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ABSTRACT

In this article we propose practical rules for tuning event based PID controllers
with two sampling strategies: symmetric send-on-delta (SSOD) and regular quan-
tification (RQ). We present a detailed analysis about the effect of the derivative
term of the controller when using SSOD or RQ and some guide lines are given to
select the derivative filter coefficient. The two sampling strategies are compared,
showing that, even when both of them lead to similar controlled output response,
systems with RQ have better robustness properties than those with SSOD. The
study is based on the describing function and the results are applicable to processes
with dynamic responses of different types: with time delays, non-minimum phase,
under-damped response, etc. The rules presented here are given in terms of phase
and gain margins that are measures of robustness used in the design of continuous
PID controllers. This allows the application of conventional PID tuning methods to
the case of event-based PID. The tuning rules are very simple and can be used for
tuning PID, PI, PD and other controller structures.
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1. Introduction

In recent years several studies have been published in which event-based PID control
algorithms are proposed. Those works were carried out within the context of networked
control systems and they attempt to make use of the well-known advantages of PID
control, while at the same time reducing the amount of traffic through the commu-
nications network that interconnects the different hardware units that make up the
control system, i.e. sensors, controllers and actuators.

One of the most widely used event-generation strategies is based on transmitting the
value of the signal only when it crosses levels or thresholds §. This strategy is known
as send on delta (SOD) and its effectiveness in terms of controlling and reducing
communications has been widely tested and proven, Dormido, Sanchez, and Kofman
(2008); Ploennigs, Vasyutynskyy, and Kabitzsch (2010).

A variation on the SOD strategy applied to PI control was put forward in Beschi,
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Dormido, Sanchez, and Visioli (2012). In that proposal the sampled signal is quantified
in amounts that are multiples of a threshold ¢, so that the relation between the input
and output of the event generator is symmetric with respect to the origin. This strategy
is known as symmetric send-on-delta (SSOD). Some important results in the study of
SSOD-based PI controllers have recently been published in Beschi et al. (2012),Chacén,
Séanchez, Visioli, Yebra, and Dormido (2013). In Beschi and Visioli (2013) the tuning
of PI controllers was addressed using an SSOD sampling strategy for the control of
first-order systems with delay , the results obtained thus being limited to this kind
of model. More general results about this kind of systems were presented in Beschi,
Dormido, Sanchez, and Visioli (2013), where it was established the conditions for the
DC gain of the open loop transfer function which ensured the absence of oscillations
without assuming any specific model structure.

In Romero, Sanchis, and Penarrocha (2014) the authors presented a simple rule for
tuning PID controllers when SSOD is used in the control loop. The proposal is based
on the describing function (DF) technique. The rule presented in that paper entails
with the concept of phase margin, one of the most traditional measures of relative
stability in closed-loop control systems, and its application is easy and intuitive. On
the other hand, in Romero, Sanchis, and Arrebola (2015) the authors presented a
new sampling strategy different from SSOD. The proposal is inspired by the Regular
Quantization (RQ) of a signal when an Analog to Digital converter is used, that is
why we call it RQ sampling strategy. The reliability of RQ as an alternative to SSOD
was demonstrated through laboratory experiments in that article.

Most of the studies about symmetric send-on-delta (SSOD) based control systems
are limited to PI controllers and, conversely, there is a lack of results concerning the
event based PID algorithm. In this article we present an exhaustive study of the
behavior of event-based control systems when using SSOD or RQ in combination
with a PID controller. We propose tuning rules with the aim of avoiding permanent
oscillations due to limit cycles. It is shown that in the case of RQ the rule for controller
tuning only depends on the gain margin of the system, while in the SSOD sampling the
tuning rule is given in terms of the phase margin. We also present a detailed analysis
about the effect of the derivative term of the controller when using SSOD or RQ and
some guide lines are given to select the derivative filter coefficient. The two sampling
strategies are compared and we prove that, even when both of them lead to similar
controlled output response, systems with RQ are more robust to the appearance of
oscillations than those with SSOD. The study is based on the describing function and
the results are applicable to processes with different types of dynamic responses, as
time delays, non-minimum phase, under-damped response, etc. The rules presented
here are given in terms of phase and gain margins, that are measures of robustness
used in the design of continuous PID controllers. This allows applying conventional
PID controller tuning methods to the case of event-based PID. The rules are very
simple to apply and can be used for tuning PID, PD and PI controllers.

2. Statement of the problem

Let us consider the networked control systems shown in Figure 1, where C(s) and G(s)
are the transfer functions of the controller and the process respectively, the block EG
represents the event generator and the block ZOH is a zero order holder. Additionally,
Y, is the reference, y is the controlled output and p is a disturbance input.

These two control schemes were proposed in Beschi et al. (2012), where it was
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Figure 1. Networked control system with event generator sampling strategies.

considered that C(s) is a PI controller and that the event generator is based on SSOD.
This is why the authors called them SSOD-PI and PI-SSOD architectures. The present
work is not limited to the study of PI controllers with SSOD mechanism, and we have
therefore renamed these architectures as EG-C(s) and C(s)-EG, respectively.

In the scheme presented in Figure 1(a) it is assumed that the controller is located
close to the actuator and that the sensor sends measurements e* of the error e = v, —y
to the controller via a communications network. The data are sent by means of the
event generator (EG) block. The ZOH block holds the latest value of € in e* until a
new value is sent. On the other hand, the scheme shown in Figure 1(b) assumes that
the sensor and the controller are in the same unit and that communication between
the controller and the actuator takes place via a communications network. In this case,
new control actions u* are sent to the actuator by means of the EG block. The ZOH
in the actuator holds the value of the latest control action sent in @ until a new value
is sent.

Regarding the behavior of the communications network, it is assumed that the
delay in the transmission is negligible or known and constant with a value t5. This
delay is represented by the term e~%* on the left of the ZOH blocks in Figure 1. This
consideration is based on the fact that today there are protocols that significantly
reduce the number of collisions among packages, which are the fundamental causes of
the variable delays in communication networks Leva and Terraneo (2013).

The drawback of the C(s)-EG architecture depicted in Figure 1(b), as demonstrated
by Beschi et al. (2012), is that the simple existence of the integrator leads to an
oscillatory behavior unless one of the delta thresholds coincide with the exact input
needed in steady state to maintain the output in the required setpoint. As this is
not a realistic assumption in real applications, the C(s)-EG scheme always produce
persistent oscillations, no matter how the controller is tuned. The only way to avoid
oscillations in that case (see Beschi et al. (2012)) is to include a dead band in the error
signal. That dead band would make the direct application of the proposed describing
function analysis not valid. For those reasons the study of the C(s)-EG scheme will
be left for future works, and will not be considered in this paper.

Under the assumption that the delays in the network are negligible or known and
constant, the control scheme in Figure 1(a) can be depicted as shown in Figure 2.
Here the EG-ZOH block represents the combination of the EG and ZOH blocks, while



Goi(s) is the open loop transfer function that corresponds to the linear part, that is
to say:

Go(s) = C(s)G(s)e " (1)

Yr EG-ZOH Gat(s)—*’"’

Figure 2. Equivalent system of that in Figure 1(a).

The behaviour of the control system represented in Figure 2 for a known G(s)
depends on both the event generator and the tuning of the C(s) controller. In the
sections that follow we will see the extent to which each of these elements affects the
overall performance of the system.

The PID algorithm considered in this study is given by the equation (2), where K,
is the proportional gain, Ty and T; are the derivative and integral times respectively,
and N is the derivative filter coefficient.
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It is worth mentioning that if N = 0 the derivative term is canceled and the equation
(2) is reduced to a PI controller. On the other hand, a PID with pure derivative action
Tys is obtained as N — oco. Therefore, intermediate values of N let us regulate the
contribution of the derivative term to the overall control action. Despite some authors
fix the value of N at a given value (for example N = 10), recent works have shown
how using N as a free tuning parameter allows to balance the noise amplification
and the closed loop performance (see Graecbe and Isaksson (2002); Kristiansson and
Lennartson (2006)). In the event based system presented in Figure 1(a), the PID input
is a noise free stairs like signal with steps of magnitude §. Those steps are amplified
by the controller in the same amount as a high frequency noise, resulting in control
action jumps that depend on N. Hence, the selection of N is a compromise between
control action jumps and the amount of derivative action effectively used. One of the
objectives of this paper is to analyze the performance of the two event based sampling
strategies with different values of filter parameter N.

3. Analysis of the event generators
In this section we characterize the sampling strategies under study. First we present

the input/output equations of SSOD and RQ and then the describing functions of
both samplers are shown and compared.



3.1. SSOD-based event generator

The input-output characteristic of the SSOD-based event generator can be seen in
Figure 3. The small circles represent the x* values sent to the ZOH. A new value
x* =40, i € Z is sent when x crosses the id levels. The thick horizontal lines on the
circles highlight the fact that  maintains its value for +4 variations around the 6
levels. Equation (3) describes this behavior.

X |
|
e
[
[
———
ol
\6
l T
|
——
[
[
————
[
[
—

(i+1)0 if (z(t7) =10)& (z(t) > (i + 1)d)
z(t)=¢ (-1 if (z(t7) =140) & (z(t) < (i — 1)d) (3)
i if x(t) € [(i — 1)6, (i + 1)0]

3.2. RQ-based event generator

The input-output characteristic of the RQ-based event generator can be seen in Figure
4. The small circles represent the z* values sent to the ZOH. A new value x* = id,i € Z

is sent when x crosses the levels @5. The thick horizontal lines on the circles

highlight the fact that Z maintains its i§ value if z(¢) € [2526, 22:15). Equation (4)
describes this behavior.

(i+1)8 if (2(t7) = i0) & (x(t) > LFLo)
T(t) =< (i—1)6 if (2(t7) =i6) & (z(t) < 2516) (4)
i0 if 2(t) € [2516, 210

3.3. Describing functions

In Gelb and VanderVelde (1968) the describing function of the RQ was obtained,
which is given by equation (5) for a sinusoidal input with an amplitude A such that
2m—16 <A< 277124-15
=0 < A < TG
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Figure 4. Input-Output characteristics of the RQ based EG-ZOH block.

A& (2k —1) §\?
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Following Gelb and VanderVelde (1968) it can be shown that the describing function
of the SSOD is given by equation (6) for a sinusoidal input whose amplitude A is such
that m = L%J. In that equation 7 = +/—1.

m—1 2 )
Z / ) .20

As can be seen, the two describing functions are dependent on the quotient %.
Figure 3 shows how, in the case of SSOD, the output is zero forA < ¢. Therefore, it
only makes sense to evaluate the describing function (6) for % € [0,1]. By performing
the same analysis for RQ, Figure 4, it can be seen that for A < §/2 the output is
null, and therefore it only makes sense to evaluate the describing function given by
equation (5) for & € [0,2].

Figures 5(a) and 5(b) show the graphs of module and argument of the describing
functions IV, and N, as a function of 6 /A respectively. There are some major differences
between them. The module of N, can take values greater, equal or less than 1. On the
other hand, the module of N is always less than 1. That means that, depending on
0/A, the amplitude of the RQ sampler output could be either greater, equal or less than
its input. Contrarily, the output amplitude of the SSOD sampler will be always less
than its input. Regarding the argument of describing functions, it is always zero for N,
and negative for Ng. Consequently, the RQ sampler does not introduce any phase lag
to its input, while the SSOD strategy delays its input between 0° and 45°, depending
on the relation /A. One common characteristic of N, and Ny is that whether % — 0,
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Figure 6. Time response of RQ and SSOD samplers to sinusoidal inputs with amplitude é, % and § = 0.1

then Mod(N) — 1 and Arg(N) — 0. That is to say, for infinitesimal values of § both
event generators behave as unitary gains.

In order to better illustrate the behaviour of both samplers, Figure 6 shows the
time responses of the RQ and SSOD strategies to sinusoidal inputs with amplitudes
of 1/6 and 1/7 when § = 0.1, that is, §/A equal to 0.6 and 0.7. As can be noted,
for 6/A = 0.6 the amplitude of the RQ output is greater than its input. This is not
possible for the SSOD strategy since the output always changes to values less than the
input (see equation (3)), conversely, the output of the RQ sampler after the sampling
instant is always greater than the input (see equation (4)). It is also important to note
the difference in the phase lag between the outputs of RQ and SSOD samplers. As
predicted by the describing functions, unlike the RQ sampler, the SSOD introduce a
phase lag to its input. It is more clearly appreciated in the case of /A = 0.7 (graphics
on the bottom of Figure 6).

4. Design of the controller

In this section we analyze the design of the C(s) controller under the two event-
generation strategies described in the previous section. We will consider C(s) to be



the widelly used PID controller defined in equation (2), although the analysis can be
applied to other controller structures.

In order to analyze the robustness properties of the event sampling strategies, any
PID tuning procedure could be adequate. The PID design strategy chosen in this work
is the one described in Sanchis, Romero, and Balaguer (2010), where the PID param-
eters are those that maximize the integral gain while fulfilling an equality constraint
on the phase margin and an inequality constraint on the gain margin. However, the
results would be similar with other tuning methods, as will be shown in example 3.
The selected PID design procedure can be expressed as

max K; (7)

a

sit. P, =Py
Tm > Yd

where a = Tjw, is an adimensional tuning parameter, K; = K,,/T; is the integral gain,
®, is the desired phase margin, ®,, is the achieved phase margin, ~y4 is the minimum
required gain margin, and -, is the achieved gain margin. For a given value of a,
there is a unique PI controller that fulfils the phase margin, and also a unique PID
controller if parameters N and T; /T are fixed. The use of that adimensional parameter
simplifies the optimization problem, as the optimum value of a lies between 0 and 10
independently of the time constants of the process (see Sanchis et al. (2010) for more
details).

The maximization of integral gain is equivalent to the minimization of the distur-
bance IE, as [E = %v and is approximately equivalent to the minimization of the
disturbance TAE;, if the response is not very oscillatory (guaranteed if adequate phase
and gain margins are imposed).

In the case of the PID controller, the value of the filter parameter, N, and the
relation between integral and derivative times, T;/Ty are asumed to be selected to
the desired values before performing the previous optimization. A value of T;/Ty = 4
is set by default. The optimization of this relation could improve the performance,
hence this is a suboptimal tuning, but the robustness analysis would be similar. On
the other hand, the value of IV is selected as a compromise between noise amplification
and performance. In the case of the event based sampling (either RQ or SSOD), the
value of N has a direct effect on the control action discontinuities due to the jumps
on the sampled output. The larger the value of N, the better performance (the lower
IAE), but the higher jumps in the control action due to the event based sampling.

If the difference between the last and the new value of e is §, it can be easily
proved (e.g. by applying the initial value theorem) that the control action is suddenly
increased by A, (t.) given by the equation (8).

Au(te) = Ky(1+ N)3 (®)

In any case, before the selection of IV, the desired robustness must be decided, in the
form of a required phase margin and a minimum required gain margin. The presence
of the event based sampling affects the selection of robustness margins due to the
possible appearance of limit cycles. The analysis of this problem is based on the use of
the describing functions IV, and Ny for event generators based on RQ and on SSOD.



These describing functions can be used to analyse the existence of limit cycles in the
system shown in Figure 2. It is well known that this approach is an approximation,
since it assumes that high order harmonics in the output are negligible, i.e. that the
dynamics of the process filter out the high order harmonics of the oscillatory input
when the limit cycle occurs. This approximation relies on the low pass frequency
characteristic of most processes.

The condition of the existence of limit cycles is given by equation (9), which cor-
responds to the intersection of G (jw) and —1/N;, where N; refers to both N, and
Ns. The term on the right depends on the quotient <, and therefore the form of —iq
and —<~ does not depend on the value of § used in the event generators. This means

that the inexistence of intersections must be guaranteed through the term on the left,
more specifically through the tuning of the C'(jw) controller.

, 1
Galie) =~ ©
Figure 7 shows the graph of —+~, which is located upon the real axis with a maxi-

mum value of -0.78, represented on the graph by point C. On the left, the curve tends
towards —oo, an extreme that is reached when f‘ — 2.
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Figure 7. Graph of ,NL (for RQ sampling)
q

Figure 8 shows the graph of —<-. The curve is significantly different from that of
the RQ case. It is made up of several branches, each of which is obtained for a value
of m = L 5J' It can be observed that the maximum value of the curve on the real
axis is the point (-1,0), which is obtained when % — 0. As in the case of RQ, the
maximum real value of the curve is -0.78, which, for the SSOD case, corresponds also
to an imaginary value of -0.78, represented on the graph by point C.

For both event generation strategies robustness criteria will be established that
will allow the C(s) controller to be tuned not only to guarantee the stability of the
controlled system, but also to prevent limit cycles.
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4.1. Design of the controller for RQ-based EG

In accordance with the shape of the graph of _N% shown in Figure 7, to prevent the
presence of limit cycles when event generators based on RQ are used, all that needs
to be done is to design the C(s) controller in such a way that the Nyquist plot lies
on the right of the point (0;-0.78). This can be seen in Figure 9, where there is no
intersection between G,;(jw) and _N%'

Taking into account that the point (0;-0.78) define the stability bound when the RQ
sampler is used, new robustness margins can be defined to measure the distance from
Goi(w) to this point. The first new robustness measure, named as RQ-gain-margin, is
denoted by 7,4 and is given by the following equation:

0.78
rg = 10
"= (Gorleoy)] (10)

where wy is the lowest value of frequency in which arg(Gy(w)) = —180°. Using the
equation (10) and the definition of gain margin (v, = m), the relationship
between 7, and 7,4 can be easily obtained: ., = 0.78v,,, that expressed in decibels

18:

Vrqy = Yma — 2.15db (11)
This equation means that the introduction of the RQ sampler reduces the traditional
gain margin vy, in 2.15db, no matter which are the controller and process models.

The second new robustness measure, named as RQ-phase-margin, is denoted by ¢,
and is given by the following expression:

¢rq = 180 + arg(Gol(w;)) (12)

where wy is the frequency where |G (wy)| = 0.78. The relationship of ¢, with the

10



original phase margin, ¢4, is not simple, since it depends on the process model and
controller, but for most processes ¢,q < ¢q.

Taking into account the previous expressions, the proposed PID design criterion to
avoid the limit cycle oscillations, is simply:

Yd,, > 2.15db (13)
No further condition must be imposed on ¢4, because the fullfilment of (13) guar-

antees that ¢,, > 0. Furthermore, in practice, condition (13) is not restrictive at all,
since any reasonable design always impose a gain margin larger than 2.15 db.
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Figure 9. Constraint of the gain margin 4 for the case of RQ-based event generators.

4.2. Design of the controller for SSOD-based EG

According to the shape of the Nyquist diagrams of usual processes, the most critical
point in the plot in order to avoid the intersection is the point C, as can be seen in
Figure 10. As commented earlier, point C represents the maximum real value and the
minimum imaginary value of the curve —N%, that lies on the left of point C and outside
the circle of unit radius. Point C has coordinates (-0.78, -0.78), which correspond to
a module of 1.1. New robustness margins can be defined to measure the distance
from Gy (w) to C. The first new robustness measure, named as SSOD-phase-margin,
is denoted by ¢4s0q and is given by the following equation:

Pssod = arg(Gor(we)) — (—135%) (14)

where w/, is the frequency in which |Gy(jw)]| is equal to 1.1, see Figure 10.
The relationship between ¢g504 and ¢q is as follows:

¢ssod = ¢d + A(z)d — 45° (15)

11



where

A¢q = arg(Go(w;)) — arg(Goi(wy)) (16)

The second new robustness measure, named as SSOD-gain-margin, is denoted by
Yssod and is given by the following equation:

1.1
Vssod = |G (17)

ot ()]

where w} is the frequency in which arg(Gy(jw)) = —135°, see Figure 10.
Using the previous definitions, the condition to avoid limit cycle oscillations is,

Qbssod > 0° (18)

Using (15), the design criterion (18) to avoid limit cycles can be rewritten in terms
of ¢4, leading to:

$a > 45 — Adq (19)

The value of Ag, is unknown prior to the controller design. Consequently, condition
(19) can not be used in the design of the controller to guarantee a given robustness
performance when SSOD sampling is implemented. A reasonable assumption, as was
shown by the authors in Romero et al. (2014), is to consider |Gy (jw.)| = |Gor(jwe)| =
1, being w. the value of w for which |G,(jw)| = 1. Under this premise A¢y ~ 0 and
the condition (19) is reduced to:

Pa > 45° (20)

It is important to note that no further design constraint must be imposed to the
conventional gain margin, since the fulfillment of condition (20) guarantees that vssoq >
0. SSOD condition (20) is more restrictive than RQ condition (13) since phase margins
below 45° can be needed in applications where a very fast response is required.

4.3. Comparison of robustness measures for SSOD and RQ

In the previous sections the conditions for tuning PID when using SSOD or RQ sam-
pling schemes have been presented, equations (13) and (20). These conditions are
given in terms of the traditional robustness measures in the design of continuous PID
controller: phase margin for SSOD and gain margin for RQ respectively. However,
the actual margins to avoid the limit cycle oscillations are considerably reduced with
respect to the values of ¢4 and 74 used in the design of the PID. In particular, when
the RQ sampler is used, the actual gain margin expressed in decibels is given by 7,4,
(equation (11)) , and the actual phase margin is given by ¢, (equation (12)), whereas

12
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for the SSOD strategy the actual phase margin is given by ¢ss0q (equation (15)), and
the actual gain margin by 7,504 (equation (17)).

The aim of this section is to compare the effect of the RQ and SSOD in the ro-
bustness to oscillations of the system with respect to the margins used in the PID
design. To do this, the relative values of v,q,,, ®rq, Vssods, a0d @504 With respect to
Yd,, and ¢4 are calculated by the equations (21), (22), (23) and (24). These values
give the percentage represented by the actual margins (Vrq,,, @rg» Vssods, a0d Pssod)
with respect to the design margins (74, and ¢g4), after introducing the RQ or SSOD
respectively.

g, = L9 100% (21)
Ydas

= Orq 100% 22

Tqr — % 0 ( )

Vssod, = Jssoda 100% (23)
em

Bssod, = ‘b;wdwo% (24)
d

All four relative margins depend on the shape of G,(jw), and therefore, on the
process and the controller. In order to gain insight about the values of those relative
margins, and to compare the resulting robustness of the RQ versus the SSOD sampling
strategy, we have studied the behaviour of these parameters in an extensive batch
of 134 models described in Astrém and Higglund (2006), which represent the most

13



common dynamics in real applications. For all those models, PID controllers were
designed using the tuning method presented in Sanchis et al. (2010) and summarized by
equation (8), with [¢g = 60°, 74,, > 8], and filter coefficients N = 0 (corresponding to
the PI controller), N = 3 and N = 10. The figures 11, 12 and 13 show the values of the
relative margins for RQ and SSOD for the four cases. Furthermore, in order to make the

analysis easier, graphics with quotients ¥,q_ssod = Vrq, /Yssod, and Orq_ssod = Prq, [ bssod,
have been also included. After analyzing those figures one can conclude:

e The relative phase margin to oscillations is much higher in the RQ than in the
SSOD (¢rq_ssoa > 1) for all the models and all the designed PID.

e The relative gain margin to oscillations is also higher in the RQ than in the
SSOD (vrq_ssoa > 1) for all the models in the PID designed with N = 0 (PI),
and is also higher for most of the models in the PID designed with N = 3 and
N =10.

e There are some exceptions where the relative gain margin in the SSOD in slightly
higher than in the RQ (7r4.ssod < 1). Those cases can be observed in figures 12
and 13, and correspond to a PID designed with N = 3 and N = 10 (high
derivative effect) for models that are very near to pure first order systems. For
example, a first order plus delay system where the time constant is more than
100 times the delay. In fact those systems can be made almost arbitrarily fast
with a PI controller and therefore, a PID with N=3 or 10 is not a reasonable
choice for those systems in practice.

As a summary, the use of RQ) event sampling results in a much smaller alteration
of the robustness achieved by the conventional controller if compared to the use of

SSOD.

5. Effect of § parameter

The describing functions N, and NNy, equations (5) and (6), are dependent upon the
quotient % and none of them contain a term that depends only on 9. This means that
both N, and Ny have normalised expressions independent of the value of ¢ and that,
consequently, the shape of the graphs of _N%I and _N% in Figures 7 and 8 are not

affected by the change in the value of 4. This means that once the C(s) controller has
been designed to prevent the intersections between G (jw) and —N%I or —N%, then
that condition will hold regardless of the value of the § parameter that is set in the
event generator. Hence, neither the stability nor the robustness to oscillations of the
control system in Figure 1 will be affected by 6.

The value of § does have an influence, however, on the steady state error, due to
the fact that the event generators based on both RQ and SSOD introduce a dead
zone effect. It is clear that the higher the &, the higher the error. On the other hand,
the value of § is directly related to the number of events generated in each of the
strategies: the higher the J, the lower the number of events. Taking this into account,
the selection of § implies a trade-off between the desired precision in the control and
the number of events.

Another important issue about § when a PID controller is used in the system de-
picted in Figure 1(a) concerns the control action jumps each time () a new value of e
is sent by the EG block. If the difference between the last and the new value of e is J, as
shown in section 4, the control action is suddenly increased by A, (te) = K,0(1 + N).

If N =0, that is for the PI controller case, A, (t.) depends only on the proportional
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¢a = 60°, vq,, > 6db and N = 3.
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gain K. On the other hand, when the derivative term is considered in the controller,
the magnitude of control action jumps is proportional to both K, and N. Therefore,
the parameter IV could be used to limit the jumps in the control action for a given value
of §. However, a lower N results in a worse performance (in terms of IAE). Therefore,
the selection of N is a compromise between control action jumps and performance.
In order to do so, one should use a PID from a vendor that allows to freely choose
the value of V. Of course, one can also select the value of N if the PID algorithm is
implemented in a programmable platform. Unfortunately, not all PID vendors allow to
choose the value of N. In those cases, a series low pass filter could be used to smooth
the control action, but this is out of the scope of this paper.

It is also important to highlight that the value of § has to be properly selected
to avoid unnecessary events due to the measurement noise. Owing to the hysteresis,
the SSOD sampler keeps in general a good performance even if the error signal is
noisy, that is, no events are generated due to the noise. For that, it is just necessary
to set 0 higher than the noise amplitude. In the case of the RQ generator, however,
the noise could produce bursts of events when the error signal is near the thresholds.
This drawback can be partially overcome by filtering the sensor output with a suitable
filter in order to reduce the noise amplitude as much as possible. Obviously, for the
controller tuning the filter has to be taken into account as part of G,;.

It is worth pointing out that meanwhile some values of the error signal are outside
of the band where the error is zero ([—6/2,0/2] for RQ and [—§, 4] for SSOD) the
integral action of the controller is recalculated to compensate the error. Therefore, in
steady state the error will be necessarily inside the forementioned band, provided this
band is wider than the noise amplitude.

6. Simulation examples

In this section some simulation examples are developed to show the efectiveness of the
proposed PID tuning rules for RQ and SSOD, to compare the resulting robustness to
oscillations of both approaches, and to illustrate how the values of § and IV are related
to the number of events, the final error, the performance (in terms of IAE) and the
control action jumps.

To tune the controllers we will use the method presented in Sanchis et al. (2010),
summarized in procedure (8), which is equivalent to minimizing the IE, while guar-
anteeing the exact desired phase margin and a gain margin higher than the minimum
required.

6.1. Example 1

Consider the second order plus time delay system with transfer function given by
equation (25). For this system five PID controllers were designed for values of N equal
to 0, 3, 10, 15 and 20. The case with N = 0 is a PI controller. In all cases phase
margin ¢4 of 50° and gain margin ~ equal or greater than 2(6dB) were considered.
Therefore, the designs fulfill the robustness restrictions introduced by both SSOD and
RQ sampling strategies. Figure 14 shows the graphs of ——S and —<~ together with
the G, which is achieved by tuning the PID for each demgn As can be seen, the open
loop transfer function does not intersect neither —ﬁ nor —ﬁ In this example § = 0.1
was considered for SSOD and RQ. The PID parameters and the A, values predicted
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by equation (8) are shown in Table 1.

Gi(s) = —— (25)
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Figure 14. Graph of Nid, NL and G for the PID designed for Gi(s) with ¢4 = 50°, v > 2 and filter

coefficients N =0, N =3, N =10, N = 15 and N = 20.

In order to evaluate the robustness of the designs with each event sampling strategy,
the values of the relative margins ¢ssod,., Vssod,» Prq. and vrq, were calculated. The
results are presented in Table 1. In all cases the relative margins resulting from RQ
are much larger than those of SSOD. Consequently, the closed loop system with RQ
sampler might admit a wider variation in the model parameters before the limit cycle
appears. To further emphasize this fact, the time delay of model G was varied to
study the effect in the shape of G,; and in the appearing of limit cycles. Table 1 shows
the percentage of change in the time delay of G'1 that produces a limit cycle in the
closed loop with each nominal designed controller and each event sampling approach.
In all the cases the higher robustness of the RQ event sampling strategy is clear. This
idea is further emphasized in Figure 15, where the Nyquist plots for N = 15 are shown
for the nominal model case and for the two limit cases that lead to a limit cycle.

Simulations for three of the controllers (N = 0, N = 3 and N = 15) with the
nominal model were carried out using SSOD and RQ sampling. Figures 16, 18 and
20 show the time responses of the output of the controlled system in the presence of
step changes in the reference and disturbance when the event generator is based on
RQ (upper graph) and on SSOD (lower graph). The control action of all these cases is
shown in Figures 17, 19 and 21. Moreover, the events generated in each case are also
shown by vertical blue lines. 6 = 0.1 was used in all the examples. In order to compare
the system responses the integral of absolute error (IAE) and the number of events
were calculated. The TAE is computed in the simulation only till the instant when the
output enters the § band, since the event based sampling leads to a steady state error.
The results are summarized in Table 1.
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Table 1. PID design and simulation results obtained for model G; with § = 0.1 and different values of N

N 0 3 10 15 20
K, 1.18 2.15 2.50 2.59  2.65
T; 1.76 1.92 195 197 1.99
Ty 0.00 0.41 0.47 048 0.49
Ay 0.12 0.86 2.75 4.16 5.57
Bssod, 0] 1819 17.77 17.28 17.35 17.41
Vssod, [ /0] 29.67 29.74 30.73 30.58 30.43
brq, [70] 76.91 76.06 77.44 7721 76.98
Vrg, [70] 110.48 80.45 81.82 80.68 79.78
Admissible delay SSOD 50 30 28 27 27
change [%] RQ 150 90 84 81 79
AR SSOD 154 0.89 078 0.76 0.75
RQ 1.44 091 075 0.74 0.73
Events SSOD 27 21 21 21 21
RQ 29 27 23 23 23

Imaginary

Figure 15. Effect over G, of variations in the time delay of model G for PID designed with N = 15. G,
represents the open loop transfer function for variation of x per cent of the time delay.
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From the figures and values in Table 1, it can be noted that with SSOD or RQ quite
similar system responses are obtained for each design. The increment in the value of
N leads to a reduction in the IAE at the expense of greater jumps in the control
action (A,) whenever a new event is generated. However, for values of N larger than
3 (for example 10, 15 or 20), the reduction of TAE is small (almost negligible) while
the magnitude of the control action jumps grows rapidly with N. It is interesting to
note that for the values of N that are more common in commercial PID (as N = 10
or N = 20), the control action jumps due to the event sampling are really high. One
can conclude that for event based PID it should be better to use a value of N lower
than those usually used in commercial PID. Some PID vendors allow to freely chose
the value of parameter N and, of course, one can set it also freely if the PID algorithm
is implemented in a programmable platform. Because the value of § is the same in all
cases, significant variations are not observed in the number of events.

time(sec)

time(sec]

Figure 16. Behaviour of the controlled output y in the presence of a change in the reference y, and disturbance
p for the PID designed for G1(s) with ¢4 = 50° , v > 2 and filter coefficients N = 0, with an event generator
based on SSOD (top) and RQ (bottom).

6.2. FExample 2

In this case a different situation from that presented in the example 1 is considered:
now a constraint is imposed to the control action jumps: A, < Aymae: and the value
of 0 will be selected to guarantee this condition. The system to be controlled has an
under-damped response with transfer function given by equation (26) which has a
single real pole and a pair of complex conjugate poles.

Five PID were designed for this system with the same tuning parameters considered
in the example 1: ¢4 = 50°, v > 2 and N equal to 0, 3, 10, 15 and 20. Figure 22
shows the graphs of —N% and —N% together with the G, which is achieved by tuning
the PID for each design. As can be seen, the open loop transfer function does not
intersect neither —NL nor —Ni, therefore the designs fulfill the robustness restrictions

introduced by both SSOD and RQ. The PID parameters are shown in Table 2.
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Figure 17. Behaviour of the control action w in the presence of a change in the reference y,, and disturbance
p for the PID designed for G1(s) with ¢4 = 50°, v > 2 and filter coefficients N = 0, with an event generator
based on SSOD (top) and RQ (bottom).
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Figure 18. Behaviour of the controlled output y in the presence of a change in the reference y, and disturbance
p for the PID designed for G1(s) with ¢g = 50°, v > 2 and filter coefficients N = 3, with an event generator
based on SSOD (top) and RQ (bottom).
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Figure 19. Behaviour of the control action w in the presence of a change in the reference y,, and disturbance
p for the PID designed for G1(s) with ¢4 = 50°, v > 2 and filter coefficients N = 3, with an event generator
based on SSOD (top) and RQ (bottom).
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Figure 20. Behaviour of the controlled output y in the presence of a change in the reference y, and disturbance
p for the PID designed for G1(s) with ¢4 = 50°, v > 2 and filter coefficients N = 15, with an event generator
based on SSOD (top) and RQ (bottom).
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Figure 21. Behaviour of the control action u in the presence of a change in the reference y, and disturbance
p for the PID designed for G1(s) with ¢4 = 50°, v > 2 and filter coefficients N = 15, with an event generator
based on SSOD (top) and RQ (bottom).

5

Gals) = (s+5)(s?+s+1)

Imaginary

Figure 22. Graph of Nid, NL and Gy for the PID designed for Ga(s) with ¢4 = 50°, v > 2 and filter
coefficients N =0, N =3, N =10, N = 15 and N = 20.

As in example 1, in order to evaluate the robustness, the values of the relative
margins Gssod, s Vssod.,» Prq. and 7yrq were calculated. The results are presented in
Table 2. In all cases the relative margins resulting from RQ are also much larger than
those of SSOD. To illustrate this fact, the gain of model G5 was varied to study the
effect in the shape of G, and in the appearing of limit cycles. Table 2 shows the
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Table 2. PID design and simulation results obtained for model Go with A, = 0.1 and different values of N

N 0 3 10 15 20
K, 0.49 1.61 2.81 3.26 3.25
T; 0.83 2.00 2.36 2.45 2.47
Ty 0.00 0.43 0.57 0.59 0.60
) 0.20 0.01 0.0032 0.0019 0.0013
Gssod, [ 70] 26.28 16.31 13.61 13.29 13.12
Vssod,. | /0] 22.42 39.27 53.52 5591 57.49
Grq, | %0] 62.76 86.42 90.98 91.52 91.84
Vrq, [ /0] 106.95 282.80 304.89 327.80 350.50
Admissible gain SSOD 16 30 45 47 49
change [%] RQ 105 600 720 900 1020
IAE SSOD  2.80 1.24 0.85 0.75 0.70
RQ 2.67 1.23 0.85 0.75 0.70
SSOD 21 149 637 1029 1447
Events

RQ 26 162 652 1049 1471

percentage of change in the gain of G2 that produces a limit cycle in the closed loop
with each nominal designed controller and each event sampling approach. Again, the
higher robustness of the RQ event sampling strategy is evident. Figure 23 shows the
nyquist plots for N = 15 for the nominal model case and for the two limit cases that
lead to a limit cycle.

As commented before, in this case we impose the restriction A, < Aymaq. In order
to satisfy it, equation (8) is applied to calculate the values of 0 to be used with each
controller. The calculation is based on the PID parameter N and K, according to the
equation (27). The PID parameters and the values of § for each controller are shown
in Table 2.

A
5 — umax 27
K,(N +1) (27)

Simulations for three of the PID (N =0, N = 3 and N = 15) with their respective
values of § were carried out using SSOD and RQ sampling. Figures 24, 26 and 28
show the time responses of the output of the controlled system in the presence of step
changes in the reference and disturbance when the event generator is based on RQ
(upper graph) and on SSOD (lower graph). The control action of all these cases are
shown in Figures 25, 27 and 29. Moreover, the events generated in each case are also
shown by vertical blue lines. In order to compare the system responses the integral
of absolute error (IAE) and the number of events were calculated. The results are
summarized in Table 2.

Similar to example 1, for each value of N the system has quite similar responses
despite the sampling strategy used: SSOD or RQ. In all the cases the restriction
(Ay < Aymaz) is fulfilled at the expense of reductions in ¢ as the N increases. As a
result, the number of events rises significantly. Hence, in this approach the selection
of N for the controller design is a trade-off between the closed loop speed (the IAE
decreases as N increases) and the use of the communication network. As in the previous
example, for the most common values of N used by PID vendors (10 to 20) the
IAE does not improve significantly while the number of events rises rapidly with N.
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Figure 23. Effect over G, of variations in the time delay of model G2 for PID designed with N = 15. G%,
represents the open loop transfer function for variation of = per cent of the system gain.

Therefore, the same conclusion can be obtained, for event based PID, low values of N
should be used.

iy '1IL' o 2‘EIHII'HLEO 0

35 40 45 50

time(sec)

Figure 24. Behaviour of the controlled output y in the presence of a change in the reference y, and disturbance
p for the PID designed for G2(s) with ¢4 = 50° , v > 2 and filter coefficient N = 0, with an event generator
based on SSOD (top) and RQ (bottom).

6.3. Example 3: Robustness analysis with other tuning methods

As has been already commented, the approach presented in this paper allows to analyse
the robustness of the event-based control system in Figure 1(a) no matter the method
used for tuning the controller. In order to illustrate this fact, this section presents
a robustness study of controllers designed with three well known PID tuning meth-
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Figure 25. Behaviour of the control action w in the presence of a change in the reference y,, and disturbance

p for the PID designed for G2(s) with ¢4 = 50°, v > 2 and filter coefficient N = 0, with an event generator
based on SSOD (top) and RQ (bottom).
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Figure 26. Behaviour of the controlled output y in the presence of a change in the reference y, and disturbance
p for the PID designed for G2(s) with ¢4 = 50°, v > 2 and filter coefficient N = 3, with an event generator
based on SSOD (top) and RQ (bottom).
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Figure 27. Behaviour of the control action w in the presence of a change in the reference y, and disturbance
p for the PID designed for G2(s) with ¢4 = 50°, v > 2 and filter coefficient N = 3, with an event generator
based on SSOD (top) and RQ (bottom).
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Figure 28. Behaviour of the controlled output y in the presence of a change in the reference y, and disturbance
p for the PID designed for Ga(s) with ¢4 = 50°, v > 2 and filter coefficient N = 15, with an event generator
based on SSOD (top) and RQ (bottom).
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Figure 29. Behaviour of the control action u in the presence of a change in the reference y, and disturbance
p for the PID designed for Ga(s) with ¢4 = 50°, v > 2 and filter coefficient N = 15, with an event generator
based on SSOD (top) and RQ (bottom).

ods. Specifically we have considered the Ziegler-Nichols method (Ziegler and Nichols
(1942)), the method proposed in Astrém and Hagglund (1988) (page 60), which guar-
antees gain and phase margins greater than 6db and 45° respectively, and the AMIGO
method (Astrom and Hégglund (2004)) where the robustness is specified by means of
the maximum value of the sensitivity function (Ms,) within a range between 1.4 and
2.

Three PID controllers for the process with transfer function Gy(s), equation (25),
were designed using these methods (with M, = 1.7 in the case of the AMIGO). In this
case a fixed value of N = 10 was used in the controllers. The results are summarized in
Table 3 and Figure 30 which shows the polar plot of G; for the three controllers. Since
the designs are not based on pre-fixed phase and gain margins (74 and ¢4), the values
Vrqs Prqs Vssod and Pgs0q4 are used to measure the robustness instead of the relative
margins given by equations (21)-(24).

The values presented in Table 3 show that in all cases vrq > Vssoqa a0nd @rg > Pss0d-
This confirms the better robustness properties of the RQ sampler in comparison to
the SSOD one, despite the tuning method. According to the values of the RQ margins,
all the controllers avoid limit cycles oscillations under RQ sampling strategy. On the
other hand, the design obtained with Z-N presents negative margins for the SSOD
sampler which predicts the existence of a limit cycle. This behaviour is verified by the
simulations presented in Figure 31 where the responses of the system outputs to step
change in the reference are shown for all the controllers and § = 0.1. It can be noted
the oscillatory response of the PID obtained by the Ziegler-Nichol method when used
with SSOD sampling. The rest of cases have non-oscillatory responses, as predicted
by the values of the robustness margins in Table 3.

7. Conclusions

In this article we have presented a set of rules for designing controllers for networked
control systems in which event generators are used to reduce the amount of data
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Figure 30. Graph of N% N% and Gy for the PID designed for Gi(s) with different well-known tuning
methods and filter coefficient N = 10. Z-N: Ziegler and Nichols (1942) , A-H: Astrém and Hiagglund (1988),

AMIGO: Astrém and Hagglund (2004).
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Figure 31. Behaviour of the controlled output y in the presence of a change in the reference y, for PIDs
designed for G1(s) using well known tuning methods, with an event generator based on SSOD (top) and RQ
(bottom). Z-N: Ziegler and Nichols (1942) , A-H: Astrém and Hagglund (1988), AMIGO: Astrém and Hagglund

(2004).

Table 3. PID design results obtained for model G; with different well-known tuning methods.

Tuning Method Z-N

A-H AMIGO

K, 281 1.64 1.11
T; 1.63  2.52 1.36

Ty 0.40 0.62 0.44
A, 3.09 1.80 1.22
Gssod|’] -3.08 36.82 11.68
Vssod|[db] -0.87 5.94 5.58
brql] 29.00 67.85 50.49
YrqldD] 432  T7.11 12.26
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sent via the communications network. Two event generation mechanisms have been
studied: one based on regular quantification (RQ), and another based on symmetric
send-on-data (SSOD).

The rules are given in terms of constraints on the classical robustness margins of
the continuous control systems, such as the gain margin for the case of RQ and the
phase margin for the case of SSOD. The rules allow us to use the available methods
for tuning continuous PID controllers, based on the phase and gain margins, for the
case of event-based control systems.

Furthermore, new robustness margins to oscillations have been introduced for RQ
and SSOD event sampling, that allow to evaluate the resulting robustness of the de-
signed controller when the event based sampling is used. Based on those new robustness
margins, an analysis carried out over an extensive batch of models allows to conclude
that, for similar performance, the use of RQ event sampling results in a much more
robust controlled system if compared to the use of SSOD. However, the measurement
noise affects more the RQ due to the lack of hysteresis, tending to produce bursts of
events in thresholds crossings.

Moreover, it is shown that selection of the J parameter of the event generator,
for both the RQ and the SSOD, do not affect the stability and robustness of the
control system, that are ensured by the appropriate controller tuning. The selection
of ¢ is related to the steady state error and the number of events. The value of § also
determines the amplitude of the control action jumps. For the PID, those jumps also
depend on the derivative filter parameter, N, i.e., the higher the N the higher the
jumps. However, the higher the N, the higher the performance (in terms of IAE for
example). Therefore, the selection of § and N also represents a compromise between
control action jumps and performance. The values of N used for most vendors (N = 10
to 20) tend to produce very abrupt changes in the control action. Therefore, for PID
with event based sampling, it is better to use smaller values of N (as N = 3 for
example), since the deterioration in terms of IAE is not too important, while the
control action jumps are reduced drastically.

The results have been illustrated by simulations. Processes with different types of
dynamic responses have been considered, including complex poles and time delays.
Furthermore, it has been demonstrated how the new margins to oscillation introduced
in the article can be applied to measure the robustness to limit cycles of event based
control systems despite the tuning method used for the controller design. In this sense,
three well known tuning methods have been compared when using in this kind of event-
based-PID control system.
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