
Symplectic time-average propagators for the Schrödinger equation with a time-
dependent Hamiltonian
Sergio Blanes, Fernando Casas, and Ander Murua

Citation: The Journal of Chemical Physics 146, 114109 (2017); doi: 10.1063/1.4978410
View online: http://dx.doi.org/10.1063/1.4978410
View Table of Contents: http://aip.scitation.org/toc/jcp/146/11
Published by the American Institute of Physics

Articles you may be interested in
A new approach to molecular dynamics with non-adiabatic and spin-orbit effects with applications to QM/MM
simulations of thiophene and selenophene
The Journal of Chemical Physics 146, 114101 (2017); 10.1063/1.4978289

Incremental full configuration interaction
The Journal of Chemical Physics 146, 104102 (2017); 10.1063/1.4977727

Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry
The Journal of Chemical Physics 146, 114104 (2017); 10.1063/1.4978411

Exchange functionals based on finite uniform electron gases
The Journal of Chemical Physics 146, 114108 (2017); 10.1063/1.4978409

 Perspective: Found in translation: Quantum chemical tools for grasping non-covalent interactions
The Journal of Chemical Physics 146, 120901 (2017); 10.1063/1.4978951

Nonequilibrium diagrammatic technique for Hubbard Green functions
The Journal of Chemical Physics 146, 092301 (2016); 10.1063/1.4965825

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/84138053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Blanes%2C+Sergio
http://aip.scitation.org/author/Casas%2C+Fernando
http://aip.scitation.org/author/Murua%2C+Ander
/loi/jcp
http://dx.doi.org/10.1063/1.4978410
http://aip.scitation.org/toc/jcp/146/11
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4978289
http://aip.scitation.org/doi/abs/10.1063/1.4978289
http://aip.scitation.org/doi/abs/10.1063/1.4977727
http://aip.scitation.org/doi/abs/10.1063/1.4978411
http://aip.scitation.org/doi/abs/10.1063/1.4978409
http://aip.scitation.org/doi/abs/10.1063/1.4978951
http://aip.scitation.org/doi/abs/10.1063/1.4965825


THE JOURNAL OF CHEMICAL PHYSICS 146, 114109 (2017)

Symplectic time-average propagators for the Schrödinger equation
with a time-dependent Hamiltonian

Sergio Blanes,1,a) Fernando Casas,2,b) and Ander Murua3,c)
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2Departament de Matemàtiques and IMAC, Universitat Jaume I, E-12071 Castellón, Spain
3Konputazio Zientziak eta Adimen Artifiziala Saila, Informatika Fakultatea, EHU/UPV,
Donostia/San Sebastián, Spain

(Received 28 December 2016; accepted 27 February 2017; published online 21 March 2017)

Several symplectic splitting methods of orders four and six are presented for the step-by-step time
numerical integration of the Schrödinger equation when the Hamiltonian is a general explicitly
time-dependent real operator. They involve linear combinations of the Hamiltonian evaluated at
some intermediate points. We provide the algorithm and the coefficients of the methods, as well
as some numerical examples showing their superior performance with respect to other available
schemes. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4978410]

I. INTRODUCTION

Many quantum mechanical problems of physical interest
involve time-dependent potentials. One has to deal then with
the time-dependent Schrödinger equation (~= 1)

i
∂

∂t
ψ(x, t) = Ĥ(t)ψ(x, t), ψ(x, 0) = ψ0(x), (1)

where the Hamiltonian is given by

Ĥ(t) = T̂ + V̂ (t) = −∆/(2µ) + V̂ (t), (2)

where µ is the reduced mass, ∆ is the Laplacian operator, and
V̂ (t) depends explicitly on time. If the potential changes slowly
with time, a usual technique for getting approximate numerical
solutions consists of subdividing the time integration interval
in a number of sufficiently short subintervals of length τ so
that V̂ is approximately constant in each subinterval and then
solve (1) and (2) with the time-varying potential V̂ (t) replaced
by

V (t) = V k for t ∈ [(k − 1)τ, kτ] (3)

with time-independent potentials V k . In this way, one gets ψk

≈ψ(·, tk) at times tk = kτ, k = 1, 2, 3, . . . and eventually reaches
the desired final time. The time-independent potential V k

can be chosen in several ways: as the average on the subin-
terval, V k = (1/τ) ∫

tk
tk−1

V̂ (t)dt, as the value at the midpoint,

V k = V̂ (tk−1 + τ/2), etc.1–3

The procedure typically requires discretizing first the
Schrödinger equation (1) in space, for which several tech-
niques are widely used: finite differences, spectral methods
based on collocation with trigonometric polynomials, Galerkin
method with a Hermite basis, etc, both in one or several dimen-
sions (see Ref. 4 and references therein). Once this process
has been carried out, one is led to a linear ordinary differential

a)Electronic mail: serblaza@imm.upv.es.
b)Electronic mail: Fernando.Casas@uji.es.
c)Electronic mail: Ander.Murua@ehu.es.

equation (ODE) of the form

i
d
dt

u(t) = H(t) u(t), u(0) = u0 ∈ CN , (4)

where H(t) is a Hermitian piecewise constant N ×N matrix,

H(t) = Hk for t ∈ [(k − 1)τ, kτ], (5)

and each Hk = T + V k is a discretized counterpart of the oper-
ator Hk ≡ T̂ + V k . Its solution u(t) ∈CN represents a fully
discretized version of the wave function ψ(x, t) at N space grid
points, with N usually a large number. The values uk = u(kτ) of
the solution u(t) of (4) evaluated at the time grid points t = k τ
(k = 1, 2, . . .) can be computed as

uk = e−i τ Hk uk−1, (6)

but instead of evaluating exactly the matrix exponentials in
(6) for determining uk , two alternatives are widely used: (i)
the exponential is approximated by the so-called unitary split
operator algorithms, i.e., compositions of the form

e−i τ Hk ≈ e−ibmτVk e−iamτT · · · e−ib1τVk e−ia1τT , (7)

where {ai, bi} are appropriately chosen real coefficients,5–8

and (ii) the action of the exponential on the vector uk�1 is
approximated as

e−i τ Hk uk−1 ≈ Pm(τHk)uk−1, (8)

where Pm(y) is a polynomial of degree m in y that approxi-
mates the exponential e−i y. Standard choices for such Pm(y)
are truncated Taylor or Chebyshev series expansion of e−i y for
an appropriate real interval of y or a Lanczos approximation.9

When Hk is an arbitrary real symmetric matrix, the use of
symplectic splitting methods has allowed the present authors to
develop an algorithm that approximately computes e−i τ Hk 3 for
given τ ∈R and 3 ∈CN within a prescribed error tolerance with
a minimum number of matrix-vector products Hk3. The algo-
rithm is more efficient than Chebyshev methods under the same
conditions for all tolerances and time integration intervals.10

If the Hamiltonian does not evolve so slowly with
time, the previous procedure is not particularly appropriate,
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however. Notice that either averaging Ĥ on each subinterval or
taking each value at the midpoint produces only a second order
of approximation in τ, whereas both the Chebyshev meth-
ods and the algorithm based on symplectic splitting methods
have been designed to be used with large time steps. In conse-
quence, the performance of such methods for approximately
computing e−i τ Hk 3 degrades with a reduced τ, whereas large
values of τ produce results with low accuracy due to a poor
approximation of the original time-dependent potential V̂ (t) by
the piecewise constant potential (3). In that case, it would be
more appropriate to use the numerical integrators designed to
solve a linear system of the form (4) with H(t), a continuously
time-dependent matrix.

Many algorithms specifically designed for Equation (4)
exist indeed in the literature. We mention in particular split-
operator methods,11 Runge–Kutta12 and symplectic parti-
tioned Runge–Kutta methods,13 and a combination of a
4th-order Magnus method with the Lanczos algorithm2 and
the so-called (t, t ′) method.14 In the paper,2 an exhaustive com-
parison is carried out of these schemes. Polynomial approxi-
mations to the propagator based on Taylor15 and Chebyshev
polynomials16–19 have also been proposed to deal with this
problem. The review19 provides a thorough presentation of
one such class of polynomial approximations which are in
principle also valid for nonlinear versions of the Schrödinger
equation.

Motivated by the excellent performance exhibited by sym-
plectic splitting methods for the computation of e−i τ H3 for
real symmetric matrices H, our purpose here is to adapt that
methodology to the more general case of a time-dependent
matrix H(t) by using some techniques introduced in Refs. 20
and 21. The resulting algorithms only involve matrix-vector
products of the form H(t)3 at different values of t. Here we
mainly focus on the application to linear ordinary differential
equation (4) obtained by a space discretization of a Hamil-
tonian operator Ĥ(t) in (1) and (2) with a time-dependent
potential, although the integration schemes presented in this
paper are valid for arbitrary linear ODE systems of the form
(4) with a time-dependent real matrix H(t), provided that H(t)
is reasonably smooth in t.

II. SYMPLECTIC SPLITTING METHODS

Before presenting the proposed numerical integrators for
systems of the form (4), we first recall the relatively sim-
pler case of a constant real matrix H(t)≡ H̃ and the exist-
ing schemes within the same family designed to approximate
u(t) = e−i t H̃u0.

A. Time-independent Hamiltonian

The class of symplectic splitting methods developed in
Refs. 22 and 23 as an alternative to Chebyshev polynomial
approximations of e−i τ H̃ is obtained by applying special
purpose integrators to the equation

i
d
dt

u = H̃u, u(0) = u0 (9)

expressed in terms of the real and imaginary part of the vector
u ∈ CN , that is, (

q
p

)
=

(
Re(u)
Im(u)

)
∈ R2N ,

so that Eq. (9) is equivalent to

d
dt

(
q
p

)
=

(
0 H̃
0 0

) (
q
p

)
+

(
0 0
−H̃ 0

) (
q
p

)
. (10)

Application of a splitting scheme with appropriate coefficients

a1, b1, a2, . . . , am, bm, am+1 ∈ R (11)

leads (see Refs. 10 and 24–26) to an approximation of the
solution operator of (10) of the form(

I τam+1H̃
0 I

) (
I 0

−τbmH̃ I

)
· · ·

(
I 0

−τb1H̃ I

) (
I τa1H̃
0 I

)
. (12)

If this procedure is applied to get a numerical approxima-
tion of u(t) in the time interval t ∈ [0, tf ] using M steps with
time step τ = tf /M, then the following algorithm results:

3 = H̃ Im(u0)
do k = 0, M − 1

q0 = Re(uk), p0 = Im(uk)
q1 = q0 + τ a13

do i = 1, m
pi = pi−1 − τ biH̃qi

3 = H̃pi

qi+1 = qi + τ ai+13

enddo
uk = qm+1 + ipm

enddo.

(13)

The coefficients of method (12) usually verify am+2�j = aj and
bm+1�j = bj. In other words, composition (12) is left-right palin-
dromic so that the scheme preserves time-symmetry. Although
it is neither unitary nor unconditionally stable (as is the case
of method (7)), it is symplectic and conjugate to a unitary
scheme so that neither the average error in energy nor the
norm of the approximate solution grows with time. Symplec-
tic integrators preserve most qualitative properties of the exact
solution and belong to a class of geometric numerical integra-
tors27–29 showing, in general, a more favorable error propaga-
tion than standard (e.g., Runge-Kutta, Taylor, multistep, etc.)
integrators.

The error analysis carried out in Ref. 26, in particular
the sharp error estimates obtained there, provides appropriate
criteria to construct splitting methods of the form (12) possess-
ing a large stability interval and especially adapted to different
regularity conditions by optimizing the main error terms. This
analysis has allowed the present authors to construct a set of
symplectic splitting methods designed to be used under dif-
ferent precision requirements and time intervals, as well as a
technique to select among them the most efficient scheme to
approximate e−iτH̃3 with the desired accuracy and a reduced
computational cost. The resulting algorithm is presented in
Ref. 10, where its performance is also compared with methods
based on Chebyshev polynomials.
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B. Time-dependent Hamiltonian

In the following, we address the more general problem (4)
with a generic time-dependent real matrix H(t) and show how
the previous splitting scheme (12) can be generalized to this
setting. Here we only provide a brief summary of the main
steps involved and refer the reader to Refs. 20 and 21 for a
more detailed treatment.

We again express u ∈CN in terms of the real and imaginary
part so that Eq. (4) is equivalently written as

d
dt

(
q
p

)
=

(
0 H(t)
0 0

) (
q
p

)
+

(
0 0
−H(t) 0

) (
q
p

)
. (14)

Let K(t, τ) denote the solution operator so that any solution
(q(t), p(t)) of (14) is formally expressed as(

q(t + τ)
p(t + τ)

)
= K(t, τ)

(
q(t)
p(t)

)
for all t, τ ∈ R.

To determine the solution u(t) of the linear ODE sys-
tem (14) at times t = tk (k = 1, 2, 3, . . .), we will obtain
approximations qk ≈ q(tk)=Re(u(tk)), pk ≈ p(tk)= Im(u(tk))
for k = 0, 1, 2, . . . as(

qk+1

pk+1

)
= K̃(tk , τ)

(
qk

pk

)
(starting from q0 = Re(u0), p0 = Im(u0)), where K̃(t, τ) is
some approximation of the solution operator K(t, τ). More
specifically, our proposal is to take K̃(t, τ) as

K̃(t, τ) =

(
I H̃A

m+1
0 I

) (
I 0
−H̃B

m I

)
· · ·

(
I 0
−H̃B

1 I

) (
I H̃A

1
0 I

)
, (15)

where

H̃A
i = τ

n∑
j=1

ai, jH(t + cjτ), H̃B
i = τ

n∑
j=1

bi, jH(t + cjτ), (16)

for some n and appropriately chosen coefficients ai, j, bi, j,
cj ∈ R. Notice that the composition (15) is similar in form to
(12), but now the matrix H̃ in each factor in (15) is replaced by a
different (weighted) time-average of H(t). The approximation
(15) is said to have m stages.

When schemes (15) and (16) with n = 3 are considered
as the approximate solution operator, then the following algo-
rithm results for determining the approximations uk ≈ u(tk),
k = 1, 2, 3, . . .

HA = 0, uk = u0

do k = 0, M − 1
tk = t0 + k τ, q0 = Re(uk), p0 = Im(uk)
H1 =H(tk + c1τ), H2 =H(tk + c2τ), H3 =H(tk + c3τ)

q1 = q0 + τ
(
HA + a1,1H1 + a1,2H2 + a1,3H3

)
p0

do i = 1, m − 1
pi = pi−1 − τ

(
bi,1H1 + bi,2H2 + bi,3H3

)
qi .

qi+1 = qi + τ
(
ai+1,1H1 + ai+1,2H2 + ai+1,3H3

)
pi

enddo
pm = pm−1 − τ

(
bm,1H1 + bm,2H2 + bm,3H3

)
qm

HA = am+1,1H1 + am+1,2H2 + am+1,3H3

enddo
qm+1 = qm + τHApm

uK = qm+1 + ipm (17)

Recall that the exact solution operator is time-symmetric,
i.e., it satisfies K(t + τ,−τ) ≡ K(t, τ)−1. For this reason, we will
focus only on schemes (15) and (16) satisfying the same sym-
metry, that is, K̃(t + τ,−τ) = K̃(t, τ)−1. This is automatically
achieved if the coefficients verify the following conditions:

ck−j+1 = 1 − cj, am+2−i,k+1−j = ai,j, bm+1−i,k+1−j = bi,j

(18)
for j = 1, . . . , k, i = 1, 2, . . . , m. The integration schemes (15)
and (16) are of order r if

K̃(t, τ) − K(t, τ) = O(τr+1) as τ → 0. (19)

As is well known, time-symmetric integration schemes are of
even order.

C. New schemes of order 4 and 6

We present next several time-symmetric schemes (15) and
(16) of orders 4 and 6. In all of them, n = 3 and the coefficients
cj, j = 1, 2, 3, correspond to nodes of the Gauss-Legendre (GL)
quadrature rule of order 6, that is,

c1 =
1
2
−

√
15

10
, c2 =

1
2

, c3 =
1
2

+

√
15

10
. (20)

The remaining coefficients {aij, bij} must be determined to
guarantee that (19) holds for r = 6. As a matter of fact, condi-
tion (19) translates into a set of polynomial equations on the
coefficients (the so-called order conditions), whose solutions
provide actual integration schemes. These equations have been
obtained in Ref. 20 and are collected, for completeness, in a
more simplified but equivalent form in Subsection 1 of the
Appendix.

The process of obtaining appropriate values for the coef-
ficients aij, bij is made simpler by noticing that the schemes
(15) and (16) reduce in fact to (12) when applied to a constant
matrix H(t) = H̃ as long as

ai =

n∑
j=1

ai,j, bi =

n∑
j=1

bi,j. (21)

It is then clear that a necessary condition for schemes (15) and
(16), to be of order r for arbitrary smooth matrices H(t), is
that (12) with coefficients (21) be an approximation of order
r to the solution operator of system (10). In the particular
case of 6th-order time-symmetric methods, such conditions
are the first six order conditions listed in Subsection 1 of the
Appendix, which only depend on the coefficients ai, bi. Hence,
a convenient starting point in the construction process of 6th-
order integrators of the form (15) and (16) for Equation (14) is
to design previously a symplectic splitting method of the form
(12) for the corresponding autonomous problem (10). In other
words, to determine appropriate values for the coefficients (11)
satisfying the first six order conditions given in Subsection 1
of the Appendix.

Once this is done, one has to solve the remaining 18
order conditions and (21) for the coefficients ai ,j, bi ,j. We have
explored compositions (12) ranging from 8 to 24 stages and dif-
ferent orders, and tried to obtain time-symmetric schemes (15)
and (16) based on them. In many cases, the remaining order
conditions cannot be solved for real valued coefficients ai ,j and
bi ,j satisfying (21). In particular, all the 6th-order schemes (12)
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with m = 10 stages we have analyzed lead to complex coeffi-
cients ai ,j and bi ,j. The most efficient schemes we have found
are time-symmetric compositions of order 6 involving m = 11
stages. We have chosen as a representative the following:

• An 11-stage scheme, denoted in the sequel as SM[6]
11 .

• A second 11-stage scheme whose coefficients provide
in the autonomous case an 8th-order approximation. It
will be denoted as SM[8]

11 .

We have constructed other compositions with more stages,
but they turn out to be clearly less efficient than SM[6]

11 and

SM[8]
11 on all the numerical tests (not reported here) we have car-

ried out with them. For completeness, we have also considered
8-stage schemes (15) and (16) of order 4 that is of order 6 for
constant H(t) = H̃, which we denote as SM[4]

8 . The coefficients
of the three proposed integrators are collected in Subsection 2
of the Appendix. The same coefficients with more significant
digits as well as their implementation in several examples can
be found in Ref. 30.

Although only schemes with coefficients cj, j = 1, 2, 3 cor-
responding to the nodes (20) of the 6th-order Gauss-Legendre
quadrature rule, are considered here, other choices are of
course possible. In Subsection 3 of the Appendix, we provide
the necessary transformations to adapt the present schemes to
any other quadrature rule of order r ≥ 6.

It is worth remarking that the m-stage splitting schemes
presented here are particularly advantageous with respect to
other time integrators (such as those considered in Section III)
when the computational cost of evaluating the product H(t1)u
is essentially the same as the cost of the product (H(t1)

+ H(t2))u. This is certainly the case when the Hamiltonian
is of the form

H(t) =
s∑

i=1

fi(t)Hi

with H i constant and s � N , as occurs in many applications.
Notice that the algorithm requires 2m products with real vec-
tors, and this is equivalent to m products with complex vectors
(and so roughly the same cost as approximating the action of
the exponential by a polynomial of degree m). In addition, only
one new real vector, 3, needs to be kept in memory.

III. NUMERICAL ILLUSTRATIONS

We now illustrate the performance of the proposed meth-
ods on a pair of academic examples, namely, a high dimen-
sional generalization of the Rosen–Zener model and the
well-known Walker–Preston of a diatomic molecule. Although
admittedly simple, they nevertheless represent adequately
many typical applications and thus may serve as an indicative
test bench of the methods proposed in this paper.

In our experiments, we compare with other well known
schemes adapted to the linear problem (14). In particular,
and guided by the conclusions of the analysis carried out in
Ref. 2, we consider some highly efficient symplectic parti-
tioned Runge-Kutta (splitting) methods. For our first example,
we also include the efficiency diagrams obtained with a pair of
explicit Runge–Kutta schemes as a standard reference. Specif-
ically, the following integrators are taken for the numerical
experiments:

FIG. 1. Two-norm error in the evolu-
tion operator at the final time for the high
dimensional Rosen–Zener model (23) in
double logarithmic scale.
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FIG. 2. Two-norm error in the vec-
tor solution of the discretized one-
dimensional SE (24) versus the number
of FFT calls in double logarithmic scale.

• RK[4]
4 : The standard 4-stage 4th-order explicit

Runge–Kutta method.
• RK[6]

7 : The 7-stage 6th-order explicit RK method that
uses the Lobatto quadrature rule at internal stages to
advance the time.
• S[4]

6 and S[6]
10 : The 6-stage 4th-order and the 10-stage

6th-order splitting methods, respectively, designed in
Ref. 31 for general separable systems and adapted to
the present problem by considering the time as two new
dependent variables as proposed in Ref. 13. In this way,
the linear problem (14) is transformed into a nonlin-
ear autonomous system. One step of these schemes is
evaluated as follows:

do i = 1, m
qi = qi−1 + τ aiH(tk + eiτ)
pi = pi−1 − τ biH(tk + diτ)qi

enddo

(22)

with di =
∑i

j=1 aj, ei =
∑i−1

j=0 bj and b0 = 0. These meth-
ods are independent of the Hamiltonian structure and
have been tested in Ref. 2, showing a high performance.

• The new schemes SM[4]
8 (order 4), SM[6]

11 , and SM[8]
11

(order 6).

In all cases, the computational cost of the algorithms is
estimated as the number of products required to produce the
final result.

A. A high dimensional Rosen–Zener model

For our first illustration, we consider a generalization of
the well known Rosen–Zenner model for a quantum system

of two levels32 closely related to the model studied in Ref. 33.
Specifically, the system is directly formulated as (4) with

H(t) = ω(t) σ3 ⊗ Ik + V (t) σ1 ⊗ D[k]. (23)

Here Ik is the k × k identity matrix, D[k ] is a tridiago-
nal symmetric matrix with entries D[k]

i,i = 0, D[k]
i+1,i =D[k]

i,i+1 = 1,

i = 1, . . . , k − 1, D[k]
k,k = 0, ω(t) is a time-dependent function,

and σi are the Pauli matrices.
We take N = 2k = 20, ω(t)=40 + ε cos(δt), V (t)=V0/

cosh(t/T0), and 40 = 5, V0 = 1/2 and integrate along the inter-
val t ∈ [t0, tf ] with t0 =�2 and tf = t0 + 8π. We study the
performance of the methods in the following cases:

(i) ε = 0, T0 = 10.
(ii) ε = 1

10 , δ = 1/10, T0 = 5.
(iii) ε = 1

2 , δ = 1, T0 = 5.
(iv) ε = 2, δ = 5, T0 = 1.

The results obtained are shown in Figure 1. We observe that
the new methods show the best performance and their superi-
ority increases when the explicitly time-dependent functions
are smooth. In that case, the main error originates from terms
associated with the splitting method for the autonomous case,
and the new methods are optimized for this case.

B. The Walker–Preston model

This constitutes a standard model for a diatomic molecule
in a strong laser field.34 The system is described by the one-
dimensional Schrödinger equation (in units such that ~= 1)

i
∂

∂t
ψ(x, t) =

(
−

1
2µ

∂2

∂x2
+ V (x) + f (t)x

)
ψ(x, t) (24)
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with ψ(x, 0)=ψ0(x). Here V (x)=D
(
1 − e−αx)2 is the Morse

potential and f (t)x =A cos(ω(t))x accounts for the laser
field.

As explained in the Introduction, the usual procedure in its
numerical treatment consists of defining the wave functionψ in
a certain domain x ∈ [x0, xN ] that is subdivided into N parts of
length ∆x = (xN − x0)/N with xi = x0 + i∆x, and then the vector
u(t) ∈CN with components ui = (∆x)1/2ψ(xi−1, t), i = 1, . . . , N
is formed. Notice that the 2-norm ‖u(t)‖ remains constant for
all t and, in order to use the Fast Fourier Transform (FFT)
algorithm, periodic boundary conditionsψ(x0, t)=ψ(xN , t) are
assumed.

Here we take the interval x ∈ [−0.8, 4.32], subdivided into
N = 64 and N = 128 parts of length ∆x = 0.08 and ∆x = 0.04,
respectively, and the parameters are chosen as µ = 1745 a.u.,
D = 0.2251 a.u., and α = 1.1741 a.u. (corresponding to the HF
molecule). For each choice of N, we take for time-dependent
interaction A=A0 = 0.011 025 a.u. and laser frequency
ω =ω0 = 0.017 87. The numerical experiments are then
repeated with A = A0/2 and ω = ω0/2, corresponding to a
reduction in the intensity and frequency of the laser. As initial
conditions we take the ground state of the Morse potential,

φ(x) = σ exp
(
− (γ − 1/2)α x

)
exp

(
− γe−αx) ,

with γ = 2D/40, 40 = α
√

2D/µ, and σ is a normalizing con-
stant, and integrate over the time interval t ∈ [0, 10 T0] with
T0 = 2π/ω (the choice ω =ω0/2 requires a twice longer time
integration).

To check accuracy, we measure the two-norm error in the
solution at the final time, u(10 T0). As usual, the exact solution
is accurately approximated using a sufficiently small time step.

Figure 2 shows the efficiency plots for the methods. The
largest time step (i.e., the smaller number of FFTs) corre-
sponds to the stability limit of the method (an overflow or an
exceedingly large error appears when the time step is slightly
increased). We observe that the relative performance of the
new methods increases both when taking a finer mesh or when
the time-dependent interaction is weaker and smoother. We
observe that in such limit, the 6th-order method that corre-
sponds to an 8th-order one in the autonomous case shows the
best performance when high accuracies are desired. The 4th-
order method shows less accuracy but allows for longer time
steps and more frequent outputs.

IV. CONCLUDING REMARKS

We have presented several symplectic splitting methods
for the numerical integration in time of the Schrödinger equa-
tion previously discretized in space when the Hamiltonian
is an explicitly time-dependent real operator. Our approach
differs from others existing in the literature in that we do

not need to impose beforehand a slow time-dependence in
the potential so that it can be taken as approximately con-
stant in each time subinterval along the integration. It is based
on the fact that the semidiscretized equation can be formu-
lated as a classical linear Hamiltonian system for which the
solution operator can be approximated as a product of matri-
ces involving linear combinations of the (semidiscretized)
time-dependent Hamiltonian on quadrature nodes at each time
step. Here we have considered methods of orders four and
six based on the Gauss–Legendre quadrature rule of order
six, but the extension to other quadrature rules (as shown
in Subsection 3 of the Appendix) is rather straightforward.
Although originally intended for the numerical integration
of the Schrödinger equation with a time-dependent potential,
the new methods are still valid for arbitrary linear ODE sys-
tems of the form u̇=−iH(t)u for an arbitrary real matrix H(t)
provided its time dependence on t is reasonably smooth. More-
over, the proposed method could also be used to solve sys-
tems like x′ = M(t)y, y′ = N(t)x arising, e.g., in elastic waves
analysis.35
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APPENDIX: ON THE CONSTRUCTION OF METHODS
1. Order conditions

To derive the order conditions for the schemes (15) and
(16) with n = 3 and the coefficients cj given by (20), it is
advantageous to first write (15) in terms of a new set of vari-
ables in order to avoid redundancies and limit the presence of
contributions at orders higher than six. Specifically, instead of
considering the matrices Hi ≡H(t + ciτ), i = 1, 2, 3, so that
τHi =O(τ), we introduce the variables

γ1 ≡ τH2 = O(τ),

γ2 ≡

√
15
3

τ(H3 − H1) = O(τ2),

γ3 ≡
10
3
τ(H1 − 2H2 + H3) = O(τ3).

(A1)

As a matter of fact, the γi are the (i � 1)th derivatives, evaluated
at the midpoint t + τ/2 and divided by (i � 1)!, of a matrix that
interpolates H(t) at the nodes. Then, schemes (15) and (16)
can be expressed as

K̃(tk , τ) =
m+1∏
i=1

(
I 0

−τ(bi,1H1 + bi,2H2 + bi,3H3) I

) (
I τ(ai,1H1 + ai,2H2 + ai,3H3)
0 I

)

=

m+1∏
i=1

(
I 0

−(biγ1 + b′iγ2 + b′′i γ3) I

) (
I (aiγ1 + a′iγ2 + a′′i γ3)
0 I

)
, (A2)
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with bm+1, j = bm+1 = b′m+1 = b′m+1 = 0, j = 1, 2, 3. In the autonomous case, we have that γ1 = τH̃, γ2 = γ3 = 0 and the composition
(12) is recovered. If the composition satisfies the symmetry conditions (18), the scheme will be of order 6 when applied to a
system of the form (14) whenever the following conditions are satisfied (see Ref. 20 for the derivation of equivalent conditions
for symmetric schemes (12) of order 6):

m+1∑
i=1

ai = 1,
m∑

i=1

bi = 1,∑
m+1≥i3>i2>i1≥1

ai3 bi2 ai1 =
1
6

,
∑

m≥i3>i2>i1≥1

bi3 ai2 bi1 =
1
6

,∑
m+1≥i5>i4>i3>i2>i1≥1

ai5 bi4 ai3 bi2 ai1 =
1

120
,∑

m≥i5>i4>i3>i2>i1≥1

bi5 ai4 bi3 ai2 bi1 =
1

120
,

m+1∑
i=1

a′′i =
1

12
,

m∑
i=1

b′′i =
1

12
,∑

m+1≥i2>i1≥1

a′i2 bi1 =
1

12
,

∑
m≥i2>i1≥1

b′i2 ai1 =
1

12
,

∑
m+1≥i2>i1≥1

a′′i2 b′i1 = −
1

240
,

∑
m≥i2>i1≥1

b′′i2 a′i1 = −
1

240
,∑

m+1≥i3>i2>i1≥1

ai3 b′′i2 ai1 =
1

120
,

∑
m≥i3>i2>i1≥1

bi3 a′′i2 bi1 =
1

120
,∑

m+1≥i3>i2>i1≥1

ai3 bi2 a′′i1 =
1

60
,

∑
m≥i3>i2>i1≥1

bi3 ai2 b′′i1 =
1

60
,∑

m+1≥i3>i2>i1≥1

ai3 b′i2 a′i1 =
1

240
,

∑
m≥i3>i2>i1≥1

bi3 a′i2 b′i1 =
1

240
,∑

m+1≥i3>i2>i1≥1

a′i3 bi2 a′i1 = −
1

120
,

∑
m≥i3>i2>i1≥1

b′i3 ai2 b′i1 = −
1

120
,∑

m+1≥i3>i2>i1≥1

ai4 bi3 ai2 b′i1 = −
1

80
,

∑
m≥i4>i3>i2>i1≥1

bi4 ai3 bi2 a′i1 = −
1

80
,∑

m+1≥i3>i2>i1≥1

ai4 bi3 a′i2 bi1 = −
1

240
,

∑
m≥i4>i3>i2>i1≥1

bi4 ai3 b′i2 ai1 =
1

240
.

.

Here, from (A1) and (A2), one has

*.
,

ai,1 bi,1

ai,2 bi,2

ai,3 bi,3

+/
-
=

*....
,

0 −
√

5
3

10
3

1 0 − 20
3

0
√

5
3

10
3

+////
-

*.
,

ai bi

a′i b′i
a′′i b′′i

+/
-

. (A3)

2. Coefficients of the methods

Next we collect the coefficients of the symplectic splitting methods proposed in this work for the numerical integration of
Equation (14). For the sake of clarity, we write them in matrix form. The same coefficients, with more digits, are collected in
Ref. 30. All these coefficients have to be supplemented by the nodes cj given in (20).

a. Method SM [4]
8

a =

*................
,

0.056 543 643 80 0.013 657 706 809 −0.034 367 547 779
0.151 876 511 53 −0.066 217 362 266 0.075 469 735 351
0.074 446 942 50 0.208 318 930 216 −0.042 763 740 386
−0.011 712 456 09 −0.002 171 489 464 0.008 284 688 848

0 0.137 268 873 853 0
a4,3 a4,2 a4,1

a3,3 a3,2 a3,1

a2,3 a2,2 a2,1

a1,3 a1,2 a1,1

+////////////////
-

,
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b =

*.............
,

0.109 165 185 01 0.013 444 365 00 −0.019 256 622 788
0.188 194 699 07 −0.039 707 697 39 0.058 395 655 885
0.141 154 416 25 0.570 642 655 82 −0.043 047 573 981
−0.100 060 196 70 −0.322 157 101 21 −0.056 767 784 980

b4,3 b4,2 b4,1

b3,3 b3,2 b3,1

b2,3 b2,2 b2,1

b1,3 b1,2 b1,1

+/////////////
-

.

b. Method SM [6]
11

a =

*.......................
,

0.064 229 455 56 −0.025 341 566 51 0.007 599 565 74
−0.044 424 869 66 −0.024 510 802 57 0.008 244 001 06
0.205 475 526 18 0.021 439 623 03 −0.008 448 622 75
0.066 283 190 90 0.122 950 863 12 −0.021 180 474 54
−0.003 551 371 84 0.314 392 364 17 −a4,1

0.003 488 712 73 −0.186 708 253 74 −a5,1

a6,3 a6,2 a6,1

a5,3 a5,2 a5,1

a4,3 a4,2 a4,1

a3,3 a3,2 a3,1

a2,3 a2,2 a2,1

a1,3 a1,2 a1,1

+///////////////////////
-

,

b =

*.....................
,

0.198 931 884 48 −0.016 617 016 61 0.002 015 615 63
−0.030 836 241 53 −0.011 909 451 58 0.001 688 789 82

0.079 650 985 44 0.044 994 246 37 0.009 110 447 84
0.082 864 339 33 0.186 548 251 04 −0.065 648 043 24
0.012 909 944 48 −0.011 760 166 91 −b5,1

0 0.061 932 719 82 0
b5,3 b5,2 b5,1

b4,3 b4,2 b4,1

b3,3 b3,2 b3,1

b2,3 b2,2 b2,1

b1,3 b1,2 b1,1

+/////////////////////
-

.

c. Method SM [8]
11

a =

*.......................
,

0.078 539 048 50 −0.055 358 596 01 0.016 550 797 39
−0.100 359 598 31 −0.159 313 968 90 0.045 184 103 41

0.217 485 576 77 0.209 628 140 57 −0.058 916 052 51
0.083 044 197 90 0.104 202 478 18 −0.019 749 426 81
0.007 699 808 87 0.290 721 833 65 0.097 739 158 98
0.038 370 734 11 −0.167 657 665 27 −0.127 810 570 54

a6,3 a6,2 a6,1

a5,3 a5,2 a5,1

a4,3 a4,2 a4,1

a3,3 a3,2 a3,1

a2,3 a2,2 a2,1

a1,3 a1,2 a1,1

+///////////////////////
-

,
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b =

*.....................
,

0.154 171 842 09 −0.018 426 075 45 0.007 131 251 77
−0.006 347 779 03 −0.003 890 654 05 0.001 097 338 89

0.113 616 267 16 0.024 959 240 32 −0.013 594 387 63
0.034 287 009 27 0.201 283 836 52 −0.008 359 528 72
−0.000 119 805 05 −0.008 521 705 59 b5,1

−0.003 984 625 91 0.053 635 160 96 b6,1

b5,3 b5,2 b5,1

b4,3 b4,2 b4,1

b3,3 b3,2 b3,1

b2,3 b2,2 b2,1

b1,3 b1,2 b1,1

+/////////////////////
-

.

3. Schemes with nodes of an arbitrary quadrature rule

Methods (15) and (16) can be used with any other quadra-
ture rule of order r ≥ 6, say {4̂i, ĉi}

k
i=1. All that is required is

to replace in (17) the nodes ci, i = 1, 2, 3 by ĉi, i = 1, . . . , k,
and the coefficients {ai ,j, bi ,j} by the new {âi,j, b̂i,j}, so that the
scheme reads

K̂(tk , τ) =
m+1∏
i=1

(
I 0

−τ
∑k

i=1 b̂i,1Ĥi I

) (
I τ

∑k
i=1 âi,1Ĥi

0 I

)

with Ĥi =H(t + ĉiτ), i= 1, . . . , k. The new coefficients
{âi,j, b̂i,j} are chosen such that

K̂(tk , τ) = K̃(tk , τ) + O(τ7)

but this is satisfied if

â = a Q−1Q̂, b̂ = b Q−1Q̂. (A4)

Here, a ∈R(m+1)×3, b ∈Rm×3, â ∈R(m+1)×k , b̂ ∈Rm×k denote the
matrices with coefficients ai,j, bi,j, âi,j, b̂i,j, respectively, and the
elements of the matrices Q ∈R3×3, Q̂ ∈R3×k are given by

Qi,j = 4j

(
cj −

1
2

) i−1

, Q̂i,l = 4̂l

(
ĉk −

1
2

) i−1

,

i, j = 1, 2, 3, l = 1, . . . , k, with

(c1, c2, c3) = *
,

1
2
−

√
15

10
,

1
2

,
1
2

+

√
15

10
+
-

,

(41,42,43) =
1
18

(5, 8, 5).

As an illustration, suppose H(t) is known only at equidistant
times. Then we can use the 6h-order Newton–Cotes quadrature
rule with ĉi = (i − 1)/4, i = 1, . . . , 5,

(4̂1, 4̂2, 4̂3, 4̂4, 4̂5) =
1

90
(7, 32, 12, 32, 7),

so that

Q−1Q̂ =
*..
,

7
150 (5 +

√
15) 4

75 (5 + 2
√

15) 0 4
75 (5 − 2

√
15) 7

150 (5 −
√

15)
− 7

60
7
15

3
10

7
15 − 7

60
7

150 (5 −
√

15) 4
75 (5 − 2

√
15) 0 4

75 (5 + 2
√

15) 7
150 (5 +

√
15)

+//
-

.

Then the corresponding coefficients for schemes SM[4]
8 , SM[6]

11 ,

and SM[8]
11 can be obtained (from those collected in Subsec-

tion 2 of the Appendix) by (A4).
We have carried out the experiments of Section III with

the present symplectic splitting methods but using differ-
ent quadrature rules. Our experiments (not reported here)
show that the plots are essentially identical when consider-
ing the equidistant 6th-order Newton-Cotes or the 8th-order
GL quadrature rule. If, on the other hand, the 4th-order GL
quadrature rule is used instead, the new 4th-order method
remains basically the same, but the 6th-order methods lose
some accuracy, as expected.
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