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Deutsche Zusammenfassung

Die nachstehende Arbeit basiert auf physikalischen Beobachtungen, wie sie z.B. in der
Thermodynamik oder für Magnetismus anzutreffen sind. Man stelle sich ein System vor,
in dem zu Beginn ein Gebiet (

”
Tröpfchen“) vorliegt, das vorwiegend durch eine relevante

physikalische Größe dominiert wird. Dieses Gebiet sei wiederum eingebettet in einen Raum,
in dem eine gegensätzliche physikalische Größe vorliegt, die mit dem ursprünglichen Gebiet
derart interagiert, dass das Tröpfchen versucht seine Oberflächenspannung zu minimieren.
Dies führt dazu, dass das Tröpfchen im Laufe der Zeit immer kleiner wird und irgendwann
komplett aufgelöst wird. Hierbei ist weniger die zeitliche Größenordnung von Interesse, in
der das Tröpfchen verschwindet, als vielmehr die Art und Weise wie dies geschieht. Letztere
kann durch eine partielle Differentialgleichung beschrieben werden.

Die mathematische Beschreibung eines solchen (makroskopischen) Umstands durch
mikroskopische, zufällige Systeme im Sinne der statistischen Mechanik ist äußerst komplex
und nahm erst in den 1990er Jahren durch H. Spohn’s Interface motion in models with
stochastic dynamics richtig an Fahrt auf. Ein Grundbaustein der darin angegebenen Meth-
oden ist die Feststellung, dass die zeitliche Entwicklung der Oberfläche des Tröpfchens (im
Wesentlichen) lokal durch hydrodynamische Grenzwerte von Partikelsystemen beschrieben
werden kann. Lacoin, Simenhaus und Toninelli (Zero-temperature 2D Ising model and
anisotropic curve-shortening flow) nutzten diesen Umstand im Jahre 2011 aus, um den
Schrumpfungsprozess eines 2-dimensionalen Tröpfchen im Nulltemperatur-Ising Modell,
welches den Ferromagnetismus von Festkörpern beschreibt, durch eine zugehörige partielle
Differentialgleichung zu beschreiben.

Jene Arbeit bot Anlass und Hoffnung ein ähnliches Resultat auch für eine andere
mikroskopische, zufällige Beschreibung herleiten zu können. Im Fokus dieser Dissertation
stehen zufällige räumliche Permutationen, die erst seit wenigen Jahren mehr Aufmerksamkeit
erhalten, obwohl ihnen bereits seit Mitte des letzten Jahrhunderts große Bedeutung (z.B.
bezüglich Bose-Einstein-Kondensation) attestiert wurde.

Im Rahmen des vorliegenden Werks wird die Oberflächendynamik, welche sich mit-
tels Glauber-Dynamik aus dem Permutations-Modell ergibt, in Partikelsysteme übersetzt
und anschließend (für Teile der Oberfläche) im hydrodynamischen Grenzwert untersucht.
Wesentliche Arbeitsschritte sind hierbei die Herleitung des stationären Maßes, welches keine
Produkt-Form aufweist, sowie der Umgang mit der Tatsache, dass das Partikelsystem nicht
vom Gradienten-Typ ist. Als Hauptresultat ergibt sich die hydrodynamische Gleichung des
Partikelsystems.
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1. Introduction

The starting point of this Ph.D. project is set in an area of probability theory that developed
mainly in very recent years. It deals with random permutations (on countable sets) which
are chosen according to probability weights depending on the underlying spatial structure.
Typically, permutations are weighed in such a way that long jumps are discouraged, in
particular in the annealed version of the model. The Glauber dynamics with respect to such
a probability measure produces a time-continuous Markov chain on the set of permutations.

For spatial random permutations, many problems have already been addressed, mainly
regarding the lengths of permutation cycles. Another branch of investigation is the hy-
drodynamic (or thermodynamic) limit of the system, i.e. when both space and time are
rescaled.

The motivation of such a scaling comes from statistical mechanics, where one aims to derive
the macroscopical behaviour of a system from (random) microscopical dynamics. Typically,
the equilibrium state of the system is described by observables (such as temperature, pressure
or density), denoted by a parameter function f in time and space. In many models, it is
reasonable to assume that locally, in every neighbourhood Vu of a point u, the system tries
to obtain equilibrium according to the values of the observables f(t, u) at time t ∈ R+ in u.
The challenge is to give a description of how the parameter function f(t, u) evolves, which
is done by a system-specific partial differential equation, called hydrodynamic equation.
The derivation of these PDEs constitutes a main part of this thesis.

In our setting, a convex domain D ⊂ [−1, 1]2 with smooth enough boundary γ0 = ∂D
is given, as well as the local (microscopical) dynamics, which are governed by the above
mentioned Markov chain (with respect to an annealed Gibbs measure) for permutations
on a 2-dimensional lattice. The situation can be thought of from a thermodynamic point
of view as immersing a droplet of one phase into another phase, such that the interface
between the two shrinks over time and the droplet eventually disappears. Mathematically,
if we think of the underlying lattice as embedded in [−1, 1]2 and if the lattice spacing tends
to zero, γ0 can be approximated by a long cycle of nearest-neighbour permutations. Even
though the droplet D could locally increase its size, the dynamics will be such that the curve
eventually shortens and shrinks to a singleton in the hydrodynamic limit. Macroscopically,
such a behaviour can be observed for many physical models and is known as Lifshitz law.
However, the precise nature of the curve shortening flow is of much bigger interest.
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1. Introduction

To put it differently, the question one would like to answer is

“How exactly does the droplet’s boundary evolve in the hydrody-
namic limit?”

For the zero-temperature stochastic Ising model, recent papers [18, 19] have shown that it
shrinks according to some mean-curvature motion. This basically means that the normal
speed at a boundary point is given by the local mean curvature times a factor which depends
on the particular lattice. The proof in [18] relies on two connections to interacting particle
systems, for which the hydrodynamic equations are known and can be used to describe the
interface locally [35]. Having to deal with two particle systems (instead of just one) pays
credit to the lattice structure, such that we have a natural distinction between the local
dynamics at the poles and away from the poles.

For planar random permutations, the matter is more complex. This is mainly owed to
the fact that diagonal permutation jumps on the lattice are allowed. As a consequence, the
arising interacting particle system that models the droplet’s boundary evolution away from
the poles, is of non-gradient type and has no stationary measure of product form. Still, with
the help of a convenient toy-model, we will manage to derive the associated hydrodynamic
equation.

1.1. Outline of this Thesis

This thesis is structured in the following way.
Chapter 2 gives an introduction to several topics regarding Markov/Feller processes,

and in particular interacting particle systems. Concepts such as stationary measures, the
hydrodynamic limit or local equilibrium measures are discussed in the context of two
standard particle systems, namely the simple symmetric exclusion process in Section 2.2
on one hand and the zero-range process in Section 2.3 on the other hand. Apart from the
convenience of having concrete examples to illustrate the above concepts for readers which
are new to the field, the two interacting particle systems also play a fundamental role in
the proof of mean-curvature droplet shrinking for the zero-temperature 2-dimensional Ising
model. Furthermore, the exclusion process is used in a heuristic approach for the range-r
exclusion process later on.

The Ising model is introduced in Chapter 3, which both gives a recapitulation of the
curve shortening flow shown in [18, 19] and lays the groundwork for a similar result for
spatial random permutations.

Chapter 4 constitutes the main body of this thesis. In Section 4.1 we connect the
planar random permutations to a model of interacting particle systems. Due to its difficult
character, we include the derivation of the hydrodynamic equation for a similar particle
system, the range-r exclusion process, in Section 4.2. After defining the proper stochastic
model, we state the hydrodynamic equation in Theorem 4.2.1. To prove the latter, we

2



1.1. Outline of this Thesis

derive the stationary measures first (Subsection 4.2.3) and then move on to the proof in
Subsection 4.2.4. Here, a well known heuristic approach for hydrodynamic equations (the
so-called local equilibrium ansatz) is included in Remark 4.2.4. However, in Subsection 4.2.5,
we show another (unusual) approach, that relies on the similarity to the simple symmetric
exclusion process. We wrap up this particle system with some conclusive thoughts and
connections (Subsection 4.2.6).

Afterwards, we are better prepared to deal with the AFP-model, i.e. with the particle
system that models the spatial random permutation dynamics away from the poles. We
proceed by defining the model in Subsection 4.3.1, deriving non-product stationary measures
in Subsection 4.3.2 and stating the hydrodynamic equation in Subsection 4.3.3. Contrary
to the previous section, due to its complexity with respect to the non-gradient property of
the particle system, the martingale approach obtains his own subsection in 4.3.4. In the
end, we prove the hydrodynamic behaviour in Subsection 4.3.5.

Finally, in the last Chapter 5, we give some outlook and address the current status
regarding the dynamics at the poles.

3





2. Hydrodynamic Limits for Interacting
Particle Systems

2.1. General Definitions

This chapter is devoted to a special class of continuous-time Markov Processes and their
behaviour under appropriate scaling limits in space and time. The following content lays the
groundwork for the techniques applied in Chapter 4. At first, we will revisit standard results
on Feller processes and interacting particle systems in particular. In Sections 2.2 and 2.3 we
introduce two specific examples that are not only used prominently by Lacoin, Simenhaus
and Toninelli [19], but that also have characteristic similarities to our own model.

In 1970 Frank Spitzer published an influential article [34], in which he considered the
dynamics of (finitely or infinitely many) indistinguishable particles on a countable set S.
Up to that point, this particular setup had been mainly studied for the case that each
particle moves independently of the others and according to some given transition function
Pt : S2 → [0, 1], t ∈ R+. We will come back to this in Section 2.3 when dealing with the
zero range processes. The models analysed by F. Spitzer on the other hand have additional
particle interactions superimposed, which complicate the individual movements on S. Many
of them were motivated by open questions in Statistical Mechanics; the Ising Model [11],
which is featured in Section 3.1, is an important example.

Interacting Particle Systems as Feller Processes

The introduction to the topic in this section follows closely the standard works by Thomas
M. Liggett. While his book from 1985

”
Interacting Particle Systems“ [23] is considered

to be a standard reference, we will follow mainly his recent textbook [25], which has a
wider range for its basic setup. We will restrict ourselves directly to a state space suited
for particle systems, even though the Feller process theory originated from a more general
point of view.

Consider the space X = ES for countable spaces S and E. We will call it configuration
space and write η ∈ X for a particle configuration, where we interpret S as the underlying
lattice and η(x) ∈ E as the number of particles at site x ∈ S. We will mainly encounter
settings in which both S and E are finite sets. In this thesis, the lattice will be modelled
either by the integers Z or by the finite ring Z/nZ. In [23], as well as some of the sections
later on, only a finite number of particles is allowed per site. In this case, one can equip E
with the discrete topology, i.e. simply the power set, and obtains a compact metric space
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2. Hydrodynamic Limits for Interacting Particle Systems

(the choice of the metric is not important for compactness). By Tychonoff’s theorem, the
product topology1 then makes X a compact metric space as well.

In this section, we consider both the case that X is a compact and a locally compact
separable metric space. We write

C(X) =


{f : X → R | f is continuous}, for X compact,

{f : X → R | f is continuous and for X locally compact.

∀ε > 0 ∃K ⊂ X compact with |f(η)| < ε ∀η ∈ KC},

The second property for functions in C(X) when X is locally compact is referred to as

”
vanishing at ∞“. The uniform norm on C(X) is given by

||f || = sup
η∈X
|f(η)|, (2.1)

which makes C(X) a Banach space, i.e. a complete normed vector space.
Studying the time evolution of configurations, the canonical choice is the space

D([0,∞), X) of càdlàg functions, i.e. functions η : R+ → X that are right continuous and
have left limits everywhere. As we also have a space variable, we will put the time component
in the lower index throughout, e.g. writing ηs(x) ∈ X for the number of particles at time
s ∈ R+ in x ∈ S. The projection map ps : D([0,∞), X)→ X, (ηt)t∈R+ 7→ ηs evaluates the
configuration path at time s ∈ R+. The σ-algebra Ft will be the smallest σ-algebra, such
that the projections ps are measurable for all s ≤ t. This gives a natural filtration (F)t∈R+

on D([0,∞), X). Furthermore we set F =
⋃
t∈R+

Ft and define the translation map θ by
means of pu(θs((ηt)t∈R+)) = ηs+u for all s, u ∈ R+.

Definition 2.1.1. A family {Pη0
, η0 ∈ X} of probability measures on D([0,∞), X) is

called Feller process if the following conditions hold:

1.

Pη
0
((ηt)t∈R+ ∈ D([0,∞), X) : η0 = η0) = 1 ∀η0 ∈ X, (2.2)

2.

η0 7→ IEη
0
f(ηt) ∈ C(X) ∀f ∈ C(X), t ∈ R+, (2.3)

3.

IEη
0
(Y ◦ θs | Fs) = IEη(s)Y (2.4)

Pη0
-a.s. for all η0 ∈ X and all bounded measurable Y : D([0,∞), X)→ R.

1The product topology is the smallest topology, such that all projection maps S → E, x 7→ η(x) are
continuous

6



2.1. General Definitions

We used the shorthand notation IEη for the expectation with respect to the measure Pη.
The second condition is the Feller property, which expresses that the stochastic process at
a later time t > 0 depends continuously on the starting configuration η0 ∈ X. The last
condition is called Markov property. It asserts that the evolution of a path (ηt)t∈R+ from
time s ∈ R+ onwards does only depend on the current configuration ηs ∈ X, but not on the
past prior to s. A nice introduction to Markov processes both in discrete and continuous
time is [28], although we will give some basic definitions and results in Appendix A.1, as
well.

We can also interpret the expectation in (2.3) as a linear operator on C(X). Related to
that, we give another definition.

Definition 2.1.2. A family of continuous linear operators {T (t), t ∈ R+} on C(X) is
called probability semigroup if the following properties hold:

1. T (0)f = f for all f ∈ C(X),

2. lim
t↓0

T (t)f = f for all f ∈ C(X),

3. T (s+ t)f = T (s)(T (t)f) for all f ∈ C(X),

4. T (t)f ≥ 0 for all nonnegative f ∈ C(X),

5.

T (t)11 = 11 ∀t ∈ R+ for X compact,

∃fn ∈ C(X) : sup
n∈N
||fn|| <∞, T (t)fn → 11 ptw. ∀t ∈ R+ for X locally compact.

Here 11 is the constant function with value 1 on X. The third property is called semigroup
property. Readers that are familiar with continuous-time Markov theory will recognise the
connection to the Chapman-Kolmogorov equations in case the configuration space would
be countable; see Equation (2.3) in [25].

As indicated above, given a Feller process, we can directly define a probability semigroup.

Theorem 2.1.1 (Liggett). Let {P η0
, η0 ∈ X} be a Feller process on X. Define

T (t)f(η0) := IEη
0
f(ηt).

Then {T (t), t ∈ R+} is a probability semigroup on C(X).

Proof. See [25], Theorem 3.15.

One major advantage in considering Feller processes (in comparison to continuous-time
Markov processes) is the one-to-one correspondence between the definition via probability
measures and the definition via probability semigroups (transition functions respectively).
That is to say one can show the other direction to Theorem 2.1.1 as well; given a probability
semigroup {T (t), t ∈ R+}, there exists a Feller process (ηt)t∈R+ satisfying IEη

0
f(ηt) =

T (t)f(η0) for all η0 ∈ X, t ∈ R+ and f ∈ C(X). We refer to Appendix A.2 for details.

7



2. Hydrodynamic Limits for Interacting Particle Systems

When we introduce particular interacting particle systems in the following sections, we
will not do so by explicitly giving the family of measures {Pη0

, η0 ∈ X}. Instead, we will
use a special operator that encodes enough information to determine the Feller process
uniquely in our setting.

Definition 2.1.3. A linear operator L on C(X) satisfying the conditions

1. the domain D(L) of L is dense in C(X),

2. if λ ≥ 0 and f − λLf = g for f ∈ D(L), then

inf
η∈X

f(η) ≥ inf
η∈X

g(η),

3. {(I − λL)f : f ∈ D(I − λL)} = C(X), where I : C(X)→ C(X) is the identity map,

4.


11 ∈ D(L) ∧ L11 ≡ 0 for X compact,

for small λ > 0 ∃fn ∈ D(L) s.t. sup
n∈N
||fn − λLfn|| <∞ for X locally compact.

and fn → 11, fn − λLfn → 11 ptw.,

is called (probability) generator.

Note that the definition does not force L to be a bounded operator. This makes it a
technical task to obtain the probability semigroup from a probability generator. However,
given a probability generator L, one can define the operator

Lε := L(I − εL)−1, (2.5)

which approximates L, and then put

Tε(t) := etLε =

∞∑
n=0

tnLnε
n!

. (2.6)

This is well defined as can be seen once more in Appendix A.2.

Theorem 2.1.2 (Liggett). For f ∈ C(X),

T (t)f = lim
ε↓0

Tε(t)f

exists uniformly on bounded time intervals. It defines a probability semigroup in the sense
of Definition 2.1.1, whose probability generator is L, i.e.

Lf = lim
t↓0

T (t)f − f
t

(2.7)

on
D(L) = {f ∈ C(X) : the (strong) limit in (2.7) exists}.

8



2.1. General Definitions

Proof. See Theorem 3.24. in [25] and Theorem A.2.1.

From the semigroup, we directly get the finite-dimensional distributions of the process
via

IEη
0
n∏
i=1

fi(ηti) = Tt1f1Tt2−t1f2 . . . Ttn−tn−1fn(η0)

and indeed one can show (see Theorem A.2.2) that there is a Feller process (ηt)t∈R+ satisfying

IEη
0
f(ηt) = T (t)f(η0),

for η0 ∈ X, t ∈ R+ and f ∈ C(X).

Generators of Interacting Particle Systems

For the upcoming processes, configurations η of the space X = ES (introduced above)
change in time by means of particle jumps from one site to another. We will not have to
deal with spin systems for which transitions involve only one site at a time, e.g. by flipping
the value η(x) at site x ∈ S from 0 to 1 or vice versa, without changing the remaining
values η(y) for y 6= x. Instead, whenever a particle jump occurs, the amount of particles
η(x) decreases by one unit, and the amount at another site y ∈ S increases by one. The
new configuration obtained is denoted by ηx,y, always given that such a configuration is
permitted according to the state space. The stochastic process is implicitly described by
the transition rates (or jump rates) q(x, y, η) at which particle jumps from x ∈ S to y ∈ S
occur for the configuration η ∈ X. It is assumed to be nonnegative, uniformly bounded and
continuous in η ∈ X (w.r.t. to the topology given above). In our cases, the jump rate q can
be written in terms of a product

q(x, y, η) = c(x) · p(x, y) · excl(x, y, η), (2.8)

where c(x) is called the leaving-rate of a particle at site x, p(x, y) is called the transition
probability (or elementary jump probability) from x to y and excl(x, y, η) is an exclusion
rule that rejects jumps whenever the new configuration would not belong to the state space.
For finite state space X Liggett [23] gives the intuitive interpretation

Pη
0
(ηt = ηx,y) = q(x, y, η0) · t+ o(t).

We define C0(X) as the set of cylinder functions, i.e. f ∈ C0(X) if there exists a finite
subset Sf ⊂ S with

f(η) = f(ξ) ∀η, ξ ∈ X with η(x) = ξ(x) ∀x ∈ Sf .

Thus, cylinder functions depend only on a finite number of lattice sites. The probability
generators L in later sections will be defined by

Lf(η) =
∑
x,y∈S

q(x, y, η) (f(ηx,y)− f(η)) (2.9)

9



2. Hydrodynamic Limits for Interacting Particle Systems

for f ∈ C0(X) or subsets thereof. The restriction to C0(X) is important for the convergence
of the series in (2.9), in case of an infinite lattice. Another potential problem with this
definition is the behaviour of the transition function, which might lead to an infinite norm
||Lf || (see (2.1)) in the Banach space C(X). The literature gives strong results for sufficient
conditions on q to guarantee that the linear operator in (2.9) indeed fulfils the criteria of
a probability generator according to Definition 2.1.3. For a compact space X we refer to
Theorem I.3.9. in [23]. Fortunately, the particle systems considered here are of finite range,
i.e. there exists R > 0 such that

• for all x ∈ S there exists Sx ⊂ S with |Sx| ≤ R such that q(x, y, η) = q(x, y, ηSx) for
all η, ηSx ∈ X with η(z) = ηSx(z) ∀z ∈ Sx,

• for all y ∈ S there exists Sy ⊂ S with |Sy| ≤ R such that q(x, y, η) = q(x, y, ηSy) for
all η, ηSy ∈ X with η(z) = ηSy(z) ∀z ∈ Sy,

• for all x ∈ S there exists Sx ⊂ S with |Sx| ≤ R such that |{y ∈ S : q(x, y, η) > 0}| ≤
R for all η ∈ X.

For most of the appearing interacting particle systems, this quality is more than enough to
ensure that (2.9) gives rise to a probability generator that is uniquely defined by the values
on C0(X).

The generator of a Feller process (ηt)t∈R+ enables us to define an important martingale

Mt := f(ηt)−
t∫

0

Lf(ηs) ds,

which will be fundamental for the approach (”martingale approach”) used to derive the
hydrodynamic limits in Chapter 4, see [25, Theorem 3.32] or Lemma A.1.1 for a more
general version, that we will refer to frequently throughout this thesis.

Stationary Measures

Stationary (or invariant) measures are one of the main tools to describe the behaviour of
interacting particle systems in the considered scaling limits. Prior to the definition, we
introduce the distribution of the random variable ηt ∈ X, given that the starting distribution
is µ. It is denoted by µT (t) and is uniquely determined by

IEµf(ηt) =

∫
IEη

0
f(ηt)µ(dη0), f ∈ C(X),

due to Riesz’s Representation Theorem.

Definition 2.1.4. Given a Feller process on X with probability semigroup T (t), a probability
measure µ is called stationary if µT (t) = µ ∀t ∈ R+, i.e.∫

T (t)f dµ =

∫
f dµ ∀f ∈ C(X), ∀t ∈ R+. (2.10)

10



2.2. Simple Exclusion Processes

Roughly speaking, when a process has a stationary distribution, it is in some kind of
equilibrium. More precisely, its distribution will remain the same at all later times. A
stationary measure must not be unique, see e.g. subsection 2.2.2. Therefore, we introduce
the notation I for the set of stationary measures of a Feller process. When X is compact,
one can show that I 6= ∅. When we consider finite state spaces later on, the following will
be a helpful result regarding uniqueness.

Proposition 2.1.1 (Liggett). The stationary measure for an irreducible recurrent Markov
chain is unique up to constant multiples.

Proof. See Proposition 2.61. in [25].

When we proof stationarity of measures, we will make use of the following theorem.
Recall that a linear subspace D ⊂ D(L) is a core for the generator L if L is the closure of
its restriction to D, i.e. if L = (L

∣∣
D

).

Theorem 2.1.3 (Liggett). Suppose D is a core for the generator L. Then a probability
measure µ on X is stationary for the corresponding process if and only if∫

Lf dµ = 0 for all f ∈ D.

Proof. See Theorem 3.37 in [25].

2.2. Simple Exclusion Processes

The well known and extensively studied exclusion process was introduced to the mathemat-
ical community in the aforementioned influential work by F. Spitzer [34] as one example
for interacting particle systems. It models the motion of indistinguishable particles on a
lattice, such that individual transitions affect only two sites. At every point in time, there
is at most one particle at each site and a particle jumps to another site according to some
transition probability, respecting some exclusion rule (in particular that the targeted site is
vacant). The following introduction is orientated on Section 2.2 in [14], where the transition
probability is modelled to be translation-invariant, of finite range and irreducible. A simple
and convincing way to think of exclusion processes is to imagine that every single particle
is a random walker on the lattice, with independent exponentially distributed waiting
times before each (attempted) jump. Generally the random walkers are independent of one
another, except for the fact that they cannot occupy the same lattice site at the same time.
If this is about to happen, the causing jump is oppressed and the particle that tried to
jump remains in his place instead.

In this standard setting, there is no sudden death or birth of particles and the particle
number (or particle density) is conserved in time. It is the evolution of this local quantity
that helps to understand the upcoming droplet shrinking for the Ising model. The connection
is obtained via the hydrodynamic limit of the nearest-neighbour simple symmetric exclusion

11



2. Hydrodynamic Limits for Interacting Particle Systems

process (SSEP), which is an exclusion process with nearest-neighbour jumps only, a basic
exclusion rule and a symmetric transition probability, i.e. given a 1-dimensional (horizontally
aligned) lattice, the probability of jumping to the left is the same as jumping to the right.

In the following subsection we will formalise this stochastic process. Then, the family of
stationary measures for exclusion processes is presented, followed by a subsection about
particular starting measures, which are close to the stationary ones. At last we present the
hydrodynamic equation in Subsection 2.2.4.

Standard references to the subject include [14, 23, 24, 25].

2.2.1. Construction

For simplicity, we restrict ourselves to the case of a one-dimensional torus TN := Z/NZ. A
configuration of a simple exclusion process then takes values in X := {0, 1}TN . In spirit of
the (lonely) random walker on Z, we neglect the continuous time-component for a moment
and think of a single particle that jumps freely from site to site according to some Markov
chain with transition function p, which is just the elementary jump probability mentioned
earlier. This measure is assumed to be

• translation-invariant (or homogeneous in Markov chain terminology), i.e. it is the
same function for all sites a particle tries to leave from,

• of finite range (cf. definition for jump rates on page 10 combined with (2.8)) and

• irreducible, in the sense that the Markov chain reaches every site of the lattice
(eventually) no matter what the starting point is.

By the first property p : Z→ [0, 1] only depends on one variable, which is the length (and
direction) of the jump. Since p is a probability distribution, there should obviously hold∑

z∈Z p(z) = 1. If there further holds p(z) = p(−z) for all z ∈ Z, then we call p symmetric.
We did not prohibit jumps of length bigger than the torus size N , so the elementary jump
probability of going from x ∈ TN to x+ z ∈ TN is given by pN (z) :=

∑
y∈Z p(z + yN) for

all x ∈ TN . We are now able to define the generator of a simple exclusion process by means
of

(LNf)(η) :=
∑
x∈TN

∑
z∈TN

η(x)(1− η(x+ z))pN (z)
(
f(ηx,x+z)− f(η)

)
, (2.11)

for f ∈ C(X) where

ηx,y(z) =


η(z) if z 6= x, y,

η(x)− 1 if z = x,

η(y) + 1 if z = y

is the new configuration obtained after letting a particle of the configuration η jump from
x ∈ TN to y ∈ TN , given that there is a particle present at x and given y is vacant. It is

12



2.2. Simple Exclusion Processes

well known [23] that the linear operator LN is indeed a probability generator in the sense of
Definition 2.1.3 and gives rise to a Feller process (ηt)t∈R+ on X with probability semigroup
SN (t) = exp(tLN ).

In view of (2.11), we can directly read out the exclusion rule in form of η(x) · (1−η(x+z))
and the leaving rate c(x) = 1. This means that a particle waits for an exponentially
distributed random time with parameter 1 to jump according to the jump probability p, but
always respecting the exclusion rule. Regarding the latter, we will see later on that more
complicated systems are possible, for which the jump rate q(x, y, η) does not only depend on
the configuration’s values η(x) and η(y), but also on other values. The term simple within
SSEP illustrates the very basic form of an exclusion given above. Furthermore, we speak of
a nearest-neighbour SSEP when a particle can jump only to his directly neighbouring sites,
such that in dimension 1 there holds p(x, x− 1) = p(x, x+ 1) = 1

2 for all x ∈ TN .

2.2.2. Stationary Measures

Simple exclusion processes possess not only one, but a whole family of stationary measures.
The reason for this variety lies in the presence of a conserved quantity for the system, i.e. a
macroscopical quantity that does not change over time. As T. Liggett described in [23]:
”The existence of a conserved quantity tends to break up the state space [. . . ] into classes
determined by the value of this quantity, and then there tends to be an invariant measure
for each of its possible values”. In the present case, this quantity is given by the amount
of particles (or the particle density), which leads to a family of stationary measures of
particularly convenient and simple form.

Definition 2.2.1. For 0 ≤ α ≤ 1, the Bernoulli product measure of parameter α, denoted
by νNα , is a measure on X with the properties of

• being translation-invariant, i.e. τxν
N
α = νNα for all x ∈ TN , where {τx}x∈TN is the

translation group,

• being product, i.e. the random variables {η(x)}x∈TN are independent, and

• having marginals

νNα (η(x) = 1) = α = 1− νNα (η(x) = 0), ∀x ∈ TN .

It is no hard task to show that Bernoulli product measures are indeed stationary for
simple exclusion processes [14, Proposition 2.2.2]. The parameter α is directly connected to
the conserved quantity, the average particle density, as can be seen by

IEνNα (η(x)) = α · 1 + (1− α) · 0 = α,

which holds at all sites x ∈ TN .

13



2. Hydrodynamic Limits for Interacting Particle Systems

As the total number of particles
∑

x∈TN η(x) = K remains constant, it seems natural to
consider measures that are concentrated on these subsets (indexed by K). Regarding the
Bernoulli product measure νNα , the conditional measure

νN,K(·) := νNα

· ∣∣∣ ∑
x∈TN

η(x) = K


is still stationary on the subset

ΩN,K := {η ∈ X :
∑
x∈TN

η(x) = K}

and does not depend on the parameter α. In fact, it is simply the uniform distribution on
ΩN,K , which is something that we will use in a similar fashion for two different interacting
particle systems in Chapter 4. As mentioned in [14, Remark 2.2.4], for the simple exclusion
process it is possible to calculate directly that for all finite subsets Z ⊂ Z, for all sequences
{εx : x ∈ Z} with values in {0, 1} and for all 0 ≤ α ≤ 1,

lim
N→∞

να

η(x) = εx, x ∈ Z
∣∣∣ ∑
y∈TN

η(y) = bα0Nc

 = να0 (η(x) = εx, x ∈ Z) , (2.12)

where b·c is the floor-function. We take this opportunity to introduce some more terminology.
Conditional stationary measures like νN,K concentrated on a fixed number of particles
are called canonical measures, whereas weak limits of canonical measures (as N → ∞)
in the sense of Equation (2.12) are called grand-canonical measures. Whenever the finite
dimensional marginals of canonical measures converge to the same marginals of the grand-
canonical measures as N →∞ and K

N → α0 uniformly on compact sets for α0, we speak of
an equivalence of ensembles2.

This equivalence offers a choice of what stationary measure to work with in order to
derive the hydrodynamic behaviour for the SSEP (and also the zero-range process in the
next section). Given the simple nature of the grand-canonical measures (here the Bernoulli
product measure νNα ), it is convenient to choose them. However, in Chapter 4, we will go
the other way.

2.2.3. Equilibrium Formulations

We briefly take the opportunity and introduce some more forms of equilibrium.

Definition 2.2.2. A sequence of probability measures (µN )N≥1 on {0, 1}TN is a local
equilibrium of profile ρ0 : T→ R+ if

τbuNcµ
N →w

N→∞
νρ0(u)

for all continuity points u of ρ0(·).
2The term ”ensemble” is often used in statistical mechanics as a substitute for ”probability distribution”.
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2.2. Simple Exclusion Processes

It is well known that the definition of such weak limits is not an issue, despite formally
being defined on different spaces for each N . We can divide up into periods on {0, 1}Z both
the configurations in ΩN and the measures thereon, such that for all N ∈ N everything is
defined on the same space, see for example Remark 1.6 in Chapter 2.2 of [14].

If the local equilibrium property still remains true at later times t ∈ R+, we use the next
definition.

Definition 2.2.3. The local equilibrium (µN )N≥1 with respect to the profile ρ0 is conserved
by the time renormalisation θN if there exists a function ρ : R+ × T→ R+ such that

SN (tθN )τbuNcµ
N →w νρ(t,u), (2.13)

for all t ≥ 0 and all continuity points u of ρ(t, ·).

Having local equilibrium starting measures is quite a restrictive initial condition, as we
demand weak convergence in every continuity point of ρ0. Certainly for continuous functions
G : T→ R a local equilibrium sequence implies the following convergence in (2.14), where
we merely expect the spatial means to converge. The empirical measure at time t = 0 is
denoted by πN0 (cf. bottom of this page).

Definition 2.2.4. A sequence (µN )N≥1 of probability measures on {0, 1}TN is associated
to a profile ρ0 : T→ R+ if for every continuous function G : T→ R, and for every δ > 0
we have

lim
N→∞

µN
(∣∣∣ ∫

T

G(u)πN0 (du)−
∫
T

G(u)ρ0(u) du
∣∣∣ > δ

)
= 0. (2.14)

2.2.4. Hydrodynamic Equation

The hydrodynamic equations play a crucial role in this thesis. As explained earlier, they
allow to describe the evolution of a macroscopic observable (like the particle density in
this case) by means of an appropriate scaling limit in space and time. Particularly the
hydrodynamic equation for the SSEP, which is simply the heat equation, was used [19] in
order to derive the curve shortening flow for the zero-temperature Ising model. We will
now state the hydrodynamic limit result for the SSEP.

Theorem 2.2.1 (Kipnis/Landim, Theorem 4.2.1). Let ρ0 : T→ [0, 1] be an initial density
profile and let µN be the sequence of Bernoulli product measures of slowly varying parameter
associated to the profile ρ0, i.e.

µN{η : η(x) = 1} = ρ0

( x
N

)
, x ∈ TN .

Then, for every t > 0, the sequence of random measures

πNt (du) =
1

N

∑
x∈TN

ηt(x)δx/N (du)
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2. Hydrodynamic Limits for Interacting Particle Systems

converges in probability to the absolutely continuous measure πt(du) = ρ(t, u) du whose
density is the solution of the heat equation:{

∂tρ = ∂2
xρ,

ρ(0, ·) = ρ0(·).
(2.15)

The proof, as given for example in [20], is both standard by now and also highly non-trivial.
In order to derive the hydrodynamic equations for two particle systems in Chapter 4, we
will adapt the proof to our needs.

2.3. Zero Range Processes

2.3.1. Construction

The zero-range process is an interacting particle system without restrictions on the maximal
number of particles per lattice site, i.e. the state space is given by NTN . Many different
scenarios are possible, but we will only consider the standard case, in which the process
can be described by two parameters, namely the translation-invariant transition probability
pN and a rate function g : N → R+, vanishing at 0, which describes the rate at which a
particle leaves a site in dependence of the number of particles present there. The generator
of the zero-range process is then given by

LNf(η) =
∑
x∈TN

∑
z∈TN

pN (z)g(η(x))(f(ηx,x+z)− f(η)). (2.16)

Here, ηx,y is the configuration obtained from η by letting a particle jump from x to y.
Clearly some technical requirements are necessary for the function g in order to guarantee
that it is indeed possible to define a process by means of (2.16). Since we only want to give
a light introduction here, we refer to the literature for details.

2.3.2. Hydrodynamic Equation

As the last part of the introductory second chapter we would like to state another hydrody-
namic equation. Once more we refer to [14], this time to Chapter 5 therein. Let the family
of stationary measures {να}α be parameterised by the expected number of particles per
site and define the expected value of the jump rate by

Φ(α) := IEνα (g(η(0))) .

Theorem 2.3.1 (Kipnis/Landim, Theorem 5.1.1). Assume the jump rate g(·) to increase
at least linearly: there exists a positive constant a0 such that g(k) ≥ a0k for all k ≥ 0. Let
ρ0 : T→ R+ be an integrable function with respect to the Lebesgue measure. Let µN be a
sequence of probability measures on NTN associated to the profile ρ0 and for which there
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exist positive constants K0, K1 and α? such that the relative entropy of µN with respect to
να? is bounded by K0N :

H(µN | να?) ≤ K0N

and

lim sup
N→∞

IEµN

 1

N

∑
x∈TN

η(x)2

 ≤ K1.

Then, for every t ≤ T , for every continuous function G : T→ R and for every δ > 0,

lim
N→∞

PµN

∣∣∣ 1

N

∑
x∈TN

G
( x
N

)
ηt(x)−

∫
T

G(u)ρ(t, u) du
∣∣∣ > δ

 = 0,

where ρ(t, u) is the unique weak solution of the non-linear heat equation{
∂tρ = 1

2∂
2
x (Φ(ρ)) ,

ρ(0, ·) = ρ0(·).

In comparison to the SSEP, the proof is even more complex here. This has to do with
the fact that a certain equation cannot be closed directly in terms of the empirical measure,
which is a crucial part of the proof. We will deal with this problem extensively for two
other processes in Chapter 4.
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3. Curve Shortening Flows

We have mentioned before how recent results for the curve-shortening flow in the Ising
model in [18, 19] have motivated this thesis. In this chapter, we sum up those results from
2011 and 2013 in Section 3.1 in order to prepare for our own treatment of the droplet
shrinking with spatial random permutations, which is initiated in Section 3.2.

3.1. 2-dim. Zero-Temperature Ising Model

We recapitulate in this section the fundamental results obtained and methods applied in
Lacoin’s, Simenhaus’ and Toninelli’s article about the curve shortening flow for a zero-
temperature 2-dimensional Ising model [18]. In fact, the same authors produced a similar
article [19] two years later, where the results have been slightly stronger. The biggest
change therein was the treatment of a more general initial droplet in R2 and not necessarily
a convex one. For simplicity, we will stick to the first article.

3.1.1. Dynamics

Set Z? := Z + 1
2 and consider the zero-temperature stochastic Ising model on (Z?)2, i.e. the

continuous-time Markov chain (σ(t))t≥0 on the spin-configuration space Ω := {−1, 1}(Z?)2
,

where we put σ(t) := (σx(t))x∈(Z?)2 .
Transitions of the chain occur in the following way. For each site x ∈ (Z?)2, σx is updated

independently of the others. When σx is updated, it adapts the spin value of the majority
of its neighbours. In case that there is no majority, σx chooses its spin with probability 1/2
each.

Consider now a compact, simply connected subset D ⊂ [−1, 1]2 whose boundary is a
closed smooth curve. For L ∈ N we start with a deterministic configuration

σx(0) =

{
−1 if x ∈ (Z?)2 ∩ LD,
+1 otherwise.

Put further

Cx := x+

[
−1

2
,
1

2

]2

and
AL(t) :=

⋃
{x: σx(t)=−1}

Cx,
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3. Curve Shortening Flows

which is the droplet’s evolution under the given Ising dynamics and the given starting con-
figuration. In the hydrodynamic limit, the boundary of this random subset was conjectured
to evolve deterministically according to some partial differential equation. More precisely,
with γ(t, L) describing the boundary of the rescaled set

1

L
AL(L2t),

it was conjectured in [35] that, in the limit L→∞, γ(t, L) should converge to a deterministic
curve γ(t) with evolution (γ(t))t≥0 such that the normal speed at a point x ∈ γ(t) is given
by the curvature at x multiplied with

a(θx) :=
1

2(| cos(θx)|+ | sin(θx)|)2
,

where a(θx) is a factor which enters the equation due to the geometry of the lattice and the
parameter θx is the slope of the outwards directed normal to γ(t) at x. As a consequence,
γ(t) should shrink to a singleton in finite time (Lifshitz law).

3.1.2. Surface Evolution

Consider a strictly convex, smooth curve γ = ∂D ⊂ R2, which can be expressed by

D =
⋂

0≤θ≤2π

{x ∈ R2 : x · v(θ) ≤ h(θ)},

where · is the scalar product, ν(θ) is the unit vector with angle θ ∈ [0, 2π] towards the
horizontal axis and

h(θ) = sup{x · v(θ), x ∈ γ}

is the support function which uniquely describes the curve γ. Owing to this parameterisation,
it is possible to write the curve shortening evolution by means of the PDE{

∂th(θ, t) = −a(θ)k(θ, t),

h(θ, 0) = h(θ),
(3.1)

where the time-derivative is taken for constant θ and, for a convex curve γ, k(θ) ≥ 0 is
the curvature at the point x(θ) ∈ γ, which is characterised by having an outward directed
normal which forms an anticlockwise angle θ between itself and the horizontal axis.

Theorem 2.1 in [18] constitutes the main theorem in their paper. It states that under
some reasonable assumptions on the boundary γ = ∂D of the initial droplet D, the support
function h(θ, t) associated to the flow of (convex) curves (γ(t))t≥0 with γ(0) = γ solves the
PDE (3.1).
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3.1.3. Local Interface Dynamics

The proof of Theorem 2.1 in [18] is both elegant and technical, as there are many specific
problems that occur along the way. Not the least of them is the fact that the interface
which has to be controlled over time is not quite the graph of a function. Consequently, the
idea of the proof is to consider the dynamics in two different areas, where individually the
boundary evolution can be described in the hydrodynamic limit as a graph which (locally)
behaves like the solution of (3.1). Afterwards, both results are ”glued together” such that
the whole droplet and its interface motion is considered after all. The areas mentioned
above are determined to be the points away from the poles on the one hand and at the
poles on the other hand. Here, in context of convex droplets, a pole means a point where
the tangent to the deterministic curve γ(t) is either horizontal or vertical.

Local Dynamics away from the Poles

The part of the interface away from the poles will also be the one that we will study in
Section 4.3 for another stochastic dynamics.

For the Ising model and positive natural numbers M,N , define the state space of nearest-
neighbour directed paths of length L := M + N with M steps up and N steps down
by

ΩM,N = {(hx)x∈{0,...,M+N} ∈ ZM+N+1 : |hx+1 − hx| = 1, h0 = 0; hM+N = M −N}.

Given h ∈ ΩM,N and x ∈ {1, . . . , L− 1}, denote by h(x) the path with a corner ”flipped” at

x defined by h
(x)
y = hy for all y 6= x and

h(x)
x :=


hx − 2 if hx±1 = hx − 1,

hx + 2 if hx±1 = hx + 1,

hx if |hx+1 − hx−1| = 2.

The dynamics is defined by the generator

Lf(h) :=
1

2

L−1∑
x=1

(f(h(x))− f(h)),

for functions f : ΩM,N → R.
This dynamics is in one-to-one correspondence to the SSEP on a finite interval, which

can be seen by placing a particle at x = 0, . . . ,M +N − 1 whenever hx+1 − hx = 1. The
SSEP and its hydrodynamic evolution are widely studied (cf. Section 2.2) and thus it is
reasonable to assume that in the limit M,N →∞, a properly rescaled version of h should
satisfy the heat equation. In [18, Theorem 3.2] this statement is formalised.
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Local Dynamics around the Poles

For the auxiliary stochastic dynamics around the poles, define the state space of functions

ΩL := {h : {−L, . . . , L+ 1} → Z}.

Additionally, for x ∈ {−L + 1, . . . , L} and h ∈ ΩL, set h+,x (resp. h−,x) to be the
configuration such that h+,x

y = hy if y 6= x and h+,x
x = hx + 1 (resp. h−,xx = hx − 1). The

generator

Lf(h) :=
1

2

L∑
x=−L+1

c+,x(h)(f(h+,x)− f(h)) + c−,x(h)(f(h−,x)− f(h))

with initial condition h0 ∈ ΩL and{
c+,x(h) := 11{hx+1>hx} + 11{hx−1>hx},

c−,x(h) := 11{hx+1<hx} + 11{hx−1<hx},

defines a continuous-time Markov chain (h(t))t≥0 on ΩL.
By interpreting the gradients ηx := hx+1−hx as particles on a lattice site x, one recognises

immediately the connection to a zero-range process. However, it does not coincide with
the standard ZRP, as the gradient might be less than 0. Hence, in this case, one obtains
a special class of zero-range processes with two different types of particles A and B that
annihilate each other immediately when they try to occupy the same site. It was shown in
Theorem 3.4 of [18] that the properly scaled height function fulfils a PDE which, in some
sense, is very close to the heat equation. The concrete nature of this similarity is quantified
in [18, Corollary 3.5], where the rescaled height function which corresponds to the curve
shortening flow (around the poles) is with high probability enclosed between two classical
solutions to the heat equation for marginal time and space differences.

In the end this means that both auxiliary interface dynamics (at the poles and around
them) basically shrink just as a solution to the heat equation would do. This corresponds
to the evolution of the family of support functions (h(θ, t))t≥0 (for the associated family of
curves (γ(t))t≥0) according to Equation (3.1).

3.2. Spatial Random Permutations

We have seen in the previous section how a microscopical stochastic system (in that case a
simple Ising model) could be used to derive the Lifshitz law and motion by mean curvature
for a macroscopical droplet’s boundary. The latter two properties are considered to be
natural phenomenons when a droplet of one phase is immersed into another phase under
conditions such that the droplet eventually disappears [22]. Certainly the Ising model is
not the only microscopic stochastic model that leads to the desired result, however it is
probably the easiest. That being said, starting from the influential work of Spohn [35], it
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3.2. Spatial Random Permutations

γ0

1

1

Figure 3.1.: Approximation of a droplet’s boundary γ0 with a cycle of nearest-neighbour
permutation jumps

still took 18 years for a rigorous proof (in a simplified setting with respect to the initial
droplet) [18]. The starting point of this Ph.D. project was to derive the mean curvature
motion for a local stochastic dynamics which is given by a simple version of spatial random
permutations, which we will introduce in the following.

The research field dealing with spatial random permutations flourished only in very recent
years, even though its importance in physics, in particular for Bose-Einstein condensation,
had already been emphasised by Feynman [9] and Penrose/Onsager [30]. A rich overview
to the topic can be found in [4], and prior to that we refer to [36]. If available, we also
recommend the lecture notes by V. Betz [5].

We consider the finite volume model. Let Λ be a bounded open domain in Rd and let V
denote its volume with respect to the Lebesgue measure. The state space is given by

ΩΛ,M := ΛM × SM

where SM is the symmetric group of permutations on {1, . . . ,M}. We interpret an element
(x1, . . . , xM ) × π ∈ ΩΛ,M as a spatial random permutation by mapping xj 7→ xπ(j) for
all j ∈ {1, . . . ,M}. The focus lies on probability measures on SM that discourage long
permutation jumps. This can be achieved for example by Gaussian weights of the type

exp
{
− α

M∑
i=1

|xi − xπ(i)|2
}
,
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3. Curve Shortening Flows

which get smaller when the energy

H((x1, . . . , xM ), π) :=

M∑
i=1

|xi − xπ(i)|2 (3.2)

increases. Such a model is appealing from a researcher’s point of view since there is intrinsic
competition between the energy, which is clearly minimal for the identical permutation
xi 7→ xπ(i) = xi, and the entropy , which favors many and long jumps.
In the hydrodynamic limit, i.e. for |Λ|,M →∞ with fixed density ρ := M/|Λ|, there are
many (partially still unsolved) questions regarding permutation cycles, e.g. if there exist
infinite cycles, if there are macroscopic cycles (cf. [5]) or questions regarding geometry
and evolution (under some dynamics), which will be the focus of attention in the next
subsection.

3.2.1. Phase Boundaries for Large Cycles in the Hydrodynamic Limit

In the rest of this thesis, we will concentrate on planar random permutations, i.e. spatial
random permutations in 2 dimensions. For N ∈ R, let

ΛN := Z2 ∩ [−N,N ]2

with M := |ΛN | and let (xi)i=1,...,M denote the points in ΛN . This way ρ = 1. For a
permutation π ∈ SM we assign a probability measure by

P(π) :=
1

ZN (α)
e
−α

M∑
i=1
|xi−xπ(i)|2

,

where

ZN (α) :=
∑
π∈SM

e
−α

M∑
i=1
|xi−xπ(i)|2

is the normalisation constant depending on the inverse temperature value α > 0. We observe
that for a permutation π0 = id we have

P(π0) =
1

ZN (α)
,

which constitutes the highest probability possible (and equivalently the lowest energy
possible). The expected jump length only depends on the parameter α. At infinite
temperature (α = 0), the energy H in (3.2) has no significance and all permutations are
equally likely, i.e. P is the uniform distribution on SM . As α > 0 increases, it becomes less
likely to have a permutation with long jumps, i.e. with sinking temperature long jumps are
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3.2. Spatial Random Permutations

Figure 3.2.: Energy comparison between a diagonal permutation jump on the left and only
horizontal/vertical jumps on the right. The blue filled area represents AN (t)
for some N ∈ N, t ∈ R+.

penalised and P concentrates more and more on π = id. Similarly to the Ising-model, we
will consider an annealed version of spatial random permutations. In this case, given

P(π) := 11id(π), (3.3)

we can create the Glauber dynamics for P (cf. [21, Chapter 3.3]), i.e. a continuous-time
Markov chain with stationary distribution defined by (3.3).

As discussed before, our goal is to describe the surface dynamics for a 2-dimensional
droplet, whose boundary is governed by local stochastic dynamics according to the Glauber
dynamics for spatial random permutations. The droplet shall be of convex form and of
reasonable regularity in the sense that its boundary γ0 should be possible to approximate
by a single cycle of nearest-neighbour permutation jumps in the hydrodynamic limit. To be
more concrete, we specify the following three points.

• We can think of the droplet as a simply connected, smooth enough, convex domain
D ⊂ [−1, 1]2 with boundary γ0 := ∂D and ΛN as being embedded in [−1, 1]2, such that
the lattice spacing equals 1/N (tending to 0 as N →∞)1. For N ∈ N, we will write
AN (0) for the domain in [−1, 1]2 whose boundary is determined by an approximation
of γ0 with a suitable cyclic permutation2. Under the Glauber dynamics, the cyclic
approximation at later stages is random and evolves in time, which consequently
will also be the case for the enclosed domain, whose evolution will be denoted by
(AN (t))t∈R+ . In order to observe a (macroscopical) evolution3 of AN (t) for N →∞,
we have to accelerate the Glauber dynamics by a factor of N2, which is a characteristic
feature of hydrodynamic scaling. The boundary of the random set AN (N2t) will be
written as γt(N).

• In the embedded lattice, a permutation π ∈ SM is said to be of nearest-neighbour

1We will slightly abuse the notation and still refer to the embedded lattice as ΛN whenever it seems
appropriate.

2except for the jump lengths (see next bullet point), the details of the approximation are not important
here, one might think for example of the biggest convex cycle contained in D

3which in our case means shrinking to a point
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3. Curve Shortening Flows

xjxi

xπ(i)

xi

xl

π(xi,xj)(xi)

Figure 3.3.: Possible permutation jumps under Glauber dynamics away from poles. On
the left: Two different choices of pairs ((xi, xj) and (xi, xl) ∈ ΛN ) for a
permutation π ∈ SM . On the right: the new permutation π(xi,xj) ∈ SM
(respectively π(xi,xl) ∈ SM on the bottom) after a Markov jump.

type if for all i = 1, . . . ,M there holds

|xi − xπ(i)|2 ≤
2

N2
.

Three scenarios are conceivable. For a site xi with xπ(i) = xi, the quadratic distance
is obviously 0. When xi is mapped to a horizontal or vertical direct neighbour, the
euclidean distance is 1/N and thus |xi − xπ(i)|2 = 1

N2 ≤ 2
N2 . The third possibility is

the characteristic property in our model (compared to the Ising model), namely the
diagonal mapping of points to the next (diagonal) neighbour. By the Pythagorean
Theorem we have in this case

|xi − xπ(i)|2 =
2

N2
. (3.4)

• Even though the single cycle represents the droplet’s boundary, keep in mind that the
probability measure P lives on the whole SM , where (assuming periodic boundaries of
ΛN ) M = 4N2. Our starting permutation thus has a single cycle and all other sites
are mapped to themselves.

As an example for an initial domain one could potentially take the whole unit square
[−1, 1]2 or a somewhat nicer droplet like the one illustrated (by means of its border γ0) in
Figure 3.1, where we also added an approximating cycle of nearest-neighbour jumps.

Given that the stochastic modelling seems to be very close to the Ising model (cf. Section
3.1), the conjecture that motivated this Ph.D. project was that this system should also
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3.2. Spatial Random Permutations

Figure 3.4.: Another permutation jump under Glauber dynamics away from poles, creating
a diagonal mapping of a site

exhibit a mean-curvature type droplet shrinking, just as in [18, 19]. That is to say, γt(N)
should converge (for N →∞) at every point in time towards a deterministic curve γt which
solves a partial differential equation similar to the one in (3.1).

In the annealed version of the model that we consider, i.e. with α � 0, the Glauber
dynamics will not allow energy-increasing jumps. At this point it is notable that both
permutations (assuming they are the same at all other sites of the lattice) on the left and
on the right of Figure 3.2 possess the same energy value H, since the energy of the two
mappings which are illustrated by blue arrows on the right side add up to 2/N2 just as
in (3.4) for the diagonal arrow on the left side. In other words, the Glauber dynamics has
no preference whether or not to use a diagonal jump in the cycle. However, given that
P(π) = 11id(π) is the stationary distribution, the dynamics will try to decrease its surface
tension by jumping with probability 1 from a permutation π ∈ SM to π(xi,xj) ∈ SM , where

π(xi,xj)(xk) :=


xπ(i) for k=j,

π(xj) for k=i,

π(xk) else,

(3.5)

whenever the pair of distinct sites (xi, xj) is chosen4 and

H((x1, . . . , xM ), π(xi,xj)) ≤ H((x1, . . . , xM ), π). (3.6)

This way π(xi,xj) is the new permutation obtained from π ∈ SM by swapping the targets of
sites xi and xj under π. Inequality (3.6) implies that such a jump of the Markov chain can
only happen for neighbouring sites, i.e. for |xi − xj | ≤

√
2/N .5

Just like the approach in [18], it is reasonable to treat the dynamics at the poles and the
dynamics away from the poles separately. The poles melt off similarly to the treatment
with zero-range processes in the Ising model. Still, there are technical difficulties and we
are yet to prove a rigorous result. Consequently, we will deal with it in the last chapter.

4by this expression we refer to the graphical construction of the Glauber dynamics, cf. [21] and page 29
in Section 4.1

5We would like to add that a permutation π ∈ SM is a bijective map after all and since the Markov
chains must remain within its original state space, there cannot be too extravagant changes for γt(N)
anyways.
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3. Curve Shortening Flows

On the other hand, away from poles, we are able to translate the random permutations
dynamics to an associated particle system (Section 4.1) and derive the hydrodynamic limit
in Section 4.3.

Before we proceed, we will take a closer look at the Markov jumps from permutation
to permutation that can occur away from poles. Suppose in Figure 3.3 that the Glauber
dynamics randomly chose the pair of sites (xi, xj) ((xi, xl) respectively on the bottom).
With probability 1 the cycle then changes to the top right one (bottom right one).

Remark 3.2.1. In foresight of Section 4.1 we note that from the perspective of the diagonal
blue arrow, given that it is ”selected” to move, each of the two outcomes π(xi,xj) and π(xi,xl)

(top and bottom) is equally likely to occur, i.e. with probability 1/2 each. Vice versa, we can
see in Figure 3.4 what happens when (so to speak) a neighbouring pair of horizontal and
vertical arrows is chosen by the dynamics. After a change of targets for the corresponding
sites, a new diagonal arrow arises for the new permutation with probability 1.
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4. Dynamics away from Poles

This chapter constitutes the main part of this thesis, as it deals with the hydrodynamic
behaviour of nearest-neighbour permutations forming a boundary in the way described in
Section 3.2. There are certainly different approaches to do so, but given the procedure of
[18, 19] (cf. Section 3.1), motivated by [35], and the fact that interacting particle systems
and their scaling limits have been studied intensively for decades (whereas the field of
random permutations is relatively new), it seems convenient to make use of this huge bulk
of knowledge. Therefor we will describe the dynamics away from the poles by means of
this special class of Markov chains, which is done in Section 4.1. However, the arising
interacting particle system turns out to be relatively difficult to handle, for reasons discussed
in the introduction. As an intermediate step, we generate a toy-model, which is in some
sense similar to the original model and contains one of its particular difficulties (namely
non-product stationary measures). Since it is also an interesting model on its own with
applications in various fields, Section 4.2 is devoted entirely to this stochastic process, which
will be referred to as range-r exclusion process (RrEP).

4.1. Connections to Particle Systems

For simplicity, we will concentrate on the top rightward detail of the droplet D, which
means that its boundary has a negative slope just as for example in Figure 3.4. Of course,
due to the symmetry of the lattice, it does not matter for the evolution if we would consider
the top left, bottom left or bottom right detail instead.

The Glauber dynamics with respect to the stationary measure P = 11id on the set of
permutations π ∈ SM might be considered to be slightly inconvenient. It seems particularly
unattractive given the fact that the vast majority of sites (namely the ones that neither
belong to the large cycle which forms γt(N), nor to its ”belt” of nearest-neighbours) is not
influenced by the dynamics at all. This way, it would be difficult to arrange a connection
to an IPS on a 1-dimensional lattice, which is our goal in this section. Instead, in view of
Remark 3.2.1 and the fact that energy-increasing jumps are discarded, we boil the dynamics
down to the essential part.

Let x, y, z be sites in the embedded version of ΛN . For each v, with v being

• either a diagonal jump of length
√

2/N within the cycle that forms γt(N) ,

• or a pair of jumps ({x 7→ y}, {y 7→ z}) within the cycle that forms γt(N) such that
|x− z| =

√
2/N ,
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4. Dynamics away from Poles

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.1.: Mapping between an interacting particle system in 1 dimension and an interface
between two phases (blue and white) that stems from nearest-neighbour planar
random permutations away from poles.

consider a family (τv) of independent exp-(1) distributed random variables (”Poisson clocks”).
The diagonal jump/pair of jumps v̄ := argmin{τv} is the chosen one in this setup and
changes the boundary γt(N) according to the following rule:

• If v̄ is a pair ({x 7→ y}, {y 7→ z}) with |x − z| =
√

2/N , then the cycle that forms
γt(N) updates with probability 1 by replacing v̄ with ṽ := {x 7→ z}.

• If v̄ := {w 7→ w̄} is a diagonal jump of the cycle that forms γt(N), then the boundary
updates by replacing v̄ with ṽ, which is one of the two possible pairs of lattice jumps
of summed length 2/N that have the same starting/endpoint as the original diagonal
jump v̄. The probability is 1/2 each.

Afterwards, this procedure repeats itself with Poisson-clocks reset and a set {v} that has
changed one of its elements, namely v̄ has been excluded and ṽ has been included.

Consider now a symmetric interacting particle system with nearest-neighbour hopping
on a 1-dimensional periodic lattice TN := Z/NZ such that at each site x ∈ TN there can
be at most 1 particle at a time. So far, this resembles the state space for the SSEP, for
which we learned in Section 3.1 that there exists a mapping which connects the particle
system to the interface dynamics of the zero-temperature Ising model away from poles. We
recall that the presence/absence of a particle corresponded to a vertical/horizontal element
of the interface between phases. However, if we scroll back to the Figures that described
the random cycle evolution away from poles for permutations at the end of Section 3.2, we
recognise that we still have to implement the diagonal jumps.

We do so by introducing two different kinds of sites, in a way which can be seen in
Figure 4.1. Here, a diagonal jump corresponds to a particle sitting on an odd-numbered
site. Vertical interface elements correspond to a particle’s presence at an even site, whereas
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4.2. Range-r Exclusion Process

horizontal interface elements correspond to a vacant even site. It is important to note that
a diagonal jump binds both a horizontal and a vertical jump at the same time. In other
words, a particle on an odd site can be interpreted as indetermined. If it would sit one
spot to the left, the interface in the associated area would first move downwards and then
rightwards (assuming that the boundary γt(N) is given by a cycle of clock-wise directed
permutation jumps). If it would sit one spot to the right, the interface would first move to
the right and then down. From this we conclude that two particles can never sit next to
each other. As a matter of fact, it is not even possible that two particles sit on neighbouring
odd sites (for example on sites 3 and 5). With the interpretation given above, particles at
sites 3 and 5 are both indetermined and influence the same site 4 (where Schrödingers cat
is even more confused than usual). On the other hand, there is obviously no problem with
having particles sitting at sites 2 and 4 at the same time, so there is a distinct difference
with respect to the exclusion rule for even and odd sites. To have a bijective map between
the two systems, one must restrict the state space of the particle system accordingly. The
technical definitions follow in Section 4.3.

The dynamics of the particle system translates smoothly from the interface motion. For
the latter, we can apply the simple construction at the beginning of this section and obtain
that particles can jump both to the left and to the right with equal probability, given that
the exclusion rules are obeyed.

We would also like to mention that a density of 1/2 for the SSEP in the Ising model
corresponds to a density of 1/4 in this model. For example, every second odd site could
be occupied, corresponding to an interface which consists of diagonal jumps only. Also,
the maximal density is achieved for ρ = 1/2, when every even site is occupied. No particle
could move in this case, just as for ρ = 1 in the SSEP.

In the following, we will refer to this IPS as AFP -process to merit its derivation from the
curve shortening flow away from poles.

The larger exclusion rules are one part of the problem to derive the hydrodynamic
behaviour for the AFP-process. To get it under control and to obtain valuable insights with
respect to the non-product stationary measures, we treat a similar IPS in the next section.

4.2. Range-r Exclusion Process

As mentioned in the introduction to this chapter, we included this section to deal with a
particle system similar to the one that describes the boundary’s evolution away from poles.
It nicely illustrates a part of the original problem and thereby lays the groundwork for the
combinatorial derivation of the stationary measures. Also, it shows the relevance of the
famous replacement lemma due to Guo, Papanicolaou and Varadhan.

In the following we deal with a type of symmetric exclusion process where particle jumps
may occur to nearest-neighbour sites only, just as in the well known Simple Symmetric
Exclusion Process (Section 2.2). The difference lies in the range of the exclusion-rule which
in our case is enlarged and takes into account not only the occupancy of the jump-destination
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4. Dynamics away from Poles

Figure 4.2.: Horizontally aligned cells of ratio 4:1 in a 2-dimensional lattice

site, but also the next site or more. In other words, we want the distance between two
occupied sites (two particles) to be at least r, for fixed r ≥ 2.

Similar models have been examined already. Early on we discovered that a particular
interest for this kind of scheme seems to be present in traffic flow models and in Biology,
describing cell-movements.

A simple application to traffic-flow models might be given by interpreting a particle as
a moving vehicle, jumping (in one direction) from one site to the next in the microscopic
(discrete) world. There is a natural exclusion rule as each part of the street, i.e. each site,
should be occupied by one and only one particle/vehicle. The velocity in the macroscopic
world corresponds to the jump rate for particles. In such a model, a natural problem is
the accurate description of shocks or traffic jams. It is reasonable to assume that a vehicle,
although only progressing site by site, takes into account the density of particles at sites
even further away than just its next site in order to adapt his velocity (jump rate). Clearly,
the higher density of particles in front, the higher the probability of a traffic jam, thus
leading to a higher safety distance towards the next particle. In [2] there has been examined
among others the bulk properties of the steady state for such a particular asymmetric
simple exclusion process (ASEP) in a periodic system.

There are biological phenomena which are caused and can be described by discrete models
of collective cell movements. Usually one cell corresponds to exactly one occupied site of
the lattice in an interacting particle system. This approach however does not account for
special forms of certain cells, whose longitudinal length might be considerably larger than
their transverse length, thus giving them a rod-shaped form instead of a round one. An
excerpt of a 2-dimensional lattice with 6 cells is presented in Figure (4.2). A cell can move
one site at a time at a certain rate. However, there are no intersections allowed, thus giving
a natural exclusion rule. These kind of models have been examined for example in [33].
It is worth noting that the evolution is actually very similar to the one from the example
above: imagine the vehicle sits at the leftmost site of the occupied cell (or in the middle of
the cell when the vehicle can move to the right and to the left), then the next three sites
can be interpreted as the ’safety zone’, i.e. the minimal possible distance between a vehicle
and its successor (corresponding to a jump rate of 0 when the fourth-most site from the
vehicle is occupied).

Schönherr and Schütz [32] have already succeeded in 2004 to derive the hydrodynamic
equation for this model on heuristic grounds (cf. Remark 4.2.4). Their stochastic setup
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was motivated by protein synthesis, for which ribosomes (modelled as extended particles)
undergo a local dynamics in order to generate the proteins [26]. As the ribosomes cannot
occupy the same spot(s) at the same time and jump rates to the left differ from those to the
right, the model is given by some hard-rod asymmetric exclusion process, which is referred
to as l-ASEP, l being the horizontal length of the particles. They also mention another
interpretation in form of monomer chains , for which a particle at one end of the individual
chain jumps at a certain rate to the other end. However, considering that the RrEP was
introduced in this thesis in order to get a better understanding of the AFP-process, it is
certainly more natural to think of particles with a longer exclusion rule that occupy a single
spot of the lattice. The reason being that we do not want to demand a rod-shaped particle
(or monomer chain) to change its length from 2 to 3 (and vice versa) after every single
jump.

A more direct heuristic approach was suggested to us by T. Kriecherbauer and is presented
in the second to last Subsection 4.2.5. Unfortunately it does not quite give the correct
hydrodynamic equation, but it is certainly possible to guess the correct one from there.

In this thesis, we use a more formal approach which is arduous at times, but also very
fruitful in view of the upcoming tasks for the AFP-process in Section 4.3. In the next
subsection we will introduce the formal Markov process, followed by stating the main theorem
and analysing the hydrodynamic equation for the density evolution in 4.2.2. Subsection
4.2.3 introduces the stationary distribution as a grand-canonical measure and deals with
the probability of certain events. Subsection 4.2.4 gives the proof of the main theorem and
also, en passant, the classical martingale-approach heuristics for local equilibrium starting
measures. We conclude this section with some generalisations and open questions to the
RrEP.

4.2.1. Stochastic Model

We will now formalise the above stochastic process, in the following referred to as range-r-
exclusion process (RrEP), r ≥ 1. Write TN for the torus Z/NZ (whose elements we will
simply address by 1, ..., N), T = [0, 1] for the unit interval and

ΩN :=
{
η ∈ {0, 1}TN : η(x) = 1 ⇒ η(x± k) = 0 ∀k ∈ {1, . . . , r − 1}, ∀x ∈ TN

}
for the space of configurations. As usual, for η(x) = 1, we write

ηx,y(z) =


η(z) if z 6= x, y,

η(x)− 1 if z = x,

η(y) + 1 if z = y,

for a configuration obtained by a single particle jump from x ∈ TN to y ∈ TN , whereas for
η(x) = 0 we set ηx,y = η. Considering that only nearest-neighbour jumps may occur, the
jump rate from a configuration η to ξ is zero, whenever ξ 6= ηx,x±1 for some x ∈ TN .
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4. Dynamics away from Poles

Hence, the one-dimensional RrEP on the lattice TN is a continuous-time Markov chain
(ηt)t≥0 with state space ΩN , generator

(LNf)(η) =
1

2

∑
x,y∈TN ,
|x−y|=1

η(x)
( r−1∏
k=0

(1− η(y + (y − x)k))
)(
f(ηx,y)− f(η)

)
(4.1)

and semigroup SN (t) = exp(tLN ), when addition is taken modulo N . The generator assures
that configurations containing particles being distant less than r sites are dynamically not
accessible, so LN (11ΩN ) = 0. One can check that LN is indeed a probability generator in
the sense of Definition 3.12 of [25] and thus gives rise to a continuous-time Markov-chain
with a collection {Pη, η ∈ ΩN} of probability measures on the set of càdlàg-functions from
R+ to ΩN such that

Pη((ηt)t≥0 : η0 = η) = 1.

For a probability measure µ on ΩN we write Pµ =
∑

η∈ΩN
µ({η})Pη for the (ηt)t≥0-process

started in the distribution µ.
We introduce the empirical measure

πNt (du) :=
1

N

∑
x∈TN

ηt(x)δ x
N

(du),

as a random variable into the space of finite positive measures on T. Note that for a
continuous function G : T→ R we can write∫

T

G(u)πNt (du) =
1

N

∑
x∈TN

G
( x
N

)
ηt(x). (4.2)

Mapping TN to TN
N ⊂ [0, 1], in addition to accelerating the process by N2, corresponds to

the diffusive scaling. The hydrodynamic limit is obtained as N →∞. A stochastic process
with generator N2LN will be referred to as N2-accelerated RrEP.

4.2.2. Hydrodynamic Equation

Our goal is to show that, given a sequence of starting measures that are close to some
initial density profile ρ0 : T→ R+, the family of accelerated empirical measures (πNN2t)t∈[0,T ]

converges in distribution, as N →∞, towards the deterministic family of measures
(ρ(t, u) du)t∈[0,T ], where ρ is a weak solution (see Definition C.1.1 in the appendix) of the
partial differential equation {

∂tρ = 1
2∂

2
xΨ̃(ρ),

ρ(0, ·) = ρ0(·),
(4.3)
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with
Ψ̃(ρ) :=

ρ

1− (r − 1)ρ
,

i.e. Equation (4.3) is the hydrodynamic equation for the RrEP.
In order to state the main theorem below, we need some further definitions. At first we

recall what was meant by a sequence of starting measures that are close to some function
ρ0.

Definition 4.2.1. A sequence (µN )N≥1 of probability measures on {0, 1}TN is associated
to a profile ρ0 : T→ R+ if for every continuous function G : T→ R, and for every δ > 0
we have

lim
N→∞

µN
(∣∣∣ ∫

T

G(u)πN0 (du)−
∫
T

G(u)ρ0(u) du
∣∣∣ > δ

)
= 0. (4.4)

We will also require the sequence µN to be comparable to a suitable sequence νNρ of
grand-canonical measures (see Section 4.2.3 and in particular Equation (4.14) for their
definition) in terms of relative entropies. Recall that for measures µ, ν, the relative entropy
of µ given ν is

H(µ|ν) :=

∫
log

dµ

dν
dµ.

In the following theorem, we will fix r ≥ 1 and refer to these quantities with the suitable r.
Our main theorem states that, starting from associated measures which are close to some

global stationary measure νNα∗ , the measures SN (N2t)µN at a later time t remain close to
some profile ρ(t, u) which is determined by (4.3). The proof will be given in Section 4.2.4.

Theorem 4.2.1. Let ρ0 : T→ [0, 1
r ] be a Lebesgue-integrable function and (µN )N≥1 be a

sequence of probability measures on ΩN with the following properties:

(a) (µN )N≥1 is associated to ρ0,

(b) ∃K ∈ R, 0 < α∗ < 1
r with

H(µN |νNα∗) ≤ K ·N.

Then , as N →∞,

{πNN2t : t ∈ [0, T ]} → {ρ(t, u) du : t ∈ [0, T ]} in distribution,

where ρ(t, u) is the unique weak solution in L2([0, T ]× T) of the nonlinear PDE (4.3).

The set of measures (µN )N≥1 fulfilling properties (a) and (b) is not empty. For the Simple
Symmetric Exclusion Process (or R1EP) it is well known ([14, Chapter 3]) that the sequence
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4. Dynamics away from Poles

of product measures with slowly varying parameter (νNρ0(·))N≥1, which is characterised by its
marginals

νNρ(·)({η ∈ {0, 1}
TN : η(x) = k}) = νNρ0( x

N
)({η ∈ {0, 1}

TN : η(0) = k}), k ∈ {0, 1},

is associated to the continuous density profile ρ0. We can generate a similar example for
the R2EP by a sequence of product-type (on 2N ∩ TN ) measures (ν̃Nρ0(·))N≥1 with

ν̃Nρ0(·)({η ∈ ΩN : η(z) = 1}) =

{
2ρ0( zN ), 2 | z
0, 2 6 | z

and {η(x), x ∈ 2N ∩ TN} independent w.r.t. ν̃Nρ0(·). At first we define ν̃α as the weak limit

of ν̃Nα for N →∞.1 This way there holds

τuN ν̃
N
ρ0(·) →

w ν̃ρ0(u), N →∞

for all continuity points u ∈ T of ρ0. Next, we introduce another function

hN,l(u) :=
∑
x∈TN

11{x≤uN<x+1}(u) · IEν̃N
ρ0(·)

∣∣∣ 1

2l + 1

∑
y∈TN ,
|y−x|≤l

η(y)− ρ0

( x
N

) ∣∣∣
 ,

which has the property that

hN,l(u) →
N→∞

IEν̃ρ0(u)

(∣∣∣ 1

2l + 1

∑
y∈TN ,
|y|≤l

η(y)

︸ ︷︷ ︸
→
l→∞

1
2
IEν̃ρ0(u)

(η(0))=ρ0(u)

−ρ0(u)
∣∣∣) →

l→∞
0

ν̃ρ0(u)-a.s. by the strong law of large numbers. Consequently we know that∫
T

hN,l(u) du =IEν̃N
ρ0(·)

(
1

N

∑
x∈TN

∣∣∣ 1

2l + 1

∑
y∈TN ,
|y−x|≤l

η(y)− ρ0

( x
N

) ∣∣∣)

=IEν̃N
ρ0(·)

(∣∣∣ 1

N

∑
x∈TN

1

2l + 1

∑
y∈TN ,
|y−x|≤l

η(y)

︸ ︷︷ ︸
=

∑
x∈TN

η(x)

− 1

N

∑
x∈TN

ρ0

( x
N

)
︸ ︷︷ ︸
=
∫
T
ρ0(u) du+O( 1

N )

∣∣∣)

1As before, this is well-defined if one thinks of the measure ν̃Nα as being defined on {0, 1}Z, but with
positive weight only for configurations that have period N .
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4.2. Range-r Exclusion Process

converges to zero by the dominated convergence theorem (of course the function hN,l is
bounded everywhere), hence it follows for a continuous function G : T→ R

ν̃Nρ0(·)

∣∣∣ 1

N

∑
x∈TN

η(x)G
( x
N

)
−
∫
T

G(u)ρ0(u) du
∣∣∣ > δ

 →
N→∞

0.

The example above highlights one of the main difficulties for r > 1, as there is no
stationary product-measure (w.r.t. the whole lattice, not only the even sites). To deal with
it, we need to use the Replacement-Lemma due to Guo/Papanicolaou/Varadhan (stated
in Section 4.2.4), which compares a sequence of measures associated to a profile with a
suitable grand-canonical mixture of stationary distributions.

Remark 4.2.1. Theorem 4.2.1 can be reformulated without too much additional work, as
the measures SN (N2t)µN are also associated to the profile ρ(t, u). This way, the theorem
would state what is known as conservation of associated measures, which is neat and thus
often stated in similar theorems.

Properties of the Hydrodynamic Equation for the RrEP

At last we discuss some properties of the PDE (4.3) and its solution. Note that for r ≥ 2
and

Ψ(ρ) :=
1

1− (r − 1)ρ

we can simplify calculations due to ∂2
xΨ̃ = ∂2

xΨ, obtaining the PDE{
∂tρ = 1

2(r−1)∂
2
xΨ(ρ),

ρ(0, ·) = ρ0(·).
(4.5)

Existence and uniqueness statements will be given in the proof of the hydrodynamic
evolution in Section 4.2.4. In general, the solution to this partial differential equation
behaves as expected. Imposing periodic boundary conditions for ρ and ∂xρ, we obtain
immediately the conservation law of mass

∂t

∫ 1

0
ρ(t, x) dx =

1

2(r − 1)

∫ 1

0
∂2
xΨ(ρ(t, x)) dx =

1

2

∂xρ(t, x)

(1− (r − 1)ρ(t, x))2

∣∣∣1
0
≡ 0.

Additionally, the solution of (4.3) remains permanently in the interval [0, 1
r ], given that

0 ≤ ρ0(·) ≤ 1
r , which can be proved by means of the maximum principle. The latter states

that the maximum value of a solution ρ for PDE (4.3) in between 0 ≤ x ≤ 1 and 0 ≤ t ≤ T
must be obtained at a boundary point. Assuming further periodic boundary conditions up
to order 2 in the space variable, we can even conclude that the maximum value must occur
at time 0, where 0 ≤ ρ0(t, x) ≤ 1

r . Thus

0 ≤ ρ(t, x) ≤ 1

r

37



4. Dynamics away from Poles

for all x ∈ T and 0 ≤ t ≤ T .

Remark 4.2.2. The general idea of showing the maximum principle for the RrEP directly is
motivated by the following observation: assuming that the solution ρ attains a maximum value
at an interior point (t0, x0) ∈ (0, T )×(0, 1), implying both (∂tρ)(t0, x0) = 0, (∂xρ)(t0, x0) = 0
and (∂2

xρ)(t0, x0) ≤ 0, one almost gets an immediate contradiction to the PDE (4.5), since
the left-hand-side is 0 and the right-hand-side is greater or equal than 0 (due to possibilities
like f(y) = y4, having an obvious minimum at y = 0, although ∂2

yf(0) = 0).
One way to avoid the unpleasant case is to define a new function

v(t, x) := ρ(t, x) + ε · (T − t),

with 0 < ε < 1
r·(r−1)·T , where the second inequality guarantees that 1 − (r − 1)v > 0.

The fact that v(t, x) is not bounded above by 1
r does not play a role in the proof. It is

straightforward to derive via contradiction that the maximum value of v(t, x) must occur at
{(t, x) ∈ [0, T ]× T : t = 0}. Furthermore, one concludes that

sup
0≤x≤1,0≤t≤T

ρ(t, x) ≤ sup
0≤x≤1

ρ(0, x) + T · ε.

As T is fixed in advance and this inequality is true for all sufficiently small ε > 0, we obtain

sup
0≤x≤1,0≤t≤T

ρ(t, x) = sup
0≤x≤1

ρ(0, x) = sup
0≤x≤1

ρ0(x) ∈ [0,
1

r
].

This function has the properties

∂tv(t, x) = ∂tρ− ε

and

∂2
x

(
1

1−(r−1)v

)
= ∂2

x

(
1

1−(r−1)ρ+(r−1)ε(t−T )

)
= (r−1)∂2

xρ

(1−(r−1)ρ+(r−1)ε(t−T ))2 + 2((r−1)∂xρ)2

(1−(r−1)ρ+(r−1)ε(t−T ))3

(r−1)ε(t−T )<0

≥ ∂2
x

(
1

1−(r−1)ρ

)
,

which leads to the strict inequality

∂tv −
1

2(r − 1)
∂2
x

(
1

1− (r − 1)v

)
≤ ∂tρ− ε−

1

2(r − 1)
∂2
x

(
1

1− (r − 1)ρ

)
(4.3)
= −ε < 0.

(4.6)
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4.2. Range-r Exclusion Process

This way, we get a contradiction if we assume that v(x, t) has a maximum value at an
interior point (t0, x0), as

∂2
x

(
1

1− (r − 1)v

)
(t0, x0) =

(r − 1)(∂2
xv)(t0, x0)

(1− (r − 1)v)2︸ ︷︷ ︸
≤0

+
2 ((r − 1)(∂xv)(t0, x0))2

(1− (r − 1)v(t0, x0))3︸ ︷︷ ︸
=0

⇒ (∂tv)(t0, x0)︸ ︷︷ ︸
=0

− 1

2(r − 1)
∂2
x

(
1

1− (r − 1)v

)
(t0, x0) ≥ 0.

By the same reasoning, one can also exclude {t = T} to contain the maximum point, since

∂t−v(T, x0) := lim
h↓0

v(T, x0)− v(T − h, x0)

h
≥ 0

⇒ ∂t−v(T, x0)− 1

2(r − 1)
∂2
x(

1

1− (r − 1)v(T, x0)
) ≥ 0,

contradicting again (4.6). The above mentioned periodic boundary restrictions up to the
second spatial derivative guarantee the possible further exclusion of {x = 0} and {x = 1},
leaving only {t = 0} to contain the maximum point of v(t, x) in 0 ≤ x ≤ 1, 0 ≤ t ≤ T . Thus
both the equations

sup
0≤x≤1,0≤t≤T

v(t, x) = sup
0≤x≤1

v(0, x) = sup
0≤x≤1

ρ(0, x) + εT and

sup
0≤x≤1,0≤t≤T

ρ(t, x) ≤ sup
0≤x≤1,0≤t≤T

v(t, x)

hold, finally giving
sup

0≤x≤1,0≤t≤T
ρ(t, x) ≤ sup

0≤x≤1
ρ(0, x) + T · ε.

As T is fixed in advance and this inequality is true for all sufficiently small ε > 0, we obtain

sup
0≤x≤1,0≤t≤T

ρ(t, x) = sup
0≤x≤1

ρ(0, x) = sup
0≤x≤1

ρ0(x) ∈ [0,
1

r
].

Applying the same proof to the function −ρ shows that also the minimum value must be
obtained at time t = 0. Thus, once started in [0, 1

r ], the solution to the PDE (4.3) never
leaves this box.

Also, there is a notable connection between solutions to (4.3) for different r ≥ 2. Indeed,
it is enough to know the solution ρ∗ for r = 2, i.e. with{

∂tρ
∗ = 1

2∂
2
x

(
1

1−ρ∗
)

ρ∗(0, ·) = ρ0(·)
, (4.7)
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4. Dynamics away from Poles

Figure 4.3.: solution ρ(t, x) to (4.3) with initial boundary condition ρ0 := 1
4 + 1

10 sin(2πx)

in order to derive a solution ρ := 1
r−1ρ

∗ for the hydrodynamic equation of the RrEP, since

∂tρ =
1

r − 1
∂tρ
∗ ((4.7))

=
1

r − 1

1

2
∂2
x

(
1

1− ρ∗

)
=

1

2(r − 1)
∂2
x

(
1

1− (r − 1)ρ

)
.

In Figure 4.3 the solution to (4.3) is plotted for r = 2 with initial condition

ρ0 :=
1

4
+

1

10
sin(2πx).

In Section C.2 of the appendix, some more boundary conditions are illustrated.

4.2.3. Stationary Measures

In this section we will construct the stationary distribution of the RrEP and calculate the
required probabilities used in Section 4.2.4. Despite its familiarity to the Simple Symmetric
Exclusion Process with product-Bernoulli stationary measure, it is not clear from the start
how the stationary measure for the RrEP generally looks like. It obviously cannot be
product, since there is for example dependence between directly neighbouring sites; η(x) = 1
implies both η(x− 1) = 0 and η(x+ 1) = 0 for r > 1. However, the product-form is still
implicitly present, as was shown in [32]; compare Remark 4.2.3 after the next lemma.

We delve into the problem by considering the canonical setup first. As the number
of particles is conserved under the time evolution, the state space ΩN can be divided
into non-communicating subspaces ΩN,K := {η ∈ ΩN :

∑
x∈TN η(x) = K}, each being

irreducible due to the assumed periodic boundary conditions. Hence, one gets a unique
stationary measure for each K ∈ {0, . . . , bNr c} and a whole family of stationary measures
(called canonical measures) (µN,K)K∈{0,...,bN

r
c} on ΩN .
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4.2. Range-r Exclusion Process

Lemma 4.2.1. Let K ∈ {0, . . . , bNr c} and µN,K be the uniform distribution on ΩN,K . Then
µN,K is invariant for the RrEP.

Proof. According to Theorem 3.37 of [25] it is enough to show
∫
LNf dµN,K = 0 for

all f : ΩN,K → R. Given a configuration η ∈ ΩN,K with η(x) = 1 it follows that
ηx,x+1(x+ 1) · (1− ηx,x+1(x− r + 1)) = 1 for all x ∈ TN , as well as similarly for jumps to
the other side. Thus∫

(LNf)(η) dµN,K(η)

=
∑

η∈ΩN,K

µN,K(η)
1

2

∑
x,y∈TN ,
|x−y|=1

η(x)(1− η(y + (y − x)(r − 1))) (f(ηx,y)− f(η))

=
1

2|ΩN,K |
∑

x,y∈TN ,
|x−y|=1

∑
η∈ΩN,K

η(x)(1− η(y + (y − x)(r − 1))) (f(ηx,y)− f(η)) = 0,

due to

η(x)(1− η(y + (y − x)(r − 1)))(f(ηx,y)− f(η))

=− ηx,y(y)(1− ηx,y(x+ (x− y)(r − 1)))(f(ηx,y)− f(η))

whenever η, ηx,y ∈ ΩN,K for |x− y| = 1.

Remark 4.2.3. Schönherr and Schütz [32] gave quite an elegant reasoning for the previous
lemma, owing to a one-to-one mapping of configurations in this model with configurations
of a ZRP.

At first, identify each extended particle (respectively in the RrEP-setting: each particle
combined with its blocked neighbouring sites to his right) with a single site in the ZRP lattice.
Then, identify the number of ZRP-particles on a site with the distance between the extended
particle (that corresponds to this site) to the next extended particle. The rate at which a
ZRP-particle leaves a site is 1 (with equal probability to the left or right), independently of
the total number of particles on this site. Given a periodic lattice of fixed size and a fixed
number of particles, this means that it is possible to uniquely describe an RrEP dynamics
by means of a ZRP dynamics.2 From Subsection 2.3.2 we know the stationary measure of
the latter, which happens to be of product form. Translated back to the extended particles, it
follows that the uniform distribution on the lattice is stationary for them.

In the following we will focus only on K ≥ 1 and conveniently think of the measures
µN,K as being defined on (the power set of) the whole ΩN by putting µN,K(ΩN,K) = 1.
Before stating the next lemma regarding the probability of certain events under µN,K , it is

2Of course the number of sites and the number of particles differ, but this is not important for the sake
of this argument.
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4. Dynamics away from Poles

η̄:

η∗:

χ

Figure 4.4.: example of two corresponding configurations η for the R2EP and η∗ for the
R1EP under the map χ which removes the rightward (vacant) neighbouring
site to each occupied site; a black circle symbolises a particle at this site, a
white circle stands for a vacant site; the rectangle around the rightmost site of
η̄ reflects the conditioning on {η ∈ Ω12,4 | η(12) = 0}.

important to know how many configurations are possible in total. In order to find |ΩN,K |
we will identify the connection to the range-1-exclusion case. Due to the periodic lattice,
we have to condition first on r − 1 connected sites:

|ΩN,K | =| {η ∈ ΩN,K : η(x+ k) = 0 ∀k ∈ {0, . . . , r − 2}}︸ ︷︷ ︸
=:Ω0

N,K

|

+ | {η ∈ ΩN,K : η(x) = 1}︸ ︷︷ ︸
=:Ω1,x

N,K

|+ · · ·+ | {η ∈ ΩN,K : η(x+ (r − 2)) = 1}︸ ︷︷ ︸
=:Ω

1,x+(r−2)
N,K

|

for some x ∈ TN . Starting with the condition η(x+ k) = 0 for all k ∈ {0, . . . , r − 2}, one

gets a bijection χ : Ω0
N,K →

{
η ∈ {0, 1}N−(r−1)K :

∑N−(r−1)K
j=1 η(j) = K

}
by removing

the first r − 1 rightward neighbouring sites to each particle (see Figure 4.4 for an example
with r = 2). Since there are K particles, the image space consists of N − (r − 1)K sites
and particles might very well be neighbours, such that we obtained a suitable state space
for the R1EP. Its cardinality is given by

|Ω0
N,K | =

(
N − (r − 1)K

K

)
. (4.8)

Regarding the other conditions, note at first that |Ω1,x
N,K | = · · · = |Ω

x+(r−2)
N,K | once again

due to periodicity. Assuming that η(x) = 1, the matter is slightly different compared to
the above case. There is still a bijection between the state space for the RrEP and an
appropriate state space for the R1EP, but one has to take into account that we have to
distribute K − 1 particles instead of K (as one is already on site x), and that there is one
less site at disposal. Hence,

|Ω1,x
N,K | =

(
N − (r − 1)K − 1

K − 1

)
, (4.9)
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giving in total

|ΩN,K | = |Ω0
N,K |+ (r − 1)|Ω1,x

N,K |

=

(
N − (r − 1)K

K

)
+ (r − 1)

(
N − (r − 1)K − 1

K − 1

)
. (4.10)

Lemma 4.2.2. For all x ∈ TN , we have

µN,K({η ∈ ΩN,K : η(x) = 1}) =
K

N
, (4.11)

µN,K({η ∈ ΩN,K : η(x) = η(x+ r) = 1}) =
K

N
· K − 1

N − (r − 1)K − 1
. (4.12)

Proof. Making use of (4.9) and (4.10), we get

µN,K({η ∈ ΩN,K : η(x) = 1}) =

(N−(r−1)K−1
K−1

)
(r − 1)

(N−(r−1)K−1
K−1

)
+
(N−(r−1)K

K

) =
K

N
.

Analogously to the above, combinatorics give

|{η ∈ ΩN,K : η(x) = η(x+ r) = 1}| =
(
N − (r − 1)K − 2

K − 2

)
,

and thus

µN,K({η ∈ ΩN,K : η(x) = η(x+ r) = 1}) =

(N−(r−1)K−2
K−2

)
(r − 1)

(N−(r−1)K−1
K−1

)
+
(N−(r−1)K

K

)
=
K

N
· K − 1

N − (r − 1)K − 1
.

(4.13)

The grand-canonical measure νNρ is obtained by an appropriate convex combination of
the canonical measures µN,K . We set

νNρ =

bN
r
c∑

K=0

αN,K(ρ) · µN,K , (4.14)

where the (αN,K(ρ))K∈{0,...,bN
r
c} are the weights of a convex combination such that νNρ ({η ∈

ΩN : η(x) = 1}) = ρ. In the R1EP-case, the weights are αN0,K(ρ) =
(
N0

K

)
ρK(1− ρ)N0−K ,

which leads to the Bernoulli-product measure. In the RrEP-case, the sum only goes up to
bNr c. In order to still get weights which are concentrated around ρ ·N , the generic choice is

αN,K(ρ) :=

(
bNr c
K

)(
N

bNr c
ρ

)K (
1− N

bNr c
ρ

)bN
r
c−K

. (4.15)
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Lemma 4.2.3. Let αN,K be defined as in (4.15). Then there holds

bN
r
c∑

K=0

αN,K(ρ) = 1,

and for all x ∈ TN

νNρ ({η ∈ ΩN : η(x) = 1}) =

bN
r
c∑

K=0

αN,K(ρ) · µN,K({η ∈ ΩN : η(x) = 1}) = ρ.

Proof. The first statement is clear due to the binomial theorem, as

bN
r
c∑

K=0

αN,K(ρ) = (
N

bNr c
ρ+ (1− N

bNr c
ρ))b

N
r
c.

For the second statement we calculate

=

bN
r
c∑

K=0

(
bNr c
K

)(
N

bNr c
ρ

)K (
1− N

bNr c
ρ

)bN
r
c−K

· K
N

=
bNr c
N

bN
r
c∑

K=1

(
bNr c − 1

K − 1

)(
N

bNr c
ρ

)K (
1− N

bNr c
ρ

)bN
r
c−K

=
bNr c
N

bN
r
c−1∑

j=0

(
bNr c − 1

j

)(
N

bNr c
ρ

)j+1(
1− N

bNr c
ρ

)bN
r
c−1−j

=
bNr c
N
·

(
N

bNr c
ρ

) bN
r
c−1∑

j=0

(
bNr c − 1

j

)(
N

bNr c
ρ

)j (
1− N

bNr c
ρ

)bN
r
c−1−j

︸ ︷︷ ︸
=( N

bNr c
ρ+(1− N

bNr c
ρ))b

N
r c−1=1

.

Next, we state a technical lemma that is going to be used in the following proposition.

Lemma 4.2.4. For all x ∈ R,

q∑
t=0

(−1)q−t

t!(q − t)!
·

q∏
j=0,j 6=t

(x− j) = 1. (4.16)
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Proof. Equation (4.16) is a polynomial of degree q in x ∈ R, say P (x). It is enough to show
P (0) = P (1) = · · · = P (q) = 1. But for x ∈ {0, 1, . . . , q} all but one term are 0, namely
x = t. Thus

P (x) =
(−1)q−x

x!(q − x)!
(x− 0) · (x− 1) · · · · · (x− (x− 1))︸ ︷︷ ︸

=x!

· (x− (x+ 1)) · · · · · (x− q)︸ ︷︷ ︸
=(−1)x−q(q−x)!

= 1.

We will now address the problem of finding the limit of νNρ -measures of configurations
having particles on two fixed sites with minimal distance r.

Proposition 4.2.1. Consider the RrEP on the torus TN . Let νNρ be the grand-canonical
measure according to (4.14) with weights given by (4.15). Then, for all x ∈ TN ,

νNρ ({η ∈ ΩN : η(x) = η(x+ r) = 1})→ ρ2

1− (r − 1)ρ
for N →∞. (4.17)

Proof. At first, bringing the demanded probability into a convenient form, we get

νNρ ({η ∈ ΩN : η(x) = η(x+ r) = 1})
(4.13)

=
bN
r
c∑

K=2

K
N ·

K−1
N−(r−1)K−1

(bN
r
c

K

)(
N
bN
r
cρ

)K (
1− N

bN
r
cρ

)bN
r
c−K

=
bN
r
c·(bN

r
c−1)

N

bN
r
c∑

K=2

(bN
r
c−2

K−2

)(
N
bN
r
cρ

)K (
1− N

bN
r
cρ

)bN
r
c−K

1
N−(r−1)K−1

=
bN
r
c(bN

r
c−1)

N(N−(r−1)K−1)

bN
r
c∑

K=2

(bN
r
c−2

K−2

) bNr c−K∑
s=0

ρK+s ·
(

( N
bN
r
c)
K+s(−1)s

(bN
r
c−K
s

))
m:=K+s

=
bN
r
c∑

m=2

((r−1)ρ)m

(r−1)2 · aN (m),

where

aN (m) :=
1

(r − 1)m−2

(
N

bNr c

)m m∑
K=2

(
bNr c −K
m−K

)(
bNr c − 2

K − 2

)
(−1)m−KbNr c(b

N
r c − 1)

N(N − (r − 1)K − 1)

Clearly, it holds

bN
r
c∑

m=2

((r − 1)ρ)m

(r − 1)2
=

bN
r
c−2∑

j=0

((r − 1)ρ)j+2

(r − 1)2
= ρ2

bN
r
c−2∑

j=0

((r − 1)ρ)j → ρ2

1− (r − 1)ρ
,
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4. Dynamics away from Poles

for N → ∞ as |(r − 1)ρ| < 1. Additionally, for fixed m, we have ((r−1)ρ)m

(r−1)2 · aN (m) ≥ 0.

Reformulating aN (m) further gives

aN (m) = 1
(r−1)m−2

(
N
bN
r
c

)m
bN
r
c!

N(bN
r
c−m)!

m∑
K=2

(−1)m−K

(m−K)!(K−2)!(N−(r−1)K−1)

q:=m−2
=

t:=K−2

1
(r−1)q

(
N
bN
r
c

)q+1
(bN
r
c−1)!

(bN
r
−q−2)!

q∑
t=0

(−1)q−t

(q−t)!t!(N−2r+1−(r−1)t)

=

(
N
bN
r
c

)q+1
(bN
r
c−1)!

(bN
r
−q−2)!

q∏
j=0

(N−2r+1−(r−1)j)︸ ︷︷ ︸
=:E

·
q∑
t=0

(−1)q−t

t!(q−t)!
1

(r−1)q

q∏
j=0, j 6=t

((N − 2r + 1)− (r − 1)j)︸ ︷︷ ︸
=:F

.

On the one hand, it holds that for fixed m (i.e. for fixed q) E → 1 for N → ∞, since

both
(
bNr c

)q+1
q∏
j=0

(N − 2r + 1− (r − 1)j) and N q+1 (bN
r
c−1)!

(bN
r
c−q−2)!

are polynomials in N · bNr c

of degree q + 1 with leading coefficient 1. On the other hand, there actually holds equality
for F , i.e. for 1 ≤ q ≤ bNr c − 2 we have F = 1, due to Lemma 4.2.4, putting x = N−2r+1

r−1 .
As E is monotonically increasing in N , so is aN (m).

Hence, we can apply the Monotone Convergence Theorem with f(m) := ((r−1)ρ)m

(r−1)2 and

fN (m) := ((r−1)ρ)m

(r−1)2 · aN (m) · 11{m≤bN
r
c}, giving

lim
N→∞

∫
N\{0,1}

fN (m) dC =

∫
N\{0,1}

f(m) dC =
∞∑
m=2

((r − 1)ρ)m

(r − 1)2
=

ρ2

1− (r − 1)ρ
,

where C is the counting measure on N\{0, 1}.

Apart from knowing a stationary distribution on ΩN , we are also interested in defining a
stationary distribution νρ on the whole lattice Z, i.e. on the configuration space

ΩZ :=
{
η ∈ {0, 1}Z : η(y) = 1 ⇒ η(y ± k) = 0 ∀k ∈ {1, . . . , r − 1}, ∀y ∈ Z

}
. (4.18)

We will do so by fixing a converging subsequence of νNρ . As Z is countable and {0, 1}Z is
equipped with the product topology, the latter is compact. Thus the above configuration
space, as a closed subset of {0, 1}Z, is compact as well. This means that the sequence
νNρ of measures on B(ΩZ) is tight, implying by Prokhorov’s Theorem that a converging

subsequence νNkρ indeed exists. It follows from propositions I.1.8 and I.2.14 in [23] that the
stationarity property is preserved for νρ.
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4.2. Range-r Exclusion Process

4.2.4. Proof of Theorem 4.2.1

The proof follows closely the standard method for reversible gradient systems as was
illustrated for the zero range process in Chapter 5 of [14]. However the resemblance to the
proof for the SSEP is obvious as well, since we permit at most one particle per site.

Throughout the proof we will use the following notation. We write M+ for the space
of finite positive measures on the unit interval T, endowed with the weak*-topology. It
is possible to define a metric on M+ by means of a dense countable family of continuous
functions (fk)k≥1 on T by

δ(µ, ν) =
∞∑
k=1

1

2k
|〈µ, fk〉 − 〈ν, fk〉|

1 + |〈µ, fk〉 − 〈ν, fk〉|
.

For fixed T ∈ R+, we set D([0, T ],M+) as the space of càdlàg-functions with values in M+

and πN := {πNN2t : t ∈ [0, T ]}. Furthermore, we write QN := (PµN )πN for the pushforward

measure of PµN under πN , i.e. QN (Z) = PµN ((πN )−1(Z)), where Z is an element of

the σ-algebra on D([0, T ],M+) generated by πN . Put differently, QN is the measure on
D([0, T ],M+) corresponding to the N2-accelerated Markov-process πNN2t. Elements of the
latter space are denoted by (πt)t∈[0,T ]. It will be convenient later on to apply the translation
map τx to configurations η, meaning that the latter is shifted by x units. The same holds
for continuous functions f , where τxf(η) := f(τxη) for all configurations η. Also, we write

〈π,G〉 :=

∫
T

G(u)π(du)

for positive measures π on T of finite total mass and remind the reader of Equation (4.2),
which gives

〈πNt , G〉 =
1

N

∑
x∈TN

G
( x
N

)
ηt(x)

for the empirical measure πNt .
We will show that πNN2t converges to a measure πt(du) := ρ(t, x) du which satisfies

∫
T

G(u)πt(du) =

∫
T

G(u)π0(du) +
1

2

t∫
0

∫
T

∂2
xG(u) · ρ(s, u)

1− (r − 1)ρ(s, u)
duds, (4.19)

for smooth functions G : R→ R with period 1 and t ∈ [0, T ].

The proof can be divided up into 3 main parts. We will show that QN converges to a
measure concentrated on the deterministic path {ρ(t, u) du, 0 ≤ t ≤ T} by

1. proving that (QN )N≥1 is relatively compact,
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4. Dynamics away from Poles

2. showing convergence of subsequences (QNk)k≥1 towards a unique measure, which
turns out to be the Dirac-measure on the solution of (4.19),

3. confirming uniqueness of weak solutions to (4.3).

Prior to proceeding with the first step, we execute some necessary calculations. We fix
N ∈ N, a function G : R→ R with period 1 and start with the following process (MG,N

t )t≥0,
which is given at time N2t by

MG,N
N2t

= 〈πNN2t, G〉 − 〈π
N
0 , G〉 −

N2t∫
0

LN 〈πNs , G〉 ds

= 〈πNN2t, G〉 − 〈π
N
0 , G〉 −

t∫
0

N2LN 〈πNN2s, G〉ds.

(4.20)

According to Lemma A.1.1 and Remark A.1.1 in the appendix, putting

F (s, ηs) := 〈πNs , G〉,

the process (MG,N
t )t≥0 is a martingale. Introducing the discrete Laplacian

∆NG(
x

N
) := N2

(
G

(
x+ 1

N

)
+G

(
x− 1

N

)
− 2G

( x
N

))
, (4.21)

the integrand in the last line of Equation (4.20) gives

N2LN 〈πNN2s, G〉

=N
∑
x∈TN

G
( x
N

)(
− 1

2
ηN2s(x)(1− ηN2s(x− r))−

1

2
ηN2s(x)(1− ηN2s(x+ r))

+
1

2
ηN2s(x− 1)(1− ηN2s(x+ r − 1)) +

1

2
ηN2s(x+ 1)(1− ηN2s(x− r + 1))

)
=
N

2

∑
x∈TN

G
( x
N

)(
− ηN2s(x) + ηN2s(x)ηN2s(x− r)− ηN2s(x) + ηN2s(x)ηN2s(x+ r)

+ ηN2s(x− 1)− ηN2s(x− 1)ηN2s(x+ r − 1) + ηN2s(x+ 1)− ηN2s(x+ 1)ηN2s(x− r + 1)
)

=
1

2N
〈πNN2s,∆NG〉

+
N

2

∑
x∈TN

ηN2s(x)ηN2s(x+ r) ·
(
G(
x+ r

N
) +G(

x

N
)−G

(
x+ 1

N

)
−G

(
x+ r − 1

N

))
,

(4.22)
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taking advantage of the fact that products of the form ηN2s(x) ·ηN2s(x+k) are 0 for |k| < r.
Note that for the SSEP (R1EP), the second summand is just 0. Continuing with (4.22) by
applying summation by parts, we get

N2LN 〈πNN2s, G〉

=
1

2N
〈πNN2s,∆NG〉+

1

2N

∑
x∈TN

ηN2s(x)ηN2s(x+ r) ·

x+r−1∑
j=x+1

∆NG

(
j

N

)
=

1

2N

∑
x∈TN

∆NG
( x
N

)(
ηN2s(x) + ηN2s(x− r + 1)ηN2s(x+ 1) + . . .

· · ·+ ηN2s(x− 1)ηN2s(x− 1 + r)
)
.

(4.23)

Remark 4.2.4 (Heuristics based on a local equilibrium ansatz). Already at this point, one
is able to predict the hydrodynamic equation under some stronger assumptions. First, let
the N2-accelerated empirical measures converge to an absolutely continuous measure with
density ρ(t, u). Assume further that for all local, bounded functions F : {0, 1}Z → R and νρ
as on page 46, we have a sequence (µN )N≥1 of local equilibrium measures for the starting
profile ρ0 : T→ R+, i.e. recalling from Subsection 2.2.3

lim
N→∞

IEτbuNcµN (F (η)) = IEνρ0(u)
(F (η)) (4.24)

for all continuity points u of ρ0. Having this assumption on initial measures is quite a
restrictive condition, as we demand weak convergence in every continuity point of the initial
density profile ρ0. Certainly for continuous functions G : T→ R a local equilibrium sequence
implies the convergence in Definition 4.2.1, where we only demanded the spatial means to
converge. On the other hand this assumption facilitates calculations for the purpose of this
remark. Another property that we shall assume for the moment is that local equilibrium is
conserved for the function ρ : R+ × T→ R+ in the sense that

SN (N2t)τbuNcµ
N →w νρ(t,u), N →∞ (4.25)

for all t ≥ 0 and all continuity points u of ρ(t, ·).
Later on it will turn out that, in the limit N →∞, the measures QN are concentrated on

a deterministic path in D([0, T ],M+). Thus, it is a valid heuristic approach to take the
expectation in Equation (4.20). Since MG,N

0 = 0, we have

IEP
µN

(MG,N
N2t

) = 0 ∀t ≥ 0.
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Combined with Equation (4.23) and Equation (4.2), we get

1

N

∑
x∈TN

G
( x
N

)
IEP

τxµN
(ηN2t(0))− 1

N

∑
x∈TN

G
( x
N

)
IEP

τxµN
(η0(0))

=
1

2N

t∫
0

∑
x∈TN

∆NG
( x
N

)
·
(
IEP

τxµN

(
ηN2s(0)

)
+ (r − 1) · IEP

τxµN

(
ηN2s(−r)ηN2s(0)

))
ds.

(4.26)

Taking the limit N →∞, we obtain with (4.25)

lim
N→∞

(
1

N

∑
x∈TN

G
( x
N

)
IEP

τxµN
(ηN2t(0))

)
= lim
N→∞

(
1

N

∑
x∈TN

G
( x
N

)
νρ(t, xN ) ({η(0) = 1})︸ ︷︷ ︸

=ρ(t, xN )

)

=

∫
T

G(u)ρ(t, u) du

and analogously for the second term in the first line of (4.26) thanks to (4.24). Also, there
holds (after applying Taylor’s formula twice in x

N )

∆NG
( x
N

)
= NG′

( x
N

)
+

1

2
G′′
( x
N

)
+O

(
1

N

)
−NG′

( x
N

)
+

1

2
G′′
( x
N

)
+O

(
1

N

)
=G′′

( x
N

)
+O

(
1

N

)
(4.27)

and furthermore, not only SN (N2t)τbuNcµ
N converges weakly to νρ(t,u) after assuming a

conservation of local equilibrium according to (4.25), but also νNρ(t,u) →
w νρ(t,u). Finally we

obtain from (4.26)∫
T

G(u)ρ(t, u) du−
∫
T

G(u)ρ0(u) du

= lim
N→∞

( 1

2N

t∫
0

∑
x∈TN

∂2
xG(

x

N
) ·
(
IEνN

ρ(s, x
N

)
(ηN2s(0)) + (r − 1) · IEνN

ρ(s, x
N

)
(ηN2s(−r)ηs(0))

)
ds
)
.

At this point we benefit from Proposition 4.2.1 and get

∫
T

G(u)ρ(t, u) du−
∫
T

G(u)ρ0(u) du =
1

2

t∫
0

∫
T

∂2
xG(u) · ρ(s, u)

1− (r − 1) · ρ(s, u)︸ ︷︷ ︸
=:Φ(ρ)

duds. (4.28)
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Thus, the only candidate for the hydrodynamic equation of the RrEP is{
∂tρ = 1

2∂
2
xΦ(ρ)

ρ(0, ·) = ρ0(·)
. (4.29)

For r = 1 this is just the well-known heat equation for SSEP. Excluding this case, taking
r ≥ 2, the PDE can be simplified to{

∂tρ = 1
2(r−1)∂

2
xΨ(ρ)

ρ(0, ·) = ρ0(·)
, (4.30)

with

Ψ(ρ) :=
1

1− (r − 1)ρ
.

In order to carry out step 1 and show relative compactness of (QN )N≥1 on D([0, T ],M+),
we will make use of Proposition B.2.2 in the appendix. Given a suitable family of test-
functions {gk; k ≥ 1}, it allows to treat the same problem for measures (QN,G)N≥1 on
D([0, T ],R) instead, where those measures are defined by

QN,gk(A) = QN ({(πt)t∈[0,T ] ∈ D([0, T ],M+) : (〈πt, gk〉)t∈[0,T ] ∈ A})

for measurable sets A ⊂ D([0, T ],R). The dense subfamily of C(T) mentioned in the
proposition will be in our case the space of twice continuously differentiable functions
G : R→ R with period 1, denoted by C2(T). Of course, the constant 1-function on T is in
C2(T) and C2(T) is dense in C(T) for the uniform topology. Thus, we only have to check
whether (QN,G)N≥1 is relatively compact in D([0, T ],R) for every test-function G ∈ C2(T),
since (〈πNN2t, G〉)t∈[0,T ] is a real-valued process.
At this point, we can check a version of Prohorov’s criterions for relative compactness (cf.
Theorem B.2.1 in the appendix). Therefor, for a function f : [0, T ]→ R, we introduce a
modified uniform modulus of continuity by

w′f (γ) := inf
{ti}0≤i≤r̄

max
0≤i<r̄

sup
ti≤s′<t<ti+1

|ft − fs′ |, (4.31)

where the infimum is taken over all partition points {ti, 0 ≤ i ≤ r̄} of [0, T ] such that
0 = t0 < t1 < ... < tr̄−1 < tr̄ = T and ti − ti−1 > γ for all i = 1, ..., r̄. In our current
context Prohorov’s Theorem states that, for a function G ∈ C(T), a sequence (QN,G)N≥1

of probability measures on D([0, T ],R) is relatively compact if and only if

1. for every t ∈ [0, T ] and every ε > 0, there is a compact set K(t, ε) ⊂ R such that

sup
N≥1

QN,G(f : ft /∈ K(t, ε)) ≤ ε, (4.32)
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2. for every ε > 0,

lim
γ→0

lim sup
N→∞

QN,G(f : w′f (γ) > ε) = 0. (4.33)

Condition (4.32) demands compactness of the marginals at every fixed point in time. It
is satisfied directly since πNt (T) ≤ 1 for all N ≥ 1 and our test function G ∈ C2(T) is in
particular continuous, such that the image G(T) is compact as well, hence |〈πNt , G〉| is
bounded. Instead of checking condition (4.33), we might check the sufficient condition

lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

QN,G(f : |fτ+θ − fτ | > ε) = 0 ∀ε > 0, (4.34)

given in [1] (see also Section B.2 in the appendix), where TT is the family of stopping times
bounded by T. With Equation (4.20), we obtain3

QN,G
(∣∣〈πNN2(τ+θ), G〉 − 〈π

N
N2τ , G〉

∣∣ > ε
)

≤QN,G
(∣∣MG,N

N2(τ+θ)
−MG,N

N2τ

∣∣ > ε

2

)
+QN,G

∣∣∣∣∣
τ+θ∫
τ

N2LN 〈πNN2s, G〉ds

∣∣∣∣∣ > ε

2

 ,
(4.35)

such that it is sufficient to show convergence towards 0 for each summand in the last line
separately. Utilising Equation (4.23) and writing abbreviatory

h(ηN2s) := ηN2s(0) + ηN2s(1− r)ηN2s(1) + · · ·+ ηN2s(−1)ηN2s(r − 1), (4.36)

as well as D := sup
N≥1
||∆NG||∞ <∞, we obtain

PµN
(∣∣∣ 1

2N

τ+θ∫
τ

∑
x∈TN

∆NG
( x
N

)
· τxh(ηN2s) ds

∣∣∣ > ε

2

)
≤PµN

(1

2
θD >

ε

2

)
≤
θ≤γ

PµN
(
γD > ε

)
→
γ→0

0,

(4.37)

which implies by the definition of QN,G that the second term of the right hand side in
inequality (4.35) converges to 0, too, as γ → 0 (and thus θ → 0). Concerning the first term
of the right hand side in inequality (4.35), condition (4.34) does not follow immediately
only by the martingale property. Showing that IEQN,G [(MG,N

N2(τ+θ)
−MG,N

N2τ
)2] → 0 would

3For two random variables X,Y there holds

P(|X + Y | > ε) ≤ P(|X|+ |Y | > ε) ≤ P({|X| > ε

2
} ∪ {|Y | > ε

2
}) ≤ P(|X| > ε

2
) + P(|Y | > ε

2
),

as {|X|+ |Y | > ε} ⊂
{
{|X| > ε

2
} ∪ {|Y | > ε

2
}
}

.
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do the trick though due to Chebyshev’s inequality. The connection to the quadratic term
is achieved by Lemma 5.1 in Appendix 1 of [14], which is also stated in the appendix as
Lemma A.1.1. In our case, we conclude that

NG
N2t :=

(
MG,N
N2t

)2 − N2t∫
0

(
LN 〈πNs , G〉2 − 2〈πNs , G〉LN 〈πNs , G〉

)
ds

= (MG,N
N2t

)2 −
t∫

0

(
N2LN 〈πNN2s, G〉

2 − 2N2〈πNN2s, G〉LN 〈π
N
N2s, G〉︸ ︷︷ ︸

:=BG
N2s

)
ds

(4.38)

is a new martingale. In order to derive BG
N2s, we first note that for sites x, y ∈ Tn, |x−y| = 1,

with ηN2s(x) = 1 and such that a jump to y ∈ TN is allowed under the dynamics, we have
with the (third) binomial formula∑

z∈TN

ηx,y
N2s

(z)G
( z
N

)2

−

∑
z∈TN

ηN2s(z)G
( z
N

)2

=

∑
z∈TN

(ηx,y
N2s

(z) + ηN2s(z))G
( z
N

) ·
∑
z∈TN

(ηx,y
N2s

(z)− ηN2s(z))G
( z
N

)
=

2
∑
z∈TN

ηN2s(z)G
( z
N

)+G
( y
N

)
−G

( x
N

) · (G( y
N

)
−G

( x
N

))
.

(4.39)

We can use this equation to derive

N2LN
(
〈πNN2s, G〉

2
)

=
1

2

∑
x,y∈TN ,
|x−y|=1

ηN2s(x)

(
r−1∏
k=0

(1− ηN2s(y + (y − x)k))

)
·

·

∑
z∈TN

ηx,y
N2s

(z)G
( z
N

)2

−

∑
z∈TN

ηN2s(z)G
( z
N

)2
=

1

2

∑
x,y∈TN ,
|x−y|=1

ηN2s(x)

(
r−1∏
k=0

(1− ηN2s(y + (y − x)k))

)(
G
( y
N

)
−G

( x
N

))2

+ 2N2〈πNN2s, G〉LN 〈π
N
N2s, G〉,

(4.40)
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from which we can conclude

BG
N2s =

1

2

∑
x,y∈TN ,
|x−y|=1

ηN2s(x)

(
r−1∏
k=0

(1− ηN2s(y + (y − x)k))

)(
G
( y
N

)
−G

( x
N

))2
. (4.41)

Also, it holds

IEQN,G [(MG,N
N2(τ+θ)

−MG,N
N2τ

)2] = IEQN,G [(MG,N
N2(τ+θ)

)2 − (MG,N
N2τ

)2],

due to the martingale properties of (MN,G
t ), which can be seen by conditioning properly.

This way

IEQN,G [(MG,N
N2(τ+θ)

−MG,N
N2τ

)2]

= IEQN,G [NG
N2(τ+θ) −N

G
N2τ ]︸ ︷︷ ︸

=0, since NG
t is a martingale

+

τ+θ∫
τ

IEQN,G [BG
N2s] ds.

(4.42)

and thus

lim
N→∞

IEQN,G [(MG,N
N2(τ+θ)

−MG,N
N2τ

)2] ≤ lim
N→∞

||(∂xG)2||∞ · θ
2N

= 0. (4.43)

Finally, for fixed ε > 0,

lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

QN,G(|MN2(τ+θ) −MN2τ | >
ε

2
)

≤ lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

4IEQN,G [(MG,N
N2(τ+θ)

−MG,N
N2τ

)2]

ε2

≤ lim
γ→0

lim sup
N→∞

4||∂xG||2∞ · γ
ε2 ·N

= 0.

(4.44)

Thus condition (4.34) is satisfied with (4.37), (4.44), (4.35) and the fact that by construction,
QN,G lays full measure on paths of the form t 7→ 〈πNN2t, G〉. All combined, the relative
compactness has been shown.

The next step is to show uniqueness of the limit along subsequences of (QN )N≥1. Let
therefore QNk be a subsequence converging to a limit point Q∗.
At first we show that the pushforward measure Q∗pt under the projection-map pt onto time
t ∈ [0, T ] is concentrated on absolutely continuous measures with respect to the Lebesgue
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4.2. Range-r Exclusion Process

measure. Similarly to SSEP, there is at most one particle per site, such that for trajectories
(πt)t∈[0,T ] ∈ D([0, T ],M+), there holds

sup
t∈[0,T ]

|〈πt, G〉| ≤
1

Nk

∑
x∈TNk

|G(
x

Nk
)| QNk − a.s.. (4.45)

Furthermore the function
(πt)t∈[0,T ] 7→ sup

t∈[0,T ]
|〈πt, G〉|

is continuous with respect to the Skorohod-topology, which implies that the set

{(πt)t∈[0,T ] ∈ D([0, T ],M+) : sup
t∈[0,T ]

|〈πt, G〉| ≤
∫
T

|G(u)|du}

is closed. Thus, it is possible to apply the Portmanteau-Theorem for closed sets, obtaining

1
(4.45)

= lim sup
k→∞

QNk({(πt)t∈[0,T ] ∈ D([0, T ],M+) : sup
t∈[0,T ]

|〈πt, G〉| ≤
∫
T

|G(u)|du})

≤ Q∗({(πt)t∈[0,T ] ∈ D([0, T ],M+) : sup
t∈[0,T ]

|〈πt, G〉| ≤
∫
T

|G(u)| du}).

Thus Q∗ is concentrated on trajectories (πt)t∈[0,T ] ∈ D([0, T ],M+) such that

sup
t∈[0,T ]

|〈πt, G〉| ≤
∫
T

|G(u)|du,

and we conclude by the monotone-class theorem that Q∗ is concentrated on paths which
are absolutely continuous with respect to the Lebesgue-measure at every instant in time.
We will write ρ(s, u) for the associated density at time s.

Naturally, the assumption of associated starting measures (µN )N≥1 guarantees that Q∗

is also concentrated on paths that at time 0 have density ρ0:

Q∗
({

(πt)t∈[0,T ] ∈ D([0, T ],M+) :
∣∣∣ ∫
T

G(u)π0(du)−
∫
G(u)ρ0(u) du

∣∣∣ > ε
})

≤ lim inf
k→∞

QNk
(∣∣∣ ∫

T

G(u)π0(du)−
∫
G(u)ρ0(u) du

∣∣∣ > ε
)

= lim inf
k→∞

QNk
(∣∣∣ 1

Nk

∑
x∈TNk

G

(
x

Nk

)
η0(x)−

∫
G(u)ρ0(u) du

∣∣∣ > ε
)

= lim
k→∞

µNk
(∣∣∣ 1

Nk

∑
x∈TNk

G

(
x

Nk

)
η(x)−

∫
G(u)ρ0(u) du

∣∣∣ > ε
)

= 0.
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4. Dynamics away from Poles

Consider now smooth functions G : [0, T ] × T → R fulfilling G(t, 0) = G(t, 1) as well as
∂xG(t, 0) = ∂xG(t, 1) for all t ∈ [0, T ]. Once again we refer to Lemma A.1.1, which tells us
that the process MF from Equation (A.2) is another martingale. Applied to the function

F (s, ηs) :=
1

Nk

∑
x∈TNk

G

(
s

N2
k

,
x

N

)
ηs(x)

at time N2
k t, in our case it reads4

MG,Nk
N2
k t

= 〈πNk
N2
k t
, G(t, ·)〉 − 〈πNk0 , G(0, ·)〉 −

N2
k t∫

0

(∂s + LNk)〈πNks , G

(
s

N2
k

, ·
)
〉ds

= 〈πNk
N2
k t
, G(t, ·)〉 − 〈πNk0 , G(0, ·)〉 −

t∫
0

(∂s +N2
kLNk)〈πNk

N2
ks
, G(s, ·)〉ds,

(4.46)

which will show that Q∗ is concentrated on trajectories such that

〈πt, G〉 = 〈π0, G〉+

t∫
0

∫
T

(
ρ · ∂sG+

1

2
Φ(ρ) · ∂2

xG

)
duds,

〈π0, G〉 =

∫
T

G(0, u) · ρ0(u) du,

(4.47)

where we recall
Φ(α) := lim

N→∞
IEνNα [h]

h∈Cb= IEνα [h] =
α

1− (r − 1)α

for 0 ≤ α ≤ 1
r as in Remark 4.2.4.

One gets for every δ > 0

QNk( sup
0≤t≤T

|MG,Nk
N2
k t
| > δ) ≤

IEQNk

( sup
0≤t≤T

|MG,Nk
N2
k t
|

)2


δ2

≤ 4

δ2
IEQNk

((
MG,Nk
N2
kT

)2)→ 0

for k →∞, by applying Chebyshev’s inequality, followed by Doob’s L2-inequality. Unlike
the approach for SSEP, it is not straightforward to derive an expression for the martingale

4Contrary to prior applications of Lemma A.1.1, this time the operator ∂s cannot be neglected, since
the function G depends on s ∈ R+. In particular, this means that we have to check condition (A.1), which
holds true however due to our smoothness assumption on G : [0, T ]× T→ R above.
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4.2. Range-r Exclusion Process

in (4.46) that is supposed to be a function of the empirical measure. This is due to the fact
that product terms of the form ηN2t(x− r+ 1) ·ηN2t(x+ 1) occur. More precisely, we obtain

lim
k→∞

PµNk

(
sup
t∈[0,T ]

∣∣∣〈πNk
N2
k t
, G〉 − 〈πNk0 , G〉 −

t∫
0

〈πNk
N2
ks
, ∂sG〉 ds

− 1

2

t∫
0

1

Nk

∑
x∈TNk

∆NkG(s,
x

Nk
)τxh(ηN2

ks
) ds
∣∣∣ > δ

)
= 0.

(4.48)

Similarly to the heuristic derivation of the hydrodynamic equation in Remark 4.2.4, once
again the means to get a closed version of (4.48) in terms of the empirical measure will be
a connection to the expectation of h with respect to the stationary measure. This can be
obtained by the replacement lemma due to Guo, Papanicolaou and Varadhan (Lemma 3.3
in [20]). First, we introduce the local empirical density of range 2l + 1 centred at x

ηl(x) =
1

2l + 1

∑
|y−x|≤l

η(y).

Then the replacement lemma for a fixed sequence µN of probability measures on {0, 1}TN
with H(µN |νNα ) ≤ C0N for some finite C0, states that for every δ > 0 and every local
function h,

lim sup
ε→0

lim sup
N→∞

PµN
( t∫

0

1

N

∑
x∈TN

τxVεN (ηs) ds ≥ δ
)

= 0, (4.49)

where

Vl(η) =
∣∣∣( 1

2l + 1

∑
|y|≤l

τyh(η)
)
− Φ(ηl(0))

∣∣∣.
Once again we can consider

1

2Nk

∑
x∈TNk

∂2
xG(s,

x

Nk
)τxh(ηN2

ks
) (4.50)

instead of the version with the discrete Laplacian ∆Nk in (4.48). We obtain

1

2Nk

∑
x∈TNk

∆NkG(s,
x

Nk
)τxh(ηN2

ks
)

=
1

2Nk

∑
x∈TNk

1

2εNk + 1

∑
|y−x|≤εNk

∂2
xG(s,

y

Nk
)τyh(ηN2

ks
) + O(

1

N
),
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4. Dynamics away from Poles

and a first-order Taylor-expansion of ∂2
xG(s, y

Nk
) in x

Nk
gives5

1

2Nk

∑
x∈TNk

∂2
xG(s,

x

Nk
)

1

2εNk + 1

∑
|y−x|≤εNk

τyh(ηN2
ks

) +O(ε) +O(
1

N
). (4.51)

Intuitively, there must be a simple connection between the local empirical density and the
empirical measure and indeed, defining

ιε(u) :=
1

2ε
11{|u|≤ε},

one gets approximately (for large N)

ηεNN2s(0) =
1

2εN + 1

∑
|y|≤εN

ηN2s(y)

∼ 1

2εN

∑
|y|≤εN

ηN2s(y) =
1

N

∑
x∈TN

ηN2s(x) · 11{| x
N
|≤ε} ·

1

2ε
= 〈πNN2s, ιε〉.

Hence, applying the replacement lemma, replacing the local empirical density by a
function of the empirical measure and lightening the notation by putting a = 〈πNk

N2
ks
, ιε〉 for

the parameter of the grand-canonical measure, expression (4.51) is equal to

1

2Nk

∑
x∈TNk

∂2
xG(s,

x

Nk
)τxΦ(a) + RNk,ε,

where RNk,ε is an expression which vanishes in probability as Nk →∞ and ε→ 0 afterwards.
Furthermore, replacing the sum by an integral, we only make an error of order O

(
1
N

)
.

Hence, there holds

lim sup
ε→0

lim sup
k→∞

QNk
(∣∣∣〈πt, G〉 − 〈π0, G〉 −

t∫
0

〈πs, ∂sG〉 ds

− 1

2

t∫
0

∫
T

∂2
xG(s, u)Φ(

∫
T

ιε(v − u)πs(dv)) duds
∣∣∣ ≥ δ) = 0.

(4.52)

Observe that for each ε > 0 the map

(πs)s∈[0,T ] 7→〈πt, G〉 − 〈π0, G〉 −
t∫

0

〈πs, ∂sG〉 ds

− 1

2

t∫
0

1

Nk

∑
x∈TNk

∂2
xG(s,

x

Nk
)Φ(

∫
T

ιε(v − u)πs(dv)) ds

5For simplicity we treat εNk as an integer.
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4.2. Range-r Exclusion Process

is continuous. Thus the Portmanteau-Theorem is applicable, giving

lim sup
ε→0

Q∗
(∣∣∣〈πt, G〉 − 〈π0, G〉 −

t∫
0

〈πs, ∂sG〉 ds

− 1

2

t∫
0

∫
T

∂2
xG(s, u)Φ(

∫
T

ιε(v − u)πs(dv)) duds
∣∣∣ ≥ δ) = 0.

(4.53)

The final goal in this step consists in getting rid of the ε, obtaining a function of the density.
Pointwise, by Lebesgue’s differentiation theorem, we see that

〈πNk
N2
ks
, ιε〉 =

1

2ε

∫
T

11[−ε,ε](u) πNk
N2
ks

(du) →
Nk→∞

1

2ε

∫
T

11[−ε,ε](u) · ρ(s, u) du →
ε→0

ρ(s, 0), (4.54)

since we know that Q∗ is concentrated on absolutely continuous measures. Formally we use
that Φ is continuous, ρ(s, ·) ∈ [0, 1

r ] and |∂2
xG| <∞, such that by dominated convergence

for ε ↓ 0

t∫
0

∫
T

∂2
xG(s, u)Φ(

∫
T

ιε(v − u)πs(dv)) du ds→
t∫

0

∫
T

∂2
xG(s, u)Φ(ρ(s, u)) duds Q∗ − a.s..

We conclude that

lim sup
ε→0

Q∗
(∣∣∣ t∫

0

∫
T

∂2
xG(s, u)(Φ(

∫
T

ιε(v − u) πs(dv))− Φ(ρ(s, u))) duds
∣∣∣ > δ

)
= 0

for all δ > 0 and follow up by letting δ → 0.

We will close the proof by showing the uniqueness of weak solutions of (4.3) in L2([0, T ]×
T), i.e. the third step of the proof. We benefit from the discussion in Appendix A.2 of
[14] and in particular one theorem (cited here in Theorem C.1.1), which states that for the
quasi-linear parabolic equation {

∂tρ = σ∂2
xΨ(ρ),

ρ(0, ·) = ρ0(·),

where Ψ is a smooth, strictly increasing function with ||Ψ′ ||∞ ≤ g∗ <∞, σ is a constant
and ρ0 a bounded profile, there exists a unique weak solution in L2([0, T ]× T).

By definition of the RrEP, the starting profile ρ0 must be bounded by 1
r and 1

2(r−1) > 0.

The restriction of the time line to [0, T ], the whole R+ in the Theorem, does not cause
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4. Dynamics away from Poles

any problems neither, as a unique solution in the bigger space R+ × T obviously implies
uniqueness in [0, T ]× T. Finally, the function

Ψ : [0,
1

r
]→ [1, r], ρ 7→ 1

1− (r − 1)ρ

is smooth and strictly increasing with

||Ψ′ ||∞ ≤ r2(r − 1) <∞,

fulfilling all prerequisites for Theorem C.1.1 in the appendix.

4.2.5. Heuristic Approach based on SSEP

In this section our interest lies in deriving the hydrodynamic equation by a more direct
heuristic method. The approach was suggested to us by T. Kriecherbauer, and it turns out
that it almost works. It relies on the direct connection to the SSEP, i.e. the range-1 case,
and our knowledge of the heat equation being its hydrodynamic equation. To formalise this
connection, we define the 1-to-1 function χ which eliminates the (r−1) empty sites to the right
of each particle in a configuration ξ ∈ ΩN,K , where ΩN,K := {η ∈ ΩN |

∑
x∈TN η(x) = K},

obtaining an element of {η ∈ {0, 1}N−K |
∑N−K

j=1 η(j) = K}. Figure 4.4 in Section 4.2.3
shows a simple example for r = 2. Neglecting the periodic boundary conditions for once,
the RrEP-dynamics corresponds exactly to the SSEP-dynamics of η = χ(ξ). Thus it is
reasonable to expect the heat equation to govern the RrEP-density in some kind of way.

It is important to note that under the function χ, a tagged site of a configuration ξ
differs from the tagged site of η = χ(ξ) according to the particle distribution. That is, a
site u ∈ TN for the configuration ξ ∈ ΩN,K corresponds to the site u− (r− 1)

∑u−1
j=1 ξ(j) in

TN−K , since for every particle to the left of u, r − 1 sites are eliminated.
Let us assume that for a sequence (ξN )N≥1 with ξN ∈ ΩN we know that

ρRrEP (y) := lim
ε→0

lim
N→∞

1

2εN

bεNc∑
j=−bεNc

ξN (byNc+ j) (4.55)

exists for all y ∈ [0, 1] and that ρRrEP is continuous. Let ηN ∈ ΩN−
∑
x∈TN

ξN (x) be the

image of ξN under χ. Then

ρR1EP (x) := lim
δ→0

lim
N→∞

1

2δN

bδNc∑
j=−bδNc

ηN (bxNc+ j) (4.56)

exists for all x ∈ [0, 1 − (r − 1)
∫ 1

0 ρ
RrEP (u) du]. To see this, and to relate ρR1EP with

ρRrEP , first note that since we assume ρRrEP to be continuous, we can replace the two-sided
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4.2. Range-r Exclusion Process

average in (4.55) by a one-sided one, i.e.

ρRrEP (y) = lim
ε→0

lim
N→∞

1

εN

bεNc∑
j=1

ξN (byNc+ j)

and the same for ρR1EP . Next, define the function

G(y) :=

y∫
0

(1− (r − 1)ρRrEP (u)) du

and note that G : [0, 1] → [0, 1 − (r − 1)
∫ 1

0 ρ
RrEP (u) du] is a 1-to-1 map. For δ > 0 we

define ε = ε(y) by the equation

δ := ε− (r − 1)

y+ε∫
y

ρRrEP (u) du.

Since ρRrEP ≤ 1
r , we have ε→ 0 whenever δ → 0. With x := G(y), we thus obtain

ρ̃R1EP
δ (x) := lim

N→∞

1

δN

bδNc∑
j=1

ηN (bxNc+ j)

= lim
N→∞

bεN−(r−1)N
y+ε∫
y
ρRrEP (u) duc∑

j=1
ηN (bxNc+ j)

εN − (r − 1)N
y+ε∫
y
ρRrEP (u) du

= lim
N→∞

1
bεNc

bεNc∑
j=1

ξN (byNc+ j)

1− (r − 1)1
ε

y+ε∫
y
ρRrEP (u) du

.

Taking δ (and thus ε) to zero and using the continuity of ρRrEP , we get

ρ̃R1EP (x) = lim
δ→0

ρ̃R1EP
δ (x) =

ρRrEP (y)

1− (r − 1)ρRrEP (y)
=

ρRrEP (G−1(x))

1− (r − 1)ρRrEP (G−1(x))
.

For the same reason and since (r− 1)ρRrEP < 1 it follows that ρ̃R1EP is continuous. Hence,
we get

ρR1EP (x) = ρ̃R1EP (x) =
1

r − 1

(
1

1− (r − 1)ρRrEP (G−1(x))
− 1

)
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4. Dynamics away from Poles

for all x ∈ [0, 1− (r − 1)
∫ 1

0 ρ
RrEP (u) du]. Using the function

F (x) :=

x∫
0

(1 + (r − 1)ρR1EP (u)) du

we can vice versa express ρRrEP by ρR1EP in view of

ρRrEP (y) =
ρR1EP (F−1(y))

1 + (r − 1)ρR1EP (F−1(y))

=
1

r − 1

(
1− 1

1 + (r − 1)ρR1EP (F−1(y))

) (4.57)

for all y ∈ [0, 1] since G−1(F−1(y)) = y.

Now we can take the time derivative of (4.57) and use that ρR1EP solves the heat equation.
Note however that the functions F−1 and G−1 also depend on time.
Applying the time derivative to the equation F−1(t, F (t, x)) = x we obtain

∂tF
−1(t, F (t, x)) = −∂yF−1(t, F (t, x)) · ∂tF (t, x)

= − 1

1 + (r − 1)ρR1EP (t, x)
· 1

2
(r − 1)

(
∂xρ

R1EP (t, x)− ∂xρR1EP (t, 0)
)
,

(4.58)

where we use the knowledge of ρR1EP solving the heat equation. Furthermore

∂xρ
R1EP (t, x) =

∂xρ
RrEP (t, G−1(t, x)) · ∂xG−1(t, x)

(1− (r − 1)ρRrEP (t, G−1(t, x)))2

=
∂xρ

RrEP (t, G−1(t, x))

(1− (r − 1)ρRrEP (t, G−1(t, x)))3

(4.59)

and

∂2
xρ
R1EP (t, x) =

(
1− (r − 1)ρRrEP (t, G−1(t, x))

)−5

·
(

(1− (r − 1)ρRrEP (t, G−1(t, x)))∂yyρ
RrEP (t, G−1(t, x))

+ 3(r − 1)
(
∂yρ

RrEP (t, G−1(t, x))
)2 ) (4.60)

Hence,

∂tρ
RrEP (t, y) =

∂tρ
R1EP (t, F−1(t, y)) + ∂xρ

R1EP (t, F−1(t, y)) · ∂tF−1(t, y)

(1 + (r − 1)ρR1EP (t, F−1(t, y)))2

=
1
2∂xxρ

R1EP (t, F−1(t, y)) + ∂xρ
R1EP (t, F−1(t, y)) · ∂tF−1(t, y)

(1− (r − 1)ρRrEP (t, y))−2 .
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Inserting (4.58), (4.59) and (4.60), this leads to the partial differential equation{
∂tρ

RrEP (t, y) = 1
2(r−1)∂

2
y (Ψ(ρ(t, y))) + 1

2(r−1) · ∂yρ
RrEP (t, y) · ∂yρRrEP (t,0)

(1−(r−1)ρRrEP (t,0))3 ,

ρ(0, ·) = ρ0(·),
(4.61)

with

Ψ(ρ) :=
1

1− (r − 1)ρ
.

Curiously enough, this PDE differs from the one in (4.3) by a term which depends on the
density’s space derivative at x = 0, which is due to the fact that the transformation function
χ had to start at some fixed point. It turns out that there is a difference between taking
the hydrodynamic limit directly for the RrEP on the one hand, and on the other hand
applying χ for discrete configurations, evolving those configurations in time according to
the SSEP-dynamics, applying the hydrodynamic limit and transforming back.
This problem can be avoided by studying the RrEP and the PDE on the whole real line,
with zero boundary conditions, in which case the evaluation point of ∂yρ in the last term of
(4.61) can be pushed to −∞ and the extra term disappears. However, the fact that the
term shows up in the periodic setting shows that hydrodynamic limits are a delicate matter
and that heuristic derivations have to be treated with care.

4.2.6. Conclusion

The RrEP offers a broad range of interpretations and modelling possibilities. It comes as
no surprise that there are plenty of applications to real-world phenomena, as mentioned in
the beginning. There naturally come along a couple of related generalisations and open
questions. We will now mention a few of them.

Due to our model of spatial random permutations on the lattice, we were only interested
in the symmetric case. However, an obvious generalisation is to account for a directional
bias which leads to systems out of equilibrium with a non-vanishing macroscopic current
[16, 32].

In order to derive the hydrodynamic equation, we mainly used the stationary distribution
of configurations with two particles being as close together as possible. However, we
gave no explicit formula for other events. It is noteworthy that the number of possible
configurations having particles at sites x and y say, does not only depend on whether/how
their exclusion-ranges overlap, but also whether the influenced sites are connected or not.

Furthermore, the treatment here has been conducted entirely in 1 dimension. Considering
higher dimensions, on a lattice Λ ⊂ Zd, different scenarios are possible. An example in
2 dimensions in which horizontal and vertical exclusion-ranges differ has already been
mentioned in the introduction to this section, see Figure 4.2.

At last, recalling Equation (4.3), one realises that this PDE is well-posed not only for
integers r, but also for arbitrary r ∈ [1,∞). Given such a general r, an interesting question
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4. Dynamics away from Poles

is if there is a reasonable stochastic system that has this hydrodynamic equation for its
particle density evolution.
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4.3. AFP Model

After the excursion to the range-r exclusion process, we are now ready for the interacting
particle system that describes the zero-temperature permutations away from the poles. We
will refer to this particle system in the following as AFP -process, due to its origin away
from poles. We are going to derive the hydrodynamic equation of this process, following
the martingale-approach as in the previous section. Unfortunately, the procedure runs not
as smoothly as for the range-r exclusion process, owing to the additional difficulties that
the system is not translation-invariant and, more importantly, of non-gradient type.

4.3.1. Stochastic Model

An informal description of the process has already been given in Section 4.1, such that we
can dive directly into the technical definition as a Markov/Feller process. As before, we
write TN for the torus Z/NZ and T := [0, 1] for the unit interval. This time, however, we
want N ∈ N to be even, since the model contains two different kinds of sites. Of course this
restriction is no real loss of generality, as we will take the hydrodynamic limit eventually.
Define the space of configurations by

ΩN :=
{
η ∈ {0, 1}TN : η(x) = 1 ⇒

{
η(x± 1) = 0 ∀x ∈ TN even,

η(x± 1) = η(x± 2) = 0 ∀x ∈ TN odd.

}
In other words, we only allow configurations for which a particle on an even site has a
distance of at least 2 to the next particle. On an odd site a particle must have a distance of
at least 3 to his next neighbour. Given a configuration η ∈ ΩN with a particle present at
site x ∈ TN , we define the new configuration obtained by a jump from site x to y ∈ TN
(with x 6= y) by

ηx,y(z) :=


η(z) if z 6= x, y,

η(x)− 1 if z = x,

η(y) + 1 if z = y.

For η(x) = 0, i.e. when no particle is present at x ∈ TN , we simply set ηx,y = η. Now
consider the linear operator LN on C(ΩN ) given by

(LNf)(η) =
1

2

∑
y,z∈TN ,2|y,
|y−z|=1

η(y)

(
2∏

k=0

(1− η(z + k(z − y)))

)
(f(ηy,z)− f(η))

+
1

2

∑
x,z∈TN ,2-x,
|x−z|=1

η(x)(f(ηx,z)− f(η)),

(4.62)
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where addition is taken modulo N . This defines a continuous-time Markov process on the
finite space ΩN with off-diagonal elements of the q-matrix6 given by

q(η, ηx,y) =


1
2η(x)

2∏
k=0

(1− η(y + k(y − x))) if |y − x| = 1 and 2 | x,
1
2η(x) if |y − x| = 1 and 2 - x,
0 otherwise.

(4.63)

But with the tools of the introductory Section 2.1 at hand, we might as well state the
stronger next proposition.

Proposition 4.3.1. The linear operator LN in Equation (4.62) is a probability generator
in the sense of Definition 2.1.3. Furthermore, it gives rise to a Feller process (ηt)t∈R+ with
probability semigroup SN (t) = exp(tLN ).

Proof. Since the configuration space contains only elements that have at most one particle
per site on the finite torus TN , we have |ΩN | <∞ and one gets a compact (metric) space
with respect to the discrete topology. Clearly,

||LNf || <∞, ∀f ∈ C(ΩN ),

such that D(LN ) = C(ΩN ). The (finite) jump rates easily meet the conditions of Theorem
I.3.9. in [23], which gives a probability semigroup SN (t) = exp(tLN ). Theorem A.2.2 then
guarantees the existence of an appropriate (quasi-left continuous) Feller process (ηt)t∈R+ .

The path measure with starting configuration η will be denoted by Pη and we write

Pµ =
∑
η∈ΩN

µ({η})Pη (4.64)

for the AFP path measure starting from the distribution µ on ΩN . The dynamics and the
state space are well-defined in the sense that

LN (11ΩN ) = 0,

which implies that once the process starts with a configuration η0 ∈ ΩN , it remains there
at all later times, i.e. ηt ∈ ΩN , ∀t ∈ R+.

Another feature worth mentioning is that the number of particles is conserved in this
model, i.e. there is no sudden

”
birth“ or

”
death“ of particles and the number of particles

remains constant in time. However, this does not mean that we could simply consider the
system for a fixed particle number right away, since the approach of taking the hydrodynamic
limit requires the description of the local particle evolution, whose density can vary whether
or not the global particle ratio is fixed.

6We prefer the following notation of q(η, ξ) for the rate to go from state η to state ξ, in comparison to
the notation q(x, y, η) specifically suited for IPS in Chapter 2 to signalise a particle jump from lattice site x
to y.
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4 5 0 1 2 3 4 5 0 1 2 3

η1

η2

η3

η4

η5

η6

Figure 4.5.: Possible configurations for the AFP in Ω6,2 on the periodic lattice Z/6Z.

4.3.2. Stationary Measures

The martingale approach relies heavily on knowing the family of stationary measures,
which will be derived in this subsection. After that, we will be able to state and proof the
hydrodynamic equation.

In contrast to the particle systems that occurred for the curve shortening flow in the
Ising model [19], the AFP-process does not possess a stationary measure of product form.
At first glance one might think that this characteristic is due to the different behaviour
for even and odd sites, but this is not the case (as becomes clear, for example, in [37]).
Instead, the particular form of a longer-range exclusion condition is responsible, as can be
seen immediately by the identity

P({η ∈ ΩN : η(x) = 1 ∧ η(x+ 1) = 1}) = P(∅) = 0,

for all x ∈ TN and all measures P on the power set of ΩN . Consequently an explicit formula
for the stationary measure is hard to come by. Instead, we proceed similarly to the Range-r
exclusion process.

At first we deal with the case of a fixed number of particles K ≤ N
2 and fixed N ∈ N

with 2 | N . Note that the highest particle density can only be achieved when every even
site is occupied and every odd site is vacated. Define

ΩN,K := {η ∈ ΩN :
∑
x∈TN

η(x) = K}

as a new state space. As an example consider Figure 4.5, which lists all elements of Ω6,2. The
AFP-process on ΩN,K is implicitly defined by (4.62), with the defining family of probability
measures for the Feller process simply being the probability measures on ΩN conditioned
on the subset ΩN,K .
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Lemma 4.3.1. Let µN,K be the uniform distribution on ΩN,K for 0 ≤ K ≤ N
2 . Then µN,K

is the unique stationary distribution for the AFP-process and

µN,K({η}) =

K∧bN
4
c∑

i=0

(N
2 − i
K

)(
K

i

)
N

N − 2i

−1

∀η ∈ ΩN,K . (4.65)

Proof. Following the pattern in the proof of Lemma 4.2.1, it is easy to show that∑
η∈ΩN,K

µN,K(η)(LNf)(η) = 0 ∀f : ΩN,K → R

due to the reversibility of the jump rates in the sense that a jump η 7→ ηx,y is allowed if and
only if ηx,y 7→ η is and and those jumps have the same rate. Also, the stochastic process on
ΩN,K is both recurrent and irreducible. Thus, according to Proposition 2.1.1, there is a
unique stationary measure up to constant multiples. By construction of µN,K , we trivially
have µN,K(ΩN,K) = 1, which makes µN,K a unique stationary distribution.

In order to obtain the explicit formula (4.65), we need to know the cardinality of the state
space |ΩN,K |. The number of configurations that have i ≤ (bN4 c ∧K) particles on odd sites
|Ωi
N,K | := |{η ∈ ΩN,K :

∑
x∈TN ,2-x η(x) = i}| is the product of possible arrangements of i

particles on N
2 sites for a R2EP-configuration (see red ellipse with north-east line pattern

in Figure 4.6) times the number of possible arrangements of the remaining particles with
range 1 (SSEP) on N

2 − 2i sites (blue ellipse with crosshatch dots).7 We get, similarly to
Equation (4.10),

|Ωi
N,K | =

((N
2 − i
i

)
+

(N
2 − i− 1

i− 1

))
·
(N

2 − 2i

K − i

)
=

(N2 − i− 1)! · N2
i!(K − i)!(N2 −K − i)!

=

(N
2 − i
K

)
·
(
K

i

)
· N

N − 2i
.

(4.66)

The number of possible configurations with K particles can now be calculated by summing
over 0 ≤ i ≤ (bN4 c ∧K), which gives (4.65).

Applying the formula to our earlier example we see that

µ6,2({η}) =

(
2∧1∑
i=0

(
3− i

2

)(
2

i

)
6

6− 2i

)−1

= (3 + 3)−1 =
1

6
∀η ∈ ΩN,K ,

7There is no need for a case-by-case analysis after placing i particles at odd sites. It always leaves N
2
− 2i

even sites available for the remaining particles. This number is independent of the exact placement of the
odd-site particles since a double exclusion (on sites that are blocked both by a particle present on the left
and by a particle on the right) affects only odd sites.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

configuration for an R2EP

on odd sites of an AFP configuration

configuration for a SSEP

on even sites of an AFP configuration

Figure 4.6.: Combinatorial derivation of Equation (4.65). The sites within the red, dashed
area cannot be occupied due to a particle’s presence at an odd site (3 and 7).
The sites within the blue, dashed area cannot be occupied due to the particle
at even site 12.

as expected from Figure 4.5, where 3 configurations have no particles on odd sites (corre-
sponding to the index i = 0) and 3 configurations have one particle on an odd site (i = 1
respectively).

Considering K ∈ {0, 1} particles in the previous lemma leads to obvious degeneracies due
to the non-existing exclusion rule. For example, µN,1(η) = 1

N ∀η ∈ ΩN,1, when the single
particle has a free choice over the N sites, no matter if even or not. Astonishingly enough,
formula (4.65) still remains true.

Not talking about the evolution yet, instead simply asking for the particle density, is an
interesting question on its own. Obviously the answer depends on whether we consider even
or odd sites. Averaging over two neighboured sites, the particle density should be K

N . For
the rest of this section, we will use the symbol

”
≈“ whenever the limits on the left-hand

side and right-hand side coincide for N →∞ with K
N converging to a value within the open

interval (0, 1
2)8. As usual, the symbol

”
∼“ represents asymptotic behaviour; e.g. in this

context f(N,KN ) ∼ g(N,KN ) if and only if lim
N→∞

f(N,KN )
g(N,KN ) = 1 for sequences (KN ) between

0 and N
4 .

Lemma 4.3.2. Let x ∈ TN with 2 - x and K ≤ N
2 . Then for the stationary measure µN,K

8In particular K ∈ Θ(N), i.e. there holds both K ∈ O(N) and N ∈ O(K).
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of the AFP-process on ΩN,K

µN,K(η(x) = 1) ≈
2KN (1− 2KN )

1 +

√
1− 4KN + 8

(
K
N

)2 , (4.67)

µN,K(η(x+ 1) = 1) ≈
2KN

(
2KN +

√
1− 4KN + 8(KN )2

)
1 +

√
1− 4KN + 8(KN )2

. (4.68)

Moreover, the average particle density is given by

1

2

(
µN,K(η(x) = 1) + µN,K(η(x+ 1) = 1)

)
≈ K

N
. (4.69)

Proof. Since the lemma is based on configurations that already have a particle sitting on
x ∈ TN (x+ 1 ∈ TN respectively), we need K ≥ 3 to be able to state some of the following
closed combinatorial formulas. Of course this restriction means no loss of generality for the
resulting lemma.

We can derive the number of configurations that have a particle sitting at x ∈ TN in
a similar way to |ΩN,K | in the proof of Lemma 4.3.1, except that we have to count the
number of configurations with K − 1 particles distributed on the remaining N

2 − 3 odd and
N
2 − 2 even sites, since the neighbourhood of x (i.e. x− 2, x− 1, x, x+ 1, x+ 2) is forced to
be vacant. Forcing a number of 0 ≤ i ≤ ((K − 1) ∧ bN4 − 1c) particles to sit on odd sites
outside of the blocked area around x ∈ TN , they can be arranged like configurations of a
R2EP (except for the restriction to odd sites only). Thus we can apply Equation (4.9) with
i = K − 1 and N

2 instead of N , giving(N
2 − 2− i

i

)
possibilities. Then, as every single one of the i particles blocks 2 even sites, there are(N

2 − 2− 2i

K − i− 1

)
possibilities to arrange the remaining K − i− 1 particles. Hence,

|{η ∈ ΩN,K : η(x) = 1}| =
(K−1)∧bN

4
−1c∑

i=0

(N
2 − 2− i

i

)(N
2 − 2− 2i

K − i− 1

)
. (4.70)

It is convenient to rewrite the summands such that they include the right-hand side of
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(4.66) as a factor. This gives

K∧bN
4
c∑

i=0

(N
2 − i
K

)(
K

i

)
N

N − 2i
·

(1− 2 i
N )(KN −

i
N )(1

2 −
K
N −

i
N )

(1
2 −

i
N )(1

2 −
i
N −

1
N )

=

K∧bN
4
c∑

i=0

|Ωi
N,K | ·

(1− 2 i
N )(KN −

i
N )(1

2 −
K
N −

i
N )

(1
2 −

i
N )(1

2 −
i
N −

1
N )

.

(4.71)

Note that we also adapted the upper bound of the sum’s index to fit the bounds for (4.66)
with respect to the index i. If i = bN4 c, the first binomial coefficient in (4.70) is 0 and if
i = K, the second binomial coefficient is 0, such that we did no harm in adding another

summand that is 0. By Stirling’s formula N ! =
√

2πN
(
N
e

)N · (1 +O
(

1
N

))
applied to all

occurring factorials we get9 for K, i ∈ O(N)

|Ωi
N,K | =

(N2 − i)!
(N2 − i−K)!i!(K − i)!

· N

N − 2i

=
1

2π

√
N
2 − i

(N2 − i−K)i(K − i)
N

N − 2i

· e(N
2
−i) log(N

2
−i)−(N

2
−i−K) log(N

2
−i−K)−i log(i)−(K−i) log(K−i) ·

1 +O
(

1
N

)(
1 +O

(
1
N

))3
=

1

2π

1

N
f

(
i

N

)
e−Ng(

i
N ) ·

(
1 +O

(
1

N

))
,

(4.72)

where

f(y) :=
1

2

((
1

2
− y − K

N

)(
K

N
− y
)(

1

2
− y
))− 1

2

, (4.73)

and

g(y) :=−
(

1

2
− y
)

log

(
1

2
− y
)

+

(
1

2
− y − K

N

)
log

(
1

2
− y − K

N

)
+ y log(y) +

(
K

N
− y
)

log

(
K

N
− y
)
.

(4.74)

Both functions f and g do not depend on neither N nor K alone, but only on the ratio K
N ,

which converges for N →∞. Also, g(y) ≤ 0 for y ∈ (0, 1
4 ] with g(1

4) = 0. Summing over i

9Note that while the lemma gives a statement for K ∈ O(N), we do not necessarily know at this point
that also i ∈ O(N) (it will follow from this very lemma). However, as i ∈ o(N) implies i ∈ O(N), the
following equality remains true either way.
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in Equation (4.72) and using a Riemann-type approximation owing to [27]10 gives

|ΩN,K | =
K∧bN

4
c∑

i=0

|Ωi
N,K | ∼

K∧bN
4
c∑

i=0

1

2π

1

N
f

(
i

N

)
e−Ng(

i
N ) (4.75)

∼ 1

2π

K
N
∧( 1

2
−K
N

)∧ 1
4∫

0

f(y)e−Ng(y) dy. (4.76)

Technically, we had to add the condition y ≤ (1
2 −

K
N ) for the integral in (4.75), which

was hidden previously in the discrete case, for example in the binomial coefficient
(N

2
−i
K

)
.

Next, we want to apply Laplace’s method (cf. Section B.1), which is possible here since
f, g ∈ O(1). At first we observe for the function g : (0, KN ∧ (1

2 −
K
N ) ∧ 1

4)→ R that

g′(y) = log

(
1

2
− y
)
− log

(
1

2
− y − K

N

)
+ log(y)− log

(
K

N
− y
)

!
= 0

⇔ y2 − 1

2
y +

(
1

4

K

N
− y2

2

)
= 0,

which gives an extremal value at

ymin :=
1

4
−
√

1

16
− 1

4

K

N
+

K2

2N2
, (4.77)

with 0 < ymin <
1
4 ∧

(
1
2 −

K
N

)
∧ K
N . The inequality

g′′(y) =
1

1
2 − y −

K
N

+
1

y
+

1
K
N − y

− 1
1
2 − y

> 0

is fulfilled for 0 < y < 1
4 ∧ (1

2 −
N
K ) ∧ K

N , so g attains the unique minimum in ymin. To
continue, it is straightforward to check the prerequisites of Theorem 1 in [27]. In particular,
the pair (f, g) is admissible (see Definition 1 therein) by Lemma 1 and the differentiability
conditions are easily met.11 Hence, with Theorem 1 we conclude

|ΩN,K | =
e−Ng(ymin)√
2πNg′′(ymin)

·
(
f(ymin) +O

(
1

Nβ

))(
1 +O

(
1

N

))
(4.78)

for β ∈ (0, 1
2).

10[27] even considers a more general step size of order 1
Nα

and shows that the asymptotic behaviour holds
whenever the partition is fine enough, i.e. whenever α > 1

2
, which is obviously the case for α = 1 in this

work.
11One reason for the necessity of error estimates for Proposition 4.3.2 is the differentiability condition on

the function f .
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The same procedure can be applied to the number of configurations that have a particle
at x ∈ TN . Comparing Equation (4.71) with (4.78), we find that the difference lies in the
factor

(1− 2 i
N )(KN −

i
N )(1

2 −
K
N −

i
N )

(1
2 −

i
N )(1

2 −
i
N −

1
N )

≈
2(KN −

i
N )(1

2 −
K
N −

i
N )

(1
2 −

i
N )

∈ O(1),

which enters Laplace’s method by defining the new function

fx(y) := f(y) ·
2(KN − y)(1

2 −
K
N − y)

(1
2 − y)

.

The function g in the exponential (and consequently its extreme value) remains the same,
though, because g was derived entirely through |Ωi

N,K | in (4.72). It follows that

|{η ∈ ΩN,K : η(x) = 1}| = e−Ng(ymin)√
2πNg′′(ymin)

·
(
fx(ymin) +O

(
1

Nβ

))
·
(

1 +O
(

1

N

))
.

This means

µN,K(η(x) = 1) =
|{η ∈ ΩN,K : η(x) = 1}|

|ΩN,K |
=
fx(ymin) +O

(
1
Nβ

)
f(ymin) +O

(
1
Nβ

) · 1 +O
(

1
N

)
1 +O

(
1
N

)
=

 2KN (1− 2KN )

1 +

√
1− 4KN + 8

(
K
N

)2 +O
(

1

Nβ

) · (1 +O
(

1

N

))

=
2KN (1− 2KN )

1 +

√
1− 4KN + 8

(
K
N

)2 +O
(

1

Nβ

)
.

(4.79)

Putting a particle at x+ 1 ∈ TN (with 2 | (x+ 1)), both nearest neighbours must stay
vacant. The remaining K − 1 particles can be distributed among N

2 − 2 odd sites and N
2 − 1

even sites, as long as the obtained configuration is in ΩN,K . Similarly to the above for site
x ∈ TN , we get

|{η ∈ ΩN,K : η(x+ 1) = 1}| =
(K−1)∧bN

4
− 1

2
c∑

i=0

(N
2 − 1− i

i

)(N
2 − 1− 2i

K − i− 1

)
, (4.80)

which can be transformed into the convenient form

|{η ∈ ΩN,K : η(x+ 1) = 1}| =
K∧bN

4
c∑

i=0

|Ωi
N,K | ·

K
N −

i
N (2KN + 1) + 2

(
i
N

)2
1
2 −

i
N

. (4.81)

Putting

fx+1(y) := f(y) ·
K
N − y(2KN + 1) + 2y2

1
2 − y

,
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we have that Equation (4.81) asymptotically behaves like

1

2π

K
N
∧( 1

2
−K
N

)∧ 1
4∫

0

fx+1(y)e−Ng(y) dy. (4.82)

The same procedure as above applied to (4.82) and (4.75) leads to

µN,K(η(x+ 1) = 1) =
|{η ∈ ΩN,K : η(x) = 1}|

|ΩN,K |
≈

K
N − ymin(2KN + 1) + 2y2

min
1
2 − ymin

≈

K
N

(
4KN + 2

√
1− 4KN + 8(KN )2

)
1 +

√
1− 4KN + 8(KN )2

.

(4.83)

From equations (4.79) and (4.83) we have

1

2

(
µN,K(η(x) = 1) + µN,K(η(x+ 1) = 1)

)
≈

2KN (1− 2KN ) + K
N

(
4KN + 2

√
1− 4KN + 8(KN )2

)
2 · (1 +

√
1− 4KN + 8(KN )2)

=

2 · KN

(
1 +

√
1− 4KN + 8(KN )2

)
2 ·
(

1 +
√

1− 4KN + 8(KN )2

) =
K

N
,

(4.84)

as desired.

In Figure 4.7 the marginal distributions of the previous lemma are illustrated for ρ ∈ (0, 1
2),

which corresponds to the particle density K
N ∈ (0, 1

2). It becomes obvious that in general
particles prefer to sit on even sites. However, for small densities close to 0, there are only
few interactions and particles can move rather freely on the lattice. This explains why
under the stationary measure, it is just as likely to find a particle on an even site, as it is
to find one on an odd site. The opposite is the case for ρ close to the maximum particle
density 1

2 . Particles are forced to sit on even sites, as the odd sites have a larger exclusion
rule and thus permit fewer particles on the lattice overall. The maximum value on odd sites
is achieved for ρ = 1

4 by µN,N
4

(η(x) = 1) = 1
4+
√

8
≈ 0.146 and there holds the symmetry

µN,ρN (η(x) = 1) = µN,(0.5−ρ)N (η(x) = 1).

In order to prove the following lemma, it is convenient to state a combinatorial formula
first, which deals with the case of non-periodicity. In principle, this corollary is just a
generalisation of previous thoughts in the proof on page 70, that relied on knowledge for
the R2EP in form of |Ω1,x

N,K |.
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Figure 4.7.: Marginal distributions of the stationary measure µN,ρN for a particle density
ρ ∈ (0, 1

2) on an odd site (blue, concave function) and an even site (orange,
convex function); see Lemma 4.3.2.

Corollary 4.3.1. Let T̃Ñ := {0, . . . , Ñ − 1} with 2 - Ñ be a (non-periodic) lattice for

AFP-configurations with 2 ≤ K̃ ≤ Ñ+1
2 particles. Then the number of AFP-configurations

is given by

K̃∧ Ñ−1
2∑

j=0

( Ñ−1
2 − j + 1

j

)( Ñ+1
2 − 2j

K̃ − j

)
. (4.85)

Proof. Given j ≤ (K̃ ∧ Ñ−1
2 ) particles that sit on odd sites of T̃N , there are

( Ñ−1
2
−j+1
j

)
possible ways to arrange them. This follows from Equation (4.9) by putting Ñ−1

2 = N − 3
(since the particle present at x ∈ TN blocks 3 sites in the R2EP setting) and j = K − 1.

The remaining K̃ − j particles can be distributed in
( Ñ+1

2
−2j

K̃−j

)
different ways on Ñ+1

2 − 2j

even sites since a particle at an odd site blocks the 2 neighbouring even sites.

Contrary to the derivation of the hydrodynamic limit for standard particle systems like
the SSEP, it is not enough to know the marginal distributions. We will need additional
knowledge of the expectations of the following random variables:

τxC1 :=η(x− 4) · η(x− 1) · η(x+ 1),

τxC2 :=η(x− 3) · η(x− 1) · η(x+ 1),

τxC3 :=η(x− 4) · η(x− 1) · η(x+ 2),

τxC4 :=η(x− 3) · η(x− 1) · η(x+ 2),

τxC5 :=η(x− 3) · η(x+ 1),

τxC6 :=η(x− 1) · η(x+ 1),

τx+1D :=η(x− 1) · η(x+ 2),

τxD :=η(x− 2) · η(x+ 1).

(4.86)
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x-7 x-6 x-5 x-4 x-3 x-2 x-1 x x+1x+2 x+3x+4 x+5x+6

τxC1

τxC2

τxC3

τxC4

τxC5

τxC6

τx+1D

τxD

Figure 4.8.: Blocked sites for the crucial events τxC1, . . . , τxC6, τx+1D, τxD with 2 - x. The
red regions are influenced by the exclusion rule for odd sites, the blue regions
are influenced by even sites. Odd site numbers are emphasised in italics and a
taller font size.

Even though it is not necessary at this stage, we mention in passing that we will use brackets
to indicate the time component, e.g.

C1(t) := ηt(−4) · ηt(−1) · ηt(1). (4.87)

The random variables in (4.86) will appear naturally by means of the martingale approach
in the following sections. In Figure 4.8 the local configurations around x ∈ TN for τxCi = 1
(i = 1, . . . , 6), τxD = 1 and τx+1D = 1 are visualised. It is interesting to note that these
configurations are the only necessary cases. For example, we do not need to know about
configurations that have 4 particles locally arranged on the lattice.

Unlike Lemma 4.3.2, the measures in the upcoming lemma are stated with ymin from
(4.77), since the insertion does not always simplify the formulas.
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4.3. AFP Model

Lemma 4.3.3. Let x ∈ TN with 2 - x and K ≤ N
2 . Then

µN,K(τxC1 = 1) = µN,K(τxC4 = 1) ≈
2(KN − ymin)3(1

2 −
K
N − ymin)

(1
2 − ymin)3

,

µN,K(τxC2 = 1) ≈
2(KN − ymin)3

(1
2 − ymin)2

,

µN,K(τxC3 = 1) ≈
2(KN − ymin)3(1

2 −
K
N − ymin)2

(1
2 − ymin)4

,

µN,K(τxC5 = 1) ≈
2(KN − ymin)2(1

2 − 2ymin)

(1
2 − ymin)2

,

µN,K(τxC6 = 1) ≈
2(KN − ymin)2

1
2 − ymin

,

µN,K(τxD = 1) = µN,K(τx+1D = 1) ≈
2(KN − ymin)2(1

2 −
K
N − ymin)

(1
2 − ymin)2

.

(4.88)

Proof. We put K ≥ 5 without loss of generality. Both τxC1, τxC4 and τxD, τx+1D are
mirrored versions of one another. The dynamics of the AFP is symmetric, i.e. there is no
bias of a particle jump towards either side, so these two pairs must each attain the same
value under IEµN,K .

We can read from the blocked sites in Figure 4.8 that the cardinality

|{η ∈ ΩN,K : τxC1 = 1}|

can be calculated by finding the possible arrangements for K − 3 particles on the remaining
N
2 − 5 odd and N

2 − 4 even sites. The particle presences according to τxC1 = 1 undermine
the periodicity of the lattice (w.r.t. the combinatorial derivation), such that we can use
Corollary 4.3.1 with i = j, N − 9 = Ñ (since there are 9 blocked sites for τxC1 = 1) and
K − 3 = K̃ (since there are 3 particles in between sites x− 6 to x+ 2) in order to get

|{η ∈ ΩN,K : τxC1 = 1 ∧
∑

z∈TN , 2-z

η(z) = i+ 1}| =
(N

2 − 4− i
i

)(N
2 − 4− 2i

K − 3− i

)
.

The last expression can be rewritten as a product

|Ωi
N,K | ·

(1− 2 i
N )(KN −

i
N )(KN −

i
N −

1
N )(KN −

i
N −

2
N )(1

2 −
K
N −

i
N )

(1
2 −

i
N )(1

2 −
i
N −

1
N )(1

2 −
i
N −

2
N )(1

2 −
i
N −

3
N )

∼|Ωi
N,K | ·

2(KN −
i
N )3(1

2 −
K
N −

i
N )

(1
2 −

i
N )3︸ ︷︷ ︸

=:f̄C1( i
N )

,
(4.89)
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containing |Ωi
N,K |, of which we have studied the asymptotic behaviour (w.r.t. i

N ) before,

and a function f̄C1

(
i
N

)
∈ O(1). With Stirling’s formula we get similar to the calculations12

in (4.72)

|{η ∈ ΩN,K : τxC1 = 1 ∧
∑

z∈TN , 2-z

η(z) = i+ 1}| ∼ 1

2π

1

N
fC1

(
i

N

)
e−Ng(

i
N ), (4.90)

where

fC1

(
i

N

)
:= f

(
i

N

)
· f̄C1

(
i

N

)
and f, g are the same functions as in (4.73),(4.74). Outside of the sites x − 6 to x + 2,
there are N−10

2 odd sites. Since periodicity plays no role in this case, there can be at most

b
N−10

2
+1

2 c = bN4 − 2c particles on odd sites outside of the C1-blocked area. Hence with
(4.89) and (4.90)

|{η ∈ ΩN,K : τxC1 = 1}| ∼
(K−3)∧bN

4
−2c∑

i=0

|Ωi
N,K | · f̄C1

(
i

N

)

=

K∧bN
4
c∑

i=0

|Ωi
N,K | · f̄C1

(
i

N

)

∼ 1

2π

K
N
∧( 1

2
−K
N

)∧ 1
4∫

0

fC1(y) · e−Ng(y) dy,

(4.91)

using Riemann-type approximation [27]. The equality on the second line as well as the
additional bound 1

2 −
K
N for the integral’s variable follow the arguments on pages 71, 72.

Laplace’s method shows that the last equation is asymptotically close to

fC1(ymin)√
2πNg′′(ymin)

e−Ng(ymin),

which, using Equation (4.78), gives us

µN,K(τxC1 = 1) =
|{η ∈ ΩN,K : τxC1 = 1}|

|ΩN,K |
≈ f̄C1(ymin) =

2(KN − ymin)3(1
2 −

K
N − ymin)

(1
2 − ymin)3

,

as desired.
The cardinality

|{η ∈ ΩN,K : τxC2 = 1}|

12For simplicity we skip the error terms here; their behaviour will be just as before.
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4.3. AFP Model

can be calculated very similarly. We read from Figure 4.8 that K − 3 particles can be
distributed onto N

2 − 4 odd and N
2 − 3 even sites with the appropriate (new) boundary

condition of the lattice. The number of those configurations that have i particles on odd
sites outside from x− 4 to x+ 2 is given13 by

|{η ∈ ΩN,K : τxC2 = 1 ∧
∑

z∈TN , 2-z

η(z) = i}| =
(N

2 − 3− i
i

)(N
2 − 3− 2i

K − 3− i

)
.

The last term can be written as

|Ωi
N,K | ·

(N − 2i)(K − i)(K − i− 1)(K − i− 2)

N(N2 − i)(
N
2 − i− 1)(N2 − i− 2)

∼|Ωi
N,K | ·

2(KN −
i
N )3

(1
2 −

i
N )2︸ ︷︷ ︸

=:f̄C2( i
N )

∼ 1

2π

1

N
fC2

(
i

N

)
e−Ng(

i
N ),

where f̄C2

(
i
N

)
∈ O(1) and fC2

(
i
N

)
:= f

(
i
N

)
· f̄C2

(
i
N

)
. Summing over the number of

particles on odd sites outside of the area of blocked sites according to {τxC2 = 1}, we obtain

|{η ∈ ΩN,K : τxC2 = 1}| ∼
(K−3)∧bN

4
− 3

2
c∑

i=0

|Ωi
N,K | · f̄C2

(
i

N

)

∼ 1

2π

K
N
∧( 1

2
−K
N

)∧ 1
4∫

0

fC2(y) · e−Ng(y) dy.

At last, Laplace’s method leads to

µN,K(τxC2 = 1) =
|{η ∈ ΩN,K : τxC2 = 1}|

|ΩN,K |
≈ f̄C2(ymin) =

2(KN − ymin)3

(1
2 − ymin)2

.

The same scheme applies to the formulas for µN,K(τxC3 = 1), µN,K(τxC6 = 1) and
µN,K(τxD = 1), so this part of the proof boils down to

|{η ∈ ΩN,K : τxC3 = 1 ∧
∑

z∈TN , 2-z

η(z) = i+ 2}| =
(N

2 − 5− i
i

)(N
2 − 5− 2i

K − 3− i

)

=|Ωi
N,K | ·

(N − 2i)(K − i)(K − i− 1)(K − i− 2)(N2 −K − i)(
N
2 −K − i− 1)

N(N2 − i)(
N
2 − i− 1)(N2 − i− 3)(N2 − i− 4)

∼|Ωi
N,K | ·

2(KN −
i
N )3(1

2 −
K
N −

i
N )2

(1
2 −

i
N )4︸ ︷︷ ︸

=:f̄C3( i
N )

,

13In the case of τxC2, this actually equals an overall particle number of i on odd sites
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for the number of configurations that have particles present at sites x− 4, x− 1 and x+ 2,
as well as

|{η ∈ ΩN,K : τxC6 = 1}| =
(N

2 − 2− i
i

)(N
2 − 2− 2i

K − 2− i

)
=|Ωi

N,K | ·
(N − 2i)(K − i)(K − i− 1)

N(N2 − i)(
N
2 − i− 1)

∼ |Ωi
N,K | ·

2(KN −
i
N )2

(1
2 −

i
N )︸ ︷︷ ︸

=:f̄C6( in)

,

and

|{η ∈ ΩN,K : τxD = 1 ∧
∑

z∈TN , 2-z

η(z) = i+ 1}| =
(N

2 − 3− i
i

)(N
2 − 3− 2i

K − 2− i

)

=|Ωi
N,K | ·

(N − 2i)(K − i)(K − i− 1)(N2 −K − i)
N(N2 − i)(

N
2 − i− 1)(N2 − i− 2)

∼|Ωi
N,K | ·

2(KN −
i
N )2(1

2 −
K
N −

i
N )

(1
2 −

i
N )2︸ ︷︷ ︸

=:f̄D( i
N )

.

A particular case occurs for

|{η ∈ ΩN,K : τxC5 = 1}|,

as there might be a particle present at the even site x− 1 ∈ TN , in between blocked sites.
Fortunately this issue can be divided into two problems that have been dealt with already.
Once again we refer to Figure 4.8 for an illustration. Note that if there is a particle at
x− 1 (together with {τxC5 = 1}), we have exactly {τxC2 = 1}. If there is no particle at
x− 1 ∈ TN , we have not considered such configurations yet. However, this consideration is
not necessary, as it suffices to compare {τxC5 = 1 ∧ η(x− 1) = 0} with {τxD = 1}. The
number of configurations must be the same in both cases, since the blocked area is the same
and there are 2 particles within it. Consequently

µN,K(τxC5 = 1) = µN,K(τxD = 1) + µN,K(τxC2 = 1) ≈
2(KN − ymin)2(1

2 − 2ymin)

(1
2 − ymin)2

.

Figure 4.9 shows the values of µN,ρN for the above events. If an event contains a particle
on an odd site, e.g. {τxC1 = 1}, the probability tends to 0 as the particle density ρ
approaches 1

2 , which can be seen in the left graph. The orange function (µN,ρN (τxC3 = 1))
is significantly smaller than all others, owing to the fact that the event {τxC3 = 1} is the
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4.3. AFP Model

Figure 4.9.: Crucial values of the stationary measure µN,ρN for the AFP; see Lemma 4.3.3.

only one that has 2 particles on odd sites. In the right graph, all particles of the events are
on even sites, thus all the measures tend to 1 as ρ→ 1

2 .
It is clear that the procedure in the proof of Lemma 4.3.3 can be generalised to local

events whose blocked area is connected. Events like {τxC5 = 1} on the other hand are
harder to state. For x ∈ TN define

b(x) :=

{
1 for 2 | x,
2 for 2 - x

.

Corollary 4.3.2. Let C ⊂ ΩN,K be a subset of the form {η ∈ ΩN,K :
n∏
i=1

η(xi) = 1} for

some n ≤ K, xi ∈ TN , and with the property that the blocked sites are connected, i.e. the
ordered sites x(1), . . . , x(n) fulfil

{x(1) − b(x(1)), . . . , x(1) + b(x(1))} ∪ · · · ∪ {x(n) − b(x(n)), . . . , x(n) + b(x(n))}
={x(1) − b(x(1)), . . . , x(n) + b(x(n))}.

Then

µN,K(C) ≈
(
K
N − ymin

)n (1
2 −

K
N − ymin

)b v
2
c−n(

1
2 − ymin

)b v
2
c−1

,

where v := x(n) + b(x(n))− (x(1) − b(x(1))).

Proof. The proof follows the methods from the proof of Lemma 4.3.3.
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4. Dynamics away from Poles

As we do not want to be limited to the configuration space ΩN,K with a fixed particle
number K, we define a grand-canonical measure νNρ on ΩN by means of

νNρ :=

N
2∑

K=0

αN,K(ρ) · µN,K , (4.92)

where the convex combination αN,K is defined by

αN,K(ρ) :=

(N
2

K

)
(2ρ)K(1− 2ρ)

N
2
−K , (4.93)

just as for the toy-model RrEP. This definition of αN,K is reasonable in the following sense.

Proposition 4.3.2. Let N ∈ N with 2 | N , ρ ∈ (0, 1
2) and αN,K(ρ) defined as in (4.93).

Then it holds true that
N
2∑

K=0

αN,K(ρ) = 1 (4.94)

and

1

2

(
νNρ ((η(x) = 1) + νNρ ((η(x+ 1) = 1)

)
→ ρ, N →∞. (4.95)

Proof. The first statement is trivial due to

N
2∑

K=0

αN,K(ρ) = (2ρ+ (1− 2ρ))
N
2 .

For the second statement, we need to control the magnitude of the error for µN,K(η(x) = 1)
in Lemma 4.3.2. We recall from Equation (4.79)

µN,K(η(x) = 1) =
2KN (1− 2KN )

1 +

√
1− 4KN + 8

(
K
N

)2 +O
(

1

Nβ

)
,

where β ∈ (0, 1
2). Thus

νNρ (η(x) = 1) =

N
2∑

K=0

αN,K(ρ) · µN,K(η(x) = 1)

=

N
2∑

K=0

αN,K(ρ) ·

 (2− 4KN )KN

1 +

√
1− 4KN + 8

(
K
N

)2 +O
(

1

Nβ

)
∼
√

1

N

N
2∑

K=0

e−N ·gν(
K
N ) · fν

(
K

N

)
,
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with Stirling’s approximation14, where

fν

(
K

N

)
:=

2KN (1− 2KN )(
1 +

√
1− 4KN + 8

(
K
N

)2)√
2πKN

(
1− 2K

N

) ,
and15

gν

(
K

N

)
:=

K

N
log

(
2K

N

)
+

(
1

2
− K

N

)
log

(
1− 2K

N

)
−K
N

log(2ρ)−
(

1

2
− K

N

)
log(1−2ρ).

The latter fulfils g′ν(ρ) = 0, gν(ρ) = 0 and g′′ν (ρ) = 1
ρ(1−2ρ) > 0. Now, without the expression

µN,K(η(x) = 1), it is obvious that the function fν is differentiable in a neighbourhood of ρ,
which is one of the conditions to apply Theorem 1 in [27]. Together with Laplace’s method
it follows that

νNρ (η(x) = 1) ∼
√

1

N
·N ·

1
2∫

0

e−Ngν(y) · fν(y) dy ∼
√

1

N
e−Ngν(ρ) · fν(ρ) ·

√
2πN

g′′ν (ρ)

=e−N ·0
2(1− 2ρ)ρ(

1 +
√

1− 4ρ+ 8ρ2
)
·
√

2πρ(1− 2ρ)
·
√

2πρ(1− 2ρ)

=
2(1− 2ρ)ρ

1 +
√

1− 4ρ+ 8ρ2
.

(4.96)

The same argument works for the even site x+ 1 ∈ TN , which gives

νNρ (η(x+ 1) = 1) ∼
2ρ
(

2ρ+
√

1− 4ρ+ 8ρ2
)

1 +
√

1− 4ρ+ 8ρ2
.

Combined, we get

1

2

(
νNρ (η(x) = 1) + νNρ (η(x+ 1) = 1)

)
→ ρ, N →∞,

basically as in (4.84).

Finally we are ready to calculate the grand-canonical measure of the crucial events for
the AFP. Comparing the upcoming corollary with Lemma 4.3.3, we observe an equivalence
of ensembles, which is of course no surprise given our definition of νNρ .

14Note that due to the first statement in the proposition, the term O
(

1
Nβ

)
·
N
2∑

K=0

αN,K(ρ) can be neglected

asymptotically
15Contrary to the function g in (4.74) that reflected the increasing behaviour (as N →∞) of |ΩiN,K |, here

there holds gν(y) ≥ 0 for all y ∈ (0, 1
2
), i.e. e−Ngν(y) is decreasing because it reflects the convex combination

αN,K(ρ).
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Corollary 4.3.3. Let x ∈ TN with 2 - x, ρ ∈ (0, 1
2) and define

ȳmin :=
1

4
−
√

1

16
− 1

4
ρ+

1

2
ρ2. (4.97)

Then there holds for N →∞

νNρ (τxC1 = 1) = νNρ (τxC4 = 1)→
2(ρ− ȳmin)3(1

2 − ρ− ȳmin)

(1
2 − ȳmin)3

,

νNρ (τxC2 = 1)→ 2(ρ− ȳmin)3

(1
2 − ȳmin)2

,

νNρ (τxC3 = 1)→
2(ρ− ȳmin)3(1

2 − ρ− ȳmin)2

(1
2 − ȳmin)4

,

νNρ (τxC5 = 1)→
2(ρ− ȳmin)2(1

2 − 2ȳmin)

(1
2 − ȳmin)2

,

νNρ (τxC6 = 1)→ 2(ρ− ȳmin)2

1
2 − ȳmin

,

νNρ (τxD = 1) = νNρ (τx+1D = 1)→
2(ρ− ȳmin)2(1

2 − ρ− ȳmin)

(1
2 − ȳmin)2

.

(4.98)

Proof. This follows directly from Lemma 4.3.3 and the proof of Proposition 4.3.2.

4.3.3. Hydrodynamic Equation

In this subsection we state the main result concerning the AFP, namely its behaviour in the
hydrodynamic limit. The corresponding theorem including the hydrodynamic equation can
be formulated in various ways, depending for example on the class of permitted starting
measures or the type of convergence when the lattice spacing decreases. Having already
defined a grand-canonical measure in the previous subsection, we can allow for a class of
initial measures that are not too far away from νNρ (w.r.t. the entropy).

Theorem 4.3.1. Let ρ0 : T→ [0, 1
2 ] be a Lebesgue-integrable function and (µN )N≥1 be a

sequence of probability measures on ΩN with the following properties:

1. (µN )N≥1 is associated to ρ0,

2. ∃K ∈ R, 0 < α∗ < 1
2 with

H(µN | νNα∗) ≤ K ·N.

Then, as N →∞,

{πNN2t : t ∈ [0, T ]} → {ρ(t, u) du : t ∈ [0, T ]} in distribution,
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Figure 4.10.: Illustrations of (4.102) for Φ′ and Φ′′ in dependence of the particle density ρ.

where ρ(t, u) is a solution of the PDE{
∂tρ = 2

3∂
2
x(Φ(ρ)),

ρ(0, u) = ρ0(u),
(4.99)

with

Φ(ρ) :=
2ρ
(

3− 8ρ+ 3c(ρ)− 2ρ · c(ρ) + 16ρ2 + 8ρ2 · c(ρ) + 8ρ3
)

(1 + c(ρ))4
, (4.100)

and

c(ρ) :=
√

1− 4ρ+ 8ρ2. (4.101)

Properties of the Hydrodynamic Equation for the AFP-process

Compared to the heat equation for SSEP (which naturally appeared for the interface motion
in the Ising-model) or the hydrodynamic equation for the RrEP, this PDE looks rather
unusual. Still, it possesses all properties that one would expect from our model.

Lemma 4.3.4. The function Φ has the symmetric property

∂2
xΦ(ρ) = ∂2

xΦ(
1

2
− ρ).

Proof. There holds
∂2
xΦ(ρ) = Φ′′(ρ) · (∂xρ)2 + Φ′(ρ) · ∂2

xρ

and

∂2
xΦ(

1

2
− ρ) = Φ′′(

1

2
− ρ) · (∂xρ)2 − Φ′(

1

2
− ρ) · ∂2

xρ,
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such that there is to show (cf. Figure 4.10)

Φ′(ρ) = Φ′(
1

2
− ρ) and Φ′′(ρ) = −Φ′′(

1

2
− ρ). (4.102)

We can write

Φ′(ρ) = 4 · −32ρ3 + 32ρ4 + 3(1 + c(ρ))− ρ(13 + 7c(ρ)) + 2ρ2(17 + 7c(ρ))

c(ρ)(1 + c(ρ))5
,

which has the advantage that both numerator and denominator are symmetric around 1
4 .

Next, we calculate

Φ′′(ρ) = − 16(4ρ− 1)

(c(ρ))3(1 + c(ρ))6
·
(

4(1 + c(ρ)) + 38ρ2(2 + c(ρ))− 8ρ3(15 + 4c(ρ))

+ 8ρ4(15 + 4c(ρ))− ρ(23 + 15c(ρ))
)
.

This time one can check that the denominator is again axially symmetric around 1
4 , whereas

the numerator is point-symmetric around (1
4 , 0). We have shown (4.102) and thus proved

the lemma.

Lemma 4.3.4 is in accordance with the interface motion model, as the time evolution of
the interface away from the poles should be symmetric around the diagonal from pole to
neighbouring pole.

Imposing periodic boundary conditions for ρ and ∂xρ, we obtain immediately the conser-
vation law of mass

∂t

1∫
0

ρ du =
2

3

1∫
0

∂2
x(Φ(ρ)) dx

=
8

3
∂xρ
−32ρ3 + 32ρ4 + 3(1 + c(ρ))− ρ(13 + 7c(ρ)) + 2ρ2(17 + 7c(ρ))

c(ρ)(1 + c(ρ))5

∣∣∣∣∣
1

0

≡ 0,

which means that there is no increase or decrease of the total particle density over time.
Furthermore, there holds a maximum principle according to

inf
x∈T

ρ0(u) ≤ inf
(t,x)∈R+×T

ρ(t, x) ≤ sup
(t,x)∈R+×T

ρ(t, x) ≤ sup
x∈T

ρ0(x), (4.103)

such that the initial particle density diffuses over time and the overall minimum/maximum
is attained at time 0. In particular this will guarantee uniqueness of weak solutions to
the hydrodynamic equation in the proof later on. Owing to the somewhat impractical
partial differential equation given by (4.99) - (4.101), we will not show (4.103) by hand, but
instead refer to [17] for a general result for quasilinear parabolic equations of second order.
An illustration of a solution to the hydrodynamic equation (4.100) with initial condition
ρ0(x) := 1

4 + 1
10 sin(2πx) is given in Figure 4.11.
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4.3. AFP Model

Figure 4.11.: Solution to the hydrodynamic equation (4.99) for the initial density profile
ρ0(x) := 1

4 + 1
10 sin(2πx).

4.3.4. Martingale Approach

In this subsection we lay the groundwork for the proof of Theorem 4.3.1. Similarly to the
RrEP, we can derive the hydrodynamic equation heuristically by a local equilibrium ansatz
(cf. Remark 4.2.4) starting from a martingale approach for the stochastic process at hand.
Along the way, we are confronted with the characteristic difficulty for non-gradient systems,
which makes it impossible to directly close the main equation in terms of the empirical
measure by applying Varadhan’s replacement lemma. However, the problem can be dealt
with by means of another martingale equation applied to a particularly chosen function.
Mathematical details of this procedure will be delayed to Subsection 4.3.5.

For fixed z ∈ TN we define the function

fz : ΩN → {0, 1}, η 7→ η(z),

that evaluates a configuration in the point z. With the generator LN from (4.62) we get
for 2 - x

(LNfx)(η) =
1

2

(
η(x− 1)− 2η(x) + η(x+ 1)− 2η(x− 1)η(x+ 1) + η(x− 1)η(x+ 1)η(x+ 2)︸ ︷︷ ︸

=0 ∀η∈ΩN

+ η(x+ 1)η(x− 1)η(x− 2)︸ ︷︷ ︸
=0 ∀η∈ΩN

−η(x− 1)η(x+ 2)− η(x+ 1)η(x− 2)
)
,

(4.104)
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and for 2 | y we have

(LNfy)(η) =
1

2

(
η(y − 1)− 2η(y) + η(y + 1) + η(y)η(y − 2) + η(y)η(y + 2) + η(y)η(y − 3)

+ η(y)η(y + 3)− η(y)η(y − 2)η(y − 3)︸ ︷︷ ︸
=0 ∀η∈ΩN

− η(y)η(y + 2)η(y + 3)︸ ︷︷ ︸
=0 ∀η∈ΩN

)
.

(4.105)

Starting from the martingale (cf. Lemma A.1.1 with (Xt)t≥0 := (ηt)t≥0 and F (t,Xt) :=
〈πNt , G〉, as well as Remark A.1.1)

MG,N
N2t

= 〈πNN2t, G〉 − 〈π
N
0 , G〉 −

N2t∫
0

LN 〈πNs , G〉 ds

= 〈πNN2t, G〉 − 〈π
N
0 , G〉 −

t∫
0

N2LN 〈πNN2s, G〉ds

(4.106)

for a smooth function G : T→ R, the integrand

N2LN 〈πNN2s, G〉 = N2LN

 1

N

∑
z∈TN

G
( z
N

)
ηN2s(z)


is the focus of attention. Suppressing the time index for the moment, it can be calculated
via (4.104) and (4.105) to give

N
∑

x∈TN , 2-x

G
( x
N

)
(LNfx)(η) +N

∑
y∈TN , 2|y

G
( y
N

)
(LNfy)(η)

=
N

2

∑
x∈TN ,2-x

G
( x
N

)(
η(x− 1)− 2η(x) + η(x+ 1)− 2η(x− 1)η(x+ 1)

− η(x− 1)η(x+ 2)− η(x+ 1)η(x− 2)
)

+
N

2

∑
x∈TN ,2-x

G

(
x+ 1

N

)(
η(x+ 2) + η(x)− 2η(x+ 1) + η(x+ 1)η(x− 1)

+ η(x+ 1)η(x+ 3) + η(x+ 1)η(x− 2) + η(x+ 1)η(x+ 4)

− η(x+ 1)η(x− 1)η(x− 2)− η(x+ 1)η(x+ 3)η(x+ 4)
)
.

This expression can be partially expressed by means of the discrete Laplacian (cf. (4.21))
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and we obtain

1

2N

∑
z∈TN

∆NG(
z

N
)η(z) +

1

2N

∑
x∈TN ,2-x

η(x− 1)η(x+ 1)∆NG
( x
N

)
+
N

2

∑
x∈TN ,2-x

η(x− 1)η(x+ 2)
(
G

(
x− 1

N

)
−G

( x
N

) )
︸ ︷︷ ︸
=

∑
x∈TN,2-x

η(x−1)η(x+2)
(
−G′( xN ) 1

N
+G′′( xN ) 1

2N2 +O( 1
N3 )
)

+
N

2

∑
x∈TN ,2-x

η(x− 2)η(x+ 1)
(
G

(
x+ 1

N

)
−G

( x
N

) )
︸ ︷︷ ︸
=

∑
x∈TN,2-x

η(x−2)η(x+1)
(
G′( xN ) 1

N
+G′′( xN ) 1

2N2 +O( 1
N3 )
)
.

Thus, combined with (4.27), N2LN 〈πNN2s, G〉 equals

1

2N

∑
x∈TN

G′′
( x
N

)
ηN2s(x) +

1

2N

∑
x∈TN ,2-x

G′′
( x
N

)(
ηN2s(x− 1)ηN2s(x+ 1)

+
1

2
ηN2s(x− 1)ηN2s(x+ 2) +

1

2
ηN2s(x− 2)ηN2s(x+ 1)

)
− 1

2

∑
x∈TN ,2-x

G′
( x
N

)(
ηN2s(x− 1)ηN2s(x+ 2)− ηN2s(x− 2)ηN2s(x+ 1)

)
︸ ︷︷ ︸

=:HG′
η
N2s

+O
(

1

N

)
.

(4.107)

In comparison to the SSEP or RrEP, at this point there is an additional difficulty due to
the term HG′

ηN2s
. The index of the sum runs through the odd integers, i.e. makes steps of

size 2, whereas with the local function D(η) := η(−2)η(1) every summand in HG′
ηN2s

is only
a difference of a

”
1-step“ translation of local functions, i.e.

HG′
ηN2s

=
1

2

∑
x∈TN ,2-x

G′
( x
N

)
(τx+1D(ηN2s)− τxD(ηN2s)).

This means that another summation by parts (in order to get G′′( xN )) is not directly

applicable here and it seems as if HG′
ηN2s

∈ O (N), which is precisely the difficulty for
non-gradient systems. This means that the next step needs some further preparation.
We will follow a method which was applied in [37], where the author was confronted with
a similar difficulty. The idea is to replace the term τxD(η) − τx+1D(η) = η(x − 2)η(x +
1)− η(x− 1)η(x+ 2) by a generator of a certain function and some

”
step-2“ differences.
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x-7 x-6 x-5 x-4 x-3 x-2 x-1 x x+1x+2 x+3x+4 x+5x+6

Figure 4.12.: Particle jumps for a configuration η ∈ ΩN with η(x− 2) = η(x+ 1) = 1. The
jump depicted by the red (dotted) arrow is not allowed under the dynamics
and therefor does not lead to a change of the function f̄x. The jumps from
x− 2 to x− 1/x+ 1 are always allowed, whereas the jump from x+ 1 to x+ 2
depends on η(x+ 3) and η(x+ 4) according to the exclusion rule.

Therefore we define the function

f̄x(η) :=


1 for η(x− 2) = η(x+ 1) = 1,

−1 for η(x− 1) = η(x+ 2) = 1,

0 else

for x ∈ TN odd. Loosely speaking, there are (seemingly) 16 possibilities of how f̄x can
change its value in an infinitesimal time slot. For example, given a configuration η ∈ ΩN

with η(x−2) = η(x+ 1) = 1 (implying f̄x(η) = 1), the function f̄x would decrease by 1 after
a jump of either the particle at site x−2 or x+1 to the left/right neighbouring site. However
in this case, since the jump from site x+ 1 to x is not allowed under the dynamics, there
remain only 3 (instead of 4) possible jumps that lead to a new configuration ηnew ∈ ΩN (cf.
Figure 4.12). Thus, with a rate of q(η, ηnew), we have (f̄x(ηnew)− f̄x(η)) = −1. On the other
hand, in the case that only one of the sites x− 2, x+ 1 is occupied, there are 4 (in fact only
3, for the same reason as above) possible jumps that might lead to η(x− 2) = η(x+ 1) = 1
and thus (f̄x(ηnew)− f̄x(η)) = 1 with appropriate jump rates. The same method could be
applied for the sites x − 1 and x + 2, leading to (at most) 8 further changes of f̄x in an
infinitesimal time slot, but of course it is much more convenient to use the symmetry at this
point. With that in mind, we apply the generator LN from (4.62) and find that (LN f̄x)(η)
equals

1

2
η(x+ 1)η(x− 1)(1− η(x− 3))(1− η(x− 4)) +

1

2
η(x+ 1)η(x− 3)(1− η(x− 1))

+
1

2
η(x− 2)η(x+ 2)− η(x+ 1)η(x− 2)− 1

2
η(x− 2)η(x+ 1)(1− η(x+ 3))(1− η(x+ 4))

−
(1

2
η(x+ 2)η(x− 2) +

1

2
η(x− 1)η(x+ 1)(1− η(x+ 3))(1− η(x+ 4))

+
1

2
η(x− 1)η(x+ 3)(1− η(x+ 1))− 1

2
η(x+ 2)η(x− 1)(1− η(x− 3))(1− η(x− 4))

−η(x− 1)η(x+ 2)
)
,
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4.3. AFP Model

which can be written as

1

2

(
(τx+2C1 − τxC1) + 2(τx+2C2 − τxC2) + (τx+2C3 − τxC3) + (τx+2C4 − τxC4)

−(τx+2C5 − τxC5) + 3(τx+1D(η)− τxD(η)︸ ︷︷ ︸
=−f̄x(η)

)
)

(4.108)

with the definitions from (4.86). Note that LN f̄x(η) contains f̄x(η) and we can write

f̄x(ηN2s) = −1

3

(
2LN (f̄xηN2s)− (τx+2C1 − τxC1)− 2(τx+2C2 − τxC2)− (τx+2C3 − τxC3)

− (τx+2C4 − τxC4) + (τx+2C5 − τxC5)
)
.

We proceed by replacing the term τx+1D(η) − τxD(η) appearing in HG′
ηN2s

by means of

Equation (4.108). Defining

F (s, ηs) :=
1

N2

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηs) (4.109)

in (A.2), we recognise that this would be indeed an improvement in view of Lemma A.1.1,
as

MF
N2t :=

1

N2

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2t)−

1

N2

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(η0)

−
N2t∫
0

LN

( 1

N2

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηs)

)
ds

︸ ︷︷ ︸
=
t∫
0

∑
x∈TN,2-x

G′( xN )LN(f̄x(ηN2s)) ds

(4.110)

is a martingale and taking the expectation with respect to the path measure PµN (recall
our notation (4.64)) in (4.110) gives

t∫
0

∑
x∈TN ,2-x

G′(
x

N
)IEP

µN

(
(LN f̄x)(ηN2s)

)
ds

=IEP
µN

 1

N2

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2t)−

1

N2

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(η0)


=

1

N

( 1

N

∑
x∈TN ,2-x

G′
( x
N

)
IEP

µN
(f̄x(η0)− f̄x(ηN2t))

)
∈ O

(
1

N

)
,

(4.111)
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where we used that MF
0 = 0 and thus

IEP
µN

(MF
t ) = 0 ∀t ∈ R+

by the martingale properties. In other words, the expectation of the generator term
disappears for N →∞. Hence, in spirit of a local equilibrium ansatz as for the RrEP, we
take the expectation in (4.106)

IEP
µN
〈πNN2t, G〉 = IEP

µN
〈πN0 , G〉+

t∫
0

1

2N

∑
x∈TN

G′′
( x
N

)
IEP

µN
(ηN2s(x)) ds

+

t∫
0

1

2N

∑
x∈TN ,2-x

G′′
( x
N

)
IEP

µN

(
ηN2s(x− 1)ηN2s(x+ 1) +

1

2
ηN2s(x− 1)ηN2s(x+ 2)

+
1

2
ηN2s(x− 2)ηN2s(x+ 1)

)
ds

+

t∫
0

1

6

∑
x∈TN ,2-x

G′
( x
N

)
IEP

µN

(
(τx+2C1(N2s)− τxC1(N2s)) + 2(τx+2C2(N2s)

− τxC2(N2s)) + (τx+2C3(N2s)− τxC3(N2s)) + (τx+2C4(N2s)

− τxC4(N2s))− (τx+2C5(N2s)− τxC5(N2s))
)

ds+O
(

1

N

)
and after another summation by parts we get

IEP
µN
〈πNN2t, G〉 = IEP

µN
〈πN0 , G〉+

t∫
0

1

2N

( ∑
x∈TN

G′′(
x

N
)IEP

µN
(ηN2s(x))

+
∑

x∈TN ,2-x

G′′(
x

N
)IEP

µN

(
− 2

3
τxC1(N2s)− 4

3
τxC2(N2s)− 2

3
τxC3(N2s)

− 2

3
τxC4(N2s) +

2

3
τxC5(N2s) + ηs(x− 1)ηs(x+ 1)︸ ︷︷ ︸

=:τxC6(N2s)

+
1

2
ηs(x− 1)ηs(x+ 2)︸ ︷︷ ︸

=τx+1D(N2s)

+
1

2
ηs(x− 2)ηs(x+ 1)︸ ︷︷ ︸

=τxD(N2s)

))
ds+O

(
1

N

)
.

(4.112)

Note that an additional factor of 2 came in, owing to the step size of 2
N

N

2
(G′(

x+ 2

N
)−G′( x

N
)) = G′′(

x

N
) +O

(
1

N

)
.
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With this approach, we are able to predict the hydrodynamic equation. Assume for the
purpose of the remaining subsection that the N2-accelerated empirical measures converge to
an absolutely continuous measure with density ρ(t, u). Also, for all local, bounded functions
F : {0, 1}Z → R and the grand-canonical measure νNρ as given in (4.92), we assume for the

family of starting measures (µN )N≥1

lim
N→∞

IEτbuNcµN (F (η)) = lim
N→∞

IEνN
ρ0(u)

(F (η)) (4.113)

for all continuity points u of an initial density profile ρ0 : T → R+. Furthermore, this
property shall be conserved for the function ρ : R+ × T→ R+ in the sense that

lim
N→∞

IESN (N2t)τbuNcµN
(F (η)) = lim

N→∞
IEνN

ρ(t,u)
(F (η)) (4.114)

for all t ≥ 0 and all continuity points u of ρ(t, ·). We have

IEP
µN

(η0(x)) = IEP
τxµN

(η0(0)) = IEτxµN (η(0)),

such that, given the local equilibrium property (4.113), there holds

lim
N→∞

(
IEP

µN
〈πN0 , G〉

)
= lim

N→∞

 1

N

∑
x∈TN

G
( x
N

)
IEP

µN
(η0(x))


= lim
N→∞

 1

N

∑
x∈TN ,2-x

G
( x
N

)(
IEτxµN (η(0)) + IEτxµN (η(1))

)
+O

(
1

N

)
= lim
N→∞

(
1

N

∑
x∈TN ,2-x

G
( x
N

)(
νN
ρ0( xN )({η(0) = 1}) + νN

ρ0( xN )({η(1) = 1})
)

︸ ︷︷ ︸
→2ρ0( xN ) by (4.95) in Proposition 4.3.2

+O
(

1

N

))

=

∫
T

G(u)ρ0(u) du.

(4.115)

Analogously, as
IEP

µN
(ηN2t(x)) = IESN (N2t)τxµN (η(0)),

we proceed for IEP
µN
〈πNN2t, G〉, getting

lim
N→∞

IEP
µN
〈πNN2t, G〉 =

∫
T

G(u)ρ(t, u) du, (4.116)
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due to the conservation assumption in (4.114). Generally, the same procedure works for
the other terms like −2

3 IEP
µN

(τxC1(N2s)) in Equation (4.112), e.g.

lim
N→∞

IEP
µN

(τxC1(N2s)) = lim
N→∞

IESN (N2s)τxµN (C1)
(4.114)

= lim
N→∞

IEνN
ρ(s, xN )

(C1)

= lim
N→∞

νN
ρ(s, xN )(C1 = 1),

with the additional step of applying the results from Corollary 4.3.3 at this point. Altogether,
we can take the limit N → ∞ on both sides of Equation (4.112) and we obtain that the
particle density function ρ should fulfil the PDE

∂tρ =
1

2
∂2
x(Φ̄(ρ)), (4.117)

with

Φ̄(ρ) := ρ+
1

2

(
− 8

3

(ρ− ȳmin)3(1
2 − ρ− ȳmin)

(1
2 − ȳmin)3

− 4

3

(ρ− ȳmin)3(1
2 − ρ− ȳmin)2

(1
2 − ȳmin)4

+
4

3

((ρ− ȳmin)2(1
2 − ρ− ȳmin)

(1
2 − ȳmin)2

+
(ρ− ȳmin)3

(1
2 − ȳmin)2

)
+

2(ρ− ȳmin)2

1
2 − ȳmin

− 8

3

(ρ− ȳmin)3

(1
2 − ȳmin)2

+
2(ρ− ȳmin)2(1

2 − ρ− ȳmin)

(1
2 − ȳmin)2

)
.

(4.118)

and ȳmin as in (4.97). The factor 1
2 in front of the big bracket in (4.118) comes from the fact,

that the Riemann-sum is taken over points with distance 2
N . However, Equation (4.117)

(and Equation (4.118) respectively) can be simplified to the form which is also stated in
Theorem 4.3.1, namely

∂tρ =
2

3
∂2
x(Φ(ρ)),

where

Φ(ρ) =
2ρ
(

3− 8ρ+ 3c(ρ)− 2ρ · c(ρ) + 16ρ2 + 8ρ2 · c(ρ) + 8ρ3
)

(1 + c(ρ))4
,

and
c(ρ) =

√
1− 4ρ+ 8ρ2.

The last function is an axially symmetric function attaining its minimum value
√

1
2 for the

particle density ρ = 1
4 .
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4.3.5. Proof of Theorem 4.3.1

The general outline of the proof follows the methods from [14], which have been applied also
in Subsection 4.2.4. The emphasis lies on dealing with the terms that are of non-gradient
nature.

For simplicity, we mainly adopt the notation from the RrEP. As mentioned earlier, P now
denotes the path measure for the AFP-process. QN will be the pushforward measure of PµN
(the path measure starting from the distribution µN on ΩN ) under πN := {πNN2t : t ∈ [0, T ]},
i.e. it is the measure on D([0, T ],M+) corresponding to the N2-accelerated process πNN2t.
Based on QN , we define another measure for a function G : T→ R by

QN,G(A) = QN ({(πt)t∈[0,T ] ∈ D([0, T ],M+) : (〈πt, G〉)t∈[0,T ] ∈ A})

for measurable sets A ⊂ D([0, T ],R).
We will show that the sequence (QN )N≥1 converges to the Dirac-measure concentrated

on the deterministic path {ρ(t, u) du, 0 ≤ t ≤ T}, where ρ(t, u) satisfies∫
T

G(u)ρ(t, u) du =

∫
T

G(u)ρ0(u) du+
2

3

t∫
0

∫
T

∂2
xG(u) · Φ(ρ(s, u)) duds, (4.119)

for all t ∈ [0, T ] and with Φ defined as in (4.100). This implies Equation (C.2) by partial
integration thanks to the boundary conditions, which means that ρ is a weak solution of
the hydrodynamic equation. We will prove that

1. (QN )N≥1 is relatively compact,

2. subsequences (QNk)k≥1 converge towards a unique measure concentrated on the
solution of (4.119) and

3. there is a unique weak solution to (4.99).

The first step, i.e. showing relative compactness of (QN )N≥1 on D([0, T ],M+), can be
simplified thanks to Proposition B.2.2. Therefor, we consider the class of twice continuously
differentiable functions G : R → R with period 1, which will be denoted by C2(T), as
before. Considering the real-valued process (〈πNN2t, G〉)t∈[0,T ], we just have to prove for

every G ∈ C2(T) that (QN,G)N≥1 is relatively compact in D([0, T ],R).
We take advantage of Prohorov’s Theorem and verify Condition (B.3) therein directly, since
|〈πNt , G〉| is bounded (cf. page 51). Regarding the second condition (B.4) in Prohorov’s
Theorem, we will show Aldous’ condition regarding the oscillations in (B.5) instead, as it is
easier to handle. Our intermediate goal thus becomes to control

QN,G
(∣∣〈πNN2(τ+θ), G〉 − 〈π

N
N2τ , G〉

∣∣ > ε
)

≤QN,G
(∣∣MG,N

N2(τ+θ)
−MG,N

N2τ

∣∣ > ε

2

)
+QN,G

∣∣∣∣∣
τ+θ∫
τ

N2LN 〈πNN2s, G〉ds

∣∣∣∣∣ > ε

2

 ,
(4.120)

95



4. Dynamics away from Poles

where we recall that τ is a bounded stopping time and θ ≤ γ with γ → 0 eventually. This
goal can be achieved by controlling the first and second summand in the last line of (4.120)
separately. Starting with the former, it is enough to show convergence of the second moment
of MG,N

N2t
due to Chebyshev’s inequality. During the proof of the hydrodynamic equation

for the RrEP, we have spent a big amount of time on showing

IEQN,G [(MG,N
N2(τ+θ)

−MG,N
N2τ

)2]→ 0, for N →∞,

whereas the treatment of the second summand in (4.120) went rather smoothly. This time,
the opposite is the case, as the second summand becomes much harder to handle due to
the non-gradient nature of the AFP-process, and for the first summand, we benefit from
our previous work. Taking the expectation in Equation (A.3), we know with Lemma A.1.1,
as NF

t is a martingale, that there holds

IEQN,G

((
MG,N
N2t

)2
)

=

t∫
0

N2IEQN,G
(
LN

(
〈πNN2s, G〉

2
)
− 2〈πNN2s, G〉LN

(
〈πNN2s, G〉

))
ds.

(4.121)

We proceed similarly to page 53 and get with rates q(η, ηx,y) as in (4.63) that
N2LN

(
〈πNN2s, G〉

2
)

equals∑
x,y∈TN ,
|x−y|=1

q(η, ηx,y)
(
G
( y
N

)
−G

( x
N

))2
+ 2N2〈πNN2s, G〉LN

(
〈πNN2s, G〉

)
.

Since

N2
(
G
( y
N

)
−G

( x
N

))2
=
(
G′
(x
n

))2
+O

(
1

N

)
we conclude that (4.121) vanishes for N →∞, which implies for every ε > 0

lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

QN,G
(∣∣MG,N

N2(τ+θ)
−MG,N

N2τ

∣∣ > ε

2

)
= 0.

Next, concerning the second summand in the bottom line of (4.120), we need to control the
troublesome term

∑
x∈TN ,2-xG

′ ( x
N

)
LN f̄x(ηN2s) that appeared in the martingale approach

as a summand (times constant) of HG′
ηN2s

, which itself appeared in the term N2LN 〈πNN2s, G〉.
For

F (s, ηs) :=
1

N2

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηs) (4.122)
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we obtain the new martingale

M̄G′,N
N2t

:=F (N2t, ηN2t)− F (0, η0)−
N2t∫
0

LNF (s, ηs) ds+O
(

1

N

)

=F (N2t, ηN2t)− F (0, η0)︸ ︷︷ ︸
∈O( 1

N )

−
t∫

0

∑
x∈TN ,2-x

G′
( x
N

)
LN f̄x(ηN2s) ds+O

(
1

N

)
,

(4.123)

with IEP
µN

((
M̄G′,N
N2t

)2
)

given by

t∫
0

IEP
µN

(
N2LN

((
F (N2s, ηN2s)

)2)− 2N2F (N2s, ηN2s)LN
(
F (N2s, ηN2s)

))
ds. (4.124)

For the first summand in the integral of (4.124) there holds

N2LN

((
F (N2s, ηN2s)

)2)
=

1

N2
LN

 ∑
z∈TN ,2-z

G′
( z
N

)
f̄z(ηN2s)

2 ∈ O( 1

N

)
,

by a straightforward calculation similar to (4.40), using

LN

 ∑
z∈TN ,2-z

G′
( z
N

)
f̄z(ηN2s)

2
=

∑
x,y∈TN ,
|x−y|=1

q(η, ηx,y)

 ∑
z∈TN ,2-z

G′
( z
N

)
f̄z(η

x,y)

2

−

 ∑
z∈TN ,2-z

G′
( z
N

)
f̄z(η)

2

=
∑

x,y∈TN ,
|x−y|=1

q(η, ηx,y)

 ∑
z∈TN ,2-z

G′
( z
N

) (
f̄z(η

x,y) + f̄z(η)
) ∑

z∈TN ,2-z

G′
( z
N

) (
f̄z(η

x,y)− f̄z(η)
)

where the last sum (in large brackets) of the last line simplifies to a term in O(1). For the
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4. Dynamics away from Poles

second summand in (4.124) we get

t∫
0

IEP
µN

[
−2N2F (N2s, ηN2s) · LN

(
F (N2s, ηN2s)

)]
ds

=
−2

N2

t∫
0

IEP
µN

[( ∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2s)

)( ∑
x∈TN ,2-x

G′
( x
N

)
LN

(
f̄x(ηN2s)

))]
ds

=
−2

N2

t∫
0

IEP
µN

[( ∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2s)

)(
1

2

∑
x∈TN ,2-x

G′
( x
N

)(
(τx+2C1(N2s)

− τxC1(N2s)) + 2(τx+2C2(N2s)− τxC2(N2s)) + (τx+2C3(N2s)− τxC3(N2s))

+ (τx+2C4(N2s)− τxC4(N2s))− (τx+2C5(N2s)− τxC5(N2s))

)
− 3

2

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2s)

]
ds.

After a summation by parts for the sum with gradients over two lattice sites, the last
equation becomes

−2

N2

t∫
0

IEP
µN

[
− 3

2

 ∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2s)

2

+

 ∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2s)


·

 1

N

∑
x∈TN ,2-x

G′′
( x
N

)
(−C1(N2s)− 2C2(N2s)− C3(N2s)− C4(N2s) + C5(N2s))


+

 ∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2s)

 · O( 1

N

)]
ds.

Here, the second line is of order O(1), thus the whole summand (the one which contains the
term in the second line) disappears for N →∞, given the prefactor −2

N2 . The same holds of
course for the third summand. The only clarification is necessary for the term

3

t∫
0

IEP
µN

[ 1

N

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2s)

2 ]
ds. (4.125)

Fortunately the replacement lemma due to Guo, Papanicolaou and Varadhan [13] helps us
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4.3. AFP Model

out here. At first, note that there holds (assuming for simplicity εN ∈ N)

1

N

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2s) =

1

N

∑
x∈TN ,2-x

1

εN + 1

∑
y∈TN ,2-y
|y−x|≤εN

G′
( y
N

)
f̄y(ηN2s)

and that a first order Taylor expansion of G′ in x
N further gives

1

N

∑
x∈TN ,2-x

G′
( x
N

) 1

εN + 1

∑
y∈TN ,2-y
|y−x|≤εN

f̄y(ηN2s) +O(ε). (4.126)

The replacement lemma16 now allows to replace the local averages of f̄y(ηN2s) by an
expected value with respect to the stationary measure with parameter given by the local
density. More precisely we have from (4.126) (cf. also equation (4.8) in [37]) and with the
same notation as for the RrEP on page 58 that

3

t∫
0

IEP
µN

[(
1

N

∑
x∈TN ,2-x

G′
( x
N

)
f̄x(ηN2s)−

1

N

∑
x∈TN ,2-x

G′
( x
N

)
IEν〈πN

N2s
,ιε〉

(f̄x(ηN2s))

)2]
ds

converges to 0 for N →∞ and then ε→ 0. However, independently of whatever the actual
value of 〈πNN2s, ιε〉 is, we have

IEν〈πN
N2s

,ιε〉
(f̄x(ηN2s)) = 0

owing to the symmetry of τxD and τx+1D already mentioned at the beginning of the proof
to Lemma 4.3.3. Hence the somewhat troublesome expression (4.125) vanishes for increasing
N , and so does

IEP
µN

((
M̄G′,N
N2t

)2
)
→ 0, N →∞.

Bearing this in mind, we go back to the initial martingale representation in (4.106). The
analysis of the drift term N2LN 〈πNN2s, G〉 led to sums including G′′ plus the term HG′

ηN2s
,

which can be represented now with the help of M̄G′,N
N2t

. All things combined, we have

〈πNN2t, G〉 − 〈π
N
0 , G〉 =

t∫
0

(
1

2N

∑
x∈TN

G′′
( x
N

)
ηN2s(x) +

1

2N

∑
x∈TN ,2-x

G′′
( x
N

)
h̄x(ηN2s)

)
ds

+MG,N
N2t
− M̄G′,N

N2s
+O

(
1

N

)
16Compared to the statement (4.49) we just need a weaker version (containing the expected value), since

the term we are considering originated from IEP
µN

((
M̄G′,N
N2t

)2
)

.
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with

h̄x := τxC6 +
1

2
τx+1D +

1

2
τxD −

2

3
τxC1 −

4

3
τxC2 −

2

3
τxC3 −

2

3
τxC4 +

2

3
τxC5,

and we are finally able to control the second summand in the bottom line of (4.120), i.e.
we have for fixed G ∈ C2(T)

PµN

∣∣∣∣∣
τ+θ∫
τ

N2LN 〈πNN2s, G〉ds

∣∣∣∣∣ > ε

2


≤PµN

∣∣∣∣∣
τ+θ∫
τ

(
1

2N

∑
x∈TN

G′′
( x
N

)
ηN2s(x) +

1

2N

∑
x∈TN ,2-x

G′′
( x
N

)
h̄x(ηN2s)

)∣∣∣∣∣ > ε

4


+ PµN

(∣∣M̄G′,N
N2(τ+θ)

− M̄G′,N
N2τ

∣∣ > ε

4

)
.

With Chebyshev’s inequality there holds for every ε > 0

lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

PµN
(∣∣M̄G′,N

N2(τ+θ)
− M̄G′,N

N2τ

∣∣ > ε

4

)
= 0,

as well as with D := ||G′′||∞

PµN

∣∣∣∣∣
τ+θ∫
τ

(
1

2N

∑
x∈TN

G′′
( x
N

)
ηN2s(x) +

1

2N

∑
x∈TN ,2-x

G′′
( x
N

)
h̄x(ηN2s)

)∣∣∣∣∣ > ε

4


≤PµN

(
1

2
θD >

ε

4

)
=
θ≤γ

PµN
(
γD >

ε

2

)
→ 0, for γ → 0,

since the function h̄x is bounded for all η ∈ ΩN . By definition of QN,G, this implies
Aldous’ sufficient condition for the second condition in Prohorov’s Theorem about relative
compactness. We have shown

lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

QN,G
(∣∣〈πNN2(τ+θ), G〉 − 〈π

N
N2τ , G〉

∣∣ > ε
)

= 0.

Concerning the second step of the proof, i.e. uniqueness of converging subsequences
(QNk)k≥1, a major part has already been done either during this proof or for the RrEP on
pages 55 onwards. Let QNk be a subsequence converging to a limit point Q∗.
We recall that pt : D([0, T ],M+)→M+ denotes the projection-map onto time t ∈ [0, T ] and
Q∗pt then is the pushforward measure of Q∗ with respect to pt. At first we will show that Q∗pt is
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4.3. AFP Model

concentrated on absolutely continuous measures. For trajectories (πt)t∈[0,T ] ∈ D([0, T ],M+),
there holds

sup
t∈[0,T ]

|〈πt, G〉| ≤
1

Nk

∑
x∈TNk

|G(
x

Nk
)| QNk − a.s.. (4.127)

Furthermore, we obtain with the Portmanteau-Theorem for closed sets

1
(4.45)

= lim sup
k→∞

QNk({(πt)t∈[0,T ] ∈ D([0, T ],M+) : sup
t∈[0,T ]

|〈πt, G〉| ≤
∫
T

|G(u)|du})

≤ Q∗({(πt)t∈[0,T ] ∈ D([0, T ],M+) : sup
t∈[0,T ]

|〈πt, G〉| ≤
∫
T

|G(u)| du}).

Thus Q∗ is concentrated on trajectories (πt)t∈[0,T ] ∈ D([0, T ],M+) such that

sup
t∈[0,T ]

|〈πt, G〉| ≤
∫
T

|G(u)|du,

which implies by the monotone-class theorem that, for every t ∈ [0, T ], Q∗ is concentrated
on paths which are absolutely continuous with respect to the Lebesgue-measure. We will
write ρ(s, u) for the associated density at time s.
The first assumption in Theorem 4.3.1, regarding the starting measures (µN )N≥1, guarantees
that Q∗ is concentrated on paths that at time 0 have density ρ0. This can be seen by

Q∗
({

(πt)t∈[0,T ] ∈ D([0, T ],M+) :
∣∣∣ ∫
T

G(u)π0(du)−
∫
G(u)ρ0(u) du

∣∣∣ > ε
})

≤ lim inf
k→∞

QNk
(∣∣∣ ∫

T

G(u)π0(du)−
∫
G(u)ρ0(u) du

∣∣∣ > ε
)

= lim inf
k→∞

QNk
(∣∣∣ 1

Nk

∑
x∈TNk

G

(
x

Nk

)
η0(x)−

∫
G(u)ρ0(u) du

∣∣∣ > ε
)

= lim
k→∞

µNk
(∣∣∣ 1

Nk

∑
x∈TNk

G

(
x

Nk

)
η(x)−

∫
G(u)ρ0(u) du

∣∣∣ > ε
)

= 0.

Now, fix a smooth function G : [0, T ] × T → R fulfilling G(t, 0) = G(t, 1) as well as
∂xG(t, 0) = ∂xG(t, 1) for all t ∈ [0, T ]. We will show that Q∗ is concentrated on trajectories
such that

〈πt, G〉 = 〈π0, G〉+

t∫
0

∫
T

(
ρ · ∂sG+

1

2
Φ̄(ρ) · ∂2

xG

)
duds,

〈π0, G〉 =

∫
T

G(0, u) · ρ0(u) du,

(4.128)
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with Φ̄(ρ) as in (4.118). By Lemma A.1.1 applied to

F (s, ηs) :=
1

Nk

∑
x∈TNk

G

(
s

N2
k

,
x

Nk

)
ηs(x),

we know that

MG,Nk
N2
k t

= 〈πNk
N2
k t
, G(t, ·)〉 − 〈πNk0 , G(0, ·)〉 −

t∫
0

(∂s +N2
kLNk)〈πNk

N2
ks
, G(s, ·)〉 ds, (4.129)

is another martingale. For the second moment of this martingale the additional time
dependency (in comparison to the prior treatment (4.121) in step 1 of this proof) does not
play any role, as it does not enter the martingale NF from (A.3). Thus, just as before on
page 96, we have

lim
k→∞

IEQNk

((
MG,Nk
N2
k t

)2)
= 0

for all t ∈ [0, T ] and in particular for t = T . We get for every δ > 0

QNk( sup
0≤t≤T

|MG,Nk
N2
k t
| > δ) ≤

IEQNk

( sup
0≤t≤T

|MG,Nk
N2
k t
|

)2


δ2

≤ 4

δ2
IEQNk

((
MG,Nk
N2
kT

)2)→ 0

for k →∞, by applying Chebyshev’s inequality, followed by Doob’s L2-inequality. Conse-
quently, we know that

lim
k→∞

PµNk

(
sup
t∈[0,T ]

∣∣∣∣∣〈πNkN2
k t
, G〉 − 〈πNk0 , G〉 −

t∫
0

〈πNk
N2
ks
, ∂sG〉 ds (4.130)

−
t∫

0

(
1

2Nk

∑
x∈TNk

G′′
(
x

Nk

)
ηN2

ks
(x) +

1

2Nk

∑
x∈TNk ,2-x

G′′
(
x

Nk

)
h̄x(ηN2

ks
)

)
ds

∣∣∣∣∣ > δ

)
= 0

(4.131)

for all δ > 0. The rest is familiar by now. Once more we have to apply the replacement
lemma for the second summand of the integral in the bottom line of Equation (4.130). This
time, all remaining summands will contribute to the equation - contrary to the term (4.125)
- and the approach follows precisely the approach for gradient systems from here on forward
(see pages 57 to 59, only with a different function h). As explained before, the replacement
lemma allows to bring the expectation with respect to the grand-canonical measure νNρ into
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Figure 4.13.: Plots for Φ from (4.100) and its first derivative in dependence of the particle
density. The function Φ is very close to the identity map ρ 7→ ρ and has
symmetric derivatives around ρ = 1

4 .

the equation, which enables us to close the equation with respect to the empirical measure.
Then, with Corollary 4.3.3, we can show the concentration of the measures (QN )N∈N on
the dirac-measure on absolutely continuous measures whose density solves (4.119).

The third and last step of the proof consists in showing uniqueness of weak solutions to
the hydrodynamic equation. At first, we remind the reader that a maximum principle holds
according to (4.103), such that

ρ0(x) ∈
[
0,

1

2

]
∀x ∈ T ⇒ ρ(t, x) ∈

[
0,

1

2

]
∀t ∈ R+, x ∈ T.

Then, we note that the function Φ from (4.100) is smooth and strictly increasing for
ρ ∈ [0, 1

2 ], which is illustrated in Figure 4.13. Furthermore, due to the symmetric properties
of the derivatives (cf. (4.102)), we know that ||Φ′||∞ = Φ′(1

4) <∞. Hence, we have shown
that all requirements of Theorem C.1.1 are fulfilled and we conclude that there exists a
unique weak solution in L2([0, T ]× T).17

17For the constraint of the time line we refer to the same discussion on page 59.
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5. Conclusions

5.1. Dynamics at poles

Following the method applied by Spohn, Lacoin, Simenhaus and Toninelli, we have to
ask what the evolution of the droplet’s boundary γ will be like around the poles for a
zero-temperature dynamics of planar random permutations. Our starting point is again an
interface between two coexisting phases which can be approximated by a long permutation
cycle with nearest-neighbour permutation jumps, just as in the scenario away from poles.

Creating a corresponding interacting particle system (like the AFP-process away from
the poles) is initially a very creative and joyful exercise. Many systems have been tried
already, but few of them seemed decently easy to handle. Basically with every system,
there occurred some difficulty in deriving the hydrodynamic behaviour, such that standard
techniques were not applicable. Of course, given the arduous work that went into the scaling
limits for the AFP-process, this should not come as a surprise.

Still, we would like to present an IPS which is based on the ZRP with two species
of particles which eliminate each other. Just as in our model away from the poles, we
introduce a 1-dimensional lattice (such as Z or the torus Z/NZ for N ∈ N) with two
different (alternating) types of sites, say even and odd. On even sites, we basically have a
configuration space just like for the above mentioned ZRP with A and B particles, with
A particles modelling positive gradients of the interface’s height function (compare with
the second subsubsection in Subsection 3.1.3) and B particles modelling negative gradients.
In particular, many particles of the same type can occupy a single lattice site, and the
dynamics is such that the leaving rate is independent from the amount of particles at a
given even site. On the other hand, on odd sites, there can be only one A or one B particle
at a time. Such a particle corresponds to a diagonal jump, which, around the poles, can
take two possible forms: either from the bottom left to the top right, or from the bottom
right to the top left (assuming w.l.o.g. a model for the north-pole, so to speak). Elimination
of two particles (one each) can happen at every site, whenever an A particle jumps to a site
that is occupied by (a) B particle(s) or vice versa.

For the normal two-species ZRP with instantaneous annihilation it is known that in the
scaling limit there eventually appear macroscopic regions where one particle type dominates
the other. In those regions, the density evolution should be slower but similar to the
standard ZRP. The difficulty lies of course in combining those regional evolutions.
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5. Conclusions

5.2. Future Work

The original goal of this Ph.D. project was the derivation of mean-curvature type droplet
shrinking for spatial random permutations at zero temperature. By now, we have only
treated the hydrodynamic equation away from poles. Even though the arising partial
differential equation looks rather scary at first sight, it still seems to be very similar to the
heat equation, which - of course - would be very desirable for mean-curvature motion (cf.
Section 3.1). Thus, a further step could consist in deriving a result such as Corollary 3.5
in [18], in which the rescaled microscopic boundary could be compared to solutions of the
heat equation.

In the previous section it became clear that the treatment of the situation at the poles is
probably just as hard as away from the poles.

However, being optimistic, one still has to ”glue together” the results for the auxiliary
dynamics and translate it into a single partial differential equation that describes the curve
shortening flow.

Furthermore, another obvious generalisation is the consideration of general α for the
Gibbs measures, i.e. not only dealing with the zero-temperature case.

At last, one could consider less rigorous assumptions on the initial domain D, which has
been achieved for example within 2 years from [18] to [19] in the zero-temperature Ising
model.

106



A. Stochastic Processes: Markov, Feller,
Particle Systems

A.1. Markov Processes

For Markov processes, there are several natural martingales that play an important role,
particularly in this thesis. From [14, Appendix 1.5] (cf. [25, Theorem 3.32]) we take the
following well known results.

Let (Xt)t≥0 be a continuous-time Markov process on the countable state space E. Consider
a bounded function F : R+ × E → R smooth in the first coordinate, uniformly over the
second: for each x in E, F (·, x) is twice continuously differentiable and there exists a finite
constant C such that

sup
(s,x)

∣∣∣(∂jsF )(s, x)
∣∣∣ ≤ C (A.1)

for j = 1, 2. To each function F satisfying (A.1), define MF
t and NF

t by

MF
t := F (t,Xt)− F (0, X0)−

t∫
0

ds(∂s + L)F (s,Xs) (A.2)

and

NF
t :=

(
MF
t

)2 − t∫
0

ds
{
LF (s,Xs)

2 − 2F (s,Xs)LF (s,Xs)
}
, (A.3)

where L denotes the generator of the Markov process (Xt)t≥0.

Lemma A.1.1 (Kipnis/Landim). Denote by {Ft, t ≥ 0} the filtration induced by the
Markov process: Ft = σ(Xs, s ≤ t). The processes MF

t and NF
t are Ft-martingales.

Proof. See Lemma A1.5.1 in [14].

Remark A.1.1. In most of the cases in previous chapters, our choice of the function
F : R+ ×E → R does not depend on the first variable, i.e. on the time component per se.
This means that ∂sF = 0 and the right-hand side of (A.2) simplifies to

F (t,Xt)− F (0, X0)−
t∫

0

LF (s,Xs) ds.
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A.2. Feller Processes

The following results are taken out of the works by Thomas M. Liggett on Markov processes,
Feller processes and interacting particle systems in [23, 24, 25]. They are either explicitly
used in the preceding chapters or give additional insight to the basic introduction to the
matter in Section 2.1. Also, the notation is taken from the latter.

At first we note that a semigroup {T (t) : t ∈ R+} is a contraction operator at any point
in time

||T (t)f || ≤ ||f || for all f ∈ C(X), (A.4)

which is a direct consequence of properties 4. and 5. in Definition 2.1.2

Definition A.2.1. Given a semigroup T (t), its Laplace transform

U(α)f =

∞∫
0

e−αtT (t)f dt, α > 0,

is called the resolvent of the semigroup.

The resolvent is a linear operator on C(X). It is well defined due to the continuity of the
function t 7→ e−αtT (t)f for all α > 0 and due to

||eαtT (t)f || ≤ e−αt||f ||,

based on equation (A.4). We are now prepared to state the theorem that enables us to go
from a probability semigroup to a generator.

Theorem A.2.1 (Liggett). Suppose that T (t) is a probability semigroup, and define L by

Lf := lim
t↓0

T (t)f − f
t

(A.5)

on
D(L) = {f ∈ C(X) : the (strong) limit in (A.5) exists}.

Then L is a probability generator. Furthermore, the following statements hold.

1. For any g ∈ C(X) and α > 0,

f = αU(α)g iff f ∈ D(L) and satisfies f − α−1Lf = g.

2. If f ∈ D(L), then T (t)f ∈ D(L) for all t ∈ R+, is a continuously differentiable
function of t, and satisfies

d

dt
T (t)f = T (t)Lf = LT (t)f.

II
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3. For f ∈ C(X) and t > 0,

lim
n→∞

(
I − t

n
L

)−n
f = T (t)f.

Proof. See Theorem 3.16 in [25].

For the next theorem, we introduce quasi-left continuity.

Definition A.2.2. The process (ηt)t∈R+ is said to be quasi-left continuous if whenever a
sequence of stopping times τn increases to τ , it follows that

ητn → ητ a.s. on the event {τ <∞}.

Starting from a probability generator, we have seen in Section 2.1 how to obtain a
probability semigroup {T (t) : t ∈ R+}. The operator Lε in (2.5) is well defined by condition
3 of Definition 2.1.3, which can be seen by the equivalence f −εLf = g ⇔ f = (I−εL)−1g.
The latter also implies the inequality

||Lεg|| = ||Lf || ≤
||f ||+ ||g||

ε
≤ 2

ε
||g||.

It follows that Lε is a bounded linear operator and that the approximation Tε(t) in (2.6)
is indeed well defined. For the last step of this direction, i.e. getting a Feller process, we
referred to the following statement.

Theorem A.2.2 (Liggett). If T (t) is a probability semigroup, then there is a Feller process
(ηt)t∈R+ satisfying

IEη
0
f(ηt) = T (t)f(η0)

for η0 ∈ X, t ∈ R+, and f ∈ C(X). Furthermore, (ηt)t∈R+ is quasi-left continuous.

Proof. See Theorem 3.26 in [25].
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B. Miscellaneous

B.1. Laplace’s Method

Laplace’s method plays a crucial role in deriving the stationary measures in this thesis.
Even though we frequently referred to [27], in this section we will give an introduction to
the topic based on [10]. Of course, the original technique is due to Laplace (1820).

Laplace’s method is used to estimate integrals of the type

I(λ) :=

b∫
a

e−λp(t)q(t) dt,

for values a, b that might or might not be finite. The idea is based on the observation that
the peak value of the function e−λp(t) occurs at the point t = t0 where p(t) is a minimum.
For large λ the peak is concentrated in a neighborhood of t− t0.

Suppose now that t0 = a and p′(a) > 0, q(a) 6= 0. If we replace p(t), q(t) in I(λ) by a
Taylor expansion near t = t0, we get

I(λ) ∼
b∫
a

e−λ(p(a)+p′(a)(t−t0))q(a) dt.

Putting b =∞, we obtain

I(λ) ∼ q(a)e−λp(a)

∞∫
a

e−λ(t−a)p′(a) dt

and hence

I(λ) ∼ q(a)
e−λp(a)

λp′(a)
.

Otherwise, when t = t0 is an interior point and p′′(t0) > 0, then

I(λ) =

b∫
a

e−λp(t)q(t) dt ∼
b∫
a

e−λ(p(t0)+ 1
2
p′′(t0)(t−t0)2)q(t0) dt.

V



B. Miscellaneous

At this point, we may replace a = −∞ and b =∞ with negligible error. As

∞∫
−∞

e−at
2

dt =

√
π

a

for a > 0, we get

I(λ) ∼ e−λp(t0)q(t0)

∞∫
−∞

e−λ
(t−t0)2

2
p′′(t0) dt = e−λp(t0)q(t0)

√
2π

λp′′(t0)
. (B.1)

This derivation of the asymptotics has been very informal, of course. For a proper statement
and proof we refer once again to [10].

B.2. Compactness results

The method used to prove the hydrodynamic evolution of particle systems in this thesis
relies on showing convergence of sequences (more precisely: sequences of distributions on
a space of measure-valued càdlàg functions). This can be achieved by showing that the
sequence is relatively compact and that all subsequences converge to the same limit. The
proofs of Theorem 4.2.1 and 4.3.1 refer to results from [8] and a standard reference for
probability researchers, Billingsley’s [6], where an entire chapter is devoted to measures on
càdlàg spaces.

For the next Theorem, we recall some notation from page 51 first. For a function
f : [0, T ]→ R a modified uniform modulus of continuity is defined by

w′f (γ) := inf
{ti}0≤i≤r̄

max
0≤i<r̄

sup
ti≤s′<t<ti+1

|ft − fs′ |, (B.2)

where the infimum is taken over all partition points {ti, 0 ≤ i ≤ r̄} of [0, T ] such that
0 = t0 < t1 < ... < tr̄−1 < tr̄ = T and ti− ti−1 > γ for all i = 1, ..., r̄. The modified modulus
of continuity allows to characterise compact sets in D([0, T ],R) by the Ascoli Theorem (cf.
[14, Proposition 4.1.2]) and gives the following statement of Prohorov’s Theorem.

Theorem B.2.1 (Ascoli, Prohorov). Let (PN )N≥1 be a sequence of probability measures
on D([0, T ],R). The sequence is relatively compact if and only if

1. for every t ∈ [0, T ] and every ε > 0, there is a compact set K(t, ε) ⊂ R such that

sup
N≥1

PN (f : ft /∈ K(t, ε)) ≤ ε, (B.3)

2. for every ε > 0,

lim
γ→0

lim sup
N→∞

PN (f : w′f (γ) > ε) = 0. (B.4)
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Proof. See Theorem 1.3 in Chapter 4 of [14].

Since the second condition in Theorem B.2.1 is hard to verify in our setting, we will use
the following proposition instead.

Proposition B.2.1. Let TT be the family of stopping times bounded by T. A sequence
of probability measures (PN )N≥1 on D([0, T ],R) satisfies Equation (B.4) for every ε > 0
provided

lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

PN (f : |fτ+θ − fτ | > ε) = 0 (B.5)

for every ε > 0.

Proof. See Proposition 1.6 in Chapter 4 of [14].

Fortunately, the problem of proving relative compactness for distributions onD([0, T ],M+)
(which is the problem that we are dealing with in this thesis) can be simplified significantly
by means of the following proposition.

Proposition B.2.2 (Kipnis/Landim). Let {gk; k ≥ 1} be a dense subfamily of C(T) con-
taining the constant 1-function. A family of probability measures (QN )N≥1 on D([0, T ],M+)
is relatively compact if for every positive integer k the family (QN,gk)N≥1 of probabilities
on D([0, T ],R) has this property, where the latter family is defined for a measurable set
A ⊂ D([0, T ],R) by

QN,gk(A) = QN ({(πt)t∈[0,T ] ∈ D([0, T ],M+) : (〈πt, gk〉)t∈[0,T ] ∈ A}).

Proof. See Proposition 1.7 in Chapter 4 of [14].

Thus, the preceding results from this Section, namely Theorem B.2.1 and Proposition
B.2.1, can be applied for every test-function G : T → R and its associated measure
PN := QN,G.
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C. Analysis of Partial Differential Equations

C.1. Quasilinear Parabolic Partial Differential Equations

Both the hydrodynamic equation for the RrEP and the hydrodynamic equation for the
AFP-process are quasilinear parabolic equations of second order . In order to guarantee
existence and uniqueness results for weak solutions of the partial differential equations, we
cite from Appendix 2.4 in [14], but restrict ourselves to a setting in 1 space dimension.

In the following we will refer to the general Cauchy problem{
∂tρ = σ∂2

xΦ(ρ),

ρ(0, ·) = ρ0(·),
(C.1)

where Φ is a smooth, strictly increasing function such that ||Φ′||∞ ≤ g∗ <∞ and σ > 0.

Definition C.1.1. Fix a bounded initial profile ρ0 : T → R. A measurable function
ρ : R+ × T → R is a weak solution of the Cauchy problem (C.1) if for every function
G : R+ × T→ R of class C1,2(R+ × T) with compact support

∞∫
0

dt

∫
T

du
{
ρ(t, u)∂tG+ Φ(ρ(t, u))σ∂2

uG
}

+

∫
T

duG(0, u)ρ0(u) = 0. (C.2)

It has been shown [29] that bounded weak solutions are uniformly Hölder continuous on
each compact subset of (0,∞)× T. This is an important tool to prove that there exists a
bounded weak solution of (C.2) for bounded initial profiles ρ0. It is possible to derive the
following even stronger result, which is used both in Subsection 4.2.4 and 4.3.5.

Theorem C.1.1 (Kipnis/Landim). Fix a bounded profile ρ0. There exists a unique weak
solution of the quasi-linear parabolic equation (C.2) that belongs to L2([0, T ]× T).

C.2. Illustrations of the Particle Density Evolution

In Figures C.1 to C.3 we give some more illustrations of solutions to hydrodynamic equation
for the RrEP (4.3). Note the similarity to solutions of the heat equation.

IX



C. Analysis of Partial Differential Equations

Figure C.1.: Solution to (4.3) with ρ0(x) = 1√
2π
e−

1
2

(
x− 1

2

)2

Figure C.2.: Solution to (4.3) with ρ0(x) = 2
5 − x(x− 1)

Figure C.3.: Solution to (4.3) with ρ0(x) = 1
4 + 1

4000 sin(10πx)
(
4x7 − 1000x3 + 81x2 + 20x

)
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