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ABSTRACT 

Background: Persistent Helicobacter pylori (H. pylori) infection induces to 

express anti-microbial peptides from gastric epithelial cells, especially human 

β-defensin 3 (hBD3), as an innate immune response, and this expression of 

hBD3 is mediated by epidermal growth factor receptor (EGFR) activation. In this 

study, we have demonstrated the role of H. pylori in the activation of EGFR via 

transforming growth factor -activated kinase-1 (TAK1)-mediated 

phosphorylation of p38. We also found that phosphorylation of a serine residue 

of EGFR via TAK1 and subsequent p38 activation is essential for H. 

pylori-induced hBD3 release from gastric epithelial cells. We showed that this 

pathway was dependent on H. pylori type IV secretion system (T4SS) and was 

independent of H. pylori-derived CagA or peptidoglycan. 

Materials and methods: Gastric epithelial (AGS or MKN-45) cells were 

co-cultured with wild type H. pylori, virB4 (T4SS mutant) H. pylori or cagA¯ H. 

pylori. H. pylori was added to the cells and the activation of hBDs, EGFR, p38, 

and TAK1 were examined by real-time reverse transcription polymerase chain 

reactions (RT-PCR) and western blotting. Infected cells were pretreated with or 

without EGFR ligands, chemical inhibitors, anti-HB-EGF antibody, and/or 

siRNAs to evaluate the effects of p38, TAK1, NOD1 and EGFR on the release 

of hBD3. Fluorescence microscopy and flow cytometry were performed to detect 

the internalization of EGFR. 

Results: H. pylori infection induced phosphorylation of serine residue of EGFR, 

and this phosphorylation was followed by internalization of EGFR; consequently 

hBD3 was released at an early phase of the infection. Incubating cells with wild 
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type and CagA¯ H. pylori strains resulted in the rapid and transient 

phosphorylation of serine residues of EGFR. RNAi experiments using siRNA 

against TAK1 and p38 pathways blocked the phosphorylation of serine residue. 

Immunofluorescence and flow cytometry revealed that EGFR was internalized in 

H. pylori-infected cells after EGFR phosphorylation in a p38-dependent 

manner. In contrast, pre-treatment with anti-HB-EGF antibody did not block both 

the phosphorylation and internalization of EGFR. In the presence of TAK1 or 

p38 inhibitors, synthesis of hBD3 was completely inhibited. Similar results were 

observed in EGFR-, TAK1- or p38-knockdown cells. However, NOD1 

knockdown in gastric epithelial cells did not inhibit hBD3 induction.  

Conclusion: H. pylori induces internalization of EGFR via novel TAK1-p38 

activation pathway which is independent of HB-EGF. Further, our study has 

firstly demonstrated that this novel EGFR activating pathway functioned to 

induce hBD3 at an early phase of H. pylori infection. This study provides an 

understanding of how H. pylori survive and persists in the hostile gastric 

mucosa; this along with other similar studies might help in the development of 

effective strategies to overcome H. pylori infection. 
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1. BACKGROUND 

The gram-negative bacterium Helicobacter pylori (H. pylori) persistently 

colonizes the human stomach and also have been the focus of basic 

biochemical and clinical research since it was first identified and cultured by 

Marshall and Warren in 1982 (Warren and Marshall, 1983). The prevalence rate 

of H. pylori and its associated diseases has been highly inconsistent worldwide. 

In industrialized countries there is generally a low prevalence of H. pylori 

infection and yet a relatively high prevalence of gastric cancer. On the other 

hand, some countries with high H. pylori prevalence rates have low gastric 

cancer prevalence particularly among the Asian countries. Prevalence of H. 

pylori infection is high in developing Asian countries like India, Bangladesh, 

Pakistan, and Thailand and is acquired at an early age compared to developed 

Asian countries like Japan and China. However, the frequency of gastric cancer 

is very low in India, Bangladesh, Pakistan and Thailand than that of Japan and 

China. Similar enigma has been reported from Africa as compared to the West 

(Graham, Lu and Yamaoka, 2009). 

 H. pylori is highly adapted to the gastric environment where it lives 

within or beneath the gastric mucous layer. H. pylori render the underlying 

gastric mucosa more vulnerable to acid peptic damage by disrupting the mucous 

layer, liberating enzymes and toxins, and adhering to the gastric epithelium 

(Muhammad, Zaidi and Sugiyama, 2012). In spite the induction of strong host 

inflammatory immune responses, H. pylori persist in a hostile gastric 

environment in nearly half of the world’s human population (Blaser and Atherton, 

2004). Some infected individuals will develop gastric ulcer, duodenal ulcer, 
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gastric carcinoma, or gastric mucosa-associated lymphoid tissue lymphoma; 

however, the majority of infected individuals remain asymptomatic. Disease 

diversity following H. pylori infection depends mainly on bacterial virulence 

factors, host immune responses, environmental factors, or combination of them 

(Muhammad, Sugiyama and Zaidi, 2013).  

 Virulent strains of H. pylori encode cag pathogenicity island (cagPAI), 

which expresses a type IV secretion system (T4SS). This T4SS forms a 

syringe-like pilus structure for the injection of virulence factors such as the CagA 

effector protein into host target cells (See figure 1.1, page 10). This is achieved 

by a number of T4SS proteins, including CagI, CagL, CagY and CagA, which by 

itself binds to the host cell integrin member β-1 followed by delivery of CagA 

across the host cell membrane. A role of CagA interaction with 

phosphatidylserine has also been shown to be important for the injection 

process. After delivery, CagA becomes phosphorylated by oncogenic tyrosine 

kinases (e.g., Src Kinase) and mimics a host cell factor for the activation or 

inactivation of some specific intracellular signaling pathways i.e. protein tyrosine 

phosphatase pathway (Jenks and Kusters, 2000; Higashi et al., 2002; Naumann, 

2005; Tegtmeyer, Wessler and Backert, 2011; Posselt, Backert and Wessler, 

2013). The presence of a functional cagPAI segment integrated in H. pylori is 

associated with more severe gastritis and augments the risk of developing 

gastric cancer (Peek, 2002). The knocking out of this T4SS deprived wild-type H. 

pylori of its pathogenicity for causing gastritis and gastric ulcer in a gerbil model, 

thereby highlighting the critical role of T4SS encoded by the cagPAI (Ogura et 

al., 2000). Approximately 85-100% of patients with duodenal ulcers have CagA+ 
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strains, compared to 30-60% of infected patients who do not develop ulcers 

(Fallone et al., 2000). Similarly, cagA+ H. pylori strains compared with cagA¯ 

strains significantly increased the risk of developing severe gastritis and gastric 

carcinoma (Blaser et al., 1995). 

 

 

Figure 1: Bacterial factors responsible for virulence of H. pylori. 

(Muhammad et. al., J Pak Med Assoc (2013) 63:1528-33) 

 

 H. pylori produces a number of antigenic substances which can be 

taken up and processed by macrophages in the lamina propria of gastric 

mucosa and then activate T-cells to facilitate immune stimulation (Portal-Celhay 

and Perez-Perez, 2006). This H. pylori interaction with gastric epithelial cells 

results in production of inflammatory cytokines like interleukin-8, activation of 
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transcription factors like nuclear factor kappa B (NF-B), and disturbances in cell 

proliferation and morphology (Hatakeyama and Higashi, 2005; Keates et al., 

1997). NF-B has an essential role in the regulation of inflammatory responses 

in mammals. The prototypical NF-B complex, which is a heterodimer of p50 

and RelA, is sequestered in the cytoplasm by its inhibitor IB. On stimulation, 

the IB kinase (IKK) complex is activated, leading to phosphorylation and 

degradation of IB, nuclear translocation of NF-B and activation of its target 

genes (Gosh and Karin, 2002). Transforming growth factor- (TGF-)-activated 

kinase 1 (TAK1) is a key regulator of signal transduction cascades that lead to 

stimulus-coupled phosphorylation and activation of IKK (Sakurai, 2012). 

Previous studies also showed that TAK1 is polyubiquitinated by TRAF6 in 

response to TGF-, and that Lys 63-linked ubiquitination is required for 

TGF--induced activation of p38/Jun N-terminal kinase and AP-1, indicating 

that TAK1 ubiquitination might also be crucial for the activation of IKK and NF-B 

(Sorrentino et al., 2008). Role of CagA protein in activation of TAK1 and NF-B 

is controversial. Lamb et al demonstrated the role of CagA in direct activation of 

TAK1 through the TRAF6-mediated, Lys 63-linked ubiquitination of TAK1 in 

gastric cells (Lamb et al., 2009). In contrast, a recent report by Sokolova et al 

documented a type IV secretion system-dependent and CagA-independent 

activation of TAK1 and NF-B in AGS cells (Sokolova et al., 2014). Therefore, 

the role of CagA in the activation of TAK1 is controversial and still unclear.
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2. INTRODUCTION 

Gastric epithelial cells are known to release various anti-microbial peptides 

(AMPs) upon H. pylori infection. Human -defensins (hBDs) are the most potent 

AMPs released by gastric epithelial cells in response to persistent H. pylori 

infection (George et al., 2003). These short cationic, disulfide-linked peptides 

possess strong antimicrobial activity against many Gram-positive and 

Gram-negative bacteria (Guaní-Guerra et al., 2010). The first three members of 

hBD family (hBD1-3) have been extensively investigated as important host 

defense factors against H. pylori infection (George et al., 2003; Bajaj-Elliot et al., 

2002; Boughan et al., 2006; Grubman et al., 2010; Bauer et al., 2013). 

Interestingly, hBD1 is expressed in uninfected gastric epithelial cells (O’Neil et 

al., 2000), and a recent study showed that hBD1 was downregulated in gastric 

epithelial cells upon H. pylori infection (Patel et al., 2013; Taha et al., 2005). 

Notably, hBD1 has a weak anti-H. pylori activity in comparison to hBD2 and 

hBD3 based on in vitro findings (Nuding et al., 2013). Regarding hBD2 and 

hBD3 anti-bacterial activity, hBD3 can exert 100 times more potent anti-H. pylori 

activity than hBD2 (Bauer et al., 2012; Kawauchi et al., 2006). Therefore, hBD3 

release from H. pylori-infected gastric epithelial cells can be considered as an 

essential, first-line host immune response. The expression of hBD3 is reportedly 

dependent on the EGFR/MAP kinase pathway (Boughan et al., 2006) (see figure 

2.1, page 14). However, the molecular pathway that drives hBD3 induction in H. 

pylori-infected cells has not been fully determined. 
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Figure 2.1: Release of hBD3 from gastric epithelial cells 

(Bauer et. al., Cell Host Microbe (2012) 11:576-86) 
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 Overexpression and transactivation of epidermal growth factor (EGF) 

receptor (EGFR) by H. pylori has been reported earlier (Ashktorab et al., 2007; 

Keates et al., 2001; Keates et al., 2007). EGFR is a member of the ErbB family, 

which consists of four tyrosine kinase receptors: EGFR (ErbB1) and ErbB2–4. 

These four receptors plays a critical role in a wide variety of cellular functions, 

including proliferation, differentiation, and apoptosis (Citri and Yarden, 2006; 

Schneider and Wolf, 2009). EGFR has recently been a focus of molecular 

targeted cancer therapy, because overexpression, amplification, and mutations 

are involved in carcinogenesis and the progression of several types of cancer 

(Mendelsohn and Baselga, 2003). 

 H. pylori was known to induce the activation of EGFR by increasing the 

expression and release of heparin binding-epidermal growth factor (HB-EGF) 

from gastric epithelial cells, a process termed as “transactivation” (Dickson et al., 

2006) (see figure 2.2, page 16). HB-EGF, a member of EGF family, is 

synthesized by macrophages and cultured cells as a membrane-anchored 

propeptide which is proteolytically processed to release a mature soluble factor 

(Higashiyama et al., 1991). Recently, a study reported an intracellular pathway 

the involving TAK1 in EGFR phosphorylation and subsequent endocytosis via 

mitogen-activated protein kinases (MAPK) in TNF- stimulated HeLa cells 

(Nishimura et al., 2009). Nevertheless, the functional significance of this novel 

EGFR activation pathway was never analyzed in H. pylori-infected gastric 

epithelial cells (see figure 2.3, page 17). 
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Figure 2.2: Transactivation of EGFR by H. pylori in gastric epithelial cells 

(Keates et. al., J Biol Chem (2001) 276: 48127-34) 
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Figure 2.3: Activation of TAK1 and EGFR by TNF- in non-gastric cells 

(Nishimura et. al., Molecular and cellular biology (2009) 29:5529-39) 
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3. AIMS OF THE STUDY 

The aim of this study was to demonstrate that H. pylori infection of gastric 

epithelial cells causes the phosphorylation of EGFR serine residue via 

TAK1-p38 pathway, and that the EGFR serine residue phosphorylation is 

essential and specific in endocytosis of EGFR in an HB-EGF independent 

manner.  

 Also this study was aimed to show that EGFR activation via 

phosphorylation of a specific serine residue of EGFR via a TAK1-p38pathway 

and the subsequent internalization of EGFR are functionally linked to the 

induction of hBD3 in gastric epithelial cells infected with H. pylori.  
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4. MATERIALS AND METHODS 

4.1 Bacterial strains and culture conditions 

H. pylori strain 193C originated from a patient with gastric cancer, and the 

isogenic T4SS mutant H. pylori (virB4) was developed from H. pylori 193C by 

T. Sugiyama (Mizushima et al., 2002). Strain CPY2052 was isolated at 

Yamaguchi University Hospital, Japan, from a patient with a gastric ulcer (Tsuda, 

Karita and Nakazawa, 1993), and H. pylori knocked-out mutants (CP1 CagA¯) 

were developed from a CPY2052 strain by Dr. J. Akada, Yamaguchi University, 

Japan (Akada et al., 2010). H. pylori were cultured in Brucella broth medium 

(BB) supplemented with 10% fetal bovine serum (FBS) under microaerophilic 

conditions (5% O2, 10% CO2, and 85% N2 at 37ºC; Sanyo-Multigas Incubator, 

SANYO Electric Co., Ltd. Tokyo, Japan) with 100% humidity on a gyratory 

shaker set at 160 rpm. The formula absorbance of 0.1 = 108 bacteria/ml was 

used to estimate the concentration of bacteria in each culture. 

4.2 Cell culture and co-culture conditions 

The human gastric carcinoma cell lines AGS and MKN-45 were purchased from 

American Type Culture Collection (Manassas, VA, USA); cells were grown in 

RPMI 1640 containing 2 mmol/L L-glutamine and 10% FBS at 37ºC in 5% CO2. 

The cells were routinely passaged every 3 days. Each cell line was 

authenticated by National Institute of Biomedical Innovation, Osaka, Japan as 

identical to the corresponding cell line registered in the Japanese Collection of 

Research Bio-resources Cell Bank (JCRB) database. Cells were seeded into 

6cm culture dish and grown for 24 h; these cultures were then washed with 

phosphate-buffered saline (PBS) three times before co-culture. Fresh RPMI 
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1640 medium without antibiotics or FBS was added 1 h before addition of H. 

pylori. Before each co-culture experiment, H. pylori were cultured overnight in 

BB-FBS-10% under the conditions described above and then washed twice with 

PBS; these bacteria were then directly added to AGS/MKN-45 cells for the 

indicated times. 

4.3 Stimulants, antibodies and inhibitors 

A selective TAK1 inhibitor (5Z-7-oxozeaenol (5OZ)) (Ninomiya-Tsuji et al., 

2003), TNF-, HB-EGF, and human EGF were purchased from R&D systems 

(Minneapolis, MN, USA). Antibodies against NOD1, p38 phospho-p38 

(Thr-180/Tyr-182) or EGFR (Ser-1046/7, Tyr-992, Tyr-1045, Tyr-1068) were 

purchased from Cell Signaling Technology (Danver, MA, USA). Antibodies 

against TAK1 (M-579), phospho-TAK1, total EGFR (1005), hBD3 (FL-67), or 

Actin (C-11) were purchased from Santa Cruz Biotechnologies (Santa Cruz, CA, 

USA). Mouse anti-H. pylori CagA (B237H) antibody was purchased from Abcam 

Biotechnologies (Cambridge, UK), and anti-H. pylori UreA antibody was 

purchased from Dako (Carpinteria, CA, USA). SB203580 (SB), a chemical 

inhibitor of p38 was purchased from Merck Biosciences (Whitehouse Station, 

NJ, USA). The SB and 5OZ were each dissolved separately in dimethyl sulfoxide 

(DMSO) (Wako Pure Chemical Industries Ltd, Osaka, Japan), and the final 

concentration of DMSO was less than 0.1%.

4.4 Quantitative reverse transcription polymerase chain reaction (RT-PCR) 

In order to evaluate hBD1, hBD2, and hBD3 expression, cells were co-cultured 

with H. pylori for 1 h to 48 h, then washed with PBS three times, and then 

scrapped from the dish substratum with a rubber policeman (Thermo Fischer 
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Scientific Inc., Waltham, MA, USA); RNeasy Plus Mini kits (Qiagen, Hilden, 

Germany) were then used according to the manufacturer’s instructions to extract 

total RNA from cells. Exscript RT Reagent Kits (Takara Bio Inc., Shiga, Japan) 

and random primers were used for reverse transcription of 1g of total RNA; 

RT-qPCR was then performed as follows: PCR amplification of mRNA encoding 

each hBD (1, 2, or 3) and glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) was performed using SYBR Premix Ex Taq (Takara Bio Inc., Shiga, 

Japan). Quantification of hBD1 mRNA was carried out using commercial primers 

(Qiagen, Hilden, Germany); for hBD2 mRNA, the forward 

5′-CTGATGCCTCTTCCAGGTGTTT-3′ and reverse 

5’-GAGACCACAGGTGCCAATTTG-3’ primers were used; for hBD3 mRNA, the 

forward 5’-TCTGCCTTACCATTGGGTTC-3’ and reverse 

5’-CACGCTGAGACTGGATGAAA-3’ primers were used; and for GAPDH, the 

forward 5’-GCACCGTCAAGGCTGAGAAC-3’ and reverse 

5’-TGGTGAAGACGCCAGTGGA-3’ primers were used. The Mx3000 QPCR 

system (Agilent Tech., Santa Clara, CA, USA) was used for RT-qPCR. The PCR 

cycling conditions were as follows: an initial denaturation step for 10 min at 

95°C; then 40 cycles at 95°C (30 s), 60°C (30 s) and 72°C (30 s); 3 min at 95°C; 

and finally 10 s at 50°C. Expression of each hBD mRNA was normalized relative 

to GAPDH mRNA expression, which functioned as an internal control in each 

sample. The hBD expression in a sample was determined by comparing hBD 

mRNA amplification with those of standard PCR products of known 

concentration. The standards of known concentrations were prepared by 

purifying the PCR products of all hBDs genes in H. pylori infected samples using 
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the PCR clean-up system (Promega, Madison, WI, USA). Relative expression 

percentages were calculated as the percentage of an individual hBD mRNA 

relative to GAPDH mRNA (hBD/GAPDH*100); the average of three independent 

experiments, each with PCR reaction efficiencies of more than 80%, were used 

to calculate relative expression 

4.5 Western blotting 

AGS cells were pretreated with the indicated specific inhibitor or stimulant for 30 

min and then were exposed to H. pylori. After the co-culture experiment with H. 

pylori, gastric epithelial cells were rigorously washed with ice-cold PBS six times 

to ensure removal of adherent extracellular H. pylori. Whole-cell lysates were 

prepared from AGS or MKN-45 cells with whole-cell lysis buffer as described 

previously (Zaidi et al., 2009). However, to prepare bacterial cell lysates for 

western blotting analysis, a special Bacterial Protein Extraction Reagent 

(B-PER) (Thermo Scientific, Rockford, IL, USA) was used instead of whole-cell 

lysis buffer, which failed to extract H. pylori protein. Proteins in cell lysates were 

then resolved by SDS-PAGE and transferred to an Immobilon-P nylon 

membrane (Merck Millipore, Billerica, MA, USA). Each membrane was treated 

with BlockAce (Dainippon Pharmaceutical Co., Ltd., Suita, Japan) and probed 

with the indicated primary antibodies. Primary antibodies were detected with 

horseradish peroxidase-conjugated anti-rabbit, anti-mouse, or anti-goat 

immunoglobulin G (Dako) and then visualized with ImageQuant LAS4000 (GE 

Healthcare, Little Chalfont, Buckinghamshire, UK). To enhance the 

immunoreaction, some antibody reactions were conducted in Can Get Signal 

solution (Toyobo corp., Osaka, Japan). 
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4.6 Flow cytometry 

After the stimulation of AGS cells with H. pylori, HB-EGF or HB-EGF, those 

cells were harvested in PBS. Those treated AGS cells were fixed with 2% 

paraformaldehyde for 20 min at room temperature. Cells were re-suspended in 

100 l of FACS buffer (PBS containing 0.5% bovine serum albumin and 0.05% 

NaN3) containing 1 g of anti-EGFR monoclonal antibody (clone LA1; Upsate) 

and then were incubated on ice for 30 min. After that, the cells were washed with 

FACS buffer; next the cells were incubated with fluorescein 

isothiocynate-conjugated anti-mouse IgG antibody (Dako) on ice for 30 min and 

analyzed by the FACSCalibur system (BD). Experiments were carried out 

minimally two times and the representative results were shown. 

4.7 RNA interference 

Small interfering RNAs (siRNAs) were synthesized at Hokkaido System Science 

Co., Ltd. (Hokkaido, Japan). Target sequences against NOD1, EGFR, TAK1, 

p38 and firefly luciferase genes were: 

5’-GGCCAAAGUCUAUGAAGAUTT-3’, 

5’-CCUAUGCCUUAGCAGUCUUAUCUAA-3’, 

5’-UGGCUUAUCUUACACUGGA-3’, 

5’-GCAUUACAACCAGACAGUUGAUAUU-3’, and 

5’-CGUACGCGGAAUACUUCGA-3’, respectively. 

Lipofectamine 2000 (Life Tech., Carlsbad, CA, USA) was used to transfect 

siRNAs in a final concentration of 20 nM into AGS cells. Approximately 72 h after 

transfection, cells were co-incubated with H. pylori for 60 min or 8 h. 
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4.8 Immunofluorescence microscopy 

To monitor EGFR internalization, AGS cells were seeded onto individual 

glass-bottom culture dishes (FastGene, Nippon Genetics, Tokyo, Japan) and 

co-cultured with H. pylori for 60 or 120 min. To evaluate effect of siTAK or sip38 

on EGFR internalization, Lipofectamine 2000 (Life Tech., Carlsbad, CA, USA) 

was used to transfect AGS cells with an individual siRNA at a final concentration 

of 20 nM. Approximately 72 h after transfection, H. pylori were added to AGS 

cells and the co-cultures were incubated for 60 min. Cells were fixed with 

paraformaldehyde, subsequently stained with anti-EGFR antibody clone LA1 

(Merck Millipore, Billerica, MA, USA), and then with Alexa-488-conjugated 

anti-mouse IgG antibody (Life Tech., Carlsbad, CA, USA); immunofluorescence 

was analyzed with a LSM 700 confocal microscope (Zeiss, Jena, Germany). 

Three independent experiments were performed. 

4.9 Statistical analysis 

The student’s t-test was used to evaluate the significance of differences between 

groups; Microsoft Excel 2013 was used for all statistical calculations. At least 

three independent replicates were used for each experiment, and pooled data 

are represented as mean ± SEM. The level of significance was set at p < 0.01. 

Mean and standard deviation were used to assess quantitative measures for 

RT-PCR results. For western blotting, flow cytometry, and immunofluorescence 

one representative figure out of three independent experiments is shown. 
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5. RESULTS 

5.1 Phosphorylation of TAK1, p38and residues of EGFR by TNF- and H. 

pylori stimulation in gastric epithelial cells 

As reported earlier, TNF- induces phosphorylation of TAK1, p38, serine and 

threonine residues of EGFR in non-gastric (HeLa) cells (Nishimura et al., 2009). 

In this study, we first confirmed the similar effect in gastric epithelial cells. TNF- 

triggered phosphorylation of serine and threonine residues of EGFR after 5 min 

of incubation without any effect on tyrosine residue (Fig 5.1A). Next, we 

evaluated the effect of H. pylori in AGS cells on phosphorylation of TAK1, and 

p38. H. pylori induced the phosphorylation of TAK1, and p38 in a 

time-dependent manner. TAK1 activation was highest at 30 min of incubation 

while phosphorylation of p38 was peaked at 45 min (Fig 5.1B). We examined 

phosphorylation of serine (pS1046/7) and threonine (pT669) residues of EGFR 

in H. pylori-infected cells. Serine and threonine residues of EGFR were 

phosphorylated after 30 min of H. pylori co-culture and decreased at 120 min 

(Fig. 5.1C). We compared the effect EGF, HB-EGF, H. pylori and TNF- 

stimulation on serine and threonine phosphorylation of EGFR at mentioned time 

intervals. All four stimulatory agents induced phosphorylation of threonine 

residue while only H. pylori and TNF- brought about phosphorylation in serine 

residue (Fig 5.1D). This shows that serine phosphorylation of EGFR is quite 

specific with H. pylori infection in AGS cells and not related to other ligands of 

EGFR. 
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Figure 5.1: Phosphorylation of residues of EGFR, activation of TAK1, p38 

and EGFR in TNF- stimulated and H. pylori-infected gastric epithelial 

cells. 

A, AGS cells treated with 10 ng/ml TNF- for 5, 10, 30, or 60 min; B, Effect of H. 

pylori on activation of TAK1 and p38; C, Phosphorylation of serine and 

threonine residues of EGFR by H. pylori. D, A comparative analysis of 

phosphorylation of serine/threonine, and tyrosine residues of EGFR by H. pylori, 

TNF-, HB-EGF, and EGF. AGS cells were incubated with H. pylori (60 min), 

TNF- (10 min), HB-EGF (10 min), and EGF (10 min) with subsequent lysis and 

immunoblot analysis with phospho-EGFR, total EGFR, and Actin antibodies. 

Each western blot shown is representative of three independent experiments. 

Multiplicity of H. pylori infection was 50:1. 
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5.2 Internalization of EGFR by H. pylori in gastric epithelial cells 

Endocytosis of EGFR was analyzed by fluorescence microscopy (Fig. 5.2A). 

EGFR was drastically internalized after 60 min of H. pylori inoculation. We 

further confirmed the internalization of EGFR by flow cytometry after H. pylori 

co-culture at different point intervals. Maximum internalization of EGFR was 

evident at 60 min of H. pylori co-culture (Fig. 5.2B). This pattern of internalization 

correlated with our microscopy results. These results clearly demonstrated that 

H. pylori induces internalization of EGFR. 
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Figure 5.2: Internalization of EGFR by H. pylori in gastric epithelial cells. 

A and B, AGS cells were incubated with H. pylori for 60 and 120 min and 

subcellular localization of EGFR was examined by confocal fluorescent 

microscopy (A) or cell surface expression of EGFR was investigated by flow 

cytometric analysis (B). 

Multiplicity of H. pylori infection was 50:1. Each figure shown is representative of 

three independent experiments. 
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5.3 Effect of CagA¯ and △virB4 H. pylori strains on phosphorylation of serine 

residues of EGFR 

AGS cells infected with H. pylori 193C or CPY2052 showed specific 

phosphorylation of a serine residue of EGFR (pS1046/7); however, tyrosine 

residue (pY1068) was not phosphorylated (Fig. 5.3A). Time-course analysis 

showed pS1046/7 phosphorylation levels peaked 60-120 min after initial 

co-culture with H. pylori. A similar serine phosphorylation was observed in AGS 

cells infected with CagA knockout H. pylori CP1; and CagA protein was not 

expressed in the host cells infected with H. pylori CP1 (Fig. 5.3B). To address 

the involvement of cagPAI and T4SS in inducing phosphorylation of serine 

residues of EGFR, we employed a △virB4 (impaired T4SS) H. pylori strain and 

co-cultured it with the gastric epithelial cell lines, AGS. The △virB4 H. pylori 

failed to induce phosphorylation of serine at indicated time intervals compared to 

wild-type strain in both cell lines (Fig 5.3C). 

 To analyze the presence of CagA in each H. pylori strains bacterial 

lysates were prepared using B-PER bacteria lysis buffer. CagA expression in 

each H. pylori strain is shown in figure 5.3D. We performed genome sequencing 

of 3’ region of CagA for both the wild-type strain of H. pylori strains (193C and 

CPY2052) used in this study. As both the strains were derived from Japanese 

patients, the 3’ region of CagA of each strain showed similar EPIYA-ABD motif 

sequence (see supplementary figure 1, page 68). Hence, the major pathogenic 

region of CagA of both the H. pylori strain is similar. 
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Figure 5.3: Effect of wild-type (WT), CagA¯ and △virB4 H. pylori strains on 

phosphorylation of serine residues of EGFR. 

A and B, AGS cells were infected with H. pylori 193C, CPY2052, or CP1 

(CagA¯) for 60 or 120 min. Phosphorylation of serine residue of EGFR was 

evaluated by western blot. Each H. pylori strain strongly induced serine 

phosphorylation during early-phase infection. Activation of EGFR can also be 

noted as slight upwards shift of the EGFR band 60 and 120 min post infection; 

C, Wild type H. pylori (193C) and type IV secretion machinery deleted (△virB4) 

strains were cultured in Brucella broth while AGS cells were cultured in 

RPMI1640 and subsequently co-incubated as mentioned before for indicated 

time intervals; D, Bacterial protein was extracted using B-PER from each H. 

pylori strain to evaluate presence of CagA protein using anti-CagA antibody. 

Anti-H. pylori UreA antibody was used as an internal control. 

Each western blot shown is representative of three independent experiments. 

Multiplicity of H. pylori infection was 50:1. 
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5.4 Role of HB-EGF in phosphorylation of serine residue and EGFR endocytosis 

To rule out the involvement of HB-EGF in phosphorylation and endocytosis of 

EGFR, we employed anti-HB-EGF neutralizing antibody in H. pylori-co-cultured 

cells. EGFR transactivation implicates triple membrane passing signal (TMPS) 

transmission events which involves activation of G-protein-coupled receptors, 

induction of extracellular transmembrane metalloprotease cleavage of 

pro-HB-EGF, and EGFR signaling by HB-EGF in an autocrine or paracrine 

manner (Prenzel et al., 1999). H. pylori has been documented to have matrix 

metalloproteinase activity, raising the possibility of direct bacterial cleavage, 

leading to release of HB-EGF (Gooz M, Gooz P, and Smolka, 2001). In addition, 

members of ADAM family have also been regulated by H. pylori infection 

responsible for EGFR transactivation (Keates et al., 2001; Wallasch et al., 

2002). Involvement of ADAM17 has been documented in the release of TNF- 

and three EGFR ligands, including HB-EGF (sunnarborg et al., 2002). 

Pretreatment with anti-HB-EGF antibody showed no inhibition for the 

phosphorylation of serine residue of EGFR at 60 min of H. pylori-infection (Fig. 

5.4A). We next performed flow cytometry in which the cell surface expression of 

endogenous EGFR could be examined quantitatively. H. pylori-induced 

endocytosis of EGFR was not inhibited by anti-HB-EGF antibody (Fig. 5.4B). 

However, anti-HB-EGF antibody demonstrated complete inhibition of 

HB-EGF-induced endocytosis of EGFR (Fig. 5.4C). Collectively, these results 

vividly pointed out the occurrence of serine phosphorylation of EGFR which is 

independent of HB-EGF-related transactivation of the receptor. 
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Figure 5.4: Role of HB-EGF in phosphorylation of serine residue and EGFR 

endocytosis. A, AGS cells were cultured in the presence or absence of 

anti-HB-EGF antibody (3g/ml) for 30 min followed by addition of H. pylori for 

another 60 min; B, Effect of anti-HB-EGF antibody on H. pylori-induced 

endocytosis of EGFR. Gastric cells were pre-incubated with anti-HB-EGF 

antibody (3g/ml) for 30 min followed by H. pylori infection for 60 min. Blue area 

shows negative control in the data of flow cytometry. Black, red and blue lines 

exhibit control, H. pylori-infected cells, and H. pylori-infected cells pretreated with 

anti-HB-EGF antibody respectively; C, Effect of anti-HB-EGF antibody on 

HB-EGF-induced endocytosis of EGFR. MKN45 cells were pre-incubated with 

anti-HB-EGF antibody (3g/ml) for 30 min followed by HB-EGF for 10 min and 

subsequent flow cytometric analysis. Purple area shows negative control in the 

data of flow cytometry. Black, red and yellow lines exhibit control, 

HB-EGF-treated cells, and HB-EGF-treated cells pre-incubated with 

anti-HB-EGF antibody respectively. Each figure shown is representative of three 

independent experiments. Multiplicity of H. pylori infection was 50:1. 
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5.5 Role of TAK1 and p38 in phosphorylation of EGFR serine residue 

To further characterize the signaling pathways leading to serine 

phosphorylation, we next confirmed the role of TAK1 and p38 in 

phosphorylation of serine EGFR residues and its ultimate internalization. siRNA 

experiment was performed with siTAK1 and sip38. As shown in figure 5.5A, 

siRNA against TAK1 not only inhibited the phosphorylation of EGFR serine but 

also p38 which reflects the involvement of TAK1 in p38 activation and 

subsequent inhibition of serine phosphorylation. Similarly, siRNA against p38 

markedly decreased the phosphorylation of serine residue (Fig 5.5B). 

Immunofluorescence staining data showed that EGFR internalization in H. 

pylori-infected TAK1- or p38-knockdown AGS cells was inhibited, and EGFR 

protein was localized on the membrane without internalization of EGFR (Fig. 

5.5C). These results clearly demonstrated the crucial involvement of TAK1 and 

p38 in phosphorylation of serine residue of EGFR.  
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Figure 5.5: Role of TAK1 and p38 in phosphorylation of EGFR serine 

residue. 

A and B, AGS cells were transfected with siRNAs against TAK1 (A) and p38 

(B) and luciferase as control. At 72 h post-transfection, cells were stimulated with 

H. pylori for 60 min. Whole cell lysates were prepared and immunoblot analysis 

was performed with indicated antibodies as mentioned before; C, Internalization 

of EGFR was analyzed by immunofluorescence in siTAK1 or sip38 treated 

gastric epithelial cells at 60min post- H. pylori infection. 

Multiplicity of H. pylori infection was 50:1. Each figure shown is representative of 

three independent experiments. 
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5.6 Novel EGFR activation pathway in H. pylori-infected gastric epithelial cells 

These observations clearly signify the existence of an alternate pathway of 

EGFR activation via TAK1-p38 phosphorylation of serine residue of EGFR, 

independent of classical HB-EGF-related transactivation of the receptor (Fig. 

5.6). 

 

 

Figure 5.6: Schematic representation of an alternate pathway in H. 

pylori-infected gastric epithelial cells. H. pylori activate EGFR via TAK1-p38 

phosphorylation of serine residue of EGFR, independent of classical 

HB-EGF-related transactivation of the receptor. Intracellular pathway shown 

within red dotted box is reported for the first time in this study. 

*** (Transactivation pathway: Keates et. al., J Biol Chem (2001) 276: 48127-34) 
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5.7 Time-dependent effect of H. pylori infection on expression of hBDs 

Next, we assessed the expression of each human -defensin (hBD1, 2, and 3) in 

the AGS cell line. RT-PCR data showed that hBD1 was constitutively expressed 

in uninfected AGS cells and this expression decreased after H. pylori infection 

(Fig. 5.7). Neither hBD2 nor hBD3 was expressed in uninfected AGS cells. 

However, during the early phase of H. pylori infection (up to 2-8 h after 

co-culture) in AGS cells, expression of hBD2 and of hBD3 was upregulated; 

interestingly, hBD3 expression was higher than hBD2 expression and 

time-dependent (Fig. 5.7). In the late phase of infection (48 h), hBD3 release 

was decreased, thus possibly allowing the H. pylori to survive long term in hostile 

gastric environment. Previous studies show that the anti-H. pylori activity of 

hBD3 is 100 times more potent than that of hBD2 (Kawauchi et al., 2006; Bauer 

et al., 2012); therefore, the precise cellular mechanism of hBD3 release is very 

important to understanding how H. pylori evade host defense responses and 

survive in the stomach. 

 

 

 

 

 

 

 



H. pylori induces hBD3 via novel EGFR pathway 40 

 

 

Figure 5.7: Time dependent effect on expression of human -defensins-1, 

-2, and -3 in H. pylori-infected gastric cells (AGS).  

The hBD1 is constitutively expressed in human gastric cells and is suppressed 

completely after 24 h post-infection. The hBD2 and 3 are released upon H. pylori 

193C infection as a host immune response. The hBD2 seems to maintain fairly 

low constant levels for up to 48 h after H. pylori infection, but hBD3 expression 

increased to very high levels in first 4 h then decreases with time and reaches to 

uninfected levels at 48 h after H. pylori infection. Multiplicity of infection was 50 

bacteria to each cell (MOI; 50:1). Data is represented as mean ± SEM of three 

independent experiments (n=3). 
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5.8 Release of hBD3 from gastric epithelial cells infected by wild-type H. pylori 

and CagA knocked-out H. pylori  

In order to evaluate the time-dependent release of hBD3, two wild-type strains of 

H. pylori and a CagA¯ strain were used to induce hBD3 expression in AGS and 

MKN45 cell lines. Based on RT-PCR data, each cell type exhibited a 

time-dependent increase in hBD3 expression after infection with either of two 

wild-type H. pylori clinical strains (193C or CPY2052). With each H. pylori strain, 

hBD3 mRNA expression peaked at 8 h after H. pylori infection. Thereafter, hBD3 

mRNA levels began to decline, and no hBD3 expression was evident 48 h after 

H. pylori infection. In contrast, infection with H. pylori CagA knocked-out strain, 

hBD3 mRNA expression was only weakly downregulated during the late phase 

of infection (Fig. 5.8A). For each H. pylori strain hBD3 protein expression peaked 

8-24 h after H. pylori infection. Similar to mRNA expression, hBD3 protein 

expression was also downregulated during the late phase of H. pylori infection. 

However, hBD3 protein expression, like the mRNA, persisted in both AGS and 

MKN45 cell lines infected with CagA knockout H. pylori and was only slightly 

down regulated during the late-phase infection (Fig. 5.8B and 5.8C). These 

results indicated that release of hBD3 during early-phase infection was 

CagA-independent. We also analyzed H. pylori lysates for cross-reactivity 

between H. pylori antigens and hBD3 antibody. The hBD3 antibody used in this 

study did not cross-react with any H. pylori proteins in any of the four strains (see 

supplementary figure 2, page 69). 
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Figure 5.8: Time dependent effect of H. pylori infection on human beta 

defensin-3 (hBD-3) release from human gastric epithelial cells. 

A, The ability of H. pylori strain 193C, CPY2052 and CP1 (CagA¯ for CPY2052) 

to induce hBD3 mRNA expression in AGS cells was examined. H. pylori 193C 

and CPY2052 induced time-dependent increases in hBD3 expression for 8 h 

after co-culture; expression then decreased and became negligible at 48 h after 

co-culture. However, hBD3 expression was not down-regulated 8 h or later after 

co-culture with H. pylori CP1 (CagA¯). RT-PCR data is represented as mean ± 

SEM of three independent experiments (n=3); B, In AGS cells the hBD3 protein 

was detectable 4 h after co-culture with each individual strain and showed a 

pattern similar to that of mRNA; C, Similar pattern of hBD3 protein expression 

was confirmed in MKN-45 cell line infected with three strains of H. pylori. 

Each western blot shown is representative of three independent experiments. 

Multiplicity of infection was 50 bacteria per cell for all experiments (MOI; 50:1). 
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5.9 The effect of exogenous EGF on hBD3 release  

EGF, a ligand of EGFR, is known to cause auto-phosphorylation and 

internalization of EGFR via classical transactivation pathway leading to 

activation of MAPK pathways (Morandell et al., 2008). To evaluate the effect of 

exogenous EGF on the release of hBD3 in gastric epithelial cells, AGS cells 

were pre-incubated with EGF (10 ng/ml) for 5 min and then incubated with or 

without H. pylori (193C) infection for 8 h; hBD3 release was analyzed. EGF 

alone activated EGFR, but failed to induce hBD3 release from AGS cells. In 

contrast, H. pylori (193C) infection even without the EGF stimulation was able to 

induce high levels of hBD3; moreover, there was no significant additive effect of 

EGF and H. pylori infection together (Fig. 5.9A). Also when the AGS cells were 

treated with high doses of exogenous EGF, the hBD3 was not induced from 

AGS cells (Fig. 5.9B). Therefore, this data excludes the role of classical 

transactivation pathway in the release of hBD3 from H. pylori-infected gastric 

epithelial cells. 
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Figure 5.9: Effect of EGF on hBD3 release from H. pylori-infected gastric 

epithelial cells. 

A, AGS cells were co-cultured with H. pylori for 8 h with or without a 5 min EGF 

(10 ng/ml) pretreatment. Pretreatment with EGF alone activated EGFR, but did 

not induce hBD3 release. This finding showed that activation of EGFR by H. 

pylori was essential for hBD3 release from gastric epithelial cells; B, 

Dose-response effect of EGF treatment on release hBD3 release from H. 

pylori-infected gastric epithelial cells was evaluated. For positive control, AGS 

cells were co-cultured with H. pylori 193C. Samples were collected 8 h after 

experiment. 

Each figure shown is representative of three independent experiments. 

Multiplicity of H. pylori infection was 50:1. 
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5.10 Effect on the hBD3 release by inhibiting TAK1 or p38 

TAK1 is a key regulator in the phosphorylation and activation of p38 which 

leads to EGFR activation via phosphorylation of EGFR serine residues in HeLa 

cells (Nishimura et al., 2009) and we showed that similar EGFR activation 

pathway exists in H. pylori-infected gastric epithelial cells; however, this pathway 

is not proven on the functional linkage with the release of hBD3 in H. 

pylori-infected gastric epithelial cells. Therefore, next we evaluated the direct 

role of the TAK1-p38pathway in the induction of hBD3 from H. pylori-infected 

gastric epithelial cells. To investigate the roles of TAK1 and p38in hBD3 

release, gastric epithelial cells were pre-incubated with SB203580 (SB), a p38 

inhibitor, or 5Z-7-oxozeaenol (5OZ), a TAK1 inhibitor, for 30 min before 

co-culture with H. pylori 193C. In the presence of either inhibitor (SB or 5OZ), 

hBD3 mRNA expression was significantly downregulated (p < 0.01) (Fig. 5.10A). 

Next, we demonstrated that hBD3 protein expression was also downregulated in 

the presence of either TAK1 or p38inhibitor in gastric epithelial cells 8 h after 

infection with either of two H. pylori strains, 193C or CPY2052 (Fig. 5.10B). 
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Figure 5.10: Effect on the hBD3 release by inhibiting TAK1 or p38H. 

pylori-infected gastric epithelial cells

A, to evaluate the role of TAK1 and p38 we performed experiments with a p38 

inhibitor (SB203580; SB) or a TAK1 inhibitor (5Z-7-oxozeaenol; 5OZ). RT-PCR 

analysis of hBD-3 release 2 h after co-culture with H. pylori 193C in the presence 

of SB or 5OZ confirms roles for TAK1 and p38 in hBD3 release. (n=3); B, 

Expression of hBD3 8 h after co-culture with H. pylori 193C and CPY2052 

analyzed by western blot in the presence of all inhibitors. Figure is 

representative of three independent experiments. 

Multiplicity of H. pylori infection was 50:1. RT-PCR data is represented as mean 

± SEM of three independent experiments. (*, p < 0.01) 
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5.11 Role of T4SS machinery in the release of hBD3 from H. pylori-infected 

gastric cells 

In order to evaluate the role of T4SS machinery of H. pylori in the release of 

hBD3, AGS cells were infected for 45 min or for 8 h with wild-type H. pylori 

(193C) or T4SS mutant (△virB4) H. pylori strain. Infection with a H. pylori △

virB4 (impaired T4SS) strain did not induce hBD3 protein expression in AGS 

cells at any time point. Also, H. pylori △virB4 was unable to induce the 

phosphorylation of TAK1 or p38 (Fig. 5.11A). This data along with the results 

shown in figure 8 indicated that release of hBD3 during early-phase infection 

was T4SS-dependent, but was CagA-independent. 

 Along with CagA, H. pylori is also capable of delivering peptidoglycan 

via T4SS into the host cells. Delivery of H. pylori peptidoglycan by T4SS 

activates NF-B and MAPKs via NOD1 and it induces IL-8 production from 

gastric epithelial cells (Allison et al., 2009; Viala et al., 2004). Therefore, to 

exclude the role of NOD1 activation in the release of hBD3 by H. pylori 

peptidoglycan, NOD1-knockdown gastric epithelial cells were infected with H. 

pylori 193C. After 8 h of H. pylori co-culture, hBD3 was induced in both types of 

gastric epithelial cells, wild-type AGS cell and NOD1-knockdown AGS cells (Fig. 

5.11B). This data suggested that the production of hBD3 was dependent on 

EGFR activation, but independent of NOD1 activation. 

 

 

 



H. pylori induces hBD3 via novel EGFR pathway 48 

 

 

Figure 5.11: Role of type IV secretary system machinery in the release of 

hBD3 from H. pylori-infected gastric epithelial cells. 

A, AGS cells were infected H. pylori △virB4 for 45min and for 8 h, separately. 

H. pylori △virB4, which harbor impaired T4SS, did not activate TAK1 and p38, 

also failed to induce hBD3 release from the host cells. Co-culture with H. pylori 

△ virB4 does not express intracellular CagA. To ensure expression of 

intracellular CagA, co-cultures cells were rigorously washed for 6 times using 

ice-cold PBS before obtaining whole cell lysates; B, AGS cells were transfected 

with siRNAs for NOD1. Approximately 72 h after transfection, the cells were 

co-cultured with H. pylori for 8 h. knockdown of NOD1 from gastric epithelial cells 

had no effect on the release of hBD3.  

Multiplicity of H. pylori infection was 50:1. Each figure shown is representative of 

three independent experiments. 
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5.12 Effects of siEGFR, siTAK1, or sip38on hBD3 release from H. 

pylori-infected gastric cells 

To evaluate the role of EGFR, TAK1 and p38 activation in H. pylori-induced 

hBD3 release, we analyzed hBD3 release in EGFR-, TAK1- or p38-knockdown 

AGS cells. Release of hBD3 was inhibited in EGFR knockdown gastric cells 

infected with H. pylori 193C (Fig. 5.12A). Furthermore, knockdown of TAK1 or 

p38in AGS cells completely inhibited the phosphorylation of the Ser-1046/7 

residue of EGFR. Also, none of the EGFR tyrosine residues were 

phosphorylated in either H. pylori-infected control AGS cells or siRNA 

knockdown AGS cells (Fig. 5.12B). EGFR tyrosine phosphorylation was 

detected using exogenous EGF (10 ng/ml) treated AGS cells as a positive 

control for this experiment. Next, we showed that hBD3 release of was 

completely inhibited in siTAK1 or sip38 H. pylori-infected AGS cells (Fig. 

5.12C).  
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Figure 5.12: Effect of siEGFR, siTAK1, and sip38 on release of hBD3 from 

H. pylori-infected gastric epithelial cells. 

A, AGS cells were transfected with siRNAs for EGFR. Approximately 72 h after 

transfection, the cells were co-cultured with H. pylori for 8 h. Knockdown of 

EGFR in gastric epithelial cells inhibited release of hBD3; B, AGS cells were 

transfected with siRNAs for TAK1, or p38. Approximately 72 h after 

transfection, the cells were infected with H. pylori for 60 min. Phosphorylation of 

serine residue of EGFR was not seen in siTAK1 and sip38gastric epithelial 

cells. Also, these results show that during early H. pylori infection 

phosphorylation EGFR tyrosine resides was not involved in activation of 

TAK1-p38 pathway. AGS cells treated with EGF (10 ng/ml) for 60 min was 

used as positive control; C, Induction of hBD3 was completely inhibited in 

siTAK1 or sip38 cells.  

Multiplicity of H. pylori infection was 50:1. Each figure shown is representative of 

three independent experiments. 
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5.13 Induction of hBD3 via novel EGFR activation pathway in H. pylori-infected 

gastric epithelial cells 

Hence, these results suggested that H. pylori infection in gastric epithelial cells 

activated a TAK1-p38 pathway and caused phosphorylation of a specific EGFR 

serine residue to induce hBD3 production (Fig. 5.13). 

 

 

Figure 5.13: Schematic representation of release of hBD3 from gastric 

epithelial cells by novel EGFR activation pathway in early-phase of H. 

pylori infection. 

Helicobacter pylori: H. pylori, T4SS: type IV secretion system machinery, EGFR: 

endothelial growth factor receptor, pS: phosphorylated serine residue of EGFR, 

hBD3: human -defensin 3. 
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6.1 DISCUSSION 

 H. pylori activate several intracellular signaling pathways in the host 

cell, and this signaling activates host innate immune responses (D’Elios and 

Czinn, 2014). AMPs released in response to H. pylori infection play an important 

role in cellular defense mechanisms. However, H. pylori is able to escape or 

overcome these host defense mechanisms (Aebischer, Meyer and Anderson, 

2010; George et al., 2003). Therefore, understanding cellular pathways involved 

in the release of AMP is vital to developing treatment strategies for H. 

pylori-related diseases. In the present study, we have demonstrated for the first 

time that in H. pylori-infected cells, EGFR can be regulated via intracellular 

pathways which are independent of the ligand- based (through HB-EGF) 

transactivation of the receptor. Also, we demonstrated that the release of hBD3 

from H. pylori-infected gastric epithelial cells occurs via a novel EGFR-activating 

pathway during an early phase of H. pylori infection. 

 Role of H. pylori has been well recognized as class I carcinogen, by 

World Health Organization, in the development of gastric cancer (IARC Working 

Group on the Evaluation of Carcinogenic Risks to Humans (Ed.), 1994). 

However, the pathogenesis behind H. pylori-induced carcinogenesis is intricate 

and poorly understood. Simultaneous involvement of several factors and 

signaling pathways, which are sometimes contradictory or conflicting to each 

other, makes the process complicated (Schweitzer et al., 2010; Tegtmeyer et al., 

2009). A recent such report has shown that simultaneous activation of EGFR 

protects gastric epithelial cells from H. pylori-induced apoptosis which may 

heighten the risk for the development of gastric cancer (Yan et al., 2009). EGFR 
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overexpression is common in human gastric cancer and high EGFR levels have 

been correlated with poor prognosis (Normanno et al., 2006). H. pylori not only 

up-regulates EGFR expression but also cause transactivation of EGFR via 

HB-EGF (Keates et al., 2001). Several reports have also documented the 

activation of EGFR via tyrosine kinase dependent auto-phosphorylation of 

different tyrosine residues upon dimerization with ligands such as EGF which 

triggers mitogen activated protein (MAP)-kinase signaling pathways (Keates et 

al., 2001; Morandell et al., 2008; Nakakuki et al., 2008). We have also 

demonstrated here that both EGF and HB-EGF induced tyrosine 

phosphorylation in AGS cells. Interestingly, EGF, HB-EGF, TNF-, and H. pylori 

all exhibited phosphorylation of threonine residue of EGFR which signifies that 

several pathways can modulate threonine phosphorylation. However, there was 

no effect of either HB-EGF or EGF on phosphorylation of serine residue of 

EGFR which appeared quite specific to H. pylori infection. This encouraged us to 

undermine the cause and role of serine phosphorylation in EGFR activation and 

internalization. We showed that H. pylori infection clearly induced 

phosphorylation of TAK1 which in turn causes activation of p38. Activation of 

p38 phosphorylates serine residue of EGFR and subsequently induces 

internalization of the receptor in p38 dependent manner. We did not observe 

phosphorylation of tyrosine residues in response to H. pylori at 60 min of 

co-culture. We could not rule out the possibility that this difference may be 

caused by difference in duration of H. pylori infection or multiplicity of infection. 

We further demonstrated that pretreatment with anti-HB-EGF neutralizing 

antibody did not affect the p38-induced phosphorylation and internalization of 
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EGFR (Fig. 4). These observations clearly signify the existence of alternate 

pathway of EGFR activation via TAK1-p38 phosphorylation of serine residue of 

EGFR, independent of classical HB-EGF-related transactivation of the receptor. 

 Binding of the ligand to extracellular domain of EGFR or H. pylori 

infection triggers EGFR activation (Keates et al., 2001; Keates et al., 2007; 

Zhang et al., 2006). In case of H. pylori infection, several virulence factors like 

CagA or VacA has been linked with severe outcomes of infection. CagA has 

long been under debate for its controversial role in H. pylori-associated 

pathology. For instance, contrary reports are documented on the role of CagA in 

the activation of NFB (Lamb et al., 2009; Sokolova et al., 2014; Schweitzer et 

al., 2010). Similarly, previous reports also demonstrated that CagA protein itself 

does not induce inflammatory responses, and play no role in MAP kinase 

activation (sokolova et al., 2014; Keates et al., 1999). EGFR overexpression and 

activation has been well documented by H. pylori. As far as our new pathway of 

EGFR internalization is concerned, CagA does not appear to play role in 

inducing serine phosphorylation of EGFR and eventually no effect on EGFR 

internalization (Fig. 4D). On the other hand, CagA has been shown to selectively 

inhibit EGFR endocytosis on prolong incubation i.e. after 20 h of co-culture 

(Bauer, Bartfeld and Meyer, 2009). 

 As reported earlier, H. pylori infection can lead to the release of 

membrane bound HB-EGF, hence two EGFR activation pathways can occur in 

the infected gastric mucosa; one is classical transactivation via HB-EGF and 

other by novel intracellular phosphorylation of EGFR via TAK1-p38 activation. 

The dilemma of simultaneous modulation of several pathophysiological 
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pathways by H. pylori renders outcome complicated and unpredictable. It’s too 

early to conclude which pathway of EGFR activation comes first or which 

pathway play the major role in pathogenicity of H. pylori infection but from our 

preliminary data we might postulate that intracellular TAK1-p38 pathway may 

have impact on EGFR activation in early phase of infection while the classical 

pathway of HB-EGF play role in chronic phase. However, this novel EGFR 

activation pathway and the interaction between TAK1 and EGFR by H. pylori 

might help in understanding the complex pathogenic process by this class I 

carcinogenic bacterium. Therefore, next we aimed to determine the functional 

role of this novel pathway in relation to the release of hBDs (hBD1, 2, and 3) 

from gastric epithelial cells as a host-immune response against H. pylori 

infection. 

 HBD1 is constitutively expressed in epithelial cells, and it has been 

reported that genetically modified hBD1-knockedout mice have an impaired 

ability to combat bacterial infections (Morrison et al., 2002). In fact, we also 

found that hBD1 was constitutively expressed in AGS cells, and this expression 

was completely suppressed after H. pylori infection. This suppression was due to 

CagPAI-dependent activation of NF-B pathway in H. pylori infected gastric cells 

(Patel et al., 2013). Further, our results and some previous in vitro findings 

showed that hBD2 and hBD3 expression was increased upon H. pylori-infection 

of gastric epithelial cells (Boughan et al., 2006; Bauer et al., 2013; Patel et al., 

2013). Some studies have shown that NOD1 activation following cagPAI+ H. 

pylori infection is a key regulator of hBD2 release (Boughan et al., 2006; Patel et 

al., 2013) and that EGFR-dependent activation of MAP kinase and JAK/STAT 
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signaling induces hBD3 release by H. pylori infection (Bauer et al., 2012). 

However, the precise EGFR activation mechanism was not investigated. Our 

study is the first report that documents the exact molecular mechanism that is 

responsible for hBD3 release from H. pylori-infected gastric epithelial cells; this 

mechanism involved a TAK1-p38 activation pathway that led to 

phosphorylation of specific EGFR serine residue and subsequent EGFR 

internalization. 

 During the late-phase of H. pylori infection, CagA binds to SHP-2 and 

dephosphorylates EGFR to suppress hBD3 expression; this suppression allows 

H. pylori to evade host immune responses (Bauer et al., 2012). Also in order to 

evade immune response, cagPAI+ H. pylori infection can induce the 

overexpression of programmed death-1 ligand 1 (PD-L1) in host gastric 

epithelial cells to suppress T-cell activation. This H. pylori-mediated PD-L1 

expression was regulated by bacterial peptidoglycan and only partially 

dependent on CagA injection into the host cell (Das et al., 2006; Lina et al., 

2015). In this study, we showed a time-dependent increase in hBD3 expression 

in the early phase of H. pylori infection with a CagA-knockout strain; therefore 

our data suggested that hBD3 release in early phase infection was independent 

of the presence of CagA in H. pylori. 

 Delivery of H. pylori peptidoglycan by T4SS activates NF-B and 

MAPKs via NOD1 and it induces IL-8 production from gastric epithelial cells 

(Allison et al., 2009; Viala et al., 2004). We showed that hBD3 release was 

induced in NOD1-knockdown gastric epithelial cells infected with H. pylori; 

therefore, the peptidoglycan-NOD1 pathway did not have any role in the 
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activation of TAK1-p38 pathway in H. pylori-induced hBD3 release from gastric 

epithelial cells. Based on these results, other unknown virulence factors besides 

CagA or peptidoglycan might be involved in the induction of hBD3, although the 

presence of functional T4SS in H. pylori was essential to induce hBD3 

production. 

 Multiple EGFR tyrosine residues are phosphorylated when gastric cells 

are co-stimulated with EGF in the presence of H. pylori (Bauer et al., 2013; 

Bauer et al., 2012) or co-cultured with H. pylori for very long time period (e.g. 24 

h) (Bauer et al., 2013; Hubbard et al., 2007). However, H. pylori or TNFalone 

fails to induce EGFR tyrosine residue phosphorylation within 60 min after 

co-culture (Bauer et al., 2012; Nishimura et al., 2009). Here we showed that only 

serine (pS1046/7) residue of EGFR was phosphorylated at 60 and 120 min after 

co-culture with either wild-type or a CagA knockout H. pylori strain. 

 H. pylori infection transactivates EGFR by a disintegrin- and 

metalloprotease (ADAM17)-dependent, NF–B-mediated shedding of 

membrane-bound HB-EGF (Saha et al., 2010). Reportedly, EGFR 

transactivation via membrane-bound HB-EGF induces hBD3 gene expression in 

a model of skin inflammation (Sørensen et al., 2005). However, Boughan et al. 

reported that the expression of hBD3 was only partially decreased (< 50%) even 

if HB-EGF transactivation pathway was inhibited (Boughan et al., 2002), 

suggesting that some other pathway might be responsible for hBD3 release. 

 In the present study, we used protein-specific inhibitors and TAK1 or 

p38 knockdown AGS cells to show that a TAK1-p38 pathway driven EGFR 

internalization was necessary in the release of hBD3 from H. pylori-infected 
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cells. Notably, our results showed almost complete suppression of hBD3 

production when the TAK1-p38 pathway was inhibited by specific chemical 

inhibitors or by siRNA-medicated knockdown of TAK1 or p38. We also showed 

that this TAK1-p38 pathway was dependent on functional H. pylori T4SS. 

 H. pylori obtained from the Japanese population, irrespective of 

associated disease condition, have similar CagA proteins and EPIYA motif 

(Yamada et al., 2012). Although the two strains used in this study were derived 

from patients with different diseases, both strains possess a similar EPIYA motif 

(ABD type). Also we showed that the production of hBD3 in H. pylori-infected 

gastric epithelial cells was independent of CagA in this study. However, the lack 

of availability of a single, isogenic strain for both CagA and T4SS mutants is a 

limitation of our study. 

 We showed that in H. pylori-infected gastric cells, the TAK1-mediated 

phosphorylation of an EGFR serine residue was found to be independent of 

HB-EGF related transactivation of EGFR. EGFR activation was specific to 

phosphorylation of serine residue of EGFR in H. pylori-infected gastric epithelial 

cells. Further, hBD3 production was completely inhibited in H. pylori-infected 

EGFR knockdown cells, suggesting that EGFR itself is essential for the release 

of hBD3 from gastric epithelial cells. 
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6.2 CONCLUSION 

 In conclusion, we demonstrated novel signaling pathways to EGFR via 

TAK1 and MAPKs in H. pylori-infected cells. Activation of two functionally distinct 

pathways, NF-B pathway and EGFR pathway, via TAK1 might explain the 

complicated and simultaneous occurrence of wide variety of signals in H. 

pylori-infected cells leading to the dysregulation of cell survival and death. Also, 

we have demonstrated that this novel TAK1-p38 pathway induced the 

phosphorylation of an EGFR serine residue, and this pathway functioned in the 

release of hBD3 from H. pylori-infected gastric epithelial cells. This study 

showed the mechanism by which H. pylori infection stimulated hBD3 expression 

in gastric epithelial cells during the early phase of infection as a host-cell 

immune response. Such precise molecular studies examining host-pathogen 

interactions provides an understanding of how H. pylori survives and persists in 

the human gastric mucosa, and studies like this might help in the identification of 

target molecules for the development of effective strategies to overcome 

persistent H. pylori infection. 
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SUPPLEMENTARY FIGURES 

 

 

Supplementary Figure 1: The amino acid sequence alignment of the two 

wild-type H. pylori strains used in this study. We performed genome 

sequencing of 3’ region of CagA for both the wild-type strains of H. pylori (193C 

and CPY2052) used in this study. Later the genome sequence was translated 

into amino acid sequence. As both the strains were derived from Japanese 

patients, the 3’ region of CagA of each strain showed similar EPIYA-ABD motif 

(green highlight). 

 

 

 

 

 

 

 

 

 

CPY2052  1  FSDIKKELNEK-FKNFNNNNNGLKNSTEPIYAKVNKKKTGQVASPEEPIYAQVAKKVNAK 

193C  1  FSDIKKELNEKLFGNSNNNNNGLKN--EPIYAKVNKKKAGQATSPEESIYAQVAKKVSTK 

 

CPY2052  61  IDRLNQIASGLGGVGQAAGFPLKRHDKVDDLSKVGLSASPEPIYATIDDLGGPFPLKRHD 

193C  61 IDQLNEVTSAINRKIDRINKIASAGKGVGGFSGAGRSANPEPIYATIDFDEANQAGFPLR 

 

CPY2052  121 KVD---DLSKVGRSRNQELAQKIDNLNQAVSEAKAGFFGNLEQTIDKLKDSTKKNVMNLY 

193C  121 RSAAVNDLSKVGLSREQELSHRIGDLNQAVSEAKTGHFGNLEQKIDELKDSTKKNALKLW 

 

CPY2052  181 VESAKKVPASLSAKLDNYAINSHTRI---------------------------------- 

193C  181 VESAKQVPTSLSAKLDNYATNSHTRIK--------------------------------- 
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Supplementary Figure 2: Cross-reactivity between H. pylori antigens and 

hBD3 antibody used in this study. Bacterial protein was extracted using 

B-PER from each H. pylori strain to evaluate presence of CagA protein. Anti-H. 

pylori UreA antibody was used as an internal control. The hBD3 antibody used in 

this study did not cross-react with any H. pylori proteins in all of the four strains 

used in this study. 
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THE END 
 

 

 

 

 

 

 

 

 

 

 

 

 


