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Abstract 

Grip force and force sharing during two activities of daily living were analysed experimentally 
in ten right-handed subjects. Four different bottles, filled to two different levels, were 
manipulated for two tasks: transporting and pouring. Each test subject’s hand was 
instrumented with eight thin wearable force sensors. The grip force and force sharing were 
significantly different for each bottle model. Increasing the filling level resulted in an increase 
in grip force, but the ratio of grip force to load force was higher for lighter loads. The task 
influenced the force sharing but not the mean grip force. The contributions of the thumb and 
ring finger were higher in the pouring task, whereas the contributions of the palm and the 
index finger were higher in the transport task. Mean force sharing among fingers was 30% for 
index, 29% for middle, 22% for ring and 19% for little finger.  
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Practitioner Summary 
 

We analysed grip force and force sharing in two manipulation tasks with bottles: transporting 
and pouring. The objective was to understand the effects of the bottle features, filling level 
and task on the contribution of different areas of the hand to the grip force. Force sharing was 
different for each task and the bottles features affected to both grip force and force sharing. 

  



1. Introduction 

The human hand is one of the most complex biomechanical systems in the world. To date, its 
versatility in grasping and manipulating objects has not been matched by any artificial device. 
Muscle activation during grasping tasks allows hand shaping while reaching to grasp and 
facilitates the distribution of contact forces with the object during manipulation. Successful 
manipulation is accomplished through complex control of muscle activation, which is carried 
out by the central nervous system (CNS) and facilitated by visual and tactile sensory signals 
from the afferent neural system. Grasping with prosthetic hands still cannot replicate this level 
of dexterity, even with modern myoelectric devices (Micera et al. 2010). Thus, knowledge of 
the force distribution in the natural hand while grasping is important not only to improve the 
control and mechanical design of prosthetic hands but also for product design and for 
evaluating hand function (Kargov et al. 2004).   

Although several studies have measured the grasping forces exerted by the hand, most of 
them have focused on pinch prehension or have used specific instrumented devices rather 
than real objects (Aoki et al., 2006; Kinoshita et al., 1995; Radwin et al., 1992; Reilmann et al. 
2001; Santello and Soechting 2000, Kong et al., 2011, Kuo et al., 2013). The grip force and the 
relative contributions of different areas of the hand have also been studied for the design of 
handles (Lee et al., 2009; McGorry and Lin 2007; Kong et al., 2014). Specific devices have been 
designed for studying the grip force distribution, especially for cylindrical handles (Chadwick 
and Nicol, 2001; Dong et al., 2008; Rossi et al., 2012) and recently for pliers (Kim et al., 2016). 
Most of the studies analysing the contributions of different hand areas to the grip force have 
used cylindrical objects because they can easily be wrapped with thin pressure sensors, such as 
the Tekscan or Fuji Film pressure mapping systems (Nicholas et al., 2012; Pataky et al., 2012, 
Wu et al., 2014). While other studies have used functional objects, such as bottles, only 
kinematics and hand shaping have been analysed (Ansuini et al., 2008; Crajé et al., 2011; 
Sartori et al., 2011) but not the forces applied. Similarly some recent studies analysed multi-
finger grasping postures with cylindrical objects of different diameters, which can be 
assimilated to some functional objects such as bottles, but without registering the forces 
performed (Lee & Jung, 2015, Jarque et al., 2016). A recent study used specially designed 
instrumented objects to simulate functional objects used in pouring tasks, but only a three-
digit grip was analysed (Manis and Santos, 2015). Moreover, the fact that the sensors had 
specific locations on the instrumented objects may have prevented the spontaneous selection 
of the grasp by the subjects. Attention has been drawn to the lack of research on grip-force 
distribution in the hand during functional whole-hand grasping (Pylatiuk et al., 2006) and can 
be partially explained by the difficulty of finding suitable and non-invasive sensors. Pylatiuk et 
al. (2006) analysed functional manipulation of bottles using specially designed discrete force 
sensors placed on the hand, which were 9 mm in diameter and 3 mm thick. In a recent study, 
Hermsdörfer et al. (2011) analysed forces during the manipulation of several objects 
associated with routine activities of daily living, but they only measured contact forces on the 
fingertips of three grasping fingers.   

The problem of motor redundancy owing to multi-finger force production has been highlighted 
in previous studies (Zatsiorsky et al., 1998, Kolossiatis et al., 2016); the same total grip force 
can be obtained with different contributions of the individual fingers, which is referred to as 



force sharing. However, force sharing in functional tasks related to activities of daily living 
(ADL) has not been sufficiently studied. (Rossi et al., 2012) showed that force sharing among 
fingers is affected by the grip size in cylindrical handles during power grip. Force sharing 
among the fingers has also been reported to be different for a pressing task and for an 
adapted power grip task (Vigouroux et al., 2011). However little is known about the effect of 
the object features or the task in the force distribution among the fingers, thumb and palm 
during functional grasping in ADL tasks.  

The aim of the present study was to improve our understanding of the most common grasps 
used in ADL. The manipulation of bottles and similar objects is a typical ADL and is usually 
included in protocols for the assessment of grasping ability (Light et al., 2002). Specifically, grip 
force and grip force distribution in the hand while either transporting a bottle or pouring water 
from it were analysed. In addition to quantifying the total grip force and the contribution of 
each area of the hand, the effects of different factors were also studied: the subject, the task 
being performed, the bottle’s features (shape, size) and the amount of liquid in the bottle 
(filling level). Eight thin, minimally invasive, wearable sensors were used to measure grip force 
in different areas of the hand. 

2. Materials and methods 

2.1. Subjects 

Ten right-handed subjects (five men and five women), with no history of trauma or pathologies 
of the upper limb, participated in the experiments after providing informed consent.  The 
mean age was 32.7 years (SD 7.3), the mean hand length 186.7 mm (SD 13.0) and the mean 
palm hand breadth 82.2 mm (SD 7.1). The protocol used was in compliance with the 
Declaration of Helsinki and was approved by the ethical committee of the university.   

2.2 Objects 

Four different bottles were used (Figure 1a): one glass bottle (B1) and three plastic ones (B2, 
B3, B4). Each bottle was manipulated with two different filling levels (FL1 and FL2), resulting in 
two different total weights of the bottles (W1 and W2), as shown in Table 1.  

2.3. Procedure 

The participants were seated on a height-adjustable chair in front of a table so that their 
elbows were level with the table top. The subjects were asked to perform two different tasks. 
Task T1 (transport) consisted of taking the bottle from the initial position B on the table (Figure 
1b) and moving it anteriorly to leave it at position C, which was 150 mm away from B. Task T2 
(pouring) consisted of taking the bottle from the initial position B (Figure 1b), pouring its 
contents into a cylindrical container (diameter 150 mm, height 150 mm) located at position D 
(300 mm towards the left of the subject), and returning the empty bottle to position B. At the 
beginning and end of each trial and task, the subjects’ right hand was resting on the table in 
position A. The subjects were instructed to perform the tasks at a natural speed but were not 
given any additional instruction about the type of grasp to be used. Each combination of 
bottle, filling level and task was repeated five times consecutively, preceded by five 
unrecorded training trials. The bottle order was randomised for each subject. All combinations 



of filling level and task were performed consecutively for each bottle, with the task and filling 
level also being randomised for each bottle. All experiments with each subject were performed 
in the same session.  

2.4. Data recording 

The subject’s hand was instrumented with a wireless system (sample rate 40 Hz) comprising 
eight thin wearable force sensors (Finger TPS, Pressure Profile Systems, Los Angeles, CA) 
consisting of capacitive pressure sensor arrays. Figure 1c shows the position of each sensor on 
the hand: five sensors were located on the distal phalanges of each finger and thumb (DIndex, 
DMiddle, DRing, DLittle and DThumb), one sensor was on the palm of the hand (Palm) and two 
additional sensors were on the proximal phalanges of the index and middle fingers (PIndex and 
PMiddle). At the beginning of the experiment, the subject’s right hand was fitted with the 
sensors. Each sensor was then calibrated according to the procedure recommended by the 
manufacturer. For the calibration the subject wore the sensors and had to press a load cell 
once with each sensor, increasing the applied force from zero to a reference force (12 N was 
used). Both the sensor and the load cell signals were recorded using the software supplied by 
the manufacturer, which uses this information to establish the relation between the raw signal 
acquired by the sensor and the pressing force performed. According to the manufacturer, the 
accuracy error of the system is less than 5% and the repeatability error less than 1%.  

The bottles were instrumented with a magnetic tracking sensor (Fastrak Polhemus, Colchester, 
VT) to record their position during the test. The receiver sensor was attached to the bottle (see 
contour of sensor position in Figure 1a), and the transmitter was fixed to the table so that the 
X, Y and Z axes corresponded to medial, anterior and vertical motions, respectively.  

2.5. Data analysis 

The force and position signals were smoothed with a low-pass filter (zero phase first order 
filter, forward-backward, 0-20 Hz, using the filfilt built-in Matlab function). The data from 
different trials were synchronised in Matlab by considering the instants with the highest 
positive and negative derivatives of the Thumb signal as the loading and unloading reference 
instants, respectively. Time was normalised to the range 0-1 to allow for comparison between 
different trials, with loading and unloading reference instants set to normalised times 0.3 and 
0.7, respectively. The force registered at each of the eight sensors (SFi, i=1,…,8) was added at 
each instant to define the grip force (GF). The mean values of the GF and SFi forces during the 
time interval 0.4-0.6 were considered as representative of the stable grasp of the bottle being 
manipulated, defining a mean grip force (MGF) and eight mean sensor forces (MSFi, i=1,…,8). 
In order to reduce the effect of the subject on the results, a relative MGF (MGFr) was defined 
as the ratio between the MGF value for each experiment of a subject and his/her maximal 
MGF across all his/her experiments. The contribution of each sensor to the grip force (CGFi, 
i=1,…,8) was computed at each instant as the quotient between SFi and GF, and a mean value 
was obtained during the time interval 0.4-0.6. Force sharing among index, middle, ring and 
little fingers (FSj, j=I,M,R,L) was computed for each finger (FSj, j=I,M,R,L) as the relative 
contribution of each finger (sum of CGF of the sensors in that finger) to the sum of the CGF of 
the sensors located in the four fingers, as in other works in the literature (Li et al., 1998; 
Vigouroux et al., 2011).  



2.6. Statistical analysis 
 
The repeatability of the measurements among the five trials was assessed from the root-
mean-squared error (RMSE) in an ANOVA on MSF with factor ‘subject x bottle x task x filling 
level x sensor’. As the repeatability was good, the mean value of the five trials was used for 
each experiment in the subsequent statistical analysis.  

The effect of the different factors on the total grip force was investigated by performing an 
ANOVA on MGFr with factors ‘bottle’, ‘task’ and ‘filling level’ and their interactions. As B1 
bottle had different tare weight than B2, B3, B4 bottles and also total weights for each filling 
level were different for both groups (Table 1), two additional ANOVAs were performed on 
MGFr in order to have a deeper understanding on the effect of each factor and their 
interaction with others: one including only the experiments with the glass bottle and the other 
one with the three plastic bottles. The relative contributions of each area of the hand to the 
grip force were analysed using similar independent ANOVAs on the CGF of each sensor, with 
the same independent factors. Also force sharing among fingers was compared for the two 
tasks. Post-hoc Tukey-Kramer analyses were performed on the ANOVA results to determine 
possible groupings among the different levels of the variable ‘bottle’ and to compute marginal 
means. The effect of the subject gender on the results was also investigated with new ANOVAs 
extended by adding the factor ‘gender’ and also the interaction of this new factor with the 
other factors. The Matlab Statistics Toolbox was used for these analyses, with a significance 
level of 0.05 in all the analyses. 

3. Results 
 
Figure 2 shows typical bottle displacements during the two tasks. For the transport task T1, the 
Y-position showed a smooth transition from the initial to the final state, the Z-position 
followed a bell-shaped curve, and the X-position remained constant. For the pouring task T2, 
the Z-position followed an eccentric bell-shape because of the slower velocity in the ascent 
than in the descent of the bottle, the X-position showed an S-shaped profile due to the 
rotation of the bottle for pouring the water, while the Y-position was quite constant. The 
eccentricity of the Z-position curve was found to increase with the filling level of the bottle. 
The mean time spent on T1 from loading to unloading instants (corresponding to normalised 
times 0.3 and 0.7 respectively) was 1.08 s (SD 0.21) for filling level FL1 and 1.22 s (SD 0.24) for 
filling level FL2, and 4.75 s (SD 1.39) and 8.47 s (SD 2.17) on T2, respectively. 

The temporal evolution of the normalised GF by task, averaged across all trials for each task, is 
shown in Figure 3, where normalisation was performed by setting the maximum GF in any trial 
to 100. A common pattern was observed in both tasks, with three different phases: a sudden 
increase in GF during the loading phase, followed by a decrease in GF during the manipulation 
(more pronounced for the T2 task), and a final decrease in GF during the unloading phase. A 
change in the GF rate during T2 was observed at the moment of highest inclination of the 
bottle, which was at the end of the pouring task (around normalised time 0.6). This change was 
more noticeable for the heaviest bottle (B1).  

The repeatability error associated with the five different repetitions of each combination of 
factors, obtained from the RMSE of the ANOVA on MSF with the factor ‘subject x bottle x task 



x filling level x sensor’, was 0.75 N (SD 0.45). Table 2 shows the results of the ANOVA on MGFr 
with factors ‘bottle’, ‘filling level’ and ‘task’. The ‘bottle’ and ‘filling level’ had a significant 
effect on MGFr, whereas the effect of the ‘task’ was not significant. The interaction between 
‘bottle’ and ‘task’ was also significant. Figure 4 shows the mean MGF for both transport and 
pouring tasks for each combination of ‘bottle’ with ‘filling level’. The two additional ANOVAs 
restricted only to bottles of the same material (B1 for glass, and B2,B3,B4 for plastic) showed 
that none of the factors ‘filling level’ or ‘task’ was significant on MGFr for the experiments with 
the glass bottle, but ‘filling level’ and also the interaction ‘bottle x task’ had a significant effect 
on MGFr in the case of the plastic bottles.  The effect of the gender of the subject was not 
significant on MGF or MGFr, nor the interaction of this factor with other factors such as the 
bottle, the task of the filling level.  

The post-hoc Tukey-Kramer analysis on the factor ‘bottle’ revealed that the bottle B1 was 
manipulated with a significantly greater MGFr than the three plastic bottles (B2, B3 and B4), 
and that the difference among these three plastic bottles was not significant. This was 
confirmed also for MGF. Mean MGF across all the experiments for each bottle was 28.1 N (B1), 
15.5 N (B2), 14.9 N (B3) and 14.1 N (B4). The post-hoc analysis on the factor ‘filling level’ with 
all the bottles showed that MGF was greater for FL2 (20.6 N) than for FL1 (15.7 N), as expected 
from the differences in weight arising from the different filling levels. The same analysis but 
restricted only to the plastic bottles showed also significant differences for FL2 (17.8 N) and 
FL1 (11.9 N), although the relative increase in MGF with the greatest filling level was smaller 
than the increase in the total weight (from 150 g to 550 g). Additionally, the filling level did not 
produce a significant change in the MGF for the glass bottle (28.8 N for FL2 and 27.3 N for FL1) 
despite the total weight for FL2 was nearly twice that for FL1. Lastly, the glass bottle with filling 
level FL1 was manipulated with a greater MGF (27.3 N) than the plastic bottles with FL2 (18.6 
N for B2, 17.8 N for B3, 16.9 N for B4), despite the total weight being manipulated was the 
same. The post-hoc analysis on the interaction ‘bottle x task’ restricted to the plastic bottles 
revealed that executing the pouring task T2 with bottle B2 required a greater MGF (18.2 N) 
than the rest of bottle-task combinations (ranging from 12.8 N to 15.2 N).  

Figure 5a represents the mean values of CGF for each sensor across all the subjects and 
experiments. The marginal means for each bottle, filling level and task are represented with 
symbols around the overall mean value. The statistical significance of the factors obtained 
from the ANOVAs on each sensor is indicated in Fig. 5a with an asterisk. The DThumb sensor 
(1) had the highest contribution to the GF and the lowest CGF was that of the PMiddle (8) 
sensor. The factor ‘bottle’ had significant effects on the CGF for most of the sensors, including 
the DThumb (1), DIndex (2) and DMiddle (3) sensors. Bottle B2 behaved with a noticeable 
different pattern than that of the other bottles, with a higher contribution of the thumb, palm 
and ring finger, and a lower contribution of the index finger. The ‘filling level’ did not affect 
significantly to the CGF and the ‘task’ only affected significantly to the CGF of the DIndex (2) 
sensor, although the results were nearly significant for the DThumb (1) and Palm (6) sensors 
(p=0.06). Similarly, Fig. 5b shows the FS among the fingers and the marginal means for each 
factor and level. The mean FS was 30.0% for the index, 29.0% for the middle, 22.4% for the 
ring and 18.7% for the little finger. The ‘bottle’ and ‘task’ affected significantly the FS pattern 
whereas the ‘filling level’ did not.  



4. Discussion 

The present study contributes to a better understanding of the differences in the manipulation 
of bottles by humans depending on the bottle features, the filling level or the task performed. 
Particularly, we investigated the effects observed in the grip force and the contribution of the 
different hand areas to the grip force during the manipulation of actual bottles with different 
designs. This study complements some previous studies analysing the fingers placement and 
the grasping postures in bottles for different tasks and with different shapes (Ansuini et al., 
2008; Crajé et al., 2011; Sartori et al., 2011) and also other recent kinematic studies about 
grasping cylindrical objects (Lee & Jung, 2015, Jarque et al., 2016). Moreover this study 
provides additional results about the contribution of the hand areas to the rotation of objects, 
analysed by Mani & Santos (2015) for three-digit pouring tasks.   

The time course of the total grip force during the transport task (Figure 3) was similar to that 
obtained by others for two-finger lifts and five-finger lifts (Johansson and Westling 1984; 
Santello and Soechting 2000). The grip force required to transport the bottle is set by the CNS 
during the very short period of motion onset and is reduced after the acceleration period of 
the vertical motion for efficiency. During the pouring task, this reduction was more 
pronounced than for the transport task, which can be attributed to the reduction of weight of 
the bottle during pouring. Moreover, the reduction was greater after the moment of highest 
inclination of the bottle, when less precision is demanded because the act of pouring has been 
completed. 

The ANOVA on the MGFr (Table 2) showed that the bottle features and weight had significant 
effect on the grip force. A higher filling level resulted in an increase in the grip force, as 
expected, thereby explaining why the interaction of bottle with filling level was not significant 
in the ANOVA. However, the grip-force to bottle-weight ratio was noticeably higher for lighter 
bottles (Figure 4 and Table 1), with heavy bottles being manipulated with lower safety factors, 
which is in agreement with previous reports (Johansson and Westling 1984). This result may 
explain the fact that the grip force was not altered significantly when changing the filling level 
for the glass bottle, whereas the change was significant for the plastic bottles, with lower tare 
weight. One possible explanation for this result is that subjects tend to manipulate heavier (or 
apparently heavier) objects with a lower safety margin to reduce muscular fatigue. 
Alternatively, subjects may use higher forces than required on very light objects to prevent 
slip, thus improving sensory feedback. The effect of inertial and gravitational parts of the load 
force on grip force adjustment in dynamical tasks has been highlighted previously (Zatsiorsky 
et al., 2005) and sensory feedback is presented as a possible factor to explain this adjustment. 
The material of the bottle also seems to play a role in the grip-force to load-force ratio, as the 
glass bottle was manipulated with a higher MGF than similarly weighted plastic bottles. The 
different friction coefficient may be a reason for this difference. The lower stiffness of the 
plastic bottles compared to the glass one may also prevent the subject from developing higher 
grip forces, which would result in significant deformation of the bottle. Additionally, previous 
studies have shown that grip force depends on the size and material of the bottle and is higher 
if the bottle seems heavier than the one in a previous task (Buckingham et al., 2009; Cole, 
2008; Li et al., 2009). Domalain et al. (2008) reported, for grips with the thumb and the index 
finger, an increase in grip force with object width, for objects of the same weight. We cannot 



confirm this behaviour from our results, despite the task, the grip type and the weight range is 
different in our work. The bottle features also had a significant effect on the contributions of 
the different hand areas to the grip force (Fig. 5), probably because the different size and 
geometry may require different contact configurations between the hand and the bottle, as 
well as the need to use different force sharing strategies to improve bottle stability. This effect 
of object shape on grip force distribution has also been observed recently in power grip tasks 
(Rossi et al., 2015).  For the bottle with highest diameter in our experiments (B2), force sharing 
among fingers was noticeably different than that for the other bottles, with higher sharing for 
the ring and little fingers and lower for the index and middle fingers (Fig. 5b). Also the palm 
and thumb were more demanded for B2 (Fig. 5a). These differences are attributed to the 
bigger size of the bottle, demanding a greater participation of the ring and little fingers while 
pouring for helping in the stabilisation. It is remarkable that the contribution of the hand areas 
to the grip force was not dependent on the filling level, indicating that an increase in the filling 
level can be compensated by a modulation of the grip force, without requiring adjustments of 
the force sharing. The effect of object size on grip force distribution has been investigated 
previously for maximal isometric tasks with cylindrical handles (Kong et al., 2007; Rossi et al., 
2012) although grip spans were smaller to those used in the present study, limiting the 
comparison of the results. 

Our results show that the bottles were handled with similar total grip forces, regardless of 
whether transporting or pouring was performed (Table 2), but the contribution of the different 
hand areas to this grip force was slightly changed for the two tasks being significant the change 
of the index contribution (Fig. 5) which is higher for the transport task than for the pouring 
task. This can be explained because in the pouring task the middle, ring and little fingers have a 
more important role for controlling the inclination of the bottle, reducing the relative 
contribution of the index among fingers. The effect of the task in the contribution of the 
thumb and palm was near statistical significance (p=0.06), with higher thumb and lower palm 
contributions for the pouring task. This can be due to the lowered thumb position on the 
bottle when pouring; in contrast to the other digits, which are located on the upper part of the 
bottle, and the palm, which is lateral, the thumb must increase its contribution to counteract 
the gravitational force. Pylatiuk et al. (2006) reported similar results when comparing a lifting 
task with a simulated pouring action using different force sensors to those used in this study. 
Previous works analysing dynamical tasks have shown that force sharing is affected by the 
wrist flexion and the external moment to counteract (Dumont et al., 2006). In our study the 
pouring task required a wrist partially flexed and the transport task a neutral or slightly 
extended wrist. This fact and the different external moment demanded for each task can 
explain partially the differences observed in force sharing. The fact that force sharing was 
partially altered by the task is consistent with the changes observed in previous works in the 
digit placement or hand configuration for different tasks (Ansuini et al., 2008; Crajé et al., 
2011; Sartori et al., 2011), suggesting that this change in the hand configuration could be 
imposed by the different force-equilibrium requirements imposed by the task.  

The analysis of the interaction of the factors ‘bottle’ and ‘task’ for plastic bottles revealed that 
bottle B2 required a significantly greater MGF for pouring than the rest of the task-bottle 
combinations. This fact is probably due to the low stiffness of the bottle walls provided by the 
low wall-thickness to size ratio, which makes more difficult for the subjects maintaining the 



bottle equilibrium while pouring, thus requiring higher forces to improve the stability. This fact 
has an implication in the design of bottles because an inadequate size to wall-thickness ratio of 
the bottle could difficult the manipulation, especially for people with reduced grasping 
capabilities. 

The greatest mean contribution to the total grip force across all the experiments corresponded 
to the thumb sensor, similarly to other studies (Olafsdottir et al., 2005; Pylatiuk et al., 2006), 
which is explained by the opposing role of the thumb. From our results, the total contribution 
of the index finger was similar to that of the middle finger, whereas the ring, little and palm 
areas made lower contributions, which was also in agreement with another study that used 
similar objects and tasks (Pylatiuk et al., 2006). The mean force sharing among fingers obtained 
in this study (index 30.0%, middle 29.0%, ring 22.4% and little finger 18.7%) is similar to those 
obtained in previous studies for cylindrical grasping (Amis, 1987; Radhakrishnan and 
Nagaravindra, 1993) and also similar to the results obtained by other studies in pressing tasks 
(Danion et al., 2001; Vigouroux et al., 2011), indicating that force sharing for real life activities 
with bottles is similar to that observed in other hand activities. The mean force sharing 
obtained here for the little finger is higher and that of the index finger lower to those obtained 
by Rossi et al. (2012). However, it must be considered that the maximum diameter in that 
study was 48 mm (smaller than that of the bottles in our study) and that they observed an 
increment in the little force sharing and a decrement in the index force sharing for the highest 
diameter of 48 mm with respect to smaller diameters. 

Despite the contribution of the present study to a better understanding of grip-force sharing 
during two common ADL, some limitations must be considered. The measurement system 
used in the present work, Finger TPS, only registered normal forces and is limited to certain 
areas of the hand, although this is in line with the state of the art in commercial tactile sensors 
for ergonomic investigations (Reinvee & Jansen, 2014). The repeatability error obtained for the 
sensors (mean 0.75 N, SD 0.45) confirmed the suitability of the sensors for these types of 
measurements and indicated that subjects maintained very similar MGF and CGF for 
consecutive repeated tasks with the same conditions. Other areas of the hand outside the 
location of the sensors may have contributed to the total grip force but were not considered. 
Nevertheless, the eight sensors used in the present study covered the main areas used when 
grasping the bottles employed in this work. Some previous studies registering pressures in the 
whole hand-handle interface confirm the validity of the sensors location used in the present 
one, as they have shown that the fingertips are mainly responsible for the gripping forces 
whereas the proximal phalanges and the palm contributed more in push tasks requiring higher 
forces (Aldien et al. , 2005, Rossi et al. 2012) and that among proximal phalanges the highest 
contribution to the grip force corresponds to the index finger (Goislard de Monsabert et al. 
2012). The calibration of the sensors could have affected the comparisons between subjects, 
as the sensor locations for each subject may have been slightly different due to different hand 
anthropometry. Moreover, changes in the afferent feedback as a consequence of the sensors 
could have affected the forces exerted on the objects. These limitations have been partially 
avoided defining a relative MGF (MGFr) for the analysis of the statistical significance of the 
factors involved in the study. Our investigation was limited to four different bottles with two 
different filling levels, ranging in weight from 150 and 1000 g, which was considered 
representative of most of the precision grasps used in daily activities. Only two tasks were 



analysed, transport and pouring, and the grasping posture was selected freely by the user. 
Other tasks in ADL may require grasp types that were not analysed in this study, and this 
should be taken into account when attempting to extend the conclusions to other activities. 

Overall, the present work allows to conclude that grip force and force sharing in the 
manipulation of bottles are significantly influenced by the bottle features. The filling level is 
also determinant for the grip force, but the ratio of grip force to load force has been shown to 
be higher for lighter loads. The task to be performed with the bottle influenced the force 
sharing but not the mean grip force during the task. Comparing transport and pouring tasks, 
the contributions of the thumb and the ring finger were higher for pouring, whereas the 
contributions of the palm and the index finger were higher for transport. Mean force sharing 
among fingers across all the experiments was 30% for index, 29% for middle, 22% for ring and 
19% for little finger.  
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Table 1. Characteristics of the bottles: height (h), diameter (d), tare weight (W0) and 
total weight for both filling levels (W1 for FL1, W2 for FL2). 
 
Bottle h (mm) d (mm) Material W0 (g) W1 (g) W2 (g) 
B1 300 80 Glass 523.5 550 1000 
B2 350 80 PET 49.0 150 550 
B3 245 75 PET 44.5 150 550 
B4 222 65 PET 28.5 150 550 
 
  



 
 
Table 2. Results for the ANOVA on MGFr with the factors ‘bottle’, ‘filling level’, ‘task’ 
and their interactions. 
 

Source Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F p-value 

Bottle 3.7956 3 1.2652 54.65 0.000 
Filling level 0.8718 1 0.8718 37.65 0.000 
Task 0.0197 1 0.0197 0.85 0.357 
Bottle x Filling level 0.1224 3 0.0408 1.76 0.157 
Bottle x Task 0.2329 3 0.0776 3.35 0.021 
Filling level x Task 0.0058 1 0.0058 0.25 0.616 
Error 3.4035 147 0.0231   
Total 8.4519 159    
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(b)  

(c)  Figure 1. Description of the experleft to right: B1, B2, B3 and B4. Oarrows indicating the two filling the subject for the experiments ((A), initial position of the bottle (and position of the container to bArrangement of the Finger TPS ssubject’s hand: DThumb (1), DIndPIndex (7), PMiddle (8).      

 

 

 
rimental setup: a) Bottles used in the experimenutlines for the placement of the tracking sensorslevels are shown on each bottle. b) Setup of the t(top view): initial and final positions of the subje(B), final position of the bottle for transport taskbe filled with water during pouring task T2 (D). censors (Pressure Profile Systems, Los Angeles, Cdex (2), DMiddle (3), DRing (4), DLittle (5), Palm
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       Figure 2. Mean (solid line) and stbottle sensor for one subject movtransport task T1; right, pouring 
    tandard deviation (dashed lines) displacements ving bottle B2 with filling level FL1 for both tasktask T2. 

 of the ks: left, 



Figure 3. Mean and standard devboth tasks: left, transport task T1setting the maximum GF in any tr  
viation of normalised GF across all the experimen1; right, pouring task T2. Normalisation was perfrial to 100. 

 nts for formed by 



 

Figure 4. Mean MGF for transporbottle (B1: glass, B2, B3, B4: plast   rt (T1) and pouring (T2) tasks for each combinattic) and filling level (FL1: low, FL2: high). tion of 



  

    (a)  Figure 5. Distribution of the grip (CGF) for each sensor: DThumb ((6), PIndex (7), PMiddle (8) b) Fosubjects and experiments: Index values across all the experimentsrepresented with symbols, from tand ‘task’ (T1, T2), respectively. Athe factor obtained from the ANO 
 
 
 
 
 
 
 
 

 

 

 

 

     (b) force among hand zones: a) Contribution to grip(1), DIndex (2), DMiddle (3), DRing (4), DLittle (5orce sharing (FS) among fingers averaged across(I), Middle (M), Ring (R), Little (L). Bars represes and the marginal means for each factor and levtop to down for ‘bottle’ (B1 to B4), ‘filling level’ (An asterisk in used to indicate statistical significOVAs. 
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