1 and 

k2 values used were 0.01 and 0.03 respectively. Finally, the 

MSSIM is obtained by averaging the SSIM over all windows: 
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              (15) 

    Since this index is normalized, MSSIM = 1 only if the two 

images (X, Y) are same. The MSSIM values for the 3D 

reconstruction and the corresponding degree of polarization 

results in Fig. 11 are shown in Table 5. The reference 

reconstructed image and degree of polarization are in Fig. 9 (b) 

and (c), respectively. The MSSIM values for both reconstructed 

image and the degree of polarization are very small. 

 
TABLE 5 

MSSIM COMPARISON RESULTS USING MAXIMUM LIKELIHOOD ESTIMATION 

AND DEGREE OF POLARIZATION IN FIG. 11 [84]. 

 0.01 photons / pixel 0.05 photons / pixel 

3D reconstructed image 0.029 0.054 

Degree of Polarization 0.001 0.002 

 

     In order to improve the 3D reconstruction results of integral 

imaging with photon counting, total variation denoising filters 

are used, since these filters are able to remove noise from the 

image without affecting the signal [90]. In the experiment, the 

authors used the Chamolle approach [94] implemented in the 

scikit-image library [95]. Using the nomenclature in [89], the 

total variation denoising strategy can be mathematically written 

as [84]: 

     

22
2

0min ,


 
  

 
         

     
 

 dxdy dxdy
x y

      (16) 

where γ is a regularization parameter, μ0 is the noisy image, 

and μ is the reconstructed image. 

      

 
Fig. 12. 3D integral imaging reconstruction under photon starved conditions at 

z = 530 mm. Total variation minimization is applied on the reconstructed image 

with (a) 0.01 photons per pixel, and (b) 0.05 photons per pixel. Total variation 

minimization is then applied to the polarimetric images at z = 530 mm with (c) 

0.01 photons per pixel, and (d) 0.05 photons per pixel [84]. 

 

     The photon counting 3D reconstructed image processed by 

the total variation method is shown in Fig. 12 (a), and the 

corresponding degree of polarization is illustrated in Fig. 12 (b). 

Using the total variation denoising, the corresponding degree of 

polarization was obtained from the denoised version of the 

photon counting 3D polarimetric reconstructed images  
,

Î
 

 

[Eq. (13)]. The degree of polarization results shown in Figs. 12 

(c) and (d) are similar to the reference degree of polarization 

image [Fig. 9(c)]. The MSSIM comparison results for the 

maximum likelihood reconstruction and total variation 

minimization are presented in Table 6. Note that for 0.05 

photons/pixel, the MSSIM value was approximately 1 for the 

reconstructed 3D image while the MSSIM value for the degree 

of polarization image was about 0.67. 

 
TABLE 6 

MSSIM COMPARISON RESULTS USING MAXIMUM LIKELIHOOD 

RECONSTRUCTION AND TOTAL VARIATION MINIMIZATION DENOISING IN FIG. 12 

[84]. 

 0.01 photons / pixel 0.05 photons / pixel 

3D reconstructed image 0.727 0.909 

Degree of Polarization 0.325 0.666 

 

V. 3D INTEGRAL IMAGING IN THE INFRARED DOMAIN  

 

Multispectral imaging allows for the acquisition of images in a 

series of spectral bands. Nowadays, image acquisition 

capabilities have extended from the visible spectrum to the near 

infrared (NIR), mid-wave infrared (MWIR) [9] and long-wave 

infrared (LWIR) ranges. Moreover, multispectral imaging has 

been used in fields such as medical imaging and remote 

sensing. In this section, we present 3D integral imaging 

acquisition and visualization methods in the infrared domain.  

 

A. Long Distance Mid-Wave Infrared Integral Imaging  

 

We have demonstrated that integral imaging can work well 

for long range objects. This section describes an overview of the 

work about synthetic aperture integral imaging 3D acquisition 

and reconstruction of scenes in short range (in-door scenes) and 

long range distances of up to 2 km using sensors that operate in 

the visible, MWIR and LWIR ranges [9][24][102].  

 

1) High-level Illumination Conditions 

 

An Aura imaging system (working in the MWIR range) was 

used to acquire a group of 10 elemental images of an airfield 

base. The elemental images were acquired with a 

horizontal-only movement of the camera. The horizontal pick 

up range was 7 m, and the acquisition positions were 

periodically spread over this range for the corresponding 

number of camera acquisitions. The camera has a 120 mm lens 

and pixel size of 19.5 μm. Each elemental image has a 

resolution of 1024 × 1024 pixels. Figure 13 (a) shows an 

example of an elemental image of this airfield scene.  

 

 
Fig. 13.  (a) Captured elemental image. (b) Range map using automatic 
segmentation [9]. 
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A technique based on a 3D template matching approach for 

robust depth estimation in the mid-wave infrared range was 

developed. The template data was selected from one elemental 

image and the function that was optimized is: 

        2
' arg min ( , ) ( , ; ) ,  Z x y

z T x y R x y z  (17) 

where T(x, y) is the template and R(x, y; z) is the reconstructed 

scene for each depth. Figure 14 shows a diagram of the template 

matching strategy for depth estimation. Results using this 

search algorithm for four targets at known ranges are shown in 

Table 7. Figure 13(b) shows the resulting range map for the 

scene. We can see that the overall range estimation results are 

correct, but the method finds some problems on trees that are 

closer to the camera array. 

 

 
Fig. 14. Overview of the range search algorithm [9]. 

 
TABLE 7  

ESTIMATED RANGE RESULTS USING THE METHOD SHOWN IN FIG. 14 [9]. 
 

Measured (m) Estimated (m) ∆ (m) 

666 710 -44 

969 1015 -46 

1429 1443 -14 

2241 2065 176 
 

2) Photon Counting Illumination Conditions for Long Range 

Objects 

 

Another group of elemental images consisting of a scene with 

a road, a series of trees and a car behind them, as shown in Fig. 

15(a), was captured and a photon counting simulation process 

was applied on the elemental images [24]. Our working 

assumption is that infrared detectors is applied in a regime for 

which the measured photon counts are well approximated by 

Poisson distribution [96].  

The likelihood of the irradiance estimation from the photon 

counting elemental images can be modeled as [92]:   

 

  0 0

1 1
| C ( ) Pr C ,

 
      

K Lz z

p kl kl kl kl pk l
L I p p p p I   

                                                                                              (18) 

where p ≡ (x, y) is an object pixel position for an elemental 

image, and ∆𝑝𝑘𝑙  describes its shift on each elemental image. 

𝐶𝑘𝑙(𝑝 + ∆𝑝𝑘𝑙)  is the value of pixel 𝑝 + ∆𝑝𝑘𝑙  for elemental 

image of indices 𝑘𝑙 in photon counting conditions.  

The maximum likelihood irradiance estimation is given by 

[24]: 

 0 C (  ).   
z

p N kl klk l
I C p p  (19) 

Therefore, the result of the reconstruction for a specific depth 

also gives an estimation of its corresponding irradiance.    

Three noise levels (layers) were added to each one of the 

elemental images: 𝑁𝑑𝑐 = {104, 105, 106}  simulating the 

existence of dark current (dc) noise. Some HgCdTe mid-wave 

infrared detectors may also have these dark current noise levels 

(Fig. 8 in [25]). 

 

 
Fig. 15. (a) An example of an elemental image used with a road, a series of trees 

and a car behind one of them. Reconstruction results for 𝑧 = 237m when 𝑁𝑝 =

3×105 photon counting photons per elemental image exist, (b) without (Ndc = 0) 

and (c) with (Ndc = 106) photons corresponding to dark current noise, respectively 

[24]. 

 

Figures 15(b) and (c) show the 3D reconstruction for z = 237m 

when the number of photon counts for each elemental image is 

Np = 3×105, and where the dark current noise level is  𝑁𝑑𝑐 = 0 

and 𝑁𝑑𝑐 = 106photons, respectively. The visualization quality 

of the depth reconstructed images was highlighted using an 

image denoising technique based on the wavelet shrinkage 

approach [97]. The threshold value was fixed at 𝑇 = 4. The 

Peak Signal to Noise Ratio (PSNR) was used as a reference for 

the quality assessment of the photon counting reconstructed 

scenes.  The PSNR is defined as: 

 

 

2

1010 log 
,

 
  
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MaxI
PSNR

MSE I I

, (20) 

where 𝑀𝑆𝐸(𝐼, 𝐼) is the Mean Square Error which provides an 

estimation of the average error per reconstructed pixel of the 3D 

scene, and 2

Max
I  is the square of the maximum value of the 

original reconstructed scene. 

Figure 16 shows the PSNR value as the number of photon 

counts per elemental image, 𝑁𝑝 increases, for a reconstruction 

distance of 237 m (the depth where the car behind the trees is in 

focus), for the following cases: 𝑁𝑑𝑐 = {0, 104, 105, 106}. For 

the case where no dark current noise exists, 𝑃𝑁𝑆𝑅 ∝ 𝑙𝑜𝑔(𝑁𝑝)as 

shown in [92]. This theoretical dependence is also shown in Fig. 

16. We conclude that the RMSE error decreases as 𝑁𝑝 increases 
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and therefore the PSNR value increases. On the other hand, we 

see that the PSNR and 𝑁𝑑𝑐 noise are inversely proportional. 

 

 
Fig. 16. PSNR versus 𝑁𝑝 for the trees and car scene reconstructed at z = 237 m, 

for Ndc = {0, 104, 105, 106} [24]. 

 

B.  3D Image Reconstruction using the Alternating 

Extragradient Method on Mid-Wave Infrared Photon Counting 

Images. 

 

In this section, we discuss the application of an image 

restoration method called “Alternating Extragradient Method”. 

This method was recently proposed in [98]. To the best of the 

authors’ knowledge, it is the first time that this method is 

applied on MWIR photon counting images. 

An image with approximately 𝑁𝑝 number of photons can be 

simulated if we consider its normalized irradiance version 𝐼𝑖  

(such that ∑ 𝐼𝑖
𝑁𝑇
𝑖=1 , where i is the pixel number, and 𝑁𝑇 the total 

number of pixels of an image), and assume a Poisson random 

number with mean parameter 𝑁𝑝 · 𝐼𝑖 . In this framework the 

Poisson distribution can be written as: 𝑃𝑟(𝐶𝑖|𝐼𝑖) =
(𝐼𝑖)𝐶𝑖 ·𝑒−𝐼𝑖

𝐶𝑖!
;  𝐶𝑖 = 0, 1, 2, … where 𝐶𝑖  means 𝐶 photons at pixel 𝑖. 

On the other hand, let us consider the image formation as a 

linear process.  

We can define 𝐶 ∈ ℝ𝑁𝑇 as the detected data, and 𝐶𝑖 as the 

value at each pixel under the assumption that the variable 

follows a Poisson distribution with expected value (𝐻𝑥 + 𝑏)𝑖 

and where, on the one hand 𝑥 ∈ ℝ𝑁𝑇 is the scene we aim at 

recovering, 𝐻 ∈ ℝ𝑚×𝑁𝑇 models the optical system and 𝑏 ∈ ℝ𝑚 

is a positive offset term. We can model this restoration problem 

as an optimization of the type [99]: min
𝑥≥𝜂

𝑓(𝑥) ≡ 𝑓0(𝑥) + 𝛽 ·

𝑓1(𝑥), where 𝑓0(𝑥) measures data similarity, 𝑓1(𝑥) is a 

regularizer-type functional and 𝑏  is an offset. The restored 

image should have positive values, and therefore 𝑥 ≥ 𝜂, where 

𝜂 ∈ ℝ𝑁𝑇, 𝜂 ≥ 0.  

It can be shown that this problem has a primal-dual (or 

saddle-point) equivalent formulation: min
𝑥∈𝑋

max
𝑦∈𝑌

𝐹(𝑥, 𝑦) where 

𝑋 and 𝑌 are two feasible sets with restrictions such that 𝐷 =
𝑋×𝑌  is a closed and convex domain and 𝐹  is a smooth 

convex-concave function [98]. The Kullback-Leibler distance 

can be used in this case and expressed as follows [98]: 

min
𝑥∈𝑋

max
𝑦∈𝑌

𝐹(𝑥, 𝑦) ≡ ∑ {𝐶𝑖 ln
𝐶𝑖

(𝐻𝑥+𝑏)𝑖
+ (𝐻𝑥 + 𝑏)𝑖 − 𝐶𝑖} + 𝛽 ·𝑖

𝑦𝑇 · 𝑧(𝑥), 

  (21) 

where 𝑋 = {𝑥 ∈ ℝ𝑁𝑇: 𝑥 ≥ 𝜂}  and 𝑧(𝑥)  and 𝑌  are given by: 

𝑧(𝑥) = 𝐴𝑥, 𝐴 = (𝐴1, 𝐴2, … , 𝐴𝑁𝑇
)

𝑇
and 𝑌 = {𝑦 ∈ ℝ2𝑛: 𝑦2𝑖−1

2 +

𝑦2𝑖
2 ≤ 1; 𝑖 = 1, 2, … , 𝑁𝑇} . 𝐴𝑘 ∈ ℝ2×𝑁𝑇  is a matrix with only 

two nonzero entries on each row, equal to −1 and +1. The 

Alternating Extragradient Method uses the following three 

iteration formulae: 
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, (22) 

where 𝑂𝑋 and  𝑂𝑌 denote the orthogonal projection operators 

onto the sets 𝑋  and 𝑌 , and, 𝛾 > 0  a constant. We refer the 

reader to [98] for further algorithmic details. 

 

 
Fig. 17. Reconstruction results for two different scenes, considering 𝑁𝑝 =

3.0×105 photons, and where 𝑁𝑑𝑐 = 106 photons have also been added (1.24 

photons / pixel in total). (a) Depth reconstruction for the scene with a car and 

trees occluding it, for z = 237 m. (b) Depth reconstruction for the scene of an 

airfield base for z = 960 m. (c) Depth reconstruction for the same scene of the 

airfield base for z = 2.2 km. (d)-(f) Reconstruction results for the cases (a)-(c) 

when using the alternating extragradient method [98] for 𝛽 =
{0.25, 0.14, 0.14}, respectively. 

 

The elemental images used in this section are the same as 

those used in Section V (A).  The corresponding photon 

counting elemental images were generated and an additional 

noise level of 𝑁𝑑𝑐 = 106  photons was added to each one of 

them for both scenes. 

Figure 17 illustrates the results for the integral imaging 

reconstruction case when 𝑁𝑑𝑐 = 106 dark current photons are 

added to the 𝑁𝑝 = 3.0×105 photons for the previous case, and 

therefore, a total amount of 1.24 photons/pixel are present in 

each elemental image. Figure 17 (a) shows the depth 

reconstruction for the scene with a car and trees occluding the 

car, for z = 237 m. Figure 17 (b) shows the depth reconstruction 

for the scene of an airfield base for z = 960 m. Figure 17 (c) 

shows the depth reconstruction for the base for z = 2.2 km. 

Figures 17 (d)-(f) shows the reconstruction results for the cases 

(a)-(c) when using the alternating extragradient method [98] for 

𝛽 = {0.25, 0.14, 0.14}, respectively. Finally, we should stress 

that the alternating extragradient method outperformed the 

maximum likelihood method in the whole photon counting 

domain tested (from 0 to 106 photons per elemental image). As 
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shown in Fig. 18, The results obtained by the alternating 

extragradient method (AEM) were substantially better than 

those of maximum likelihood (ML) method for the whole 

photon counting level range considered, both for the case where 

no dark current was considered as for the case when Ndc =106 

photons were added. 

 

 
Fig. 18. PSNR versus Np for the results obtained by using the alternating 

extragradient method (AEM) method and the maximum likelihood (ML) 

method. 

 

C. 3D Imaging in the Long-wave Infrared Spectrum  

 

Images in the Long-wave infrared (LWIR) range acquire 

self-radiation of an object rather than the light reflected from an 

object’s surface thus eliminating illumination issues [100]. This 

makes LWIR imaging especially useful in night time settings. 

The LWIR sensors capture information between the 

wavelength range of approximately 8 to 15 m [100] and was 

originally used for military applications including surveillance 

and night vision. This technology has found applications in 

other fields such as diagnosing inflammations in the legs and 

hoofs of horses, fungal infections in wheat, and finding the heat 

loss from air vents and windows [101]. It is worth noting that 

the resolution of a LWIR image is poorer compared to an image 

in the visible spectrum due to the longer light wavelength as 

described by the Abbe diffraction limit [100].  

We have implemented passive 3D imaging using synthetic 

aperture integral imaging with LWIR imaging for outdoor 

applications [102]. Three-dimensional image reconstruction 

can remove occlusions in front of an object assuming there is 

sufficient distance between the object and the occlusion [103]. 

To capture the elemental images, the LWIR camera used was a 

TAMARISK 320 with a resolution of 320 × 240 pixels and 

pixel size of 17 μm with a field of view (FOV) of 27°. 

Moreover, the 3D experiment used a 7 × 3 camera array with a 

period of 30 mm in a night time setting. The output of the 

camera is an analog signal which is converted to a digital signal 

yielding a 640 × 480 pixels image. Figure 19 (a) depicts a 

sample 2D elemental image, which contains a person located 

14.5 m away occluded by branches. Figure 19 (b) depicts the 

3D reconstruction at z = 14.5 m which was able to remove the 

branches in front of the person. 

 

 
Fig. 19. 3D scene captured using LWIR imaging. A (a) person located 14.5 m 

away is occluded by branches while (b) the 3D reconstructed image at z = 14.5 

m removes the occlusion in front of the person [102]. 

 

VI. 3D INTEGRAL IMAGING WITH TIME DOMAIN FOR 3D 

GESTURE RECOGNITION  

 

For dynamic objects and targets, information also varies in the 

time domain. 3D sensing, processing and visualization in the 

time domain are also discussed in this section. In this section, 

we present a 3D video system by using the integral imaging 

technique for 3D human gesture and activity recognition [104].  

In order to acquire a series of human actions / gestures, a 

group of 9 cameras in a 3 × 3 array configuration was 

considered (Fig. 20). This is a synthetic aperture integral 

imaging system working in the resolution priority integral 

imaging mode [105].  In particular, 9 Stingray F080B/C 

cameras (with a resolution of 1024 × 768 pixels) were 

synchronized through a 1394 bus, acquiring videos at 15 frames 

per second. 

 

 
Fig. 20.   A 3 × 3 camera array used for acquisition of the videos aiming at 

human activity recognition [104]. 

 

Impact of the errors associated to the position and orientation 

of the cameras can be diminished if the acquired videos are 

rectified [106][107]. 

Figures 21 (a)-(c) show the reconstruction capability of the 

system for the same person and gesture, for three different 

depths, and the same frame. Figures 21 (d)-(f) show the 

reconstructed scene at the depth where the hand (doing the 

gesture) is approximately in focus. These videos (obtained after 

the reconstruction process) can be used for 3D gesture 

recognition in time domain. 
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Fig. 21. 3D Gesture recognition experiments. Images show the reconstruction 

capability of the system, for the same frame, and for a specific person and 

gesture. (a) Background, (b) head, and (c) fist. Depth reconstruction focusing at 
the hand’s gesture. (d) Open, (e) left, and (f) deny [104]. 

 

 The procedure for gesture recognition as shown in Fig. 22, 

follows the so called “bag of visual words” approach [108].  

 

 
Fig. 22.  Building blocks of the proposed 3D human gesture recognition system 
[104]. 
 

 
Fig. 23. 3D Gesture recognition classification results using the best descriptor 
in each case [monocular (2D) and 3D integral imaging] [104]. 

 

Figure 23 shows the mean accuracy vs. the number of words 

used. Integral Imaging accuracy is higher than monocular 

imaging for all the number of words used, except for K = 50. 

The Histogram of Optical Flow (HOF) and the Histogram of 

Oriented Gradients (HOG) are histograms formed from the 

optical flow or the oriented gradient information in the 

reconstructed image. Both techniques have shown a great 

potential when used as feature vectors in order to apply a 

“bag-of-words” approach for action recognition. 

 

VII. MULTIDIMENSIONAL OPTICAL SENSING AND IMAGING 

SYSTEMS (MOSIS) 2.0 

 

In this section, the recent progress of integral imaging based 

Multidimensional Optical Sensing and Imaging Systems 

(MOSIS) 2.0 is presented. MOSIS 2.0 is an improvement of the 

original concept of MOSIS [51], for object recognition, 

material inspection, integrated 3D visualization, etc., which can 

significantly improve image understanding.  

 

A. Multidimensional Optical Sensing and Imaging Systems 

2.0: Visualization, Target Recognition and Material Inspection 

 

We present some recent progress on the Multidimensional 

Optical Sensing and Imaging Systems (MOSIS) 2.0 for target 

recognition, material inspection and integrated visualization 

from a scene.  

MOSIS 2.0 is the successor to MOSIS [51]. The degrees of 

freedom of MOSIS 2.0 include visible and IR bands, including 

near infrared (NIR) spectral bands, state of polarization of light 

reflected from object surface, and depth and directional 

information of the scene. MOSIS 2.0 uses synthetic aperture 

integral imaging [65] for 3D sensing of a complex scene which 

may include objects with heavy occlusion. Computationally 

reconstructed images provide in focus information of the 

objects on the respective depth planes with mitigated occlusion. 

3D object recognition can be performed on the reconstructed 

scene. In the experiments, we have used histogram of oriented 

gradients (HOG) [109] for feature extraction and a support 

vector machine (SVM) [110][111][112] as a classifier. In 

MOSIS 2.0 with polarimetric imaging, the degree of 

polarization of the light reflected from the 3D scene is 

calculated using the Stokes Parameters. Depth and degree of 

polarization information are integrated during 3D 

reconstruction. The polarimetric characteristic of the reflected 

light from the object’s surface are used for material inspection. 

By implementing the segmentation algorithm within the 

multispectral bands, materials with specific spectral properties 

are extracted. Multidimensionally integrated visualization 

reveals more information of the scene for improved image 

understanding and information analysis. Figure 24 illustrates 

the diagram of the proposed MOSIS 2.0.  
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1) Multidimensional Optical Sensing with MOSIS 2.0  

 

In MOSIS 2.0, we have implemented multidimensional 

image sensing with synthetic aperture integral imaging. 

Compared with the lenslet based pickup, synthetic aperture 

integral imaging captures a 3D scene with a camera array or a 

moving camera. Therefore, the viewing resolution and field of 

view of the system can be improved. The acquisition structure 

and parameters are flexible as well. Multispectral sensing can 

be done using a CMOS or CCD camera with specific filters. To 

consider the visible spectrum only, a near infrared (NIR) cutoff 

filter needs to be fixed in front of the sensor. To capture the NIR 

spectrum image, a color spectral cutoff filter is used to block 

the visible band. Likewise, a variety of IR bands may be used. 

 

2) 3D Object Recognition with MOSIS 2.0 

 

As discussed in Section III, the depth estimation method 

shown in [79] can be used to create a depth map related to a 

particular sensor perspective. By using integral imaging 

computational reconstruction [73][75], occlusion in front of the 

target can be mitigated in the 3D reconstructed images. 

Applying the histogram of oriented gradients (HOG) [109], 

the reconstructed image is used for 3D object recognition. The 

pixel gradient vector in a 3D image is extracted as 
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where z

xI  and 
z

yI are the pixel gradients along the x and y 

directions of the 3D image reconstructed at depth of z. The 

oriented gradients vectors and histogram are computed to 

quantize and compress the feature descriptor. 

The extracted HOG features are then fed into a Support 

Vector Machine (SVM) for classification between true class 

(target of interest) and false class (others) by finding an 

optimized separating hyper plane. The hyper plane can be 

expressed by a discriminant function (x) wT
g x b  . The 

best classification result should have a maximum margin, so 

that the hyper plane boundary width can be maximized. The 

optimization problem is: 

 

2

   

1
                min ,

2

. . y (w x b) 1,    i=1,2....T

i i

w

s t N 

 (24) 

 
Fig. 24. Diagram of the proposed Multidimensional Optical Sensing and Imaging Systems (MOSIS) 2.0. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

16 

where w is a coefficients vector, b is a constant, xi are the 

training vectors, yi are the labels of the corresponding data 

points and N is the number of data points of the training set. For 

the case that noisy data points exist, slack variables are added to 

allow for misclassification [110]. To solve the non-linearly 

separable problem, the original space can be transformed into a 

higher dimensional feature space to make the feature set 

separable. With such nonlinear mapping, the discriminant 

function becomes ( ) ( )T
g b x w x , and Eq. (24) is modified 

as:  
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where ξi are positive slack variables, ϕ(.) is the nonlinear 

mapping of xi to a higher dimensional space, and C is a penalty 

parameter to control over-fitting. 

The decision function for a training vector xj is a sign 

function:  

  1
(x , x ) b ,




N

i i i ji
sign y a K  (26) 

where ai are the Lagrange multipliers found by optimization. 

(x ,x ) (x ) (x )T

i j i j
K   is the kernel function. 

The 3D reconstructed images are used for 3D object 

recognition. The occlusion is mitigated in the 3D reconstructed 

images, which is why the 3D object recognition process is 

effective. If we apply the object recognition process to the 2D 

elemental images directly, the features of the objects cannot be 

extracted because of the occlusion, and the SVM does not work 

either. 

 

3) 3D Material Inspection with MOSIS 2.0 

 

We perform material inspection on the 3D reconstructed 

image with polarimetric properties. If there is occlusion in front 

of an object, conventional computational reconstruction 

introduced in Section II can visualize objects by mitigating the 

occlusion; however, the pixel overlap and averaging process 

may degrade the polarization characteristics of the light 

reflected from the object’s surface. To preserve this 

polarimetric information, we combine the estimated depth 

information with the degree of polarization property for 3D 

polarimetric reconstruction. The modified reconstruction 

approach is expressed as: 
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        (27) 

where M and N are the number of elemental images in the x and 

y directions, cx
i,j, cy

i,j are the positions of the sensor in the x and 

y directions, respectively, and rz is the magnification factor for 

the 3D reconstruction at depth position (z). 𝐸𝐼𝐷𝑜𝑃
𝑖,𝑗

(. ) indicates 

the degree of polarization image calculated from the Stokes 

Parameters. 𝜉𝑖,𝑗(𝑥, 𝑦) ∈ {0, 1} is a binary variable defined as: 
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where Depi,j(.) is the depth map obtained for the (i, j)th 

elemental image from the visible spectrum by using the depth 

estimation method [Eqs. (2) and (3)] [113]. A known 

reconstruction depth threshold (THR) is introduced to separate 

the depth position between the occlusion and the target for each 

3D point. K is the total number of elemental images used in 

reconstruction i.e. 𝐾 = ∑ 𝜉𝑖,𝑗(𝑥, 𝑦)𝑖,𝑗 . 

We assume the occlusion is a convex and Lambertian 

surface. By setting the depth threshold (THR), the degree of 

polarization components measured from the light reflected by 

the occlusion can be removed for the 3D reconstruction. The 

reconstructed image provides accurate polarization 

characteristics corresponding to the object surface. As the 

majority of object surfaces can be classified based on their 

electrical properties (such as metal and dielectric), and the 

polarization property varies for materials between the metallic 

and non-metallic surfaces [114], 3D polarimetric imaging may 

be helpful for material inspection and classification, industrial 

inspection and target segmentation, etc. [115]. 

Besides the polarimetric characteristic, some materials can 

be identified from their various spectral reflection signatures. 

By implementing the multispectral integral imaging method, 

specific materials such as vegetation can be identified due to 

having a high NIR spectrum and a relatively low visible band 

reflectance. The k-means clustering algorithm [116][117] is 

used in MOSIS 2.0 for target segmentation by minimization of 

the cluster sum of Squared Euclidean distances. The 

minimization problem is: 

 2

1

min ( , ),
j i

k

j i
C

i x C

D x 
 

   (29) 

where k is the number of clusters (classes) , Ci represents the set 

of data points that belong to the ith cluster, μi is the  ith cluster 

centroid, and D2(xj, μi) is the Squared Euclidean distance 

between xj and μi. Edge detection algorithms can be further 

applied to outline the detected objects [118] [119]. With 

MOSIS 2.0, 3D object recognition, including material 

properties inspection, can be performed simultaneously. The 

multidimensionally integrated visualization of a scene may 

reveal more information to improve imaging understanding and 

information extraction. 

 

B. Experimental Results for Multidimensional Optical Sensing 

and Imaging Systems (MOSIS) 2.0 

 

This section describes the experiments we have performed 

for the proposed MOSIS 2.0.  A color board level camera 

(EO-2013BL) [120] was fixed on a translation stage for 

multidimensional sensing with synthetic aperture integral 

imaging. The 3D scene includes: (1) A pair of dice with similar 

size and color, but different materials placed at 370 mm from 

the camera, (2) an occlusion set in front of the dice at 280 mm, 
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(3) a background containing camouflage (plastic) foliage, and 

real (vegetation) foliage at 510 mm. Figure 24 illustrates the 

sensing system and the 3D scene used in the experiments. 

Figure 25 (a) shows the quantum efficiency of the CMOS 

camera. For multispectral imaging, a NIR cutoff filter was first 

added to the sensor with a cutoff wavelength of 650 nm, so that 

only the visible spectral range can pass through and be 

recorded. To capture the NIR band, the cutoff filter was 

replaced by a NIR-pass filter (Hoga R72) which blocks the 

visible band. The transmission curve of this filter is shown in 

Fig. 25 (b).   

 
Fig. 25 (a) The quantum efficiency of the board level camera [120]. (b) The 

transmission curve of the NIR-pass filter (Hoya R72) used for NIR imaging. 
 

 
Fig. 26. MOSIS 2.0 for 3D object shape and material inspection experiments in 

the presence of occlusion. Captured and computed multidimensional elemental 
images. The (a) visible spectrum and (b) NIR spectrum. The (c) Degree of 

Polarization (DoP) computed by the Stokes parameters and (d) depth map by 
the estimation method. 

 

A classical polarization estimation method [44], as discussed 

in Section IV (B), was implemented to measure the Stokes 

parameters in our experiments. The camera array for the 

synthetic aperture integral imaging pickup process is 

implemented using a moving single camera and includes a total 

of 36 (6 × 6) lateral positions, with a camera period of 5 mm. 

The resolution of each elemental image is 1200 (H) × 1600 (V) 

pixels and the camera focal length is 8 mm. Figures 26 (a)-(d) 

illustrate the multidimensional elemental images corresponding 

to the visible spectrum, NIR spectrum, measured Stokes 

parameters of the polarimetric characteristics, and the depth, 

respectively.  The multidimensional elemental images provide 

different perspectives of the scene. 

Figure 27 (a) is the 3D reconstructed image at 370 mm, 

where the dice are in focus. Compared with Fig. 26 (a), the 

occlusion is significantly mitigated, and features related to the 

object surface can be extracted for object recognition. In the 

experiments, 26 true class (the surfaces of a die) and 48 false 

class (trees, other objects, background, etc.) images were used 

as the training data for the SVM model classification. The dice 

in the reconstructed image can be recognized corresponding to 

the highest two estimation probabilities from SVM. The red 

boxes visualized in Fig. 27 (a) indicate the windows 

corresponding to the recognized targets. 

Suppose prior information is given in the sense that the pair 

of dice are made of metallic and non-metallic materials. 

However, it is difficult to identify the material in the visible 

wavelength range. With the reconstructed degree of 

polarization image, material inspection can be performed. 

Figure 27 (b) indicates the direct 3D reconstructed result of the 

degree of polarization image at the target depth position (370 

mm). The polarimetric characteristic around the right corner of 

the surface is degraded due to occlusion. By using the modified 

reconstruction approach [Eq. (27)], the degree of polarization 

components from the occlusion are removed by combining the 

degree of polarization elemental images with depth 

information. In Fig. 27 (c), the reconstructed degree of 

polarization image provides the accurate polarimetric 

characteristics on the target surface.  

The degree of polarization histogram within the areas of the 

target surface is then extracted. The distributions of the degree 

of polarization from the reflected lights of the left and right 

detected die are shown in Figs. 27 (d) and (e), respectively. An 

additional peak is centered at the degree of polarization value 

around 0.26 in Fig. 27 (e). The material discrimination between 

the targets can be performed by thresholding with degree of 

polarization (DoP = 0.18). Results indicate the reflected light 

from the right target surface has a higher degree of polarization 

components. As the dielectric surface partially polarizes 

incident light upon specular reflection more strongly than the 

metal surface [121], we can conclude that the right die is the 

plastic one and the left die has a metal surface. 

K-means clustering was performed on the NIR reconstructed 

3D images at 510 mm for the segmentation between vegetation 

and plastics in the background. The outline of the clusters was 

extracted by using the sobel edge [122] operator for both 

polarimetric and multispectral visualization. Multidimensional 

visualization with 3D object recognition and material 

inspection can be integrated for enhancing image 

understanding and information extraction. In Fig. 28 (a), the red 

boxes highlight the recognized objects at 370 mm, the green 

outline sketches the surfaces with higher degree of polarization, 

indicating the presence of a dielectric material surface. Figure 

28 (b) is the visualization result at 510 mm. The real foliage is 

pulled out from the plastic ones using the NIR information. 
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Fig. 27. MOSIS 2.0 for 3D object shape and material inspection experiments in 
the presence of occlusion. (a) 3D reconstructed images at the object planes of 

370 mm with target recognition. Degree of polarization reconstructed images at 

370 mm (b) by the conventional reconstruction, and (c) by the modified 
reconstruction method. Distribution of degree of polarization for the target 

surface reflected lights. (d) Left die by the modified reconstruction in (c), and 

(e) right die by the modified reconstruction in (c). 

 

 
Fig. 28. MOSIS 2.0 for 3D object shape and material inspection experiments in 
the presence of occlusion. Multidimensionally integrated visualization results. 

(a) 3D reconstruction at 370 mm. (b) 3D reconstruction at 510 mm.   

 

VIII. DYNAMIC MOSIS IN MICRO SCALES FOR MICROSCOPY 

AND MEDICAL APPLICATIONS 

 

In this section, we present a brief overview of MOSIS for 

medical applications using dynamic integral imaging systems 

with time multiplexing implemented with liquid crystal 

devices. Three-dimensional integral imaging has found 

applications in 3D endoscopy and can be used for cell 

identification and classification. In 3D endoscopy, a liquid 

crystal (LC) lens array or a LC lens is used to capture objects 

close to the imaging sensor. Furthermore, by using an 

electrically moveable LC lens array, a time multiplex technique 

called the moving array lenslet technique can be used to 

improve the 3D image resolution. 

 

A. 3D Integral Imaging Microscopy for Cell Identification  

 

Integral imaging technology can be employed for 3D 

microscopy [26][28][29][30][31]. The identification of 

biological microorganisms with 3D integral imaging has been 

proposed in [28]. The schematic setup of integral imaging 

microscopy for cell identification [28] is shown in Fig. 29. 

Incoherent light passes through a 3D specimen, and it is 

subsequently magnified by an infinity corrected microscope 

objective to form a real image. For the 3D sensing process, a 2D 

sensor records the object from various perspectives using the 

synthetic aperture integral imaging technique or a lenslet array. 

Three-dimensional integral imaging reconstruction can be 

performed by the computational reconstruction method. The 

3D reconstructed images contain depth and profile information 

of the micro object, which can be used for identification and 

classification by statistical pattern recognition techniques [28]. 

 

 
Fig. 29. 3D integral imaging microscopy for cell identification [28]. The 3D 

sensing process can also be performed using synthetic aperture integral imaging 

technique. 

 

B. 3D Integral Imaging with Endoscopy   

 

1) 3D Endoscopy using a Hexagonal Liquid Crystal Lens 

Array 

 

The conventional stereo 3D endoscopes consist of double 

image sensors with double lenses. This configuration may lead 

to a relatively large physical size (about 10 mm) and has the 

limitations of stereo endoscopic systems. A liquid crystal (LC) 

lens array has been developed for 3D sensing with a single 

sensor based on the integral imaging technique [32][123]. It can 

be applied for 3D mode by simply mounting the LC lens array 
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in front of the conventional 2D endoscope, which has the same 

diameter as the 2D endoscope lens (less than 1.4 mm). Details 

of the fabrication process of the LC lens array are discussed in 

[32]. Figure 30 (a) shows the pattern of the LC lens electrode 

with a hexagonal arrangement. An independent voltage level 

can be applied to each lens in the array. The hexagonal 

convex-ring electrodes and its magnified image are illustrated 

in Fig. 30 (b). Figure 30 (c) depicts a 3D endoscope with the 

embedded hexagonal convex-ring electrode LC lens which is 

placed in front of the endoscope [32]. This electrode lens 

produces a parabolic-type electric field distribution, and the 

focal length can be shortened to a value less than 2.5 cm.  Thus, 

the 3D endoscope can be used to acquire objects close to the LC 

lens for medical applications.   

  

 
Fig. 30. (a) Diagram of the Indium tin oxide (ITO) electrode. (b) The 

manufactured hexagonal liquid crystal micro lens array and the magnified 
image of the hexagonal electrodes. (c) An example of a 3D endoscope where 

the electrode liquid crystal lens in its hexagonal convex form located just in 

front of the endoscope [32].  
 

 
Fig. 31. Biological samples captured by the 3D endoscope.  (a) 2D and (b) 3D 

surface topography, and the (c) non-focusing and (d) focusing image of 

biological sample captured by using the LC lenses. 
 

Figure 31 illustrates experimental results of biological 

samples captured by the 3D integral imaging endoscope. 

Figures 31 (a) and (b) show the images with 2D and 3D 

topography. The images without and with focusing of the LC 

lenses are shown in Figs. 31 (c) and (d), respectively. 

 

2) 2D / 3D Adjustable Endoscopy and Axially Distributed 

Sensing using Electrically Controlled Liquid Crystal Lens  

 

A multi-functional liquid-crystal lens (MFLC-lens) is 

demonstrated for 2D and 3D switchable and focus tunable 

function without any mechanical movement. To achieve 

multiple focal length lens functions, a LC lens structure with 

dual-layer electrode coated by a high resistive transparent film 

was developed, as shown in Fig. 32 [123]. The diameter of the 

proposed MFLC-lens is only 1.42 mm with tunable focal length 

from infinity to 80mm in 2D mode, and to 20 mm in 3D mode. 

It can be easily applied to micro-imaging systems, such as 

endoscopic system, and objects in close proximity sensing for 

both 2D and 3D image capturing.  

The axially distributed sensing [66][124] configuration is 

also very practical for 3D endoscopy, as long as multiple lenses 

are not used. In the axially distributed sensing method, a single 

sensor is translated along its optical axis or the objects are 

moved parallel to the optical axis of a single sensor, and the 

captured images have various perspectives and magnifications 

of the objects. Three-dimensional information can be 

computationally reconstructed based on ray back-projection. 

By employing a multi-focal lengths LC lens, we can apply 

axially distributed sensing on the 3D endoscopy by changing 

the voltages. 

 
Fig. 32. (a) Top view of the electrode patterns and cross section of the 
multi-functional liquid-crystal lens (MFLC-LC) lens cell for a 2D / 3D tunable 

endoscope. The experiment results of the interference pattern using (b) 2D and 

(c) 3D mode [123].  

 

C. Dynamic Integral Imaging Display with Electrically 

Moving Array Lenslet Technique using Liquid Crystal Lens  

 

Micro integral imaging can be combined with optical 

see-through head-mounted display (OST-HMD) for an 
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augmented reality 3D display system [17][35][36][105]. Micro 

integral imaging creates a 3D image source for the 

head-mounted display (HMD) viewing optics. This 

configuration can reduce the accommodation-convergence 

mismatch and visual fatigue issue common in traditional 

augmented reality HMD. Thus, the proposed system can be 

used for bio-medical surgery. We note that by using the integral 

imaging technology, the display’s resolution will decrease. 

To improve the resolution of the integral imaging display, an 

electrically movable LC lens array was developed for dynamic 

integral imaging system with the moving array lenslet 

technique (MALT) [52][125]. Depending on the advantage of 

the two separated lenticular LC lens arrays with the 

multi-electrode structure, as shown in Fig. 34 (a), the sub-pitch 

movements of the lenslets along a vertical, horizontal, or 

diagonal direction can be realized and electrically controlled 

via moving the driving voltage to the next electrodes, as shown 

in Fig. 34(b). The image when MALT was not used with the LC 

lens [Fig. 34(c)] is compared with the reconstructed image 

when MALT was used [Fig. 34(d)]. The results demonstrate 

that using the LC lens with MALT results in a smoother and 

continuous image. Moreover, multifacet effect is eliminated 

resulting in improved resolution and image quality [16]. 
 

 
Fig. 33. (a) The system diagram of the electrically movable LC lens array for 

dynamic integral imaging display, and (b) its driving method. The 

reconstructed images of the 3D scene. (c) Without MALT, and (d) with the 

proposed LC lens MALT [16].  

 

IX. CONCLUSIONS 

 

In this paper, we have presented a literature overview of the 

passive integral imaging based Multidimensional Optical 

Sensing and Imaging Systems (MOSIS) with applications from 

macro to micro scale of objects. In addition, we have presented 

new results on using MOSIS 2.0 for 3D object shape, material 

inspection and recognition such that objects with similar shapes 

but different materials can be discriminated. Multidimensional 

information, which may include time-space multiplexing, 

visible and infrared spectrum, polarization of light, time 

domain variations, and photon flux changes, etc., can be 

measured, extracted, and visualized. Image processing 

algorithms are needed for post processing, image fusion and 

multidimensional visualization. Human activity and gesture 

recognition in 3D is discussed along with dynamic integral 

imaging systems using tunable liquid crystal lenses. Moreover, 

applications to cell identification and 3D endoscopy have been 

presented. Obtaining multidimensional information from the 

images and scenes increases the information content to 

significantly improve information extracted from the scene and 

objects. 
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