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Abstract: Rare-earth (RE) element-based materials for optical 

applications have received increasing attention owing to the emission 

properties of RE ions, which render these materials suitable for use in 

color displays, lasers, and solid-state lighting. In the present work, 

ZrO2:RE (RE =Tm3+, Tb3+, and Eu3+) powders were obtained via complex 

polymerization, and characterized by means of X-ray diffraction (XRD), 

Raman spectroscopy, UV-visible absorption spectroscopy, and 

photoluminescence measurements. The XRD patterns and Raman spectra 

revealed the tetragonal phase of ZrO2 co-doped with up to 4 mol.% RE3+ 

and stabilization of the cubic phase, for up to 8 mol.% RE3+. In 

addition, the photoluminescence measurements revealed simultaneous 

emissions in the blue (477 nm), green (496.02 nm and 548.32 nm), and red-

orange (597.16 nm and 617.54 nm) regions. These emissions result from the 

Tm3+, Tb 3+, and Eu3+ ions, respectively. Energy transfers, such as 1G4 

levels (Tm3+) → 5D4 (Tb3+) and 5D4 levels (Tb3+) → 5D0 (Eu3+), occurred 

during the emission process. Calculations based on density functional 

theory (DFT) were performed, to complement the experimental data. The 

results revealed that structural order/disorder effects were generated in 

the cubic and tetragonal ZrO2 phases in the ZrO2:Eu3+ powders, and 

changes in the electronic structure were manifested as a decrease in the 

band gap values. The chromaticity coordinates of all the samples were 

determined from the PL spectrum. The coordinates, x = 0.34 and y = 0.34, 

of the ZrO2:8%RE sample corresponded to a point located in the white 

region of the CIE diagram and color correlated temperature (CCT) was 

found to be 5181K. More importantly, the present results indicate that 

ZrO2:RE powders constitute promising photoluminescent materials for use 

in new lighting devices. 
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Abstract 

Rare-earth (RE) element-based materials for optical applications have received 

increasing attention owing to the emission properties of RE ions, which render these 

materials suitable for use in color displays, lasers, and solid-state lighting. In the present 

work, ZrO2:RE (RE =Tm
3+

, Tb
3+

, and Eu
3+

) powders were obtained via complex 

polymerization, and characterized by means of X-ray diffraction (XRD), Raman 

spectroscopy, UV-visible absorption spectroscopy, and photoluminescence 

measurements. The XRD patterns and Raman spectra revealed the tetragonal phase of 

ZrO2 co-doped with up to 4 mol.% RE
3+

 and stabilization of the cubic phase, for up to 8 

mol.% RE
3+

. In addition, the photoluminescence measurements revealed simultaneous 

emissions in the blue (477 nm), green (496.02 nm and 548.32 nm), and red-orange 

(597.16 nm and 617.54 nm) regions. These emissions result from the Tm
3+

, Tb 
3+

, and 

Eu
3+

 ions, respectively. Energy transfers, such as 
1
G4 levels (Tm

3+
) → 

5
D4 (Tb

3+
) and 

5
D4 levels (Tb

3+
) → 

5
D0 (Eu

3+
), occurred during the emission process. Calculations 
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based on density functional theory (DFT) were performed, to complement the 

experimental data. The results revealed that structural order/disorder effects were 

generated in the cubic and tetragonal ZrO2 phases in the ZrO2:Eu
3+

 powders, and 

changes in the electronic structure were manifested as a decrease in the band gap values. 

The chromaticity coordinates of all the samples were determined from the PL spectrum. 

The coordinates, x = 0.34 and y = 0.34, of the ZrO2:8%RE sample corresponded to a 

point located in the white region of the CIE diagram and color correlated temperature 

(CCT) was found to be 5181K. More importantly, the present results indicate that 

ZrO2:RE powders constitute promising photoluminescent materials for use in new 

lighting devices. 
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1. Introduction 

 The synthesis and characterization of rare earth (RE)-doped nanomaterials 

have been extensively investigated. These materials have excellent properties [1, 2], 

such as narrow emission bandwidths (<10 nm), long luminescence lifetime, high 

photostability, and low toxicity [3, 4]. In recent years, these materials have received 

considerable attention owing to their use in several important applications, such as 

multiplexed imaging and sensing, bioassays, and multiplex biodetection [5–14]. The 

development of luminescent materials, which are more efficient than those currently 

available, is extremely challenging. Moreover, the use of a suitable host material for the 

RE ions is essential for achieving high efficiency [15]. 

 Zirconium dioxide or zirconia (ZrO2) and ZrO2-based materials constitute an 

appropriate host for RE, owing to a unique combination of different properties. These 

include: high refractive index, large optical band gap, low optical loss, and high 

transparency in the visible and near-infrared regions, good chemical stability [16–17], 

and lower phonon frequency (~470 cm
-1

) than other matrices such as Y2O3 (~597 cm
-1

) 

and TiO2 (~700 cm
-1

) [18]. As such, the luminescence efficiency of active ions may be 

improved via incorporation into the ZrO2 matrix [19].  

 RE ions can enhance the emission of photoluminescent materials, and the 

corresponding energy transfer (ET) process occurs between an ion donor (D) and an ion 

acceptor (A). During the ET process, the energy of D (which is in an excited electronic 

state) is transferred to A. Specific conditions must be fulfilled in order to realize this 

mechanism. These include:  (i) the emission band of D is partially superimposed on the 

absorption band of A, and (ii) the distance (R) between D and A must be sufficiently 

short, since the energy transfer efficiency is proportional to 1/R
6
, to enable interaction 

of the dipole–dipole emission bands of the material [20]. These unique properties have 

led to the widespread use of RE ions in optical devices. 

 Direct excitation of Eu
3+

 ions is a relatively inefficient process, owing to the 

forbidden nature of the 4f transitions. However, Eu-doped inorganic materials may 

exhibit efficient luminescence emissions upon ultraviolet excitation. These materials 

also exhibit a large Stokes shift, sharp emission spectrum, and have a long lifetime, high 

chemical/photochemical stability, low toxicity, and reduced photobleaching, owing to 

shielding of the 4f electrons [21]. As such, Quan et al. [22] obtained spherical ZrO2:Eu
3+

 

particles by using a spray drying process followed by a post annealing treatment. 

Gedanken et al. [23] used a sonochemical method for the europium-oxide doping of 



ZrO2 nanoparticles. Furthermore, Tiwari et al. [24] determined the effect of varying 

Eu
3+

 concentration on the photo- and thermoluminescence of ZrO2 nanophosphors. 

Some RE ion-doped ZrO2 materials, such as ZrO2:Eu [25], ZrO2:Tb [26], and ZrO2:Tm 

[27], have interesting properties. Vidya et al. [28] investigated the color-tunable 

photoluminescence photocatalytic activities and phase transformation of a ZrO2:Tb
3+

 

nanophosphor. Mari et al. [29] determined the photoluminescence properties of Tb
3+

 in 

ZrO2 zirconia host matrices (prepared via combustion synthesis) at different calcination 

temperatures.   

 Shang et al. [30] examined the process of energy transfer between Tm
3+

 and 

Ho
3+

 excited by a UV nanocrystal-LaOF laser and classified the interaction between the 

ions as a quadrupole-quadrupole type of interaction. Joshi [31] examined the energy 

transfer from Tb
3+

 and Eu
3+

 in zinc phosphate glasses and concluded that these ions 

undergo mainly dipole-dipole interactions. Moreover, the efficiency of this transfer was 

highest at a concentration of 8.6 mol% Eu
3+

. The emissions of Tm
3+

, Eu
3+

, and Tb
3 +

 

ions fall within the blue, red, and green regions, respectively, of the visible spectrum 

[32–34]. Particles that have tunable emission colors are obtained from a combination of 

lanthanide ions in a host material. The first-ever generation of white light from the 

simultaneous emission of blue, green, and red, under UV excitation, was obtained for 

borate-based glasses co-doped with Ce
3+

, Tb
3+

, and Mn
3+

 [35]. Furthermore, the spectra 

of Tm
3+

, Tb
3+

, and Sm
3+

 co-doped silicate glass, which was excited in the near-UV 

region, exhibited bands corresponding to blue, green, and orange-red emissions [36]. 

This paper can be considered a prolongation of previously work (CITA) in which  the 

main focus is the investigation of the photoluminescent properties of the particles of 

ZrO2 co-doped with Tm
3+

, Tb
3+

, and Eu
3+

, by using
 
the polymerization method [37–40]. 

The use of the complex polymerization method in the research materials is widespread 

because it presents advantages such as good homogeneous distribution of different 

metal ions along the polymer formed, facilitating control stoichiometric. Other positive 

aspects of the method are the low temperature synthesis, obtaining nanometric particles 

and reproducibility.At this time, we will examine the effect of the concentration of RE 

(mol%) in the discussed property. In addition, first-principle calculations were 

performed in order to explain the structural and electronic changes induced by the 

doping of ZrO2:Eu. The energy transfer processes between Tm
3+

 and Tb
3+

 and between 

Tb
3+

 and Eu
3+

, were also discussed. X-ray diffraction (XRD), Raman spectroscopy, UV-

visible reflectance spectroscopy, and photoluminescence (PL) measurements were used 



to characterize the samples. Moreover, a chromaticity diagram was determined from 

emission spectra data, in order to verify the efficiency of these materials during the 

emission of white light. 

 The remainder of this paper is organized as follows: section 2 describes the 

synthesis method, characterization techniques, and computational details; sections 3 and 

4 present the results and conclusions, respectively. 

2. Experimental section 

2.1 Synthesis of ZrO2:RE powders 

 The samples were prepared by using a complex polymerization method. 

During the synthesis, the zirconium citrate was obtained by dissolving zirconium nitrate 

(Vetec, 99%) in an aqueous citric acid solution, under agitation, at a temperature of 80 

°C. Doping was performed by adding cations of RE to the solution. A europium 

solution and a thulium solution were prepared by dissolving Eu2O3 (Aldrich, 99.9%) 

and Tm2O3 (Aldrich, 99.9%), respectively, in nitric acid. Each solution was then 

separately mixed with the zirconium citrate solution. Terbium nitrate (Aldrich, 99.9%) 

was subsequently added to the mixed solution. Furthermore, ethylene glycol was added 

to the solution, under constant stirring, in order to promote polymerization of the citrate, 

through the polyesterification reaction. The molar ratio between citric acid and ethylene 

glycol used was set to 60/40 (mass ratio). After 4 h, water was completely removed, 

thereby yielding a translucent resin. Various (1, 2, 4 and 8 mol % of RE) dopant 

concentrations were considered. This percentage of RE is on the contribution of all 

dopants, such as: ZrO2: 1%RE, ZrO2: 2%RE, ZrO2: 4%RE and ZrO2: 8%RE correspond 

respectively to Zr 0.99O2: 0.0033 Tb 0.0033 Tm 0.0034 Eu, Zr 0.98O2: 0.0066 Tb 0.0066 Tm 0.0068 

Eu,  Zr 0.96O2: 0.0133 Tb 0.0133 Tm 0.0134 Eu and Zr 0.92O2: 0.0266 Tb 0.0266 Tm 0.0268 Eu. The 

polymeric resin was heat-treated at 350 ºC (10 ºC/ min) for 4 h, leading to partial 

decomposition of the polymeric gel; this resulted in the formation of an expanded resin, 

which consisted of partially pyrolyzed material. The resulting powders were annealed at 

600 ºC for 2 h at a heating rate of 10 ºC/min. 

 

2.2 Characterization of ZrO2:RE (RE= Tm
3+

, Tb
3+

, and Eu
3+

) powders  

The as-synthetized powders were examined by XRD (Shimadzu diffractometer 

model XRD–7000), using Cu-Kα radiation. In addition, Raman spectrometry (Horiba 



Jobin-Yvon Raman Labram) was performed at room temperature; an Olympus BX41 

TM microscope equipped with a 514 nm-wavelength laser, was used as the excitation 

source. UV-vis reflectance spectra (Cary model 5G) and PL spectra (Thermal Jarrel-

AshMonospec 27 monochromator and Hamatsu R446 photomultiplier) of the ZrO2:RE 

particles were also obtained. A 350.7 nm-wavelength laser with krypton ions 

(CoherentInnova) and an output of 13.3 mW, was used as the excitation source during 

the PL measurements; these measurements were all performed at room temperature. To 

characterize white light resulting from the aforementioned mixing, we calculated the 

chromaticity coordinates using the spectrum represented in Fig. 3. The chromaticity 

coordinates of red (the x coordinate), green (the y coordinate) and blue (the z 

coordinate) were determined according to the system of the International Commission 

on Illumination given in 1968 [41, 42] using the following relationships: 

where 

parameters X, Y and Z are the following spectral integrals: 

               

 

 Here P(λ) is luminescence spectrum of the samples, that provide, for each within 

the visible range , the emitted intensity. The function P(λ) is determined empirically, the 

values of λ for components x, y and z are 599, 555 and 446 nm, respectively and x, y 

and z are functions of spectral summarizing. Integrals (2) were calculated through the 

spectral interval of 350-800 nm. The CCT value was estimated by using McCamy 

empirical formula [43]. The quality of white light is calculated using McCamy 

empirical formula in terms of CCT values, which is expressed as: 

                                  (3) 

where   
      

      
  is the inverse slope line, xe = 0.332 and ye = 0.186 

 

2.3 Computational details 

First-principle calculations, based on the density functional theory (DFT), were 

performed by using the Vienna ab initio simulation package (VASP). The Kohn-Sham 

(1) 

(2) 



equations were solved by using the Perdew, Burke, and Ernzerhof (PBE) exchange-

correlation functional [44], and the electron-ion interaction was described via the 

projector-augmented-wave pseudo potentials. Moreover, the plane-wave expansion was 

truncated at a cut-off energy of 520 eV, and the Brillouin zones were sampled by using 

Monkhorst-Pack special k-point grids. Cubic and tetragonal phases of ZrO2, both 

undoped and doped at 12% of Eu substituted for Zr, were considered. In addition, a 

12% of Tb and Tm substitutions were tested. The valence electron density is 

defined by 12 (4s
2
4p

6
5s

2
4d

2
) electrons for Zr atoms, 6 (2s

2
2p

4
) electrons for O 

atoms and 17 (5s
2
5p

6
6s

2
4f

7
) electrons for Eu atoms. For Tb and Tm atoms, three f-

like electrons are treated as core states and 9 electrons are used as valence states 

for both.  

A supercell with 48 atoms was used for both systems, 2 × 2 × 1 and 2 × 2 × 2 for 

cubic and tetragonal phases, respectively. In the case of 12% doping, two Zr
4+

 were 

substituted by two Eu
3+

 and oxygen vacancy (both near and far from Eu atoms) was 

included, to maintain the electroneutrality of the cell. In order to obtain a small amount 

of Eu doping, extremely large supercells must be used, thereby resulting in a high 

computational cost. The cell parameters and positions of all atoms were allowed to 

relax, and the conjugated gradient energy minimization method was used to obtain 

relaxed systems. This was achieved by setting a threshold value (i.e., 0.01 eV·Å
-1

) for 

the forces experienced by each atom. To ensure geometrical and energetic convergence 

of the cubic and tetragonal ZrO2 structures, a 3  3  1 Monkhorst-Pack special k-point 

grid was used. 

 

3. Results and discussion 

3.1 XRD characterization 

 XRD patterns of pure ZrO2 and co-doped ZrO2:xRE (x = 1, 2, and 4%) 

powders are shown in Fig. 1(a)–(d). Diffraction peaks are located at approximate angles 

of: 30.07º, 35.02º, 50.28º, 59.87º, 62.60º, and 73.66º corresponding to the (101), (110), 

(112), (201), (103), and (202) planes, respectively, of the ZrO2 tetragonal phase [ICSD 

81-1546]. Fig. 1(e) shows the pattern corresponding to ZrO2:8%RE. In this case, peaks 

occur at 29.79°, 34.57°, 50.02°, 59.56°, 62.27°, and 73.35º, corresponding to the (111), 



(200), (220), (311), (222), and (400) planes, respectively, of the cubic phase of ZrO2 

[ICSD 81-1551]. This phase is stabilized with increasing amount of bi- or trivalent 

cations introduced into the ZrO2 structure [45, 46]. In addition, the replacement of Zr
4+

 

cations by RE
3+

 results in the formation of oxygen vacancies. This leads, in turn, to a 

change in the lattice parameters of the unit cell (c/a → 1) and consequently, 

arrangement of the ions in a cubic structure [46]. The ionic radius of oxygen is large, it 

becomes difficult to maintain the four O
2-

 ions around an ion Zr
4+

 with a fluorite 

structure (cubic), due to large repulsion between the ions O
2-

. With the introduction of 

dopant RE
3+

 replacing Zr
4+

, there is the appearance of oxygen vacancies in order to 

offset the charges and as result the force of repulsion between the O
2-

 decreases, giving 

conditions to accommodate the ions in the cubic structure. 

 

INSERT FIGURE 1 

 

 

 The size of the crystallites in the sample was estimated from the Scherrer 

equation [47, 48] and the full-width half-maximum (FWHM) of an observed peak. The 

average crystallite size (D) of ZrO2:RE powders was determined from the strongest 

peaks corresponding to the (101) tetragonal phase and (111) cubic phase. The lattice 

parameter (a, c), unit-cell volume (V), and crystallite size of the ZrO2:RE samples are 

listed in Table 1. 

 

INSERT TABLE 1 

 

 

3.2 Raman characterization 

ZrO2 polymorphism may lead to inaccurate results when the crystalline phases 

of ZrO2 are identified only via XRD. Das et al. [45] attributed inaccuracies in XRD 

identification of tetragonal and cubic phases, to the low angular resolution (0.03º) of the 

equipment used; this resolution resulted in an overlap of the peaks corresponding to 

these phases. Compared to XRD, Raman spectroscopy can more accurately distinguish 

among the crystalline phases of ZrO2 [49]. The band positions, intensities, and shapes 

can be determined from the Raman spectra. In fact, as shown in Fig. 2 and Table 2, each 



structure exhibits certain characteristics that correspond to specific locations in the 

spectra.  

INSERT FIGURE 2 

 

 The bands that occur at 142, 257, 314, 461, 609, and 627 cm
-1

 in the spectra 

shown in Fig. 2(a), (b), and (c) are attributed to the vibration modes of tetragonal ZrO2 

[49–51]. The spectrum (d) of the cubic phase of ZrO2 (fluorite) is characterized by a 

broad band that occurs at 605 cm
-1

 [49]. The active modes in the Raman spectra 

(corresponding to each crystal) and the c/a ratio of the lattice parameters of tetragonal 

zirconia, are shown in Table 2. Theoretical calculations of the Raman-active modes of 

pure tetragonal ZrO2 yield values of 149.4, 294.2, 301.5, 453.6, 611.5, and 650.9 cm
-1

 

for the Eg, A1g, B1g, Eg, B1g, and Eg modes, respectively. In the case of pure cubic ZrO2, 

a unique mode, which has T2g symmetry, occurs at a wavenumber of 600.7 cm
-1

. These 

values concur with previously obtained experimental data. 

INSERT TABLE 2 

 

3.3 UV–Visible spectroscopy analysis 

The band gap energies of the ZrO2:RE nanoparticles were estimated from the 

respective diffuse-reflectance spectra, by plotting the square of the Kubelka–Munk 

function (i.e., F(R)
2
) as a function of the energy (in eV). The values were determined by 

extrapolating the linear part of the curve to F(R)
2
 = 0, as shown in Fig. 3. The ratio 

between the molar absorption coefficient (k) and scattering coefficient (s) is estimated 

from reflectance data using the Kubelka–Munk relation [52] in equation 4: 

 

      
 

 
 

      

  
 

 

where R is the percentage of reflected light. The incident photon energy (hν) and the 

optical band gap energy (Eg) are related to the transformed Kubelka–Munk function, 

[F(R) hν]
p
 = A(hν - Eg), where Eg is the band gap energy, A is a constant depending on 

the transition probability and p is the power index that is related to the optical 

(4) 



absorption process. p equals to 1/2 or 2 for an indirect or a direct allowed transition, 

respectively.  

INSERT FIGURE 3 

 

 The Eg values are shown in Fig. 3. Intermediate levels of energy in the band 

gap region result from the structural defects in ZrO2 [53]. For example, oxygen 

vacancies, the type of structural defect that occurs in the present case, are generated in 

order to compensate for the Zr
4+

 ions replaced by RE
3+

 ions. Eg values of 5.21, 5.09, 

5.06, 4.97, and 4.92 eV are obtained for the undoped, 1, 2, 4, and 8 mol.% RE-doped 

materials, respectively. 

In addition, the calculated values of the cell parameters concur with the 

experimentally determined results (a = 5.127 Å for the cubic phase, and a = 3.630 Å and 

c = 5.264 Å for the tetragonal phase). The results of the theoretical calculations indicate 

that, in both the cubic and tetragonal structures, 12% of Eu produces a local distortion 

that is both centered on the dopant, and located near the oxygen vacancy (Vo). The 

geometry of doped ZrO2 with Eu
+3

 showing the coordination polyhedra of the cubic and 

tetragonal phases is shown in Fig. 4.  

INSERT FIGURE 4 

The vacancy corresponding to an O atom missing from the structure was 

examined by taking into account the proximity of the Eu atoms. For both phases, large 

distances between the oxygen vacancy and the Eu atoms, constitute more favorable 

arrangements than other configurations. Consequently, some Zr atoms are seven-

coordinated in the case of the cubic phase and are also neighbored by an Eu atom in the 

case of the tetragonal phase (see Table 3). 

INSERT TABLE 3 

 

The difference between the formation energies of the cubic and tetragonal 

phases (ΔEC-T) of ZrO2 and Zr0.88Eu0.12O1.94 are 0.84 eV and -0.34 eV, respectively. 

These results indicate that the incorporation of Eu into the ZrO2 structure increases the 

already higher stability of the cubic phase, relative to that of the tetragonal phase. This 

explains the preferential Eu doping of the cubic phase of the films. 



We used a supercell model in which the cubic and tetragonal phases are each 

assigned 48 atoms, to determine the effect of Eu incorporation into the ZrO2 lattice, on 

the electronic structure. The total and projected density of states (DOS) of the atoms and 

orbitals of the pure and doped cubic phase are shown in Fig. 5; the results 

corresponding to the pure and doped tetragonal phase are shown in Fig. 6. 

INSERT FIGURE 5 

INSERT FIGURE 6 

The top of the VB and the bottom of the conduction band (CB) are composed 

mainly of O 2p levels and Zr 4d levels, respectively. Furthermore, Eg values of 3.21 eV 

and 3.83 eV were calculated for the respective undoped cubic and undoped tetragonal 

phases. These values are both lower than their experimentally determined counterparts. 

However, compared to the former (3.21 eV), the latter (3.83 eV) is closer to Eg of the 

pure ZrO2 (5.21 eV), investigated in this work. A comparison of the electronic 

structures shown in Figs. 5(b) and 6(b) reveals that Eu doping leads to a systematic 

decrease in Eg and an increase in the density of electronic states inside the gap. 

Moreover, the effect of Tb and Tm incorporation into the ZrO2 lattice has been 

also explored, and the total and projected density of states on atoms for doped Tb 

and Tm, in cubic and tetragonal phases, are shown in Fig. S1 of supplementary 

information. Therefore, the theoretical calculations indicate that these states occur 

in the forbidden zone of energy, owing to the presence of Eu, Tb and Tm transition 

metals and O vacancies in the ZrO2 lattice. 

 

3.4 PL studies 

The optical properties of Eu dopants in various host materials, have been 

characterized [54–62]. Owing to the hypersensitivity of the 
5
D0 → 

7
F2 transition, Eu 

ions can be used to monitor morphological changes in the host material, which are 

induced by external stimuli [63–66]. 

 Figure 7 shows the PL spectra of both the undoped and co-doped ZrO2. The 

band in the emission spectrum of undoped ZrO2 ranges from 376 nm–648 nm with a 

peak centered at 460 nm, as shown in Fig. 7. This is attributed to the (O
2-

) p → d (Zr
4+

)-

type transition [53], which results from a sequence of non-radiative relaxations of 



localized electrons in the CB; this is followed by band recombination within the band 

gap, and subsequent decrease in energy of the electrons when they move to the VB [67]. 

Factors such as the particle size and morphology, crystallinity, and the method of 

synthesis [68–69] may influence the photoluminescent properties of the zirconia. 

 

INSERT FIGURE 7 

 

 The PL spectra of ZrO2:RE (RE=Tm
3+

, Tb
3+

, and Eu
3+

) powders exhibit 

characteristics of each dopant-ion emission. For example, in the case of excitation at 

350 nm, the emission peak at 477 nm is attributed to Tm
3+

, which is associated with the 

1
G4 → 

3
H6 transition [70, 71]. The 

5
D4 →

7
F6 and 

5
D4 →

7
F5 transitions occur at 

wavelengths of 496.02 nm and 548.32 nm, respectively, and are associated with the 

emission of Tb
3+

 [72, 73]. In addition, the Eu
3+

, 
5
D0→

7
F1, and 

5
D0→

7
F2 transitions 

occur at respective wavelengths of 597.16 nm and 617.54 nm [74, 75]. The interference 

of the host has a more significant effect on the photoluminescent behavior of 

ZrO2:8%RE than on the behavior of ZrO2. This effect is manifested as the occurrence of 

a broad band at wavelengths ranging from 380 nm–480 nm, and results from the 

structural defects in ZrO2. The order-disorder effects in the coordination of some Zr 

and doped atoms, verified by theoretical calculations, can result in the production 

of new levels between the valence and the conduction bands, which favor the PL 

emission properties. As Fig. 7(c) shows, the emission intensity of the Eu
3+

 ions 

increases with increasing concentration of Eu
3+

, reaches a maximum at 4 mol.% RE, 

and decreases thereafter (owing to the quenching effect) [76]. The critical quenching 

concentration of Eu
3+

 is defined as the concentration at which the emission intensity 

begins to decrease. Similarly, the critical distance, corresponding to the critical 

quenching concentration, is defined as the average distance between the nearest Eu
3+

 

ions, at which energy transfer processes occur. 

 

3.5 Energy transfer in ZrO2:RE (RE=Tm
3+

, Tb
3+

, and Eu
3+

) powders  

 

 A schematic energy level diagram illustrating Tm
3+

, Tb
3+

, and Eu
3+

 

absorption, non-radiative relaxation, and processes leading to blue, green, and red 

emissions is shown in Fig. 8. The energy level 
5
D4 of Tb

3+
 is very close to the energy 



level of Tm
3+

 
1
G4 as seen in the energy diagram (Figure 8). This setting energy 

levels contributes to efficient energy transfer process (ET1) between Tm
3+

 ions and 

Tb
3+ 

[77]. The 
1
G4 level of Tm

3+
 is completely filled by the charge carriers 

(electrons) from the excitation process (λ = 350 nm). The increased concentration 

of Tm
3+

 promotes the increase of the intensity of the transition 
1
G4 → 

3
H6, this 

increased intensity of Tm
3+

 also acts as a source for transporting energy for the 

sublevel 
5
D4 of Tb

3+
, this effect is realized by increasing the intensity of transition 

5
D4 → 

7
F5 (550 nm) Tb

3+
, shown in Figure 7. 

The Energy transfer (ET2) between Tb
3+

 and Eu
3+

 has been extensively studied, in order 

to understand the photoluminescent behavior [78].  In fact, the luminescence intensities 

of various rare-earth ions can be enhanced or quenched by the energy transfer from 

other co-doped rare-earth ions [79–81]. ET2 between Tb
3+

 and Eu
3+

 may occur in hosts, 

such as tungstates, zeolite-Y, yttria, porous silicon, borate, hydrate, and molybdates 

[82–85]. The probability of this transfer is proportional to R
-6

 (R: average distance 

between Tb
3+

 and Eu
3+

), and hence the efficiency of the ET2 process increases 

gradually with increasing Eu
3+

-doping concentration. Furthermore, R decreases with 

increasing Eu
3+

 concentration and therefore, the energy transfer efficiency of Tb
3+

 → 

Eu
3+

 increases. Owing to the quenching effect, this behavior is not unique to the 

ZrO2:8% RE, as shown in Fig. 7(c).  

INSERT FIGURE 8 

 

 

An analysis of the results depicted in Fig.8 renders that electrons on Tb
3+

 ions 

are promoted from the ground state (4f
8
) to the excited state (4f

7
5d), by 350.7-nm UV 

light. These electrons then relax to the lowest excited state 
5
D4, by means of a multi-

phonon relaxation process. The electrons may return to the ground state, thereby 

resulting in Tb
3+

 emissions (
5
D4 →

7
F6, 5, 4). Alternatively, their excitation energy may be 

transferred from the 
5
D4 (Tb

3+
) level to the higher excited energy levels of Eu

3+
 (4f

6
) 

through cross relaxation; these levels then relax to the 
5
D0 (Eu

3+
) level, thereby resulting 

in red-orange emissions (
5
D0 → 

7
F0, 1, 2). The 

5
D4 →

7
F6, 5, 4, 3 emissions of Tb

3+
 overlap 

with the 
7
F0, 1 →

5
D0, 1, 2 absorptions of Eu

3+
 and hence, the energy transfer from Tb

3+
 to 

Eu
3+

 is, in general, very efficient.  

 Fig. 9 shows the CIE coordinates of ZrO2:xRE (1–8 mol.%), while Table 4 

lists the CIE coordinate values and CCT values for samples ZrO2:xRE (1–8 mol.%). We 



obtained white light emission from a single component, by co-doping the ZrO2 host with 

Tm
3+

, Tb
3+

, and Eu
3+

 ions. Under the excitation of UV light, a full-color emission is 

obtained, resulting from the simultaneous blue, green, and red emission of the Tm
3+

, 

Tb
3+

, and Eu
3+

 ions. It is observed in Figure 7, for the sample ZrO2: 8% RE, the 

photoluminescent behavior of ZrO2 host was very significant. The presence of 

oxygen vacancies (V0) in the matrix is responsible for the emergence of broadband 

emission at around 450 nm [86]. The oxygen vacancy always leads to formation of 

energy levels within the band gap. When ZrO2 is excited by a photon, the electrons 

are trapped by V0 and centers are created (F) [87]. Then recombination centers (F) 

with the holes (h
+
) creates the transmitter excited states. From these states 

originate transitions which decay to a state with lower energy level. The band of 

blue emission from the ZrO2 contributes along with the specific emission of rare 

earth on white emission as shown in Figure 8. A single-composition white-emitting 

phosphor is therefore obtained. In fact, this white emission occurs independent of the 

excitation, depends on the doping concentration of the rare-earth ions, and is obtained 

by blending the aforementioned simultaneous emissions. The emissions are 

characterized by the colors emitted from each sample. This characteristic is defined by 

chromaticity coordinates x and y.  

INSERT FIGURE 9 

INSERT TABLE 4 

 

 

 

4.  Conclusions 

 ZrO2:RE powders were successfully obtained via complex polymerization. 

The phase (i.e., tetragonal) comprising the ZrO2:xRE (x: 1, 2, and 4 mol.%) samples 

was identified via XRD analysis, whereas the cubic phase, stabilized in ZrO2:8%RE, 

was identified via Raman spectroscopy. The structural and electronic effects, resulting 

from Eu in both the cubic and tetragonal ZrO2:Eu
3+

 phases, were explained by 

calculating (using DFT) the relevant energies. The photoluminescence emission spectra 

reveal transitions of the type: 
1
G4 →

3
H6 (477 nm), 

5
D4 → 

7
F5,6 (496.02 nm and 548.32 

nm), and 
5
D0→ 

7
F1,2 (597.16 nm and 617.54 nm) from Tm

3+
, Tb

3+
, and Eu

3+
, 

respectively. An inter-level energy transfer, 
5
D4 (Tb

3+
) → 

5
D1 (Eu 

3+
), also occurred. In 



addition, according to the CIE diagram, the CIE coordinates (x: 0.34 and y: 0.34) 

calculated for ZrO2: 8%RE, correspond to a point that lies in the white region. The 

results of this work suggest that these materials have significant potential for use in the 

field of light-emitting diodes. 
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FIGURE CAPTIONS 

 

Figure 1: XRD patterns of (a) non-doped ZrO2 and ZrO2:xRE (b) x = 1%, (c) x = 2%, 

(d) x = 4%, and (e) x = 8%, calcined at 600°C. 

Figure 2: Raman spectrum of ZrO2:xRE, (a) x = 1%, (b) x = 2%, (c) x = 4%, and (d) x = 

8%. 

Figure 3: UV-visible absorption spectra for particles: undoped ZrO2 and ZrO2:x% RE 

(x= 1, 2, 4, and 8% mol). 

Figure 4: Geometry of doped ZrO2 with Eu
3+

 showing the coordination polyhedral: a) 

cubic phase and b) tetragonal phase. 

Figure 5: Total and projected density of states on atoms and orbitals for the pure (a) and 

doped cubic phase (b). 

Figure 6: Total and projected density of states on atoms and orbitals for the pure (a) and 

doped tetragonal phase (b). 

Figure 7: Photoluminescence emission spectra of (a) ZrO2:xRE (x = 1–8 mol%), (b) 

undoped ZrO2, (c) quenching effect in the transition 
5
D0 → 

7
F1 (Eu

3+
) at 617.54 nm. 

Figure 8: Schematic diagram of the Tm
3+

, Tb
3+

, and Eu
3+

 energy levels and the 

processes leading to blue, green, and red emission. 

Figure 9: CIE chromaticity diagram for ZrO2:xRE (x = 1, 2, 4, and 8 mol%). 

 

 

TABLE CAPTIONS 

Table 1 - Value of structural parameters of ZrO2:xRE (x = 0–8 mol%) nanophosphors. 

Table 2 – Active Raman modes, space group, and c/a lattice parameter ratio for the 

zirconia polymorphs. 



Table 3: Distances in A for the coordination polyhedra for doped ZrO2 with Eu
3+

 for the 

cubic and tetragonal phases. 

Table 4 - Chromaticity coordinates for ZrO2:xRE (x = 1, 2, 4, and 8 mol%). 
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Highlights 

 

 

The ZrO2:RE materials presented here are promising photoluminescent materials. 

 

These particles were successfully obtained by the complex polymerization method. 

 

Calculations based on density functional theory were compared to experimental data. 

 

The CIE coordinates calculated are disposed in the blank region in the CIE diagram. 

Highlights



Table 1 - Value of structural parameters of  ZrO2:xRE (0 - 8 mol%) nanophosphors 

Parameters ZrO2 ZrO2:1%RE ZrO2:2%RE ZrO2:4%RE ZrO2:8%RE 

Crystal Sistem Tetragonal Tetragonal Tetragonal Tetragonal Cubic 

Space group P42/nmc P42/nmc P42/nmc P42/nmc Fm-3m 

2θ 30.0266 29.9272 29.8368 30.1498 29.8368 

FWHM (rad) 0.3149 0.7872 0.3149 0.9446 0.3936 

Lattice 

parameters (Å) 

 

a 3.59756 3.61069 3.60521 3.62814 5.15833 

c 5.19462 5.20999 5.19164 5.14336 - 

Unit cell 

volume/formula 

unit (Å
3
) 

67.2312 67.9231 67.4786 67.7040 137.2545 

Crystallite size 

(nm) 

14.06 14.49 14.79 14.62 12.78 

 

Table 1



Table 2 – Active raman modes, space group and c/a lattice parameter ratio for the zirconia polymorphs 

Crystal system Space group 

 

Active raman modes c/a 

Tetragonal D4h A1g + 2B1g + 3Eg > 1 

Cubic Oh T2g = 1 

 

Table 2



Table 3: Distances in Å for the coordination polyhedra for doped ZrO2 with Eu
+3

 for the cubic and tetragonal phases. 

 

    cubic     

 

    tetragonal   

Symbol Ligands Faces Dmin Dmax 

 

Symbol Ligands Faces Dmin Dmax 

Eu1 8 12 2.281 2.471 

 

Eu1 7 8 2.286 2.368 

Eu2 8 10 2.308 2.459 

 

Eu2 8 11 2.331 2.512 

Zr1 8 12 2.071 2.611 

 

Zr1 7 10 2.044 2.394 

Zr2 8 12 2.061 2.568 

 

Zr2 8 12 2.081 2.48 

Zr3 7 9 2.079 2.184 

 

Zr3 8 12 2.063 2.617 

Zr4 8 10 2.091 2.265 

 

Zr4 8 12 2.055 2.501 

Zr5 8 12 2.066 2.487 

 

Zr5 8 12 2.108 2.376 

Zr6 7 10 2.054 2.218 

 

Zr6 8 12 2.141 2.269 

Zr7 8 12 2.141 2.347 

 

Zr7 8 12 2.118 2.391 

Zr8 8 12 2.11 2.326 

 

Zr8 7 10 2.071 2.297 

Zr9 7 9 2.006 2.303 

 

Zr9 8 12 2.127 2.44 

Zr10 7 10 2.041 2.267 

 

Zr10 8 12 2.098 2.685 

Zr11 8 12 2.131 2.268 

 

Zr11 8 12 2.118 2.391 

Zr12 7 10 2.089 2.206 

 

Zr12 7 10 2.071 2.297 

Zr13 7 9 2.058 2.219 

 

Zr13 8 12 2.127 2.44 

Zr14 7 10 2.069 2.261 

 

Zr14 8 12 2.098 2.685 

Table 3



Table 4 - Chromaticity coordinates and correlated temperature color for ZrO2:xRE (x: 1, 2, 4 and 8 

mol%) 

 

 

 

 

 

Sample x y CCT (K) Color 

ZrO2: 1% Eu   0.41 0.36 3.174 yellow 

ZrO2: 2% Eu  0.50 0.37 1.988 orange 

ZrO2: 4% Eu  0.43 0.38 2.917 yellow 

ZrO2: 8% Eu 0.34 0.34 5.181 white 

Table 4
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