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ABSTRACT 

 

There is some evidence that functional connectivity (FC) measures obtained at rest may 

reflect individual differences in cognitive capabilities. We tested this possibility by using 

the FAS test as a measure of phonemic fluency. Seed regions of the main brain areas 

involved in this task were extracted from meta-analysis results (Wagner et al., 2014) and 

used for pairwise resting-state FC analysis. Ninety-three undergraduates completed the 

FAS test outside the scanner. A correlation analysis was conducted between the F-A-S 

scores (behavioral testing) and the pairwise FC pattern of verbal fluency regions of 

interest. Results showed that the higher FC between the thalamus and the cerebellum, and 

the lower FCs between the left inferior frontal gyrus and the right insula and between the 

supplementary motor area and the right insula were associated with better performance 

on the FAS test. Regression analyses revealed that the first two FCs contributed 

independently to this better phonemic fluency, reflecting a more general attentional factor 

(FC between thalamus and cerebellum) and a more specific fluency factor (FC between 

the left inferior frontal gyrus and the right insula). The results support the Spontaneous 

Trait Reactivation hypothesis, which explains how resting-state derived measures may 

reflect individual differences in cognitive abilities.  
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1. Introduction 

 

In neuroimaging research, for years the existence of brain activity without performing 

any cognitive task (i.e., intrinsic or spontaneous brain activity) was considered a very low 

frequency random noise and, therefore, excluded. Recent studies have shown that this 

activity is not random, but rather well-structured and organized (Biswal, Yetkin, 

Haughton, & Hyde, 1995; De Luca, Smith, De Stefano, Federico, & Matthews, 2005). 

This “resting-state” activity has a similar amplitude to what appears during task 

performance, and it covers the entire brain cortex (Nir, Hasson, Levy, Yeshurun, & 

Malach, 2006). A further step in research on this spontaneous activity is to give a 

“cognitive value” to this information.  

 

Some studies have found significant correlations between individual differences in 

spontaneous connectivity patterns and differences in individual task performance. 

Harmelech and Malach (2013) tried to unify the quantity of resting-state data under a 

single principle. They proposed the “spontaneous trait reactivation” hypothesis (STR), 

which basically states that spontaneous fluctuations could teach us about individual 

personality traits, abilities, and even diseases. They tested their hypothesis by reviewing 

a number of studies using different measures. One of these measures was individual 

differences in cognition. Our study aims to contribute more empirical evidence to the 

STR hypothesis by using a resting-state FC data analysis approach to investigate the 

possible individual differences when performing a verbal phonemic fluency task.    

 

Previous results of resting-state studies agree with this proposal of using functional 

connectivity (FC) measures. Resting-state FC provides information about the profile of 

each person’s neuronal connectivity biases and focuses on connectivity assessed across 

individual BOLD time points during resting conditions (Friston, 2009). For example, 

Ventura-Campos et al. (2013) showed a method for studying the brain’s capacity to learn 

by determining FC during resting-state-fMRI (rs-fMRI) between task-related brain areas. 

The authors concluded that spontaneous brain activity predicts the ability to learn foreign 

sounds. Their work used the methodology from a study by Baldassarre et al. (2012), 

where a correlation between individual differences in performance on a perceptual task 

and dissimilarities in resting-state functional connectivity (rs-FC) were demonstrated. 

Another study showed the predictive properties of resting state fluctuations in individual 



performance after learning (Lewis, Baldassarre, Committeri, Romani, & Corbetta, 2009). 

In addition, measures of the intrinsic brain activity synchronization within a region (i.e., 

regional homogeneity) during resting-state have predicted individual differences on a 

variety of cognitive tasks (Barttfeld et al., 2013; Coste, Sadaghiani, Friston, & 

Kleinschmidt, 2011; Martin, Barnes, & Stevens, 2012; Mennes et al., 2010; Wang et al., 

2013; Zou et al., 2013).  

 

Verbal fluency is an executive function that neuropsychological language production 

tests easily evaluate. These tests evaluate the capacity to generate words in a fixed time, 

usually one minute. Generally, participants have to say as many words as possible from 

a specific category. Categories can be semantic (produce names such as animals or fruits) 

or phonemic (generate words beginning with a specific letter). Those kinds of tasks 

require subjects to retrieve words stored in the long-term memory, and they involve 

frontal processes. Successful retrieval requires executive control over cognitive processes 

such as selective attention, working memory, language production, mental set shifting, 

internal response generation, and inhibition of inappropriate responses (Lezak, 1995; 

Patterson, 2011; Ruff, Light, Parker, & Levin, 1997). 

 

Several investigations have studied the neural basis of verbal fluency (Gauthier, 

Duyme, Zanca, & Capron, 2009; Heim, Eickhoff, & Amunts, 2008; Weiss et al., 2004; 

Weiss, 2003). In a meta-analysis, Wagner et al., (2014) included twenty-eight individual 

studies with a total of 499 healthy volunteers to separately study the brain areas involved 

during the performance of phonemic and semantic verbal fluency tasks. The authors 

found eight regions with significant activation during phonemic verbal fluency tasks, and 

seven regions with significant activation during semantic verbal fluency tasks. In the case 

of phonemic fluency, the area most involved was the left inferior frontal gyrus (LIFG), a 

brain area implicated in word production and speech processing on different tasks, 

especially phonemic fluency (Broca, 1861; Bookheimer, 2002; Demonet, Fiez, Paulesu, 

Petersen, & Zatorre, 1996; Hirshorn & Thompson-Schill, 2006; Indefrey & Levelt, n.d.; 

Price, 2000, 2010). Neuropsychological studies have revealed that patients with lesions 

in the left frontal lobe were more impaired in phonemic fluency than those with right 

frontal lesions (Robinson, Shallice, Bozzali, & Cipolotti, 2012). Although right inferior 

frontal activation has been related with semantic tasks (sentence comprehension) (Price, 

2010), it is also relevant because has been associated with attentional switching and 



response inhibition (Hampshire, Chamberlain, Monti, Duncan, & Owen, 2010). The left 

insula was also strongly involved in phonemic processing and during the performance of 

the verbal fluency task (Brown et al., 2009; Gauthier et al., 2009; Price, 2010; Saur et al., 

2008). Some studies have also related the insula to vocal production (Ackermann & 

Riecker, 2004; Riecker, Ackermann, Wildgruber, Dogil, & Grodd, 2000). Other brain 

structures associated with phonemic fluency were the thalamus, the cerebellum and the 

supplementary motor area (SMA). On the one hand, activations of the thalamus have been 

associated with processing stages during verbal fluency tasks (Llano, 2013) and 

activations in the cerebellum have been related to speech production (Price, 2010), 

selecting correct responses and attention (Senhorini et al., 2011). On the other, the SMA 

has been related to the cognitive effort linked to word selection processes, in addition to 

its role during the encoding of word form information and overt language articulation 

(Alario, Chainay, Lehericy, & Cohen, 2006; Price, 2010). 

 

The present study was designed to verify whether resting-state activity serves as a 

good verbal fluency ability measure. We will compare the resting-state FC of brain areas 

with significant activation on a phonemic fluency task to the performance on a phonemic 

fluency task. In agreement with the STR hypothesis and bearing in mind the results of 

previous investigations where resting-state FC has been able to describe individual 

differences in the performance on cognitive tasks, our main hypothesis was that FC 

patterns would be able to describe individual differences on the phonemic fluency task at 

the brain level. We hypothesized that participants with more coherent FC patterns will 

perform better on the phonemic fluency task.  

  



2. Materials and methods 

 

2.1. Participants 

 

Ninety-three right-handed, healthy undergraduates (37 male) with ages ranging 

between 18-30 years (mean age = 20.65; SD = 2.697) participated in this study. They 

were native Spanish speakers, and none of them had a previous psychiatric or neurologic 

diagnosis. Informed consent was obtained from each subject before participation, and 

they received monetary compensation for their time and effort. The Ethical Committee 

of Universitat Jaume I approved the research project. 

 

2.2. Behavioral task 

 

The Spanish version of the FAS test (Spreen & Benton, 1977) was completed by all 

participants a day before the resting-state fMRI session. During the phonemic fluency 

tasks, participants were asked to orally produce as many words as possible beginning with 

a requested letter (F, A or S) within a prescribed time frame (a minute).  

 

2.3. Neuroimaging data acquisition 

 

Functional MRI sessions consisted of a resting-state scan where participants were 

instructed to simply rest with their eyes closed and try not to sleep or think about anything 

in particular. Images were acquired on a 1.5 T scanner (Siemens Avanto). Participants 

were placed in a supine position in the MRI scanner, and their heads were immobilized 

with cushions to reduce motion artifacts. For the rs-fMRI, a total of 270 volumes were 

recorded over 9 min, using a gradient-echo T2*- weighted echo-planar imaging sequence 

(TR = 2000 ms; TE = 48 ms; matrix, 64 x 64; voxel size = 3.5 x 3.5 mm; flip angle = 90°; 

slice thickness = 4 mm; slice gap = 0.8 mm). We acquired 24 interleaved axial slices 

parallel to the anterior–posterior commissure plane covering the entire brain. Before the 

functional magnetic resonance sequences, a high-resolution structural T1-weighted 

MPRAGE sequence was acquired (TR = 2200 ms; TE = 3.8 ms; matrix = 256 x 256 x 

160; voxel size = 1 x 1 x 1 mm). 

 

2.4. Behavioral data analyses 



 

Descriptive analyses were conducted with SPSS (v.21, Armonk, New York, USA). 

The mean F-A-S score was calculated for each participant and subsequently used in 

resting-state FC correlation analyses. In addition, the data sample distribution was 

studied, along with the mean and the standard deviation. 

 

2.5. Resting-state Functional Connectivity analyses   

 

2.5.1. Preprocessing 

 

Rs-fMRI datasets were processed using a toolkit of the Data Processing Assistant for 

Resting-State fMRI (DPARSFA; http://rfmri.org/DPARSF) (Yang & Zang, 2010), based 

on some Statistical Parametric Mapping functions (SPM v.8 Wellcome Trust Centre for 

Neuroimaging, London, UK) to preprocess the rs-fMRI data and REST software 

(http://www.restfmri.net) for the connectivity analysis. Prior to preprocessing, we applied 

artifact correction (automatic detection and reparation of bad slices) with the ArtRepair 

toolbox for SPM (Mazaika, Whitfield-Gabrieli, & Reiss, 2007). The rs-fMRI 

preprocessing included the slice-timing correction for interleaved acquisitions using sinc-

interpolation and resampling with the middle slice (24th) in time as the reference point. 

Head motion correction was performed, where the functional images were realigned and 

resliced to the mean functional image. Afterwards, the anatomical image (T1-weighted) 

was co-registered to the mean functional image, and the transformed anatomical image 

was then segmented by the new segment + DARTEL. We conducted additional 

preprocessing through the following steps: (i) removing the linear trend + quadratic trend 

in the time series and (ii) controlling the non-neural noise in the seed region time series 

(Fox et al., 2005). Several sources of spurious variance were removed from the data 

through linear regression: six parameters from rigid body correction of head motion, the 

global mean signal, the white matter signal, and the cerebrospinal fluid signal. Recently, 

head motion has been shown to differentially impact FC measures, which can introduce 

spurious correlations in the FC analyses (Power, Barnes, Snyder, Schlaggar, & Petersen, 

2012; Satterthwaite et al., 2012; Van Dijk, Sabuncu, & Buckner, 2012). To assess this 

potential confounding effect, we performed the scrubbing of each participant using the 

FD Jenkinson procedure with a threshold for “bad” time points of 0.2 (one time point 

before and two “bad” time points after). The scrubbing method was to use each bad point   



as a regressor. The functional images were spatially normalized to the MNI 

(Montreal Neurological Institute, Montreal, Canada) space with a 3 mm3 resolution using 

the normalization by DARTEL and spatially smoothed with an isotropic Gaussian kernel 

of 4 mm FWHM (Full-Width at Half-Maximum). Finally, we used temporal band-pass 

filtering (0.01-0.08 Hz) to reduce the effect of low-frequency drift and high-frequency 

noise (Biswal et al., 1995; Lowe, Mock, & Sorenson, 1998). 

 

2.5.2. Seed-voxel selection 

 

As our main objective was to study resting-state FC patterns of brain areas involved 

in the performance of phonemic fluency tasks and the information that these FC patterns 

provide about individual differences in verbal fluency, specific regions of interest were 

used in our rs-fMRI analyses. Therefore, the seed regions selected for the rs-fMRI 

analysis were extracted from the Wagner et al. (2014) meta-analysis of neuroimaging 

studies using the phonemic fluency task. A total of six ROIs were made (see Table 1), 

and they were built with the WFU Pickatlas toolbox (Maldjian, Laurienti, Kraft, & 

Burdette, 2003), obtaining spheres with a 6 mm radius used in the FC analyses. We 

selected the six most relevant ROIs from that study in terms of the number of studies 

reporting at least one activation peak. 
 
Table 1. Regions with significant activation during phonologic verbal fluency (Wagner 
et al., 2014) included in our resting-state pairwise FC analysis as seed regions.  
 

Region Brodmann 
Area 

MNI coordinates 

Left Inferior Frontal Gyrus (LIFG) 44 -50 12 24 
Left Insula (LIns) 13 -44 18 6 

Supplementary Motor Area (SMA) 32 -2 14 48 
Right Insula (RIns) 13 44 16 -12 

Thalamus  -2 -18 6 
Right Cerebellum  36 -60 -32 

 

2.5.3. Seed-based rs-FC analyses 

 

After the preprocessing of the rs-fMRI data, we used the predefined seed regions for 

ROI-wise rs-FC analyses using the DPARSFA toolbox. The mean time course of all the 

voxels in each seed region was used to calculate pairwise linear correlations (Pearson’s 

correlation) during each rs-fMRI period. Individuals’ r values were normalized to z values 



using Fisher’s z transformation. Then, FC ROI-wise analyses (pair correlations between 

ROIs) were conducted. Pearson’s correlations and multiple regression analyses were 

performed using the SPPS (v.21, Armonk, New York, USA) in order to study the 

relationship between phonemic fluency task scores and brain activity during the rest 

condition. We analyzed the association between phonemic fluency task performance and 

FC in the selected areas by correlating the mean F-A-S score for each subject and the 

mean activity value in the specific brain areas of interest. Bonferroni-Holm corrections 

for multiple comparisons adjusted for dependent measurements were performed for all 

correlations (k = 15). In addition, we used the opposite-hemispheric homolog from our 

six regions of interest (Palomar-García, Zatorre, Ventura-Campos, Bueichekú, & Ávila, 

2016) in order to make sure that the F-A-S score is not correlated with the FC of areas 

that are not involved during phonemic fluency tasks. In fact, we added three more ROIs 

(rIFG, right Thlamaus and left cerebellum). We cannot included homologs for the Insula 

(because both were involved) and the SMA (because the homolog was included in the 

ROI). Our regression analysis was restricted to the regions of interest described above in 

areas with significant activation during phonemic fluency tasks. A multiple regression 

using the stepwise method was conducted to determine whether the seed regions predict 

good phonemic fluency performance using the mean FAS scores as the dependent 

variable and the FC that significantly correlated with FAS scores as independent 

variables. 
 

  



3. Results 

 

3.1. Behavioral data 

 

The results of the phonemic fluency task (FAS Test) showed the following findings: 

the mean of the number of words was 35.76 (SD = 8.33; range = 38). Our data follow a 

normal distribution (D93 = .063 p > 0.05), with a maximum score of 56 and a minimum 

score of 18.  

 

3.2. rs-FC results 

 

To determine whether the rs-FC is a good predictor of phonemic fluency performance, 

we calculated the correlations between mean F-A-S scores and brain activity in seed 

regions during the rest condition. All the values were positive but moderate. On the one 

hand, Pearson’s correlations yielded significant negative correlations between phonemic 

fluency scores and the FC of the Left Inferior Frontal Gyrus-Right Insula and Left SMA-

Right Insula pairs. However, the Left SMA-Right Insula was not significant if corrected 

for multiple comparisons. On the other hand, a significant positive correlation was found 

between F-A-S scores and the FC between the thalamus and the cerebellum. See Table 2 

for mean scores, standard deviations, and correlation analysis results, and Figure 1 for 

scatterplots of the meaningful correlations. We found no significant results in the 

opposite-hemispheric homolog correlation. 
 

To identify the FCs that will influence the phonemic fluency ability, a multiple 

regression analysis was conducted using the stepwise method. Stepwise regression 

fundamentally performs a multiple regression a number of times, each time adding the 

weakest correlated variable, and resulting in the variables that best explain the 

distribution. Stepwise adds a variable that contributes to the model.  We used mean F-A-

S scores as the dependent variable and the three FC values that significantly correlated 

with the F-A-S scores (pairs Left Inferior Frontal Gyrus-Right Insula, Left SMA-Right 

Insula and Thalamus-Cerebellum pairs) as independent variables. The regression model 

(corrected R2= .144; F2,9 = 8.75, p < 0.001) was reached in two steps and contained two 

of the three predictor pairs, the Left Thalamus-Right Cerebellum and the Left Inferior 

Frontal Gyrus-Right Insula (see Table 3). In the first step, the FC between the Left 



Thalamus and Right Cerebellum were entered in the model and explained the 7.8% of the 

variance. In the second step, the FC between the Left Inferior Frontal Gyrus and the Right 

Insula were entered in the model and and explained an additional 6.6% of the variance. 

 

Table 2. Resting state FC analysis results. Above the diagonal: Means and standard 
deviations of FC measures between ROIs. Below the diagonal: correlations (r) between 
F-A-S Test scores and FC measures between ROIS. LIFG: left inferior frontal gyrus. 
LIns: left insula. LSMA: left supplementary motor area.  RIns: right insula.  

 
* P < .05, uncorrected; ** p < .05, corrected for multiple comparisons 

 
 
Figure 1. Significant correlations between F-A-S scores and (A) Left Inferior Frontal 
Gyrus-Right Insula, (B) Left SMA-Right Insula and, (C) Thalamus-Cerebellum.  
 
A     B     C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 LIFG LIns LSMA RIns LThalamus RCerebellum 

LIFG - M=.124 
SD=.167 

M=.178 
SD=.193 

M=.022 
SD=.138 

M=-.054 
SD=.159 

M=.028 
SD=.145 

LIns .04 
 - M=.214 

SD=.192 
M=.153 
SD=.171 

M=.074 
SD=.153 

M=.074 
SD=.148 

LSMA -.13 
 

.00 
 - M=.132 

SD=.194 
M=.088 
SD=.165 

M=.187 
SD=.166 

RIns -.30** 
 

-.14 
 

-.21* 
 - M=.128 

SD=.167 
M=-.003 
SD=.158 

LThalamus .03 
 

.16 
 

-.12 
 

.03 
 - M=.159 

SD=.158 

RCerebellum -.08 .16 -.00 .01 .30** - 



Table 3. Main predictors of phonemic fluency task performance as a result of the multiple 
regression stepwise analysis. LIFG: left inferior frontal gyrus. RIns: right insula.  
 
 

Predictor Variable 
 Beta P 

Left Thalamus - Right Cerebellum .280 0.005 
LIFG – RIns -.274 0.006 

 
 
 

  



4. Discussion 

 

In the current study, we investigated the capacity of FC at rest between target areas 

involved in the phonemic fluency task in order to predict the performance on the same 

task performed outside the scanner. We administered the FAS version of the fluency task, 

and then we registered the BOLD activity in the entire brain during rest. We identified 

the main areas involved in the task, including the lateral prefrontal cortex, insula, and 

subcortical structures from the local maxima obtained in a recent meta-analysis on the 

task, and we calculated the FC between them. Results showed that the FC between some 

of these areas correlated positively or negatively with performance on the FAS. 

Importantly, regression analysis showed that the multiple correlation of two of the FCs 

explained 14.4% of the variance in FAS performance, demonstrating that different 

variables account for different sources of variance. Although all the correlations were of 

moderate strength, resting-state fMRI may be a good technique for estimating cognitive 

capabilities of individuals.  

 

The current study presents a new methodology for on determining the main brain 

areas involved in the task based on data from a relevant study (i.e. in our case, from a 

meta-analysis summarizing data from 23 experiments and 499 participants) and 

calculating the FC between them. The methodology makes it possible to contribute 

empirical evidence to the STR hypothesis that resting-state BOLD activity may reflect a 

priori cognitive biases in the brain. We then expected to predict performance on the task 

based on the connectivity between these main foci. Although the magnitude was 

moderate, the results confirmed that some FC measures between main distant brain areas 

were significantly positively or negatively correlated with performance on the task. 

According to the STR hypothesis, each of these FCs may represent the capability of these 

areas to perform a cognitive process involved in the task. Notably, the multiple 

correlations of some of these measures with performance indicate that these FCs 

explained different sources of variance in cognitive capability, indicating that they may 

be representing different cognitive processes involved in the task.  

 

Verbal Fluency is a test commonly used for neuropsychological assessment in both 

clinical and research settings that assess executive function and the spontaneous 

production of words under restricted search conditions (Lezak, Howieson, Bigler, & 



Tranel, 2012). Phonemic fluency is considered a reflection of executive function because 

it requires a capacity for verbal retrieval and recall, self-monitoring, effortful self-

initiation, and response inhibition (Henry & Crawford, 2004). The different cognitive 

processes may be associated with the connectivity among the different areas involved in 

the task. In this sense, five main brain areas have been involved in this task: the anterior 

insula/ inferior frontal gyrus, the SMA and, finally, subcortical structures such as the 

thalamus and the cerebellum.  

 

As expected, one of the most important areas where FC is relevant in predicting 

performance is the anterior insula/inferior frontal gyrus (Costafreda et al., 2006). This 

area has been involved in executive control and response selection of target words, the 

dynamic allocation of attentional resources, and filtering out unwanted stimuli during 

fluency tasks. Although the left part is more involved in the task, the right inferior frontal 

cortex/insula is also relevant because of the need to inhibit inappropriate 

responses (Costafreda et al., 2011). Overall, these executive control components 

contribute to maintaining task performance during verbal fluency. Our results showed 

that stronger negative FC between the left inferior frontal gyrus and the right insula was 

associated with better performance on phonemic fluency.  

 

The second area is the SMA. It is involved in task monitoring, conflict detection, and 

response suppression during executive tasks, and it has a more prominent role when the 

task is difficult (Price, 2012). The SMA appears to be involved in phonologic fluency, 

but not in semantic fluency (Wagner et al., 2014). According to the authors, phonemic 

fluency involves processes of inward speech, such as motor programming and 

articulation, as indicated by activations of the SMA. Although the correlation did not 

reach significance when corrected for multiple comparisons, our results showed a 

negative trend indicating that less FC between this area and the right insula was associated 

with better performance on the FAS task. SMA lesions in humans are associated with 

transcortical motor aphasia and transient mutism. Thus, the SMA appears to be involved 

in the initiation and maintenance of speech. This role contrasts with the aforementioned 

inhibitory influences reported for the right insula. Thus, it is reasonable to speculate that 

less FC between the two areas would facilitate fluency on fluency tasks.  

 



Finally, two subcortical structures were involved. The positive FC between the 

thalamus and the cerebellum was associated with better performance on the fluency task. 

The thalamus has been involved in language tasks that require the manipulation of lexical 

information, especially when tasks have a high attentional demand (Llano, 2013). The 

cerebellum has a more controversial role. Lesions in the right cerebellum typically impair 

performance on fluency tasks. Initially, this poor performance was attributed to slowness 

in language processing (Holmes, 1917), but it has been obtained even when controlling 

for response speed (Stoodley & Schamahmann, 2009). In the same vein, a recent study 

showed that the same region of the right cerebellum was more associated with phonemic 

fluency performance during the easier version of the task than during the difficult one 

(Senhorini et al., 2011). The authors attributed to this area a role in selecting correct 

responses and paying attention to performance. Thus, the FC between the thalamus and 

the cerebellum may be associated with the requirement of attending to and monitoring 

correct responses. 

 

Regression analysis with all of the significant FCs revealed that two of these 

associations accounted for different sources of variance. The first is the FC between the 

left inferior frontal gyrus and right insula, reflecting the language component of fluency 

(i.e. selecting words, inhibiting competitors), whereas the second was the FC between the 

cerebellum and the thalamus, more related to a more general factor of selective attention 

and response monitoring. These two factors accounted for 14.4% of the variance in 

performance on the FAS test.  

 

In sum, we have presented a new methodology that involves determining the main 

brain areas involved in the task based on data from a meta-analysis to test one of the 

principles of the STR theory. We have provided support for the idea that individual 

differences in cognitive abilities may be detected from brain activity at rest by studying 

the FC between the main areas involved in the task. The results show that performance 

was predicted by the FC between language-specific brain areas and between areas more 

related to global cognitive functions.   
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