
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust. Nonlinear Control 2015; 00:1–18
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rnc

Observer-based controllers with data dropout rate adaptation
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SUMMARY

In this work, we address the observer-based control problem for networked control systems with an
unknown time-varying packet arrival rate (PAR) and under RMS-norm bounded disturbances. We assume
packetized transmissions of both measurement and control input through a communication network with
successful delivery acknowledgement. Using the measurement reception state and the control transmission
acknowledgement, we derive a filter to estimate the PAR. We consider that the PAR changes sporadically
from a constant value to another one, i.e., it has two different behaviours: transient and steady state. While
the observer only updates the state estimation using the current received measurements, the controller
computes the control action employing the current state estimation and the previous applied control input.
We propose to schedule both the observer and controller with rational functions of the PAR estimation. We
show that the separation principle applies and then, seeking higher performance accuracy, we develop an
optimization H∞ observer and controller design procedure that considers the two possible behaviours of
the PAR. This optimization procedure attempts to maximize the estimation and control performances for
each of the possible constant values of the PAR while offering robustness against PAR estimation errors and
variations of the PAR. Exploiting sum-of-squares (SOS) decomposition techniques, the design procedure
involves an optimization problem over polynomials. A numerical example illustrates the effectiveness of the
proposed approach. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Networked control systems (NCSs) are characterized by the exchange of control and feedback
information among the elements of the control architecture through a communication network. The
use of a network increases flexibility and ease of manoeuvre at the cost of offering an unreliable
communication link subject to, e.g., dropouts and time delays [1]. Thus, when controlling over a
network one must guarantee in addition, robustness against these network-induced problems.

One common way to model the stochastic behaviour of the data loss process is by a finite Markov
chain [2]. The transition probabilities have been widely considered to be known a priori. However, in
real networked applications this is an unusual situation since it can be difficult to get the exact value.
As a result of this, much attention has been focused recently on dealing with uncertain transition
probabilities when designing networked controllers on a robust control framework [3–5]. Among
these works, one might give special attention to [3] where the authors unified the three different
types of considered uncertainties in the probabilities: partly unknown, bounded and polytopic.
Nevertheless, they all assumed time-invariant probabilities, and this limits the application scope
since the packet arrival rate (PAR) can also change due to many uncontrollable and unforeseen
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I, 12071 Castelló, Spain. E-mail: ipenarro@uji.es

Copyright c© 2015 John Wiley & Sons, Ltd.
Prepared using rncauth.cls [Version: 2010/03/27 v2.00]

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/84137771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

reasons. For instance, the connection of new elements to the network may congestion it, decreasing
the PAR. Also in wireless networks, the PAR is directly affected by the channel fading gains, which
are stochastic phenomena [6]. Therefore, it seems to be a gap between the previous works that only
address probability uncertainty issues and those which only focus on its time-varying nature [7, 8].
In this work, we aim to tackle both problems at the same time by considering, as a first approach,
that packetized transmissions are subject to dropouts following a Bernoulli distribution (this model
has often been employed, see [9, 10]) with successful delivery acknowledgement.

Works such as [2, 11] proposed the use of jump strategies for the networked state estimation
and control problem whose modes are related to the transmission outcome history in order to
imitate the behaviour of optimal on-line solutions [12], which in general are not suitable under
RMS-norm bounded disturbances. In this aim, one might think of deriving a PAR estimator
and scheduling the observer and controller gains with an inexact parameter, the estimated PAR.
Scheduling procedures with inexact parameters are an increasingly appealing solution to control
linear parameter varying (LPV) systems that improve performance [13–16]. LPV systems have
been used to model NCS, but while the previous works scheduled the controller architecture with
an uncertain measurement of the governing parameters, here we seek instead to tune the control
strategy with the stochastic behaviour of a network parameter, the PAR. Probability-dependent
approaches were already analysed in [17–19] but assuming that the probability was perfectly known.
Therefore, designing observer-based controllers scheduled with an inexact PAR is still a challenging
problem.

In the current paper, using the measurement and control input transmission outcomes at each time
instant, we derive a first order filter to estimate in real time the uncertain time-varying PAR, which
can vary arbitrarily fast (different from [20], where, in addition, only the state estimation problem
was considered). Also, we characterize the PAR estimation error by obtaining the maximum and
minimum values during any kind of network behaviour (transient or steady state), and by using a
probabilistic domain when the PAR is on steady state. Then, we propose the use of a Luenberger-
type state observer and a controller that uses both the current state estimation and previous applied
control input (c.f. [15]) whose gains are scheduled with the real time PAR estimation. Under this
observer-based control approach, the separation principle holds. Assuming an arbitrary rate of
change of the PAR leads to a highly robust solution with nearly PAR independent gains, see [18–20].
To reduce conservativeness, we introduce a novel H∞ design methodology based on parameter
dependent matrix inequalities (PDMIs) that focuses on performance when the PAR is constant while
guarantees robustness against PAR variations and PAR estimation errors. We propose the use of SOS
decomposition techniques [21] to address the parametrized optimization design problem.

Notation : Let R and N denote the real and natural numbers set. Let A and B be some matrices.
A � 0 means that matrix A is negative semidefinite. Similar applies to ≺, � and �. The direct sum
is represented as

⊕
, where A

⊕
B is a block diagonal matrix with A and B on its diagonal. E{·}

and Pr{·} denotes expectation and probability. We denote the RMS norm of process xk ∈ Rn as

‖x‖RMS = limK→∞

√
1
K

∑K−1
k=0 xTk xk.

2. PROBLEM SETUP

We consider the remote control problem of linear time-invariant discrete-time system over networks
with packet successful delivery acknowledgement subject to dropouts, see Fig. 1. We describe the
system in its state-space form as:

xk = Axk−1 +Buuk−1 +Bwwk−1, (1a)
yk = Cxk + vk, (1b)

where xk ∈ Rn is the state at instant k ∈ N, uk ∈ Rnu is the control input, wk ∈ Rnw is the
unmeasurable state disturbance, yk ∈ Rny is the measured output and vk ∈ Rny is the measurement
noise. We also consider that both state disturbances and measurement noises are bounded such as
‖w‖RMS ≤ w̄rms and ‖v‖RMS ≤ v̄rms (not necessarily Gaussian).
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Figure 1. Networked control architecture under an unknown and time-varying PAR.

2.1. Networked transmission description

At each instant k, each sensor samples its associated output. Then, the measurements are
aggregated in a single time-stamped packet yk that is sent to the observer-based controller through
a communication network subject to packet dropouts. We model the packetized measurement
reception at instant k with the binary variable

αk =

{
1 if yk is received at instant k,
0 if yk is lost.

(2)

With the received information, the observer-based controller computes at instant k the control
commands and transmits them within a single packet uk to the actuators, which implement a
generalized hold-input strategy (see [22]). We describe the control input reception at instant k with

δk =

{
1 if uk is received at instant k,
0 if uk is lost.

(3)

We assume that {αk} and {δk} are independent non-stationary stochastic processes with the same
distribution, i.e.,

βk = Pr{αk = 1} = Pr{δk = 1}, βmin ≤ βk ≤ 1. (4)

We consider that the behaviour of the packet arrival rate (PAR) βk is described by two possible
modes: a transient mode where the PAR is time variant, i.e., βk 6= βk−1, and a steady state mode
where the PAR is constant, i.e., βk = βk−1. In contrast with most of the existing works in the
networked control system literature, we consider that βk is not directly accessible. While the
real PAR is unknown, at time k the observer-based controller has access to the outcomes of the
measurement transmissions at the current instant αk, simply by checking the acquisition of new
measurement packets, as well as to the status of successfully delivered control inputs at the previous
instant δk−1, which is provided by an acknowledgement protocol implemented by the network.
Making use of this information, we propose the use of a first order filter (exponential smoothing
technique), which is simple to implement, to estimate the PAR (focusing on the network steady
state behaviour) such as

β̂k = a β̂k−1 + (1− a)(αk + δk−1)/2, (5)

where 0 < a . 1† is a tuning parameter representing a trade-off between a fast adaptation to
probability changes and a low error variance estimation under constant probabilities.

†The expression 0 < a . 1 means that a is between 0 and 1 but closer to 1.
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Let us define the PAR estimation error by β̃k = βk − β̂k. In the general case (time-varying or
constant PAR), the estimation algorithm could produce a maximum instantaneous error bounded by

β̃k ∈ [βk − 1, βk]. (6)

Assuming a steady state behaviour of the network with a time-invariant PAR, i.e., βk = βk−1 = β̄
for all k, the PAR estimation error has the properties indicated in the following lemma.

Lemma 2.1
If βk = βk−1 = β̄ , the estimation error β̃k has the following properties in steady state

E{β̃k} = 0, E{β̃2
k} =

1− a
2 (1 + a)

β̄(1− β̄). (7)

Proof
If the PAR is constant, we have βk−1 = β̄ and thus, {αk} ∈ {0, 1} and {δk} ∈ {0, 1} follow
a Bernoulli distribution where E{αk} = E{δk} = E{α2

k} = E{δ2
k} = β̄, E{αkδk} = β̄2. Let

us define the random variable ηk = β̄ − αk/2− δk−1/2. Then {ηk} ∈ [β̄ − 1, β̄] is a bounded
sequence of random variables such as

E{ηk} = 0, E{η2
k} = E{(β̄ − αk/2− δk−1/2)2} =

1

2
β̄(1− β̄). (8)

From (5), the dynamics of the estimation error with constant PAR reduces to

β̃k = a β̃k−1 + (1− a)ηk. (9)

Since a ∈ (0, 1), the previous recursion converges to a stationary stochastic distribution. Under the
steady state, taking expectations in both sides of recursion (9) we obtain that E{β̃k} is zero, where
we have considered (8) and that E{β̃k} = E{β̃k−1}. Now, performing the expectation of the square
of both sides of recursion (9), and taking into account that E{β̃2

k} = E{β̃2
k−1}, E{β̃k−1 ηk} = 0

and (8), we obtain the E{β̃2
k} as in (7).

Remark 2.1
While in [20] the PAR was supposed to change slowly and to be estimated with a low error, in
this work we do not make any assumption neither on the PAR rate of change nor on the estimation
error. The idea here is to make the procedure more general and to obtain a less conservative result
during the intervals of time when the PAR remains constant. If the PAR has step-like changes due to
events such as the connection of new devices, the transient number of samples needed to reach
an average estimation of the PAR with an error less than 2% will be in the order of log(0.02)

log(a) .
Therefore, a represents the trade-off between PAR estimation accuracy during steady state and
transient adaptation, i.e., higher values (near 1) are suitable for sporadic PAR changes, while lower
values allow to follow faster frequent PAR variations.

3. OBSERVER-BASED CONTROL STRATEGY

In this work we focus on observer-based controllers where both observer and controller are
collocated. Considering the given measurement transmission description in Section 2.1, the state
estimation algorithm is

x̂k− = A x̂k−1 +Bu uk−1, (10a)
x̂k = x̂k− + Lk αk (yk − C x̂k−). (10b)

At instant k, we compute an open loop state estimation x̂k− using (10a). Then, when possible, we
correct the estimation with the received measurements (when αk is 1) through the gain matrix Lk,
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see (10b). Defining the state estimation error as x̃k = xk − x̂k, its dynamic is given by

x̃k = (I − αk Lk C)(A x̃k−1 +Bw wk−1)− αk Lk vk. (11)

Within the presented control input transmission framework, at instant k, the controller computes
and sends a new control input by means of the current state estimation and the previous used control
command, which are compensated through gains Kk and Fk, respectively. If the transmitted control
input is lost (i.e., δk = 0), then a weighted previous value is applied to the process (generalized
hold-input strategy [22]). Thus, the control action being applied at the system is

uk =

{
Kkx̂k + Fkuk−1 if δk = 1,

µ uk−1 if δk = 0.
(12)

where µ ∈ [0, 1].

3.1. Closed loop analysis

Considering the system defined by (1), the estimation algorithm given by (10), the resulting state
estimation error in (11) and the applied control command in (12), the closed loop dynamic equations
are



xk+1

uk
x̃k+1


 = ACLk+1



xk
uk−1

x̃k


+BCLk+1

[
wk
vk+1

]
, (13a)

yk =
[
C 0 0

]


xk
uk−1

x̃k


+ vk, (13b)

where

ACLk+1 =



A+ δkBuKk δkBuFk + (1− δk)µBu −δkBuKk

δkKk δkFk + (1− δk)µ −δkKk

0 0 (I − αk+1Lk+1C)A


 , (14a)

BCLk+1 =




Bw 0
0 0

(I − αk+1Lk+1C)Bw −αk+1Lk+1


 . (14b)

The authors of [23, 24] proved that the separation principle holds for networked control systems
with a triangular structure such as the one that has the dynamic matrix ACLk+1. This implies that the
observer and controller can be designed independently to achieve a mean square stable behaviour,
and thus guaranteeing the mean square stability of the closed loop system. Note that, the estimation
error can be considered as a new bounded disturbance affecting the controller, whose upper bound
comes from the observer design.

3.2. Gain-scheduling approach

In this work we aim to obtain state observer gain matrix Lk, controller gain matrices Kk and Fk,
and PAR estimator tuning parameter a such that we guarantee mean square stability and some
attenuation levels from state disturbance and noise measurement for any possible values of βk.

When dealing with the state estimation problem, jump linear estimators that relate their modes
to the measurement reception outcome history improve estimation performances with respect to
employing invariant gain estimators [2, 25]. Instead of focusing on the reception outcomes, some
works as [19, 20] proposed probability-dependent gain scheduled observers to enhance estimation
performances. Recently, this approach was extended in [18] to the state feedback control problem. In
this aim, we propose a gain-scheduled observer-based control approach depending on the estimation
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of the PAR, i.e.,
Lk = L(β̂k), Kk = K(β̂k), Fk = F (β̂k). (15)

Considering a PAR that varies arbitrarily fast over time, i.e. without any bound in the rate
of change, would lead to conservative observers [19, 20] or controllers [18] with gains that are
almost independent of the PAR (i.e., robust to the variation of the PAR). In the aim of reducing
conservativeness, we propose an alternative H∞ design method that takes into account the two
different behaviours of the PAR: transient (βk 6= βk−1) and steady state (βk = βk−1 = β̄). Then,
we will design both observer and controller in such a way that: i) for a general PAR scenario
(including transient and steady state), we guarantee mean square stability for all the possible values
of {βk, β̃k} and disturbances, ii) when the PAR is constant, for each β̄ we minimize the impact of
the disturbances on the system performance for all possible values of β̃k.

Remark 3.1
A different observer-based control approach under data dropout was considered in [22, 26] where
the authors proposed a modified version of a Kalman filter plus a LQG controller. Although that
controller might work under the studied networked scenario, it is limited to Gaussian noises.
Here we consider a wider class of disturbances (bounded in RMS norm and non necessarily
independent of the state of the system) which could also represent model uncertainties. Moreover,
using predefined gains alleviates the implementation computational burden [25].

4. STATE ESTIMATOR DESIGN

In this section we study the design of the gain-scheduled observer with law L(β̂k) by means of
sufficient conditions that guarantee the design goals stated in Section 3.2. We shall first analyse the
case when the PAR might arbitrarily vary on its domain, then the case when the PAR is constant and
finally we will propose and optimization-based design procedure for any occurrence of the PAR.
All the conditions are given by means of PDMIs.

The next theorem states under which conditions the state estimation error is bounded subject to a
general PAR scenario (including the steady state case) with any possible PAR estimation error.

Theorem 4.1
Consider the state estimation algorithm (10) applied to system (1) and the PAR estimation
algorithm (5). If there exist positive definite matrices P o(βk) ∈ Rn×n, full matricesGo(β̂k) ∈ Rn×n
and Xo(β̂k) ∈ Rn×ny , and positive scalars γow ∈ R and γov ∈ R, fulfilling‡

Mo =



Mo

11 Mo
12 Mo

13

? Mo
22 Mo

23

? ? Mo
33


 � 0, ∀{βk, βk−1, β̂k} ∈ S1 × S1 × S2 (16)

with

Mo
11 = βk

(
Go(β̂k) +Go(β̂k)T − P o(βk)

)
, Mo

12 = βk

(
Go(β̂k)−Xo(β̂k)C

)
A, (17a)

Mo
13 =

[
βk

(
Go(β̂k)−Xo(β̂k)C

)
Bw −βkXo(β̂k)

]
, (17b)

Mo
22 = P o(βk−1)− (1− βk)ATP o(βk)A− I, (17c)

Mo
23 =

[
−(1− βk)ATP o(βk)Bw 0

]
, Mo

33 =
(
γowI − (1− βk)BTwP

o(βk)Bw
)
⊕ γovI, (17d)

and

S1 = {βk : βmin ≤ βk ≤ 1, ∀k}, S2 = {β̂k : 0 ≤ β̂k ≤ 1, ∀k}, (18a)

‡? stands for the corresponding block matrix assuring symmetry.
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then, defining the observer gain matrices as L(β̂k) = Go(β̂k)
−1
Xo(β̂k): i) in the absence of

disturbances and measurement noises the average state estimation error (11) converges to zero,
ii) under zero initial conditions, the state estimation error is bounded by

E{‖x̃‖2RMS} < γoww
2
rms + γovv

2
rms. (19)

Proof
Sets S1 (domain of βk and βk−1) is derived from the definition in (4), while S2 (domain
of β̂k) is obtained considering (5). If (16) holds, the PDMI resulting after replacing M0

11 =

βkG
o(β̂k)P o(βk)

−1
Go(β̂k) is also positive definite since (P o(βk)−Go(β̂k))P o(βk)

−1
(P o(βk)−

Go(β̂k))T � 0, where P o(βk) � 0 by definition. With this in mind, if we define the Lyapunov
function as Vk = V (x̃k, βk) = x̃Tk P

o(βk) x̃k, applying a congruence transformation on (16)
by matrix Go(β̂k)−1 ⊕ I ⊕ I , taking Schur’s complements and premultiplying the result by
[x̃Tk−1 w

T
k−1 v

T
k ] and postmultiplying by its transpose leads to

E{Vk} − Vk−1 + x̃Tk x̃k − γow wTk−1wk−1 − γov vTk vk < 0. (20)

for all {βk, βk−1, β̂k} ∈ S1 × S1 × S2.
i) In the absence of disturbances (wk−1 = 0) and measurement noises (vk = 0), (20) leads to

E{Vk+1} − Vk < 0 which guarantees that the average state estimation error converges to zero for
all {βk, βk−1, β̂k} ∈ S1 × S1 × S2.

ii) For brevity, let us not mention again the fact that the inequalities hold for all {βk, βk−1, β̂k} ∈
S1 × S1 × S2. Taking the expected value of (20), assuming null initial conditions (V0 = 0),
adding the result from k = 0 to K − 1, dividing it by K and taking the limit when K tends to
infinity we get (19) after considering that E{VK+1} > 0, ‖w‖2RMS ≤ w2

rms, ‖v‖2RMS ≤ v2
rms and

limK→∞ 1
K

∑K−1
k=0 (E{Vk} − Vk) = 0.

The previous theorem addresses the stability and boundedness of the state estimation error for
any possible variation of βk and β̂k (and thus of β̃k = β̄ − β̂k). However, for optimization purposes,
in this paper we intend to focus on the state estimation performances for each of the different
values of the PAR during its steady state. In this aim, we could consider a deterministic approach
where no knowledge about the PAR estimation error distribution in its domain (i.e., β̂k ∈ S2) is
available but, this would lead to conservative results. Note that until now we have just considered
that β̃k ∈ [β̄ − 1, β̄], which is the same that β̂k ∈ S2, with probability 1. However, since β̂k comes
from filter (5), it would be reasonable to believe that β̂k lies with a certain probability in a subset
S3 of S2. A first approach to characterize S3 would be to use the probability density function (PDF)
of the PAR estimation error. However, obtaining in practical applications this PDF (which makes
possible to get the probability Pr{β̂k ∈ S3}) is not an obvious problem. Thanks to the statistical
characteristics of the PAR estimation error in steady state obtained in (7), we can instead employ
Markov’s inequality§, at the expense of introducing some conservativeness, to define a set S3 that
imposes a confidence level of β̂k 6∈ S3 lower than φ. The next corollary follows from the previous
theorem by applying this idea.

Corollary 4.1
Consider a given constant PAR βk = β̄ and assume that the PAR estimation algorithm fulfils (7).
For given value of 0 < a . 1 and 0 . φ < 1, if there exist positive definite matrices Qo ∈ Rn×n,
and positive scalars γo,iw ∈ R, γo,iv ∈ R, γo,ow ∈ R and γo,ov ∈ R fulfilling a modified version of (16)
such as

Mo,i = Mo|βk=βk−1=β̄, P o(βk)=Qo, γo
w=γo,i

w , γo
v=γo,i

v
� 0, ∀β̂k ∈ S2, β̂k ∈ S3, (21)

Mo,o = Mo|βk=βk−1=β̄, P o(βk)=Qo, γo
w=γo,o

w , γo
v=γo,o

v
� 0, ∀β̂k ∈ S2, β̂k 6∈ S3, (22)

§If z is a positive random variable and c > 0, then Pr{z > c} ≤ E{z}
c

.
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with

S3 =

{
β̂k : 0 ≤ (β̄ − β̂k)2 ≤ 1− a

2φ (1 + a)
β̄(1− β̄), ∀k

}
(23)

then, the statements of Theorem 4.1 apply leading to a state estimation error (under zero initial
conditions) bounded by

E{‖x̃‖2RMS} < γo,iw w2
rms + γo,iv v2

rms + φ(γo,ow w2
rms + γo,ov v2

rms). (24)

Proof
Defining the Lyapunov function as Vk = V(x̃k) = x̃Tk Q

ox̃k, and by following similar steps as in the
proof of Theorem 4.1, constraint (21) and (22) lead respectively to

E{‖x̃‖2RMS|β̂k ∈ S2, β̂k ∈ S3} < γo,iw w2
rms + γo,iv v2

rms, (25a)

E{‖x̃‖2RMS|β̂k ∈ S2, β̂k 6∈ S3} < γo,ow w2
rms + γo,ov v2

rms. (25b)

Using the law of total probability we get¶:

E{‖x̃‖2RMS} < Pr{β̂k ∈ S3}(γo,iw w2
rms + γo,iv v2

rms) + Pr{β̂k 6∈ S3}(γo,ow w2
rms + γo,ov v2

rms). (26)

From (7) and employing Markov’s inequality we obtain that

Pr

{
(β̄ − β̂k)2 >

1− a
2φ (1 + a)

β̄(1− β̄)

}
≤ φ.

From the above expression, β̂k (and thus the related PAR estimation error (β̄ − β̂k)2) is in S3 with a
probability higher than 1− φ. Therefore, we have that 0 < Pr{β̂k 6∈ S3} < φ and 1− φ < Pr{β̂k ∈
S3} ≤ 1 which allows to find an upper bound of (26) as shown in (24).

Remark 4.1
Choosing φ near to 0 enlarges S3 and thus, decreases the probability of β̂k being outside of it. In
fact, if for a given β̄ we set φ such that

φ <
1− a

2 (1 + a)
min

{
1− β̄
β̄

,
β̄

1− β̄

}
(27)

then, S3 becomes redundant since it contains values that exceed the admissible ones given by S2,
which means that Pr{β̂k ∈ S3} = 1. On the other hand, choosing φ near to 1 leads to a small set S3

increasing the probability of the PAR estimation being outside of it. In both of these extreme cases,
the resulting state estimation performance is similar to the one we would obtain in a deterministic
approach (without any knowledge of the probability distribution of β̂k).

4.1. Optimization-based observer design

Addressing at the same time the fulfilment of the constraints from Theorem 4.1 and Corollary 4.1
while minimizing (24) will lead to the observer with gain L(β̂k) that minimizes the upper bound
of E{‖x̃‖2RMS} during a given constant PAR β̄ (see Corollary 4.1) and provides a bounded state
estimation error in the general PAR behaviour scenario (see Theorem 4.1). This optimization
problem just deals with the case when there is only one steady state PAR. However, in this work
we aim to design an estimator capable of adapting its performance to whatever PAR value the
network is stabilized in, while assuring robustness against PAR variations and estimation errors.

¶These probabilities are equivalent to Pr{β̂k ∈ S2, β̂k ∈ S3} and Pr{β̂k ∈ S2, β̂k 6∈ S3} since β̂k is always in S2. As
we shall see later, condition β̂k ∈ S2 is added in case the values of β̂k in β̂k ∈ S3 exceed the feasible ones given by
β̂k ∈ S2.
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To reach this goal, we should first modify Corollary 4.1 to explicitly include dependencies of the
design result on β̄ by replacing Qo, γo,iw , γo,iv , γo,ow and γo,ov by Qo(β̄), γo,iw (β̄), γo,iv (β̄), γo,ow (β̄)
and γo,ov (β̄). After making these changes, we denote the new Mo,i and Mo,o (see (21) and (22) ) by
Mo,i(β̄) and Mo,o(β̄). Note that now S3 also depends on β̄. With that, we present next the proposed
parametric optimization-based observer design problem leading to an observer fulfilling statements
of Corollary 4.1 for each possible PAR occurrence.

Observer design problem
For given values of 0 < a . 1 and 0 . φ < 1, solve optimization problem

Jo(β̄) = min γo,iw (β̄)w2
rms + γo,iv (β̄)v2

rms + φ(γo,ow (β̄)w2
rms + γo,ov (β̄)v2

rms)

s.t. Mo � 0, ∀{βk, βk−1, β̂k} ∈ S1 × S1 × S2,

Mo,i(β̄) � 0, ∀β̂k ∈ S2, β̂k ∈ S3(β̄),

Mo,o(β̄) � 0, ∀β̂k ∈ S2, β̂k 6∈ S3(β̄)

(28)

over β̄ ∈ [βmin, 1].

Remark 4.2
The convergence speed of the PAR estimation algorithm (5), and thus the transient time lasted
until Corollary 4.1 is applicable, when the PAR is on steady state after a given change, is given
by parameter a. As mentioned in Remark 2.1, the convergence time to β̄ after a step change can
be characterized by log(0.02)/ log(a). Then, choosing lower values of a reduces the transient time
where Theorem 4.1 holds at the expense of enlarging S3 (higher PAR estimation errors and thus
worse capability of adaptation in steady state.).

We shall discuss the numerical solvability of the observer design problem (28) in Section 6.

5. CONTROLLER DESIGN

In this section we study the design of the controller with law K(β̂k) and F (β̂k). Let us first restate
the resulting closed loop dynamics from (13a) using vector zk = [xTk uTk−1]T as

zk+1 =
(
A(δk) + Bu(δk)K(β̂k)

)
zk + Bw wk − Bu(δk)K(β̂k) x̃k, (29)

with zk ∈ Rnz , nz = n+ nu and

A(δk) =

[
A (1− δk)µBu
0 (1− δk)µI

]
, Bu(δk) =

[
δkBu
δkI

]
, K(β̂k) =

[
K(β̂k) F (β̂k)

]
, Bw =

[
Bw
0

]
.

(30)

Note that in (29), the controller gain matrices are aggregated in K(β̂k). In order to aggregate the
control gain K(β̂k) affecting the state estimation error with F (β̂k) into K(β̂k), we rewrite (29) such
as

zk+1 =
(
A(δk) + Bu(δk)K(β̂k)

)
zk + Bw wk − Bu(δk)K(β̂k) ξk, (31)

where ξk = [x̃Tk 0]T .
Bearing this in mind, we next provide a procedure based on sufficient PDMI conditions to

design the observer-based controller with gains K(β̂k) and F (β̂k) fulfilling the design goals stated
in Section 3.2. First, the next theorem shows under which conditions the closed loop state zk is
bounded subject to a general PAR scenario with any possible PAR estimation error.

Theorem 5.1
Consider the control algorithm (12) applied to system (1), where x̂k comes from algorithm (10) with
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the gains designed by (28), and the PAR estimation algorithm (5). For a given positive scalar ε ∈ R,
µ ∈ [0, 1] and a matrix R ∈ Rnz×nz , if there exist positive definite matrices P c(βk) ∈ Rnz×nz ,
full matrices Gc(β̂k) ∈ Rnz×nz and Xc(β̂k) ∈ Rnu×nz , and positive scalars γcw ∈ R, γcv ∈ R and
γc0 ∈ R, fulfilling

M c =



M c

11 M c
12 M c

13

? M c
22 M c

23

? ? M c
33


 � 0, ∀{βk, βk−1, β̂k} ∈ S1 × S1 × S2, (32)

N c = Gc(β̂k) +Gc(β̂k)T − (1 + ε)I � 0, ∀β̂k ∈ S2, (33)

with

M c
11 = βkP

c(βk)⊕ (1− βk)P c(βk), M c
22 = Gc(β̂k) +Gc(β̂k)T − P c(βk−1), (34a)

M c
12 =

[
βk

(
A(1)Gc(β̂k) + Bu(1)Xc(β̂k)

)T
(1− βk)

(
A(0)Gc(β̂k)

)T]T
, (34b)

M c
13 =

[
βkBw βkBu(1)Xc(β̂k) 0

(1− βk)Bw 0 0

]
, (34c)

M c
23 =

[
0 0 Gc(β̂k)TRT

]
, M c

33 = (γcw I)⊕ (γcv ε I)⊕ (γc0 ε I)⊕ I, (34d)

then, defining the controller gain matrices as K(β̂k) = Xc(β̂k)Gc(β̂k)
−1

: i) in the absence of
disturbances and estimation errors the average closed loop state zk in (29) converges to zero, ii)
under zero initial conditions, the system states and control inputs are bounded through zk by

E{‖Rz̃‖2RMS} < γcww̄
2
rms + γcvx̃

2
rms (35)

with x̃rms = γoww̄
2
rms + γov v̄

2
rms, see (19).

Proof
Using the fact that (Gc(β̂k)− I)T (Gc(β̂k)− I) � 0, if (33) holds, thenGc(β̂k)

T
Gc(β̂k) � εI . Thus,

if (32) holds, the resulting PDMI from replacing ε I by Gc(β̂k)
T
Gc(β̂k) in (32) also holds. Then, if

we define the Lyapunov function as Vk = V (zk, βk−1) = x̃Tk P
c(βk−1)

−1
x̃k, applying a congruence

transformation on the above modification over (32) with matrix I ⊕ I ⊕
(
Gc(β̂k)

T
)−1

⊕ I ⊕
(
Gc(β̂k)

T
)−1

⊕
(
Gc(β̂k)

T
)−1

⊕ I, taking Schur’s complements and premultiplying the result by

[zTk wTk−1 ξ
T
k ] (with ξk as defined in (31)) and postmultiplying by its transpose leads to

E{Vk+1} − Vk + zTk R
TRzk − γcwwTk wk − γcvx̃Tk x̃k < 0 (36)

for all {βk, βk−1, β̂k} ∈ S1 × S1 × S2, where we have taken into account that Bu(0) = 0 and
ξk = [x̃Tk 0]T . From (36) and following similar arguments as in the proof of Theorem 4.1, one can
prove the assertions of the current theorem.

Remark 5.1
Parameters ε and µ can be set as line search parameters for conservatism reduction.

Remark 5.2
Let us highlight some structural modifications and constraints used in Theorem 5.1 to convexify
the design of observer-based controllers, which is usually a nonconvex problem [15]. First, the
use of gain matrix F (β̂k) compensating the previous control input in (12) together with the
reformulation of the closed loop dynamics (29) performed in (31) through ξk allows preserving
the product X(β̂k) = K(β̂k)G(β̂k) all over matrix (32). Second, in the aim of [15] but employing
the slack variableG(β̂k) (which decouples the product between the Lyapunov and system matrices),
condition (33) allows us to replace the product of G(β̂k)

T
G(β̂k) on the diagonal elements of (32)

by some given positive value ε that fulfils (33) .
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Second, following the proposed design procedure in Section 3.2 and in the aim of the reasoning of
the observer design procedure (see Section 4), the next corollary (which follows form Theorem 5.1)
describes the control performances for each of the different values of the PAR during its steady state
for any associated β̃k.

Corollary 5.1
Consider a given constant PAR βk = β̄ and assume that the PAR estimation algorithm fulfils (7).
For given value of 0 < a . 1 and 0 . φ < 1, if there exist positive definite matrices Qc ∈ Rn×n,
and positive scalars γc,iw ∈ R, γc,iv ∈ R, γc,ow ∈ R, γc,ov ∈ R, γc,o0 ∈ R and , γc,o0 ∈ R fulfilling (33)
and a modified version of (32) such as

M c,i = M c|βk=βk−1=β̄, P c(βk)=Qc, γc
w=γc,i

w , γc
v=γc,i

v γc
0=γc,i

0
� 0, ∀β̂k ∈ S2, β̂k ∈ S3, (37)

M c,o = M c|βk=βk−1=β̄, P c(βk)=Qc, γc
w=γc,o

w , γc
v=γc,o

v γc
0=γc,o

0
� 0, ∀β̂k ∈ S2, β̂k 6∈ S3, (38)

then, the statements of Theorem 5.1 apply leading to a closed loop state (under zero initial
conditions) bounded by

E{‖Rz‖2RMS} < γc,iw w2
rms + γc,iv Jo,i + φ(γc,ow w2

rms + γc,ov Jo,o) (39)

with Jo,i = γo,iw w2
rms + γo,iv v2

rms and Jo,o = γo,ow w2
rms + γo,ov v2

rms being the result of problem (28)
for the given β̄.

Proof
Following similar arguments than in the proof of Corollary 4.1 together with the one of Theorem 5.1,
we can obtain (39).

5.1. Optimization-based controller design

Finally, as in the observer design section, conditions of Theorem 5.1 and Corollary 5.1 can be joined
into an optimization problem to minimize the closed loop state RMS norm for a given constant PAR
β̄ while providing robustness against PAR variations and estimation error (both on the PAR and
system states). Following similar arguments as in the last section, we next present the parametric
optimization-based design problem for all possible β̄ ∈ [βmin, 1]. Note that we have replaced Qc,
γc,iw , γc,iv , γc,i0 , γc,ow , γc,ov and γc,o0 by Qc(β̄), γc,iw (β̄), γc,iv (β̄), γc,i0 (β̄), γc,ow (β̄), γc,ov (β̄) and γc,o0 (β̄).
We denote the resulting M c,i and M c,o (see (37) and (38) ) by M c,i(β̄) and M c,o(β̄).

Controller design problem
For a given positive scalar ε ∈ R, real value parameters µ ∈ [0, 1], 0 < a . 1 and 0 . φ < 1, and a
matrix R ∈ Rnz×nz , solve optimization problem

Jc(β̄) = min γc,iw (β̄)w2
rms + γc,iv (β̄)Jo,i(β̄) + φ

(
γc,ow (β̄)w2

rms + γc,ov (β̄)Jo,o(β̄)
)

s.t. M c � 0, ∀{βk, βk−1, β̂k} ∈ S1 × S1 × S2,

M c,i(β̄) � 0, ∀β̂k ∈ S2, β̂k ∈ S3(β̄),

M c,o(β̄) � 0, ∀β̂k ∈ S2, β̂k 6∈ S3(β̄),

N c � 0 ∀β̂k ∈ S2,

(40)

over β̄ ∈ [βmin, 1] .

Remark 5.3
Matrix R in (40) is a weighting factor that balances between the convergence speed to the origin
of the states xk and the magnitude of the control inputs uk. By choosing R as a positive definite
block diagonal matrix one obtains the classical tuning parameters of optimal control [22]. In the
aim of simplicity, we propose to select R =

√
CTC ⊕

√
λI . Then, the optimization problem tries to

minimize ‖y‖2RMS + λ‖u‖2RMS where λ is a tuning parameter.

We shall discuss the numerical solvability of the controller design problem (40) in the next
section.
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6. NUMERICAL ISSUES

Solving optimization problems (28) and (40) implies verifying the PDMI conditions over the entire
parameter space of the PAR, which leads to an infinite-dimensional problem. To offer a wider
solution, we propose to impose polynomial dependences on {βk, βk−1, β̂k, β̄} of fixed degree on
the parametrized matrices and scalar functions. With that, SOS decompositions or homogeneous
polynomial techniques can be used to obtain a computationally tractable procedure [21]. Usually,
homogeneous polynomial are employed when the parameters are constrained in the simplex.
However, in the analysed case, transforming β̂k ∈ S3(β̄) into a restriction over a simplex domain is
far from obvious. For this reason, we propose to address the solvability of (28) and (40) by using
a SOS decomposition that gives sufficient conditions on the positiveness of the PDMIs. Details
on how to perform this SOS-based approach to deal with the feasibility problem can be found
in [21, 27].

Remark 6.1
In the case that the system is unstable but detectable, the authors in [28] showed that it is necessary
that the PAR fulfils βk ≥ 1− 1

ρ(A)2 (being ρ(A) = maxi(|λi(A)|) and λi(A) the eigenvalues of
matrix A) to make the existence of a solution for the observer and controller design possible. Thus,
we must assume that the PAR satisfies this bound.

Concerning the minimization of the parametric cost index in (28) and (40), one possible way
to address it could be to perform a minimization of an upper bound of Jχ(β̄), with χ ∈ {o, c},
for all β̄ ∈ [βmin, 1]. This would lead to the design of the worst case observer and controller (robust
solution). In the aim of achieving less conservative results and in order to cope with the parametrized
optimization over β̄, we propose, as an alternative, to introduce a weighting function g(β̄) such that

J̄χ =

∫

S4
g(β̄)Jχ(β̄)dβ̄ (41)

with S4 = {β̄ : βmin ≤ β̄ ≤ 1} and χ ∈ {o, c}. Then, minimizing J̄χ leads to the gain-scheduled
observer-based controller that minimizes the RMS norm of the state estimation error and the RMS
norm of the closed loop states under the weighting function g(β̄).

Remark 6.2
The weighting function g(β̄) aims to involve the different values of the objective function Jχ(β̄) for
each β̄ into the minimization. A thoughtful choice is setting

g(β̄) =





1

1− βmin
if βmin ≤ β̄ ≤ 1

0 otherwise.
(42)

With this weighting function, the minimization problem tries to minimize the expected value of
Jχ(β̄) when the PAR is equally likely to be stabilized in any β̄ ∈ {βmin, 1}.
Remark 6.3
So far we have supposed that 0 . φ < 1 was a parameter to be chosen. φ could be selected according
to the time-varying behaviour of the PAR. If the PAR is known to change rarely and we choose
parameter a near 1, as stated in Remark 2.1, the PAR estimation algorithm will give accurate
estimation in steady state. Therefore, to include this information in the design procedure we could
choose lower values of φ increasing the probability of being inside S3 without enlarging it much for
optimization purposes. On the other hand, if the PAR varies permanently and we tune a accordingly,
β̃k will be higher in steady state and then we should set φ to higher values to narrow S3 so it does
not encompass S2. However if no a priori information is available, and as a general approach, we
propose to get its value from the optimization problem by performing a line search in φ such that the
value of J̄o (from the observer design) is minimum and then, use the same value in the controller
design since it gives the minimum state estimation error. Although optimizing over φ minimizes J̄o,
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and thus, gives a tighten bound on the estimation performance index, it might not lead to the optimal
observer-based controller in practice, i.e., the one that obtains the minimum ‖x̃‖RMS and ‖z‖RMS in
implementation.

7. SIMULATION EXAMPLE

In this example we aim to show the behaviour of the proposed observer-based controllers. For that
purpose, we will first analyse the influence of parameter a and φ in the PAR estimation algorithm
and in the resulting gain-scheduling approach. Then, we will study the behaviour in simulation of
different observer-based controllers under sporadic and frequent changes of the PAR and compare
the results with the approach in [22].

Let us consider the position control problem of a DC motor with transfer function

G(s) =
5.8

s(1 + 0.033s)(1 + 0.006s)
.

Discretizing the system with a sampling period of Ts = 10ms we obtain the following state-space
representation defined by (1):

A =




1.927 −1.067 0.279
1 0 0
0 0.5 0


 , Bu = Bw =




0.125
0
0


 , C =

[
0.0249 0.0641 0.0188

]
.

We consider an actuator strategy with µ = 1 and the state disturbance and measurement noise to
have bounded RMS norms given by:

‖w‖RMS = 0.6, ‖v‖RMS = 0.01.

Here, the state disturbance is such as wk = 0.6 · (−1)k (representing the worst sampling case of a
sinusoidal signal of amplitude 0.6 and frecuency 50Hz), while the measurement noise modelling the
accuracy of the position sensor (typically an encoder) is a Gaussian noise of variance 10−4. We also
assume that the network provides a lower bound of the PAR given by βmin = 0.3, which is used to
solve the design problems (see Remark 6.1).

Let us first analyse the influence of parameter a in the PAR estimation (see (5)). Figure 2 shows
the PAR estimation performance for the cases when a = 0.999 and a = 0.9. When a is lower, the
estimated PAR is able to follow faster changes of the real PAR (lower transient time where only
Theorem 4.1 and Theorem 5.1 apply). In fact, following Remark 2.1, when a = 0.9, it takes 0.37sec
to track the change in PAR with an average estimation error lower than 2%. This is 100 times faster
than using a = 0.999. However, the obtained PAR estimation error in steady state is much higher
when using a = 0.9.

Second, we examine how the pair (a, φ) affects the size of set S3, which contains the PAR
estimation error in steady state with a probability higher than 1− φ (see (23)). If we fix φ = 0.01
(i.e., Pr{β̂k ∈ S3} > 0.99) for PAR estimators, in Figure 2 we verify that a lower a leads to a wider
range of values in S3, which might lead to more conservative results. Also, note that, as mentioned
in Remark 4.1, S3 might contain values of β̂k (and thus of β̃k) that are outside of S2 and therefore are
unreachable. In fact, when β̄ = 0.4 we find from (27) that φ < 0.0175 implies that S3 is redundant.
This phenomenon is due to the conservativeness introduced by the use of Markov’s inequality.

Let us now study the state observers and controllers resulting from the proposed methods in
Section 4 and Section 5 with λ = 0.1 (see Remark 5.3). For this purpose, Figure 3 and Figure 4
display the possible values (shadowed grey region) that take the observer and controller gains, and
their respective performances, for the possible combinations of a ∈ [0.9, 0.999] and φ ∈ [0.001, 0.2]
when using polynomials of degree 4. To ease of representation, we have normalized the values by
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Figure 3. Probability density functions of the PAR estimation error for a constant̄β = 0.9 with different
values ofa andφ = 0.01. Analysis of setS3.

For a fixedφ, lower values ofa (faster PAR estimation convergence to the steady state where
Theorem?? and Theorem5.1 hold) make the resulting observer-based controller more robust to
PAR estimation error in steady state, i.e., gains are almostindependent of̂βk, leading to conservative
performances sinceS3 is larger. On the other hand, higher values ofa narrow S3 allowing to
get more adaptive solutions with lower performance cost indexes in steady state at the expense
of having worse PAR tracking performances (larger transient behaviour where only Theorem4.1
and Theorem5.1 apply). If we fix nowa, too low values ofφ result in robust solutions sinceS3 is
larger while too high values ofφ give similar performance because the weighting factor of being
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Figure 2. PAR estimation performances of the proposed filter (5) for different values of a and φ = 0.01.
Analysis of sets S2 and S3.

dividing them by:

max
(
|L(β̂k)|

)
= 11.747, max

(
|Jo(β̄)|

)
= 4.122,

max
(
|K(β̂k)|

)
= 0.933, max

(
|Jc(β̄)|

)
= 3.325.

For a fixed φ, lower values of a (faster PAR estimation convergence to steady state where
Corollary 4.1 and 5.1 hold) make the resulting observer-based controller more robust to PAR
estimation errors in steady state (gains are almost independent of β̂k) leading to conservative
performances since S3 is larger. On the other hand, higher values of a narrow S3 allowing to
get more adaptive solutions with lower performance cost indexes in steady state at the expense
of having worse PAR tracking performances (larger transient behaviour where only Theorem 4.1
and 5.1 apply). For a fixed a, too low values of φ result in robust solutions since S3 is larger while
too high values of φ give similar performance because the weighting factor of being outside S3

dominates de optimization problem. Then, intermediate but lower enough values of φ lead to the
adaptive solutions. These figures prove that scheduling the gains with the estimated PAR allows
increasing the estimation and controller performances (lower values of Jo(β̄) and Jc(β̄) when the
PAR is lower and vice-versa).

Table I. Analysed cases. ‘∗’ shows a value obtained through optimization.

Case a φ Design method
C1 - - Theorem 4.1/5.1
C2 0.999 - Problem (28)/(40) with constant gains
C3 - - Problem (28)/(40) without S3

C4 0.999 0.005∗ Problem (28)/(40)
C5 0.999 10−5 Problem (28)/(40)
C6 0.999 0.2 Problem (28)/(40)
C7 0.999 - LQG [22]
C8 0.99 0.005 Problem (28)/(40)
C9 0.99 - LQG [22]
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Figure 3. Normalized scheduled observer gainL(β̂k) and estimation performanceJo(β̄) (with respect to
their maximum values). Shadowed zone represents the resulting values fora ∈ [0.9, 0.999] and φm ∈

[0.001, 0.2]. The thickest line stands for the solution witha = 0.999 andφm = 0.005.
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Figure 4. Normalized scheduled controller gainK(β̂k) and control performanceJc(β̄) (with respect to their
maximum values). Shadowed zone represents the resulting values fora ∈ [0.9, 0.999] andφm ∈ [0.001, 0.2].

The thickest line stands for the solution witha = 0.999 andφm = 0.005.

• C6: modified observer-based controller from C3 withφm = 0.001 (lower than the optimum)
• C7: modified observer-based controller from C3 withφm = 0.2 (higher than the optimum)
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In the present paper, we designed an observer-based controller to work under packetized control
input and measurement transmissions subject to dropouts with an uncertain time-varying PAR, but
with successful delivery acknowledgement.
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Figure 3. Normalized scheduled observer gain L(β̂k) and estimation performance Jo(β̄). Shadowed zone
represents the resulting values for a ∈ [0.9, 0.999] and φ ∈ [0.001, 0.2]. The thickest line stands for case C4.

22

β̂k

N
o

rm
al

iz
ed
K(

β̂
k
)

β̄k

N
o

rm
al

iz
ed

J
c
(β̄
)

0.4 0.6 0.8 10.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

-1

-0.6

-0.2

0.2

0.6

1

Figure 4. Normalized scheduled controller gainK(β̂k) and control performanceJc(β̄) (with respect to their
maximum values). Shadowed zone represents the resulting values fora ∈ [0.9, 0.999] andφm ∈ [0.001, 0.2].

The thickest line stands for the solution witha = 0.999 andφm = 0.005.

• C3: observer-based controller with polynomials of degree 4 designed using optimization
problems (57) and 58 witha = 0.999. Theφm resulting from the optimization isφ = 0.005.
Gains are shown in Figure 3 and Figure 4 with the thickest line.
• C4: observer-based controller with polynomials of degree 0 (constant gains) designed using

optimization problems (57) and 58 witha = 0.999. Theφm resulting from the optimization is
φ = 0.02 and the obtained gains are:

LC4 =
[
11 9.709 4.189

]T
, KC4 =

[
−0.293 0.271 −0.082 −0.339

]T
.

• C5: observer-based controller with polynomials of degree 4 designed using optimization
problems (57) and 58 witha = 0.99 (fastest PAR estimation dynamic). Theφm resulting
from the optimization isφ = 0.01.

Note that maximum obtainedφm in the design that minimizes the cost indexJ̄o is 0.01 (see
C5). This shows that the inequality1− φm < 1− φr ≤ 1 does not introduce much conservative as
1− φm is nearly one.

• C6: modified observer-based controller from C3 withφm = 0.001 (lower than the optimum)
• C7: modified observer-based controller from C3 withφm = 0.2 (higher than the optimum)

8. CONCLUSIONS

In the present paper, we designed an observer-based controller to work under packetized control
input and measurement transmissions subject to dropouts with an uncertain time-varying PAR, but
with successful delivery acknowledgement.

Making use of the data reception states, we proposed a filter that gives an estimation of the
real time PAR with a bounded estimation error during PAR steady states. Then, we derived a
gain-scheduling strategy for the design of the state observer and controller depending of rational
functions of the estimated PAR. The controller not only depends on the estimated state but also
on the previous control input. Applying the separation principle, both designs are performed by
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Figure 4. Normalized scheduled controller gain K(β̂k) and control performance Jc(β̄). Shadowed zone
represents the resulting values for a ∈ [0.9, 0.999] and φ ∈ [0.001, 0.2]. The thickest line stands for case

C4.

Let us now examine the performances of the observer-based controllers in Table I. C1 only
considers the case when the PAR varies at each instant through conditions from Theorem 4.1 and
5.1 while minimizing (19) and (35) respectively. All the design approaches but C2, C7 and C8
have considered polynomial dependences of degree 4. In C3 we include possible steady state PAR
behaviours by adding constraints (21) and (37) with β̂k belonging just to S2 and by minimizing the
first two terms of (24) and (39). C2, C4, C5, C6 and C8 are designed following problems (28) and
(40). However, gains of C2 are not scheduled with β̂k (constant gains). The obtained gains for C2
are L =

[
11 , 9.709 4.189

]T
, K =

[
−0.293 0.271 −0.082 −0.339

]T
. Also, we have only

performed the line search approach over φ to minimize the cost index (proposed in Remark 6.3)
in C4. Note that using the proposed approach to choose φ as the one that optimizes J̄o (see
Remark 6.3), leads to the best controller index performance J̄c as shown in Figure 4. C5 considers
a lower φ than C4 while C6 is designed with a higher one. Instead, C8 implements a PAR estimator
with a faster dynamic than C4. To compare the results of the current paper with existing approaches,
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we have implemented the LQG approach with infinite horizon of [22]. Since the controller design at
each instant depends on the unknown βk, we have used instead the resulting β̂k from PAR estimators
with a = 0.999 (C7) and a = 0.99 (C9).

In order to evaluate the control performances we propose the following index

Jck =
1

k

k−1∑

i=0

xTi xi + λ
1

k

k−1∑

i=0

uTi ui.

Table II shows the obtained performances in simulation at time 600sec of the stabilization problem
from x0 = [4 4 4]T under three PAR scenarios: i) βk is time-invariant with a value of 0.4, ii) βk
changes each 100sec between 0.9 and 0.4 and, iii) βk varies following a uniform distribution from
0.3 to 0.95 each 5sec. Thanks to having focused on estimation and control performance when the
PAR is on its steady state, we reduce the control performance index Jck up to a 65% with respect
to C1, where only the general PAR scenario is considered. Scheduling the observer and controller
gain also allow to reduce it up to a 55% with respect to C2 (constant gains). The design approach
developed in this work allows us to reduce the control performance index of the LQG approach (C7
and C9) up to a 25% because: i) the considered state disturbance is not Gaussian nor uncorrelated
(but with a zero mean), ii) our approach takes into account the PAR estimation error. Note that there
is no big difference between the performances of C7 and C9.

Let us now compare the results of C4, C5, C6 and C8. C5 performs similar as the deterministic
case C3 since the chosen φ is lower than stated in Remark 4.1 and thus, S3 becomes redundant
for the considered PARs. In general, C4 gives better performance since for this case φ was a
design parameter too. However there are a few exceptions. As stated in Remark 4.1, too low and
too high values of φ lead to similar performance as it can be verified from the results of C4 and
C6. Nevertheless when βk varies fast, C6 does not give a worse performance than C4 because: i)
higher values of φ allow to narrow S3 so it does not encompass S2 at the expense of increasing the
probability of being outside of S3 (see Remark 6.3), ii) optimizing over φ leads to the best upper-
bound of the real control performance index given by ‖x‖2RMS + λ‖u‖2RMS, but might not lead to
the best solution in practice (see Remark 6.3). Finally, C8 works also better than C4 when βk varies
fast because it follows more accurately PAR changes without enlarging much S3.

Table II. Control performance index Jck for different PAR scenarios at time 300sec with x0 = [4 4 4]T .

Changes βk C1 C2 C3 C4 C5 C6 C7 C8 C9
βk = 0.4 0.051 0.041 0.033 0.029 0.033 0.031 0.040 0.030 0.040
100sec 0.048 0.038 0.026 0.017 0.026 0.022 0.022 0.019 0.022
5sec 0.053 0.042 0.032 0.030 0.032 0.029 0.034 0.026 0.033

In conclusion, this example shows that:

i) Parameter a should be tuned according to a priori information about the behaviour of the real
PAR (see Remark 2.1 and Remark 4.2). If no information is available it is recommended to
choose higher values to narrow S3.

ii) Parameter φ could also be selected considering the evolution of the PAR (see Remark 6.3), but
a simple solution is to choose the one the minimizes the cost index of the optimization-based
design problem.

iii) Focusing on performance optimization just on the steady state behaviour of the PAR and
scheduling both the observer and controller gains with the estimated PAR helps to increase
the control performance.
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8. CONCLUSIONS

In the present paper, we designed an observer-based controller to work under packetized control
input and measurement transmissions subject to dropouts with an uncertain time-varying PAR, but
with successful delivery acknowledgement.

Making use of the data reception states, we proposed a filter that gives an estimation of the
real time PAR with a bounded estimation error during PAR steady states. Then, we derived a
gain-scheduling strategy for the design of the state observer and controller depending of rational
functions of the estimated PAR. The controller not only depends on the estimated state but also
on the previous control input. Applying the separation principle, both designs are performed by
means of a parametrized optimization problem that minimizes the performance index level (RMS
norm of the state estimation error for the state observer, or RMS norm of the closed loop state for
the controller) as a function of the possible constant PAR while guaranteeing certain robustness
against PAR estimation errors and variations of the PAR. To address the numerical solution of
the optimization problem we employed SOS decomposition techniques leading to an optimization
problem over polynomials. Numerical examples studied the tuning of the different parameters and
showed the effectiveness of the proposal.

Future work might include the extension of the current results to the case of transmissions without
successful delivery acknowledgement.
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27. Dolz D, Peñarrocha I, Sanchis R. Networked gain-scheduled fault diagnosis under control input dropouts without
data delivery acknowledgment. International Journal of Robust and Nonlinear Control 2016; 26(4):737–758.

28. Quevedo DE, Ahlén A, Leong AS, Dey S. On kalman filtering over fading wireless channels with controlled
transmission powers. Automatica 2012; 48(7):1306–1316.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
Prepared using rncauth.cls DOI: 10.1002/rnc


	1 Introduction
	2 Problem setup
	2.1 Networked transmission description

	3 Observer-based control strategy
	3.1 Closed loop analysis
	3.2 Gain-scheduling approach

	4 State estimator design
	4.1 Optimization-based observer design

	5 Controller design
	5.1 Optimization-based controller design

	6 Numerical issues
	7 Simulation example
	8 CONCLUSIONS

