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A B S T R A C T

The demand on communication networks has increased over the past years and is pre-
dicted to continue for the foreseeable future [Cis16]. Cellular network access with a
compound annual growth rate (CAGR) of 53% is the main area of growth [Cis16]. This
affects the network quality, bringing current network technologies to their limits [Qua13].
Future network standards like 5G promise to satisfy this demand, providing a 1000-fold
increase in data rates and latencies as low as 1ms [Qua13].

With information and communications technology (ICT) causing 10% of the global en-
ergy consumption [Mil13], the increasing demand is also reflected in a growing energy
consumption of communication networks [BBD+11]. The major contributor to the net-
work power consumption are home gateways (HGWs) in the fixed access network, and
mobile base stations in the cellular network [VHD+11]. This trend is predicted to con-
tinue [BBD+11].

To assess and optimize the power consumption of communication networks, power
models of the involved devices are required. Using these, the efficiency of proposed op-
timization approaches can be assessed before deployment. A number of power models
of conventional network equipment for different device classes can be derived from lit-
erature. Still, models of new device classes such as single-board computers (SBCs) and
OpenFlow switches are not available. For each class, representative power models of sev-
eral device types are presented. Further, the power consumption caused by new commu-
nication protocols such as MultiPath TCP (MPTCP) is not fully analyzed yet. This work is,
to the best of the author’s knowledge, the first to publish SBC and OpenFlow power mod-
els and contributes to the understanding of MPTCP power consumption during constant
bit rate (CBR) streaming.

For the analysis of the power consumption, also the knowledge of network performance
is required, as it defines relative costs and the maximum number of supported users. This
is well known and comparatively simple in fixed networks, but more challenging in a
wireless context. A number of approaches are described in literature and implemented as
commercial software (e.g. [SSM13; OpS]), but the data required for analysis and optimiza-
tion is not available. Hence, extensive measurements of the cellular network are conducted
in this work. The location-based availability and performance of cellular and WiFi net-
works are assessed in a crowd-sensing study. Based on measurements on regional trains,
the predictability of the cellular service quality based only on available network technol-
ogy and latency is shown to be feasible. Anomalies observed within the crowd-sensing
data are analyzed using dedicated, stationary measurements. The main observation is
that network management decisions have significant effects on end-to-end performance.
By allocating users to random points of presence (PoPs)/exit gateways of the mobile net-
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work operator (MNO), the latency compared to the best observed allocation is increased
by more than 58% in over 80% of the time.

Combining the energy models and network performance measurements as presented
in this work, an energy evaluation environment is created to analyze the cost of mobile
data communication. This combines the empirically determined performance of cellular
and WiFi networks with the energy models of smartphones and traffic traces recorded
by the participants of a crowd-sensing study. Thereby, the power consumption of the
generated data patterns is established, and the effectiveness of network optimization ap-
proaches as presented in literature assessed. These prove to be less potent than originally
claimed by the authors. This is expected considering the improvements in cellular net-
works and smartphones. Nonetheless, energy savings are observed. Considering the re-
quirement of 5G networks to reduce latency to 1ms, and improve capacity by a factor
of 1000, while simultaneously reducing energy consumption, also changes in fixed access
networks are required. A promising approach assuming further virtualization of networks
using software defined networking (SDN) and network functions virtualization (NFV) is
the placement of services closer to the end-users. Extrapolating the trend of increasing
hardware capabilities of HGWs at almost constant cost, these may be used to provide
additional services to local users. This may be achieved by e.g. using virtualized content
distribution network (CDN) nodes running on HGWs, thus utilizing these often idle re-
sources. This further equalizes the traffic within the core network by providing content
locally and refreshing it during less traffic intensive periods. Simultaneously, the end-user
perceived service quality is expected to increase. Thus, installed capacities can be used
longer, resulting in better service quality at fixed energy cost.
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K U R Z FA S S U N G

Seit Bestehen des Internets wird jährlich ein stark ansteigendes Datenvolumen verze-
ichnet und es wird erwartet, dass der beobachtete Trend weiter anhält [Cis16]. Gerade
in Anbetracht des steigenden Bedarfs an hochauflösendem digitalen Videomaterial und
dem zu erwartenden Anstieg durch interaktive Virtual Reality (VR) Anwendungen, wird
der Bedarf an höheren Datenraten und niedrigeren Latenzen steigen. Besonders stark ist
das Wachstum in Mobilfunknetzen, für die ein jährlicher Anstieg des Datenverkehrs von
53% prognostiziert wird. Hier sollen Mobilfunknetze der fünften Generation (5G) Abhilfe
schaffen [Qua13]. Das Ziel ist es, eine 1000-fach höhere Datenrate bei Latenzen von 1ms
zu erreichen [Qua13].

Gleichzeitig steigt allerdings auch der Energiebedarf stationärer und mobiler weltweiter
Kommunikationsnetze [BBD+11]. Nach verschiedenen Schätzungen fallen aktuell bis zu
10% des elektrischen Energieverbrauchs zu Lasten von Informations- und Kommunika-
tionsinfrastruktur [Mil13]. In kabelgebundenen Netzen wird der Großteil des Energiebe-
darfs durch Heimrouter erzeugt, während in Mobilfunknetzen die Basisstationen die
größten Energiekosten erzeugen [VHD+11]. Auf Grund dieser beiden Entwicklungen
wird auch weiterhin ein steigender Energiekonsum erwartet.

Um die Kosten mobiler Kommunikation zu bestimmen und zu optimieren, werden
entsprechend Energiemodelle der beteiligten Geräte benötigt. Einige Modelle konven-
tioneller Netzwerkinfrastruktur sind bereits in entsprechender Fachliteratur veröffentlicht,
allerdings bestehen Lücken bezüglich neuartiger Geräte (Einplatinencomputer (SBCs))
und Datenflusssteuerungsverfahren (OpenFlow/SDN und MPTCP). Um auch diese in
zukünftigen Optimierungsverfahren berücksichtigen zu können, wurden exemplarisch
Energiemodelle für mehrere Geräte jeder Klasse erstellt und veröffentlicht.

Da allerdings der Energieverbrauch speziell mobiler Endgeräte stark von Durchsatz
und Latenz der verfügbaren Netzwerktechnologien abhängt, müssen auch diese zur Op-
timierung bekannt sein. Hier wurden bereits einige Ansätze vorgestellt (z.B. [SSM13;
OpS]), allerdings sind die zur Optimierung benötigten Daten nicht verfügbar. Entspre-
chend wurde eine Android App veröffentlicht, die in mehreren Studien eingesetzt wurde
um die Netzwerkqualität in verschiedenen Situationen zu ermitteln. Ziel hierbei war
eine Karte der verfügbaren Mobilfunk- und WLAN-Netze, ihrer Latenz und des max-
imalen Datendurchsatzes zu erstellen. Zusätzlich wurden auch Messungen in Region-
albahnen durchgeführt, um einzig basierend auf Netzwerkverfügbarkeit und Paketver-
lustrate die Nutzbarkeit des Netzes für verschiedene Szenarien vorherzusagen. In den
Studien beobachtete Unregelmäßigkeiten wurden mittels einer dedizierten, stationären
Messstudie analysiert, woraus abgeleitet wurde, dass die zufällige, aber für 36 Stunden
statische Zuordnung von Mobilgeräten zu bestimmten Standorten des Mobilfunkanbi-
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eters signifikanten Einfluss auf die Ende-zu-Ende Latenz hat. Hier wurden zwischen dem
mobilen Endgerät und einem dedizierten Messserver in über 80% der Fälle um mehr als
58% erhöhte Latenzen beobachtet. Ähnliche Ergebnisse wurden auch beim Zugriff auf
die zehn in Deutschland beliebtesten Internetseiten bestätigt.

Zur Ermittlung der Energiekosten mobiler Datenkommunikation wurde eine Evalua-
tionsumgebung erstellt, die basierend auf der gemessenen Netzverfügbarkeit und Qual-
ität in Kombination mit Energiemodellen verschiedener Smartphones und Aufnahmen
der Datennutzung mehrerer Smartphone-Nutzer den Energieverbrauch berechnet. Hier-
mit wurden zwei in der Literatur vorgestellte Optimierungsverfahren mit dem Energiever-
brauch des unmodifizierten Systems verglichen. Die resultierenden Energieeinsparungen
sind wesentlich niedriger als von den ursprünglichen Autoren angegeben, was allerdings
auf Grund der Weiterentwicklung der Mobilfunknetze und Smartphones zu erwarten ist.
Basierend auf weiteren gemessenen und in der Literatur veröffentlichten Energiemodellen
in Kombination mit den Anforderungen von 5G Netzen wird das Potential der Nutzung
von Heimroutern mit erweiterter Funktionalität (z.B. zum Vorhalten von Daten oder Opti-
mierung des Datenverkehrs) bezüglich Datendurchsatz und Energieverbrauch hergeleitet.
Da diese Geräte häufig nicht ausgelastet sind, und moderne Hardware kontinuierlich er-
höhte Ressourcen bei ähnlichem Energieverbrauch bietet, werden durch diese Optimierun-
gen Energieeinsparungen erwartet, da die Auslastung des dahinterliegenden Netzes aus-
geglichen und somit verfügbare Kapazitäten länger genutzt werden können.
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1
I N T R O D U C T I O N

The increasing availability of broadband Internet connectivity has heavily changed
the way we live. Data access has become ubiquitous. Almost unrestricted in time

and location, knowledge, communication, and entertainment are available within arm’s
reach. This has changed the way we work, travel, and communicate. Consequently, the
demand on both mobile and fixed networks has constantly increased over the past years,
and is predicted to further rise in the future [Cis16]. Over the next 15 years, an overall
yearly traffic growth of 21% is predicted, increasing the monthly transferred traffic from
currently 75 EB to approximately 195 EB per month in 2020. Out of this, currently 3.6 EB
is caused by mobile devices in both cellular and WiFi networks, showing a compound
annual growth rate (CAGR) of 53%. Thus, the cellular traffic is expected to grow to over
30 EB per month in the year 2020. This growth is caused by the rising popularity of
smartphones, changing usage patterns like the increasing use of bandwidth intensive
applications (e.g. video streaming), and increasing data volumes at constant cost. Similar
effects to the availability and price of artificial lighting [TW10] can be observed, in which
utilization increases while the price drops, keeping the overall cost stable.

These developments put a large burden on both fixed-line and wireless networks. A
possible solution is upgrading capacities, which is both costly and challenging. Upgrades
on wireless networks conventionally require only the replacement of a single base station
and perhaps an upgrade of the backhaul link. Nonetheless, throughput on wireless net-
works is strictly limited by spectrum availability. Reducing cell sizes improves frequency
reuse, thus increasing capacity. Still, when deploying more and smaller cells, these net-
work upgrades converge in cost and complexity with the upgrade of fixed-line networks,
where usually construction works are required to install or upgrade links, thus also in-
creasing the capital expenditure (CAPEX).

Increasing the number of base stations, and using higher modulation schemes is ex-
pected to increase the power consumption of the network due to additional hardware
and higher power required to achieve low bit error rates. Already 72% of the electricity
demand of a cellular network is consumed by base stations [CMo12]. Combined with the
large increase in demand for mobile data services, the total energy cost each network
operator has to bear is also expected to increase considerably. Furthermore, handling this
traffic in the backbone requires additional capacities, thereby also increasing energy con-
sumption and cooling requirements.

Similarly, on the mobile terminal side, energy issues arise. Smartphone capabilities like
CPU frequency, storage, screen resolution, and wireless data rates have improved consid-
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2 introduction

erably over the last years [CCD+14]. Although improvements in component power con-
sumption are made, the overall power draw of mobile devices has increased [CCD+14]. A
considerable fraction (31.2%) is caused by the various network interfaces, followed by the
screen and system on chip (SOC) [CDJ+15], resulting in average battery lifetimes of less
than a day. As mobile communication is becoming more and more common, its power
consumption is also expected to increase.

The rise of 5G with its increasing number of connection points, technologies, and com-
munication schemes [NGNM15] will further increase the power consumption of partici-
pating network devices. Although small cells require less power on both base-stations and
mobile terminals, their sheer number and deployment in support of the already existing
infrastructure will increase the overall power consumption. Further, advanced modulation
and coding schemes are expected to increase the power consumption of mobile devices
and base stations [CGB05].

Besides adding additional cells and access points, possible optimizations of network
energy efficiency include the use of software defined networking (SDN) and network
functions virtualization (NFV), increasing the flexibility of the network, thus allowing
for a more efficient use of available resources. Hence, traffic in the core network may be
reduced by serving content from local, decentralized content distribution network (CDN)
nodes, whose contents are refreshed during less traffic intensive periods. An example for
the application of NFV is the placement of performance enhancing proxies (PEPs) directly
on femto-cells or home gateways (HGWs), thus improving the performance of wireless
links by reducing unnecessary delays and retransmissions.

Summarizing, the increasing traffic results in a rising demand on networks to support
the requested data rates. This demand may be satisfied by upgrading capacities both at the
edge and in the core network. But increasing data rates also increases the resulting power
consumption [BBD+11]. In particular wireless network access causes the highest energy
cost, both on WiFi and cellular networks [VHD+11]. Due to economical and ecological
reasons, increases in power consumption should be reduced to a minimum, possibly even
reducing the energy demand of the network while still supporting the required data rates.
Hence, the focus of this work is the analysis of the performance and energy efficiency
of communication networks, with a special emphasis on wireless networks. In particular,
the goal is to analyze existing energy optimization approaches, and derive promising
approaches for future optimizations based on the obtained results.

1.1 research questions

A number of research questions are derived from the requirement of finding and optimiz-
ing the relation between energy cost and network performance. These questions arise in
three areas, corresponding to the estimation of power consumption of networked devices,



1.1 research questions 3

determining network performance required to accurately model the network, and the
analysis of possible energy savings when applying different traffic management schemes.

When considering the energy consumption of fixed infrastructure networks, usually the
nominal power consumption of connected devices is considered. Nevertheless, devices
are often idle or only lightly used. Hence, the following work focuses on idle consump-
tion, dynamic changes under load, and possible optimization approaches. A number of
studies are already available describing the power consumption of conventional network
infrastructure (e.g. [CTM+13]). Hence, the following work focuses on emerging network
management approaches and their influence on energy consumption.

A relatively new class of devices are single-board computers (SBCs) like the Rasp-
berry Pi and its successors. Due to their comparatively high processing power and easy
programmability, these often serve as gateways in home automation and monitoring
projects [PCK15] or are proposed to replace cloud servers [ZLH+16]. Research has been
conducted concerning their energy consumption, but results are either limited to a spe-
cific deployment (e.g. [ZLH+16]), or focused on the processor power consumption alone
(e.g. [LCB15]). Still, to estimate their power consumption under various conditions, gen-
eral power models are required. These power models are derived in this thesis. By using
ready to use system utilization values as basis, the power consumption of arbitrary ser-
vices can later be estimated using these system monitoring values only. Thus, the cost of
services as may later be deployed on HGWs can be derived.

In addition, core and access networks are becoming increasingly virtualized. Recent
studies analyze the performance and possible load management approaches of SDN. Still,
the consumption of these deployments, in particular when using advanced functionality,
is not fully known. Hence, the power consumption of a hardware and software OpenFlow
switch are analyzed in this thesis. Thereby, the cost of the additional functionality can be
estimated.

On smartphones, the demand for increasing data rates and uninterrupted connectivity
is rising. Here, the MultiPath TCP (MPTCP) serves as a means to ensure the continuity
of transport control protocol (TCP) connections in dynamically changing network envi-
ronments. Furthermore, by bundling connections on multiple interfaces, the link capacity
can be increased. Related work analyzes the power consumption of MPTCP for regular
downloads with maximum data rates (e.g. [LCN+14]). Contrary, this thesis focuses on the
use case of constant bit rate (CBR) streaming which is common in video conferencing and
live cloud gaming.

By filling these gaps, the power consumption of larger, virtualized network deploy-
ments can be analyzed, which was previously not possible using well-funded power mod-
els. Examples are the placement of virtualized CDN nodes on HGWs or the instantiation
of PEPs close to the end user. Using these models, the influence of service placement on
the energy consumption of smartphones and the network can be calculated, also includ-
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ing the cost of HGWs and SDN based traffic redirection. From these observations, the
following research questions are derived:

RQ 1.1 What is the energy cost of decentralized caching and computational
offloading using SBCs and how can it be determined?

RQ 1.2 How does the energy efficiency of hardware and software OpenFlow
switches compare and what are their respective benefits?

RQ 1.3 What is the energy cost of increasing reliability and throughput of
mobile communication using MPTCP for CBR streaming?

These research questions guide the analysis of the energy consumption of the respective
device classes and traffic management approaches as described in Chapter 4.

The energy consumption of mobile devices depends, besides the available network in-
terfaces and modems, on the cellular network performance. This influences the duration
an interface needs to be active and thus its power states and their duration. Still, cellular
network performance is often communicated in peak data rates. However, large differ-
ences in throughput, latency, and packet loss can be observed when accessing the cellular
network from a mobile device.

A number of studies exist, analyzing the performance of cellular networks under var-
ious conditions. Still, their data is generally limited to specific locations or routes. Fur-
thermore, the data sets required to analyze cellular performance are often not available.
Hence, using a crowd-sensing study, the key performance indicators (KPIs) of both WiFi
and cellular networks, annotated with locations and timestamp are measured. Thus, the
performance of different network types can be compared at the same location, and the
relations between different parameters can be evaluated.

The crowd-sensing measurements detailing the wireless network performance in an
urban area allow the estimation of cellular network performance for pedestrians and mo-
bile data access on buses and trams. Additionally, users desire access to mobile data on
trains, in particular when commuting. There, network access is expected to differ consider-
ably due to higher velocity, frequent handover, and less developed network infrastructure.
Hence, a detailed analysis of cellular network access on trains is conducted, with the goal
of deriving differences from urban data access. Of particular interest is the predictability
of network access to communicate the estimated network performance to the user, and
later automatically optimize network access based on this.

Due to the increasing performance of networks, also previously unknown effects be-
come visible in the collected data. Examples are varying latencies for a fixed location, cell,
and signal strength. Hence, a detailed analysis of these effects using dedicated measure-
ments is conducted in this thesis.

The cellular service quality is thus determined for different scenarios. Knowing the
latency and throughput of a network, also the power consumption of smartphones can
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be derived using device-specific power models. The main focus of the conducted studies
is the analysis of the real-world, end-to-end performance of deployed cellular networks
for different network technologies, and their implications on the quality of service (QoS).
The following research questions guide the subsequent analysis:

RQ 2.1 What are the parameters affecting cellular service quality and user-
perceived network performance when being mobile?

RQ 2.2 How does cellular network access on trains differ from general mobile
network access, and how can the network performance be predicted?

RQ 2.3 What is the influence of network structure and management on end-
user perceived network performance?

These research questions guide the analysis of the wireless network performance as dis-
cussed in Chapter 5.

By combining the energy models with the actual network performance, the power
consumption under a given load can be estimated. Related work presents a number of
energy optimization approaches focused on improving the battery life of smartphones
(e.g. [HQM+12]). Still, these publications compare the achieved performance against an
undisclosed ’status quo’. Hence, an energy evaluation environment is developed to com-
pare their energy savings under comparable network conditions and devices. Thus, for the
first time, a comparison of the energy saving potential of these optimization approaches is
possible. The goal of this approach is to derive promising approaches to increase energy
savings in modern wireless networks.

Similarly, the estimation of power consumption and energy savings of fixed communi-
cation networks is possible. Based on general observations derived from the power and
network performance measurements, recommendations on further promising research in
the direction of 5G networks are derived and discussed. The guiding research questions
in this context are:

RQ 3.1 What is the energy cost of mobile communication for a regular smart-
phone user, and how is this affected by smartphone-based energy con-
servation approaches?

RQ 3.2 What is the potential of emerging network technologies on network in-
frastructure and mobile devices considering performance and energy
consumption?

These questions guide the analysis of the combined network performance and energy
consumption in Chapter 6.

Knowing both the performance and energy consumption of network devices participat-
ing in data transfers, the overall power consumption of each interaction can be determined.
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Using this combined knowledge, existing and future network optimization approaches
can be analyzed and their impact on end-user perceived network performance and energy
consumption in different network domains can be derived. Thus, the increasing traffic de-
mand in communication networks on overall power consumption can be assessed, and
possibly reduced.

1.2 contributions

The contributions of this work are threefold. First, energy models for exemplary devices
in different network domains are generated. Secondly, realistic measurements and models
estimating the performance of cellular networks are derived. Thirdly, the power models
and network performance measurements are combined to assess the energy savings of op-
timization approaches as described in literature. Furthermore, general recommendations
on promising areas for future research reducing the energy consumption of communica-
tion networks are derived.

First, energy models for exemplary devices representing different device classes are
generated. The analyzed classes are smartphones, SBCs as example of an augmented
HGW, and OpenFlow switches. For each of these classes two or more exemplary devices
are selected, for which the power measurement and modeling procedure is detailed and
the resulting models are presented. Since one goal of this work is to show the feasibility
of fine-granular power model generation, suitable models of the power consumption de-
pending on system utilization are derived. The resulting SBC power models are the first
ready to use power models of these devices, working on readily available system monitor-
ing values only. Similarly, the published OpenFlow power models are the first to focus on
the impact of OpenFlow rules on energy consumption. The MPTCP CBR streaming mea-
surements analyze the effect of load-balancing on the power consumption of bandwidth
intensive real-time applications like video streaming or live cloud gaming.

To properly model the power consumption of smartphones under real-world condi-
tions, the knowledge of network latency and throughput is required, as it considerably
influences the active time of the wireless interfaces. Hence, the second main contribution
of this thesis is the analysis of cellular and WiFi network performance. Detailed mea-
surements of the mobile network performance are conducted, using a range of different
measurement techniques. From these, models of the network availability and performance
are derived. User-focused studies are run on Android smartphones and are augmented
with dedicated studies focusing on particular effects detected in the crowd-sensing stud-
ies. The obtained results show the implications of the previously unknown influence of
network management in the surveyed network on end-to-end latency. Increases of 58%
are observed in 80% of the time, which would be mitigated by relatively simple changes
in network management.
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Combining the power models of network entities with the detailed knowledge of mobile
network performance, the power consumption of mobile devices is modeled for realistic
usage scenarios. Based on these, the effectiveness of different smartphone-based energy
optimization approaches derived from literature is compared. The accuracy and validity
of these studies is maximized by using recorded, geo-tagged traffic traces. The analyzed
approaches show considerably smaller energy savings than originally claimed by the au-
thors, which is expected considering the improvements in network infrastructure and
smartphones. To the best of the author’s knowledge, this thesis is the first work compar-
ing different smartphone-based energy optimization approaches based on a unified data
set. Based on the general observations of network performance and energy consumption,
suggestions on improving the energy efficiency in future networks are derived. Due to
the currently mainly static power consumption of network infrastructure, the promising
approaches derived are improving network utilization by using SDN and NFV features.
Therefore, extended HGWs may be used to serve content to end-users, thus simultane-
ously improving performance.

1.3 thesis organization

Based on the motivation, identified research questions, and outlined contributions, the
remainder of this thesis is structured as follows.

Chapter 2 introduces background knowledge required to understand the network per-
formance and power measurements. Namely, this chapter defines the terminology
used throughout the work, summarizes network structures, introduces the basics of
network virtualization, and recaps the foundations of power measurements.

Chapter 3 gives an overview of related work in the areas of power modeling and per-
formance measurement of communication infrastructure. Furthermore, approaches
optimizing the energy efficiency of mobile network access are surveyed, with the
goal of identifying promising approaches for comparison and further optimization.

Chapter 4 presents the work conducted in the area of network power measurement and
modeling. This chapter describes and discusses power measurements for a variety
of SBCs, different smartphones, and OpenFlow switches. For each of these, power
models describing the energy consumption depending on device state and utiliza-
tion are presented.

Chapter 5 discusses the measurement and modeling of the cellular network performance
and its implications on mobile clients. Measurements cover passive signal strength
monitoring as well as active network probing in a crowd-sensing based manner.
Round-trip time (RTT) and throughput measurements are conducted, thus deriving
maps of location dependent network performance. Based on stationary reference
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measurements, the influence of network management on the end-to-end QoS is de-
termined.

Chapter 6 combines the power models discussed in Chapter 4 with the observations of
network performance in Chapter 5. These are combined with recorded user traces
containing geo-tagged network utilization. Thus, realistic power consumption val-
ues of mobile devices are derived. Different power saving approaches as discussed
in literature are compared to derive implications on optimal traffic management
strategies within the network and on mobile devices. Furthermore, the implications
of energy consumption and network management approaches on future networks
are discussed.

Chapter 7 summarizes the derived results concerning network power consumption, per-
formance of communication networks, and possible optimizations combining the
observations from both areas. Based on these results, conclusions on improving the
energy efficiency of communication networks are drawn and promising areas for
future research identified.



2
B A C K G R O U N D

Accurate measurements of the cellular network performance and power consump-
tion require knowledge of the underlying network structure and a general under-

standing of the applied network management approaches. Hence, the following chap-
ter introduces these concepts, thus building a common foundation on which the subse-
quent studies of network performance are built. Besides describing network management
approaches also the power measurement of information and communications technol-
ogy (ICT) is discussed, and the respective requirements for the power measurements
reported in this work derived.

This chapter gives an overview of common network topologies of cellular and fixed
communication networks, and their interconnection in Section 2.1. The goal is to provide
a common understanding of these topologies to discuss their implications on network
performance in Chapter 5 and Chapter 6. Section 2.2 introduces emerging traffic manage-
ment techniques as analyzed in Section 4.2, Section 4.3, and Section 6.2. Finally, Section 2.3
describes the fundamentals of power measurements with a focus on computing and net-
work devices, thus giving further background on Chapter 4. The scope of this is chapter
purposely limited to the level of detail required to assess the network performance and
its energy consumption, thus omitting non-essential information to improve clarity.

2.1 structure and properties of communication networks

Commonly, contemporary communication network consist of an access and aggregation
layer, the core network, and the interconnection to Internet exchange points (IXPs) or
Tier 1 Internet service providers (ISPs). The general structure for mobile network access
is shown in Figure 2.1 for general mobile users. These may connect to a cellular network
only, be roaming between cellular and WiFi networks, or use WiFi networks only. The ISPs
then connect to either IXPs or Tier 1 ISPs to provide connectivity to other networks. The
cellular network providers are also often called mobile network operator (MNO). When a
MNO sells its services to a virtual network provider it is called a mobile virtual network
operator (MVNO).

The general structure of these networks forms a tree in the access domain. Only within
the backbone of the ISP networks and in the core, redundancy is present, thus resulting in
a mesh structure. This improves reliability and increases bandwidth by providing multiple
paths to route traffic.

9
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Figure 2.1: Structure of combined fixed/wireless and cellular network access

The exact definition of participating parties, their dependencies and differentiation are
thus defined for the remainder of this work as follows:

Internet service provider (ISP) describes a company providing fixed/wired or wire-
less network access. This may include serving end users, companies, or other ISPs
in the case of Tier 1 ISPs.

Mobile network operator (MNO) describes the company operating the cellular net-
work. Usually the MNO has its own customers, but often also sells spare capacity
to MVNOs.

Mobile virtual network operator (MVNO) describes a re-seller of a MNO’s services.
Usually MVNOs do not operate their own network. In rare cases they operate their
own network management systems, but generally rely on services provided by the
MNO [VSK15].

Tier 1 ISP describes an ISP providing worldwide connectivity to a large number of net-
works. Per definition, all networks must be reachable via a Tier 1 ISP.

Internet exchange point (IXP) provides OSI layer 2 connectivity to ISPs to exchange
traffic with others at the same location. Thus, traffic may be exchanged at terms
negotiated between peers, but eliminating the requirement of building dedicated
links to the other party.

Transit provider defines a service provider connecting different independent networks.
This includes both IXPs and Tier 1 ISPs.
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Each network can be divided into different network domains, showing different proper-
ties and functionality. The individual network domains, their definition and demarcation
are defined in the following.

Radio access network (RAN) describes the wireless domain of the cellular network be-
tween user equipment (UE), also called terminal or mobile device, and the 3G base
station (NodeB) or eNodeB (eNB) in 4G networks.

Cellular backbone describes the part of the MNO’s wired network connecting base
stations, NodeB, or eNBs to the external networks. This also includes any network
functions (NFs) used to manage traffic within the network.

Cellular network describes a wireless network using dedicated licensed spectrum man-
aged solely by a single entity within a geographical region. Cellular network as
used throughout this work comprises both the wireless domain (radio access net-
work (RAN))as well as the cellular backbone, if not stated otherwise.

Internet backbone describes the part of the network connecting different operator’s
networks. In the simplest case this might be an IXP, while in other cases multiple
IXPs and transit providers are involved.

Wireless network describes any wireless technology used to receive or transmit data to
and from the Internet. Wireless networks comprise of WiFi and cellular networks,
but exclude Bluetooth or near field communication (NFC), as these are mainly used
for local, device-to-device communication as opposed to worldwide connectivity.

To simplify referring to specific types of network access, these are defined in the follow-
ing. Network technology is used to refer to the aggregation of different network gener-
ations as used in the cellular network, while network types distinguish between cellular
and WiFi access. Hence, these are defined as:

Network technology describes the different network generations as defined by the 3rd
Generation Partnership Project (3GPP) for cellular data access. Generally, only the
differences between network generations are considered, as these include changes in
network management and structure, while differences within a network generation
are mainly restricted to bandwidth upgrades using higher modulation schemes.

Network type distinguishes between cellular network access and wireless network ac-
cess using WiFi networks.

Details on the structure of these networks are discussed in the following. Section 2.1.2
discusses the structure of fixed network access, while Section 2.1.3 describes the structure
of a cellular network and their implications on network measurements.
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2.1.1 Types of Network Access

In the following, possible methods of network access as used throughout this work are de-
fined. The different options depend on the used device, but also the context. For example,
using a laptop from a café, network access would classified as nomadic. Contrary, using
a smartphone on public transport would be classified mobile.

Mobile network access describes Internet access from mobile end-user devices attached
to a packet based communication network using wireless network technologies like
WiFi or cellular networks. Mobile network access particularly includes moving de-
vices, thus also handover within and between networks are considered.

Nomadic network access describes quasi stationary network access using devices fre-
quently connected to different networks using various technologies. These range
from Ethernet over WiFi to cellular networks. Contrary to mobile network access,
nomadic network access describes the use of online resources from a stationary lo-
cation.

For mobile or nomadic data access, different network types may be used. These range
from wired network access as used for laptops and HGWs to wireless network access
including WiFi and cellular networks as is common on smartphones. The resulting defini-
tions are:

Fixed/wired network access describes Internet access of networked devices using digital
subscriber line (DSL) or any other wire-based or optical methods to access remote
servers. Devices may be conventional PCs, laptops using the Ethernet interface, or
Internet of things (IoT) devices connected via Ethernet.

Cellular network access describes the access to data networks using the cellular net-
work via a MNO or MVNO. This includes all available network technologies as
defined by the 3GPP and excludes WiFi access or any other decentrally organized
wireless network infrastructure.

WiFi access denotes access to the Internet using WiFi networks only. These include pub-
lic and private access points (APs).

Wireless network access describes access to the Internet using any wireless network
technology. This includes both WiFi and the cellular network. Applicable scenarios
are mobile and nomadic network access.

Heterogeneous networks cause a number of challenges when using smartphones with
multiple network interfaces. These are mainly vertical handover between different net-
work types and multihoming when using two different connections simultaneously. These
are defined as:
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Figure 2.2: Structure of a fixed network provider

Vertical handover describes the handover of a mobile connection between different
wireless technologies. A vertical handover may occur between a cellular network
and a WiFi network when a user enters the coverage of the home WiFi network or
vice versa.

Multihoming describes mobile clients simultaneously connected to multiple networks.
In the case of mobile handsets these commonly are different network types like WiFi
and cellular networks. In other cases multiple cellular networks or WiFi networks
may be used to provide uninterrupted network access while being mobile.

A vertical handover currently involves breaking of all existing connections, attaching
to a completely separate network, and reestablishing connections after being reattached.
Multihoming involves the same problem that networks are completely separate. This can
be mitigated using MPTCP, keeping TCP connections between endpoints active while
renewing the underlying TCP subflows. Additional details on MPTCP are given in Sec-
tion 2.2.1.

2.1.2 Structure of Fixed Access Networks

Fixed access networks are the technology bearing the highest traffic [Cis16]. Different
access technologies exist, with their own strength and weaknesses. Figure 2.2 gives an
overview of the structure of a fixed network ISP. Generally, the access domain forms a star
topology with only one link between the HGW and the aggregation switch or broadband
remote access server (BRAS) in case of DSL access. The core network is usually built in a
redundant manner. Also the uplink to IXPs or Tier 1 ISPs is usually redundant.

DSL, VDSL, and Vectoring provide a dedicated link to each endpoint. Data rates up
to 100Mbps are available, depending on location and distance to the closest DSL access
multiplexer (DSLAM). Thus, no influence of neighboring users on the link bandwidth is
expected. In this work, the general term DSL refers to the different available standards
using twisted pair copper links to the end-user premises.
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Cable-based network access provides theoretically higher bandwidths (e.g. 300Mbps),
but is a shared medium. Thus, high load on another link within the same shared domain
is expected to reduce available throughput. Hence, these links show a high variability of
available bandwidth over the course of the day.

An emerging technology, providing high link capacities to end users are passive optical
networks (PONs). Here, an optical fiber is provided up to the end-user premises. Thus,
dedicated bandwidth is available. Rates of >100Mbps are offered. These are generally
limited by the hardware deployed on end-user premises and at the ISP, but may also be
throttled by the ISP for service differentiation and to not overload the backbone. Mutual
influence on available bandwidth is minimized, also compared to DSL, where electromag-
netic interference may limit the capacity of neighboring links.

This work considers the fixed access network as a data pipe for end-to-end connections.
Hence, the peculiarities of fixed access networks are generally not of importance as long
as the network performance is not affected. The main aspect of interest is the connection
point to other networks, thus defining the possible shortest routes to the remote server. In
the case a particular effect is of importance, it is mentioned in the respective section.

2.1.3 Structure of Cellular Networks

As more and more mobile content is requested through the cellular network, more de-
tailed knowledge of their infrastructure is required. Figure 2.3 shows the structure of
combined 3G/4G networks using an evolved packet core (EPC). The figure limits the
shown elements to packet based connectivity, thus omitting the circuit switched part of
the network required for telephone calls within the 3G network. Furthermore, the net-
work management functionality is abstracted into functional blocks regarding user man-
agement, accounting, and billing.

Generally, the network consists of the 4G RAN comprising of eNBs. These provide
cellular network coverage to the end users. The eNBs connect via the backhaul network
to the serving gateway (SGW), serving as the mobility anchor for mobile devices.

The 4G RAN is provided by the eNBs. These manage power allocation and scheduling
of the long term evolution (LTE) resource blocks (RBs), thus defining which device may
send and receive traffic in which time-frequency slots. Further, RB allocation between adja-
cent cells and between the macro and pico/femto cells is coordinated in the case the same
frequency is used. For each mobile device, the physical and radio link layer parameters
are defined, thus minimizing interference within the cell. Also handover between neigh-
boring cells are handled by direct communication between eNBs via a direct interface.
Thus the state of the mobile device, but also traffic in transmission queues can directly be
transferred to the next base station, thus reducing overhead in the backhaul network.

The NodeBs, as the base stations in the 3G network are called, extend the functionality
of the base transceiver station (BTS) as found in 2G networks. Their main improvement are
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Figure 2.3: Structure of a packet switched 3G/4G network

the support of packet data transmissions, where in 2G only dedicated circuits are allocated
to mobile devices requesting to transfer data. Still, the network control is conducted by
the radio network controller (RNC), a centralized instance. This adds an additional hop
into the connection.

The eNBs and RNCs connect to the SGW as part of the EPC, providing the cellular
network specific functionality and control connectivity of mobile devices and manage
traffic accordingly. The SGW connects to the packet gateway (PGW). The PGW enforces
network access restrictions and serves as gateway to other IP-based services. The PGW
is the first IP hop in the cellular network as seen from the mobile device. It connects the
cellular network domain to the general IP services provided by the operator.

These operator services consist of NFs providing traffic shaping, Proxies, NAT, firewall,
and any other functionality required to operate the network. For example performance en-
hancing proxies (PEPs) splits TCP connections between the mobile device and the remote
server. Main functionality is to provide a cache of unacknowledged packets, thus reducing
retransmission delays. This is particularly important in the cellular network, as latencies
are comparably high. Thus, packets lost within the cellular network are retransmitted by
the PEP, reducing the latency between request and response. Furthermore, the PEPs tune
the TCP characteristics according to the underlying network parameters, e.g. adapting the
number of packets in flight. Thereby the different retransmission methods in cellular net-
works can optimally be balanced. The problem here is that both the wireless domain and
TCP provide reliability mechanisms. For example LTE automatically retransmits unack-
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(a) 3G state machine (b) 4G state machine

Figure 2.4: Comparison of 3G and 4G connection state machines (derived from 3GPP TS
25.331 [3GPP04])

nowledged packets after 8ms (hybrid automatic repeat request (HARQ) retransmission).
This may cause out-of-order delivery or duplicate reception of packets at the remote side.
This reduces the receive window size as announced by TCP to the remote, thus reducing
maximum throughput. If a packet is lost, the TCP connection switches to recovery mode,
also reducing the bandwidth. By splitting the TCP connection, the PEP can avoid these
negative impacts. Still, if the remote server is not available, the client still receives an ACK
message, but the handshake fails, thus causing a timeout on the local device.

Further functionality inserted are traffic shaping and QoS management. This ensures
that fairness between users is guaranteed, and high priority services are handled accord-
ingly. Additionally, hypertext transfer protocol (HTTP) proxies and caches may be placed
here, serving content from within the network, thus increasing throughput while reducing
latency and external traffic cost.

Finally, the network address translation (NAT) server or exit gateway translates the in-
ternal, private IP addresses to public addresses. This serves both to protect the user from
unwanted external traffic, and reduces the number of public IPv4 addresses required
to support the network. The blocking of external traffic is beneficial to the mobile user,
as these cannot be billed for externally initiated data transfers. Furthermore, the energy
consumption of the mobile terminal is reduced by not waking the device up unnecessar-
ily. For the operator, this is advantageous, as it prevents reconnaissance of the internal
network. Still, this introduces additional complexity for mobile devices to be notified by
cloud servers. Therefore, these must initiate a TCP connection with long TCP timeouts
to a remote server. The NAT is furthermore still required, as Internet protocol version
6 (IPv6) is not fully rolled out yet.

Important for network performance, but also energy efficiency are the supported data
rates by each network technology. These vary also within network technologies. Gen-
erally, the wireless interface is defined by the 3GPP RAN technical specification group
(TSG). Each standard defines traffic classes which may be supported by hardware ven-
dors. On connection, and based on received signal strengths, the appropriate modulation
and possible channel aggregation are selected.
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Besides the available data rates, also the connection states and timeouts specified for
each technology are important. The connection states are defined by a state machine on
both client and network side, while the timeouts are operator configurable. Hence, the
messaging overhead within the core network, and thus the load on the management en-
tities can be balanced with the energy consumption of end-user devices. The respective
state machines are shown in Figure 2.4. The connection states in a 3G network consist of
the idle state, dedicated channel (DCH), fast access channel (FACH), and paging chan-
nel (PCH). When data is to be transmitted by the mobile device, a DCH is opened. After
no data is transferred for a configurable duration, the device may enter FACH. From this
state, the DCH can be opened with minimal delay. Still, also the device power consump-
tion is high, as the device may need to wake up within a short time to receive additional
incoming data. A more power saving option is the PCH, which may be reached either via
the FACH or directly from the DCH depending on operator configuration. This is used to
be notified of further data by the network in an energy efficient manner. Changing back
to idle mode is only possible via the FACH.

The 4G connection states are simplified compared to 3G. When the mobile device is
in idle mode, only the PCH is monitored. The detailed behavior is defined in [3GPP14;
3GPP16]. This reduces the energy consumption by waking the modem only up at specific
times as defined by the MNO. By omitting these idle states as used in 3G networks, the
messaging overhead in the backbone is reduced. Further, keeping track of the various
device states and synchronizing the state machines is simplified. This further improves
agility between active and idle periods. Only thus the latency requirements of 4G net-
works are possible.

2.1.4 Network Performance Metrics

The performance of communication networks can be measured using a number of dif-
ferent metrics. These KPIs of cellular network performance are defined in the following.
Beginning at the lowest layer of wireless networks, the signal strength is the first indicator
for its availability.

If the network is available, latency and round-trip time (RTT) are the simplest metrics
to describe network quality. The latency describes the one-way delay between sending
a packet and its reception at the destination. As this is impractical to measure due to
different clocks, their jitter and drift, usually the RTT is measured. The RTT describes the
time it takes for the packet to reach the destination, be processed, a response is created,
and received by the source of the original packet. The RTT always describes end-to-end
measurements. Depending on the service being tested, the RTT includes different network
layers. An Internet control message protocol (ICMP) ping message is directly processed
in the remote network stack, while for example HTTP RTTs are generally served from an
application residing in user space.
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Using ICMP packets with limited lifetime, ICMP time exceeded errors are returned to
the originating host. By evaluating the sender IP and the RTT, routes through the network
can be mapped. This is implemented in the various traceroute measurement tools. Often,
these also resolve the IP address, thus simplifying network mapping.

The throughput in the following defines the maximum data transfer capacity between
two hosts in one direction. This may be measured using TCP or UDP transfers. A number
of different tools for the throughput measurement are described in [PMD+03]. These are
also compared in detail in Section 3.2.2.

These objective network metrics or KPI are summarized under the term QoS, describing
the requirements of a given service. These may define thresholds above which a service
is expected to work. Quality of experience (QoE) extends QoS to also include the end
user by analyzing the subjective service quality. This is usually done in crowd-sourcing
studies, polling a large number of participants to rate the quality of a service on a scale
of one to five. These ratings are then used to optimize the delivered quality and map
the requirements back to QoS classes. The cellular service quality as used in this work
refers to the overall quality of cellular service including signal strength, available network
technologies, RTT, packet loss, and throughput, thus being similar to QoS, but not limited
to a particular service.

The definitions of the derived network performance metrics are given in the following:

Signal strength describes the received signal strength of wireless network beacons at a
mobile device. These are in the case of 3G networks given as received signal strength
indicator (RSSI) in arbitrary strength unit (ASU), which can be converted to received
signal power as defined in [3GPP08]. In the case of LTE this is given in reference
signal received power (RSRP), indicating the received reference signal power relative
to the overall received power in the respective band, which may also be converted
to ASU.

Latency describes the time required to a packet sent by the source to reach its destination.
Depending on the type of packet (e.g. ICMP/TCP) the network layer triggering the
packet may differ, and thus also the measured duration.

Round trip time (RTT) describes the time the response for a packet sent by the source
and triggering a reply on the destination to be received by the source. The RTT
includes the latency on both directions plus the processing time of the destination.

Throughput in this work describes the one-way application layer goodput of an end-to-
end connection, if not otherwise stated.

Quality of Service (QoS) describes the nominal service parameters as can be measured
from an end-user device. These include network availability, available network tech-
nology, signal strength, RTT, and throughput.
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Quality of Experience (QoE) describes the subjective service quality as experienced by
the end-user. As the systematic assessment of the user-perceived service quality was
not focus of the thesis, quality of experience (QoE) is used as an abstract concept,
highlighting the impact of network behavior and management decisions on the end
user.

Cellular service quality describes the end-to-end network performance as experienced
by the end-user. In the context of this thesis it is used as an abstract concept, includ-
ing QoS and to a certain extent also QoE by respecting the energy consumption
of the device. Furthermore, the cellular network related parameters signal strength,
available network technology and packet loss are included.

2.2 emerging networking approaches

Over the past years, a number of network virtualization approaches have emerged. These
range from optimizations of end-to-end performance (MPTCP) to virtualization of net-
works. The main goal of the virtualization solutions is increasing the flexibility of network
functionality by abstracting network functionality from control logic. Thus, the control of
the network can be centralized, while the underlying network substrate may be kept pro-
prietary, with the limitation of implementing a standardized application programming
interface (API) for the controller to modify functionality. The main areas of development
are SDN, separating the data and control plane, and NFV, virtualizing extended network
functionality like proxies which were previously deployed as hardware devices.

In the following, the fundamental operation of MPTCP is discussed in Section 2.2.1,
while SDN and NFV are discussed in Section 2.2.2 and Section 2.2.3 respectively.

2.2.1 Multipath TCP

Multihoming is made possible using MPTCP. The concept is to split TCP connections as
provided by the kernel to user space applications to multiple underlying subflows using
different interfaces. This was first introduced by Barré et al. [BPB11] to improve through-
put between two servers using multiple parallel network links. MPTCP also improves the
reliability of connections by automatically reestablishing lost connections.

Figure 2.5 shows an exemplary application of MPTCP between two hosts using multiple
interfaces. The application connects to a TCP socket provided by the kernel. The MPTCP
control logic coordinates communication with the remote via TCP subflows. First, the
feasibility of using MPTCP is tested during the handshake by adding the MPTCP options
in the TCP options fields. If the handshake is successful, the first TCP subflow is used
to establish additional flows. These subflows may either be established between the same
interfaces (e.g. same IP, different port), or other interfaces at the same host. The current
default behavior is to wait for additional configurations. An option is to establish a full
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Figure 2.5: Overview of the MPTCP between two hosts

mesh between all available interfaces, thus maximizing the available throughput. This is
visualized in Figure 2.5 when including the dashed links.

The scheduling of packets between both interfaces is managed by the scheduler. The
default option is to use the interface with lower RTT until the congestion window is
full, then adding interfaces in order of increasing RTT. Other options are the round-robin
scheduler, randomly distributing packets on the available interfaces, and the redundant
scheduler, sending all packets on all interfaces, thus achieving the minimum RTT while
preventing outages caused by failed links.

2.2.2 Software Defined Networks

Software defined networking describes the approach of separating the control and data
planes of communication networks. Where in the past both functions were integrated in
one device (e.g. switches/routers being configured by the administrator to work indepen-
dently), SDN defines switches as simple devices for execution of the network management
decisions configured in a central controller. A general comparison of both approaches is
shown in Figure 2.6.

One of the most prominent implementations of SDN is OpenFlow. The overall concept
and a first implementation are introduced in a paper by McKeown et al. in 2008 [MAB+08].
Based on this concept, the OpenFlow switch specification [HPT+09] was published. This
specification defines the required interface between switch and controller, as well as the
matches, counters, and actions that must be supported by the switch.

Packet matching is based on the packet header of each packet. Depending on the pro-
tocol, the fields applicable for matching a packet may consist of Ethernet addresses and
protocol only, in case of IP packets, source and destination IP addresses, and in the case of
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Figure 2.6: Comparison of conventional and OpenFlow architecture

TCP, UDP, or ICMP, also the source and destination ports. Further matches may include
the ingress port, as well as the protocol types for higher layer matches.

For each rule, counter fields are defined, later used by the controller to collect traffic
statistics. These are kept on port, rule, and flow-table level, thus allowing to later assess
the amount of packets handled by each rule.

Finally, the OpenFlow protocol specifies actions to be applied to each packet. The ac-
tions to be applied may be empty, a single action, or a list of actions. These may be
sending the packet out at a specific egress port, rewriting header data, or discarding the
packet. In case no rule matching the incoming packet is installed, the respective packet
is forwarded to the controller. This then examines the packet to handle it accordingly.
Thus, the controller may install additional flow rules on the respective switches to handle
further packets of the affected flow.

The switches are configured to connect to a central OpenFlow controller to receive their
configuration. This is based on a transport layer security (TLS) connection, thus ensuring
integrity of the messages and authenticity of the remote machine. The exchanged mes-
sages consist of periodic heartbeats, and the required configuration and data collection
messaged. Their details are described in the respective OpenFlow switch specifications as
may be found on the Open Networking Foundations website1.

2.2.3 Network Functions Virtualization

NFV describes the virtualization of formerly hard-wired NFs like proxies or firewalls.
These are usually inserted into a link, configured once, and left there to handle the incom-
ing traffic accordingly. This comparatively static behavior causes a number of problems.
First, their location in a chain of NFs is static, and cannot easily be changed. Secondly,
their capacity is defined by the hardware of the respective device. Thirdly, their func-
tionality and configuration interfaces are defined by the vendor of the device, and thus

1 https://www.opennetworking.org/ accessed 2017-03-09

https://www.opennetworking.org/
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may be limited and different between similar devices available from other vendors. These
problems are to be solved by NFV.

By running virtual network functions (VNFs) on commercial off-the-shelf (COTS) hard-
ware, capacities may easily be upgraded, and adapted to the current demand. Further, the
’wiring’ becomes more flexible, by allowing the network operator to create virtual chains
of VNFs depending on the traffic requirements. Specific functions can be overridden, or
adapted according to the requirements of a given flow. Thus, the efficiency of the deploy-
ment can be further improved. Finally, VNFs of different vendors may be used as long as
their interface is standardized. Thus, the implementation optimally fitting the available
hardware may be selected, maximizing performance while minimizing overhead.

NFV can be seen complementary to SDN, where SDN defines the path of the traffic
through a network, while NFV defines more complex operations to be performed on the
processed traffic. These functions may include PEPs as used to improve TCP performance
in wireless networks, load balancers, firewalls, or similar.

The concept of NFV was introduced by a number of network operators in [NFV12].
The standardization of NFV is promoted by the ETSI Industry Specification group for
Network Functions Virtualization (ETSI ISG NFV)2.

2.3 energy in communication networks

The energy cost of communication networks is an increasingly important topic. Hence,
the following sections give an overview of metrics involved in describing the network
energy cost and background on measuring power consumption.

First, the different energy metrics in networked systems are summarized in Section 2.3.1.
The fundamentals of power measurements are shortly summarized in Section 2.3.2, thus
providing the required background for understanding the power measurements as de-
scribed in Chapter 4.

2.3.1 Energy Metrics in Networked Systems

The overall energy required by ICT may be classified in the energy contained within de-
vices, the emergy and the energy transformed to heat during operation, the energy. The
emergy is the energy required to produce the given product, and contains the full energy
consumed during manufacturing and transport of the respective device. Contrary, the
energy is consumed during operation, and depends on durability of the device, operat-
ing cycles, and load. Hence, when discussing energy requirements of networks, a clear
definition on the scope is required.

Raghavan et al. [RM11] analyze the energy and emergy in ICT. Particularly power hun-
gry, compared to the embedded energy, is communication infrastructure like switches,

2 https://www.sdxcentral.com/nfv/definitions/etsi-isg-nfv/ accessed 2017-03-09

https://www.sdxcentral.com/nfv/definitions/etsi-isg-nfv/
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routers, cellular base stations, and the cloud. Comparatively frugal in daily use are smart-
phones. Still, their production requires 30 times the energy they consume during opera-
tion [RM11]. Here, optimal trade-offs must be found, considering that ICT is estimated to
already use 10% of the global energy consumption [Mil13].

The energy consumption of networked systems can be determined in different ways. By
estimating the number of deployed devices, and representative power consumption values
for each, the overall power consumption of a deployment may be estimated in a bottom-
up approach. The opposite, the top-down approach, bases the estimates on the overall
produced electricity and uses the power consumption of industrial branches to estimate
the network power consumption. Each approach has different challenges. The bottom-
up approach is inaccurate as the deployed number of devices can only be estimated.
Furthermore, the energy consumption for each device class can only roughly be estimated.
The top-down approach must find ways to exclude other energy consumed in different
branches, thus is also restricted to estimates.

For all these approaches, the demarcation of system boundaries is important. For exam-
ple, the power consumption of end-user devices may be included in the network power
consumption in some cases, while being excluded in other studies, thus complicating
comparisons. Hence, a clear demarcation, and communication of this is required.

2.3.2 Power Measurements

The power consumption of devices can be measured at different points. This depends on
the purpose of the measurements. Determining the power consumption in specific states,
or building a regression based model, the AC power consumption may be sufficient. If
the power consumption of internal components is of interest, or a high time resolution
is required, internal measurements may be used. Still, these measurements exclude the
losses in the power supply, often showing an efficiency of between 85% and 95%. Hence,
for each measurement tasks, the optimal measurement procedure must be found.

When measuring the AC power, also the power factor (i.e. the shift between AC volt-
age and current) and possible deformations of the consumed power waveform must be
considered. Hence, meters measuring the root mean square (RMS) of the waveform are
required to also include these effects.

When measuring the secondary power consumption in the device, the sampling rate
must be sufficient to also include effects of short peaks in power consumption. This is par-
ticularly important when measuring electronics, as their power consumption may change
considerably within short time frames. Hence, the behavior of the device under test (DUT)
must be considered carefully before planning the measurements, possibly initially using
meters with a higher accuracy to determine feasible measurement approaches.

Power measurements in general require the knowledge of supply voltage and the cur-
rent drawn by the DUT. In case a stabilized power supply is used, the voltage can be
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assumed to be fixed. Still, when high currents are drawn, the wiring and inductances may
affect the measurement accuracy. Hence, it is generally recommended to measure both
supply voltage and current at the point of interest.

Generally when measuring, care must be taken to not affect the measured quantity with
the measurement. Hence, the measurement with the highest influence on the measured
quantity should be placed closest to the DUT. These are affected by the measurement
procedure and equipment.

For voltage measurements, the input impedance of the meter affects the measured quan-
tity by connecting a measurement resistor parallel to the DUT. Still, in modern meters
using high quality amplifiers, resistors with a high impedance (e.g. 1MΩ) are used. Thus,
the additional reduction of measured voltage by increasing the current is minimal.

Current measurements are comparatively challenging. Possible approaches are direct
measurements inserting a shunt into the supply line, or indirectly measuring the mag-
netic field caused by the current. The direct measurements have the advantage that the
voltage drop over the shunt can directly be measured and is proportional to the current.
Still, correctly sizing the resistor is challenging, in particular if the variation of observed
currents is high. Considering that the voltage drop is proportional to the current, high
currents may reduce the supply voltage as seen by the DUT significantly if the shunt
is too large. Still, to maximize measurement accuracy, the voltage drop should be maxi-
mized. Hence, the maximum size of the shunt is limited by the voltage drop letting the
DUT also work under full load. The inaccuracies caused by a small resistor can partially
be minimized by using a voltmeter with a high resolution.

Using a small shunt, also the noise on the measurements is augmented. This is partic-
ularly severe, when using unshielded cables close to switched circuits. Hence, a measure-
ment amplifier should be placed as close to the measurement shunt as possible. For this,
integrated circuits (ICs) are developed, providing an amplified signal, or a measured volt-
age via a digital interface. Using these requires designing a circuit board and interfacing
it with the measurement equipment to collect and synchronize the desired data.

Indirect measurements using Hall sensors can be used to measure higher currents with
minimal effects on the measured system. Still, the measured effect is small, also requir-
ing the use of measurement amplifiers close to the DUT. Their advantage is that it is not
required to interrupt the power supply to insert a measurement shunt. These Hall mea-
surements use split iron core placed around the power line of interest around which a coil
is placed transforming the current to a proportional voltage.

Summarizing, when measuring the power consumption, the current measurements are
most critical. Selecting a measurement shunt, the voltage drop should be limited to allow
the device to operate, while still causing a signal large enough to be measured by the
available meters. Furthermore, the sampling frequency must be high enough to include
all effects caused by short term variations of the power consumption.



3
R E L AT E D W O R K

Research in communication networks has resulted in a large variety of different ap-
proaches, first proposing and implementing mechanisms, then improving their per-

formance. Two aspects of networking are relevant for this work, the power consump-
tion and the determination of network performance. Based on a combination of both,
advanced optimization algorithms as described in literature are compared.

The power consumption of communication networks is of growing importance, as con-
stantly increasing data volumes are transferred [Cis16]. Already 10% of the world energy
consumption are attributed to ICT in the widest sense [Mil13]. Simultaneously, the traffic
demand is predicted to further rise significantly [Cis16]. Major contributor to the network
energy consumption are the access networks [VHD+11]. For fixed network access, the
main contributor are HGWs, while in cellular networks the base stations are the main
power consumer [VHD+11]. Considering the case of a cellular network provider, the base
stations alone consume 72% of the overall power [CMo12].

For conventional network equipment, detailed studies on their power consumption are
available [ODL14]. Still, the energy cost of emerging network technologies like MPTCP,
SDN, and edge computing using SBCs are not well analyzed yet. Hence, the related work
covering these technologies is described and compared in Section 3.1. Based on this litera-
ture review, the measurement and modeling procedures applied to the devices analyzed
in Chapter 4 are derived.

In particular in mobile scenarios, the power consumption is one of the restricting fac-
tors of mobile data access. Currently, 31.2% of the energy of a smartphone is consumed
by the different wireless modems [CDJ+15]. Still, the consumed energy depends, besides
the network technology, also on network performance parameters like RTT and through-
put. Hence, Section 3.2 analyzes related work covering the measurements of communica-
tion networks. After a general overview of tools, the methods developed for the analysis
of mobile networks are presented, from which the measurement methodology used in
Chapter 5 is derived.

Optimizing the energy consumption of mobile data access is an active field of re-
search [RDC+15]. A large number of proposals improving mobile network performance
have been published, focusing on different types of traffic and networks. These are com-
pared in Section 3.3 with respect to possible energy savings. Out of these, the two with
the highest energy saving potential are selected for a comparison and evaluation of their
effectiveness, which is described in Chapter 6.
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3.1 power consumption of network devices

The power consumption of communication networks is an increasingly important topic.
Consequently, a large number of publications cover different aspects of network energy
consumption. A general overview of the energy consumption of different network access
technologies based on numbers as published in literature is given in [VHD+11]. Combin-
ing the power consumption of the devices and their maximum data rates, their relative
energy cost is derived. Caused by the increasing data rates requested by end users, also
the share of the core network is predicted to grow [BBD+11].

In the following, different aspects of the network energy consumption are analyzed,
relating to the area covered by the power models as described in Chapter 4. First, the re-
lated work analyzing the power consumption of ARM processors and their application are
discussed in Section 3.1.1. An active research area is their use in high-performance com-
puting, promising to reduce the overall energy consumption compared to conventional
high-performance computing (HPC) using x86 processors. This is also expected to relieve
cooling requirements (e.g. [MOF15; SRS16]). An increasing number of publications also
analyzes the energy efficiency of SBCs for the processing of big data workloads, showing
promising results (e.g. [MH15; ZLH+16]).

The second area of interest is the power consumption of switches. Section 3.1.2 discusses
related work considering the energy consumption of conventional networking hardware.
Here, the focus is on establishing the behavior of currently deployed hardware, and get-
ting an insight into promising measurement approaches. Based on these, the differences
when analyzing OpenFlow switches are discussed.

Section 3.1.3 covers publications focusing on the energy consumption of smartphones.
These analyze and establish power models to develop optimization approaches based
on these. Most of the related work focuses on 3G networks and improvements thereof.
Considering the progressive evolution of both smartphones and the cellular networks a
reevaluation of their potential is recommended.

Finally, Section 3.1.4 compares the presented approaches based on common parameters.
Thus, their strength, weaknesses, and suitability for modeling the power consumption can
easily be derived.

3.1.1 Single-Board Computers

The power consumption of SBCs was not yet focus of comprehensive analysis. Still, the
performance and energy-efficiency of ARM processors is analyzed in a number of pub-
lications (e.g. [SRS16; ZLH+16]). Their main focus is the application of low-power ARM
processors in HPC, thus reducing the power consumption of computing nodes. These
direct energy savings result in successive gains in power supply and air conditioning
systems, as these then can be designed smaller, thus requiring less power themselves.
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Jarus et al. [JVO+13] compare the power consumption of ARM, AMD and Intel proces-
sors using a set of standard benchmarks. They conclude that for time-critical computa-
tions the x86 platform is most suitable, while for energy efficient computation the ARM
Cortex-A9 achieves favorable results with a significantly lower power consumption while
executing the same tasks. Still, the overall processing time is increased compared to the
Intel processor. Similar results are confirmed by Maqbool et al. [MOF15].

A similar study is conducted by Selinger et al. [SRS16], also including memory band-
width into their analysis. Besides matrix multiplications as in [JVO+13], also the perfor-
mance of floating point operations is analyzed. They conclude that neither acquisition cost
nor energy efficiency are currently superior to x86/64 hardware. Lorenzon et al. [LCB15]
similarly compare the power consumption of an Intel ATOM and an ARM Cortex-A9 for
core utilization and memory access.

Malik et al. [MH15] analyze the power consumption of an extensive set of big data work-
loads on Intel ATOM and Intel XEON setups. They monitor the execution time and power
consumption for different workload sizes on both setups. Based on this, the energy delay
products (EDPs) for all workloads are calculated. They conclude that for most applications
the deployment of ATOM processors consumes the least energy. Zhao et al. [ZLH+16] run
similar tests comparing Intel Edison boards with a Dell R620 server. The analysis com-
pares a cluster of 16 SBCs with a single x86 server, consuming a similar amount of power.
The workload consists of web service and MapReduce applications. They state that the
Intel Edison cluster serves 3.5x the load consuming the same energy at linear scalability,
thus agree with results derived by Malik et al [MH15].

Nunez-Yanez et al. [NL13] analyze the low-level performance of the ARM Cortex-A9

for realistic workloads. They record the CPU and memory power consumption under
different scenarios as included in the SPEC CPU2000/H.264 benchmark. The system per-
formance is recorded using system performance counters. Thus, a fine-granular model
of the CPU power consumption is generated. This can then be used to verify the correct
working of processors, as well as input for hardware and software design decisions.

A more theoretical work is conducted by Tudor et al. [TT13]. Based on the flow of a pro-
gram, traces describing the execution flow within the ARM Cortex-A9 are derived. These
are then used to estimate the power consumption of the processor. This is achieved by
running small benchmarks putting the CPU into particular states (i.e. work/stalling cy-
cles) by executing computation or memory heavy tests. Knowing the power consumption
of these states for the possible combinations of processor frequency and active proces-
sor count, the power consumption of the workload is derived. Applying these models to
specific workloads, the optimal configuration of the system (e.g. processor frequency and
count) minimizing the power consumption can be found.

Blem et al. [BMS13] analyze the differences between different instruction sets on four
platforms. They select two reduced instruction set computing (RISC) and two complex
instruction set computing (CISC) processors for comparison. Over the course of the study
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a large number of different benchmarks is run, and also the generated machine code ana-
lyzed. Based on these, the authors conclude that on recent systems no difference in power
consumption and performance between both instruction sets is visible. Main differences
observed are caused by micro architecture design decisions, and the implementations
running on the machines.

Besides analyzing the performance under lab conditions, also the effects as observed in
larger deployments are of interest, in particular when focusing on a complex system of
WiFi APs. Hence, Gomez et al. [GRR+12] present their cost-efficient and accurate power
meter energino. The power consumption of selected APs is determined based on the WiFi
modulation and the corresponding bit rate for different packet sizes and rates. By cor-
relating the packet rate for fixed size packets or the packet size for fixed transmission
rates with the measured power consumption, a linear and a logarithmic power model are
derived. Here, additional work is required, correlating the energy consumption with the
actual network performance, resulting in a single power model depending on packet size
and rate.

Depending on the study, different results are derived. Mostly, the energy efficiency is de-
termined to be better on ATOM processors compared to conventional x86/64 processors.
Still, the real benefit of ARM processors cannot conclusively be determined. Depending
on the study, the results are mixed [SRS16], or the computation time is largely increased
compared to conventional deployments [JVO+13]. Here, the workload seems to be the
determining factor for both energy efficiency and performance. Considering the huge en-
ergy gains determined in [MH15] and [ZLH+16], where distributed big data workloads
based on real-world use cases are run. Contrary, Jarus et al. [JVO+13] and Selinger et
al. [SRS16], using conventional benchmarks, do not identify energy savings. Hence, the
targeted application of the deployment should be considered when selecting the under-
lying hardware platform. Thus, it may be summarized that the use of low-power ARM
processors for distributed big data workloads decreases energy consumption at similar
performance, while the application of ARM processors in HPC is questionable.

Contrary to these studies, the power models generated and described in this work
focus on deriving a general purpose power model of the tested platforms using readily
available system monitoring values. Thus, the energy cost of any workload on the SBC
can be estimated, given the system utilization is known. In contrast to the above power
measurements, the presented power models are dynamic, meaning that the influence of
system load on the power consumption can directly be derived. Thus, accurate estimates
of the power consumption of a larger deployment, but also optimizations based on the
known energy models are possible.
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3.1.2 Routers and Switches

Switches and routers build the backbone of any communication network. Hence, their
performance and energy consumption are the focus of a number of different studies. The
following section summarized related work focusing on the power consumption of con-
ventional switches, their performance evaluation, and approaches promising to increase
network energy efficiency. Based on these, the requirement of analyzing the power con-
sumption of OpenFlow switches is derived and a promising measurement setup deduced.

Hlavacs et al. [HDP09] analyze and model the power consumption of conventional
residential and professional network switches. They show that the dynamic power con-
sumption of residential switches is mostly static or slightly decreasing under load. The
variability between idle and saturated power consumption is less than 5%. In the case of
professional switches, also this difference is negligible, with a variability of the model of
less than 1%. Still, the number of active ports has a considerable influence on the over-
all power consumption, in the case of one of the professional switches doubling the idle
consumption.

The power consumption of core routers is analyzed by Chabarek et al. [CSB+08] on
the example of Cisco’s 7507 and the GSR 12008. The main influence on the power con-
sumption of the devices is determined to be caused by the configuration of the chassis
and built-in line cards. These may increase the idle consumption by a factor of four. For a
given configuration, the dynamic part of the power consumption caused by traffic is again
comparatively low. For the 7507 the increase in power consumption under load is lower
than 4%. The authors conclude that choosing a configuration close to the maximum de-
mand minimizes power consumption. Still, this approach is static, and thus no adaptation
to the actual load is possible.

An automated approach determining the power consumption of various network swit-
ches is presented by Mahadevan et al. [MSB+09]. They test their approach on a hub,
three edge switches, a core switch, and a WiFi AP. Based on the collected data, the
derived power models are presented. Their main contribution is the measurement en-
vironment, automating the analysis of the device power consumption and power model
generation to a large extent. The measurement and modeling of the power consump-
tion of the OpenFlow switches as presented in Section 4.2 extends this setup by adding
the OpenFlow functionality to dynamically configure the DUTs to measure the effects of
different OpenFlow rules on power consumption. By increasing the problem space with
these additional functions, the resulting setup is slightly more complex and requires more
measurements to determine the influence of different combinations of parameters.

Based on publicly available power models, Orgerie et al. [OLG+11] build an energy
simulation environment. After entering the topology of interest, the power consumption
of the full network can be determined. The framework supports routers, switches and
hosts, thus resulting in an accurate view of the network. Besides static cost, also the
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influence of traffic is calculated. Thus, the full power consumption of a wired network
deployment can be derived.

Caused by the large variety of power models, Bolla et al. [BBD+14] develop an abstrac-
tion layer, simplifying the high-level analysis and optimization of networks regarding
energy consumption. Their abstraction layer works in a hierarchical way, combining mod-
els of underlying layers into a common model for the full network. This approach also
includes certain control of the local device or domain, which is also abstracted and ac-
cessible to the upper layer network management. Thus, the power consumption can be
controlled using centralized approaches, while leaving the implementation details (e.g.
active links, link speeds, active devices) to the lower layers.

In conventional networks, the power consumption of routers and switches must be ac-
cepted as is, because dynamic reconfigurability is highly limited. Nonetheless, a number
of approaches are proposed, reducing the power consumption of large scale wired net-
works [BCL+10; VNS+11; NSA+13; YWX+13; LAH+15]. Their focus generally is disabling
interfaces, reconfiguring link speeds, and shutting down devices. These generally formu-
late optimization problems, calculate exact solutions, and derive heuristics to optimize
the network in a computationally efficient way. Still, the feasibility of these on current
hardware is often not given, as devices usually do not support sleep modes. Neither do
they have common configuration interfaces, thus complicating energy savings.

A relatively new approach on network management is OpenFlow [PLH+11]. Hence,
the majority of publications cover its implications on network management, and the mea-
surement of KPI like RTT, throughput, and re-programmability of these devices. In the
following, a number of approaches using and analyzing OpenFlow are presented, with
the goal of deriving suitable measurement approaches in SDN environments.

A framework for the performance evaluation of OpenFlow devices is proposed by Rot-
sos et al. [RSU+12]. They describe a solution assessing the performance for different ap-
plied rule sets as well as delay and packet loss. This is achieved by controlling the de-
vice via the OpenFlow protocol and simultaneously monitoring traffic on the data plane.
Their main observations are that performance and delays heavily depend on the used
implementation, and that an evaluation of these metrics is only possible using data plane
measurements.

Heller et al. [HSM+10] propose an approach maximizing link utilization by controlling
the links in a data center topology using OpenFlow. Thus, the capacity of the installed
devices can be better utilized by overcoming the limitations of the spanning tree protocol,
limiting the use of active links to a tree topology. By using all available links, and thus
increasing available bandwidth, the same hardware may be used for a longer time. A
similar approach is implemented and tested by Prete et al. [PFC+12].

Exploiting the increased flexibility of OpenFlow, a number of problems inherent in con-
ventional networks can be solved. Still, re-reconfiguration of network interfaces is not part
of the specification. Another remaining challenge in the energy optimization of wired net-
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work infrastructure is the comparatively high idle consumption and missing sleep modes.
Here, only device vendors can improve the energy efficiency of the available hardware.
Only then, the results derived using theoretical models and simulations developed under
the term energy proportional networking [AMW+10] can be transferred to actual network
deployments.

As currently the cost of the additional functionality provided by OpenFlow is not well
known, Section 4.2 exemplary analyzes the power consumption of a hardware and a soft-
ware OpenFlow switch. The focus of this analysis is to determine the cost of specific
functionality and possible implications on switching performance, thus giving additional
insight into the feasibility of implementing the proposed approaches on currently avail-
able hardware.

3.1.3 Smartphones

According to a UK study, smartphones have become the most important device to access
the Internet [Ofc15]. Similarly, the consumed data volume is increasing significantly [Cis16].
This increased demand is also visible in the network energy consumption [BBD+11]. Still,
also on smartphones, the modems consume a significant fraction of the available en-
ergy [CDJ+15], hence is a major impact on the battery life time of the mobile devices.
Therefore, a number of studies analyze the impact of mobile data communication on
power consumption of smartphones, and based on their observations propose optimiza-
tion approaches. In the following, first the studies analyzing the energy consumption
of smartphones are introduced. Based on these observations, energy optimization ap-
proaches are discussed.

One of the earlier studies analyzing the power consumption of smartphones is con-
ducted by Carroll et al. [CH10]. They analyze the component power consumption of an
Openmoko Neo Freerunner by using circuit compartmentalization as introduced by the
hardware developers. Instead of just connecting these, measurement shunts are inserted.
Thus, the power consumption of each component is measured independently. For refer-
ence, also the power consumption of the HTC Dream and the Google Nexus One are
recorded for different use cases. As their hardware layout does not provide these mea-
surement points just the overall consumption and resulting models for different use cases
are presented.

Similar measurements are repeated by the same authors on the Samsung Galaxy S3

with the focus of identifying trends in energy efficiency over time [CH13]. The power
consumption of the individual components is identified, but no concluding power model
derived. Still, some conclusions are drawn, namely that the power consumption during
certain usage scenarios increases only marginally, while the maximum possible power
consumption of the device increases.
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Chen et al. [CCD+14] analyze the energy efficiency development of the Galaxy S lineup.
The analyzed devices are the Samsung Galaxy S1, S2, S3, and S4. Over the range of four
generations, the power consumption caused by a selection of representative Apps has in-
creased by 38%, while the interface power consumption for the same network technology
in each subsequent generation is reduced. Still, the newly introduced network technolo-
gies have a higher relative cost than the established ones.

These approaches describe the power consumption of the selected smartphones under
the given load, but do not provide means to analyze the power consumption of other
than the presented scenarios. The first, readily usable power model of a smartphone was
published by Zhang et al. [ZTD+10]. The analyzed device is the HTC Dream. The authors
publish detailed models for the different components, depending on their utilization. The
measurements are validated by comparing the derived parameters between different de-
vices of the same type. Based on these system utilization values and measured power,
the device power consumption is modeled. Comparing the power consumption derived
using the model, and the one measured using an external power meter, average errors of
less than 10% are achieved.

Ding et al. [DWC+13] analyze the power consumption of wireless data transmissions
on both WiFi and 3G networks depending on signal strength. They show that users are
often connected to networks with unfavorable signal strength, and delaying data trans-
fers improves the energy efficiency of communications. The power consumption of WiFi
transmissions is up to 34% lower when the signal quality is high, while up to 68% of
savings were visible on 3G networks. This is both caused by a higher power consumption
of the power amplifier (PA), but also by the lower data rates as observed on the different
networks.

Huang et al. [HQG+12] are one of the first to report measurements and models of the
performance and power consumption of 4G networks in direct comparison to 3G and
WiFi networks. Their power model includes, besides the idle cost of different components,
the transmission power for different up- and download rates. Furthermore, they derive
timings of the discovered cellular state machines. Thus, modeling of the power consump-
tion for any transmission is possible based on traffic traces only. Still, the device and
network operator for which these are valid are not given in the paper. As this is one of
the earlier measurements of 4G performance, large differences in both timing and power
consumption are expected for more recent smartphones and cellular networks [CCD+14].

The general smartphone power models presented here are valid for the measured de-
vices and networks. Large differences are observed between the performance and timing
measured in the available networks and the one reported in literature [HQG+12]. Thus,
the available energy models only roughly approximate the observed network behavior.
The most useful model is the one presented by Huang et al. [HQM+12], detailing the
power consumption of the Samsung Galaxy S3 on WiFi, 3G, and 4G networks.
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Qian et al. [QWG+10] recognize the problem of extensive energy usage of modern
smartphones, where contrary to earlier usage patterns, almost constant connectivity is
required. In the past, for web browsing, downloads, or checking an e-mail account only a
few network connections were made on non-smartphones. Thus, the connection was idle
for longer durations, resulting in acceptable energy consumption of the network interface.
But the rise of instant messaging applications, requiring frequent connections to the server
and often transmitting only a few bytes, considerably increases the power consumption of
the network interfaces. The problem here is the long duration between the last transmitted
byte and the tear-down of the data channel. They identify this duration to be 15 s, thus
causing considerable energy expenses. Their approach proposes to use fast dormancy by
notifying the network of the end of its transmission and shutting the interface down
afterwards. Thus, the tail duration of the connection is considerably reduced, resulting in
energy savings of up to 60%.

Based on their earlier observations [HQG+12], Huang et al. [HQM+12] propose op-
timizations significantly reducing the power consumption of the mobile device. Their
approach is two-fold. First, the power consumption of any mobile data connection is re-
duced by limiting the tail duration of the 3G connections. Therefore, the connection is
torn down after 4 s when the device is idle, or 8 s when the device is actively being used.
The second optimization is limiting background communication to given intervals. The
most efficient configuration determined by the authors is permitting a 5 s communication
interval in each 100 s slot. The presented results show power savings of up to 60% when
combining both approaches.

A similar approach is chosen by Ickin et al. [IWF13] analyzing the energy consumption
of smartphone as used by end users in the wild, with a major focus on evaluating the
influence on QoE. Similar to Huang et al. [HQM+12], they show that by disabling back-
ground communication considerable energy savings are possible. Their approach limits
itself to the cellular interface only, thus leaving the WiFi functionality unmodified. Con-
trary to Huang et al., they limit communication to 5min in each 30min interval. User
surveys state that the maximum delay of 25min was almost imperceptible to the users.
Thus, Ickin et al. claim to achieve power savings of 25% (’power gain of 34%’ [IWF13])
without affecting the QoE of the end users.

A further interesting aspect of mobile power consumption is the impact of the relatively
new MPTCP. Originally developed to map a single TCP flow between two machines to
multiple underlying network interfaces [BPB11], it quickly gained popularity for mobile
devices, where also multiple interfaces exist. MPTCP supports different operating modes
making it attractive in mobile scenarios showing intermittent connectivity. The available
modes are full MPTCP, where all available interfaces are used to capacity, single-path mode,
used to resume failed connections, and backup mode immediately opening a backup TCP
sub flow used to establish a fast failover without requiring to establish a connection on
demand.
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Chen et al. [CLG+13] conduct measurements on operating networks. They measure the
latency and throughput on different cellular networks. Their analysis shows that down-
load times are always lower when using MPTCP on multiple interfaces, while the RTT is
similar to the one of the interface with lower RTT.

Pluntke et al. [PEK11] are among the first to explore MPTCP in mobile scenarios. They
propose to use Markov decision processes to schedule traffic on the available links depend-
ing on historical traffic characteristics. Compared to the omniscient oracle, the proposed
approach is near optimal. Their approach includes 3G and WiFi state machines, config-
ured with realistic power values. Still, the influence of MPTCP scheduling, differing delays
on the available network technologies and lower layer re-transmissions are neglected.

Paasch et al. [PDD+12] show the feasibility of using MPTCP on a smartphone using
both the WiFi and cellular interface in parallel. They compare the impact of losing WiFi
connectivity for the different MPTCP modes on the TCP goodput and latency of data
transmissions. Furthermore, exemplary measurements of the energy consumption caused
by MPTCP on a Nokia N950 smartphone are described. However, no concluding power
model is presented.

Le et al. [LHR+12] describe an approach reducing the power consumption of regu-
lar MPTCP scheduling, while simultaneously improving load-balancing. Fairness against
other TCP flows on the link is not affected. The energy model is based on fixed costs per
Byte on the different interfaces, but does not include idle cost. Their results are based on
simulations, thus indicating the regions where energy payoffs may be expected. Further-
more, the influence of highly different throughput, RTT, jitter, and packet loss on different
links is not analyzed. Here, additional measurements are required to determine probable
gains under real-world conditions. Thus, network optimizations and simulations may be
based on realistic assumptions.

There are two publications by Chen et al. [CYM13b; CYM13a], claiming to significantly
(i.e. 10% to 23%) reduce the energy consumption of MPTCP on a mobile device when
using both WiFi and 3G simultaneously. Their approach eMTCP is evaluated for CBR
scenarios in [CYM13b] and bursty traffic in [CYM13a]. Using client side re-mapping of
received data, the energy consumption is apparently reduced. Simultaneously, the thro-
ughput is claimed to be higher than the sum of both interfaces. These results are at least
questionable. Here, further evaluation of the underlying concepts, assumptions and the
used simulation environment is recommended.

Lim et al. [LCN+14] analyze the scheduling of MPTCP as published in [RPB+12]. Their
focus is the systematic analysis of the MPTCP performance for general downloads. They
use a Galaxy S3, install an MPTCP capable kernel, and measure the power consumption
using an external power meter. Their analysis shows that the use of MPTCP in the used
implementation shows favorable energy consumption compared to cellular networks only
in a small region of bandwidth distributions. Further, this effect is only visible for down-
loads larger than 1MB. Based on their observations, the authors propose an energy aware
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scheduling approach eMPTCP, reducing the energy consumption by up to 15% in com-
parison to regular MPTCP.

The work presented in Section 4.3 differs, as the power consumption of MPTCP for
different load distributions is measured empirically. Further, the analysis is conducted for
CBR traffic of given rates emulating CBR streaming as is used in live video conferencing
or cloud gaming. During the experiment, the load distribution on the different interfaces
is changed. Based on these measurements, the energy savings of MPTCP are modeled
based on empirical measurements.

Furthermore, smartphone energy models are required describing the power consump-
tion of WiFi and the cellular interface for data rates as available in modern networks.
Hence, the power model introduced by Huang et al. [HQG+12] is not applicable, as net-
work performance has increased considerably since publication of these results. Further-
more, current network configurations tune parameters to minimize power consumption
on the mobile device, which was not the case in the analyzed network. Hence, the newly
generated models provide the required means to analyze the power consumption of arbi-
trary data transfers in recent mobile networks.

3.1.4 Comparison of Power Models and Approaches

The power models and optimization approaches presented in the previous sections are
summarized in Table 3.1. The approaches are grouped into device classes in accordance
to the sections as described before.

For each study, the corresponding reference is given in the first column. The first main
group on the horizontal axis, Components, indicates the hardware components considered
by the approach. The second main group, Device Class, indicates the device class for which
these models or optimizations are valid. The group Type of Work indicates how, and what
kind of results are derived. Finally, the column Results indicates, whether a power model
is described, letting other researchers build upon their work.

The components identified in the surveyed studies differ depending on device class. A
static power model indicates the power consumption of the device without considering
any dynamic aspects (e.g. system utilization). The remaining columns indicate, whether
the indicated component was modeled in the respective publication. Internal components
are CPU and memory. Still, these are not always included as separate components in the
derived models. Often, the effects of CPU and memory utilization are part of the interface
utilization. This may be caused by the non-availability of low level monitoring values, in
other cases by the requirements of the targeted model, abstracting the device power con-
sumption to fewer metrics (e.g. idle and interface utilization only). The interfaces iden-
tified in the different studies are the cellular interface, here abbreviated Cell, WiFi, and
fixed for any other wire based or optical network connections. Further interesting factors,
in particular on smartphones, are the inclusion of GPS power consumption or the display
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in the final power model. As these considerably alter the power draw of the device, and
thus affect battery life time, these metrics may be of high interest for some evaluations.
Furthermore, the consideration of MPTCP in the power models is of considerable impor-
tance, as the interface power consumption, and the overall composition of the resulting
power models is affected by its use. Finally, virtualization is included to indicate whether
SDN techniques are used, indicating a higher flexibility and extended functionality of the
underlying network.

The device classes as identified in Table 3.1 reflect the applicability of the power mod-
els and optimization approaches derived from related work. Here, Srv/PC indicates the
applicability to servers or PCs based on x86/64 processors. The column Switch indicates
that the model is generated for hardware switches. Contrary to software switches, these
employ application specific integrated circuits (ASICs) to support high throughput and
low latencies, and generally have a larger number of ports. Indicated with Router are mod-
els and approaches including devices with OSI Layer 3 functionality, which is not present
in conventional switches. The column BS indicates approaches including the power con-
sumption of base stations in the cellular network. SBC here denotes either the use of
single-board computers, or the evaluation of low-power ARM processors. These can be
seen as complementary to the group Srv/PC, where high power general purpose proces-
sors are used. The studies where both columns are marked compare the performance and
energy efficiency of both. HGW indicates approaches including home gateways into their
models. Devices fitting this category have at least one WiFi and one wired interface, with
their main responsibility being the forwarding of traffic or providing services to mobile
users. Finally the column SP indicates the approaches using smartphones for either power
modeling or optimization of their energy consumption.

The group Type of Work is structured into Methodology, indicating whether a study is
based on directly measured device behavior (meas) or simulated based on values derived
from literature (sim). Here a special case is the analysis of the full network power con-
sumption by Vereecken et al. [VHD+11], whose analysis is based on a literature survey,
and thus indicated lit. The column Impr. shows whether improvements of the status quo
are proposed. If nothing is indicated here, the current behavior of the surveyed system is
analyzed and models are derived.

Finally, the column Pwr. mod. in the Results group indicates, whether ready to use power
models are published. This is more often the case for the pure measurement and modeling
studies, as usually their goal is presenting a model for others to build upon. Still, there
are also some studies describing the behavior of a system under a given load, without
giving sufficient information for others to build upon this. In particular simulation based
optimization approaches have not been observed to publish resulting power models.

Generally in Table 3.1, ’∼’ indicates fields, where some results are presented, but are
incomplete, inconclusive, or otherwise not ready to use. Examples are the analysis of
MPTCP by Chen et al. [CLG+13; CYM13a], where assumptions are not fully clear, or
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Gomez et al. [GRR+12] and Carroll et al. [CH13], where no interface power models for
different rates are given.

Summarizing, the contributions concerning the power consumption as presented in
Chapter 4 are three-fold. First, power models for SBCs are presented, which were formerly
not available to the public. These models use readily available system monitoring values
read from the /proc file system to derive the power consumption of the SBC. Modeled
components include the CPU, Ethernet, and WiFi interface. Secondly, power models for
smartphones for the use case of CBR streaming for real-time applications using MPTCP
are presented. Related work in this area focuses on regular downloads or optimization
approaches based on superficial power models. These presented results further include
models describing the power consumption of the devices for regular cellular and WiFi
network access. Thirdly, power models for a hardware and software OpenFlow switch
are generated. Related work presents approaches automatically generating power models
for regular switches, and performance evaluation of OpenFlow switches. Based on these,
optimizations of the energy consumption of networks are proposed. Contrary to related
work, the influence of the extended functionality provided by OpenFlow on the device
energy consumption was not analyzed before.

3.2 network performance measurement

The performance of wireless network access affects the energy consumption of mobile
devices by influencing the active time of the modems. Important metrics are, besides the
signal strength, RTT and raw throughput. Based on these, the actual energy consumption
of the device can be derived using power models. Here, large differences exist between
network technologies, affecting the power consumption to a considerable extent.

To accurately determine the cellular network quality, the measurement methodology
must be well known and analyzed. Hence, this section discusses measurement tools, tech-
niques, and approaches determining the latency, throughput, and coverage of communi-
cation networks

Section 3.2.1 discusses tools and approaches measuring the latency in communication
networks. These also include traceroute measurements and their derivatives providing
additional RTT estimates for each hop on the route taken through the network. Finally,
approaches applying different tools to analyze networks are discussed.

Section 3.2.2 presents and discusses tools and mechanisms measuring the throughput
of communication networks. First, the different metrics as can be measured are discussed,
based on which available measurement techniques are assessed. Their applicability for
different network domains are discussed in the following. Finally, network measurement
approaches focusing on cellular networks are described and compared.

Section 3.2.3 discusses approaches including, besides network performance metrics,
also the location of the mobile device. These approaches either generate geographical
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maps, or store the network performance based on routes taken for further analysis. Fur-
thermore, the availability of data sets is discussed, and an overview of commercial and
academic cellular network mapping approaches given.

Finally, Section 3.2.4 compares the presented approaches, so their focus, strengths, and
weaknesses can easily be identified. Thus, the optimal tools and measurement techniques
for a given measurement task can be selected, while simultaneously checking which pub-
lications cover similar measurements.

3.2.1 Latency

The latency in communication networks defines the time packet needs to travel from
the source to destination. As due to different clocks, jitter, and drift these can never be
fully synchronized, the more common metric in communication networks is the RTT,
consisting of the latency between sender and receiver, the processing time on the receiver,
and the latency back to the sender. Thus, the latency of the network can be estimated,
assuming that the processing time on the remote is small compared to the propagation
time. The latency is an important measure directly influencing the response time of real-
time service, but also the achievable throughput of TCP connections by limiting how fast
a steady transfer rate is achieved, and how fast packet losses can be mitigated.

Conventionally, the network latency is measured using the ping command, as described
in the RFC defining the ICMP protocol [Pos81]. Thus, the end-to-end latency can be es-
timated between any two IP addressable hosts. Still, also RTT measurements show pecu-
liarities which must be considered when interpreting the measured results. When using
the ping command, service differentiation within the network may cause ICMP messages
not be forwarded with the same priority as other traffic by intermediate routers. Further-
more, routing may differ between ICMP and other packets, thus possibly resulting in
inaccurate results. Hence, alternative configurations change the type of the probe packet.
Thus, the influence on the sender to receiver path is comparable to the type of the probed
traffic. Still, ICMP responses are always of the same type. Thus from a possible difference
between these, conclusions on the network behavior can be drawn.

The ICMP protocol also permits identifying the route taken through the network. There-
fore, each subsequent packet is assigned an increasing time to live (TTL). This is reduced
by one when forwarded by a router. If the TTL reaches zero, a Time Exceeded Message is
created by the next router and sent to the source address of the incoming packet. By in-
crementing the TTL by one for each subsequent packet, the full route to the destination
can be mapped. This is implemented in the classical traceroute [Tra] or tracert command
on any modern operating system (OS). In the current traceroute implementations, also
the type of traffic used for probing the network is configurable. Thus, differences in the
response times and routing of these can be identified.
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The measured RTT for each hop consists of the latency between the local machine and
the respective hop with the chosen data type, the response time of the remote machine,
and the latency back to the local machine. The response time of most routers is variable
and higher as pure data path latency, as ICMP messages must be generated by the CPU
of the router, which is comparatively slow, usually not well connected, and may also be
busy. The response to the local machine is always an ICMP message. Hence, this message
may be routed using different paths on both ways. This effect is analyzed by Dall’Asta et
al. [DAB+06].

Still, due to the high complexity of modern networks, multiple routes between two
endpoints are likely. Load balancing on these may influence the path taken depending
on different characteristics of the probe packet. This causes several problems in the mea-
surements. First, as packets may take different routes, and these may include a different
number of hops, incongruent results on the measured path can be returned. Hence, a
variant of traceroute, paris-traceroute, is developed with the focus of determining all pos-
sible paths [ACO+06]. Their approach forges packets with the same checksum by mod-
ifying identifier and sequence number fields. This increases the probability of using the
same path. Thus, the artifacts as observed with classical traceroute can be reduced. A
comparison of different traceroute implementations and configuration options is given
in [LHH08].

When measuring delays from smartphones, the influence of the measurement method-
ology on the resulting metrics is important. Li et al. [LMW+15] analyze the device internal
delays for different measurement methodologies over a range of latency classes. The au-
thors measure the latency between an Android phone and a server with configurable
response time by monitoring the WiFi packets using WiFi sniffers and compare these
to the recordings taken on the smartphone. They conclude that the measured latency
significantly depends on the chosen methodology, where RTT measurements via the OS
provided commands (e.g. ping) cause the lowest overhead, while HTTP pings take slightly
longer. Worst are the RTT measurements run by Android applications via the Java API.
Hence, in the following only native implementations for ping, but also traceroute are used.

Ricchiato et al. [RHR08] analyze the one-way delay within an operational 3G network by
placing monitoring nodes within the core network. These measure the latency in different
parts of the network, while simultaneously recording the load on the respective links.
The authors observe frequent network scanning, during which the latency in the network
increases. From this it can be derived, that the latency and throughput of the mobile
backbone correlate. Laner et al. [LSR+12] extend a similar study to 4G networks and
compare the performance of both. As expected, the overall RTT in the measured LTE
network is lower compared to a high speed packet access (HSPA) network. Further, the
variability in the LTE core network is lower. Still, the wireless uplink in the LTE network
shows a higher latency than the HSPA uplink.
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These studies show that the latency within the cellular network are largely predictable
and defined by the access technology and the corresponding backbone infrastructure. For
the measurements conducted in Chapter 5, the regular ping command is used. This is
advantageous, as it is natively available on all devices. For both directions the ICMP
messages are used, thus resulting in a symmetric latency. The traceroute measurements
record both the IP and resolved hostname of the intermediate hosts, thus giving a fine-
granular view of the routes taken through the network. Using paris-traceroute on the
smartphones of the participating users is not possible, as for the packet forging root access
is required. Contrary to related work, the routes through the cellular network are included
in the analysis. The resulting measurements are discussed in Section 5.3.

3.2.2 Throughput Measurements

Besides the latency of wireless network access, also the throughput is important. A num-
ber of different measurement tools and techniques are developed, profiling different met-
rics. Some definitions are required beforehand: First, it must be distinguished between
link capacity, available bandwidth, and bulk transfer capacity (BTC) [PMD+03]. The former de-
scribes the installed capacity, which defines the maximum theoretical throughput on the
physical layer. Available bandwidth in contrast includes link utilization into the calculation.
Hence, it defines the free fraction of a link. BTC is the actual transferred payload usually
defined for TCP connections. Where link capacity and available bandwidth are defined on
a per-link basis, the BTC is an end-to-end metric. Link capacity and available bandwidth
are measures of high interest when planning and upgrading networks. As the perfor-
mance of a full network is to be determined, the different end-to-end BTC measurement
techniques and tools are introduced in the following.

Prasad et al. [PMD+03] give an overview of the different available bandwidth measure-
ment tools. These are classified into link loading and timing based approaches. The for-
mer establish a data connection (TCP) or testing the link with configurable UDP data rates,
thus directly measuring the achieved goodput. An example implementation using this ap-
proach is iperf [Ipf10]. The latter methods use timing differences between single packets,
within packet trains, or within chirps of packets to estimate the available bandwidth. Im-
plementations of these approaches are train of packet pairs (TOPP) [MBG00], Pathload [JD02],
or PathChirp [RRB+03]. Compared to the link loading variants, these approaches are de-
signed to minimize interference to the productive traffic within the network. By using tim-
ing differences and dispersion, only a small number of packets is required, and tests may
be spread over a longer duration. Depending in the chosen measurement methodology,
multiple repetitions with different probed bandwidths are required, thus approximating
the available bandwidth in an iterative manner.

For available bandwidth tests loading the link to capacity, iperf is a ready to use solution.
Still, for the TCP connection to saturate the link, the slow start must have finished. As
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this is not easily visible from outside iperf, and no functionality is included stopping
a test when a sufficient accuracy is achieved, Tirumala et al. [TCD03] extend iperf by
monitoring the OS kernels TCP status. This is achieved by running a kernel patched
with the web100 instruments [MHR03]. By reading the additional information on the TCP
connection, the measurement duration can be reduced to 1 s, saving over 90% of the traffic
caused by regular iperf. Considering the measurement of the cellular network, where
traffic is expensive, iperf with the web100 instrumentation is a promising approach. Still,
as also crowd-sensed measurements of the cellular network performance are conducted,
the installation of a modified kernel on the participating devices is not possible.

The timing based bandwidth measurement approaches are not suitable for measure-
ments in the cellular network for two reasons. First, for these approaches to be applicable,
the network conditions must be constant over the duration of a few minutes. Assuming
high mobility scenarios, the measurement duration considerably exceeds the time a device
can be assumed to be stationary. Already in a pedestrian mobile scenario, the measure-
ment is thus stretched over 60m to 120m per minute. If during this interval the available
bandwidth changes, the measurement cannot complete, or the determined bandwidth is
incorrect. Secondly, this approach is sensitive to jitter, as is caused by LTE scheduling on
the physical layer, causing measurements to become unreliable.

Contrary to measurements on end-user devices, Gerber et al. [GPS+10] measure the
throughput of operational 3G cellular networks using in-network probes. They deter-
mine the maximum throughput by analyzing packet headers observed within the network.
The collected data is thoroughly filtered, from which characteristics of reliable flows are
derived. Thus, the throughput of individual users is determined. The drawback of in-
network measurements is that only approximate locations of the observed network per-
formance can be derived based on the currently used cell ID. Huang et al. [HQG+13]
extend similar measurements to 4G networks and analyze their accuracy using end-to-
end measurements. They conclude that the measured TCP implementations cannot fully
utilize the bandwidth provided by LTE, on average using less than 50% of the theoreti-
cal available bandwidth. This behavior is caused by limited receive windows sizes. The
bandwidth under-utilization causes a lower QoS for the user, while simultaneously in-
creasing power consumption. Generally, these measurements show a good fit between
the in-network throughput estimation and end-to-end measurements conducted on the
mobile device.

Michelinakis et al. [MBF+15; MBF+16] apply a similar methodology to packet traces
collected on mobile phones. By sampling these, the used bandwidth of the local device
can be determined based on passive measurements only. This is possible regardless of LTE
scheduling and local device type. The resulting relative error using as few as 10% of the
available samples is 15%. This measurement technique is thus feasible for implementation
in the mobile OS, but cannot be used in a crowd-sensing study, as these traces of the
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network behavior are commonly not available. By using a passive approach, also the
number of resulting measurements cannot be controlled.

The location-based 4G performance is first systematically analyzed by Wylie-Green et
al. [WS10]. The authors analyze RTT, throughput and handover performance in a freshly
deployed LTE network. They show that the capacity of the network is well saturated in
different end-to-end measurement scenarios, and the average RTT is below 35ms. These
measurements are carried out in an early testing deployment without load, thus only
limited conclusions on the performance of real-world deployments can be drawn.

Becker et al [BRF14] analyze RTT and throughput in 4G networks by running end-to-
end measurements. Their main contribution is the assessment of the performance impli-
cations of PEP in the cellular core network. For reference, also the performance via a fixed
broadband access link is analyzed. They show that the use of a PEP significantly improves
connection establishment and retransmission delays. Still, in the case the remote service
is not available, additional timeouts occur.

Vallina-Rodriguez et al. present a more systematic approach on higher layer influences
in [VSK15]. Their focus is on the analysis of service variations caused by middleboxes
and network traffic management. They develop an Android application running a series
of tests against measurement servers, focusing on the detection of modifications of the
transferred traffic. Their focus is on changes in the domain name system (DNS) system,
the insertion of PEPs, or any other unwanted modifications. The Android application
presented by the authors is used in this work to determine eventual network service
impediments.

These approaches show successful approaches on characterization of cellular network
performance and promising measurement techniques. Still, the published data is often not
sufficient for further network analysis, the techniques not applicable to the measurements
required for this work, or the data does not reflect the performance as experienced in
modern cellular networks. Furthermore, for an analysis of handover mechanisms perfor-
mance measurements and network availability of cellular and WiFi performance within
the same region are required.

3.2.3 Network Coverage Maps

Network coverage maps are mainly published by cellular network operators to show the
reach of their networks to attract new customers. As one would expect, these show the
optimum coverage of the available network technologies based on propagation models.
Still, network performance also includes latency and throughput. Commonly, these are
considered to be confidential information by the network providers. Thus, no reliable
data of these KPI of cellular networks are available to end users and researchers.

Hence, a number of tools are developed to analyze the location-based cellular network
performance. Yao et al. [YKH08] are among the first to systematically measure the influ-
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ence of time and location on the throughput of 3G networks with the goal of predicting
cellular service quality in a vehicular context. They conclude that the influence of location
on network throughput is larger than the influence of time. Thus, by knowing the histori-
cal network performance at a given location, the probability of achieving similar results is
high. Pögel et al. [PW12] strengthen these observations with additional measurements on
both rural and urban routes. They extend the observations to different network technolo-
gies and cell IDs. Further, the authors analyze handover durations and behavior between
different cells and technologies as well as RTTs in different connection states (i.e. DCH,
FACH). Both studies exemplary show the location dependency of cellular network perfor-
mance, and the general feasibility of a mapping approach.

Also the cellular network performance on trains is of growing interest [FS16]. Yao et
al. [YKH11] analyze RTT and throughput of 3G networks on several regional train routes
near Sydney (AU). They conclude that the network performance mainly depends on loca-
tion, while time of day and speed have no significant influence.

Sonntag et al. [SSM13] are among the first to publish a crowd-sensing App for multiple
smartphone OSs focusing on throughput measurements. Based on an extensive collection
of signal strength, RTT and throughput samples, a general map of the cellular network
performance is generated. The majority of the measurements are located in the region
of Helsinki (FI). They conclude that signal strength alone is not a sufficient indicator of
network throughput. Neither does including the time of the day improve the correlation.
Therefore, throughput measurements are required to estimate and predict the cellular
network performance. Similar measurements are conducted by Huang et al. [HQG+12].
Neither study publishes location-based network performance data for further analysis.

Besides these scholarly approaches, also commercial services exist, measuring the wire-
less network performance and creating maps. Examples are OpenSignal [OpS] or Sen-
sorly [Sen]. They use a similar approach to [SSM13]. Similarly, information is gathered by
publishing smartphone applications and letting users measure the network performance.
Thus, network coverage maps are created to guide the users in cellular operator selec-
tion and possibly also in finding locations with better network quality in case the current
performance is insufficient.

From the above studies it is derived that for accurate modeling and prediction of cellular
service quality, extensive measurements of the actual parameters of interest are required,
as these cannot reliably be derived from others. Further, as the data of interest is com-
monly not available, these must be collected in a crowd-sensing study. Other approaches
(e.g. systematic, location-based measurements) appear infeasible due to the high number
of required measurements. Based on the collected data, models of the cellular network
performance can be derived to later optimize traffic scheduling and network selection
based on predicted network performance.
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3.2.4 Comparison of Measurement Approaches

The above described tools, measurement techniques and approaches are summarized and
compared in Table 3.2. These are grouped into Tools, Techniques, Comparison of techniques
and tools, and the Analysis of operational networks. The network mapping approaches
are grouped into Scientific works and Commercial products for comparison.

For each described approach the used network technology for development end evalu-
ation is given in the column Tech. This may be any, if no specific network technology was
in focus when being developed, while others are limited to fixed networks or the local
device only. The classification may include cellular networks in general (cellular), or the
respective network technology (e.g. 3G/4G). The main identified categories are parameters
and the classification of the respective approach. The identified parameters are environ-
mental (i.e. location (Loc), time), and network related (i.e. signal strength (SigStr), RTT,
throughput (TP)). Further, higher layer network management functionality is taken into
account by considering routing and user allocation within the cellular backbone (Column
Route). The classification is split into parameters describing the measurement approach,
cost, accuracy (Acc.), the requirement of a remote server (Remote), and the applicable net-
work domain (Domain). Here, the most important is the measurement technique (Column
Techn.), identifying whether an approach actively causes additional traffic (act), or mon-
itors the network performance or traffic consumed by the device passively (psv). The
placement of required measurement components is given in the column Meas. loc., where
either only the end-user device is required (dev), the metrics are recorded on both local
device and server (dev/srv) to be later merged, or in-network probes are used (n/w). Be-
sides the deployment, also the cost, duration and accuracy are of interest when selecting a
network measurement approach. The measurement duration is classified into short, long
or variable, depending on the tests to be run. In the case of network studies as given in
the fourth group of rows, no data is available, thus n/a is given. Similarly, the cost and ac-
curacy are classified into low, medium, high and variable, where applicable. Additionally,
the requirement of a remote measurement endpoint is indicated in the Remote column.
Here, ’∼ ′ indicates the requirement of a measurements server providing content without
measurement functionality. Finally, the applicable network domain is given. This catego-
rizes measurement approaches depending on their applicability to fixed, mobile or any
network domain.

The last column indicates, whether a model of the observed behavior is created. Ap-
proaches indicated with ’∼’ provide data to model the behavior, but do not explicitly
create a model.

The network measurements as described in Chapter 5 make use of the established
measurement approaches. Besides measuring the latency and throughput of the cellular
network, also the availability and performance of WiFi networks is measured. Further-
more, also traceroute measurements are integrated into the measurement application to



46 related work

determine the routes taken through the network. Based on the collected data, models of
the network performance are generated for further processing in the energy evaluation
environment.

3.3 comparison of mobile network optimization approaches

Detailed knowledge of the cellular network performance is the basis for further improve-
ments and optimizations thereof. Here, numerous approaches have been presented. Still,
as the focus of this work is the analysis and optimization of energy efficiency in cellular
communication networks, the approaches presented in the following are limited to the
ones considering both performance and energy efficiency.

The approaches also presenting power models of mobile device and optimizations
based thereon [QWG+10; PEK11; HQM+12; CYM13b; CYM13a; IWF13; LCN+14] are al-
ready described in Section 3.1.3. Additional energy conserving approaches not providing
a power model [LHR+12; GPN13; GK15] are summarized in the following.

Le et al. [LHR+12] analyze the performance and energy consumption of MPTCP. Based
on their findings they propose the modification of MPTCPs load balancing algorithms to
reduce the energy consumption and name it ecMTCP. They build their optimization on
simulations including a relatively crude energy model neglecting ramp and tail energies
as are common in cellular networks. Their simulated network conditions show similar
performance, and thus do not realistically reflect common network parameters. Extend-
ing the proposed model with more realistic energy and network models likely provides
further interesting insight into the behavior of MPTCP.

Gautam et al. [GPN13] empirically analyze the energy consumption of video consump-
tion on smartphones. Based on their analysis of the cost of different transmission modes
(i.e. WiFi download, WiFi streaming, 3G streaming), they propose to download videos on
WiFi before being requested by the end user. This approach is realized by implementing
a background service periodically checking the user’s video subscriptions and download-
ing the respective videos when connected to a WiFi network. Thus, energy savings up to
84% compared to 3G streaming are possible. Still, their evaluation shows some flaws. The
downloaded videos are indicated to the user, thus likely affecting the decision on which
videos to watch. Further, notifications indicate the availability of new content, thus likely
affecting the probability of further video consumption. Nonetheless, the presented work
shows a significant potential of energy savings using WiFi offloading.

Gabale et al. [GDK+13] focus on the problem of frequent polling or App notifications
on the energy consumption of smartphones. Based on traffic traces of real users, they an-
alyze the frequency of network interactions caused by background traffic. The number of
these requests is reduced by introducing a virtual App server or virtual notification server
between App and cloud service, limiting connectivity at idle times. Thus, the power con-
sumption of the device is significantly reduced (i.e. 50%), which is determined using the



3.3 comparison of mobile network optimization approaches 47

Ta
bl

e
3
.2

:C
om

pa
ri

so
n

of
ce

llu
la

r
ne

tw
or

k
pe

rf
or

m
an

ce
m

ea
su

re
m

en
t

to
ol

s,
te

ch
ni

qu
es

,a
nd

ap
pr

oa
ch

es
Pu

bl
ic

at
io

n
Pa

ra
m

et
er

s
C

la
ss

ifi
ca

ti
on

R
ef

er
en

ce
Sh

or
t

Te
ch

.
Lo

c
Ti

m
e

Si
gS

tr
R

TT
TP

R
ou

te
Te

ch
n.

M
ea

s.
lo

c
D

ur
at

io
n

C
os

t
A

cc
.

R
em

ot
e

D
om

ai
n

M
od

el

Measurement

Tool

[P
os

8
1

]
Pi

ng
an

y
-

-
-

x
-

-
ac

t
de

v
sh

or
t

lo
w

va
r

-
an

y
-

[T
ra

]
Tr

ac
er

ou
te

an
y

-
-

-
x

-
x

ac
t

de
v/

sr
v

lo
ng

lo
w

va
r

x
an

y
-

[I
pf

1
0

]
Ip

er
f

an
y

-
-

-
-

x
-

ac
t

de
v

lo
ng

hi
gh

hi
gh

x
an

y
-

[M
BG

0
0

]
TO

PP
fix

ed
-

-
-

-
x

-
ac

t
de

v/
sr

v
lo

ng
m

ed
iu

m
hi

gh
x

fix
ed

-

[J
D

0
2

]
Pa

th
lo

ad
fix

ed
-

-
-

x
x

-
ac

t
de

v
lo

ng
hi

gh
hi

gh
x

fix
ed

-

[R
R

B+
0

3
]

Pa
th

C
hi

rp
fix

ed
-

-
-

-
x

-
ac

t
de

v/
sr

v
lo

ng
m

ed
iu

m
hi

gh
x

fix
ed

-

[T
C

D
0

3
]

Ip
er

f+
w

eb
1

0
0

an
y

-
-

-
x

x
-

ac
t

de
v

va
r

lo
w

m
ed

iu
m

-
fix

ed
-

[A
C

O
+0

6
]

Pa
ri

s-
tr

ac
er

ou
te

an
y

-
-

-
x

-
x

ac
t

de
v/

sr
v

lo
ng

lo
w

hi
gh

-
an

y
-

Technique

[R
H

R
0

8
]

In
-n

et
w

.M
ea

s
3
G

/4
G

-
-

-
x

-
-

ps
v

n/
w

va
r

lo
w

hi
gh

x
an

y
-

[G
PS

+1
0

]
In

-n
et

w
.M

ea
s

3
G

-
-

-
x

x
-

ps
v

n/
w

va
r

no
ne

va
r

x
m

ob
-

[H
Q

G
+1

3
]

En
d-

to
-e

nd
4

G
-

-
-

x
x

-
ac

t
de

v+
n/

w
va

r
va

r
hi

gh
x

m
ob

-

[M
BF

+1
6

]
En

d-
to

-e
nd

4
G

-
-

-
x

x
-

ps
v

de
v

lo
ng

no
ne

va
r

-
m

ob
-

Comparison

[P
M

D
+0

3
]

TP
m

ea
s

cm
p.

an
y

-
-

-
x

x
-

ac
t

de
v

lo
ng

va
r

n/
a

∼
fix

ed
-

[D
A

B+
0

6
]

TR
ac

cu
ra

cy
an

y
-

-
-

x
-

x
ac

t
de

v/
sr

v
lo

ng
lo

w
n/

a
-

an
y

-

[L
H

H
0

8
]

TR
cm

p
an

y
-

-
-

-
-

x
ac

t
de

v/
sr

v
lo

ng
lo

w
n/

a
-

an
y

-

[L
SR

+1
2

]
La

te
nc

y
cm

p
3
G

/4
G

-
-

-
x

-
-

ac
t

n/
w

va
r

m
ed

iu
m

n/
a

x
m

ob
-

Analysis

[B
R

F1
4

]
TP

+L
at

en
cy

4
G

-
-

-
x

x
-

ac
t

de
v+

n/
w

n/
a

n/
a

hi
gh

x
m

ob
-

[L
M

W
+1

5
]

La
te

nc
y

de
vi

ce
-

-
-

x
-

-
ac

t
de

v+
n/

w
n/

a
n/

a
hi

gh
x

m
ob

∼

[V
SK

1
5

]
H

ig
he

r
la

ye
r

ef
fe

ct
s

ce
llu

la
r

-
-

-
x

x
x

ac
t

de
v

n/
a

n/
a

hi
gh

x
m

ob
-

Netw.Mapping

Scientific

[Y
K

H
0

8
]

TP
pr

ed
(g

eo
)

3
G

x
x

x
x

x
-

ac
t

de
v

lo
ng

hi
gh

hi
gh

x
m

ob
-

[W
S1

0
]

TP
an

al
y.

(n
ew

n/
w

)
4

G
x

x
x

x
x

-
ac

t
de

v
lo

ng
hi

gh
hi

gh
x

m
ob

-

[Y
K

H
1

1
]

TP
,R

TT
,o

n
tr

ai
ns

3
G

x
x

x
x

x
-

ac
t

de
v

lo
ng

hi
gh

hi
gh

x
m

ob
-

[P
W

1
2

]
R

T
T,

TP
(g

eo
)

3
G

x
x

x
x

x
-

ac
t

de
v

lo
ng

hi
gh

hi
gh

x
m

ob
-

[S
SM

1
3

]
R

TT
,T

P
(g

eo
)

4
G

x
x

x
x

x
-

ac
t

de
v

lo
ng

hi
gh

hi
gh

x
m

ob
-

Comm

[O
pS

]
Si

gS
tr

.,
R

TT
,T

P
(g

eo
)

ce
llu

la
r

x
x

x
x

x
-

ac
t

de
v

lo
ng

hi
gh

hi
gh

x
m

ob
-

[S
en

]
Si

gS
tr

.,
R

TT
,T

P
(g

eo
)

ce
llu

la
r

x
x

x
x

x
-

ac
t

de
v

lo
ng

hi
gh

hi
gh

x
m

ob
-

O
ur

T
P,

la
te

nc
y

&
ro

ut
in

g
4

G
x

x
x

x
x

x
ac

t
de

v/
sr

v
lo

ng
hi

gh
hi

gh
x

m
ob

x



48 related work

power model presented by Huang et al. in [HQG+12]. Similar approaches are already be-
ing implemented by mobile OS vendors, urging developers to use their cloud notification
service, thus bundling notifications for a single device and minimizing wake-ups.

Other approaches focusing on the improvement of QoS and QoE while using energy
efficiency as an additional metric are discussed in the following. Nicholson et al. [NN08]
analyze the throughput of WiFi networks and develop an approach predicting the per-
formance for mobile users based on historical measurements and mobility patterns. By
knowing the current location and direction of movement, the performance of the network
can be predicted with a relatively high accuracy (i.e. within 10KB in 50% of time). They
evaluate their approach on WiFi networks within a campus scenario based on an extensive
data set. Thus, the feasibility of location-based network performance prediction based on
personalized mobility prediction is shown.

Balasubramanian et al. [BMV10] extend this approach by analyzing the possibility of of-
floading traffic from 3G networks to WiFi. They compare an adapted version of the above
algorithm with their own approach and an oracle algorithm with perfect knowledge. Their
results show that WiFi offloading is possible in 10% of the time. By leveraging delay toler-
ance of applications, a 1min scheduling delay reduces the 3G traffic by half. Rathnayake
et al. [RPO+12] propose a similar approach using a central scheduler. The advantage of
this is the shared network probing cost. Still, for short network requests, an additional
call to the central server may defy its purpose. The authors of both publications mention
improving energy efficiency, but no analysis of the proposed algorithms considering this
aspect is included.

The prediction of cellular service quality is evaluated by Singh et al. [SOC12] based on
a multimedia streaming approach. By pre-fetching videos when the network throughput
is high, the QoE can be improved compared to conventional video streaming. Thus, short
outages are mitigated without causing stalling or requiring to adapt the video quality. The
proposed approach uses a centralized service predicting the network throughput based
on historical measurements and the projected route of the user. This approach is also
expected to be beneficial on energy consumption, but was not evaluated yet.

Orthogonal to these approaches, Ha et al. [HSJ+12] propose to dynamically price cel-
lular data. They add an indicator of the current price to the smartphone, thus letting
the user decide whether to use the cellular network or not. Thus, the network utiliza-
tion during peak periods can be reduced by exploiting price-sensitivity of end users. The
demand on the cellular network can thus be equalized, while simultaneously reducing
the cost of mobile networking for end users. Due to the avoidance of congestion in the
network, the energy consumption is expected to be reduced compared to conventional
network access, but was not analyzed. Similarly, Gabale et al. [GDK+13] adjust the pric-
ing of mobile data dynamically. Here, the prices of streaming video are adjusted based on
the current network demand. Their approach improves QoE in heavily loaded networks
while maintaining delivery guarantees. By exploiting delay tolerance of the end users,
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the same content may be consumed at a later time for a fraction of the cost during peak
hour. Similarly, Zhuo et al. [ZGC+13] adjust prices for general mobile data access, but
using a reverse auction mechanism. Simultaneously, they consider WiFi offloading to re-
duce the load on the cellular network. The proposed approach is evaluated based on user
traces. To be effective, all users of the network need to participate. However, the required
user interactions may hinder acceptance. The above approaches may also conserve energy
by reducing the demand on the network by shifting traffic to different times, locations,
and networks. Only the approach proposed in [GDK+13] may increase the energy con-
sumption of the mobile device by reducing the transmission rate to use the network to
capacity, thus prolonging transmission times. In all cases, a detailed analysis of the energy
consumption would be interesting.

Table 3.3 summarizes related work focusing on the reduction of energy consumption
(group Energy optimization) or improving network performance (group Performance). For
each publication also the name of the proposed approach, if available, is given in the
second column. The applicability, requirements, operation, and derived metrics for each ap-
proach are indicated in the following columns. Finally, the type of work (i.e. implementa-
tion (impl), measurements (meas), simulation (sim), or theoretical work (theor)) is indicated.
In the case multiple types are given a succession of these are used. For example in the
case ’meas/mod/theor’, first the network performance is measured, modeled, and then a
theoretical model of the proposed approach applied to derive the final conclusion. The
main method used in the approach is summarized in the last column.

The applicability defines the network technologies (Netw. Tech) used in the analysis, im-
plementation, and verification of the described approaches. The networks and combina-
tions thereof are indicated as derived from the respective publication. The traffic type
is given in the column Traffic. Possible options are that any traffic is handled by the ap-
proach, it focuses on background traffic, CBR traffic, bulk data transfers, or optimizes
video delivery only.

The requirements are first identified by the software modifications required on the mobile
device (Mob s/w). Possible are the implementation of a traffic management service (Tm-
svc), the use of MPTCP, the inclusion of a proxy, or the use of an App, if interactions with
the end user are required. The requirement of a server (column Srv.), the dependency on
the current location (column Loc.), or user interactions (column Int.) are indicated in the
respective columns.

The operation of the analyzed approaches summarizes how the traffic is modified or
handled. Here, data transfers may be scheduled, offloaded to other networks (e.g. WiFi), or
fast dormancy (column Fast d.) for interfaces with a long tail duration may be used. Often,
also a combination of several methods is used, leading to the overall energy savings as
reported in the respective works.

The metrics used in the evaluation are indicated in the respective columns. Approaches
optimizing QoS, QoE, or cost of the data transfers are marked in the respective column.
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Here, if a metric is only discussed or is a secondary optimization goal, the respective
column is marked with a ’∼’.

The approaches discussed in this section analyze their energy and performance gains on
given settings and assumptions. The most common claims are to improve the performance
or reduce the energy consumption by a percentage number over a non-modified system.
Still, the cellular network environment changes, new technologies become available, net-
work parameters are changed. Thus the assumed reference for these studies cannot be
reestablished. Further, the behavior of Apps, and user interactions, are highly varying
and certain to change over time. Hence, the comparability of the different approaches and
implementations as proposed in the respective publications is not given. Thus, also their
claimed savings are omitted.

A possible solution to the above problem is a unified evaluation framework. Thus, im-
plementations of the different approaches may be compared based on the same traffic
patterns, network configuration and performance, and energy models. Comparing these
approaches in this way allows network operators and mobile OS vendors to choose the
most promising approaches before implementation.

The work presented in Section 6.1 compares the energy efficiency of selected approaches
([IWF13; HQM+12]) to analyze their performance using recorded user-traces. Thus, the
comparability of approaches, which is conventionally not given, is established.

3.4 differentiation from related work

The publications presented in the previous sections summarize the related work in the
areas covered by this thesis. The analysis and optimization of the energy consumption of
communication networks requires knowledge of the related work concerning the power
consumption of the involved devices. Hence, Section 3.1 summarizes related publications.
On mobile devices, the energy consumption also depends on the throughput of the avail-
able networks, defining the time the modems must be active. Hence, also the related work
covering the performance measurement of wireless networks, namely RTT and through-
put is reviewed. These are described in Section 3.2. Finally, mobile energy optimization
approaches are compared in Section 3.3 to derive promising directions for further research
in current networks.

The analysis of related work regarding the power consumption of fixed network entities
led to the conclusion that for emerging network management approaches like OpenFlow
or NFV the required energy models are missing. Examples are the deployment of vir-
tualized services on HGWs, the dynamic rerouting of traffic in the case of SDN, and
uninterrupted live streaming on smartphones using MPTCP. Hence, exemplary power
models for the different device classes are measured, thus allowing the estimation of the
cost of different network optimization described in Chapter 4.
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The power consumption of mobile devices depends besides the built in modems also
on network throughput and latency. Hence, to analyze the effectiveness of proposed ap-
proaches and derive promising further optimizations, the quality of both WiFi and cellular
networks at the same location is required. The literature review shows that the required
data is not available. Still, suitable measurement approaches are presented. Hence, mea-
surements of the cellular service quality based on these approaches are conducted and
presented in Chapter 5. Besides providing the required data for the energy estimation,
the measurements show the previously unknown influence of user association to point of
presence (PoP) of the cellular operator on the measured end-to-end latency.

For the reduction of the energy consumption of mobile data access, a number of differ-
ent approaches are presented in related works. Still, their energy savings are compared to
an ’unmodified system’, which is not clearly specified. Thus, currently no sound compari-
son of their effectiveness is available. Neither can thus their potential for further improve-
ment reliably be determined. Consequently, the most promising of these approaches are
compared in Section 6.1 based on the measured energy models and network performance
to derive promising further optimizations. Also the structure and traffic management deci-
sions in the fixed network affect the energy consumption of mobile devices. Hence, based
on the measured power models and optimization approaches of fixed network structure
as available in literature, the implications and potential energy savings are discussed in
Section 6.2.



4
P O W E R C O N S U M P T I O N O F N E T W O R K E N T I T I E S

Performance is an important aspect of communication networks. Still, over the re-
cent years, also their energy consumption of seen considerable interest. This is also

termed green networking. For a cellular operator, already 72% of the electricity are con-
sumed by cellular base stations [CMo12]. Similarly, cloud computing already consumes
more energy than, for example Germany or India [Mil13]. Routing, switching, or for-
warding of traffic consumes 250 TWh to 400 TWh yearly [Mil13], which relates to ap-
proximately 20% of the overall energy consumed by ICT. Thus, by reducing the power
consumption of the required network equipment, considerable reductions of operational
expenditure (OPEX) can be achieved.

One possibility of reducing OPEX while improving the QoS is the placement of services
on augmented HGWs. These are currently only lightly used, but provide constantly in-
creasing capabilities. Thus, content can be cached close to the end user to be served with
low delay and high throughput [LPB+15]. Additionally, PEPs may be instantiated, reduc-
ing the retransmission delay of network requests by splitting TCP connections between
the fixed and wireless network domains. Deploying these services is becoming possible
by using the emergent technologies of SDN and NFV. Still, these functions require storage
and processing capabilities at the respective node, which is not commonly available on
HGWs. Hence, the energy cost is in the following exemplary determined based on SBCs,
whose functionality may, in a similar form, be integrated into future HGWs. Thus, the esti-
mation of capabilities and energy consumption of future augmented HGWs may already
be analyzed based on empirical measurements using the presented power models.

Power savings in the fixed network may also be achieved using intelligent traffic and
link control on intermediate switches and routers (e.g. [YWX+13]). By switching off un-
used or lightly used links during less demanding periods of network activity, energy can
be saved within the core network [CTM+13]. As the power consumption of conventional
switches and routers is already well known (e.g. [HDP09; GGS04]), the advanced capa-
bilities of OpenFlow switches and their influence on energy consumption is analyzed in
the following. By exploiting the increased capabilities of the network, dynamic load bal-
ancing, service placement, and in-network traffic modification becomes possible. Thus,
additional energy savings are expected. Still, to optimize these services in respect to en-
ergy consumption, well-funded power models are required, which are presented in the
following.

In the mobile sector, continuous connectivity is an ongoing requirement. MPTCP pro-
mises to provide uninterrupted connectivity using multiple wireless interfaces [PDD+12].

53
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Still, using multiple interfaces in parallel increases the overall power consumption. At
the time of writing, already a number of studies are available, analyzing the available
MPTCP implementation [PDD+12; LCN+14] for limited scenarios, or proposing optimiza-
tions based on theoretical considerations [CYM13b]. Still, no conclusive power models de-
scribing the behavior for different load distributions were available. Hence, power models
for different data rates, load distributions, and devices are generated, thus providing the
means to model and optimize the power consumption for a wide range of usage scenarios.

Based on power models for conventional networking hardware as presented in litera-
ture, and the additional power models presented here, power optimizations of the full
network become possible. Clearly, differences between individual devices are to be ex-
pected, but the general behavior of a device class can reasonably be assumed to be similar.
The models presented here extend the previously published power models by a new de-
vice class (e.g. SBCs), or the analysis of new technologies (e.g. OpenFlow, MPTCP).

From these observations, the following the research questions are derived, targeting the
power consumption of the above presented device classes:

RQ 1.1 What is the energy cost of decentralized caching and computational
offloading using SBCs and how can it be determined?

RQ 1.2 How does the energy efficiency of hardware and software OpenFlow
switches compare and what are their respective benefits?

RQ 1.3 What is the cost of increasing reliability and throughput of mobile
communication using MPTCP for constant bitrate streaming?

The power consumption of decentralized caching and computing using SBCs is ana-
lyzed on the Raspberry Pi and a number of its successors. Hence, first the power con-
sumption of the platform stressing the individual components is analyzed, from which
models of the power consumption under load are derived. These are verified by serving
content from the local device and comparing the measured power consumption with the
estimates derived using system monitoring on the devices in combination with the pre-
sented power models. The detailed measurement, modeling and verification procedure is
described in Section 4.1.

The throughput and power consumption of OpenFlow switches is analyzed for dif-
ferent operating states as well as OpenFlow operations. Differences between hardware
and software implementations are analyzed by comparing the power consumption of a
commercial 48-port managed switch and an instance of Open vSwitch running on a bare
metal server. Thus, the performance of these switches are measured for the full set of
matches and actions defined by OpenFlow version 1.0, from which their power consump-
tion is derived. The respective measurements and resulting power models are described
in Section 4.2.
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The focus when analyzing and modeling the power consumption of smartphones is put
on the energy consumption of the available network interfaces (e.g. WiFi and cell interface)
and connection technologies (e.g. 3G, 4G) for different data rates. Therefore, dedicated
measurements are conducted on two devices under different traffic load and interface
settings. Furthermore, the energy consumption of the emerging technology MPTCP is an-
alyzed for the scenario of constant bit-rate streaming. The results of power measurement
and modeling are described in Section 4.3.

Finally, Section 4.4 compares the presented approaches, gives recommendations on their
use, discusses further optimizations, and recommends promising future research direc-
tions further reducing the energy consumption of ICT.

4.1 power consumption of single-board computers

Single board computers like the Raspberry Pi and its many successors and derivatives
show large popularity in the last years, owed to their high level OS, high computational ca-
pacity, and easy extensibility via general purpose input output (GPIO) pins. Although the
original Raspberry Pi was originally developed for teaching, it is also widely enjoyed by
hobbyists. Also in research, these devices show increased popularity, e.g. [VM14; TWJ+13;
WE15; PCK15]. Main reasons are, besides their versatility, the small form factor, low price
(∼US $35), and low energy consumption.

The Raspberry Pi and its derivatives are already used in a variety of projects. The most
immediate example is the Glasgow Raspberry Pi Cloud [TWJ+13], creating a cloud envi-
ronment for teaching. Papageorgiou et al. [PCK15] use the Raspberry Pi as a HGW for the
IoT, aggregating sensor data. Vujovic et al. [VM14] propose to directly use it as a sensor
node, expanding capabilities on the cost of energy consumption. Other usage examples
are the extension of the cloud to the edge of the wired network [FLG+16; LPB+15], thus
improving latency and throughput to (mobile) end users. Withnell et al. [WE15] use it in
combination with a mobile power bank as mobile MPTCP node, thus avoiding the limi-
tations posed by other mobile OSs. But also the application of SBCs in high performance
computing are discussed [SRS16] due to their low power consumption.

Considering the large increase in computational capabilities, also the replacement of
conventional x86/64 systems in power limited environments may be considered. Exam-
ples are the replacement of conventional servers at popular hotspots for task offloading as
proposed by Satyanarayanan et al. [SBC+09]. Furthermore, the comparison of the energy
consumption of task offloading not only for mobile devices, but the full deployment as
proposed by Meurisch et al. [MSS+15] becomes increasingly interesting. Hence, the fol-
lowing section describes the modeling of the power consumption of a number of popular
SBCs. Based on these models, further optimizations of existing and future deployments
become possible.
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(a) Measurement setup

(b) Electrical setup

Figure 4.1: Schematic and electrical setup of the SBC power measurements

The following section is based on [KGH14]. Section 4.1.1 describes the setup used to
measure the power consumption under different usage scenarios. Section 4.1.2 describes
the derived measurements and the behavior of the examined devices. Section 4.1.3 de-
scribes the modeling approach and the derived power models. Finally, Section 4.1.5 sum-
marizes the findings, concludes the section and gives an outlook on future work.

4.1.1 Measurement Setup

Generally, the power consumption of any electric equipment can be measured by inserting
a measurement shunt in the power line and measuring the supply voltage and voltage
drop over the shunt. In the case of the SBCs, this is done between power supply and
device, thus eliminating the inefficiencies of the power supply from the measurements.
The schematic setup is depicted in Figure 4.1a. For the electrical measurements a custom
built board was used, inserting a measurement shunt into the 5V line. The schematic is
given in Figure 4.1b.

The power consumption is calculated by multiplying the supply voltage Us and the
current Is. Hence, the derived power is

P = Us · Is, (4.1)

where the current drawn by the device Is is defined by the voltage drop Um over the
measurement shunt Rm

Is =
Um

Rm
(4.2)
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Hence, the accuracy of the measurements is defined by the resolution and quality of the
two voltage measurements and the accuracy of the measurement shunt.

To maximize measurement accuracy, the optimal resistor must be chosen. The accuracy
is maximized, by increasing the size of the resistor, thus increasing the voltage drop.
Still, the maximum size of the resistor is limited. First, and most importantly, the power
consumption of the DUT is not constant but highly variable. Hence, also the equivalent
resistance of the device is highly varying. Fitting a measurement shunt to one of the
possible states prevents usage in others. If, for example, the measurement shunt is too
large, the voltage drop reduces the voltage Us available at the DUT below the minimum
threshold required for operation. Using a small resistor, these problems can be mitigated
on the cost of accuracy. A smaller resistor causes a smaller voltage drop, thus increasing
the error when sampling the resulting voltage drop Um.

According to the USB specification the voltage of a USB high power port must be in
the range (4.75V to 5.25V) [Usb00]. Considering a maximum power draw of 10W, the
maximum size of the resistor limiting the voltage drop to 200mV can be calculated by

Rm,max =
Us

Is
−

Us

Pmax/Us
=

5V

10W/5V
= 200mΩ. (4.3)

Here, Ud is the remaining voltage over the DUT while running the test. Hence, a precision
resistor with a standard value of 100mΩ and accuracy of 1% was chosen.

The measurement hardware is a Measurement Computing USB-1608FS-Plus USB mea-
surement card. It features a resolution of 16 bit on each channel and simultaneous sam-
pling with a rate of 10 kHz on all channels. The voltage range of each channel can be
configured independently to a range of ±1V , ±5V , or ±10V . The ranges of interest are
±10V for the monitoring of the supply voltage Us, and ±1V to record the voltage over
the shunt. Here, smaller ranges would be preferable, but are not available on affordable
hardware. The errors in the respective ranges are given in the manual1 as 0.68mV in the
1V range and 5.66mV in the 10V range.

More interesting is the minimum voltage drop caused by the DUTs while running. This
is where the resolution of the measurement card results in the highest error. The minimum
voltage drop caused by the current drawn by the DUTs while idle is 30mV . Hence, the
maximum relative error of the measurements can be calculated as

max
(
∆P

P

)
= max

√(∆Is
Is

)2

+

(
∆Us

Us

)2
 (4.4)

Here, the maximum error on the voltage channel is calculated by

max
(
∆Us

Us

)
=

max(∆Us)

min(Us)
=
5.66mV
4.8V

= 0.12% (4.5)

1 http://www.mccdaq.com/PDFs/manuals/USB-1608FS-Plus.pdf accessed 2017-01-18

http://www.mccdaq.com/PDFs/manuals/USB-1608FS-Plus.pdf
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and the error on the current channel by

max
(
∆Um

Um

)
=

max(∆Um)

min (Um)
=
0.68mV
30mV

= 2.26%. (4.6)

Factoring in the accuracy of the measurement shunt, the resulting error on the current
channel is

max
(
∆Is

Is

)
= max(

√
0.02262 + 0.012) = 2.47% (4.7)

leading to an overall error of

max
(
∆P

P

)
= max(

√
0.02472 + 0.00122) = 2.47%. (4.8)

The resulting error of 2.47% is the upper bound of errors and includes both systematic
and stochastic errors. By averaging over a larger number of samples, the stochastic error
is reduced. Still, this leaves the systematic error, which may be caused by linear offsets e.g.
in the power meter. Hence, considering the maximum error to be below 2.5%, a sufficient
accuracy for the selected measurement task is achieved.

Another possible error source is the sampling frequency of the measurement card. The
maximum supported rate for a single channel is 10 kHz. This frequency is deemed to
be sufficient for the measurement task, as it can reasonably be expected that the power
conditioning on the DUTs includes filtering of the input voltage, smoothing the current
draw over a few 100ms. Hence, the chosen measurement approach is considered feasible,
and measurements are recorded with the maximum supported sample rate.

The measurements are recorded on a PC using custom software based on the DAQFlex
API2, for which Android libraries are available from the vendor. Based on these, a Java
application is written, polling the measurement data from the measurement card and writ-
ing these into a CSV file. Thus, a versatile measurement solution is available, facilitating
measurements with different OSs. Besides recording the raw samples in a file, the software
also supports on-the-fly conversion and aggregation of the data, thus largely reducing the
size of recorded data sets and post-processing efforts. Samples can be averaged over a con-
figurable interval and the power consumption depending on the configured measurement
shunt calculated.

The same personal computer (PC) is used for controlling the measurements and as re-
mote endpoint for throughput measurements. Using the same machine is feasible, as the
performance of the DUTs is generally lower. Thus, no negative influence on the measure-
ment accuracy is expected. Still, during test runs the system utilization is periodically
checked to ensure that no resource on the measurement PC is close to capacity.

As the goal of this study is to analyze the power consumption of the individual compo-
nents of the SBCs, and the independent measurement of the individual components is not

2 http://www.mccdaq.com/solutions/DAQFlex-Solutions.aspx accessed 2017-01-18

http://www.mccdaq.com/solutions/DAQFlex-Solutions.aspx
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Listing 4.1: Source code to keep the CPU busy

int main(int argc, char* argv[]){

volatile int x=0;

volatile int y;

while(1){

y=x+x;

x++;

}

return 0;

}

easily possible, a regression based approach is chosen. Hence, the DUT is put into differ-
ent utilization and energy states, for each of which the state of the device and the power
consumption are recorded simultaneously. Targeted components are CPU, random access
memory (RAM), SD-card, and network I/O, both for Ethernet and WiFi. For each of these,
the utilization is recorded and later correlated with the measured power consumption.

The utilization of the individual components is obtained by monitoring the /proc file
system. This supports a maximum update frequency of 1Hz. Compared to the power
measurements, this is a comparatively low resolution. To collect a sufficient number of
samples in each state, the DUT must be kept stable for a considerable duration. The deci-
sion to use the /proc file system is further influenced by the overhead of the measurement.
As each measurement affects the accuracy of the recorded values, a low overhead is re-
quired. In particular on the SBCs, where the system monitoring can only run on the DUT,
the influence of additional monitoring tasks must be minimized to not affect the quality
of the measurements.

The influence of the CPU utilization on the power consumption is analyzed by stress-
ing the CPU in incremental steps. For this, two different tools are used. The load on the
CPU is generated by a simple C program, adding numbers. The source code is given in
Listing 4.1. Clearly, this is not a comprehensive benchmark. Still, considering the variety
of optimizations conducted when designing processors and their extensions, this serves
as a baseline benchmark. More sophisticated benchmarks may give a more accurate view
of the actual performance, but also increase the resulting model complexity due to depen-
dencies on the load patterns.

The load on the CPU is limited using cpulimit3. Contrary to the published version of
the tool limiting the load of a configured process to a given CPU percentage, here the
overall CPU utilization needs to be limited. Still, as only one process on the DUT actively
creates load, the adaptation is simple. The only modification required is changing the

3 http://cpulimit.sourceforge.net/ accessed 2017-01-19

http://cpulimit.sourceforge.net/
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load monitoring from a single process ID (PID) to the system utilization. The remaining
functionality of the tool is left unchanged.

Besides knowing the approximate CPU utilization from the test setup, the actual uti-
lization is also monitored using a custom load monitoring tool. This polls the /proc file
system once every second to fetch the user, nice, system, and idle utilization of the CPU. To
keep its interference to a minimum, the monitor stores the recorded values in a RAM disk,
thus preventing any influence of SD-card writes on the power consumption. The system
utilization is read from /proc/stats, containing different information on the CPU usage.
The first line summarizes the CPU utilization over all cores. Then, for each logical CPU
core one additional line follows. The utilization is accounted in a granularity of 1/100 s
counting the time spent in the different categories user, nice, system, and idle and others as
defined for the given architecture. Hence, the busy value cbusy is calculated as

cbusy[t] = cuser[t] + cnice[t] + csystem[t] (4.9)

over the summary line. As the CPU utilization values are counters, these are converted
to a percentage by subtracting the values from the previous observation and normalizing
by the overall number of cycles in a given interval. Hence, the relative CPU utilization is
defined as

u[t] =
cbusy[t] − cbusy[t− 1]

ctotal[t] − ctotal[t− 1]
. (4.10)

Still, to limit influence of the measurements on the performance of the DUT, only the raw
data is collected and the relative CPU utilization is calculated during the evaluation only.

For the throughput tests, iperf is used. The upload is measured by running an iperf
server on the measurement PC. For the download measurements the server is started on
the DUT. The problem of TCP slow start is mitigated by using UDP for the throughput
measurements. Further, target data rates can be configured, closely approximating the
desired network utilization.

One drawback of iperf is that it generally uses random data for its benchmarks. Hence,
the client creates a considerably high CPU load. This effect of the final power consumption
is mitigated by also monitoring the CPU utilization during the throughput tests. Thus, the
influence of any CPU load, also caused by other tasks, is eliminated in the regression step.

Similar to the CPU monitoring, also the network monitoring is conducted using a com-
piled binary reading the network utilization from /proc/net/dev. These values are stored
in RAM and when the measurement has finished, written to the SD-card. Depending on
the type of the test (e.g. Ethernet/WiFi), the utilization of the respective interface is moni-
tored. Monitoring these values further ensures that the actual data rate on the interface is
included in the analysis instead of the configured rate of the benchmark.

The WiFi measurements show some peculiarities in that one end of the connection has
to provide the AP functionality, meaning that it coordinates the connection on medium
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access control (MAC) layer and sends periodic broadcasts. As this is expected to cause
additional overhead on the DUT, the AP functionality is run on the measurement PC.
Further, the integrated WiFi chip set on the Raspberry Pi 3 does not support running a
WiFi AP at all. Still, as the measurements show, no noteworthy power saving mechanism
is visible on most devices when evaluating the collected data. Hence, running the AP
functionality on the SBCs, no significant change in power consumption is expected, but
for scientific rigor a detailed analysis would be required.

The accuracy of the tests is maximized by shutting down all non-essential processes
running on the DUT. Essential processes required for the tests are udev, the dynamic
host configuration protocol (DHCP) client, dbus, and the secure shell (SSH) daemon. By
minimizing the number of running processes, also the ones only active periodically, the
accuracy of the load limiting script can be maximized by minimizing external interference,
thus minimizing the variance as observed in the measurements. Naturally, during the
measurements, also system monitoring and load generation scripts are running.

Test measurements have shown that RAM utilization does not measurably affect the
power consumption of the DUT. Tests of the SD-card power consumption were aborted,
as the load on the cards was too high. Several cards failed due to the demand of these
tests. Preliminary observations have shown that large parts of the performance seem to
be related to caches, while sustainable write rates were comparatively low. The power
consumption of the DUTs was not visibly affected by these.

As measurements are conducted on both the DUT and a measurement PC simultane-
ously also the alignment of the clocks must be considered. To assure maximum accuracy,
the clock of the DUT is synchronized to an network time protocol (NTP) server running
on the measurement PC. Still, requirements on the clock synchronization are less strin-
gent considering the low sampling rate of the system monitoring on the DUT. Further,
as the device is kept in a stable state, a slight misalignment between timestamps can be
tolerated. To assure high measurement accuracy, the monitoring duration is configured to
exceed the desired test duration by a few seconds, such guaranteeing that the device is in
a stable state before samples to be used in the evaluation are recorded.

The devices measured and modeled over the course of the study are the Raspberry Pi,
Raspberry Pi 2, Raspberry Pi 3, as well as the Odroid C1, Odroid C2, and the Cubieboard
v3 for reference. The details of these devices are summarized in Table 4.1. The processors
range from a 700MHz ARM v6 on the original Raspberry Pi to a quad core ARM v7

with 1.5GHz on the Odroid C1 and C2. Similarly, the RAM ranges from 512MB on the
Raspberry Pi to 2GB on the Cubieboard v3 and Odroid C2. The network interfaces are
fast Ethernet types on the Raspberry Pi family and Gigabit interfaces on the other devices.
The Cubieboard v3 and the Raspberry Pi 3 have a built in WiFi chip, which is used for
throughput measurements. On the remaining devices the TP-Link TL-WDN 3200 USB
dongle is used, except on the Odroid C2, where no suitable driver for the 64-bit OS was
available.
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Table 4.1: Overview of the selected single board computers
Raspberry Pi B Cubieboard v3 Odroid C1 Raspberry Pi 2 B Odroid C2 Raspberry Pi 3 B

Release Year 2/2012 10/2012 12/2014 2/2015 02/2016 02/2016

CPU Type ARM1176JZF-S ARM Cortex-A7 ARM Cortex-A5 ARM Cortex-A7 ARM Cortex-A53 ARM Cortex-A53

Instruction Set ARMv6 ARMv7 ARMv7 ARMv7 ARMv8 ARMv8

Number cores 1 2 4 4 4 4

Processor Freq. 700MHz 1 GHz 1.5 GHz 900 MHz 1.5 GHz 1.2 GHz

RAM 512 MB 2 GB 1 GB 1 GB 2 GB 1 GB

Ethernet FE GbE GbE FE GbE FE

WiFi TL-WDN3200 BCM43362 TL-WDN3200 TL-WDN3200 — BCM43438

Based on the initial idea for the Raspberry Pi of supporting teaching activities, com-
paratively powerful devices have emerged, still fulfilling the requirements of the original
Raspberry Pi, but largely extending possibilities for other applications. Popular usage ex-
amples are media centers or home servers. Here, the different SBCs reveal their particular
strengths. The Cubieboard v3 as one of the earlier SBCs provides a serial ATA (SATA)
port. Combined with the Gbit network interface, it may serve as an energy efficient file
server. Contrary the Odroid family, being largely based on mobile SOCs, provides ex-
tended graphical capabilities, making it a reasonable choice for a media center. All devices
provide GPIO pins, following their initial idea of supporting easy and versatile extensibil-
ity to the end user.

4.1.2 Measurements

The measurements run on the DUT consist of CPU and network performance tests. The
influence on power consumption of the CPU is measured and later analyzed in a granu-
larity of 10%. The network I/O related power consumption is measured for each interface
in steps of 10Mbps up to a rate of 100Mbps. For the devices nominally supporting data
rates up to 1Gbps, additional measurements in steps of 100Mbps up to the maximum
rate of 1Gbps are conducted. The data on the devices and the measurement PC is col-
lected with the setup as described above.

Before the tests are started, the clocks are synchronized using NTP. Then, all non-
essential services on the DUTs are shut down. After that, the desired tests are configured
on the device. All this is coordinated from the measurement PC via SSH, thus allowing a
high degree of automation. The tests are started with a configurable delay, allowing the
experimenter to adjust environmental parameters as required. This is mainly the removal
of the Ethernet cable in the case of CPU or WiFi measurements, thus eliminating the effect
of background activity on the measured power consumption. After the tests are finished,
another script is used to collect the system monitoring files from the DUT and store them
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depending on the device model and measurement type on the local machine for later
processing.

Due to the comparatively low sampling frequency of the system monitoring, a trade-
off between measurement duration and accuracy needs to be found. To keep the overall
measurement duration manageable, a test duration of 900 s (e.g. 15min) was selected.
Hence, for each operating state of the device 900 samples are available, permitting a
meaningful statistical analysis. Considering the number of tests to be run (e.g. 10 CPU,
20 or 40 Ethernet, and 20 WiFi), the overall measurement duration of a single DUT is
12.5h, or 17.5h. This makes profiling a single device possible within a single day, also
considering re-configuration delays between measurements.

As most of the measurements are automated, the required manual intervention is min-
imal. The Ethernet cable must be disconnected before the CPU measurements, then re-
connected for the re-configuration of either WiFi or Ethernet test, and then another time
before the remaining series of measurements.

When measuring WiFi some additional considerations are required. As the electromag-
netic spectrum is a shared resource, and access to the 2.4GHz band is unlimited, de-
pending on time and location considerable interference can be observed. Particularly in
urban environments the number of WiFi, Bluetooth or otherwise wireless devices using
the 2.4GHz band is high. Hence, the measurements were conducted in a sub-urban en-
vironment, where the density of devices in the respective spectrum was comparatively
low. The WiFi channel was configured to use an otherwise unused channel. Further, the
measurements were run during the night, such further reducing the chance of additional
interference.

Figure 4.2 shows exemplary measurements of two different devices. Figure 4.2a depicts
the measured values for the CPU-related power increase of the Odroid C2. The horizontal
axis shows the observed CPU utilization, the vertical axis the resulting measured power.
The color density indicates the number of samples observed in each bin of 1Mbps width
and 10mW height. The plot contains all measured values. As is visible in the plot, the
variance of both CPU utilization and resulting power consumption is quite low.

Figure 4.2b shows the Ethernet download tests on the Odroid C2. The horizontal axis
indicates the data rate on the Ethernet interface. The vertical axis shows the power con-
sumption caused by the network transmission. This is calculated by subtracting the power
consumption as calculated based on the CPU power model according to the CPU utiliza-
tion as monitored when recording the network measurement. The plot shows the high
density of measurements for data rates below 100Mbps, and then the lower measurement
interval of 100Mbps for the higher data rates. The measurements for each measurement
fall in a quite narrow range. Still, compared to the configured rate, the observed rates are
slightly higher. This is caused by the configuration defining the application level payload
rate, while the system monitoring using the /proc file system returns the bytes transferred
on the MAC layer, including IP and MAC overhead.
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Figure 4.2: Exemplary power consumption and regression for CPU and Ethernet
measurements

4.1.3 Modeling of the Power Consumption

Based on the collected data, regression models are built to later estimate the power con-
sumption of the device based on the current operating state. Using system monitoring
values from the /proc file system is beneficial for two reasons. First, these values are read-
ily available on any device, thus eliminating the need to install additional monitoring tools
on the DUT. Secondly, as these values are collected by the system anyways, the additional
overhead on the DUT is minimized. Thus, the derived models can be run permanently,
with minimal effects on the performance of the SBC.

The energy consumption of the DUTs is modeled using polynomials with different
degrees. The analysis shows that for the CPU a linear model is sufficient. The network
performance in the case of Ethernet connections can often be modeled using a linear
model, but some SBCs show nonlinear effects. Hence, for generality, second order models
are selected. In the case of WiFi connections, generally second order models are required.

The derived power models for the selected DUTs are summarized in Table 4.2. The
first column indicates the function described by the formula in the second column, while
the third column gives the root mean square error (RMSE) of the estimate. Generally,
the error is lower for the CPU and Ethernet models compared to the WiFi models. This
is intuitive, as the potential error sources are more restricted as for CPU or Ethernet
measurements. Generally, the error is in the tens of mW, up to 178mW for WiFi uploads
on the Cubieboard.

Figure 4.3 compares the derived influence of CPU power consumption on the differ-
ent SBCs. Here, it must be considered that the devices show largely different processor
frequencies, number of processor cores, and hence number of possible computations per
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Figure 4.3: Comparison of the CPU power consumption of the analyzed platforms

unit time. This is caused by the selected measurement procedure, monitoring the relative
CPU utilization. Other approaches were also considered, but CPU performance compari-
son itself is a complex area. Further, the decision on using relative CPU utilization as read
from /proc/stat increases the versatility of the generated models.

The lowest idle consumption is visible on the Cubieboard with 1.16W. Under load, the
original Raspberry Pi and the Raspberry Pi 2 show the lowest energy consumption. The
highest idle consumption is observed on the original Raspberry Pi, while under load, the
Odroid C2 consumes the most energy, followed by the Cubieboard, Odroid C1, and Rasp-
berry Pi 3. The original Raspberry Pi shows the lowest increase in power consumption
under load, while the Odroid C2 shows the largest increase. When considering a highly
dynamic load, thus clearly the Odroid C2 should be chosen. Also regarding the higher
processor count and frequency, more tasks can be run on a single machine. Still, if only
less demanding tasks are to be run, and an original Raspberry Pi is sufficient, clearly this
or the Raspberry Pi 2 should be chosen, consuming approximately 800mW less than the
next energy efficient SBCs.

The power consumption of data up- and downloads on the available interfaces is com-
pared in Figure 4.4. For each interface, the model fitted to the measured data is plotted up
to the maximum observed rate on the respective interface. Thus, these plots, besides indi-
cating the power consumption of a specific rate, also indicate the limits of the generated
models.

Figure 4.4a compares the cost of downloads on the Ethernet interface of the respec-
tive DUT. An interesting observation is the negative influence of the Ethernet traffic on
the power consumption of the Raspberry Pi 3. This is caused by frequent higher power
estimates on the Pi 3 during CPU measurements. These cause the model, in particular
for lower CPU utilization to overestimate the idle consumption. As this higher power
consumption is not visible in the generated load, it must be caused by some low-level
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functionality not visible to the CPU monitoring. This may be periodic probing of avail-
able interfaces, for example Ethernet and WiFi, although configured to be off. The cause
for this was researched, but no reason was found. Still, as the RMSE of the Ethernet
measurements shows, the resulting model is comparatively accurate.

The cost of connecting an Ethernet cable to the different SBCs covers a range from a
few mW to almost 1W. This is caused by the different chip sets, their capabilities, and
configuration. On some devices (Raspberry Pi 2, Raspberry Pi 3, Cubieboard) these seem
to be always active, while on others (Raspberry Pi, Odroid C1, Odroid C2) these seem to
be activated on demand, consequently reducing the power consumption when idle.

The Ethernet throughput of the Cubieboard clearly does not satisfy expectations of a
Gigabit interface by barely supporting data rates of 100Mbps. Contrary, the Raspberry Pi
family reasonably fulfills specifications. Interesting are the high data rates of the Odroids
with achieved rates of 800Mbps to 900Mbps.

The Ethernet upload measurements (cf. Figure 4.4b) generally show a similar power
consumption to the download measurements. Still, in some cases the influence of the CPU
load seems to affect the resulting power models. This may be caused by the comparatively
high demand of random number generation on the DUT, thus influencing the resulting
range of the model. The lower upload rates on the Raspberry Pi line and the Cubieboard
v3 are indicative for this. Here, further investigations are recommended. Interesting is
the large difference in maximum data rates between the Odroid C1 and C2, nominally
featuring SOCs with similar performance. Still, the 64-bit OS achieves considerably higher
data rates. Here, an investigation on the influence of random number generators would
be interesting.

The WiFi measurements show a similar picture. The downloads in Figure 4.4c show
an idle consumption between 300mW and 1.1W. Under load, these increase up to 2.7W
in downlink direction. When uploading data (cf. Figure 4.4d), these increase to 3.5W.
Interesting here are the differences in observed packet rates. As download tests stress the
SBCs only minimally, the differences here must be accounted to the network monitoring
on the DUT, only registering successfully received packets, while set packets discarded
by the modem or lost on the link are counted. Hence, the download rates as given in
Figure 4.4c are definitely feasible, while the uplink measurements would also require
accounting of the received packets on the remote PC.

Using these power models, the power consumption of one of the modeled SBC can be
estimated by adding the power consumption of the individual components. Consequently,
the system power consumption is given as

P = Pidle + Pcpu(u) +
∑

if

(
Pif,idle + Pif,up(r) + Pif,dn(r)

)
. (4.11)

The individual parameters and range of validity are taken from Table 4.2. Here, Pidle

is the idle consumption of the device without load. CPU load is accounted by Pcpu(u),
where u is the CPU utilization in the range 0 to 1 as defined in Equation 4.10. For each
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(b) Ethernet upload
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(c) WiFi download
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Figure 4.4: Comparison of the derived power models for Ethernet and WiFi up- and
download on the different platforms (*no encryption)
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Figure 4.5: Reference measurement on the Odroid C1

active interface if, the idle power Pif,idle is added. Depending on the load on the respective
interface, the power consumption caused by upload Pif,up(r) and download Pif,dn(r) is
added. Here, the data rates as observed on the respective interface are inserted into the
respective function from Table 4.2, where the rate r is measured in Mbps. The ranges of
validity are given in the third column of Table 4.2.

4.1.4 Evaluation of the Power Models

The validity of the presented models is verified by emulating a video-streaming scenario.
As already described in the motivation, these SBCs may be used within future networks
to extend cloud services or CDNs to the edge of the network. Hence, a web server is
installed on the DUTs, serving a bursty data stream to a mobile client. This is modeled
to emulate a HD video stream with an average bit rate of 1Mbps. The burst interval is
configured to 30 s. During the bursts, the maximum available bandwidth is used, thus
closely approximating the behavior of conventional video streaming. The accuracy of the
derived models is established by simultaneously recording the power consumption with
the external power meter and comparing these values to the ones derived based on system
utilization in combination with the presented power models. Figure 4.5 shows the results
of a reference measurement on the Odroid C1. The continuous line shows the power as
measured by the power meter, while the dashed line shows the power consumption as
derived using the above described models. The peaks visible on the plot indicate the
network activity. Generally, a good fit between model and measurement is visible.

The overview of the recorded and estimated power consumption over all reference
measurements on the DUTs is given in Table 4.3. Generally, the maximum error Pe,max is
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Table 4.2: Overview of the generated power models (*measured without encryption)
Function Model [W] Range [Mbps] RMSE [W]

Rasberry Pi B

Pidle = 1.577

Peth,idle = 0.294

Pwlan,idle = 0.942

Pcpu(u) = 0.181u [0, 1] 0.016

Peth,up(r) = −15.2e−6(r/Mbps)2 + 1.005e−3r/Mbps− 0.002 [0, 82] 0.008

Peth,dn(r) = −6.531e−6(r/Mbps)2 + 1.6344e−3r/Mbps+ 0.003 [0, 95] 0.017

Pwlan,up(r)∗ = 112.8e−6(r/Mbps)2 + 24.386e−3r/Mbps+ 0.020 [0, 80] 0.071

Pwlan,dn(r)∗ = 71.988e−6(r/Mbps)2 + 11.003e−3r/Mbps+ 0.010 [0, 95] 0.026

Raspberry Pi 2 B

Pidle = 1.316

Peth,idle = −0.019

Pwlan,idle = 0.899

Pcpu(u) = 0.409u [0, 1] 0.038

Peth,up(r) = 1.95e−06(r/Mbps)2 + 1.17e−03r/Mbps+ 0.014 [0, 100] 0.014

Peth,dn(r) = −8.54e−06(r/Mbps)2 + 2.25e−03r/Mbps+ 0.006 [0, 100] 0.012

Pwlan,up(r) = 13.4e−03(r/Mbps)2 + 7.50e−03r/Mbps+ 0.008 [0, 65] 0.043

Pwlan,dn(r) = −0.37e−03(r/Mbps)2 + 37.72e−03r/Mbps− 0.176 [0, 30] 0.081

Raspberry Pi 3 B

Pidle = 1.488

Peth,idle = −0.1176

Pwlan,idle = 0.7645

Pcpu(u) = 0.6191u [0, 1] 0.155

Peth,up(r) = 26.2−06(r/Mbps)2 + 0.357e−03r/Mbps+ 0.007 [0, 80] 0.039

Peth,dn(r) = −4.33e−06(r/Mbps)2 + 0.485−03r/Mbps− 0.007 [0, 80] 0.007

Pwlan,up(r) = −0.25e−06(r/Mbps)2 + 1.99e−03r/Mbps− 0.072 [0, 6] 0.013

Pwlan,dn(r) = 1.85e−03(r/Mbps)2 +−13.5e−03r/Mbps+ 0.072 [0, 6] 0.022

Cubieboard v3

Pidle = 1.161

Peth,idle = 0.0

Pwlan,idle = 0.306

Pcpu(u) = 1.037u [0, 1] 0.038

Peth,up(r) = 12.2e−06(r/Mbps)2 + 1.99e−03r/Mbps+ 0.166 [0, 80] 0.055

Peth,dn(r) = −16.5e−06(r/Mbps)2 + 2.11e−03r/Mbps− 0.031 [0, 80] 0.024

Pwlan,up(r) = −0.307e−03(r/Mbps)2 + 22.8e−03r/Mbps+ 0.011 [0, 49] 0.178

Pwlan,dn(r) = 0.137e−03(r/Mbps)2 + 6.33e−03r/Mbps− 0.011 [0, 32] 0.064

Odroid C1

Pidle = 1.427

Peth,idle = 0.156

Pwlan,idle = 1.086

Pcpu(u) = 0.721u [0, 1] 0.023

Peth,up(r) = 20.1e−09(r/Mbps)2 + 0.47e−03r/Mbps+ 0.008 [0, 450] 0.062

Peth,dn(r) = −0.44e−06(r/Mbps)2 + 0.97e−03r/Mbps− 0.008 [0, 900] 0.019

Pwlan,up(r) = −0.16e−03(r/Mbps)2 + 22.0e−03r/Mbps− 0.082 [0, 70] 0.126

Pwlan,dn(r) = 0.41e−06(r/Mbps)2 + 14.0e−03r/Mbps+ 0.082 [0, 32] 0.086

Odroid C2

Pidle = 1.258

Peth,idle = 0.878

Pcpu(u) = 1.052u [0, 1] 0.051

Peth,up(r) = −0.24−06(r/Mbps)2 + 0.83e−03r/Mbps− 0.009 [0, 850] 0.012

Peth,dn(r) = 58.0e−09(r/Mbps)2 + 0.48e−03r/Mbps+ 0.009 [0, 850] 0.010
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Table 4.3: Evaluation of the accuracy of the power models

Device Pe,max [W] Pe [W] RMSE [W] Pe,rel [W]

Pi 1 0.282 -0.137 0.141 6.5%

Pi 2 0.098 0.031 0.036 2.5%

Pi 3 0.718 -0.195 0.275 9.3%

CT 0.368 -0.013 0.120 6.3%

C1 0.121 -0.002 0.032 1.0%

C2 0.281 -0.016 0.076 1.7%

in the range of a few 100mW. The worst error is observed on the Raspberry Pi 3, which
is not unexpected considering the high variance in the CPU model. The mean error Pe
is mostly negative, with −0.055mW averaged over all tests, meaning that the estimated
power is little too high. The RMSE of maximum 120mW is expected considering the
errors given in Table 4.2. The relative errors Pe,rel are generally below 10%. The highest
accuracy was visible on the Odroid C1 and C2 with errors of 1.0% and 1.7% respectively.

These power models can be used for different tasks. First, the power consumption of
the devices can be estimated while operating, without the need to attach a power meter
to each of these. Secondly, these models may be used to simulate the effect of load or
traffic distribution changes on the power consumption of a larger deployment of these
SBCs. By only relying on readily available system monitoring values, the overhead when
estimating the power consumption is minimal. For the evaluation of the system power
consumption, the system utilization values may either be collected on a central server,
estimating the power consumption based on the device type. Thus, the monitoring of an
existing deployment would not require changes, while still power estimates are available
on the server. If no central system monitoring was available, it is also possible to estimate
the system power consumption directly on the device, and only send this value to a central
monitoring instance, such minimizing the network and monitoring overhead. Knowing
the power consumption is particularly interesting in the case of either different hardware
located at different places, or when devices may be shut off to save power, thus increasing
the efficiency of the remaining devices, and eliminating the idle power of unused SBCs.

The analysis of the power consumption of a larger deployment of SBCs was analyzed
in a large scale study conducted by the SmartenIT project4. The objective of the study
was to analyze the effectiveness and potential of energy savings in a decentralized, social
enhanced video caching and delivery scenario. For this, the RB-HORST system [LPB+15],
implementing the required functionality, was run on 25 devices distributed over Europe.
The participants of the study were mostly researchers at the project partner’s locations.

4 http://www.smartenit.eu/ accessed 2017-01-22

http://www.smartenit.eu/
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The RB-HORST system is evaluated by each user deploying one SBC at their home
premises and configuring a personal Facebook account on it. The software running on
the devices was configured to periodically check the user’s Facebook stream to determine
videos to be downloaded to the local device. After the ID of the video is determined, the
best source for a download is determined. This is identified based on the autonomous
system (AS) number of the currently used ISP. Thus, the respective item can be loaded
from the closest CDN node. To further reduce traffic cost of the ISP, other participating
SBCs were checked for the availability of the respective item. This is conducted by looking
up addresses and locations of the video in a distributed hash table (DHT). Thus, in case
the video is available from within the same ISP no additional traffic is caused on the ISPs
external links.

The locally cached items are made available to the end user via a WiFi AP. When the
user requests a cached video from a connected device, the content is served by the SBC. In
the case it is not yet available, it is streamed from the cheapest location as described above
and simultaneously cached for an eventual further request. Thus, the QoE of the end user
can be improved by providing high-quality content, which does not need to be loaded
via a bandwidth limited link in real-time. Further, the ISP is unloaded by fetching content
from within the same network. By pre-fetching content during idle periods of the network
or CDN, e.g. during the night, the impact on the network infrastructure can further be
reduced, leading in the long term to both monetary and energy efficiency benefits, as
deployed hardware may be used longer to fulfill end-user requirements.

The described functionality is further extended by proving a social AP at the end-user’s
premises to friends and relatives. This is achieved by installing a custom built App on
their smartphones exchanging the WiFi configuration with the SBC when a friend relation
on Facebook is identified. Thus, the efficiency of the system can further be improved, by
providing content with mutual interest to multiple end users at fixed cost.

For this scenario the power consumption of the full deployment is analyzed. On each of
the deployed devices a system monitor is installed, periodically uploading usage metrics
to a central server. Based on CPU consumption and network traffic on both Ethernet and
WiFi interfaces the power consumption of the individual node and the full deployment
is derived. The resulting power consumption is shown in Figure 4.6. The gray lines indi-
cate the observed cumulative distribution function (CDF) of the individual system’s power
consumption. Here, it becomes apparent that some devices show a constantly higher load,
while others are not as heavily used. The black line describes the mean power consump-
tion of the full deployment. As is visible in the graphic, the power consumption varies
only slightly. This is caused by the high idle power of both the SBCs, and the attached
WiFi dongles. Further, the load on the devices is comparatively low, caused by the large
capacity of the selected devices.

Considering the mean power consumption of these devices, the power consumption
of the full deployment can be derived. The overview of the measurements is also given
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Figure 4.6: Evaluation of the power consumption of a large deployment of SBCs

in Table 4.4. The inner 90th percentile is in the 2.74W to 2.81W. The minimum value of
0.072W is clearly a measurement error, as it is not possible to measure such low power
with the model-based approach. This is likely caused by measurement outages, causing
one extremely low estimate. For the 25 devices participating in the study, the resulting
overall power consumption is 69.5W. This compares to a conventional PC when lightly
used. Considering that a CDN node usually serves a few hundred end users, the en-
ergy consumption is comparable. Still, by reducing the traffic in the network backbone,
currently deployed hardware may be used for longer, reducing the increasing energy con-
sumption in the core network. By keeping traffic local, also the ISP benefits from reduced
traffic cost. Further, considering that the functionality currently implemented on SBCs
may be integrated in future home routers, the additional energy cost for the end user
becomes negligible. In case these are deployed by the ISP, these may also be offered as a
decentralized cache to content providers, thus providing an alternative to current CDNs.
Then, redirection to the respective node would be done via the DNS.

A further interesting point when working with SBCs is: How does the power consump-
tion and computational efficiency of SBCs compare to conventional laptops and how does
it develop over time? Koomey et al. [KBS+11] show that the energy efficiency of compu-
tation is doubling every 18 months. This energy efficiency is particularly important in
areas where available energy is strictly limited, as is the case in mobile devices, or where
heat dissipation is problematic or costly, as is common in high density computing envi-
ronments like data centers and high-performance computing. Hence, a current topic in
high performance computing is the use of low power ARM processors [SRS16; MOF15;
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Table 4.4: Analysis of the power consumption of the devices participating in the
RB-HORST study

Metric Value

Minimum power 0.072 W

Mean power 2.783 W

Median power 2.804 W

Maximum power 3.167 W

5% - 95% percentile 2.740 W - 2.811 W

System power consumption (25 devices) 69.5 W

JVO+13]. A similar trend is visible when considering smartphones. Here, the available
energy is strictly limited, forcing vendors to minimize device energy consumption.

Based on the collected data, the computational capability of the DUTs is related to the
maximum power consumption as derived from the above power models. In addition to the
above devices, a short measurement of the power consumption of the Odroid U3 under
load was conducted, permitting its inclusion in the comparison. For this, the number of
CPU cycles is multiplied by the number of cores available on the respective platform,
thus ensuring comparability with the results as given by Koomey. Further, the power
consumption is normalized to kWh. The resulting computational efficiency in ops/kWh
is shown in Figure 4.7, plotted over the time of the first release of the DUT. As time
reference, the release date of the original Raspberry Pi was chosen, as it marks the begin
of this new device class.

From Figure 4.7, it becomes apparent, that generally the Odroids are more energy ef-
ficient compared to the Raspberry Pi. The Odroid C1, C2, and the Raspberry Pi are all
available for a similar price. Considering the Cubieboard and the Odroid U3, these were
more expensive, and thus provided higher CPU capacities earlier. Still, these are consid-
ered in this comparison, as these also belong to the same class of SBCs.

In the four years since the release of the original Raspberry Pi, the energy efficiency
has increased almost 10-fold. Fitting an exponential function to the data, a growth rate
of 0.4276 is determined. This is close to the rate determined by Koomey (0.456). The
corresponding doubling time is 1.62 years. The coefficient of determination of this fit is
quite small (R2 = 0.747). This is caused by the small number of devices. If a higher
confidence was required, additional SBCs would need to be analyzed and included in the
analysis.

Comparing the above curve with the one derived by Koomey, an offset between both is
visible. Compared to x86/64 processors, the SBCs show a lower computational efficiency.
This is expected, as the development goal of ARM and x64/86 architectures is slightly
different. While x64/86 processors are developed to minimize power consumption while
lightly used, e.g. in laptops, while still providing fast response times to inputs, one of the



74 power consumption of network entities

y = 2,07E+15e0.4276x

R² = 0,747 

1E+15

1E+16

0 1 2 3 4 5

O
p

s/
kW

h
 

Years after Raspberry Pi 

Ops/kWh

Exponential fit

Cubietruck 

Odroid C1 
Odroid C2 

Raspberry Pi 3 
Raspberry Pi 2 

Odroid U3 

Raspberry Pi 

Figure 4.7: Progress of the energy efficiency per kWh since release of the original
Raspberry Pi

current main areas of application of ARM processors are smartphones, requiring high per-
formance and fast response times only while active. During inactive periods the energy
consumption is minimized by implementing deep sleep modes. Further, on smartphones
the available energy is more restricted, as battery capacity is limited. The reduced energy
consumption of ARM processors while active but idle is minimized by switching off cores,
or using lower power cores during low load periods as first included with the big.LITTLE
architecture in the ARM Cortex-A7. Still, the main difference between both architectures
is the absolute power consumption, prohibiting the use of x86/64 processors in highly mo-
bile devices. Concluding, the above observations show that the computational efficiency of
ARM processors under load is still inferior to x86/64 processors. Still, their absolute lower
power consumption makes their use attractive in highly energy constricted environments
like mobile devices.

4.1.5 Summary and Conclusions

The previous section analyzes the power consumption of SBCs. Based on the idea of us-
ing low power ARM-based SBCs for extended network functionality at the network edge,
their performance and energy consumption are analyzed. Focus of the presented work is
the analysis of the influence of CPU and network load on the power consumption of the
full system. First, the measurement setup is described, based on which the measurements
of the SBCs are collected. The measurements comprise of power consumption measured
using an external power meter and internal system monitoring metrics. Combining both,
models for the load dependent power consumption of the DUTs are derived in a regres-
sion based approach. The analyzed devices are the Raspberry Pi line-up, the Odroid C line,
and the Cubieboard v3. For each of these, the CPU and Ethernet model is generated. De-
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pending on availability of an internal WiFi chip, either this, or the influence of an external
WiFi dongle is modeled. The generated models generally show an error of less than 10%.
Based on these models, the power consumption of the respective devices can be derived
using system monitoring values only. Thus, the power consumption of large, distributed
deployments can be monitored without requiring external measurement equipment. Al-
ternatively, these models may be used to optimize traffic and workload distribution, e.g. in
a Cloud computing scenario. Finally, the computational efficiency of the measured SBCs is
analyzed and compared to x86/64-based systems as published by Koomey et al. [KBS+11],
confirming the general trend of doubling computational efficiency approximately every 18
months. Still, the observed relative computational efficiency of the analyzed ARM-based
SBCs is lower than on x86/64 systems. Nonetheless, the absolute energy consumption is
lower, enabling use-cases not possible with x86/64-based processors.

4.2 power consumption of wired network infrastructure

The power consumption in wired networks is analyzed in the following on the example
access and aggregation switches. In particular, the extended functionality provided by
SDN is in the focus of the following energy considerations. As this is a relatively new
area, no related work is available regarding the power consumption of OpenFlow switches.
Still, considerable theoretical work is available concerning the optimization of the energy
efficiency of SDN-based infrastructure networks [VNS+11; PFC+12; VM16].

Exemplary, two different SDN switches are selected, representing the device classes of
hardware and software switches. These switches operate on both OSI layer 2 and 3, thus
may be considered as routers or switches in conventional network topologies. Analyzing
their power consumption, in particular with respect to advanced operating modes like
rewriting packets on the fly, opens a new perspective into networking in the backbone.
Differences in performance and associated cost between hardware and software imple-
mentations of the same functions allow drawing conclusions on which operations should
be executed by which hardware. Thus, network design decisions may be based on energy
and performance characteristics of the most suitable devices for the required functionality.

The following section presents an OpenFlow-based performance and power measure-
ment framework. The collected results show that large differences between the perfor-
mance and power consumption of hardware switches and Open vSwitches exist. Natu-
rally, not the full range of available devices can be measured. Hence, this section describes
the derived measurement setup and design decisions in Section 4.2.1, presents the gath-
ered measurements for the two selected devices in Section 4.2.2, and details the modeling
procedure and generated models in Section 4.2.3. These are verified in Section 4.2.4 using
independent measurements. Finally, Section 4.2.5 summarizes the results, derives conclu-
sions, and gives an outlook on promising future research topics.
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The results presented in this section are also published in [KMH14b; KMH14a], and are
based on the Master’s thesis [Mel14] by Sergej Melnikowitsch.

4.2.1 Measurement Setup

Networking hardware is conventionally selected based on throughput performance of
the individual ports. After appropriate hardware is chosen, the power consumption is
checked and verified to suit the desired network deployment. In this setup, often only
the maximum power consumption is of interest. Considering the growing concern of
conserving energy, and at the same time reducing OPEX, the power consumption of in-
dividual devices during use is of growing interest. In particular in dense deployments,
where air conditioning is required, surplus power consumption of any equipment causes
direct costs for the consumed electricity, and secondary costs for cooling the equipment.
Thus, knowledge of the actual energy consumption of any networking equipment during
use is of growing interest. Other interesting aspects are power saving modes which are
increasingly common in modern IT equipment.

The power consumption of OpenFlow switches depends on two different classes of op-
erations, namely the processing and forwarding of productive traffic and the processing
of configuration messages. For this, the device must be connected to a network, allowing
the measurement environment to configure the device state and stress it with config-
urable traffic patterns. Then, the power consumption of the device must be measured for
different operating states with sufficient accuracy in both time and power. The resulting
measurement environment is depicted in Figure 4.8. This setup is similar to the one pre-
sented in [MSB+09], but adds the additional dimension of OpenFlow traffic control to the
parameter space.

The measurement environment is structured as follows. The SyncMaster is the abstract
test coordination entity. It runs the configured tests in a given or random order. The
SyncMaster in its function as OpenFlow controller configures the DUT as required by the
test and periodically requests traffic counters. Further, the SyncMaster configures traffic
generation and power measurements on the SyncClient. After execution of a specific test,
the SyncMaster collects the power measurements from the SyncClient.

The measurement setup reflects the requirements of measuring different operating
modes of the devices. The tests are chosen to resemble different use cases and load sce-
narios. Traffic is generated using a traffic generator. This sends a stream of packets with
the desired characteristics to the DUT, where it is processed according to the test require-
ments. The DUT sends the processed packets to a traffic receiver connected to a configured
port. Both traffic generator and DUT are controlled by the SyncMaster. Besides being an
SDN controller, it controls traffic generation at the traffic generator.

The power measurements are controlled by the SyncMaster. The accuracy of the mea-
surements is maximized by running the power measurements on the same machine as
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Figure 4.8: The measurement setup and wiring

the traffic generator. Thereby, the problem of clock synchronization between different ma-
chines is eliminated. Hence, the accuracy of the collected measurements is not affected
by absolute time differences or clock drift. In the following, the combination of traffic
generator and power measurements will be referred to as SyncClient.

For testing the full set of possible configurations, a measurement framework was devel-
oped. This is implemented for OpenFlow version 1.0 [PLH+11], but was designed with
extensibility in mind, such making it simple to add additional tests. Considering the quick
evolution of the OpenFlow standard, extensibility of the framework is a high priority.

Considering the physical dependencies between different tests, these can be structured
in a tree. For example to determine the power consumption of a matching rule, the switch
must be switched on and its power consumption known. Then, the port must be active,
with a specific configured data rate. When a packet is received, the power consumption of
the device in this specific configuration can be measured. Thus, the power consumption
of a single test can be calculated by subtracting the cost of the dependent tests from the
overall power consumption. The identified dependencies of these test cases are depicted in
Figure 4.9. Beginning from the root of this tree, the power consumption of the components
can be derived in a recursive manner by adding another test case and subtracting the
power consumption of the preceding stage.

This approach requires individual tests to be independent of each other. In the case of
hardware components, this is intuitive. On the software side, synergies between tests are
identified, which is addressed in Section 4.2.3.

Knowing the power consumption of the individual tests, the overall power draw of the
DUT in operation can be estimated by adding the cost of the respective configuration and
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Figure 4.9: Dependencies between measurement tasks

utilization. In case multiple ports are active, the corresponding cost is simply added for
the components.

The power consumption of the DUTs is measured using an external power meter. Re-
quirements for AC measurements are a sufficiently high resolution to identify expected
small changes in power consumption caused by load differences and a sufficiently high
time resolution to identify short peaks. Further, also the measurement of distorted wave-
forms and phase shifts as may be expected in server rooms should be considered. Hence,
a true RMS meter is required.

The Hameg HM8115-2 power meter is chosen for the energy consumption measure-
ments. Available measurements ranges are 0W to 80W or 0W to 800W. The measurement
resolution is 10mW and 100mW respectively. The error of the measurement is 0.8% + 10

digits. With a nominal power consumption of 264W for the hardware switch, the max-
imum error of the measurements is below 3W. Still, the measured power consumption
while active is around 120W, leading to an error of 2W. Similar values apply to the Open
vSwitch with a base power consumption of 49W, resulting in an error of 1.4W in the
80W range.

The maximum available sampling rate is 2Hz. This is determined by polling the universal
serial bus (USB) interface of the power meter as frequently as possible. As true RMS mea-
surements are conducted, a number of AC cycles are required to guarantee accuracy of
the result. This is already done within the power meter. Hence, the readings as read from
the power meter are reasonably accurate and also include transient effects.

The accuracy of the final model is further improved by running individual tasks over
considerable time, thus increasing the number of available samples for later post-processing.
By aggregating these, the mean consumed power is calculated by averaging over the test
duration, while also the confidence interval for each test can be determined.

The traffic processed by the switches is generated on the traffic generator as specified in
the test requirements. Traffic monitoring as run on the DUT is used to confirm the config-
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ured rate. For this, the OpenFlow counters are used, being updated by the switch OS once
per second. This is also the minimal update interval. The OpenFlow controller polls these
in the same interval and stores the retrieved values with the corresponding timestamp.
The traffic metrics from the switch are stored on the SyncMaster and combined with the
power measurements as collected by the SyncClient in the post-processing step. The accu-
racy is maximized by keeping the device in a stable state for 60 s, from which the inner
50 s are used in the analysis. Thereby, transient effects while starting or shortly before the
end of the transmission are eliminated from the samples used in the evaluation. Each test
is run several times at different times of the day and in a different order, thus eliminat-
ing influences of changing temperature, possible irregularities in the power supply, and
changes of residual heat in the DUT caused by previous tests.

The selected hardware switch is a 48-port Gbit switch with 4x 10 Gbps uplink ports of a
major switch vendor. Besides conventional switching the selected model was configured
to run the vendor provided OpenFlow capable firmware. The software switch runs on a
rack server (Dell PowerEdge R320, Intel Xeon E5-1410, 8GB DDR3 RAM, Intel I350T4 4x
Gbit NIC). The operating system is Ubuntu 12.04 LTS, on which Open vSwitch version
1.10.2 is installed.

The architecture of the measurement environment is detailed in Section A.3. There, also
the components added to the OpenFlow controller are described. Furthermore, details on
the load generator and power measurement are given.

4.2.2 Measurements

According to the requirements as derived in Section 4.2.1, the measurement setup was
connected in a server room. The devices were deployed as depicted in Figure 4.8 and the
software installed on the respective devices.

The dependencies between the individual tests are shown in Figure 4.9. These are de-
rived from physical requirements (e.g. port must be active to measure throughput), and
dependencies of OpenFlow matches as defined in the OpenFlow standard 1.1 [PLH+11].
These tests are run for each DUT multiple times in varying order, thus assuring a con-
sistent outcome. For each test, the measured throughput and power consumption are
recorded. In a post-processing step, the dependencies between these are resolved. Thus,
the power consumption caused by the respective setting is calculated based on the power
differences between this and the superior test.

The tests as described in the previous section are mostly automated. Still, measuring
the differences in power consumption with changing number of active ports requires
manual reconfiguration of the DUT. This is done by connecting one port after another.
For each configuration a measurement is run and the measured values recorded together
with the configured setting. This measurement is repeated for all available line rates (e.g.
10/100/1000 Mbps), as differences in the power consumption depending on link configu-



80 power consumption of network entities

0 5 10 15 20 25 30 35
Num ber of ports

115

120

125

130

135

140

P
o

w
e

r
[W

]

Regression [10 Mbps]

Regression [100 Mbps]]

Regression [1 Gbps]

Measurements [10 Mbps]

Measurements [100 Mbps]

Measurements [1 Gbps]

Figure 4.10: Comparison of the power consumption of the hardware switch for different
port configurations (from [Mel14])

rations have also been observed in literature [GCN05]. The measurements of the hardware
switch are depicted in Figure 4.10. The power consumption increases from a base power
of 118W to 135W with 32 active ports when setting the line rate to 1Gbps. The 95%
confidence intervals are barely visible around the markers. The regression also shows a
good fit (R2 = 0.97). Thus, a cost of 530mW per active Gbit port is derived. Reducing the
line rate of these ports also reduces the power consumption. The cost per 100Mbps port
is 336mW, while reducing the line rate to 10Mbps shows a cost of only 199mW per port.
This relates to a relative reduction of energy consumption of 55% and 62% respectively.
Due to management issues and the limited number of ports no equivalent measurement
was possible on the Open vSwitch.

The automated tests stress the forwarding performance of the DUT under various load
conditions and also measure the energy impact of OpenFlow management messages. In
case an OpenFlow switch does not have a rule to process a packet received on the data
plane, the packet is forwarded to the controller to request a suitable rule. The influence of
packet in messages on the power consumption is analyzed by sending packets for which
no rule is installed to the DUT on one of the data plane ports.

The recorded power consumption of the software switch is shown in Figure 4.11a. The
power consumption increases from a base power consumption of 49W to 70W while
sending packets for which no rule is installed on the switch, causing it to create and
send packet in messages to the controller. During the measurement interval, 1.7M packet
in messages where generated by the switch. This relates to a cost of 800µJ per packet.
The influence of incoming flow modification messages, used to pro-actively configure an
OpenFlow switch, is evaluated be sending these with maximum rate over the duration
of 60 s while monitoring the power consumption. The plot showing an idle time and the
power consumption while flow modification messages are received by the Open vSwitch
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is given in Figure 4.11b. The figure shows an increase to 66W while receiving 727 k flow
modification messages within the test interval. This relates to a cost of 1.445mJ per flow
mod message.

The cost per management message on the hardware switch is calculated by subtracting
the idle power of the DUT from the active period. During these 60 s 720 k rules were
inserted. This was only possible by periodically flushing the ternary content addressable
memory (TCAM). As this relates to the normal usage of the switch, this is included in
the measurements. While inserting flows, the power consumption of the hardware switch
increases by 300mW. The calculated cost for flow modification messages thus is 20.25µJ
per flow. Similarly, the hardware switch processes 17 k packet in messages during the 60 s
measurement interval, increasing the power consumption by 200mW. This relates to a
cost of 771µJ per flow mod message sent.

The measured values are comparable between both DUTs. The energy cost of the hard-
ware switch, in particular when processing flow modification messages is lower than on
the software switch. Still, comparing the cost of flow modification messages, the cost is by
a factor of 70 higher on the software switch. The generated results are summarized in
Table 4.5

OpenFlow extends the functionality of conventional switches by intelligently changing
behavior depending on different header fields. Therefore, the header of incoming packets
is matched using a TCAM from which the desired action for the respective packet is de-
rived. Here, the configured rules as described in the last section are applied. As described
in Section 2.2.2, an OpenFlow rule consists of Match Fields, Counters, and Actions. In the
following, the influence of different matches and instructions on the power consumption of
both DUTs is analyzed.

The influence of matches and actions is identified by configuring the rules on the switch
to match a single field or execute a single action. The traffic send through the device is
created to be matched by the active rule. Hence, the influence of the individual actions
on the overall power consumption of the DUT can be derived. For this, the packet rate is
step-wise increased until the maximum supported rate by the DUT is reached. Thus, the
influence of the respective rule or match on the power consumption is derived, and the
cost per match or action is calculated.

Measurements show, that on both DUTs the cost of OpenFlow matches and actions is
comparatively low. Hence, the influence of matching the minimum and maximum num-
ber of fields and applying the minimum and maximum set of actions to the packet are
compared. The minimum set of matches and actions applied consists of matching the
input port and sending the packet to a configured output port. Compared to a conven-
tional switch, this simplifies operations, as there the MAC address must be checked to
determine the correct output port. The maximum set of matches and actions consists of
matching the full header of the packet, rewriting all fields, and sending the packet out at
a specified port. Figure 4.12 shows the results for the Open vSwitch. While the number of
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Figure 4.11: Comparison of the power consumption of the hardware switch and Open
vSwitch under different management traffic load (from [Mel14])
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Figure 4.12: Open vSwitch power consumption for the minimum and maximum number
of active OpenFlow features (from [Mel14])

packets processed per second is increased to approximately 70 000, the power consump-
tion increases to 54W. The difference between minimum and maximum set of active rules
and matches is significant for low data rates, but differences decrease for higher data rates.
The derived power consumption values of the individual matches and actions as derived
using this procedure are listed in Table 4.5.

The same tests are also run on the hardware switch. Also there, the difference between
the minimum and maximum set of OpenFlow matches and actions is marginal. One major
difference though is the maximum packet rate observed for different settings. Differences
in maximum throughput are in the range 300 pps to 70 000 pps. The large difference in
throughput is explained by some operations being hardware supported, while others are
processed by the CPU of the switch. The former can be processed on line rate, while the
latter require several CPU cycles and must be transferred between CPU and ASIC using
a non-optimized path. Figure 4.13a shows the energy impact of the hardware accelerated
operations, while Figure 4.13b compares the energy consumption of the software sup-
ported OpenFlow features. Both figures show an only marginal increase in overall power
consumption when OpenFlow features are activated. The increase in both cases is in the
range of 100mW to 200mW. The cost of the individual matches and actions as derived
from the individual measurements are detailed in Table 4.5.

As the above tests cannot identify the influence of individual matches and flows, the
influence of these OpenFlow features is determined by running tests changing only one
feature. Thus, their power consumption can be identified when compared to the setting
with the set of minimum OpenFlow rules and actions being active. Each of these tests is
run on both DUTs for 60 s. The results are recorded and later correlated with the measured
network throughput performance. The calculated cost of each of these features is listed in
Table 4.5.



84 power consumption of network entities

(a) Power consumption while processing
hardware accelerated operations

(b) Power consumption while processing software
supported operations

Figure 4.13: Comparison of the power consumption of the hardware switch while
processing data plane traffic (from [Mel14])

Comparing the power consumption of the Open vSwitch and the hardware switch, a
few observations are made. First, the idle consumption of the hardware switch is consid-
erably higher compared to the software switch. Still, also the number of available ports is
higher. Processing traffic has a negligible effect on the overall power consumption of the
hardware switch, while the power consumption of the software switch increases by 10%.
The power consumption when applying the minimum or maximum set of OpenFlow op-
erations is comparable for both DUTs. Still, features not implemented in hardware heavily
decrease throughput of the measured hardware switch. Operations implemented in soft-
ware can also be spotted comparing the power consumption of these in Table 4.5, where
their cost is 1000-fold higher compared to hardware features. Summarizing, it can be said
that the energy efficiency of the hardware switch for hardware accelerated features is
higher, in particular when a large number of devices is connected. Contrary, the Open
vSwitch is more versatile, has predictable performance and power consumption, and is
more energy efficient, when requiring only on a small number of links.

4.2.3 Power Consumption Model for OpenFlow Switches

From the measured cost of the individual components and their configuration as given in
Table 4.5, the power consumption of the DUTs for different workloads can be calculated.
Therefore, an additive power model for both devices is proposed. Due to dependencies
between matches and actions as derived from reference measurements applying the ad-
ditive power model, alternative, simpler power models are proposed. These are based
on the minimum and maximum cost of matches and actions being active in the selected
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Table 4.5: Power and energy parameters of the switches and the corresponding
OpenFlow features (from [Mel14])

Hardware Switch Open vSwitch

Base Power [W]

Base 118.3300 48.7397

Port Configuration Power [W/port]

Port 0.5295 n/a

Port Configuration Power Factor

Line Speed [1Gbit] 1 1

Line Speed [100Mbit] 0.4455 n/a

Line Speed [10Mbit] 0.3761 n/a

Management Energy [µWs/packet]

Packet-In 711.3028 775.5246

Flow-Modification 20.2512 1,445.1309

Energy for Matching [µWs/packet]

Ingress Port 1.1013 47.1955

MAC Src 0.4234 51.4126

MAC Dst 0.7286 50.1219

IP Src 0.3982 50.4271

IP Dst 0.4390 48.3222

L4 Port Src 0.6725 0

L4 Port Dst 974.1202 0.5716

Energy for Actions [µWs/packet]

Output 0.4286 49.1954

MAC Src 0 0

MAC Dst 0.5672 0

IP Src 728.2008 0.5119

IP Dst 866.8180 0.8716

L4 Port Src 977.2340 5.1381

L4 Port Dst 846.8505 0.9332
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rule set. In the following, the different power models are introduced and their accuracy is
discussed.

The additive power model directly following from the test dependencies as shown in
Figure 4.9 is described in the following. Caused by the dependencies, also the power
consumption of the DUT is modeled by adding the power consumption of the individual
tests.

PDUT = Pbase + Pconfig + Pcontrol + POF. (4.12)

Here, Pbase is the idle power consumption of the DUT. Pconfig is the power consumption
caused by the static device configuration. This includes the configuration of active ports
as well as their configured line speeds. Pcontrol describes the power consumption caused
by OpenFlow management traffic. Hence, it includes flow modification and packet in events.
Finally, POF adds the power consumption caused by productive traffic on the data plane to
the overall power consumption. This includes the active flows with their respective load
as well as their configuration.

The base or idle power consumption is defined as Pidle and measured directly for each
device. This depends on the device type and installed software versions. Due to the
immense parameter space, no further measurements varying these parameters are con-
ducted. Hence, the parameters as given in Table 4.5 are directly used.

The energy cost of the switch configuration as caused by active ports and configured
line speeds is defined as

Pconfig =

Nports∑
i=1

si · Pport (4.13)

Hence, the configuration power Pconfig relates to the sum of the cost of all ports of the DUT,
where Nports is the number of available ports. For each port, the base power consumption
of each port when active with highest line rate Pport is multiplied with the power factor si
of the currently configured link rate, where si is in the range 0 to 1 as given in Table 4.5.

The power consumption caused by the control traffic is defined as:

Pcontrol = rpacketIn · EpacketIn + rflowMod · EflowMod (4.14)

Here, rpackeIn is the rate of packet in messages generated by the switch caused by missing
rules on the local devices. As derived in Section 4.2.2, an energy cost is associated to
each of these events. The energy required for sending this packet is defined as EpacketIn

Similarly, rflowMod gives the rate of received flow modification messages with its associated
energy cost EflowMod. Thus, the energy consumption of the control traffic is modeled in
an additive way, based on the energy consumption of the individual commands and their
rates.

The power consumption of the productive traffic on the data plane is modeled in an
additive manner according the test dependencies as given in Figure 4.9. Consequently, the
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power consumption POF is modeled as sum of the number of flows with their respective
traffic rates, active matches and actions.

POF(t) =

Nflows∑
i=1

rpackets(i, t)

Nmatches∑
j

µmatch(i, j) · ematch(j)

+

Nactions∑
k

µaction(i,k) · eaction(k)

] (4.15)

Here,Nflows is the number of active flows. Each flow i has its specific packet rate rpackets(i, t),
which depends on the time. For each flow, the active matches and actions are defined as
the sum over the energy cost of each match ematch(j) or action eaction(k) multiplied by
µmatch(i, j) and µaction(i, j) respectively, indicating whether it was active or not. These are
added for each flow i over the number of possible matches j and actions k. The split
between both is made for clarification. When applying the model, both sets can be ap-
pended and summed using one iterator. The size of the set of matches Nmatches is limited
by the number of header fields supported by the used OpenFlow standard. Contrary, the
set of actions Nactions may differ in size, as multiple actions may be defined in one rule.
An example is sending a packet out on multiple ports, possibly also with changed header
fields.

For comparison, two simplified power consumption models are proposed in the follow-
ing. As the influence of the managed traffic is small, in particular on the hardware switch,
a power model is proposed modeling the power consumption only based on idle power,
influence of the mostly static configuration, and control traffic. Further, a power model
extending this minimal power model by a traffic model, where only the cost of the most
energy-costly match and action are considered.

The minimal power model proposed adds the base power consumption of the DUT
Pbase, configuration Pconfig, and control traffic Pcontrol

Pswitch,HW = Pbase + Pconfig + Pcontrol. (4.16)

As this model not includes any time or load dependent terms, it is expected to perform
worst in the following evaluations, and hence is used as baseline for comparison.

The intermediate model eliminates the inner sums from Equation 4.15, replacing each
term with the maximum cost of matches and actions applied to the respective flow. Hence,
the resulting model for the cost of the OpenFlow traffic is

POF,SW =

Nflows∑
i

rpackets(i) ·
(

max
j

[µmatch(i, j) · ematch(j)]

+ max
k

[µaction(i,k) · eaction(k)]

)
.

(4.17)

This simplifies computation on the controller side, but is expected to perform worse than
the detailed model, but better than the static model.
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4.2.4 Evaluation of the Derived Power Models

The power models as proposed in Section 4.2.3 are assessed by analyzing the differences
between measurements on the hardware and estimations using the proposed models us-
ing arbitrary traffic sent through the DUT. This traffic is generated by different traffic
generators on different ports of the DUT, thus putting the model on a test, where not
only the setting used to generate the model, but a more general setting is evaluated. Thus,
the practical applicability of these models can be verified, and upper bounds for the errors
under the given conditions be derived.

The reference measurements and error estimation are implemented by extending the
OpenFlow controller to provide real-time estimates of the power consumption of the con-
nected devices based on device type and selected power model. Simultaneously, the mea-
sured power consumption of the DUT is recorded and periodically requested from the
SyncClient. Thus, packet rate, power measurement, estimation, and resulting error can be
plotted in real-time. Due to technical reasons, the estimates are delayed by one second, as
OpenFlow counters are only updated in this interval.

These additional components required for the model based power estimation are al-
ready included in Figure A.3. Hence, the derived OpenFlow framework can both be used
to measure power models of connected DUTs when connected to a power meter, as well
as used independently, estimating the power consumption of connected devices in case
power models for the connected device are available. Furthermore, it is possible to include
only the packages required for deployment, thereby reducing the complexity of the setup.
Then, only the extended OpenFlow controller is required, eliminating the need of a Sync-
Client, a traffic generator, and power measurements. Additionally, the modules extending
the OpenFlow controller for running the measurements and deriving the power mod-
els are not required. This leaves only the EnergyMonitor as additional Floodlight plugin,
calculating the power consumption based on the monitored traffic.

The observed packet throughput, measured power consumption, estimated power con-
sumption, and the resulting error are given in each of the following figures. The first
line shows the observed packet rate in packets per second as returned by the OpenFlow
counters. The second row shows the power consumption of the DUT as measured by the
external power meter. This is given in W. The third row shows the estimated power con-
sumption as derived using the respective power model as indicated in the caption of the
figure in W. The last row calculates the difference between the measured and estimated
power consumption. From these, general observations on the accuracy of the generated
power models are drawn. The results are summarized in Table 4.6.

Figure 4.14 shows the results when applying the maximum power model to the mea-
surements as taken on the Open vSwitch. In both scenarios the traffic rate is sequentially
increased, while the metrics as defined before are recorded. Figure 4.14a shows the results
while the minimum number of matches and actions are active. The traffic rate is increased
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(a) Measurement accuracy when applying the
minimum set of matches and actions
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(b) Measurement accuracy when applying the
maximum set of matches and actions

Figure 4.14: Power consumption of the Open vSwitch under varying load using the
maximum model (from [Mel14])

in steps of 20 kpps to a maximum rate of 80 kpps. The second row shows the measured
power consumption of the DUT increasing with increasing load. The power estimate in
the third column shows as similar behavior. Both top out at a maximum of around 55W.
The resulting error as given in the last row stays in the range −2W to 3W. A similar be-
havior can be observed in Figure 4.14b. Here, the measured rates are 10 kpps, 30 kpps, and
50 kpps. An interesting observation is that the measured power consumption as is given
in the second row shows an increased power draw between seconds 12 and 14. Clearly,
this is not visible in the power model, as the configuration was not modified and the
traffic did not change, resulting in an increased error in the last row of the plot. This ef-
fect is expected to be caused by some system maintenance scripts (e.g. cron jobs) running
on the Open vSwitch. Care was taken to eliminate these, but not all system background
activity can be stopped while running a productive system. This unaccounted peak in
power consumption is thus also visible in the resulting error. Disregarding this anomaly,
the resulting error is in a similar range as before.

The anomaly visible in Figure 4.14b also clearly shows the limitations of the model
based power estimation. Any effects not included in the model cause errors in the fi-
nal estimation. In case these values are used for accounting, unexplained errors may re-
main. Here, a trade-off between model complexity, usability, and accuracy must be found.
Caused by the requirements as defined before, only the OpenFlow protocol is available
for monitoring the DUTs. Hence, no system utilization values from CPU, RAM, and mass
storage of the underlying OS are available. Instead, the proposed modeling technique
is applicable to any kind of OpenFlow capable devices, from virtual switches to highly
integrated hardware switches due to the independence of low-level system monitoring.
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Figure 4.15: Power consumption of the hardware switch for varying number of active
ports (from [Mel14])

Figure 4.15 shows the accuracy of the generated model for the hardware switch when
incrementally connecting and configuring multiple ports. The data rate, as is expected
from the chosen test setup, is almost zero. The observed packets are maintenance traffic
like ARP request, replies, and similar. The second row shows an increasing power draw
when connecting and configuring the ports. A similar behavior is visible in the third row
for the estimated power. The derived error, as seen in the last row is in the range −3W to
2W, and as such in the range of the measurement uncertainty.

Figure 4.16 compares the maximum and the minimum model for the hardware switch.
Both show a similar traffic behavior, generated by the traffic generators connected to
different ports of the DUT. Thus, a traffic rate of 1.2Mpps is achieved. Figure 4.16a shows
the measured power consumption in the second row, while the power estimate is given
in the third. The resulting error while idle is quite small, but increases to −3W while
under load. This result is already better than for the general model, where errors of up
to 8W are observed (cf. [Mel14]). Figure 4.16b shows the same test, but here the static
power model is applied, eliminating the influence of the observed traffic on the power
consumption. The resulting error is smaller compared to the maximum model, but also
increasing when traffic is observed. Still, the error remains in the range −0.5W to 0.5W.

The above observations, plus additional measurements shown in [Mel14] are summa-
rized in Table 4.6 for the two DUTs. For the hardware switch, the general, maximum, and
static power models are evaluated, while for the Open vSwitch the general and maxi-
mum model are analyzed. Here, the static model is omitted, as the measurements in Sec-
tion 4.2.3 clearly show a dependency between traffic and power consumption. Pe,max[W]

is the maximum error observed during the measurements. This is normalized to the max-
imum power consumption of the DUT, Pmax, as measured by the power meter, resulting
in the maximum relative error Pe,rel,max.
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(a) Accuracy of the maximum model
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(b) Accuracy of the traffic independent model

Figure 4.16: Comparison of accuracy of different power models for the hardware switch
in the reference scenario using multiple traffic generators (from [Mel14])

Table 4.6: Error of the derived power models

Switch Hardware switch Open vSwitch

Model general maximum static general maximum

Pe,max [W] 7.56 3 0.72 9 4.30

Pe,rel,max 5.6% 2.2% 0.5% 16.1% 7.7%

The errors for different power models of the hardware switch are generally low. This is
mainly caused by the high idle consumption of the device, and the low variability under
load. Still, differences between the models are visible. The worst performance is achieved
by the general model with an error of 8W in case of the hardware switch and 9W for the
software switch. This error can be reduced to less than 5W for the Open vSwitch. On the
hardware switch, the error can be further reduced by eliminating the influence of traffic
on the power consumption to below 1W, resulting in a static power model.

The relative error for the hardware switch is below 6% for the general model, reduced
to 2.2% using the maximum model, and minimized to 0.5% with the static power model.
The relative error of the Open vSwitch is comparatively high, which is caused by the lower
idle consumption.

When applying the model, and the overall energy cost is required, the static model for
hardware switches, and the maximum model for the Open vSwitch should be chosen. The
expected errors are below 3W, which is close to the accuracy of the power measurements.
Still, in the case of the static power model of the hardware switch, the estimated power
is generally too low while traffic is processed by the DUT. The errors of the software
switch should cancel out, as both positive and negative errors are observed. If a higher
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accuracy of the resulting models is required, additional measurements should be run
with increased test durations. Thus, the noise on the measurements can be reduced, while
increasing the accuracy of the derived mean. Still, this leaves systematic errors, which may
be addressed by using measurement equipment with higher accuracy.

4.2.5 Summary and Conclusions

The power models presented in this section are one of the building blocks to determine
the power consumption of future communication networks. In particular the framework
proposed within this section proves useful in this respect, as the power consumption
of OpenFlow capable hardware can be determined in a highly automated manner. Still,
changes of the hardware configuration like connected ports require manual intervention.
One of the goals of the development of the measurement framework was simple extensi-
bility. Thus, the presented OpenFlow power measurement framework is easily expandable
to OpenFlow versions higher than 1.0.

The described power models serve as proof of concept of the measurement framework.
Further, these can already be used to derive the power consumption of specific networks.
For example in a large deployment, the derived power models may be used to derive the
instantaneous power consumption of the full network.

Analyzing the differences between the models, a few general observations can be made.
Simple, hardware-supported operations are best run on a hardware switch, as their power
consumption increases only marginally under load. More complex operations, like packet
duplication or header rewrites are better handled by an Open vSwitch. In particular op-
erations requiring multiple changes show negligible additional power consumption com-
pared to simple forwarding on the Open vSwitch. Still, the energy cost of processing a
single packet on the Open vSwitch is 100 x higher for these operations. Non-hardware
accelerated operations on the hardware switch should be avoided at any cost, as these are
processed by the internal CPU. This is often barely sufficient to run the OS and manage
the built in ASIC of the switch. Further, the bandwidth between ASIC and CPU is a bottle-
neck. Thus, the packet rate of IP and L4 port rewrites as well as L4 port filtering reduces
the processed packet rate to less than 350 pps. This is also reflected in the energy cost,
where these operations increase the energy consumption per packet by a factor of 1000.

Applying the above observations to a productive network leads to the conclusion that
hardware switches should be used as access switches, funneling the traffic to more cen-
tral virtual switches handling OpenFlow rules with higher complexity. Examples may
be software defined multicast (SDM) [RBH15], where a multicast service requires the in-
network duplication of packets. Thus, the incoming packet stream can be processed at
the second aggregation layer within Open vSwitches, while the aggregation switches just
forward the modified packets.
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The generated power models may also be used to minimize the power consumption
of communication networks. This may be done in a practical manner, where based on
observed traffic patterns the switches are reconfigured. The most promising example in
this case is the reconfiguration of line speeds of the hardware switch. There, ports may
be switched to lower rates during idle or low load periods. Compared to disabling ports,
this allows maintenance functions like periodic heartbeats. Further, a re-configuration of
the port is also possible by observing the activity of the remote machine, which would
not be possible otherwise.

Alternatively, these power models may be used to optimize full networks based on
statistical observations using mathematical models [VNS+11; VM16]. Knowing a large
number of power models for various devices also allows the network operator to select
the most energy efficient equipment considering the current and expected load of the
target networks. This would require a central location or database, where these models
can be published and retrieved, thus eliminating the repeated calibration procedure as
described within this section.

Possible extensions of the described work include adapting the proposed measure-
ment framework to more recent OpenFlow versions. Currently, only these two exemplary
OpenFlow power models are available. Here, a larger number of models should be cali-
brated and made available to the public, thus increasing the comparability of OpenFlow
switches and raising the awareness for energy efficiency in network infrastructure. Thus,
purchasing decisions may include, besides cost and performance, also the OPEX in terms
of energy consumption.

Sharing the generated power models in a machine readable form in a centralized repos-
itory would enable researchers to model the power consumption of complex network
environments depending on network configuration and load. Hence, also optimizations
of these networks can be simulated before deploying the respective traffic management
approaches. Promising examples are disabling of links as is often proposed for conven-
tional networks [CMN12], or reconfiguring link speeds [YWX+13] as is also shown to be
promising on OpenFlow switches within this work.

Another interesting aspect for future work is the decoupling of the OpenFlow power
model for the Open vSwitch or similar software from the system it is running on. Here,
general power models for the underlying hardware may be combined with the perfor-
mance requirements of different OpenFlow matches, actions, and reconfiguration mes-
sages. Thereby, the power consumption of virtual OpenFlow switches is determined in
a building block based manner by first mapping the network load to system utilization,
which may then be mapped to power consumption using general power models. This
simplifies the modeling process by not requiring a calibration of each hardware-software
combination.



94 power consumption of network entities

4.3 power consumption of end-user devices

The power consumption of end-user devices is analyzed on the example of smartphones.
These are chosen, as they are becoming the most important devices for mobile communi-
cation and media consumption for a large number of people [Eri16]. As these are strictly
limited in available energy, the energy efficiency must be maximized to satisfy user ex-
pectations. Approximately 30% of the power is consumed by network interface [CDJ+15].
Hence, these are the primary target for optimizations. Still, growing demands for contin-
uous connectivity increase challenges in saving energy.

An interesting, emerging technology is MPTCP [BPB11]. It is an technology simultane-
ously using multiple network interfaces to optimize network performance and reliability.
MPTCP works by modifying the underlying functionality of the TCP socket provided by
the Linux kernel. Instead of establishing a single TCP connection to the remote server, mul-
tiple connections, called sub-flows, are established on different interfaces. This requires
the remote server to also support MPTCP. Using multiple interfaces and connections thus
provides higher bandwidth or improves reliability by dynamically handing connections
over to another interface while one is being interrupted.

Related work at the time of writing covers the performance related aspect of MPTCP
well [PDD+12; CLG+13; DNS+14], or simulates the energy consumption of various sce-
narios [CYM13b; CLG+13]. The power consumption, in particular on mobile devices, was
measured for regular downloads only [LCN+14]. Thus, the power consumption of down-
loads and HTTP streaming can be evaluated.

An interesting aspect for interactive real-time systems is CBR streaming as is required
for video-conferencing or live-cloud gaming. Here, the functionality of sustaining a TCP
connection during a vertical handover to another network provides uninterrupted user
experience. Hence, in the following the power consumption of MPTCP for CBR streaming
is evaluated. The focus of the following section is analyzing the influence of load balancing
on the power consumption of smartphones using MPTCP. The following section is based
on work published in [KWR+15b] and [KWR+15a], which are based on a thesis by Stefan
Rado [Rad14].

4.3.1 Measurement Setup

In the following, the power consumption of MPTCP on mobile devices is analyzed. The
chosen scenario is constant bit rate streaming. Therefore, a server providing a data stream
with configurable and constant bit rate and a smartphone receiving this stream are re-
quired. Both need an MPTCP enabled kernel to support the test setup.

The proposed measurements target the influence of changing traffic distribution over
the available interfaces considering the overall power consumption of the mobile device.
As the scenario is constant bit rate streaming, corresponding traffic shaping needs to be
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Figure 4.17: Schematic setup of the MPTCP measurements

implemented. Therefore, the server uses the kernel’s built in traffic shaping, limiting the
bandwidth on the respective flows as required.

The schematic setup is given in Figure 4.17. The mobile device connects to both WiFi
and the cellular network. The data connection is then established using MPTCP. Thus,
two different sub-flows between mobile device and server are created.

Two devices are selected as mobile end of the measurement. These are the Nexus 5 and
the Nexus S. These are chosen because the full OS is available via Google’s Android open
source project (AOSP) developer program, thus providing free reconfigurability. Hence, a
custom OS image for the devices is built. Secondly, patches for the used kernels enabling
MPTCP are available. Thirdly, the power consumption of the DUT can be measured inter-
nally, as well as externally for the Nexus S using a custom built measurement setup.

Comparability of the implementations is assured by running the same OS on both de-
vices. This is possible, as the Cyanogen project5 was providing images based on Google’s
AOSP, also after Google suspended its support of the Nexus S. Therefore, both devices
are equipped with CyangenMod 11 OS. The Nexus S runs version 3.0.4 of the Linux ker-
nel, the Nexus 5 version 3.4.0. These are patched with the latest available MPTCP patch
(Nexus S: 0.86.6, Nexus 5: 0.86.7), thus adding the required functionality.

The network technologies to be evaluated are WiFi and the cellular network. The WiFi
network used is an IEEE 802.11g compatible network, as was commonly found in home
premises at the time of measurement. This is used with both smartphones. The cellular
interfaces available on the Nexus S restrict the measurements to high speed downlink
packet access (HSDPA) with a gross rate of maximum 7.2Mbps. On the Nexus 5 LTE
is available, supporting data rates of up to 150Mbps in downlink and 50Mbps uplink
direction (LTE Cat 4).

As one goal of this work is the evaluation of the relative cost of using MPTCP on smart-
phones, first a reference needs to be established. Therefore, tests determining the power
consumption of the network interfaces are run. This is conducted similar to Section 4.1.1
by first determining the idle consumption of the device, then adding additional load, to
then derive the component power consumption in a regression based approach. In the

5 http://www.cyanogenmod.org/, abandoned at the time of writing, available via archive.org: https://web.
archive.org/web/20161224194030/https://www.cyanogenmod.org/

http://www.cyanogenmod.org/
https://web.archive.org/web/20161224194030/https://www.cyanogenmod.org/
https://web.archive.org/web/20161224194030/https://www.cyanogenmod.org/
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case of the mobile devices this means first identifying the idle consumption without any
other components active, then determining the cost of having a single interface active, and
finally profiling the respective interface under load. After the influence of the individual
components is determined, the power consumption of the combination of interfaces is
measured. The resulting power consumption is then compared to the cost of the individ-
ual interfaces.

The cost of using the different interfaces on the Nexus S is determined by directly mea-
suring the power consumption using a modified ’charging’ cradle. Instead of charging
the battery, the cradle is only used to contact the battery. These are connected via a mea-
surement shunt similar to Section 4.1 to a custom built battery dummy, which is inserted
into the smartphone. The battery voltage and voltage drop over the measurement shunt
are measured as also described in Section 4.1.1. Compared to the SBC measurements, the
resulting error on the voltage channel is slightly lower (i.e. 3.66mV instead of 5.66mV)
because the 5V range of the power meter can be used. Still, as the main error source is the
current channel and the same configuration is used, the resulting error remains at 2.47%.

The power measurement on the Nexus 5 is more challenging, as no simple battery
replacement is possible due to the built-in battery. Still, the Nexus 5 includes a power
sensing chip. Its readings are made available via the kernel file system (/sys). The bat-
tery monitoring is conducted by the Maxim MAX17048 battery management chip. This
provides accurate and reliable estimates of the remaining battery capacity in a granular-
ity of 1/256% steps with an error well below 5%6. Based on this, the discharge rate is
calculated. Both battery voltage and estimated discharge current are available via the files
voltage_now and current_now in the folder /sys/class/power_supply/battery.

The monitoring frequency on the power meter is configured to 10 kHz. Tests on the
Nexus 5 have shown that contrary to the /proc file system, calls to the /sys area return
different values for each call. Hence, it can be concluded, that instantaneous values from
the sensor are available. On the Nexus 5, the maximum feasible rate not overloading
the system was determined to be 40Hz, keeping the processor utilization below 20%. To
keep some additional capacity, and avoid possible implications on measured throughput,
samples were recorded with a frequency of 20Hz.

The maximum possible accuracy of the measurements is assured by switching off any
non-essential components. This includes also the display. Still, as the tests must be con-
figured and started via the touch screen an additional delay between starting a test and
the begin of the measurement are introduced. This allows the system to settle, and thus
results in more accurate measurements. The alternative of configuring and initiating mea-
surements via the Android debug bridge (ADB) and USB or WiFi prohibits itself, due to
the inherent influence on the measurements. Connecting USB would charge the battery,
and thus leave no indication on how much energy is consumed by the device. Keeping

6 https://datasheets.maximintegrated.com/en/ds/MAX17048-MAX17049.pdf accessed 2017-01-23

https://datasheets.maximintegrated.com/en/ds/MAX17048-MAX17049.pdf
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a TCP session open via WiFi also introduces errors, and is completely impossible when
measuring the idle consumption, where all network interfaces need to be shut off.

The desired data rates for each test are configured from the mobile device using a com-
mand line interface on the server. Therefore, a script is running on the server accepting
commands for shaping individual flows of the connecting device. For this, the kernel’s
queuing disciplines, short qdiscs are used. Still, determining the respective flows to control
traffic for a given device and interface requires some additional effort. For the connecting
IP the MPTCP mapping in the kernel file system is read, thus determining the correspond-
ing sockets. These are then used to configure the qdiscs for the underlying TCP flows.

A number of different qdiscs are available (e.g. first in, first out (FIFO), round robin (RR),
random early discard (RED), etc.). The measurement setup uses the hierarchical token
bucket (HTB) method, guaranteeing a maximum stable rate as long as no interruptions
are observed. The concept is that a ’bucket’ is continually filled with tokens, which are
taken out according to the size of the transmitted data. Only if no data was sent for some
time, the rate may shortly be higher depending on the bucket size. Still, as TCP is used,
its slow-start mechanism should prevent exceeding the configured rate.

On the server a website is available providing either traffic streams with configurable
bandwidth or an unlimited data stream containing random data. As for all throughput
tests, random data is used. This prevents on-the-fly compression of the data, and thus the
measured result to become inaccurate. For the following tests, the unlimited data stream
is used, as all traffic shaping is conducted within the kernel using qdiscs.

While testing the setup it was determined that MPTCP was not fully working within the
cellular network. Measurements have shown that the MPTCP options in the TCP headers
of the respective sub-flows are removed, but only when connecting to well-known HTTP
ports (i.e. 80/443). This behavior is expected to be caused by a PEP within the core of the
cellular network. PEPs are usually used to improve the performance of TCP connections,
and thus are also called (transparent) TCP proxies. By responding with an ACK packet to
any TCP connection request to a remote HTTP server, the TCP slow start is improved by
eliminating one proxy-to-server RTT. But as this proxy is unaware of the MPTCP options,
the connection attempt fails, due to the missing options in the response packet. Still,
as MPTCP is comparatively young, and the PEP may not know of the remote server’s
capabilities, this behavior prevents starting an MPTCP connection, although everything is
configured correctly. This problem was mitigated by using a different port on the server.
Still, considering the long-term use of MPTCP, the PEPs also need to be adapted, or at
least should not scrub unknown TCP options.

Configuration and measurement are both conducted from the mobile device. Therefore,
a dedicated application was written, implementing the required functionality. Figure 4.18

shows the main configuration options and a log output. The Background Service is used
to run measurements in the background while the App is not visible. This is required to
allow the display to be switched off during the measurements, thus reducing the addi-
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Figure 4.18: Screenshot of the main screen of the measurement application running on
the mobile phones (from [Rad14])

tional error introduced by the screen backlight. The energy logging is only available on
the Nexus 5. The iperf button starts an iperf download from the server as configured via
the command line interface. The download button starts a regular download.

4.3.2 Interface Reference Power Consumption

The measurements as described in the previous section are run in a radio-quiet environ-
ment, thus minimizing the error caused by interference of other devices. In particular,
measurements were run during the night, where activity both on WiFi as well as within
the cellular networks is expected to be low. Thus, the optimal performance is identified.
Assuming a congested radio environment, the expected data rates are lower. The behav-
ior of a congested network is similar to using lower data rates. This is intuitive, as in
both cases the interface needs to be active for the full time. First, the reference model for
each interface is established by running a number of tests with different data rates. Based
on this, a general cost model for bulk data transmissions on the respective interfaces is
derived. Only thus, the comparison with the energy consumption of MPTCP is possible.

The power models are measured for all available interfaces on both the Nexus 5 and
Nexus S. On the Nexus S WiFi, 2G, and 3G are available. As the use case of interest is
video streaming, 2G connections are neglected, as available data rates are insufficient to
support even basic video rates. On the Nexus 5 WiFi, 2G, 3G, and 4G are available. Hence,
on both devices WiFi and 3G are analyzed, with additional measurements on the Nexus 5

establishing the reference for LTE connections.
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Table 4.7: Power consumption of the DUTs in different idle configurations
(*includes wake lock and measurement)

Nexus S Nexus 5

State Power Std Power Std.

Idle 79 mW 3 mW n/a n/a

WakeLock 280 mW 27 mW 151 mW* 48 mW

Idle, WiFi 90 mW 72 mW 161 mW* 52 mW

Idle, 3G 96 mW 53 mW 171 mW* 58 mW

Idle, WiFi, 3G 97 mW 53 mW 170 mW* 61 mW

Idle, 4G n/a n/a 182 mW* 89 mW

Idle, WiFi, 4G n/a n/a 173 mW* 96 mW

Before the interface power consumption can be calculated, the influence of the different
operating states on the overall power consumption is measured. Therefore, the devices
are first placed in airplane mode to calibrate the minimum power consumption. Further
references are established for idle modes with different interfaces active but idle. On the
Nexus S, the measurements are run externally and require no additional considerations.
Contrary on the Nexus 5, where only internal measurements are possible, measurements
of the idle state are not possible. This is caused by the power measurement functionally
constantly polling values from the /sys file system, thus requiring the device to be ac-
tive. Hence, for the Nexus 5 all references are established with the power monitoring
active. This does not influence the interface power models, because the respective refer-
ence measurement is used for calibration. Still, this prevents modeling of the full system
consumption, as no idle power can be determined. However, considering that network
interfaces are mostly used when the device is active, and idle consumption is small com-
pared to actively using the device, some conclusions on the overall device behavior can
be drawn.

The identified idle power of the respective devices and operating modes is given in
Table 4.7. Generally, the differences between idle mode and additionally activating data
interfaces on the Nexus S are the range of 20mW. A similar increase is visible on the
Nexus 5, when neglecting LTE. This increases the idle consumption by 31mW. The ob-
served standard deviations are comparably high. This is expected, because the interfaces
are always active for only short intervals. Thus, the power consumption is mostly low, but
shows spikes during periods of activity.

As cellular throughput measurements cause a considerable traffic and thus cost, care
was taken to not exceed the traffic budget. For all tests, a monthly allowance of 10GB
was available. Tests were run according to these requirements. The available data contract
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Figure 4.19: Reference power consumption of the Nexus 5 on LTE

allows the use of all available technologies without traffic shaping. Thus, the validity of
the measurements should not be affected by artificial network limitations.

Figure 4.19 shows an exemplary measurement used to derive the power characteristics
of the LTE interface. Here, the influence of the download rate on the power consump-
tion of the LTE interface of the Nexus 5 is given. The figure shows an idle consumption
of roughly 1.2W while the interface is active. Increasing the data rate on the interface
increases the power consumption to approximately 1.5W.

Similar to the power measurement and modeling of the SBCs, also here a second or-
der polynomial is fitted to the measurements. The resulting models are summarized in
Table 4.8. For each interface as indicated in the first column, the respective polynomial is
given in the second column. The ranges of validity are given in the third column, while
the RMSE of the fit is given in the last column. Generally, the error is small compared to
the values.

The model is used by selecting the respective operating state from Table 4.7. Then,
the power consumption caused by the traffic on the active interface is added. Here, the
index NxS denotes the model for the Nexus S, Nx5 the ones measured on the Nexus 5.
The absolute power in a given operating state for the case of a single active interface is
calculated by

Pdev, abs = PIdle, {if} +

Nif∑
0

δif · Pdev, if(r), (4.18)

where δif = 1, if the respective interface is active. Further, only one interface may be active
simultaneously:

∑Nif
0 δif = 1.

From these models, the energy consumption of data transmissions on the available inter-
faces can be calculated. A more intuitive representation of this is the energy consumption
per bit for a given data rate. The derived functions are given in Figure 4.20. From this,
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Table 4.8: Power models of the different interfaces of the Nexus S and Nexus 5

Function Model [W] Range [Mbps] RMSE [mW]

Nexus S

PNxS,WiFi(r) 0.455+ 0.030 · r/Mbps+ 0.4e−3 · (r/Mbps)2 ]0, 30] 31

PNxS,3G(r) 0.911+ 0.025 · r/Mbps+ 0.001 · (r/Mbps)2 ]0, 6] 20

Nexus 5

PNx5,WiFi(r) 0.332+ 0.057 · r/Mbps− 0.001 · (r/Mbps)2 ]0, 35] 83

PNx5,3G(r) 0.556+ 0.061 · r/Mbps− 0.004 · (r/Mbps)2 ]0, 11] 40

PNx5,4G(r) 1.046+ 0.011 · r/Mbps− 0.006 · (r/Mbps)2 ]0, 25] 52

some interesting observations can be drawn. First, the lowest cost of data transmissions is
observed using WiFi on both devices, followed by 3G on the Nexus 5 and Nexus S. Most
expensive over the given data rates is LTE on the Nexus 5. This confirms observations
made by Huang et al. [HQG+12], showing that LTE requires more power per bit than 3G.

The observed data rates reflect the performance of the cellular network in a suburban
environment during night. Assuming a more crowded network during the day, the ex-
pected data rates are lower. Hence, connection durations are longer, increasing the overall
power consumption per transferred bit.

These measurements describe the power consumption of continuous, constant data rate
streams. Often, a more relevant number is the energy consumed for a finite transfer. In
WiFi networks, the steady state power consumption approximates the real power con-
sumption well. Only small differences in power consumption are caused by opening and
shutting down the connection. This is usually done within one beacon interval of 100ms.

On cellular networks, connection establishment and teardown are more complex. The
former is split into network admission, conducted when the device is switched on and
registers on the network, and the establishment of a data channel. The crucial part for the
mobile user is the actual connection establishment. This happens regularly, and is immedi-
ately noticeable by the user due to the initial delay. Additionally, this causes considerable
energy consumption. Less noticeably by the user, but more prominent on the energy bud-
get is the connection teardown, which is often delayed by a few seconds after the last
data transmission is observed. This is done to reduce the signaling effort in the cellular
network, but also to improve QoE by keeping the data channel open, and thus eliminating
the connection establishment delay should a subsequent connection be required.

The delay before a connection is established and data may be exchanged between the
mobile device and the network is called the ramp duration. Consequently, the energy spent
while establishing the connection is called the ramp energy. Similarly, the energy spent
after the last data has transmitted is called the tail energy. Both have a large influence on
energy consumption of the mobile device, in particular for short data transfers. Figure 4.21
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Figure 4.20: Comparison of the energy cost per byte on the different devices and
interfaces

shows the ramp and tail energy on the example of the Nexus 5 on a 3G network. Ramp
and tail energies are not considered in the following, as the goal is the analysis of the
steady state energy consumption of streaming media. Should an accurate view of finite
data transfers be desired, additional measurements are required.

4.3.3 MPTCP Power Consumption

The power consumption of MPTCP is measured as described in Section 4.3.1. First, the net-
work connections on the device are configured as required, meaning that on the Nexus S
both WiFi and 3G are activated, while on the Nexus 5, two different measurements are
run, first measuring WiFi in combination with 3G, then with LTE. On the remote side, the
server is configured to throttle the download belonging to the DUT to the desired rate.
Finally, the throughput and power measurement are started simultaneously.

The bandwidths evaluated are selected to be well within the limits of the network
technology with the lowest available bit rate. Hence, on the Nexus S the combination
WiFi and 3G was measured with a rate of 200 kBps, while the Nexus 5, supporting higher
data rates on 3G was tested with a rate of 500 kBps. The energy consumption of WiFi in
combination with LTE is measured on the Nexus 5 for data rates of 1MBps and 2MBps.
For each setup, different measurements are run, incrementally increasing the load on the
WiFi interface, while transmitting the remaining data on the cellular interface. Each test
was run for 10 s to saturate the link and exit the slow start phase. Each test series was
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Figure 4.21: Measurement of ramp and tail durations and energy for a 3G download on
the Nexus 5

repeated multiple times to collect sufficient data to gain significant results. Here, more
repetitions were possible for the lower absolute rates due to limitations in data volume.

The measurements for the Nexus S with a rate of 200 kBps and the Nexus 5 on WiFi and
LTE for a rate of 1MBps are shown in Figure 4.22. The blue crosses indicate the average
energy consumed for transferring a byte in the given configuration. Clearly, for both cases
the power consumption of WiFi alone is lowest. The second cheapest option receiving a
constant bit rate stream is using the cellular interface alone. Only, if the cellular interface
cannot supply the demand, the additional cost of using MPTCP should be considered.

It must be noted that caused by the throttling on the server, the data rate received on
the client was lower than desired. This is caused by throttling the sockets belonging to
the individual TCP subflows, neglecting the additional overhead introduced by the MAC
encapsulation, TCP, and MPTCP, thus reducing the net rate. This is accounted for in the
derived cost per byte by normalizing the consumed energy by the net rate received over
the course of the measurement. A more detailed observation of the net rate showed that
for a low fraction of traffic on the cellular interface in some configurations only half the
configured rate is received. The cause for this lower rate is determined by checking a
packet dump of one of these tests. The identified root cause was the variability in RTTs
between interfaces. This problem is caused by MPTCP using the RTT to estimate the qual-
ity of the respective link. If it increases largely, the capacity is deemed to be insufficient.
Hence, more packets are shifted to the second connection, and some also considered lost
on the link, because packets not being acknowledged in time, are retransmitted on the
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(a) Nexus S, 200 kBps
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Figure 4.22: Energy consumption per transferred byte for different data rates

link with the lower RTT. Thus, the resulting net rate received on the remote device is
reduced compared to two independent TCP connections, not knowing of the others state.

As stated in the beginning, the goal of this study is the comparison of the MPTCP
power consumption with the alternative of using multiple TCP flows in parallel. Hence
for each setting, the theoretical cost of receiving the requested net rate in the given config-
uration is shown in the form of green diamonds. Considering the actual rates as received
via MPTCP, the rate-adapted model as given in red circles is achieved. Clearly, neither
approximates the observed behavior well.

The first interesting observation is that, in particular for the pure cellular connection (e.g.
0% WiFi), the measured power consumption is considerably higher than the predicted
one. Less visible, but showing similar behavior, this is also observed on connections using
only WiFi. This is expected to be caused by the additional overhead of MPTCP. This
includes both the increased computational complexity of handling both flows, as well as
reduced packet size due to the overhead caused by MPTCP.

Before fitting models to the collected data, the data is cleaned to remove outliers. There-
fore, Cooks distance [Coo77] is used. From the derived energy cost for each configuration,
the samples showing a distance Di of larger 4/Nsamples from the derived regression are
removed from the data set. This is indicated in the plots by a black plus sign.

Generally, the power consumption of the MPTCP flows can be estimated based on the
added power consumption of the active interfaces, or approximated by fitting a function
to it. Both are sub-optimal: the modeling is based on the observed behavior, while the
additive model shows large differences. Hence, a hybrid approach is chosen. The power
models of the individual interfaces are added, and the difference between these and the
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Table 4.9: Differences between the rate-adapted model and the quadratic fit and resulting
correction functions

Nexus S

Setting Mean Dev. Function

WiFi/3G (200 kB/s) -21.2% Cc(fW)/µJ B−1 = +1.144 · fW − 2.099

Nexus 5

Setting Dev. Correction Function

WiFi/LTE (1MB/s) +2.5% Cc(fW)/µJ B−1 = −0.198 · fW − 0.153

WiFi/LTE (2MB/s) -5.8% Cc(fW)/µJ B−1 = +0.185 · fW − 0.152

measurement approximated. Thereby the relative energy expense or savings are modeled
and can thus directly be derived for the desired setting.

The correction function is derived by calculating the difference between the power esti-
mated using the rate-adapted model based on the individual interfaces power consump-
tion and comparing its outcome with a function fitted to the observed behavior. Thus, the
changes in power consumption can be derived for the different operating states. This cor-
rection function is then used to calculate the power consumption based on the individual
interfaces’ power consumption.

The derived correction functions are given in Table 4.9. The first column identifies
the analyzed setting, the second identifies the mean deviation between the rate-adapted
model and the fit to the MPTCP power consumption. The derived correction function is
given in last column. Here, fw denotes the fraction of traffic on the WiFi interface. The
mean deviation between the rate-adapted model on the Nexus S and the MPTCP power
consumption with 21.2% is comparatively high, thus indicating synergies between both
interfaces. Concluding, MPTCP saves power compared to the use of two independent
interfaces. Results on the Nexus 5 are mixed. Depending on interface and data rate, the
cost of using MPTCP may also be larger compared to using two independent flows. Still,
considering reliability of the established MPTCP connection, the additional overhead may
be justified.

Table 4.10 compares the resulting errors of the presented power models. Compared to
the naive MPTCP power model based on the nominal traffic distribution on the active in-
terfaces (static) using the prepared single-interface power models, both the rate-adapted
and corrected model show increased accuracy on the Nexus 5. On the Nexus S, the rate-
adapted model results in less accurate results, while the corrected model cuts errors by
almost 50%. Still, also the absolute offset as given in Table 4.9 must be considered. Com-
paring the performance of the rate-adapted and the corrected model, large improvements
are visible on the Nexus S, while the performance on the Nexus 5 is similar. This correlates
with the mean deviation as given in Table 4.8.
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Table 4.10: RMSE of the different models

Nexus S

Setting Static Rate-adapted Corrected

WiFi/3G (200 kB/s) 0.9972 1.2665 0.5263

Nexus 5

Setting Static Rate-adapted Corrected

WiFi/3G (500 kB/s) 1.3508 0.5148 0.5753

WiFi/LTE (1MB/s) 0.4376 0.1834 0.1714

WiFi/LTE (2MB/s) 0.3452 0.1365 0.1655

Considering the higher packet loss and power consumption when using MPTCP with
the majority of traffic on the interface with lower RTT, modifications of the MPTCP func-
tionality are recommended. As currently the interface with the lower RTT is used for
control messages, longer delays on the secondary interface are often interpreted as packet
losses, in particular when the RTT is variable. Although this interface may be cheaper
in terms of energy consumption or monetary cost, from performance perspective most
traffic should be transferred on the interface with lower RTT. Thus the number of retrans-
missions can be limited. The tested implementation by default balances the load equally
on both interfaces, independent of the actual throughput and RTTs.

Based on these observations, two possible improvements become apparent. First, the
scheduler balancing the load on available interfaces should be extended to put the ma-
jority of traffic on the interface with lower RTT. Thus, the performance can be improved
while simultaneously reducing the probability of retransmissions caused by delayed pack-
ets on the interface with higher RTT. This often also reduces the monetary cost on the
cellular interface, as it regularly shows higher RTTs compared to the WiFi interface. Sec-
ondly, the tolerance for delay variations should be increased to avoid retransmissions of
packets still being delivered by the secondary interface. This is particularly problematic
in cellular networks, where layered reliability functions (e.g. LTE HARQ and TCP retrans-
missions) delay and re-order packets delivered to the mobile device. This is a problem
inherited from plain TCP, which also has difficulties adapting to mobile environments.
Assuming the implementation of both, the overhead as observed in the measurements
may be reduced by simultaneously improving end-to-end performance

Considering the architecture of MPTCP, rebuilding the functionality of TCP by keep-
ing track of packets, sequence numbers, packet order, checksums, and retransmissions
in combination with the problems caused by using TCP sub-flows (e.g. removal of TCP
options, duplicate and often conflicting retransmission mechanisms), the underlying data
flows should be migrated to UDP connections. Functionality wise, nothing would be lost,
because MPTCP already implements the required functionality. Contrary, the efficiency
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Figure 4.23: MPTCP decision tree

of the implementation is increased by avoiding the overhead and hassle caused by TCP
sub-flows, in particular in wireless networks.

4.3.4 Summary and Conclusions

Knowing the influence of MPTCP on the power consumption of the device allows a more
comprehensive decision on when and when not to use MPTCP on the mobile device.
Improving performance and reliability of mobile data connections for the end user is an
honorable tasks, but the decision should include as many parameters affecting the user as
possible. Clearly, on mobile devices this also includes energy consumption as one of the
main restrictions.

Abstracting the above observations to practical recommendations for its use in CBR
streaming leads, a few simple rules for using MPTCP in an energy efficient manner can
be derived. The decision includes, besides the duration of the requested connection, the
available network interfaces and the required bandwidth. According to the above obser-
vations, the following decisions should be made when deciding about the use of MPTCP:
If WiFi is available, and the available bandwidth is sufficient, then it should be used. If
WiFi is not available, or the available bandwidth is insufficient, and the cellular interface
provides a sufficient bandwidth, the cellular interface should be used independently. Only
if the available bandwidth on both interfaces individually is insufficient, the use of mul-
tiple interfaces is recommended. Still, the majority of traffic should be transferred on the
interface with the lower RTT, thus minimizing the energy cost of the data transmission.
The resulting decision flow is also shown in Figure 4.23.

The accuracy of the presented models may further be increased by monitoring the CPU
and compensating for it, as was done in the SBC measurements. Thus, a more accurate
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network power model can be generated and remaining, unexplained effects minimized.
Still, this requires running load generators or benchmarks with configurable system uti-
lization on the mobile devices. Here, the Android OS often interferes by terminating long
running processes, and permission management complicating tasks compared to SBCs.

As already noted earlier, the presented data is valid for the estimation of steady state
connections only. Further interesting areas of research are the estimation of the power con-
sumption of finite data transmissions using MPTCP. For this, the ramp and tail energies
of the different interfaces must be included. These depend on the cellular network config-
uration, and hence may change between different network operators and also over time.
Here, the analysis of the energy cost of bursty video streaming as is commonly deployed
by video portals is of interest.

A further interesting aspect of the power consumption of mobile communication is the
idle power of recent devices. As these measurements are clearly not possible with the
internal CPU-based measurement approach, external measurements as conducted for the
Nexus S are recommended. Still, due to the built-in battery, a number of challenges arise.
First, the device must be modified by inserting a measurement shunt between battery
and device. Preliminary modification of one device and subsequent measurements show
that the measurement approach is not as straightforward as expected. Compared to the
SBCs and the Nexus S, a 100mΩ resistor is already too large, preventing the successful
boot sequence by causing a too large voltage drop. Similar observations were made when
using an external power supply running at the maximum allowed battery voltage of 4.2V .
Reducing the resistance of the shunt further lets the device boot, but errors are too large
to reliably measure the power consumption of the device with the available measurement
equipment. Thus, another power measurement approach needs to be developed, either
using a measurement card with lower voltage range, or devising a custom circuit board
making use of operational amplifiers, a Coulomb counter and the respective circuitry, or
a single chip measurement solution, directly interfacing with the measurement PC.

Particularly interesting for end users is the cost of background data transfers. Due to the
ramp and tail states as observed in the measurements, considerable energy is wasted by
different Apps frequently requesting updates from their servers. Recent Android versions
already implement network and App activity scheduling and batching, but the precise
quantification of its influence, in particular during daily use, on the resulting battery life
time are not thoroughly evaluated yet. Android itself provides some power monitoring
and estimation tools within their developer tool set. Still, their accuracy is not established
yet. Here, the an improved power measurement approach would help quantifying their
accuracy at least on a few exemplary devices, thus allowing the scientific community to
base their work upon these results.

Based on the collected data, power models for long-running connections are derived.
These are used to compare the power consumption of both DUTs for the case of constant
bit rate streaming using MPTCP. From this it is derived that using MPTCP on single inter-
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faces increases the power consumption compared to plain TCP. In the case of using both
interfaces in parallel, the power consumption is reduced compared to the added power
consumption of two individual TCP flows on both interfaces. Still, using both interfaces
simultaneously is clearly more expensive than using a single interface alone. Hence, guide-
lines for using MPTCP in the given scenario in a most energy efficient way are derived: If
possible, only a single interface should be used, where WiFi is more energy efficient than
the cellular interface. For reliability purposes, MPTCP’s backup mode may be used to re-
establish connections on the secondary interface should the first link break. This increases
the reliability of the circuit on the cost of energy consumption. If the capacity of a single
interface is insufficient to satisfy the current demand, the second interface may be added,
with the majority of the load on the interface with the lower RTT. This increase in per-
formance is bought by a considerable increase in energy consumption. Here, individual
decisions on its use should be made based on QoE estimates, preferably also including
energy consumption.

4.4 power consumption of communication infrastructure

The energy consumption of communication networks is established to be a major aspect
in current and future networks. Particularly when considering developments in the di-
rection of 5G, the sheer number of devices to be supplied with reliable and often high
bandwidth links poses large demands on the communication infrastructure. In the previ-
ous sections, the power consumption of different emerging platforms and technologies in
different network domains is established. At the edge of the wired network, the models
for the energy cost of decentralized caching, offloading and computation using SBCs are
developed. In the access and core network, the performance and energy consumption of
both a hardware and software OpenFlow switch is analyzed and modeled, from which
recommendations on their use in future networks are drawn. In the mobile access domain,
the emerging technology of MPTCP providing bandwidth aggregation and seamless han-
dover using multiple interfaces is analyzed for the case of constant bit rate streaming,
from which recommendations for its use are derived.

The detailed results of these studies in the different network domains are summarized
along the research questions posed in the beginning:

RQ 1.1: What is the energy cost of decentralized caching and computational offloading using
SBCs and how can it be determined? The energy cost of decentralized caching and computa-
tion is analyzed based on power measurements of the Raspberry Pi line up, the Odroid
C line up, and the Cubieboard. These measurements are correlated with the monitored
system utilization (i.e. CPU and network utilization), from which power models of the
DUTs are derived in a regression based approach. As these models are based on readily
available system monitoring values, these may be used to estimate the power consump-
tion of the respective device with minimal overhead. These models are exemplary used
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to determine the power consumption of a larger deployment of Odroid C1s, showing the
energy efficiency of using a decentralized caching and offloading approach. This shows
the feasibility of using these high-level power models for the centralized monitoring of a
decentralized deployment with minimum overhead, considering that system monitoring
may already be implemented. Based on the system monitoring and power estimates, the
distribution of content and services within a larger network can be optimized based on
criteria like system resources, network cost and location, or overall energy consumption.

RQ 1.2: How does the energy efficiency of hardware and software OpenFlow switches compare
and what are their respective benefits? The power consumption of both a hardware and a soft-
ware OpenFlow switch is analyzed and modeled, serving as examples of the capabilities
and related energy consumption of devices within the core network. Both show distinctive
advantages and disadvantages both in performance and energy consumption. The hard-
ware switch supports a large number of connected devices and executes simple OpenFlow
rules in line speed. Still, advanced OpenFlow matches and actions not supported by the
hardware drastically reduce observed performance and increase in the energy efficiency
per packet. The idle power is comparatively high. The main influence on power consump-
tion is observed when re-configuring the link speed of active ports. Traffic, also the one
processed by the CPU does not significantly influence power consumption. The packet
processing performance of the Open vSwitch was not significantly affected by matches
or actions applied to the packets. Furthermore, the power consumption of the processed
network traffic is proportional to the rate, and mostly independent of the matches and
actions applied to it. Concluding, the software switch should be used for more complex
traffic manipulation tasks, while the hardware switch is highly efficient with simpler net-
work operations, only marginally increasing power consumption while still keeping the
performance up.

RQ 1.3: What is the cost of increasing reliability and throughput of mobile communication using
MPTCP for constant bit rate streaming? The power consumption of MPTCP is analyzed on
the example of the Nexus S and Nexus 5 for different traffic rates on WiFi, 3G, and
4G networks. Similar to the SBCs, also here power models for transferring data on the
respective interfaces are calibrated. Based on these, the comparison of the energy cost of
MPTCP for the special case of CBR streaming is drawn. Compared to the added cost of
two individual TCP connections with the configured data rates, MPTCP is more energy
efficient, although its use on a single interface increases the power consumption on the
Nexus S. From this, general recommendations for the use of MPTCP are drawn, namely
that multiple parallel connections should only be used if the capacity of a single interface
is insufficient. If reliability of a connection is desired, also the use of MPTCP on a single
interface using backup flows may be considered, slightly increasing the cost of the overall
data transfers.

Considering the availability of power models for the full network, conclusions on the
optimal placement of content, services, and devices can be drawn. For example, popular
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content as derived based on user preferences or global popularity may be moved close
to the end user during idle times. Combining this with knowledge of the network infras-
tructure and routing paths, the most energy efficient option for each connection can be
calculated, thus minimizing the energy footprint of the network. Considering the use of
e.g. MPTCP, a mobile user may begin watching a video while at home, and be seamlessly
handed over to the cellular network, routing traffic to the respective end-point. Further
leveraging the flexibility of SDN, traffic to and from one location can be re-routed in the
network backbone to the most energy efficient remote location. Adding the capabilities
of NFV, also the remote service may be re-located to further optimize performance and
reduce energy consumption.

Still, more needs to be done to further reduce the energy footprint of communication
networks. The currently analyzed devices generally show a comparatively high idle con-
sumption and do not implement any noteworthy energy saving techniques. Clearly most
advanced are smartphones, in recent releases implementing batching of network requests
and also App activity. But cellular network access is still a major contributor to mobile
power consumption. Also WiFi achieves high data rates, but as soon as the network is
congested, or reception is poor, mobile devices waste considerable amounts of energy
trying to transmit and receive data. The SBCs show comparatively low idle power con-
sumption, but do not implement further approaches like deep sleep to further reduce
energy consumption when idle. Worst are the OpenFlow switches showing a dynamic of
maximum 10% between idle power consumption and under full load. Here, clearly ad-
vanced power saving mechanisms should be developed, allowing devices to enter energy
saving modes when only lightly used. Most prominent examples are access switches in
office environments, being actively used only 8h to 10h per day.

Software-based optimizations have shown to be strictly limited due to the high idle
consumption of the available devices and their mostly linear reaction to load. Consider-
ing the network load to be constant, and only flexible in time, the most promising network
domain for optimizations is wireless, showing some nonlinearities in the power response.
Here, having a better signal or generally higher throughput reduces the cost of data trans-
missions.





5
A N A LY S I S O F N E T W O R K P E R F O R M A N C E

The performance of communication networks is one of the major aspects of digital
communication. Where in the past data rates of a few kbps were sufficient, modern

communication requires constantly higher data rates [Cis16]. This is currently primarily
caused by the increasing demand for video content, and will further rise due to consumers
demanding higher video quality [Cis16]. Additional demand is predicted to be caused
by the trend of virtual reality (VR) [Mas16]. There, considerably higher data rates are
required, supplying a higher resolution for a larger field of view, required to create an
immersive experience for the end user.

At the same time, data access is becoming more mobile [Cis16]. The data volume con-
sumed by mobile users is predicted to grow by 53% over the following years. Also here,
the majority of traffic (i.e. 75%) will be mobile video by 2030 [Cis16]. The increased load
on the network infrastructure must be coped with by the mobile access network as well
as the network backbone and CDNs.

Here, the power consumption of devices, in particular on handsets, becomes increas-
ingly important. Currently, 30% of the power consumption of a smartphone is caused
by network interfaces [CDJ+15]. Here, the power consumption mainly depends on the
used device type, network technology, and transmission duration. Hence, the power con-
sumption of an end-user device depends, besides the interface power consumption, on
the available network performance.

Generally, the performance of cellular networks is by the network operators with max-
imum data rates and maximum coverage only. Hence, a number of approaches were
developed and implemented measuring the performance of the cellular network (e.g.
OpenSignal [OpS], Sensorly [Sen], or NetRadar [SSM13]). These collect network perfor-
mance measurements in a crowd-sensing manner to create network coverage reports for
cellular network operators. Generally, the collected data is not available for further anal-
ysis. Additionally, the focus of these studies is on the cellular network alone, preventing
the comparison of different network types and interfaces.

Therefore, a crowd-sensing measurement study is set up to determine the KPIs of differ-
ent cellular network technologies (e.g. 3G/4G), and WiFi. Based on these, first the location-
based network quality is determined to create a network performance map. Furthermore,
network performance models are derived. Combining these with the power models as de-
rived in Chapter 4, the power consumption of data transmissions on different interfaces
can be evaluated and compared for similar situations.
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Pedestrian or nomadic mobile network access scenarios provide interesting research ar-
eas for mobility prediction [DG12], content offloading [RHR08], and scheduling [BKW+13].
Still, this is a relatively well researched area [GWC+15]. Another less prominent scenario
is mobile data access on trains. Currently, 69% of travelers on UK trains use mobile data
services during their journey, out of which 54% are dissatisfied with the available ser-
vice [FS16]. A number of studies are available, proposing optimizations to improve net-
work access on trains (e.g. [KLW12]), but no systematic study measuring mobile network
access on trains is available to the best of the author’s knowledge. Hence, a thorough
analysis is conducted and described in the following, with the goal of guiding the user in
its data consumption to improve the user experience.

Over the course of these studies, irregularities in the obtained measurements are ob-
served. Hence, the measurement approach is systematically extended. Therefore, addi-
tional devices are used, keeping the maximum number of parameters fixed while running
an extended set of tests. These target the analysis of the upper layer network functional-
ity, finally determining the source of the previously observed variations to be caused by
network management.

Based on these observations, the following research questions are derived, guiding the
analysis of the cellular network performance for the above described scenarios:

RQ 2.1 What are the parameters affecting cellular service quality and user-
perceived network performance when mobile?

RQ 2.2 How does cellular network access on trains differ from general mobile
network access, and how can the network performance be predicted?

RQ 2.3 What is the influence of network structure and management on the
end-user perceived network performance?

RQ 2.1 is discussed in Section 5.1. There, crowd-sourced network measurements are
described, which are used to derive the location-based network performance. Based on
these measurements, the metrics and influences on network performance are discussed as
well as conclusions on the performance and suitability of these for different tasks derived.
The main observation derived from the crowd-sensed data is that signal strength and
network performance are largely independent, while the major influencing factor is the
available network technology.

RQ 2.2 is discussed in Section 5.2, presenting and discussing the particular challenges
of cellular network access on trains. It discusses the challenges of localization and accu-
rate estimation of the service quality. Based on this, the dependency between individual
performance metrics and usability of the network for different tasks are analyzed. The
resulting service classification is then used to develop a prediction algorithm, guiding the
end user in his or her network consumption, thus increasing transparency of the network
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performance, reducing disappointment, and possibly also guiding the network operator
on improving network coverage.

RQ 2.3 is discussed in Section 5.3. Variations as observed in Section 5.1 are analyzed in
detail and their root causes are identified. The influence of routing and gateway allocation
in cellular networks on the QoS is derived. These observations are underpinned by a
dedicated study analyzing the real-world impact of the observed variations on the page-
load time of the 25 most popular domains, and concluding that network management
decisions have considerable influence on the end-to-end performance.

Finally, Section 5.4 summarizes the findings derived from the location-based, train-
based, and reference studies. Namely, the performance of the analyzed cellular networks
mainly depends on the available network technology. If the technology is known, the per-
formance of the network can be predicted with relatively high accuracy. Finally, within the
analyzed network, the major implications on service quality are determined to be caused
by network management decisions of the network provider.

5.1 crowd-sensed cellular network performance measurements

Currently, different sources for information on the cellular network performance and avail-
ability are known. First, cellular operators publish maps showing the reach of their net-
works for different connection technologies. This data has considerable limitations: The
covered area as shown on the maps is based on propagation models, which mostly include
knowledge of the terrain, but fail in urban areas, where coverage is heavily affected by
shadowing and multipath-fading. Further, these maps only show available technologies
instead of useful performance metrics like RTT and throughput. Therefore, independent
studies are set up, measuring KPIs of the cellular network in an end-to-end based man-
ner. Examples are OpenSignal [OpS], Sensorly [Sen], or Netradar [SMS13] from academic
side. These services are based on end-to-end measurements run from a mobile application
to a remote server. However, the collected data is proprietary and thus not available for
further analysis. Hence, an independent measurement solution was implemented and set
up, with the focus on determining the mobile network performance based on end-to-end
measurements.

The measurement setup, procedure, data collection, and visualization as presented here
are also published in [KJH15; KMB+15; KMB+16].

5.1.1 Measurement Methodology

Measurements of mobile networks are conducted in an end-to-end based fashion, thus
closely approximating the network quality as experienced by end users. For this, measure-
ments are run from a smartphone to a remote server, dedicated to the network measure-
ments. The always use the active network, which may either be the cellular, or the WiFi
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Figure 5.1: Schematic of the crowd-sensing measurement setup

network. Collected measurement data is then stored on a data collection server, from
which the desired network performance maps are derived. The resulting measurement
setup is depicted in Figure 5.1.

The general, and location based performance of the cellular network is measured in
a crowd-sensing based approach. Therefore, a smartphone application is developed, pas-
sively recording system state, network environment, and location, while periodically trig-
gering active measurements against a dedicated measurement server. This is published to
attract a number of users interested in the performance of their networks. Furthermore,
this is installed on smartphones dedicated to the measurement campaign.

The measurements can be divided into passive and active, depending on their require-
ment of actively using the available data interfaces. Passive measurements periodically
record time, location, and signal strength of the network, while active measurements
probe the network performance using the ping command to determine the RTT, or mea-
sure the network throughput by downloading a large file or running iperf measurements
against a dedicated measurement server.

These measurements are recorded for the cellular network as well as the WiFi network.
This is of particular interest, as no common data set is available, containing performance
metrics of both networks within the same area. Thus, the performance of different network
types (e.g. cellular/WiFi) can be compared at the same location, thus guiding network
selection decisions.

The RTT measurements are least intrusive, requiring only one sent and received packet.
However, the first data packet triggers the modem to activate the network connection
and establish a dedicated data channel. This results in an extended RTT compared to
subsequent requests. Hence, the first probe packet is discarded, as it mainly contains
information on the connection establishment. To gain statistically significant results, a
number of independent tests are required. Their number is limited by user mobility and
possible changes in the network. The overall test duration is minimized by using pings
-A option, sending the subsequent request as soon as a reply to the previous request has
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been received. This reduces the measurement time while the connection is established, but
does not work for unstable connections, where packets are lost, thus causing a time-out.

When measuring the RTT from mobile devices, also device internal delays must be
considered. These are caused by OS internal processing, e.g. by the kernel, and upper
layer processing, like the Java-VM. Hence, the resulting delay depends on the chosen tool
and implementation. Li et al. [LMW+15] measure the device internal delay for different
measurement techniques on WiFi. They compare the performance of native ping, HTTP
ping, and a raw socket connection by monitoring the arrival of packets using wireless
traffic sniffers. As expected, the best performance is achieved using the native ping com-
mand. Interestingly, they observe that the device internal processing delay also depends
on the absolute RTT caused by the network and the remote machine. The ranges of in-
terest for our measurements are below 50ms, which is common on 4G networks. There,
device internal delays for the used devices are in the range of 1.2ms and 7.8ms with a
mean confidence interval of 0.3ms and 0.9ms respectively. Similar effects are expected on
cellular networks, but cannot be verified due to lack of cellular packet sniffers. Conclud-
ing, the conducted RTT measurements first depend on the chosen measurement tools, but
also on the device running the measurements. Hence, care was taken when evaluating the
measurements to only compare measurements from the same device type.

Measuring the throughput of mobile data connections is a challenge itself. Throughput
is simplest measured by saturating the connection for a considerable time, while simul-
taneously monitoring the network throughput. Particularly in mobile environments, this
creates additional problems. First, cellular traffic is expensive. With currently available
data rates, the monthly traffic budget may be used up in a few minutes. Secondly, the
user may be mobile, thus affecting the potential network throughput, to which the mea-
surement needs to adapt.

For fixed networks, a number of different techniques were developed, based on mea-
suring delay differences of a pair or train of packets between sender and receiver. This
allows probing whether the tested throughput can be processed on the full path between
sender and receiver, or not. Thus, in an incremental approach, the available bandwidth
can be narrowed down to a given range. This approach works well for fixed networks, but
has two disadvantages prohibiting its use in mobile environments. First, the measurement
duration is too long. Probing each targeted data rate requires a few to tens of seconds. As
this approach narrows the range of possible bandwidth down in a binary manner, a large
number of tests is required, resulting in measurement durations in the range of minutes.
Running these in a mobile environment is clearly not feasible, where a pedestrian may
move several hundred meters during a measurement. Secondly, due to traffic scheduling
within the radio access layer, a large jitter is introduced. This highly affects the accuracy of
the measurements. A possible countermeasure would be to increase measurement dura-
tion, thus eliminating the errors from the measurements. This is clearly not feasible given
the above requirements.
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Concluding, the only feasible option to determine the available bandwidth are link-
loading measurements. Here, also a number of different techniques exist. From measure-
ment perspective, UDP transfers are quite promising, as these are connection-less. Thus
no slow start and backoff algorithms interfere with the measurement. Hence, the link can
be saturated and the number of received packets at the remote side observed. Still, on
cellular networks the traffic traversing the PGW is accounted for. Thus, a large number
of incoming but later discarded packets still counts to the traffic budget. On the other
side, TCP is currently the most common layer 3 network protocol. At the time of writ-
ing, more than 90% of the Internet traffic is TCP traffic [FHL+14]. A number of different
congestion control algorithms is available (e.g. Tahoo, Reno, Vegas, Cubic, . . . ) and more
or less commonly observed on TCP end-points. As these measurements are focused on
mobile devices running the Linux kernel, the most common congestion control algorithm
is cubic. To not alter the behavior of the measurements in relation to other traffic present
in the network, no modifications are made. Still, one needs to consider that the presented
measurements are valid under the given assumptions only (e.g. TCP traffic using the cubic
congestion control algorithm).

The measurement of the available bandwidth is conducted using iperf. Conventionally,
it only measures the upload from the client to the server. Hence, it is problematic to
measure the downlink in cellular networks, where heavy traffic engineering is conducted.
Furthermore, the mobile device is behind a NAT, and thus not directly accessible from
the Internet. Hence, a patched version of iperf is used, allowing the client to establish a
connection to the server, which is then used to measure the ’uplink’ from the server to the
client. A version patched to include this functionality is publicly available1. This version
was used for all throughput measurements as reported in the following.

The amount of traffic generated per measurement is minimized by reducing the mea-
surement duration. In a number of test trials, the minimum duration was empirically
identified to be 5 s. This results in reaching link saturation levels on all cellular technolo-
gies as well as on WiFi. The resulting error between the short and full duration bandwidth
measurements was empirically determined to be below 10%.

Limitations of the current setup are mainly caused by the high cost of cellular traffic,
and the high energy consumption of accurate localization. Further, the frequency of sig-
nal strength updates depends on the status of the display. If the screen is on, updates are
observed with a frequency of approximately 1 /s, while the interval is drastically reduced
when the device is inactive. Additionally, active probing (e.g. RTT measurements) requires
the device to be active to also get network coverage information. Further, it triggers a state
change of the currently active network interface, which causes additional energy con-
sumption. As already discussed in [KSB+13] the best trade-off between accuracy, battery
consumption and latency must be found. Translated to the measurement application, the
only way to improve energy efficiency is to reduce the amount of measurements. Hence, a

1 https://github.com/tierney/iperf, accessed 2017-01-03

https://github.com/tierney/iperf
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Table 5.1: Overview of all collected measurements (as of 2017-02-24)

Type 4G 3G 2G total

Signal Strength 21.8 M 7.8 M 0.2 M 32 M

Cells 2.5 k 9.7 k 2.0 k 14.9 k

RTT 961 k 507 k 14 k 1.7 M

Throughput 7.1 k 4.9 k 48 16.7 k

number of different features were integrated, both reducing the power consumption and
limiting the amount of traffic consumed.

Measurements are run against emanicslab2 servers and a dedicated measurement server.
These are lightly used and well connected machines with sufficient capacity to act as re-
mote servers. Further, these are distributed over Europe, thus allowing to run measure-
ments from different countries and mobile operators within Europe. On each of these
machines two iperf instances are running, each listening on its dedicated port for the mo-
bile applications to connect. On connect, a TCP measurement from or to the remote device
is initiated. Further, these are also configured with a maximum test duration of 5 s, thus
limiting the amount of traffic received by the mobile device.

5.1.2 Description of the Measurements

The crowd-sourced data collection was started in December 2013 and is still running at
the time of writing. The data set consists of 28M coverage samples, 1.7M RTT samples,
and 17.6 k throughput samples. The bulk of the measurements are recorded in and around
Darmstadt (Germany) which is also caused by a number of measurement studies focusing
on the detailed analysis of the cellular network performance to later generate models for
analysis and prediction. A summary of the crowd-sourced data set is given in Table 5.1.

Based on the collected data, network coverage and performance maps are created. These
show the availability of different network technologies and their performance in different
areas. From these it becomes clear that networks are primarily upgraded in urban centers
and other more densely inhabited regions, while roads show gaps in network coverage,
sometimes only providing 2G or no connectivity at all.

The RTT and throughput measurements are mapped according to the recorded loca-
tions. As the network performance depends on the available network technology, the
created maps are split accordingly. This is particularly interesting for older phones, not
supporting newer technologies like 4G/LTE.

A further, interesting aspect of the collected data is the number and size of observed
cells. From all recorded samples the ones of the actively used cells are selected. Thus, not

2 https://www.emanicslab.org/, accessed 2017-01-03

https://www.emanicslab.org/


120 analysis of network performance

100 101 102 103 104 105 106 107

Number of observations

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Number of cells: 14904

(a) Distribution of observations per cell over all
cellular operators and technologies

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104 105

Area of observed cells [m²]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Number of cells: 2136

(b) Distribution of observed cell sizes over all
operators and technologies for cells with more

than 100 samples

Figure 5.2: Comparison of the number of samples and derived cell size based on the
crowd-sourced network measurements

only the theoretical, but a realistic cell coverage is determined. For this, the collected sam-
ples are grouped by mobile operator, location area code (LAC), and cell ID. For each cell,
the minimum convex hull is determined using PostGIS’ function ST_ConvexHull. Thus,
the maximum covered area of each cell is determined.

Before this algorithm is run, the collected data is properly sanitized. Hence, data points
are filtered by location accuracy, time after last location update, as well as time after the
last cell update.. Thus stale values, which are frequently returned by the Android OS are
removed.

Figure 5.2a gives an overview of the observed cells. The collected data shows a median
count of 16 samples per cell. The mean count is 1036, indicating that for a number of cells
a large number of samples was recorded. The plot shows an upper limit of over 1 million
samples for the most frequently observed cells. Approximately 15% of the observed cells
show a sample count of over 100, making it possible to derive cell-based performance
metrics. This result is expected, as caused by different dedicated measurement campaigns,
also a large number of measurements at fixed positions were recorded. Further, human
mobility shows a quasi-stationary or nomadic behavior where people tend to stay at fixed
locations for considerable time [CTS+11].

Based on the collected signal strength samples, the coverage area of the respective cells,
and thus also their size can be derived. For this analysis, only cells with a minimum
sample count of 100 have been selected. The derived area of the remaining 2136 cells is
shown in Figure 5.2b. The CDF shows a median cell size of 0.8 km2 with a quite uniform
distribution of cell sizes. 90% of the derived cell sizes are in the range 50 000m2 to 10 km2.
A few cells with an area of 600 km2 were also observed. These are the cells serving more
rural areas, thus sharing their capacity with a larger, but less densely inhabited area. Still,
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Figure 5.3: Map of cell densities in the city center of Darmstadt

due to the small sample size and focus of the measurements on a single urban region,
no conclusive result can be given here. To achieve this, systematic measurements over a
larger area would be required.

Based on the size of the respective cells, also cell densities at given locations can be
determined. High data quality is assured by, besides the above filtering, including only
cells based on a minimum of 100 samples in the analysis. Due to the high number of
required samples, only cell densities for the city center of Darmstadt can be calculated.
The map of derived cell densities is given in Figure 5.3. It shows a larger number of
observed cells within the city center, while fewer cells are observed in the outer regions.
Still, the effects of the comparatively open area of the park on the propagation of cellular
signals are visible, increasing the relative signal quality of remote cells. Hence, while
passing through, it is more likely to stay connected to the currently associated cell than
being handed over to another cell, as would be expected in a more heavily built up area.

Analyzing the active measurements (e.g. RTT and throughput) and their relation to
signal strength leads to some interesting observations. The dependency between RTT
and downlink throughput for 3G and 4G networks is shown in Figure 5.4a. First, signal
strength and RTT show no correlation. The same effect is visible when correlating RTT
with throughput and throughput with signal strength. Generally, the RTT is lower on
4G networks, while the throughput is higher. The 3G measurements show a clear upper
limit on throughput, which is caused by the maximum data rates supported by the net-
work. Further, the RTT in the 4G network shows two distinct clusters at 20ms and 32ms
independent of the measured throughput.
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Figure 5.4: RTT throughput distributions as observed during the crowd-sensing study

Analyzing the distribution of the observed RTTs, in the probability density function
(PDF) as given in Figure 5.4b is obtained. Here, two distinct peaks can be identified at
20ms and 32ms. As no cause for these abnormalities is known, a dedicated measurement
study with the focus of identifying the root causes is set-up. These measurements are
discussed in Section 5.3.

5.1.3 Summary and Conclusion

From these crowd-sensing measurements it becomes clear that the prediction of location-
based network performance is not as simple as expected. Signal strength, RTT, and thro-
ughput generally do not correlate. From the data collected in the crowd-sourcing study,
general results as also published by other researchers are confirmed. Further, the feasi-
bility of determining cell sizes is assessed on the example of the inner city of Darmstadt.
Additionally, the distribution of RTT and throughput in cellular networks is determined.
These measurements confirm that the cellular service quality is mainly defined by the
available network technology (e.g. 3G/4G). When this is known, the performance of the
network can roughly be predicted without requiring any further active probing.

5.2 cellular network performance on trains

An increasingly important topic is mobile data access on public transport. Commuters
tend to use their mobile phones to read news or communicate with family and friends.
Job related travelers use their time on trains typically writing and reading emails, using
social media, or browsing [FS16]. Thus, for an increasing number of tasks continuous
connectivity is already essential.
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While network access on buses and trams is working well, the rail infrastructure pro-
vides additional challenges. These are on the one hand caused by environmental condi-
tions, on the other by economic decisions. Environmental conditions include the traversal
of different land-use zones from urban to rural, as well as geographical hurdles like hills,
dams, and tunnels. Economic decisions are also caused by population density, where cell
capacities are extended according to average cell utilization, and the decision of metaliz-
ing train windows to reduce the demand on air conditioning units.

From operator perspective, expanding capacity in rural areas covering train tracks is
also often not an economically attractive option. Considering the burstiness of traffic de-
mand, an expansion to support peak capacity is quite expensive. A train transporting a
few hundred people may pass through a cell within just 30 s to 180 s, depending on veloc-
ity, cell size, and train type. Additionally, this route may be served only once or twice an
hour, thus leaving the cell underutilized most of the time. Another challenge for the mo-
bile operator to overcome is the sudden demand of a large number of devices requiring a
handover between adjacent cells, creating considerable load on the network management
infrastructure [ZPH+11].

An increasing number of trains are equipped with passenger WiFi. Thus, requirements
on network management are decreasing, but due to the higher demand in networking,
ever higher data rates are required. State-of-the-art approaches use multiple MNOs in
parallel3. Therefore, a gateway is deployed on the train, maintaining a tunnel over multiple
cellular modems to a remote server. Thus, always the best performance of the combined
cellular networks is provided. The tunneling approach provides for TCP connections not
to break. Still, connections may stall while the cellular service quality is insufficient.

This varying service quality is also often criticized by commuters or people traveling
by train and trying to work [FS16]. Here, knowing the future network quality a-priori
would at least allow the commuters to adjust their network consumption accordingly
by scheduling network dependent tasks to times and locations with sufficient network
coverage. In the long term mobile operators may be motivated to expand their network
capacities in the currently under-provisioned areas.

Another challenge when analyzing the performance of cellular networks on trains is
the localization. Due to the often metalized windows, incoming electromagnetic waves
are highly attenuated. This affects both the cellular network and GPS. Thus, accurate
localization of i) the measurement samples on the track, and ii) the localization of the end
user when using pre-calculated network models provides another challenge.

The following measurements and network modeling are exemplary conducted on a
single MNO’s network. Besides location, the signal strength, RTT, and throughput are
monitored over an exemplary route. Care is taken to systematically analyze influences
on the cellular service quality, including seat location and train type. The following anal-
ysis is based on a Bachelor’s Thesis conducted by Florian Fischer [Fis16], which was

3 https://www.bahn.de/p/view/service/zug/railnet_ice_bahnhof.shtml accessed 2017-01-11

https://www.bahn.de/p/view/service/zug/railnet_ice_bahnhof.shtml
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also published in [KFH17]. The following section describes the measurement setup (cf.
Section 5.2.1), the collected measurements and their implications (cf. Section 5.2.2), and
lessons learned (cf. Section 5.2.4).

5.2.1 Measurement Methodology

For the measurement of the cellular service quality the NetworkCoverage App as de-
scribed in Section 5.1 is used. Still, due to the different environment, it is extended to suit
the particular requirements of the train measurements. These are i) the implementation
of an additional localization service using an API provided by Deutsche Bahn, ii) the col-
lection of context information (e.g. seat position, wagon, train type), and iii) the further
automation and configuration of the measurements and their intervals as described in
Section 5.1.

As already stated, the localization itself is often a challenging problem. In particular
on trains, where metalized windows hinder the propagation of electromagnetic radiation,
GPS reception is often impeded. Hence, alternative localization approaches are evaluated.
The localization using available networks as is done in the Google Play services4 is of
limited use when outside inhabited regions, because it is based on the service set iden-
tifiers (SSIDs) of the observed WiFi networks and cell IDs. If no SSIDs are available, the
localization falls back to the use of cell IDs alone. As cells, in particular in rural areas,
cover large areas, also the estimation based on the observed cells is comparatively inaccu-
rate. Mean errors to expect are in the range of 1.5 km [MEM08].

An alternative to these commonly available localization techniques is the Deutsche Bahn
Zugradar5. There, the location of currently running trains is visualized on a website. The
location published there is used in the following to derive the location of the train in
question. Therefore, the API as used by the website is analyzed and the respective calls
implemented in the mobile application.

The location of the train in question can be obtained by searching for trains leaving
a given station. Therefore, first the departing station is requested from the experimenter.
For this station, then the list of departures is fetched from the server. By default, this list
contains trains in an interval of one hour around the time of the request. This list is shown
to the experimenter to select the respective train.

Based on the derived train ID, information on the train is obtained from the web server.
The detailed information is available from one of several API endpoints. For long-distance
trains, the main region covering all of Germany is requested, while regional trains are
tracked in specific sub-regions. After identifying the region, the detailed information is
returned. The reply contains the full schedule of the train including all intermediate sta-

4 https://developers.google.com/android/reference/com/google/android/gms/location/

package-summary accessed 2017-01-11

5 https://www.bahn.de/p/view/service/auskunft/zugradar.shtml accessed 2017-01-11

https://developers.google.com/android/reference/com/google/android/gms/location/package-summary
https://developers.google.com/android/reference/com/google/android/gms/location/package-summary
https://www.bahn.de/p/view/service/auskunft/zugradar.shtml
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tions (also without halt), arrival and departure times. Additional fields indicate the actual
arrival and departure dates. Besides these comparatively coarse locations, also a list of
more detailed coordinates can be obtained using another ID from this response. This list
contains the ordered list of coordinates in millionth of a degree. Thus, these locations can
easily be converted to WGS 84 coordinates as used within GPS and any modern end user
operated system.

The location as returned by the Zugradar API is derived from track occupancy infor-
mation. Generally, the occupancy of a rail track is managed in segments of a minimum
size of 500m. This corresponds to the maximum length of trains supported by the system.
This track occupancy information is used to control track switches and signals as well as
safety systems automatically stopping a train if signals are missed. Based on this informa-
tion, the locations of trains are derived. As the same information is used for both control
and safety functions, the data available on the API is expected to be accurate. Still, as the
absolute accuracy is not known, also the GPS position is recorded for all measurements.

First measurements show a maximum update frequency of the data available from the
Zugradar API of 1 /min. Compared to GPS with a time resolution of 1 s, the resulting lo-
cation accuracy is also predicted to be low. Still, based on the known track, the dimension
of the error is reduced from two to one. Interpolating the location based on the time be-
tween location samples, a more precise location can be determined. A further advantage
of using the Zugradar API is the reduced energy consumption compared to GPS. For each
location update, one network interaction is required. Caused by the low update interval,
considerable energy savings are possible.

The accuracy of the network measurements is maximized by keeping as many variables
constant during the measurement. Where this is not possible, the variables are recorded
to later discriminate between different situations. As described before, the same route
is used for all measurements. Still, the type of train running on a particular day and
time may be different. These may be single deck trains (DB Silberling6) or the newer
double-deck coaches7. Further, on double-deck coaches, the position on the upper or lower
deck is recorded. To simplify data collection, the user interface (UI) of the measurement
application is extended to request the corresponding information from the experimenter.
This information is stored besides the metrics recorded by the NetworkCoverage App as
described in Section 5.1.

The measurement intervals were reduced compared to the published NetworkCover-
age App. The ping interval is set to 10 s. This is the shortest feasible interval, considering
that always five probe requests are sent, and may be lost due to intermittent connec-
tivity. Hence, for each packet it must be possible to time-out. The throughput measure-
ments were configured to run every 300 s. This interval is limited by the monthly traffic
allowance on the available SIM cards. Care was taken to stay within the limits of the con-

6 https://en.wikipedia.org/wiki/Silberling accessed 2017-01-11

7 https://en.wikipedia.org/wiki/Bombardier_Double-deck_Coach accessed 2017-01-11

https://en.wikipedia.org/wiki/Silberling
https://en.wikipedia.org/wiki/Bombardier_Double-deck_Coach
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tract, such not distorting the collected measurements. As before, signal strength, network
technology, associated information, as well as GPS location are recorded with maximum
resolution. The only further limitation on these measurements is the energy consumption,
which is not problematic on a 25min train ride.

5.2.2 Description of the Measurements

The data presented in the following was collected on 59 individual train rides at different
days and times. The collected data set consists of 29 607 signal strength samples, 6834 RTT
measurements, and 514 throughput measurements. The majority of observed samples
are collected in 3G and 4G networks. Each sample is annotated with time, location, and
ride number, from which additional information on the specific ride (e.g. train type, seat
location, etc.) can be derived. The distribution of samples over the network technologies
is: EDGE: 1099, UMTS: 857, HSDPA: 11, LTE: 15053, HSPA+: 12407.

The accuracy of the collected GPS locations is analyzed based on the location accuracy
as returned by the Android OS. The accuracy value defines a circle with a given radius
around the returned position, which contains the actual position with a probability of
68%. The CDF of the recorded accuracy values is given in Figure 5.5a. Accuracies as low
as 3m have been observed. Still, the median accuracy is 13m. 90% of the samples are
more accurate than 22m, while 99% are below 40m. Thus, generally the accuracy of GPS
on the train is sufficient for the measurement task.

The Zugradar locations are assessed based on the simultaneously recorded GPS val-
ues, due to lack of other, more accurate localization techniques. Hence, for each Zugradar
location as recorded by the application, the closest GPS position in time is selected as
reference. The differences between Zugradar and GPS locations are summarized in Fig-
ure 5.5b. Here, considerably larger differences are observed. The median difference be-
tween Zugradar and GPS location is 1000m, with 19% of the samples showing deviations
of more than 2 km.

Considering the large deviation between GPS location and Zugradar, the error inherent
in the GPS location does not affect the validity of the presented results. Further, the large
difference between both locations renders the use of the Zugradar API irrelevant for both
measuring and predicting the cellular network quality. Knowing the location with an ac-
curacy of 2 km on the selected route relates to a travel time of 1min to 2min. During this
time, multiple changes in network performance may occur, thus rendering the location
estimate superfluous. Consequently, the following evaluation is based on the GPS values
recorded in combination with the performance measurements.

The collected data is first analyzed for anomalies. Therefore, the influence of different
parameters on the measurements is analyzed. For this, variables were plotted for each of
the parameters as identified before, and cross-correlated to other variables. The correla-
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Figure 5.5: Comparison of the accuracy of GPS and Zugradar localization

tions and trends identified correlate well with results published in literature (e.g. [SSM13;
LSR+12]). Hence, only the new observations are summarized here.

The distribution of observed network technologies on the route is given in Figure 5.6.
For visualization and analysis purposes, the collected data was aggregated in segments
of 500m length. This results in a relatively accurate time and location estimate as well as
sufficient data in each bin for a statistical analysis. Over the full route, clearly LTE and
HSPA+ dominate. Still, in some areas the handset switches back to UMTS, EDGE, or loses
connectivity entirely.

Figure 5.7 shows the aggregated signal strength measurements for LTE and HSPA+.
Besides filtering by train type and deck, Figure 5.7a shows the signal strength of the
HSPA+ network, while Figure 5.7b shows the LTE signal strength on the same track.
Here, only these two technologies are discussed, as these cover the majority (93%) of the
observed samples. The lines as indicated in the legend mark the mean observed signal
strength of the respective network technology. The shaded areas in the respective color
indicate the area between the 5th and 95th percentile, thus representing the range in
which 90% of the samples have been observed.

It is interesting to observe that the received signal power is considerably higher in
HSPA+ compared to LTE. This is caused by the different measurement method. While
on 3G connections the RSSI is calculated based on the received signal power, in LTE the
RSRP is used to judge the channel quality. Hence, no direct comparison between tech-
nologies based on the recorded signal strength is thus possible. Because measurements
are collected on smartphones, no information on the used frequencies is available. Hence,
no conclusion can be drawn from this. Peaks in both networks are observed within the
same bins, indicating that the same cell sites are used for the deployment of both technolo-
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Figure 5.6: Distribution of observed on the route, aggregated for 500 m route segments
(from [Fis16])

gies. Hence, also the dips in signal strength overlap in both networks, leading to service
outages.

Considering the confidence intervals of the signal strength measurements, any signifi-
cant influence of train type and deck can be dismissed. The mean as observed in each bin
is slightly different, but the confidence intervals overlap in large regions. For the lower
signal strength on the upper level in Figure 5.7b between kilometer 13 and 20 no explana-
tion was found. It is counter-intuitive that the received signal power at a higher position is
lower compared to other locations. The only possibility would be destructive interference
caused by the surrounding environment for this particular height.

The analysis of the RTT performance is based on 7197 samples (LTE: 3827, HSPA+: 2976,
HSDPA: 2, UMTS: 171, EDGE: 221). Generally, the RTT measurements confirm results as
published in related work [LSR+12]. The median RTT of HSPA+ is at around 100ms with
the inner 50% of values between 80ms and 300ms. The movement velocity and often in-
sufficient signal strength cause frequent packet loss and thus lower layer retransmissions,
resulting in a large number of outliers in the range of 1 s to 10 s. The LTE measurements
show a similar picture. The median RTT is 50ms with the inner 50% of measurements
covering the range 40ms to 90ms. Also on LTE a large number of outliers is detected.
No linear correlation between RTT and signal strength is identified. However, RTT and
packet loss depend on the location on the route.

As currently most smartphones are equipped with an LTE capable modem, the follow-
ing analysis of the RTT measurements combines the performance of all available network
technologies as selected by the mobile device. Thus, the presented data closely reflects the
performance as experienced by end users on the respective route.
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(b) LTE signal strength

Figure 5.7: Comparison of the signal strength of HSPA+ and LTE on the route between
Frankfurt (0 km) and Darmstadt (28 km) for different train types and seat

positions

The ping measurements are summarized in Figure 5.8. The blue graph indicates the
median RTT, while the dashed blue line describes the mean RTT in each bin. The blue
shaded area relates the region where the inner 90% of measurements were observed.
Similar to Figure 5.7, lower performance is observed at the same locations. The red line
indicates the mean return rate of the sent probes. Here, the shaded area indicates the 95%
confidence interval of the mean.

The packet loss as observed in some sections of the route appears negligible. However,
considering that replies are sometimes received a few seconds later, a high impact on
QoE is evident. Further, during service outages it was not possible to initiate an RTT
measurement, thus the real-world impact is higher than estimated here.

The impact of the observed packet loss on any mobile service is much more grave.
Considering that a web site currently requests tens to hundreds of different resources, and
is usually only fully responsive after all resources are loaded, the impact of a single packet
loss becomes evident. By either stalling a TCP session for considerable time, or even
interrupting the session, a single packet loss can prevent a website from being fully loaded.
Contrary, the large delay, and stalling of the page loading increases load on the network
by causing the user to re-request the page. In both cases (e.g. automatic retransmissions
and reloading) the demand on the network is increased without benefit to the end user.

Due to the adverse conditions on the route, only a small number of throughput mea-
surements are available. This is both caused by frequent packet losses, but also the data
requirements of the tests. Due to packet losses, a large number of throughput tests failed.
Furthermore, the limited traffic budget restricts the maximum number of throughput tests
to not exceed the traffic cap. If unlimited traffic was available, a continuous measurement
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Figure 5.8: Measured RTT and success probability on the route between Frankfurt (0 km)
and Darmstadt (28 km)

.

approach would have been used for a more accurate view on network performance. Still,
495 measurements are available, but not equally distributed over all sections, thus pre-
venting a detailed statistical analysis. Generally, the throughput measurements, similar
to the RTT measurements, show no linear correlation with signal strength or RTT. The
performance of LTE was considerably higher than evolved HSPA (HSPA+).

5.2.3 Predicting the Cellular Service Quality on Trains

As already identified in the previous section, the success probability and RTT of the cel-
lular connection have a significant influence on the user perceived service quality. Hence,
a network quality metric is devised, based on transmission success probability and avail-
able network type. This is correlated with the subjective cellular service quality to derive
thresholds for different services. Based on the quality metric, the subjective network per-
formance and suggested possible service can be derived.

The quality metric is defined based on the success probability of packet transmissions,
and the network performance parameters, which are defined by the available network.
Based on the success probability, the reliability of the mobile connection is determined,
while the network type identifies which services work in an acceptable manner. Thus, the
quality metric is defined as a weighted sum of both.

Q = qnettype ·wnettype + psuccess ·wsuccess (5.1)

Here, qnettype, is a metric in the range 0 to 1 for the network quality, which depends on
the currently available network type. psuccess is the success probability of data transfers
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Table 5.2: Network technology mapping used to derive the network quality metric

qnettype LTE HSPA+ HSDPA UMTS EDGE none

Value 1 0.8 0.6 0.4 0.2 0

Table 5.3: Classification of the subjective cellular service quality

Quality class Description Typical use case Q interval

C1 Excellent Video streaming 1.0 > Q > 0.96

C2 Good Web browsing 0.96 > Q > 0.87

C3 Poor Chat & messaging 0.87 > Q > 0.7

C4 N/A – 0.7 > Q

in the respective section, derived from the success probability of the RTT measurements.
Both metrics can be weighted according to user preferences, thus letting the user indicate
his or her preference of reliability or performance of the cellular network. The sum of the
weights wnettype and wsuccess per definition is 1, thus resulting in a quality metric Q in the
range 0 to 1.

The network quality qnettype is calculated by mapping the available networks to the
range 0 to 1. On the analyzed route five different network types are observed, although
mostly HSPA+ and LTE were chosen by the device. These are mapped to the range 0 to
1 in ascending order according to their nominal bandwidth. This is also the inverse order
of the observed RTTs on the respective technologies. The resulting mapping of network
technology to network quality is summarized in Table 5.2.

The thresholds for mapping the network quality as determined by measurements are
mapped to the possible use cases by defining service classes. These are identified by pop-
ular usage scenarios of smartphones and their bandwidth and latency requirements. Most
demanding clearly is video streaming. The subsequent analysis does not distinguish be-
tween different quality levels and resolutions, as this is usually adapted by the mobile
video player depending on the available bandwidth. The next, less demanding service
class contains web browsing and music streaming. The bandwidth requirements are com-
paratively low, but reliable data transfers are required periodically. Least demanding are
cloud-based messaging applications. These require intermittent connectivity, and handle
data transfers and retransmissions in the background without requiring user interaction
or interrupting the user experience. The largest effect visible is a delay in message deliv-
ery, which may be noticed if the conversation is highly interactive. The derived quality
classes are summarized in Table 5.3

The thresholds mapping the service quality Q to the service classes Ci are derived by
first defining the service classes for each route segment, calculating the quality metric, and
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Figure 5.9: Calculated quality metric Q and subjective network quality

minimizing the resulting classification error over the available rides. The quality metric is
calculated according to Equation 5.1. For each route segment, the success probability of
the RTT measurements is averaged and weighted with the respective coefficient. Based on
the distribution of network technologies, the network performance qnettype is calculated
and weighted with the weight for the network performance. For simplicity, the weights
were chosen to slightly favor reliability over performance (0.6 - 0.4). Further studies (in-
volving more than one participant) are required to analyze the effects of this decision and
optimize the final weights.

The cellular service quality was manually classified in a first step, deriving the op-
timal thresholds to map the quality metric to the defined service classes. For this, the
performance of the cellular network was recorded over a number of rides. Based on this
preliminary classification, the thresholds for the quality metric Q are adjusted to result
in the respective service classes. The resulting mapping of quality metric to associated
service classes is given in Figure 5.9. The black line indicates the derived mean service
quality as calculated based on Equation 5.1. Here, a similar behavior as in Figure 5.8 is
visible. For reference, the 95% confidence of the mean is given in the darker shaded area
around the mean. The lighter shaded area indicates the 5th and 95th percentile of the
observed values. The colored areas indicate the service classes as also defined in Table 5.3.
From this it can be seen that particularly sections with lower mean service quality still
can show a performance between perfect and not working at all.



5.2 cellular network performance on trains 133

0 10 20 30 40 50
Number of Rides in Training Set

0.00

0.05

0.10

0.15

0.20

E
rr

o
r

Mean Error

Figure 5.10: Residual error over the number of rides in the learning set (from [Fis16])

The overall accuracy of the prediction is assessed by running a k-fold cross validation
on the collected data. Here, k is usually chosen as 10. As this leaves only 5 samples in
each group, k is increased to 11, resulting in a larger number of reference groups of the
same size. The resulting RMSE is 6.72%.

The required number of rides and resulting accuracy of predicting service quality
classes are analyzed in the following. These calculations are conducted under the assump-
tion that the measurements are executed as described in Section 5.2.2 (e.g. continuous
location, signal strength and network technology updates, RTT every 10 s). The number
of rides is determined by randomly sampling n out of the 59 rides, where n is increased
from 1 to 49, thus leaving 10 rides as reference. Statistical significance is assured by repeat-
ing this process 30 times. Thus, the mean residual error as well as the confidence of the
mean can be calculated. Figure 5.10 shows the derived dependency between number of
rides and residual error. The RMSE for a single ride is 0.18. For 10 rides the error reduces
to 0.15 and approximates 0.13 for a larger number of rides.

Considering the narrow range of the derived quality metric for the mapping to the ser-
vice class, classification errors particularly in the higher service classes must be expected.
This is caused by the small number of samples which can be captured on a single ride.
As already visible in Figure 5.8 the RTT may vary considerably within a section. Thus,
a larger number of rides would be required to increase the accuracy of the model. Still,
based on the data from a single ride, an already reasonable estimate of the service quality
and thus the service classes can be expected.
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This initial study already shows good results, but clearly a more thorough approach
involving a user study and a larger number of participants is required to derive a conclu-
sive mapping. Still, the presented work shows a feasible approach to derive this mapping.
Considering a larger deployment of the presented methodology, an interactive end-user
application occasionally requesting feedback from end users would be a feasible approach
to improve both service classification as well as the mapping of network performance met-
rics to service classes. Ideally, this may be included in another similarly themed App, or
directly into the DB Navigator8. However, what is currently missing to make this approach
viable is an energy efficient and accurate localization method.

Assuming a suitable localization technique was available, users may be motivated to
participate in occasional network measurements if provided with a useful service. In the
case of cellular network usage on trains, the direct benefit for the model may be user feed-
back according to the predicted network quality on future stretches of the journey. The
benefit for the end user would be to know which services are expected to work during
which phases of the journey. This can either be achieved by implementing a permanent
notification in the status bar of the mobile phone, or a dedicated activity within the mo-
bile application giving a more detailed insight into the current and predicted network
performance.

During the course of this study, both user feedback mechanisms were implemented to
check their usability and benefit. For the permanent notification it was decided to visual-
ize the current status of the network similar to the signal strength graph using filled bars.
When opening the notification, the verbal description of the current service class and an
exemplary use case as given in Table 5.3 is displayed. Further, the remaining time to the
next predicted quality class change and predicted quality class are indicated. An example
of such a notification is given in Figure 5.11a. The derived service quality map for the se-
lected route is shown in Figure 5.11b. Beginning from the departure station the predicted
network quality is indicated in the left graph, with a legend to the right describing the
quality classes and a usage scenario. The current location on the route is indicated by
graying out the already passed route segments. The time scale on the left of the graph lets
the user estimate the time within each service class, and thus plan how to spend the time
on the train most efficiently. This feedback is expected to greatly improve user experience
on trains by first communicating the current quality of the network and thus avoiding
disappointments and failed connection attempts to use the network. Thus, the users may
spend their time on trains more efficiently by planning their tasks accordingly. As a side
effect, the energy consumption of the cellular modem can be reduced by not activating it
during periods of poor coverage. On the other side, knowing the route segments showing
poor coverage, mobile operators can expand their network accordingly, thus gradually
eliminating the need to plan ahead.

8 https://play.google.com/store/apps/details?id=de.hafas.android.db accessed 2017-01-14

https://play.google.com/store/apps/details?id=de.hafas.android.db
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Figure 5.11: Examples of the user feedback implemented in the measurement application
(from [Fis16])

5.2.4 Summary and Conclusion

The presented work shows the feasibility of measuring and predicting the service quality
on trains. First, the location accuracy of the DB Zugradar service is analyzed. The result-
ing error is determined to be too large to be useful for measuring or predicting the cellular
service quality. Based on extensive measurements, the influence of seat position and train
type on cellular network quality is rejected. Further, a quality metric for the cellular net-
work was derived, based on the available network type and RTT. This quality metric is
mapped to service classes relating to different usage scenarios like video streaming, web
browsing, and messaging. These reflect the actual perceived service quality quite closely,
although more extensive user studies are required. The analysis over all measured rides
results in an error of 6.72%. The modeling of the service quality of a given route is de-
termined to be possible with as few as 10 rides. Still, the major impediment for widely
implementing and using this approach are the extensive energy consumption of GPS lo-
calization or the inaccuracy of the Zugradar system. Assuming a suitable localization
technique was available, a highly beneficial service for commuters and travelers could be
implemented.
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5.3 influence of traffic management decisions on network performance

The differences in RTT as identified in Section 5.1 are analyzed in detail by running addi-
tional, dedicated measurement studies. Therefore, the route of the packets taken through
the network is analyzed by running traceroute measurements from the mobile device, as
well as traceroute measurements in the opposite direction, from the measurement server
towards the mobile device. Further, the location and response times of the DNS server are
identified. As further reference, also measurements of popular websites are conducted,
giving insight into the real-world implications of the observed effects.

The following section is based on work published in [KMB+15] and [KMB+16]. The
section is structured as follows: First, the extended measurement setup is described in
Section 5.3.1. The recorded network metrics are presented and discussed (cf. Section 5.3.2),
from which conclusions on network structure and service placement are drawn (cf. Sec-
tion 5.3.3).

5.3.1 Measurement Methodology

As the crowd-sensing measurements show no significant correlation between location and
network performance, the following measurements are executed from a stationary loca-
tion. Therefore, the measurement application is extended to record, besides the metrics as
described in Section 5.1, a traceroute to the measurement server, the DNS server used, and
the RTT to the operator configured DNS server. All measurements are triggered periodi-
cally to measure the network performance during different times of the day and possibly
identify weekly patterns. The study was run over the course of 4 weeks. The study dura-
tion was chosen to include two normal working weeks and as well as the Christmas break
to identify any abnormalities in the network performance. The study began on December
14, 2015 and ended on January 15, 2016.

To maximize the number of measurements per cell, and eliminate as many variables as
possible from the measurement setup, the devices are placed at fixed locations within the
city. Thus, the probability of being connected to the same cell for a considerable amount of
time is higher. Still, network initiated handover cannot fully be eliminated, as no option is
available on Android locking the device to a single cell. Selected measurement locations
are two office environments, a location close to the central park, and three residential
areas. Thus, the influence of different traffic patterns within the cells on the measured
network performance can be identified.

As only end-to-end measurements are feasible without the participation of the cellular
network operator, the traversed network is considered to be a black box. Still, some in-
formation can be deduced. Running a traceroute measurement from the mobile device to
the server, the path on the Internet backbone is visible. For reference, a reverse traceroute
service is implemented on the measurement server. Mobile devices connect to a specific
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port and leave their device identification. After that, the connection is terminated by the
server. Based on the public IP address of the connecting device, a traceroute measurement
back to the device is started. Thus, both participating interfaces of the intermediate nodes
can be determined, resulting in a more detailed view of the network.

As further reference the response times of the 25 most popular websites are recorded.
Thus, a more detailed insight into the performance of the cellular network compared
to the wired backbone can be derived. The most popular websites are taken from the
Alexa most popular domains list9. Each of these top 25 domains is first resolved using
the operator provided DNS server, thus ensuring the association to the ’optimal’ remote
server. The resolved address is stored for the following measurements and later analysis.
First, an RTT measurement to the resolved IP is run. Then, the main hypertext markup
language (HTML) document is loaded from the respective server. For each, the connection
time, time to first byte (TTFB), and time to finish (TTF) are recorded. According to Li
et al. [LMW+15], both native Ping and HTTP connect show comparable performance.
Hence, these serve as additional reference for the native RTT measurements. Becker et
al. [BRF14] describe that HTTP requests in cellular networks are generally intercepted,
and an ACK returned before the original server has replied. This is caused by PEPs in the
mobile core network, intercepting all TCP connections. The presence of a PEP is confirmed
running Netalyzr, which is described in [VSK15]. Hence, the connection time can serve
as another indication for the existence of a PEP. As these are usually located close to
the exit gateways of the cellular network provider, the connection time may also serve as
additional demarcation point of the cellular operator’s network domain. The first realistic
value for the distance between the mobile device and the remote server is the TTFB, where
the first actual data is received. Still, depending on the request type (e.g. HTTP/HTTPS),
this delay corresponds to 3 to 4 RTT, minus one RTT between PEP and remote server.

5.3.2 Measurements

The data collected by the traceroute measurements to and from a dedicated server, as
well as the response and load times of the 25 most popular websites is described in the
following. First, the traceroute measurements are evaluated with the focus of identifying
possible root causes of the anomalies observed in the crowd-sensed data. Then, implica-
tions on the real-world performance of end-user requests are assessed on the example of
the page load time of popular websites.

From the traceroute and RTT measurements a number of interesting observations can be
drawn. First, the performance of the individual devices changes over time. The observed
time interval is 36h and repeats over the course of the study on all devices. Contrary to
first assumptions, the cellular parameters like signal strength and associated cell ID, LAC

9 http://www.alexa.com/topsites/countries/DE [accessed 2015-10-06]

http://www.alexa.com/topsites/countries/DE
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Figure 5.12: RTTs between mobile device and different demarcation points in the network

and network technology do not change during these changes. Hence, the root cause of
this abnormal behavior must be caused by the upper layers of network connectivity.

Figure 5.12 shows the measured RTTs between a single device and the measurement
server. The black line indicates the RTT between device and measurement server over the
course of one week. As only minimum, mean, maximum, and median deviation of the
RTT measurements are available, the minimum RTT is selected as the closest approxima-
tion of distance within the network. Larger delays are possible, but are expected to be
caused by processing delays on the intermediate nodes, in particular as ICMP messages
are handled with low priority. The blue line indicates the minimum RTT between the
measurement server and the last hop replying to the ping messages. Again, the minimum
of the measurements is chosen, approximating the best case performance. Calculating the
difference between end-to-end RTT and server to last-hop RTT, the RTT as indicated by
the green plus signs is derived. This serves as an estimate of the RTT within the cellular
network, consisting of wireless and mobile backbone propagation delays. For reference,
also the RTT to the operator configured DNS server is given in the form of red crosses.
Its performance closely correlates with derived RTT within the cellular network, thus
strengthening this argument.

The operator configured DNS server is always the same multicast address. The chang-
ing response times thus indicate that still different servers are used. Considering the struc-
ture of the cellular network, where tunnels are established between the mobile device and
the SGW and PGW, this indicates that these are periodically changed.

Resolving the IP addresses of the intermediate nodes as returned by the traceroute
measurements, conclusions on the location of the PGWs can be drawn. Based on the
hostnames, three different locations in the core network are determined, receiving traffic
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Figure 5.13: End-to-end RTTs as measured by the mobile devices, split by PoP as derived
from the traceroute measurements

from the mobile operator. As the cellular network is completely opaque to traceroute
measurements, the last public location of the reverse traceroutes is taken as demarcation
between both networks, and in the following called PoP.

The derived PoPs are geographically distributed over Germany. This correlates well
with the RTTs as observed between mobile device and DNS server and the ones derived
from end-to-end measurements and reverse traceroutes. Splitting the measured end-to-
end RTTs as measured on all devices by the derived PoP the performance implications of
PoP assignment on end-to-end performance can be identified. Figure 5.13 shows the ag-
gregated RTT of all devices using different PoPs. The narrow range of the boxes indicates
a good fit. Thus, knowing the PoP explains the difference in end-to-end RTT well.

Figure 5.14 shows the derived network structure. All devices as well as the measure-
ment server are placed in Darmstadt, thus are comparatively close to each other. The
mobile devices connect to the cellular network and establish a connection via the SGW
and PGW assigned by the network. These are geographically distributed all over Ger-
many, as is derived from the host names. Comparing the geographical distance covered,
a relative velocity v0 of 1% to 7% of the speed of light is observed. Considering common
fiber deployments as discussed in [SCG+14] (2/3c0, fiber length as 2x geographical dis-
tance) a one-way distance of 300 km explains 6ms of the 30ms observed on this distance.
The remaining time must be accounted to routing, MAC mechanisms, and device internal
delays. A shorter distance of 30 km explains 0.5ms of RTT, thus leaving 17ms for routing,
MAC and processing on the device. Assuming the device internal delays are similar to
WiFi, approximately 7ms are consumed by the smartphone [LMW+15]. Considering a
medium access delay of 1ms on both directions, still leaves 8ms to 16ms unexplained.
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Figure 5.14: Derived structure of the cellular network

An interesting observation considering the PoP selection is the unequal distribution of
time spent using the different PoPs. Only 18.7% of the time the most optimal PoP was
used, while for 25.5% and 56.1% the second best respectively worst PoP was used. The
behavior as observed is apparently caused by the network configuration, where always a
random SGW and PGW are assigned to connecting devices. Hence it must be assumed
that the association probabilities correlate to the capacities of the SGWs. Other possibilities
are that just default parameters were used when setting up the network, or other costs
(e.g. traffic) at another PoP are lower.

Considering the large increase in RTT, also the cellular backbone is used proportionally.
Clearly, optical links have a high bandwidth compared to the cellular network, but as the
cellular network technologies progress, also this factor becomes increasingly important,
and as shown here, also measurable. Comparing these RTTs and calculating the relative
performance penalty compared to the optimal PoP, the values in Table 5.4 are derived.
These indicate the overhead in the different network domains. While the overall RTT
increase for PoP 2 and PoP 3 is 58% and 73% respectively, the relative increase on the
core network is considerably larger. While the absolute increase in RTT from 3ms to 8ms
(cf. Figure 5.12) is comparatively low, the relative increase is considerable. Still, comparing
this to the RTT increase in the mobile network (41% to 47%), also there considerable
improvements are possible.

The real-world implication of the PoP assignment is evaluated by measuring the re-
sponse times of the 25 most popular websites. Therefore, the connection time, TTFB, and
TTF are measured. The results of the individual websites as received via the indicated
PoPs are given in Figure 5.15. Contrary to the first measurements, here four different PoPs
are discovered. It is interesting to observe that large differences in TTFB between different
websites exist. This is expected to be caused by the server backend. Mostly static pages
like www.bild.de load comparatively fast, while more dynamic pages (e.g. www.ebay.de)
take considerably longer to send the first data bytes.

www.bild.de
www.ebay.de
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Table 5.4: Possible reduction in RTT in the different domains compared to the optimal
PoP. Here, the column I-Net denotes the RTT between server and mobile edge,
MobOp the estimated RTT within the mobile operator’s network, and E2E the

end-to-end RTT.

Median RTT overhead Percentage

I-net MobOp E2E of packets

PoP 1 0 0 0 18.7%

PoP 2 247% 41% 58% 25.2%

PoP 3 365% 47% 73% 56.1%

h
tt

p
:/

/w
w

w
.a

m
a
zo

n
.d

e
 [

P
o
P
 1

](
3

2
/3

2
)

h
tt

p
:/

/w
w

w
.a

m
a
zo

n
.d

e
 [

P
o
P
 2

](
1

9
/1

9
)

h
tt

p
:/

/w
w

w
.a

m
a
zo

n
.d

e
 [

P
o
P
 3

](
1

0
6

/1
0

6
)

h
tt

p
:/

/w
w

w
.a

m
a
zo

n
.d

e
 [

P
o
P
 4

](
3

8
/3

8
)

h
tt

p
:/

/w
w

w
.b

ild
.d

e
 [

P
o
P
 1

](
3

2
/3

2
)

h
tt

p
:/

/w
w

w
.b

ild
.d

e
 [

P
o
P
 2

](
1

9
/1

9
)

h
tt

p
:/

/w
w

w
.b

ild
.d

e
 [

P
o
P
 3

](
1

0
6

/1
0

6
)

h
tt

p
:/

/w
w

w
.b

ild
.d

e
 [

P
o
P
 4

](
3

8
/3

8
)

h
tt

p
:/

/w
w

w
.e

b
a
y
-k

le
in

a
n
ze

ig
e
n
.d

e
 [

P
o
P
 1

](
3

2
/3

2
)

h
tt

p
:/

/w
w

w
.e

b
a
y
-k

le
in

a
n
ze

ig
e
n
.d

e
 [

P
o
P
 2

](
1

9
/1

9
)

h
tt

p
:/

/w
w

w
.e

b
a
y
-k

le
in

a
n
ze

ig
e
n
.d

e
 [

P
o
P
 3

](
1

0
6

/1
0

6
)

h
tt

p
:/

/w
w

w
.e

b
a
y
-k

le
in

a
n
ze

ig
e
n
.d

e
 [

P
o
P
 4

](
3

8
/3

8
)

h
tt

p
:/

/w
w

w
.e

b
a
y
.d

e
 [

P
o
P
 1

](
3

2
/3

2
)

h
tt

p
:/

/w
w

w
.e

b
a
y
.d

e
 [

P
o
P
 2

](
1

9
/1

9
)

h
tt

p
:/

/w
w

w
.e

b
a
y
.d

e
 [

P
o
P
 3

](
1

0
6

/1
0

6
)

h
tt

p
:/

/w
w

w
.e

b
a
y
.d

e
 [

P
o
P
 4

](
3

8
/3

8
)

h
tt

p
:/

/w
w

w
.t

-o
n
lin

e
.d

e
 [

P
o
P
 1

](
3

2
/3

2
)

h
tt

p
:/

/w
w

w
.t

-o
n
lin

e
.d

e
 [

P
o
P
 2

](
1

9
/1

9
)

h
tt

p
:/

/w
w

w
.t

-o
n
lin

e
.d

e
 [

P
o
P
 3

](
1

0
6

/1
0

6
)

h
tt

p
:/

/w
w

w
.t

-o
n
lin

e
.d

e
 [

P
o
P
 4

](
3

8
/3

8
)

h
tt

p
:/

/w
w

w
.w

e
b
.d

e
 [

P
o
P
 1

](
3

2
/3

2
)

h
tt

p
:/

/w
w

w
.w

e
b
.d

e
 [

P
o
P
 2

](
1

9
/1

9
)

h
tt

p
:/

/w
w

w
.w

e
b
.d

e
 [

P
o
P
 3

](
1

0
6

/1
0

6
)

h
tt

p
:/

/w
w

w
.w

e
b
.d

e
 [

P
o
P
 4

](
3

8
/3

8
)

h
tt

p
s:

//
w

w
w

.f
a
ce

b
o
o
k.

co
m

 [
P
o
P
 1

](
3

2
/3

2
)

h
tt

p
s:

//
w

w
w

.f
a
ce

b
o
o
k.

co
m

 [
P
o
P
 2

](
1

9
/1

9
)

h
tt

p
s:

//
w

w
w

.f
a
ce

b
o
o
k.

co
m

 [
P
o
P
 3

](
1

0
5

/1
0

5
)

h
tt

p
s:

//
w

w
w

.f
a
ce

b
o
o
k.

co
m

 [
P
o
P
 4

](
3

7
/3

7
)

h
tt

p
s:

//
w

w
w

.g
o
o
g
le

.c
o
m

 [
P
o
P
 1

](
3

2
/3

2
)

h
tt

p
s:

//
w

w
w

.g
o
o
g
le

.c
o
m

 [
P
o
P
 2

](
1

9
/1

9
)

h
tt

p
s:

//
w

w
w

.g
o
o
g
le

.c
o
m

 [
P
o
P
 3

](
1

0
6

/1
0

6
)

h
tt

p
s:

//
w

w
w

.g
o
o
g
le

.c
o
m

 [
P
o
P
 4

](
3

8
/3

8
)

h
tt

p
s:

//
w

w
w

.g
o
o
g
le

.d
e
 [

P
o
P
 1

](
3

2
/3

2
)

h
tt

p
s:

//
w

w
w

.g
o
o
g
le

.d
e
 [

P
o
P
 2

](
1

9
/1

9
)

h
tt

p
s:

//
w

w
w

.g
o
o
g
le

.d
e
 [

P
o
P
 3

](
1

0
6

/1
0

6
)

h
tt

p
s:

//
w

w
w

.g
o
o
g
le

.d
e
 [

P
o
P
 4

](
3

8
/3

8
)

h
tt

p
s:

//
w

w
w

.w
ik

ip
e
d
ia

.o
rg

 [
P
o
P
 1

](
3

2
/3

2
)

h
tt

p
s:

//
w

w
w

.w
ik

ip
e
d
ia

.o
rg

 [
P
o
P
 2

](
1

9
/1

9
)

h
tt

p
s:

//
w

w
w

.w
ik

ip
e
d
ia

.o
rg

 [
P
o
P
 3

](
1

0
6

/1
0

6
)

h
tt

p
s:

//
w

w
w

.w
ik

ip
e
d
ia

.o
rg

 [
P
o
P
 4

](
3

8
/3

8
)

Domain

0

500

1000

1500

2000

T
T
FB

 [
m

s]

Figure 5.15: Time to first byte for the 10 most popular domains as received via different
PoPs (Popularity determined on 2015-10-07)
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The independence of the collected data for each website and PoP is verified using
the Kruskal-Wallis test. This test is selected, as an analysis of variance (ANOVA) is not
applicable for comparing data sets with non-Gaussian distribution. Further, the input
data must be independent, and the distribution similar between groups. Independence
of each sample is assured by the test setup. Tests are run every 30min, which is much
longer than most connection timeouts. No cache is used on the local devices, and the DNS
resolution is freshly requested before each run. The remaining locations where state may
be stored are the internals of the cellular network. As identified before, the association
of the mobile device changes every 36h. This is reflected in the selected PoP. Hence, the
PoP is selected as dependent variable, distinguishing the different groups. Similarity of
the observed distributions is assessed by comparing the histograms of the performance of
each PoP for the different websites. These show a good fit. Thus, the prerequisites of the
Kruskal-Wallis test are fulfilled.

The null hypothesis HO is that the tested distributions are equal. For this, usually a
confidence threshold of 0.05 is chosen, relating to a probability of 95% of both groups not
being drawn from the same distribution. Running the test on the collected data generally
shows p values of lower than 5 · 10−5, thus confirming a significant difference between
those data sets, and hence performance implications caused by PoP selection.

The impact of PoP selection is compared by normalizing the performance of each web-
site by the median TTFB via the best performing PoP, which in all cases was PoP 1. The
normalization is required, as the performance of the different websites is too different to
compare absolute numbers. The resulting performance penalties of the sub-optimal PoP
selection are summarized in Figure 5.16. Figure 5.16a shows the increase in TTFB, which is
an important indicator for the performance of short-lived flows and generally connections
exchanging only little data, but requiring a frequent exchange of data between client and
server. Generally, the observations made confirm the ones from the RTT analysis. Com-
pared to these, the median increase is a little lower. The higher variance is caused by using
the aggregated values of the selected 25 domains. For the best performing 25% of sites,
the TTFB increase was lower than 30%, while for the worst 25%, the penalty of using the
worst PoP was 60% to 120%. The page load time (cf. Figure 5.16b) generally shows a sim-
ilar behavior. The main difference is the lower variation in performance. This is expected
to be caused by the lower influence of the RTT on the throughput of TCP connections after
these are established. Some sites even show similar or better performance when using one
of the alternative PoPs. This may be explained by their servers being located closer to one
of the alternate PoPs.

Concluding, the measurements of the influence of PoP selection on the real-world per-
formance of cellular networks confirm the results derived using RTT and traceroute mea-
surements. From this, different conclusions can be drawn. First, in cellular networks it is
sufficient to measure the RTT to a target server to approximate the load-times as expected
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Figure 5.16: Comparison of the TTFB and TTF for different PoPs, normalized by the
performance of the best performing PoP (PoP 1)

in an end-user scenario. This assumes that network capacity is not saturated, which was
not observed in any of the studies.

Contrary, from these observations it can be concluded that by now RTT is the defining
factor of cellular network performance. Considering the heavy increase in RTT, TTFB, and
TTF depending on the allocated PoP, substantial performance increases can be achieved
by optimizing the PoP allocation. This is expected to be possible in an economically
feasible way by improving allocation algorithms, thus not requiring hardware upgrades
to greatly increase end-to-end performance while simultaneously reducing traffic in the
MNO’s network.

5.3.3 Summary and Conclusion

Generally, from the above observations it can be concluded that PoPs closer to the end
user are beneficial in most cases. Extrapolating this would require placing PoPs at more
decentralized locations. This closely agrees with future visions of mobile communication
networks, where latencies of lower than 1ms are targeted [Qua13]. Clearly, this is not fea-
sible with the current architecture. Considering the propagation speed of electromagnetic
waves in wires (optical and electrical) of approximately 2/3c0, where c0 is the speed of
light, a maximum distance of 200 km can be covered within 1ms. Considering a round-
trip, the distance is reduced to 100 km. Allowing some time for processing, a realistic
distance between end user and server hence is more likely to be around 50 km. For this to
be possible, the PoPs of the cellular network must be considerably closer to the end user
than they are today. Finally, this would mean to placing one PoP in each city.
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The possible improvements in RTT are of importance when considering the goal of re-
ducing the latency to values below 1ms, and thus making the Internet tactile [ITU14]. In
particular when considering QoS requirements of interactive services like video confer-
encing or live cloud gaming, these can thus be satisfied. But also e-commerce websites
benefit from reduced end-to-end latency, increasing sales by improving the click-through
rates [KH02]. By already assigning the connecting mobile users to the optimum PoP, the
perceived latency can be reduced by over 58% in more than 80% of the time.

PoP selection strategies in the simplest case consist of assigning the user to the closest
PoP, such minimizing the distance between end-user device and PoP. Other strategies may
include frequently used services and their locations, or also operator-internal metrics like
power consumption or traffic cost into the decision.

5.4 conclusion on performance of cellular networks

In the previous sections the performance of the cellular network for different usage sce-
narios is analyzed. These are guided by the research questions posed in the beginning,
and are summarized in the following:

RQ 2.1: What are the parameters affecting cellular service quality and user-perceived network
performance when mobile? Based on an extensive data set it is derived that the cellular ser-
vice quality is mainly influenced by the available network technology (e.g. 2G/3G/4G).
Within each technology class the observed performance is similar, and mostly uncorre-
lated to signal strength and other KPI. Thus, also the influence of location on network
performance is limited as long as the connection technology does not change. Hence,
when requiring an estimate of cellular network performance, knowing the available net-
work technologies results in a useful estimate of the anticipated network metrics.

RQ 2.2: How does cellular network access on trains differ from general mobile network ac-
cess, and how can the network performance be predicted? Knowing and predicting the cellular
network performance on trains proved to be more challenging than in urban scenarios.
The localization of the mobile device adds some difficulties, while simultaneously the
network performance varies rapidly, requiring a sufficiently accurate location to assure
repeatability and accuracy of the results. The performance of the network is identified
to be mainly related to available network technology, and particularly on trains, also to
the success probability of packet transmissions. This effect was not visible as such in the
crowd-sensed measurement study. The collected measurements are analyzed with focus
on predicting the suitability of the cellular network for different usage scenarios, conclud-
ing that a small number of rides is sufficient to capture and predict the service quality on
a given route.

RQ 2.3: What is the influence of network structure and management on end-user perceived
network performance? Variations in service quality as identified in the crowd-sensing and
train measurements are augmented in a comprehensive manner by means of a stationary
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reference study. Devices were located at representative locations for different usage sce-
narios (e.g. home, office, shopping, and recreation) and the network behavior analyzed
using an extended set of measurements. Based on the collected data the main influence of
RTT variations was determined to be caused by routing and gateway selection algorithms
within the cellular backbone, increasing the end-to-end latency by up to 73% compared
to the optimum observed performance.

Summarizing the different studies is derived that the cellular network performance is
mainly determined by the available network technologies and their inherent performance.
The second largest influence factor on cellular network performance are network man-
agement decisions within the cellular operator’s network. These define the route taken
by any packets through the backbone by attaching end-user devices randomly to SGWs
and thus PGWs distributed over their network without considering device location or re-
mote server locations. The observed signal strength has only marginal influence on the
measured KPIs.

Combining the above observations for estimating and predicting the cellular service
quality for e.g. optimizing services for various usage scenarios, it becomes obvious that
mainly the available technology and thus the network upgrade process of the cellular net-
work operator defines end-user performance. Optimizations by delaying traffic for short
intervals within the same technology are thus not advisable. Still, if a handover to an-
other technology is expected within a short time frame, larger optimizations are expected
to be possible. Considering the current deployment and upgrade process of cellular net-
works, this optimization appears to be uncommon, in particular in urban scenarios. Still,
on trains a fair optimization potential exists due to the frequent and drastic changes of
cellular network performance. Caused by the network performance to be more dependent
on location than time [YKH08], optimizations are also expected to be location based. This
results in another challenge on trains, as localization using GPS is extremely power con-
suming, the Zugradar service is too inaccurate, and the localization by train run-time not
reliable due to frequent delays.

Contrary to optimizations on the end-user device, mobile operators have a large po-
tential of improving the end-user service quality. This ranges from relatively simple opti-
mizations of end user to PoP mapping to upgrading and extending their networks with
improved network technologies. The end user to PoP mapping may be conducted consid-
ering the location of the device when attaching to the network, and assigning it to the
SGW and PGW at the geographically closest PoP, thus reducing RTT by 36% to 42%. Ex-
tending the network coverage is particularly promising for mobile data access on trains,
as the performance for a large number of users with spare time to consume online ser-
vices can be improved. Here, also any improvement in signaling efficiency pays off, as
a large number of handover are required within a short time period, thus allowing the
mobile network operator to provide optimum service to connected end users faster.
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I N F L U E N C E O F T R A F F I C M A N A G E M E N T O N E N E R G Y
C O N S U M P T I O N

The power consumption of network infrastructure and the performance of cellular
networks are analyzed in Chapters 4 and 5. Both are important aspects of commu-

nication networks, in particular in mobile environments. Still, their often contradictory
optimization goals hinder simple optimizations. Hence, a trade-off between performance
and energy consumption must be found.

One important aspect of mobile data access is the energy consumption of end-user de-
vices. As smartphones are usually running on batteries, the available energy to perform
their tasks is limited. Further, these are required to last at least a full day, while being
used with changing intensity. The major influence on energy consumption with 31.2% is
caused by wireless data interfaces [CDJ+15]. Their implications on battery life time de-
pend on the available network technologies, their data rates, but also the frequency and
volume of transferred data. A number of different mobile power saving approaches as
presented in literature were discussed in Section 3.3. These generally promise large en-
ergy savings observed during test trials. Still, their results are difficult to verify, and their
underlying data is usually not available. Hence, the first section of this chapter (cf. Sec-
tion 6.1) analyses the performance of two selected approaches ([HQM+12; IWF13]) and
compares their energy consumption to an unmodified system. This analysis is conducted
based on collected user traces in an evaluation environment merging network availabil-
ity and coverage data as described in Section 5.1, network performance as described in
Section 5.3, and mobile power models as derived in Section 4.3. Thus, the energy con-
sumption of the device under realistic conditions is compared to the cost as caused by the
optimization approaches.

Also for infrastructure networks a number of optimizations are proposed. Often, these
consider performance only, but recently the energy aspect of networking grew more im-
portant. Related work shows that already a number of mechanisms was proposed for both
the fixed [VNS+11; CMN12; YWX+13] and wireless networks [HBB11; CFG+12; DBM+10].
Here, optimizations regarding the number of active devices, configured link speeds and
user-to-cell association are proposed. Still, these are generally based on theoretical mod-
els and optimal assumptions concerning network performance. Hence, further research
is recommended, including real-world measurements, models and observations into the
optimization approaches. Clearly, flexible evaluation environments using more realistic
assumptions including multiple domains modeling 5G networks are required to gain an
accurate insight into different traffic management approaches.

147
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From these observations, the following research questions are derived, targeting the
analysis and optimization of energy consumption and network performance in both fixed
and wireless networks, and guiding the subsequent analysis.

RQ 3.1 What is the energy cost of mobile communication for a regular smart-
phone user, and how is this affected by smartphone-based energy con-
servation approaches?

RQ 3.2 What is the potential of emerging network technologies on network in-
frastructure and mobile devices considering performance and energy
consumption?

In both cases, the goal is finding the optimal trade-off between both, thus maximizing the
QoE of the end user, while minimizing network and device energy consumption. Clearly,
a detailed data basis is required to derive accurate results.

Future developments will further improve performance and energy efficiency of in-
dividual network technologies. The problem of finding the optimal trade-off becomes
apparent when selecting network hardware and structuring the network. This problem
will become increasingly complex as new network paradigms like SDN and NFV are
introduced, largely increasing the solution space. Considering the requirement of further
decentralizing the network to provide sufficient performance as is demanded by the 1000x
mobile data challenge [Qua13], clearly a versatile, but also automated approach a network
optimization is needed. The following sections exemplary show how to derive conclu-
sions for optimizations on the mobile handset and give recommendations on designing a
comprehensive network optimization approach, also including functionality, performance,
and energy consumption of the core network.

6.1 analysis of the power savings of mobile scheduling approaches

The energy consumption of mobile handsets is analyzed based on empirical user-traces
by combining the network performance data collected in the crowd-sensing study as de-
scribed in Section 5.1 with the energy models as discussed in Section 4.3. For this analysis,
an evaluation environment is implemented, calculating power estimates based on the ob-
served user locations and traffic patterns. Using the location of the device, the available
network, and its KPI, the power consumption is derived. Power models are available for
the Nexus 5 and the Nexus S. Still, to gain insight into the full network performance
including 4G, the energy model of the Nexus 5 is chosen for all traces.

The data sets used in the evaluation are discussed in Section 6.1.1. These include the
user traces as well as network availability, RTT, performance and their aggregation for
the later evaluation. Section 6.1.2 describes the evaluation framework and its various opti-
mizations. The investigated power saving approaches are discussed in Section 6.1.3, based
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on which the evaluation in Section 6.1.4 is derived. Finally, Section 6.1.5 summarizes the
findings and gives suggestions on future research opportunities. The following analysis
and results are based on a Master’s thesis by Thomas Schnabel [Sch16].

6.1.1 Data Sets

The user traces were collected during a user study over the course of two weeks at the
beginning of 2016. Primary focus of the study was the analysis of Smartphone usage to
develop functions assisting the user in its daily tasks. Secondary goal is the analysis of
generated traffic patterns. Instructions to the study participants were to use the phone as
they would do anyways. 99 students participated in the study. Still, as must be expected
in every user study, some did not provide useful data (e.g. by installing the App on an
otherwise unused phone), disabling location services, or not being in the area of interest.
Further, due to the comparatively small size of the study, the App could not be tested on
all devices on the market, so a few installations show a spotty data collection. Hence, the
collected data is thoroughly filtered.

The data is filtered to select data from within Darmstadt containing continuous location
and traffic updates over a 24h interval. Thus, multiple data sets intervals may be recorded
by a single user, while their number is different for other users. For an accurate analysis,
the locations were filtered to have an accuracy of better than 100m. Thus, the available
network can be accurately mapped to the user locations.

Limiting the evaluation interval to 24h should not affect the final results, as smart-
phones are commonly charged once per day, thus providing a full battery charge for
every 24h period. Further reducing the interval increases the size of the available data set,
but leaves no clues on daily patterns, their influence on mobile data consumption, and
thus on energy consumption.

Finally, data from 14 different users remained. Within these, 62 intervals of 24h cover-
age were identified providing continuous location and network samples. These contain
between 550 and 7353 data samples, with an average number of 2677 samples. The num-
ber of locations is between 3631 and 5015 location samples, relating to an average of 3.2
location samples per minute.

The network performance data as used in the following analysis is based on the data
collected in the crowd-sensing study as described in Section 5.1. The data is collected by
users of the public NetworkCoverage application. The dataset consists of signal strength,
RTT and throughput measurements. The RTT is measured against the fastest of emanic-
slab server, or the dedicated network measurement server. The throughput tests use the
same server. Thus, RTT and throughput measurements can be directly related to each
other. The throughput tests use iperf in both uplink and downlink direction, limited to a
measurement interval of 5 s.
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Besides cellular data samples, also data from WiFi networks is available. It consists
of signal strength, RTT, and throughput samples. The metrics are recorded by the same
functions as are also used for the active measurements on the cellular network. Thus,
comparability between the performance measurements is guaranteed.

The majority of samples is collected in and around Darmstadt, thus mandating the
limitation of the evaluation this area. Also alternative data sets were considered for the
analysis, but no suitable data set or combination of different data sets is available. These
network data sets are either limited to one technology only (e.g. WiFi/cellular), do not
include performance data like RTT or throughput measurements, or are not publicly avail-
able. User traces are equally difficult to find, in particular the required combination of
location and network utilization is not commonly found. Furthermore, the requirement
of fine granularity of both, permitting the estimation of the resulting energy consumption,
cannot be satisfied.

The coverage area of both WiFi and the cellular network are calculated by collecting
all samples with the same basic service set identifier (BSSID) or cell ID and calculating
the convex hull covering all samples. Still, thorough filtering is required to assure a high
quality of the resulting estimate. Hence, samples with a location accuracy of higher than
15m are removed from the set. Further, the time-series as collected by each device are
analyzed, eliminating samples with updated location but unchanged signal strength. This
is required, as the Android OS often returns stale coverage samples for cell measurements,
or repeated WiFi samples for each new scan, still being based on an older beacon reception.
Based on these cleaned samples, the coverage areas of the respective cells are determined.
An example of the coverage estimation of a single cell is shown in Figure 6.1. Here, the
circles indicate the samples recorded in the respective cell. This is limited to the data
recoded while the handset was actually connected to the cell, thus assuring that the cell
would also be selected by a mobile device at the respective location. The red/dark circles
are eliminated from the data set, leaving the green/light samples, used for the estimation
of the actual cell coverage.

As only a limited number of RTT and throughput measurements are can be run, the
KPIs of each cell are determined based on aggregated data from other cells. This is re-
quired, because active measurements, in particular throughput measurements, cause a
considerable traffic consumption, and the device must connect to the respective network
to allow its measurement. Thus, in the case of the cellular network, the performance is
aggregated over all samples observed when connected to the respective technology. This
is a valid approach, as performance within a 4G network is largely independent of the
observed signal strength, as long as the signal strength is above 30% [SMS13].

On WiFi, the performance of the same BSSID is taken as reference. This gives the most
accurate result, as individual APs may be connected via links of different bandwidth. In
case no further samples are available, the measurements of the same SSID are aggregated
to derive the performance of the respective WiFi network. The restriction on BSSID is
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Figure 6.1: Example for the estimation of cell coverage (from [Sch16])

first attempted, because the performance of different APs may differ largely. If no other
information on the respective BSSID is available, the performance of the associated SSID
is the next best estimate.

An example of the observed WiFi coverage as determined by received beacons is shown
in Figure 6.2. Exemplary, the visibility of eduroam and Freifunk WiFi SSIDs are shown as
a heat map in orange/light and blue/dark respectively. Here it becomes apparent that it
is futile to try to fully and systematically measure the full network coverage including
all KPI. Doing so would require measuring all metrics in a grid of approximately 10x10
meters. For comparison the aggregated downlink measurements are shown in the hexag-
onal grid. Each cell has radius of approximately 15m and indicates the mean network
throughput, ranging from near zero (red/dark) to 20Mbps (green/light).

For the analysis of the cellular network performance it is assumed that the smartphones
are equipped with SIM cards not being limited to a specific network technology. Further,
as most of the study participants were students at the Technische Universität Darmstadt, it
was assumed that they may use the eduroam WiFi network, if available. Further, Freifunk1

APs are available, and are assumed to be used by the study participants. Freifunk is an
initiative of volunteers providing free WiFi connectivity to users. As these are commonly
connected to the volunteers’ Internet connection, their performance differs largely. Hence,
the above attempt of first using the BSSID to determine the throughput, and only if no
data is available the SSID, provides increased accuracy.

Measurements presented in Section 5.1 show that the performance of both the cellular
network as well as the WiFi network is largely independent of the actual signal strength.
Hence, for each cellular network technology and BSSID or SSID, the measured through-

1 https://freifunk.net// accessed 2017-02-02

https://freifunk.net//
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Figure 6.2: Example of WiFi coverage and aggregated throughput measurements
(from [Sch16])

Figure 6.3: Histogram of the measured throughput in the LTE network (from [Sch16])

put is aggregated into a histogram. This is then used in the evaluation process to draw
a random realization of the actual network throughput. As neither in the crowd-sensing
study (cf. Section 5.1) nor the dedicated measurement studies (cf. Section 5.3) a depen-
dency between any other of the recorded metrics could be identified, this is currently the
best available estimate, considering the high cost of these measurements. The derived his-
tograms of the LTE network are shown in Figure 6.3, the respective measurements of the
Freifunk WiFi network in Figure 6.4.

The individual samples as available on the data collection server are pre-processed
to facilitate determining the required metric during the evaluation phase. Therefore, the
data is aggregated into hexagonal bins of 15m diameter. Thus, for a given location the
respective network performance can be identified by finding the bin covering this location.
This aggregated data is used to first determine the availability of networks, and later to
check for the availability of measured KPIs. Only if the requested point is covered by a
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Figure 6.4: Histogram of the measured throughput in the Freifunk WiFi network
(from [Sch16])

network, but no performance metrics are available, the above described random approach
is used. Thus, the data is prepared to minimize the number of database requests and
reduce the required computations to a minimum.

6.1.2 Evaluation Environment

The evaluation environment is custom built for the purpose of evaluating the energy con-
sumption of mobile network access. It is written in Python, as being a high-level language
with already a large number of packets providing the required functionality. Particularly,
these are the comma separated values (CSV) and java script object notation (JSON) im-
port and export functions, as well as the psycopg2 packet, interfacing the database on the
central data collection server.

The extension of existing network simulators was also considered, but due to the re-
quirements of the planned analysis, not much of the original functionality would be left.
Even a high level network simulator like PeerfactSim.KOM [SGR+11], where already en-
ergy models are included [GKS+13], most of the functionality would be irrelevant. As the
proposed analysis relies on measured network performance, the full network implemen-
tation would need to be made location aware, and thus network performance of links
changing depending on location, time and used network technology. This would leave
just the event management system untouched.

Hence, a modular evaluation framework is developed, conforming to the requirements
of the network analysis. Based on the loaded user traces, the available networks and their
performance are looked up in the database. The resulting data rates are used to determine
the transmission duration of the transferred data within the connected network. Based
on the transmission duration and data rates, the selected energy model calculates the
consumed energy. Thus, for each user the overall consumed energy is determined.

All data is stored in a structured way in different tables of the PostgreSQL/PostGIS
database. Hence, the conformity of the data is implicitly assured by the database. Fur-
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thermore, the data can be requested in an orderly fashion, making use of the optimized
filtering and access algorithms of the database server.

The evaluation framework is structured into independent components, providing func-
tionality to assess the individual aspects based on incoming data. These are chained,
because the output of one component is used as input for the next. The state representing
the end-user device is kept in a global configuration object. This contains, besides the
last evaluated timestamp and event, the last location, interface state, as well as further
parameters and device states as required by the selected energy conservation approaches.

The user traces consist of different events ordered in time. These events describe changes
in the device. These include data transfers (up-/downloads), user mobility, but also user
interactions with the device (screen on/off, App interactions). For the subsequent analysis,
these are either categorized as data events, directly affecting network activity, and device
events, modifying the state of the end-user device. These modifications are location up-
dates, requiring an update of the available networks and their throughput, screen on/off
events, or scheduled changes in interface availability, thus affecting traffic scheduling.

Figure 6.5 shows the respective flow diagram for the default transmission mode. The
normal flow of operation is the following: The first item of the user-trace is loaded. If
this is a data event, meaning that data is to be transmitted, the position of the device
is calculated based on last location and timestamp. If a location can be determined, the
availability of networks at this location is looked up. When a valid network is found, its
status is checked. In case the network is active, data is transmitted. After this, the next
event is loaded and the cycle begins again.

In each state, the current device state, user interactions, or the environment may cause
deviations from the desired behavior. If, for example, no valid location can be determined,
the cycle is canceled and the user trace searched for the next location, from where the
analysis begins again. Hence, a high granularity of the user traces and good coverage of
network performance and availability is important. In case no network was found, the
execution flow skips the following samples until a new location event is encountered,
after which the cycle begins again.

The device state further defines the operating mode. In case the connection is not active
as assumed in the normal execution flow, the interface must be activated. This results
in an additional delay and energy consumption. This is processed immediately, but the
incoming data event is only processed in the next iteration, where the interface state is
changed to active. Only then, normal operation resumes.

Contrary, when no data is left for transmission, it is checked whether the next data event
is after the tail time finishes. If the next data transmission is scheduled earlier, the time
between the transmissions is considered to be spent with interface consuming idle power,
otherwise a device event is created, deactivating the interface after the tail duration. If the
next event is a device event it is executed, otherwise new data is directly loaded from the
database.
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Depending on the available networks, and the possibly different network conditions
when recording the traces, it may also happen that for a given time interval the requested
rate is higher than the available rate. For this a mechanism is introduced adding events
to the data events queue. Thus, first the maximum traffic as determined by the current
network availability is handled. The remaining load is then added as a new data event to
to the data events queue.

Based on device state and data transmissions, the power consumption is calculated. For
this the power models as derived in Section 4.3 are used. These calculate the consumed
power depending on selected interface and traffic rate. Here, only the energy spent on
data transmissions is accounted for. The derived power consumption is identified for
each time interval (e.g. between events) and written to a log file. This log file is later used
for visualizations, evaluation and analysis purposes.

During all operations, log files are created keeping track of the changes in device state,
location, network availability and quality. Thus, the evaluation run and the detailed deci-
sions can later be analyzed in detail. Further, due to these logs being written to disk, also
a later resuming of simulations is possible without loss of information.

Some additional processing on the collected data is conducted, providing reasonable
throughput estimates for unsurveyed locations. Considering the effort required to fully
sample the cellular network coverage, not for each location as contained within the user
traces corresponding network coverage samples may be found. Hence, the evaluation en-
vironment supports the configuration of a base network technology assumed to be always
available. In particular in urban scenarios where sufficient coverage can reasonably be ex-
pected, this serves as a fallback for the simulation in case of insufficient data. Considering
the use of the evaluation environment for more rural scenarios, this feature can also be
disabled.

A challenge caused by the different data sets is the performance estimation of the home
WiFi performance of the study participants. Clearly, it can reasonably be expected that
every student owning a smartphone and participating in such a study has access to a
WiFi network at home. Still, as the main goal of the study was the identification of user
behavior, any interference was minimized. Thus, also no active measurement of the net-
work performance was conducted. Hence, the coverage and performance of the users’
home WiFi is drawn in a process similar to the estimation of the performance of known
networks. The coverage area is set to the maximum deviation of the majority of locations
observed in the time between 2 am and 6 am. In case locations differed largely, these are
removed from the estimation. Thus, the coverage area of a ’virtual’ home WiFi for each
user in the data set is created. The throughput is determined by drawing a sample from
the distribution of WiFi throughput measurements from non-public SSIDs. This is done
at the beginning of the simulation run, thus providing the same performance over the full
evaluation run.
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Figure 6.5: Flow diagram of the trace-based network energy estimation environment
(adapted from [Sch16])
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Generally, the evaluation of the deterministic traces should lead to the same results for
each evaluation run. Still, in the process of generating estimates of the cellular network
performance, some randomness is introduced. This is done in the throughput estimates
for previously un-surveyed locations in both the cellular and WiFi networks. The reason
for this is to reflect the variability and distribution of the available bandwidths on the
power consumption of the devices. A more general view of the resulting energy con-
sumption can be generated by running the evaluation on the same traces multiple times.
Still, this is not desirable in any case. Considering the requirement of creating determin-
istic, and thus repeatable results, any randomness must be eliminated. This is achieved
by seeding the random number generator with pre-determined state, thus always getting
the same result. Still, as different scheduling mechanisms may affect the number of calls
to the random number generator, a single seed is insufficient. Hence, for each location
and time where an estimate of the cellular service quality is required, the random num-
ber generator is seeded with a string based on the current location and time. Thus, if a
different user requests a network estimate at the exact same location and time, the same
value would be returned. Still, as the user location as read from the recorded trace is used
for this, the probability of this is almost zero. On the other hand, the same user at the
same location, but having different traffic requirements due to the selected energy conser-
vation mechanism observes the same network performance as in the default case. Thus
the comparability of different traces can be guaranteed, while still allowing the same trace
to be analyzed under different conditions, thus generating results more focused on the
statistical distribution of network performance than caused by the end user.

6.1.3 Energy Conservation Schemes

The influence of different traffic scheduling approaches can be determined by first estab-
lishing the reference power consumption and comparing it with the power consumption
when modifying the behavior of the system. The reference power consumption is estab-
lished by calculating the energy consumption caused by the unmodified traces. As the
available user traces are located in Darmstadt, and generally no coverage issues exist, the
minimum available network technology is configured to universal mobile telecommuni-
cations system (UMTS). Hence, at locations without any network coverage samples, the
availability of UMTS is assumed. The comparability of the energy conservation schemes
is assured by setting deterministic seeds for the random components of the network per-
formance as is discussed in the last section.

The evaluation environment is built to analyze different offloading and traffic schedul-
ing scenarios. Offloading approaches as described in Section 3.3 propose large cost reduc-
tions, but also energy savings by transferring data via the WiFi interface. Still, the analysis
of the collected data shows that at least in outdoor scenarios the performance of WiFi is
generally insufficient, while the cellular network works well. This is also reflected in the
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energy consumption, also when neglecting the additional energy required in the PA for
lower signal strength connections. Due to the small throughput of WiFi in outdoor scenar-
ios, data transfers take considerably longer, thus resulting in a larger battery utilization
of the mobile device. Contrary, the performance of WiFi is better indoors, where cellular
network coverage is worse due to attenuation by walls. Nonetheless, in indoor scenarios
the limiting factor is the Internet up- and downlink bandwidth, which in nominal rates
is often surpassed by cellular data rates. Hence, wireless offloading, both ad-hoc and
scheduled, provides only minor potential.

Another class of mobile energy conserving traffic management schemes is traffic schedul-
ing. Here, traffic as is requested by mobile applications is delayed until more favorable
network conditions are observed, a number of requests have accumulated, or a specified
time interval is reached. Generally, these approaches can only be applied to background
traffic. Any interference with the network traffic while the user is interacting with the
device immediately affects QoE. Also handling traffic of currently unused applications
while the device is actively being used promises only marginal improvements, as this
traffic volume is generally low and the interface likely active.

Selected for further analysis were the approaches by Huang et al. [HQM+12] and Ickin
et al. [IWF13], both disabling the cellular interface while the device is idle. This is deter-
mined by monitoring the screen status. Based on this it can reasonably be derived that
when the screen is off, the device is idle.

Huang et al. [HQM+12] analyze the energy consumption of a number of public appli-
cations as contained in a dataset collected on mobile users by the university of Michigan
in 2011. Their optimization is based on i) disconnecting from the network earlier than
configured by the operator by sending RRC messages to the network to reduce the tail
energy, and ii) configuring intervals in which communication with the network is allowed
while the device is idle. The parameters showing the best performance are to disconnect
from the 3G network after 8 s while the device is used and after 4 s while the device is
idle. Furthermore, the approach allows one 5 s communication interval in each 100 s slot.
This data restriction is applied to both the WiFi and cellular interface. Combining both
approaches, the authors claim to reduce the energy consumption by up to 60.92%. This
approach was developed and tested with 3G networks. Hence, savings are expected to
be lower when applied to more recent networks. Tail durations within the measured 3G
network were around 5 s, which are reduced to 4 s while testing the energy savings of
this approach. Similarly, the possible savings when considering background traffic are
expected to be lower compared to the ones reported in [HQM+12].

Ickin et al. [IWF13] focus their study mainly on the QoE of end users with a secondary
goal of minimizing the energy consumption of the mobile devices. Their approach is
similar to [HQM+12], but instead of 100 s intervals, 30min intervals are chosen, with
a connectivity period of 1min within each interval. Thus, energy savings of up to 25%
without affecting QoE of the mobile users have been achieved (’34% energy gain’ [IWF13]).
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Figure 6.6: Availability of networks as determined based on the user traces (from
[Sch16])

Still, also their data is solely based on 3G connectivity, although the observed tail dura-
tions seem to be smaller. As this is an operator configured parameter, it differs between
networks. The same settings are configured for the analysis in the energy evaluation envi-
ronment. Also here, energy savings are expected in comparison to the default case of no
traffic control, but margins are expected to be considerably lower due to the use of LTE,
which further reduces the tail duration to 2 s, while also providing higher mean data rates,
thus further shortening transmission durations. Contrary to the approach by Huang et al.,
the data restrictions of this approach are only applied to the cellular network.

6.1.4 Evaluation Results

The energy consumption derived based on the user traces in combination with the avail-
ability and performance of networks is compared in the following. Besides the default
case of not altering the traffic patterns (except where the data rate was insufficient), the ef-
fectiveness of the energy conservation approaches as proposed by Huang et al. [HQM+12]
and Ickin et al. [IWF13] are compared.

The general distribution of available networks over the full range of study participants
and evaluation intervals is shown in Figure 6.6. Interestingly, during 90% of the time WiFi
networks are available. This includes the estimated home network coverage, the eduroam
and Freifunk networks within the city and also covering the ’workplace’. Consequently,
the optimizations of the cellular network performance are only possible within 10% of
the time, relating to 2.4h daily. Another interesting observation is that only 0.135% of
time were spent connected to a 3G network. This means, that the activated base coverage
function setting the minimum available network technology for the setup, was barely
ever used. Further, this indicates that under normal conditions, full coverage of LTE can
be expected, thus turning any optimizations focusing on the 3G network obsolete. Still, it
must be noted that these results are only valid for an urban scenario, where people live
and work within the same city. Repeating the study using a different population group
likely changes the outcome of these models.
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Figure 6.7: Comparison of the evaluated energy conservation schemes in Joule (from
[Sch16])

Figure 6.7 shows the estimated power consumption over a full user trace for the three
different approaches. The top graph shows the power consumption as derived using the
unmodified traces. Directly below is the power consumption as estimated based on the
approach proposed by Ickin et al. The lowest energy consumption is observed by using
the approach by Huang et al. Generally, the estimated power consumption shows a similar
behavior at the same times.

The power consumption over all trials is shown in Figure 6.8. The corresponding met-
rics are summarized in Table 6.1. As is also visible in the exemplary time series (cf. Fig-
ure 6.7), the default case consumes the most power. This is expected and shows that the
implemented energy conservation policies do not affect the power consumption nega-
tively. The highest power savings are observed using the approach by Huang et al., while
the power consumption of Ickin et al. is largely identical to the unmodified energy con-
sumption. These results are summarized in Table 6.1. Still, due to the relatively large
standard deviation, only indicative statements can be made.

Compared to the power savings of up to 60% as claimed by Huang et al., under the
given conditions power savings are as low as 27.4%. The approach proposed by Ickin et
al. performs even worse. Instead of the claimed 54%, the estimated power saving is only
1.7%. This is both caused by the high fraction of WiFi connections as observed in the
user study, but also the increasing energy efficiency of the cellular network. Caused by
the generally shorter ramp and tail durations on LTE, but also on 3G networks, already
considerable energy is saved. Furthermore, the increased data rates as available on LTE
reduce transmission costs by requiring less active time of the cellular interface.

The observed behavior confirms expectations as derived from literature, where larger
savings can be expected when restricting communication on all interfaces. By only dis-
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Figure 6.8: Mean power consumption of the selected energy conservation schemes over
the full set of traces (from [Sch16])

Scheme Minimum Maximum Median Average Standard Deviation

Default 66,8 mW 1.258,2 mW 393,5 mW 407,9 mW 268,7 mW

Huang 39,5 mW 1.118,4 mW 240,4 mW 294,1 mW 203,4 mW

Ickin 66,7 mW 1.206,5 mW 385,6 mW 396,5 mW 253,8 mW

Table 6.1: Energy consumption statistics of different energy conservation schemes
(from [Sch16])

abling communication on the cellular interface during the radio-quiet intervals, Ickin et
al. are wasting potential for saving energy, by being active in our case during only 10% of
the time. Still, as their focus is also QoE, and WiFi connectivity often coincides with the
availability of grid power, the effect on end users is considered to be limited. Due to the
shorter scheduling intervals in Huang et al., the effects on QoE also appear to be limited,
still, additional studies analyzing this effect are required.

Another interesting aspect of any traffic scheduling approach is the additional transmis-
sion delay. Figure 6.9 summarizes the observed delay. As would be expected, the default
approach transmits 100% of the packets immediately, followed by Ickin et al. for 95%
of packets. The remaining packets are transmitted within the next 100 s. Huang et al.
transmit only around 55% of the packets within the first 10 s. Still, almost all packets are
transmitted within the configured 100 s interval, leaving only a small number of packets to
be transmitted later. This effect is expected to be caused by scheduling delays, where the
surplus traffic is shifted to the next transmission interval. The longest delay with 4.25min
is observed when using Ickin et al., meaning that even in the case of cellular connectivity
when idle, only marginal amounts of traffic are generated, or the availability of another
WiFi APs is so likely that a transmission is possible already after a short duration.

Considerable effort was spend on analyzing and optimizing the performance of the
evaluation environment. Due to the large number of required lookups and the underly-
ing data aggregation, a large load on the system is generated. Hence, a number of opti-
mizations are implemented, namely the pre-aggregation of frequently used data, and the
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Figure 6.9: Observed delays in transmission of the compared energy conservation
approaches (from [Sch16])

creation of database tables immediately providing the requested data without requiring
database joins. The final result is a linear dependency between the number of events in
the user traces and the required processing time. As all aspects of the energy evaluation
depend on locations, these are taken as the baseline for comparison. For each user event
(e.g. data transmission, screen on/off) two location updates are found in the user traces.
Processing 10 000 locations results in duration of 100 s. Considering that the user traces
contain approximately 3 location samples per minute, the processing speed is approxi-
mately 2000x real time, thus making it an attractive solution to swiftly compare different
energy conservation approaches on large data sets. Hence, the location based analysis of
traffic scheduling and energy conservation approaches for mobile data access is feasible
with high performance.

The results generated and presented here are valid for the scenario described in the
beginning. The area is currently limited to Darmstadt, as only there the required KPIs of
the different networks are available. Furthermore, the presented results are indicative, as
only a small number of user traces contained the required data in sufficient resolution and
accuracy. For the analysis of the energy consumption, exemplary the power model of the
Nexus 5 was used, but can easily be replaced in the evaluation environment. The feasibil-
ity of the selected evaluation approach is shown on the example of energy conservation
disabling background communication in different configurations. Also these approaches
may easily be extended and included in the evaluation environment, thus permitting the
evaluation and comparison of a wider variety of approaches.

6.1.5 Summary and Conclusions

Combining the observations made in Chapter 4 and Chapter 5, the energy evaluation
environment estimates the energy consumption of mobile users based on recorded user
traces for different energy conservation schemes. Therefore, locations, device interactions,
and consumed traffic collected by the participants of a data collection study are used. For
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each data transmission, the network coverage at the place of the occurrence is determined
by finding the available networks and their performance in a central database. This data
is collected by the NetworkCoverage App in various crowd-sensing studies as described
in Section 5.1. Knowing the network availability and throughput, the resulting energy
consumption is determined based on the power model of the Nexus 5 as was introduced
in Section 4.3. Finally, two energy conservation approaches as proposed in literature are
compared to the default energy consumption as directly derived from these traces.

The identified power savings are considerable smaller than claimed by the authors of
the respective studies (i.e. [HQM+12; IWF13]). Instead of 60% and 54%, the energy sav-
ings in the analyzed scenario are as low as 27.4% and 1.7% respectively. This is caused
by two main factors: first, the chosen scenario showing a high probability of WiFi con-
nectivity, and secondly the increasing energy efficiency of mobile devices, in particular of
cellular communication. Compared to 3G networks as used in these studies, the energy
consumption was derived for LTE networks, significantly reducing ramp and tail dura-
tions. The considerably higher data rates result in lower transmission durations, further
reducing the energy consumption on the mobile device.

The dependency on empirically measured network performance has both advantages
and disadvantages. By using the measured network performance, the dependency on
simulated network performance can be completely eliminated by abstracting end-to-end
performance using the measured KPI. Still, this comes at the cost of measuring the cellular
network performance in a fine-granular manner, or as was done in the presented evalua-
tion, modeling the network behavior based on empirically determined performance met-
rics. Thus, the effort required to provide accurate and distributed network performance
metrics can be balanced.

The quality of the generated energy consumption estimates can be improved by in-
creasing the accuracy of the underlying network estimates by increasing the number of
available throughput samples in the database. Further, the addition of power models
of different smartphones, in particular different generations would further improve the
value of the generated estimates, thus allowing the experimenter to determine possible
weaknesses of the proposed energy conservation approaches on particular devices and
configurations. Still, most important is the availability of complete, fine-granular user
traces, containing locations, consumed traffic and device state. As the requested traffic
volume, and the user behavior in general, is highly volatile, repeated studies would be
required, periodically updating the user traces. These may also serve as reference data
sets, allowing researchers at different locations to compare their approaches based on a
common ’ground truth’.

A further, interesting extension of the currently available data set would be the an-
notation and drill-down of the collected data to application level accuracy. Thus, traffic
management and scheduling approaches may base their scheduling decisions, besides
user activity and device state, on derived priority classes of the requesting applications,
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thus eliminating low-priority network requests if, for example, the requesting application
was not used for a long time.

A number of the approaches proposed in literature are already included in newer ver-
sions of mobile operating systems. Where Apple’s iOS in the past did not allow back-
ground processes at all, thus completely avoiding the problem of background activity,
it now allows certain processes to run and communicate in the background. Waking de-
vices up or triggering applications to update their data is implemented via a cloud service,
bundling requests to the mobile device depending on priority, thus strictly limiting pos-
sibilities to inadvertently drain the device’s battery. Android, in comparison relatively
open, follows the paradigm of first allowing everything, and only later restricting func-
tionality, which causes user dissatisfaction. Background services were always available,
although on earlier devices often terminated due to low system resources. In recent An-
droid releases, more focus is put on energy efficiency, emphasizing the use of google cloud
messaging (GCM) to sync wakeups and avoid idle connections, waking processes up in
batches in progressively increasing intervals (’Doze’, Android 6.0 [And15]), or disabling
network requests of rarely used Apps (’App Standby’, Android 6.0 [And15]). Thus, App
behavior harmful to the battery life-time is more and more restricted, thus maximizing
the efficient use of the available energy.

6.2 energy efficiency in future networks

The increasing demand on communication networks increases traffic in all network do-
mains. This begins at the mobile edge, where increasing data rates need to be supplied
via advanced coding schemes, increasing spectrum re-use, and using additional spectrum,
and continues over the network backbone to the content providers. Here, network virtu-
alization provide the means to implement a number of promising network management
approaches, ranging from the (wireless) access and aggregation layers to data centers.

In the wireless access networks, the promising future technologies are wireless SDN and
centralized/cloud RAN (C-RAN). Further emerging technologies improving throughput
in wireless access networks are (massive) multi user MIMO, non-orthogonal multiple
access (NOMA), or full-duplex transmissions using self-interference cancellation.

Also in the fixed network backbone, functionality is increasingly migrated to SDN.
Routers and switches may thus be configured on-the-fly from centralized controllers,
dynamically adapting the network structure to the current demand. Thus, additional
functionality can be implemented in the network. One example is SDM, implementing
a multicast approach based on packet duplication features of SDN switches [RBH15].
Furthermore, virtual networks can be created and maintained. An example may be an
ISP offering its business customers networks as a service (NaaS), thus allowing them to
dynamically connect their sites without requiring a virtual private network (VPN). By
increasing control over their network, higher link utilizations may be achieved [JKM+13].
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The traffic consumed by end-user devices mostly originates in cloud data centers. These
are supported in the delivery of static content by CDNs, providing storage at neural
points of the network, e.g. data centers, IXPs, or central locations within ISP networks.
This shows that content delivery is migrated from a central server or data center, located
where convenient, closer to the end user.

Supporting the growing bandwidth requirements in cellular networks is also called the
’1000x data challenge’ [Qua13], extending the network to supply 1000 times the data rate
of current systems. Main development directions target the use of femto-cells, immedi-
ately increasing throughput compared to macro cells, using additional spectrum in the
licensed, licensed-shared access [MOP+14], and unlicensed bands [SBS+15], and increas-
ing the efficiency of spectrum use and re-use by using improved coding schemes and
more intelligent control. Still, these increasing data rates must also be handled by the
network backbone, remote servers, and CDNs.

The implications of different technologies, their development goals, and their effect on
energy efficiency of the network are discussed in the following.

6.2.1 Potential of Emerging Network Technologies

In wireless access networks the predominant technique for improving throughput is
the deployment of increasingly smaller cells. Thus, the available spectrum can be used
more efficiently by increasing its re-use. Furthermore, by improving coordination, the fre-
quency use can be shared, thus allowing cells to use the same frequency. By increasing
the frequency utilization, increases in throughput per area by a factor of >10x [Qua13]
are predicted. Possible reductions of energy consumption using femto-cells are analyzed
in [TZZ13], showing that their deployment significantly reduces the area power consump-
tion, in particular when serving indoor users. Savings of 75% are expected to be possible
when the area traffic demand surpasses the capacity of deployed macro cells.

The power consumption of the radio access network including fronthaul is assessed
by Fiorani et al. in [FTF+16]. They compare the energy cost of different fronthaul tech-
nologies (e.g. using copper or optical links) for different links and also the placement of
the radio signal processing (i.e. directly at the antenna or at a centralized location). For
current networks the most energy efficient deployment is the radio network as currently
used, but considering increasing bandwidth requirements, in particular within buildings,
a femto-cell deployment using optical fiber backhaul is most energy efficient, followed by
an approach also using fiber for the fronthaul [FTF+16].

Another proposal is the use of C-RAN (e.g. the processing of the radio signals in a
centralized location), promising to reduce the energy consumption of radio networks
by using co-location gains of cells with differing load within a central processing loca-
tion [CMo12]. The overall available computing capacities can be reduced by leveraging
the varying load distributions of cells over the course of the day. The proposed architec-
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ture requires low latencies on the fronthaul (i.e. < 0.5ms) and low jitter (< 16ns), while at
the same time requiring high bandwidths (2.5Gbps per 20MHz carrier) [CCY+15]. Due
to the low latency requirement on the fronthaul, the physical distance between remote
radio unit (RRU) and baseband unit (BBU) is limited to 20 km to 40 km. Satisfying the
bandwidth requirement is currently mainly feasible using fiber optical links, or expen-
sive, high bandwidth point-to-point radio links. Due to economic reasons this approach
seems to be limited to a few special application scenarios like covering stadiums or other
large-scale events. Fiorani et al. [FTF+16] further show that the C-RAN approach has an
unfavorable energy consumption. Depending on the fronthaul architecture, C-RAN de-
ployment can be energy efficient when the network load is high (e.g. >550Mbps/km2).

Another approach promising to considerably improve the throughput in wireless net-
works is cognitive radio (CR) [Hay05]. CR uses otherwise licensed spectrum as secondary
user under the premise of not disturbing primary user’s transmissions. The different
aspects and inherent challenges of cognitive radio are summarized by Simon Haykin
in [Hay05]. Challenges involved are amongst others the detection of primary user’s trans-
missions, the coordination with remote end-points, and the optimal power allocation
minimizing interference. Commonly, for cognitive radio applications software defined
radios (SDRs) are used, providing the required frequency agility as well as flexibility in
choosing modulations and coding schemes. Caused by this flexibility, the use of highly
efficient ASICs is limited, leaving all signal processing to a generally less energy effi-
cient general purpose CPUs (GP-CPUs) or field programmable gate arrays (FPGAs). As
cognitive radio is still in its infancy, current efforts are more focused on feasibility and per-
formance than energy efficiency. After suitable approaches are found, the next important
aspect will be the energy efficiency, in particular when considering mobile devices.

In wired networks, SDN is increasingly becoming attractive, as vendors provide a larger
variety of devices. Generally, SDN may also be implemented in a single-vendor only way
by not disclosing the communication protocols. Still, a growing number of devices also
support the OpenFlow protocol. Thus, software-defined networks can be built without
relying on a single hardware vendor. This reduces licensing costs in case of commercial
software, and ensures that for different requirements within the network always the best
implementation and hardware can be used. Still, performance differs largely, as is also
shown in Section 4.2, where on the hardware switch some features are only available in
software, thus drastically reducing performance when used. Energy efficiency in SDNs is
also an ongoing topic in research, which was also discussed in Section 3.1.2.

Extending the paradigm of SDN to wireless networks is still a relatively new topic. In
particular the energy consumption is not well considered. Vitale et al. [VM16] analyze
the energy efficiency for the case of device to device (D2D) offloading in heterogeneous
environments. A general solution for optimizing the trade-off between different aspects
of energy consumption (i.e. deployment vs. operation vs. radiated power) in cellular net-
works is discussed in [CZX+11]. Their work gives guidelines on building and implement-
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ing cellular networks in an energy efficient manner for the case of micro and macro cells.
These approaches would need to be extended considering heterogeneous networks (i.e.
using WiFi) and femto-cells, thus including the wireless network domain into their opti-
mizations.

Another area, disjunct from wireless SDN, are self-organizing networks (SONs). Con-
trary to SDN, the control here is distributed between the eNodeB or base stations, co-
ordinating transmission power and association of mobile stations, thus minimizing in-
terference and optimizing service. An overview of the issues involved in SONs is given
in [PB05], a survey of approaches is given in [MSB13]. Usually, only the issue of assigning
radio frequency (RF) power is discussed (e.g. [XYJ13]), neglecting the power consumption
of the overall deployment. Here, a large optimization potential exists, including the differ-
ent approaches, which are likely already integrated into deployed networks, to reduce the
overall system power consumption by e.g. temporally disabling under-utilized devices.

Considering the flexibility of SDN for managing traffic in all types of networks, also
NFs must become more flexible. Currently deployed NFs implement firewalls, packet fil-
ters, PEPs, VPNs, and others. These are usually purchased and deployed as ’black boxes’,
wired and configured to serve their purpose. Obviously, this approach defies flexibility
and scalability. Currently, upgrades are only possible by replacing the hardware unit, or
parallelizing processing by adding load balancers. Thus, also these functions are increas-
ingly virtualized, then called VNFs. In 2012, the ETSI began standardization and issued a
first white paper detailing their vision of NFV [NFV12]. An overview of general network
virtualization approaches is given in [JP13]. A recent classification of NFV approaches is
given in [LMW+15] and [NHH16]. Current focus of development is achieving sufficient
performance for deployment in high load scenarios and optimizing computational effi-
ciency. As these VNFs are commonly run on COTS x86/64 hardware instead of ASICs,
their efficiency is inherently lower. While sufficient performance is a strict requirement for
deployment, the aspect of energy consumption should not be neglected in research and
development. Here, important decisions may be taken before other design decisions may
interfere. Particularly the heterogeneity of devices in future networks may prove promis-
ing to implement energy savings, where NFs may by run on x86/64 servers, offloaded to
FPGAs [NRH17], or run on ARM platforms at the edge of networks, e.g. on home routers.

All these developments may be summarized under the term 5G. The next generation
mobile network (ngmn) alliance also targets the adaptation of large areas of the fixed
network infrastructure, to support the high bandwidths, low RTTs, and high number of
devices. Sub-millisecond RTTs may only be achieved by decentralizing the network, and
serving content and providing services from close to the end user. Clearly, if combined
with WiFi offloading, which is required to support the envisioned data rates, also network
functionality must be placed within the fixed access network. The challenge is finding the
right abstractions, granting the participating parties still mutual benefits. SDN and NFV
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may provide the basis for future solutions by virtualizing the network substrate, and thus
letting network providers share their networks for a fair compensation.

6.2.2 Network Structure and Management

The increasing capabilities of home routers make these an increasingly attractive asset
in provider networks. A first example of using these idle resources are the increasing
number of WiFi services run on HGWs. Popular examples are Fon2, Unitymedia WifiS-
pot3, or Telekom Hotspots4. Thereby, the penetration of the operator’s WiFi networks can
be increased, reducing the load on the cellular infrastructure. Combining this with auto-
mated logins on smartphones managed by user-installable Apps or integrated into the
operator-branded OS, automatic offloading to WiFi networks is already possible.

Extending the idea of providers adding functionality to HGWs, micro-services or caches
may be located within end-user premises, thus reducing latency and increasing through-
put to the end user. Exemplary this was implemented and evaluated in [LPB+15]. Still,
conventional caching is not feasible anymore, as an increasing fraction of traffic is trans-
ferred over encrypted connections [San15]. However, placing network functions at end-
user premises may be possible using lightweight containerization techniques like LXC5

or Docker6. Thus, these resources may be sold to CDNs or other interested parties, allow-
ing them to place nodes, and such content, closer to the end users than already possible.
This is expected to increase the end-user perceived service quality while simultaneously
reducing instantaneous bandwidth demand.

Considering the additional requirements as envisioned for 5G networks, also the mi-
gration of network functionality closer to the end user should be possible in the cellular
network. The virtualization of the network in combination with appropriate QoS manage-
ment may serve as a means of providing additional services to mobile end users while
not affecting the primary user of a connection. An example would be running a PEP or
the SGW and PGW on a user’s personal pico-cell, directly interfacing with the Internet.

Still, these changes in network functionality require additional modifications of the net-
work structure. As derived in Section 5.3, connections of mobile devices of the analyzed
MNO are routed through one of four gateways within Germany, where also the additional
network functions are placed. These include, besides the required network functionality
like user management, network admission control and mobility management, also ad-
ditional functionality like PEPs or other operator provided services. Considering a fast

2 https://fon.com/ accessed 2017-02-06

3 https://www.unitymedia.de/privatkunden/angebote/unitymedia-wifispot/wifi-fuer-unsere-kunden/

(German) accessed 2017-02-06

4 http://www.hotspot.de/ (German) accessed 2017-02-06

5 https://linuxcontainers.org/ accessed 2017-03-18

6 https://www.docker.com/ accessed 2017-03-18

https://fon.com/
https://www.unitymedia.de/privatkunden/angebote/unitymedia-wifispot/wifi-fuer-unsere-kunden/
http://www.hotspot.de/
https://linuxcontainers.org/
https://www.docker.com/
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handover to WiFi networks, or the availability of decentralized services, the currently
deployed network structure clearly must also become more decentralized.

The deployment of these virtualized micro-services also affects currently implemented
network management approaches. Load balancing of CDNs is achieved via DNS [NSS10],
where the response has a validity of a few minutes. For each new content element re-
quested after some time, another DNS request is issued possibly resolving to another
server. Considering the deployment of services on a HGW, either also a DNS service
must be running as a NF on the gateway, or the remote DNS be informed of the currently
used connection. This must then be mapped to the available content or services on the
local gateway, thus allowing the CDN to direct the mobile device to the closest CDN node.

Considering the vertical slicing of the underlying network substrate, also resource uti-
lization, in particular on resource-constrained devices leads to some interesting research
topics. First, the mapping of the requirements of VNFs to resource consumption depend-
ing on the underlying hardware architecture should be analyzed. Here, representative
metrics describing the workload, possibly on a per-user basis, must be found and mapped
to the underlying hardware, thus permitting optimization algorithms to determine a pos-
sible placement of the respective network function. This becomes particularly important,
when considering resource scarcity of the hardware running these functions and serving
multiple users in parallel. Secondly, the gain of running these functions in increasing QoS
and bandwidth utilization and reducing RTT must be determined.

These modifications of the network require a tight alignment between currently mostly
disjunct network domains. When a handover between the cellular network and WiFi is
conducted, all connections need to be reestablished. Here, MPTCP may help alleviating
the most severe interruptions [PDD+12]. Still, if low latencies are required, the current
cellular network architecture must be adapted. Instead of four PoPs distributed over Ger-
many, one PoP per city is required to support latencies of below 1ms. Similar modifica-
tions would be required in fixed access networks to support fast handover between the
fixed and cellular networks. Thus, services placed in data centers within each city ben-
efit from both low latency when connected to one technology, and fast inter-technology
handover.

6.2.3 Energy Efficiency

The overall network energy consumption of conventional networks can be modeled as de-
scribed by Vereecken et al. in [VHD+11]. The authors model the static power consumption
of both the fixed and wireless network domain. According to measurements conducted
in Chapter 4 this is a reasonably accurate approach. Only, if device vendors considerably
reduce the idle power consumption of networking devices compared to the dynamic part,
more advanced power models are required. What this approach does not consider is the
processing load of network functions or the increased flexibility as offered by SDN.
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Section 4.3 shows that wireless data access on smartphones is most energy efficient
when connected to a WiFi network with sufficiently high data rates. Still, a comparison
of the energy consumption within the network backbone of the same data transfer on
cellular and WiFi networks was not conducted yet. Due to the high idle consumption
of the network at periodically low utilization, the energy cost of data transmissions is
expected to vary considerably over the course of the day. Particularly the high cost of
cellular base stations influences the overall transmission cost.

Considering the large increase in capabilities at near constant power consumption of
smartphones, considerable reductions are also expected to be possible on HGWs and
similar devices. As these are often idle for long time intervals, similar sleep modes appear
to be promising. Assuming a larger penetration of ARM chipsets in the home gateway
market, energy savings may be possible using similar functionality in HGWs.

The network reconfiguration approaches as discussed in Section 4.2 (e.g. reducing link
speed) or switching off ports or full devices [GGS04; CSB+08; CMN12; YWX+13] also ap-
ply to fixed network infrastructure. Reducing the idle consumption promises considerable
improvements, converging to energy-proportional forwarding [VK10]. In both areas, the
commitment of hardware vendors is required, strengthened by the market requirements
of reducing OPEX, particularly in high density environments, where the cost of air condi-
tioning proportionally increases the cost of equipment energy consumption. Considering
services to move closer to the user, relating to a decentralization of the network, the cur-
rently deployed network capacities may be used for a longer duration, as the burstiness
of traffic can be reduced using caching, and better controlled using SDN.

The cost of cellular networks can be estimated using approximations of the base-station
power consumption as published in related work [DDG+12], while the influence of the
remaining network can be deduced from aggregate numbers as published in [CMo12].
Assuming that the existing infrastructure will only be extended, but no significant power
saving approaches implemented, the additional cost or savings of network decentraliza-
tion can be estimated. Absolute savings are difficult to achieve under these assumptions,
but the potential for large relative cost reductions considering the processed data volume
is given. Still, the correct trade-off between decentralized and central devices, including
the transmission cost, must be found.

Currently, no mechanism exists to estimate the cost and benefit of these decentraliza-
tion approaches. Depending on the network functions to be deployed and their specific
requirements, their demand on network and computing hardware is highly variable. Fur-
thermore, the underlying computing hardware influences its suitability for different com-
puting and traffic processing tasks. Considering virtual CDN nodes serving content via
a secure connection and a PEP, the demands are highly different. Where the CDN node
possibly requires large storage, the PEP is mainly limited by raw network throughput.
The cost and energy consumption of each of these approaches also depends on the un-
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derlying hardware. Furthermore, the hardware at different locations may have different
characteristics and limitations, possibly causing further restrictions to the NF selection.

These possibly conflicting optimization goals may be resolved by i) mapping the re-
quirements of NFs depending on network traffic to hardware requirements and ii) map-
ping the hardware requirements to power consumption of the network, based on both
system and network utilization of the NFs. For this an evaluation framework extending
the one presented in Section 6.1 by network infrastructure demands and energy con-
sumption is proposed. This may include, in different abstractions, the individual network
domains [BBD+14]. Thus the cost of different traffic management, routing, and content
placement algorithms can be determined, based on either recorded user traces as de-
scribed in Section 6.1, or synthetic usage scenarios, e.g. created using mobility and traffic
generators.

Knowing the resource utilization and energy consumption models of specific network
demands, an optimization problem can be formulated. Thus, optimal solutions for a given
scenario can be found, and heuristic solutions reducing the computational complexity to
manageable times. This allows the proposed approaches to be deployed and continually
adapted to real-world networks.

Summarizing the above considerations, a few conclusions can be drawn. Energy opti-
mization in conventional networks has limited potential, due to source and destination of
the traffic being fixed. This is caused by the energy requirements of the analyzed devices
mostly showing high idle power and a linear increase under load. Hence, scheduling
traffic has no influence on the overall energy consumption. Still, routing and disabling
of interfaces and devices may reduce the power consumption. However, for currently
deployed network infrastructure frequent reboots are discouraged.

More interesting are wireless networks, where second order terms are visible. There,
a higher utilization of the interface reduces the cost per byte. Thus energy savings by
scheduling and aggregating traffic are possible. Considering ramp and tail energies as
inherent in 3G and to limited extend also in 4G networks, these savings can further be
increased.

The advanced capabilities of SDN and NFV in contrast show performance improvement
and energy saving potential. By dynamically placing VNFs in the network, the optimal
performance for the end user can be achieved. By dynamically adding and removing
computational capabilities, the system utilization can be optimized. Thus also the energy
consumption can be reduced. Configuring the network to re-route traffic to the required
destinations, the placement of these VNFs is completely flexible. Thus, network functions
can be run where the optimal performance and energy efficiency is identified.

By modeling the requirements of these network functions, and knowing the energy
models of the underlying hardware, the effectiveness of scheduling approaches may be
analyzed using an energy evaluation framework similar to the one described in Section 6.1.
Instead of focusing on a single device, the source and destination of each traffic flow with
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its associated requirements is defined. These evaluations may be based on realistic traffic
patterns recorded by end-users, thus resulting in a realistic estimate of the energy saving
and performance improvement potential of possible solutions. From these, optimizations
as well as suggestions on further directions for hardware and algorithm development can
be derived.

6.3 conclusion

In the previous sections the influence of mobile data communication on the power con-
sumption of network equipment is analyzed. This is conducted in a quantitative manner
for the example of the Nexus 5 in an urban scenario in the first part of this chapter.
The influence of data transfers and possible improvements on infrastructure networks
considering the proposed decentralization of the network in combination with emergent
technologies like SDN and NFV is discussed in the second part of the chapter.

The analysis of the load dependent power consumption of communication networks
was guided by two research questions posed in the beginning, based on which the respec-
tive findings are summarized in the following.

RQ 3.1: What is the energy cost of mobile communication for a regular smartphone user, and how
is this affected by smartphone-based energy conservation approaches? The analysis in Section 6.1
has shown that the cost of mobile communication nowadays is mostly proportional to the
load on the network interface. Ramp and tail energies as the pre-dominant influence on
the power consumption as was common in 3G networks have almost disappeared. The tail
times in the measured network are already comparable to the ones proposed by Huang et
al. [HQM+12]. Limiting background traffic reduces the power consumption, but savings
are considerably smaller. The improvements as proposed by Ickin et al. [IWF13] only
modifying the behavior of the cellular interface while the device is inactive have marginal
effects on the energy consumption, when the majority of time is spent on WiFi. Based
on the available traffic traces, the energy consumption of two traffic saving approaches
(i.e. [HQM+12; IWF13]) is analyzed. The evaluation of the consumed energy shows that
the benefit on WiFi and 4G networks is significantly smaller than originally claimed by
the authors. This is caused by the extensive 4G coverage in the area where traces are
available, and the high fraction of WiFi coverage.

RQ 3.2: What is the potential of emerging network technologies on network infrastructure and
mobile devices considering performance and energy consumption? Assuming an increase in
traffic demand as predicted in [Cis16], the load on both cellular and infrastructure net-
works, but also on content providers is increasing considerably. This is also expected to
increase the network power consumption [BBD+11] . Based on measurements of network
equipment power consumption as conducted in Chapter 4 and is available from literature,
possibilities of reducing the power consumption of communication networks under con-
sideration of the goal of further reducing the latency of the network are discussed. Energy
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savings are anticipated when leveraging the flexibility of SDN and NFV to dynamically
reroute traffic and move VNFs to the optimal locations. The end-user perceived service
quality is expected to improve, while simultaneously increasing the utilization of network
hardware. Thus, currently deployed hardware may be used for a longer time. This is ex-
pected to reduce the CAPEX of the network provider, and simultaneously saving energy
by delaying upgrades to more potent, but usually more energy consuming hardware. The
service placement is to be optimized by considering the load generated by a single user
on the different hardware platforms, based on which the minimum energy cost is to be
derived. The performance of the derived optimization algorithms can then be analyzed
based on empirical traces and power models as presented in Chapter 4 and literature, to
assess the real-world performance and effect on overall energy consumption.

Summarizing, this chapter has shown the feasibility of determining the power con-
sumption of end-user devices based on empirical traffic traces. The effectiveness of two
approaches presented in literature is compared, concluding that both mechanisms, devel-
oped with 3G networks in mind, show limited savings in current networks. Combining
the requirements of lower latency of the network and reducing the energy consumption,
the decentralization of networks is proposed, leveraging the flexibility of SDN and NFV to
dynamically reconfigure routing and service placement. The performance for the end-user
is expected to be maximized, while making use of idle network components, thus increas-
ing network utilization, which is also predicted to reduce the overall power consumption
of the network.





7
C O N C L U S I O N S

Energy efficiency and performance are two of the main aspects when assessing mod-
ern communication networks. This is true for both wireless and fixed access net-

works. While in cellular networks the base stations are the largest energy consumer,
HGWs consume the major fraction of energy in fixed access networks [VHD+11]. Due
to the increasing load on the network [Cis16], the energy demand is predicted to continue
to grow [BBD+11]. In particular the increasing popularity of wireless data access results
in a high energy consumption within access networks [VHD+11].

This thesis shows the feasibility of modeling both device power consumption and net-
work performance, thus quantifying both of these two aspects for mobile data access.
Based on these, mobile energy conservation approaches are compared, from which sug-
gestions for improving both performance and energy efficiency in future 5G networks
were derived. The following sections summarize the findings as presented in this the-
sis, and give an outlook on promising areas for future research, considering both energy
efficiency and network performance.

7.1 summary of the thesis

The power consumption of network entities, the performance of mobile data access, and
the analysis of energy conservation approaches as discussed in the previous chapters are
summarized in the following. The conclusions are structured along the research ques-
tions posed in the beginning, from which the contributions of this thesis and the over-
all conclusions are drawn. First, the energy consumption of communication networks is
summarized in Section 7.1.1, followed by the analysis of cellular network performance
in Section 7.1.2. Combining these, conclusions on their simultaneous optimization are
summarized in Section 7.1.3.

7.1.1 Power Consumption of Network Entities

Based on a thorough analysis of power models for networking hardware, the lack of
power models for the device classes of SBCs and SDN switches was derived. Hence, the
measurement methodology to calibrate dynamic power models for these was developed.
The adapted measurement procedures were applied to a number of different devices,
showing the feasibility of inferring power models depending on operating state and load.
Thus, exemplary power models for the measured devices were generated. These power
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models were assessed using arbitrary loads by comparing the power consumption as
estimated using the observed load with the measured power consumption. The obtained
results for the guiding research questions are summarized in the following.

RQ 1.1: What is the energy cost of decentralized caching and computational offloading using
SBCs and how can it be determined? The power models for SBCs as presented in Section 4.1
describe the load-dependent power consumption of a new class of devices. Therefore, ex-
tensive performance and power measurements were conducted based on which power
models of the respective devices are generated. The resulting accuracy, tested under arbi-
trary load is between 1% and 10%. As the generated model is based on system utilization
values read from /proc, the model may be used with minimal additional effort. These
models are exemplary used to derive the power consumption of a large deployment of
SBCs providing services to end users. By comparing changes in the peak performance
and energy consumption of SBCs over time, a similar increase in computational efficiency
as observed by Koomey et al. [KBS+11] are confirmed.

RQ 1.2: How does the energy efficiency of hardware and software OpenFlow switches com-
pare and what are their respective benefits? The power consumption of SDN switches was
presented in Section 4.2 based on the example of a professional hardware switch and an
Open vSwitch running on a bare metal server. Similar to conventional switches, the power
consumption of a hardware switch is mainly defined by its idle consumption and the con-
figuration of connected ports. The influence of OpenFlow matches and actions on perfor-
mance and power consumption is negligible, as long as the functionality is implemented
in hardware. More complex matches and actions reduce the performance and increase
the relative power consumption per packet by a factor of 1000. The Open vSwitch does
not show dependencies between the number and type of matches and actions applied to
the processed traffic on the resulting power consumption, thus making it the preferred
choice for more complex tasks. Still, the power per port and cost per packet are higher on
the Open vSwitch. Concluding, hardware switches showing high performance and low
influence on power consumption for simple packet processing may preferably be used
in aggregation networks, while advanced packet manipulation should be conducted by
virtualized switches, possibly close to the core of the network.

RQ 1.3: What is the energy cost of increasing reliability and throughput of mobile communi-
cation using MPTCP for CBR streaming? Similar to the SBCs, the power consumption of
smartphones for the use case of CBR streaming was analyzed and modeled. The focus of
the analysis was on real-time, bandwidth-intensive communication like live video stream-
ing or cloud gaming. The results show that the energy consumption is minimized when
using only a single interface, with a preference on the one with the lower RTT. Only if the
available throughput on a single interface is insufficient for the requested data rate, the
second interface should be added. Still, the majority of data should be transmitted on the
interface with lower RTT. Considering that generally WiFi interfaces show a lower RTT
than the cellular network, also the cost of data transmissions is minimized.
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Generally, the presented power models result in a good fit between the measurement
and power estimation based on utilization values. The observed error is between 1%
and 10% depending on device class and device. The derived power models build the
foundation for further analysis and optimization of different network domains regarding
performance and energy consumption.

7.1.2 Analysis of Network Performance

The power consumption of mobile devices in cellular networks causes a considerable
fraction (i.e. 31.2%) of the device energy consumption [CDJ+15]. This again depends on
the KPIs of the connected network. The higher the data rates, the shorter time the interface
must be active, resulting in considerable energy savings. To analyze the cost under realistic
conditions, the performance of the cellular network is analyzed in a crowd-sensing based
manner for an urban and train scenario in Sections 5.1 and 5.2 respectively. Irregularities
observed in the collected data were analyzed using dedicated measurement studies in
Section 5.3. In the following the main conclusions are summarized along the research
questions posed in the beginning.

RQ 2.1: What are the parameters affecting cellular service quality and user-perceived network
performance when being mobile? The crowd-sensing study shows that the performance of the
cellular network mainly depends on the available network technology. The received signal
strength has only marginal influence on RTT and throughput as long as a reasonable
signal strength is observed. Measurements of cell sizes show the coverage and number of
cells within the surveyed region. The collected data set is the first to the best knowledge
of the author covering both cellular and WiFi networks, containing signal strength, RTT,
and throughput values for the surveyed locations. Thus, the subsequent study merging
both networks types with the presented energy models was only made possible using
these measurements.

RQ 2.2: How does cellular network access on trains differ from general mobile network ac-
cess, and how can the network performance be predicted? The measurements conducted on
trains show similar results to the urban crowd-sensing study, although showing higher
variability due to movement velocity. Both the localization and accurate measurement
proved more challenging due to frequent handovers and changes in network availability.
Major impediment of mobile network access on trains is packet loss, sometimes causing
every second messages to be lost, although the cellular network employs extensive re-
transmission functionality. Caused by these retransmissions, a temporary higher latency
is observed on the connection. Knowing the availability of network technologies and loss
rate, the usability of the network for different service classes was predicted.

RQ 2.3: What is the influence of network structure and management on end-user perceived
network performance? Abnormalities detected in the collected data were analyzed using
dedicated studies running an extended set of stationary measurements. Thus, the influ-
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ence of network management on the allocation of mobile devices to PoPs was found to
significantly influence RTT performance. Instead of being allocated to the closest PoP, a
random user allocation was observed. In case of more distant PoPs, an RTT increase of
more than 58% was identified in more than 80% of the time. This is also reflected in the
response times of popular web sites, showing a similar increase. This effect is also visible
in related work [BRF14], but was not explained before. Improving the user-to-PoP alloca-
tion by always routing traffic via the closest PoP is expected to significantly improve page
load times.

Summarizing, the performance of the cellular networks as used by the participants of
the crowd-sensing study was profiled. Based on the collected data, the relative indepen-
dence between signal strength and network performance was derived. Hence, based on
the coverage and packet losses the cellular service quality and usability for different ser-
vice classes can be predicted. The dedicated measurements focusing on the identification
of observed anomalies show the effect of network management in form of PoP allocation
considerably influencing the end-to-end RTT. The identified latency overhead is 58% in
over 80% of the time, which is confirmed by measurements of the page load time of the
25 most popular websites.

7.1.3 Influence of Traffic Management on Energy Consumption

Combining the above observations on cellular network performance with the smartphone
power models, the energy consumption of network transmissions was derived and energy
optimizations as proposed in literature are analyzed. Based on the general conclusions
drawn from the described measurements and literature, suggestions on improving both
performance and energy consumption of 5G networks were given. The conclusions are
again structured along the research questions posed initially.

RQ 3.1: What is the energy cost of mobile communication for a regular smartphone user, and how
is this affected by smartphone-based energy conservation approaches? Based on the smartphone
power models, the location based cellular service quality, and additionally measured WiFi
availability and performance, the effectiveness of two selected mobile energy conservation
approaches was analyzed and compared to the energy consumption of an unmodified
system. The results show that the selected approaches developed for 3G networks show
considerably lower energy savings than claimed in the original publications. These lower
savings are allocated to improvements in cellular network access. Hence, it is concluded
that results obtained by earlier network optimization studies should be considered with
care. Large-scale measurements of the actual network performance are required to derive
correct network performance values for contemporary networks. Based on these, opti-
mization potentials can be assessed. Generally, increasing network throughput reduces
transmission times, thus enabling energy savings on the mobile device.
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RQ 3.2: What is the potential of emerging network technologies on network infrastructure and
mobile devices considering performance and energy consumption? The goal of reducing latency
and increasing network throughput as targeted for 5G networks results in the conclusion
that services must move closer to the user. This applies to both content and network func-
tionality. The minimum requirement to achieve sub-ms RTTs is to place services within
each city. On the cellular network side, this requires establishing PoPs in each city con-
nected with the public Internet. Taking this approach further, virtualized services may
be run on extended HGWs, thus even closer to the end user. This requires a large scale
deployment of SDN and NFV solutions to flexibly redirect traffic and migrate services
depending on user mobility. Considering that thus network utilization can be increased,
further energy savings are expected.

Concluding, the energy efficiency of mobile communication mainly depends on the ac-
tive time of the interface, the implementation of energy conservation techniques like sleep
modes on the mobile device, and returning to low power modes with minimal delays
after activity periods. By increasing throughput, and thus reducing transmission times,
energy on smartphones can be saved. In fixed communications networks, the high idle
consumption and missing energy saving states prevent effective energy conservation ap-
proaches. Nonetheless, increasing virtualization promises to increase network utilization,
thus reducing the relative cost of communication. Still, the participation of device vendors
including low-power modes in their wired network devices is highly desired to leverage
the full energy saving potential, in particular during periods of low demand.

7.1.4 Contributions

The contributions presented in this work are the following: load-dependent power models
for various devices were calibrated and the performance of wireless network performance
was measured and evaluated. Based on these the influence of empirical traffic patterns on
the power consumption of mobile communication was derived.

Power models for two new device classes (SBCs, OpenFlow switches) and traffic man-
agement approaches (MPTCP, SDN) were calibrated. The power consumption of at least
two devices in each class has been exemplary derived, thus establishing power models
for further analysis and optimization of communication network infrastructure. Similarly,
the power consumption of MPTCP on smartphones for the case of CBR streaming was
derived. The defining characteristics of the analyzed device classes are worked out, thus
deriving their strength and weaknesses for different use cases.

The cellular network performance for an urban scenario was analyzed using a crowd-
sensing study. The collected data is available to the research community on a public web
server in the form of compiled map tiles. The performance of cellular networks on trains
was analyzed in an extensive measurement study. Based on these measurements, the
feasibility of predicting the cellular service quality on trains was established. Anomalies
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detected within the studies were analyzed using dedicated measurements. From these,
the previously unknown influence of traffic management and user allocation to PoPs on
cellular service quality was derived and published.

Combining the energy models and network performance measurements, the first repro-
ducible comparison of two mobile energy conservation approaches based on empirical
data and realistic power models was presented. For this, an energy evaluation environ-
ment was implemented and described in this thesis. Based on the observations obtained
from literature and presented in this thesis, promising approaches increasing both perfor-
mance and energy efficiency in future networks were derived.

7.1.5 Conclusions

In the presented work, a comprehensive overview of power consumption and perfor-
mance of communication networks was given. Previously available MPTCP power models
were extended with the analysis of CBR streaming on two different smartphones and net-
work interfaces. In addition to the power models found in literature, models describing
the power consumption of SDN switches using the OpenFlow protocol were developed.
Finally, with power models for SBCs the energy consumption of a new class of devices
was derived.

The location-based cellular network performance was analyzed in an urban scenario.
Based on the results it was concluded that RTT and throughput within a network mainly
depend on the available network technology instead of the signal strength, as often as-
sumed. A further study analyzing the cellular network performance on trains shows that
knowing the location, the usability of the cellular network for different service classes can
be predicted. Finally, using dedicated, stationary measurements, the influence of network
management on the end-to-end RTT of cellular networks was determined. It was found
that relatively simple modifications in the cellular network management can significantly
improve latency for a large number of connections.

Finally, based on the combined cellular and WiFi network performance data set in
combination with the device power models, the effectiveness of two energy optimization
schemes as described in literature is analyzed. The presented energy evaluation frame-
work presents an approach for comparing different energy optimization approaches based
on empirically derived network performance. Thus, for the first time reproducible com-
parisons of existing and future mobile energy optimization approaches are possible. Ex-
tending these observations with additional energy models of fixed network devices, the
optimization potential of network virtualization and decentralization approaches concern-
ing both performance and energy consumption are inferred. Thus, promising approaches
further improving performance and energy consumption of fixed and mobile network
access are derived.
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7.2 outlook

The constantly increasing demand in network services leads to a growing energy con-
sumption of fixed and wireless networks [BBD+11]. Over the last years, a large number
of optimizations have been proposed, and partially integrated into fixed and wireless net-
works, both on the client and network side. Still, a considerable optimization potential has
been identified, in particular considering the idle consumption of infrastructure networks.

Hardware vendors of fixed network infrastructure are urged to improve their energy
footprint. This may be achieved by using more efficient hardware, employing power
saving sleep modes, and providing remote configuration options to shut down inter-
faces and full devices when temporarily not required. The evolution of smartphones has
shown that considerable improvements are possible without sacrificing performance. Still,
also smartphones are expected to benefit from further improvements like increased wire-
less bandwidth, shortening data transmission durations, and thus reducing the overall
power consumption. Here, additional spectrum, advanced modulation schemes, multi
user MIMO (MU-MIMO), NOMA, and CR promise a large optimization potential.

To compare the power consumption of different network optimization approaches,
models defining their load, the active interfaces and nodes are required. These should
include, besides the overall network traffic, its temporal patterns and the system utiliza-
tion on the respective node. This is particularly important when utilizing idle resources at
the network edge (e.g. HGWs), being strictly resource limited. Thus, the cost and benefit
of these approaches can be analytically analyzed before being deployed on a large scale.

These power models and optimization approaches can only be tested successfully when
the KPIs of the network are known. Therefore, additional measurements in different net-
works are required. As this and other works have shown, these cannot be derived from
signal strength or other inexpensive measurements. Besides location, time, and connected
network, these must also include the location of the remote measurement endpoint, as
performance may vary significantly between locally delivered and remote content. A ma-
jor limitation of capacity loading bandwidth measurements, as most suitable for highly
variable networks, is the amount of transferred data. Here, more efficient measurement
approaches should be developed, thus permitting the accurate quantification of network
performance at low cost.

As one of the approaches improving capacity in 5G is introducing smaller cells, also
the relocation of content and network services closer to the user promises to reduce the
power consumption, both on the mobile device and within the network. By intelligently
controlling which content is available on which HGWs or femto-cells, idle resources may
be used to reduce the peak load on the network backbone. Here, the functionality of
SDN and NFV provides the required flexibility to dynamically reconfigure the network
and place network functionality where optimally suited. By instantiating PEPs or other
network functions on the node, the latency of retransmissions may be reduced, or the
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quality of content adapted to the currently connected device, thus optimizing the trade-
off between power consumption, network capacity, and quality. Still, these approaches
require accurate knowledge of network performance and load to reduce the overall energy
consumption.
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3GPP 3rd Generation Partnership Project

ADB Android debug bridge

AOSP Android open source project

AP access point

API application programming interface

AS autonomous system

ASIC application specific integrated circuit

ASU arbitrary strength unit

BBU baseband unit

BRAS broadband remote access server

BSSID basic service set identifier

BTC bulk transfer capacity

BTS base transceiver station

C-RAN centralized/cloud RAN

CAGR compound annual growth rate

CAPEX capital expenditure

CBR constant bit rate

CDF cumulative distribution function

CDN content distribution network

CISC complex instruction set computing

COTS commercial off-the-shelf

CPU central processing unit

CR cognitive radio
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CSV comma separated values

D2D device to device

DCH dedicated channel

DHCP dynamic host configuration protocol

DHT distributed hash table

DNS domain name system

DSL digital subscriber line

DSLAM DSL access multiplexer

DUT device under test

EDP energy delay product

eNB eNodeB

EPC evolved packet core

FACH fast access channel

FIFO first in, first out

FPGA field programmable gate array

GCM google cloud messaging

GP-CPU general purpose CPU

GPIO general purpose input output

GPS global positioning system

HARQ hybrid automatic repeat request

HGW home gateway

HPC high-performance computing

HSDPA high speed downlink packet access

HSPA high speed packet access

HSPA+ evolved HSPA

HTB hierarchical token bucket

HTML hypertext markup language

HTTP hypertext transfer protocol
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HTTPS HTTP secure

ICMP Internet control message protocol

IC integrated circuit

ICT information and communications technology

IoT Internet of things

IP Internet protocol

IPv6 Internet protocol version 6

ISP Internet service provider

IXP Internet exchange point

JSON java script object notation

KPI key performance indicator

LAC location area code

LTE long term evolution

MAC medium access control

MIMO multiple-input multiple-output

MNO mobile network operator

MPTCP MultiPath TCP

MU-MIMO multi user MIMO

MVNO mobile virtual network operator

NaaS network as a service

NAT network address translation

NF network function

NFC near field communication

NFV network functions virtualization

ngmn next generation mobile network

NOMA non-orthogonal multiple access

NodeB 3G base station

NTP network time protocol
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OPEX operational expenditure

OS operating system

PA power amplifier

PC personal computer

PCH paging channel

PDF probability density function

PEP performance enhancing proxy

PGW packet gateway

PID process ID

PON passive optical network

PoP point of presence

QoE quality of experience

QoS quality of service

RAM random access memory

RAN radio access network

RB resource block

RED random early discard

REST representational state transfer

RF radio frequency

RISC reduced instruction set computing

RMS root mean square

RMSE root mean square error

RNC radio network controller

RR round robin

RRU remote radio unit

RSRP reference signal received power

RSSI received signal strength indicator

RTT round-trip time
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SATA serial ATA

SBC single-board computer

SDN software defined networking

SDM software defined multicast

SDR software defined radio

SGW serving gateway

SIC self-interference cancellation

SOC system on chip

SON self-organizing network

SSH secure shell

SSID service set identifier

TCAM ternary content addressable memory

TCP transport control protocol

TLS transport layer security

TOPP train of packet pairs

TTF time to finish

TTFB time to first byte

TTL time to live

UDP user datagram protocol

UE user equipment

UI user interface

UMTS universal mobile telecommunications system

USB universal serial bus

VDSL Very-high-bit-rate digital subscriber line

VNF virtual network function

VPN virtual private network

VR virtual reality

WiFi wireless fidelity
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Figure A.1: Screenshots of the NetworkCoverage App

a.2 architecture of the network coverage app

The application running on Android smartphones is called NetworkCoverage App and avail-
able on GooglePlay1. It is structured into UI and a service, which is responsible for mon-
itoring, measuring, and data handling. The UI consists of a number of different screens,
which are called Activities on Android, letting the user see the data collected on the device
as well as aggregated data from the measurement server, run measurements, or check the
network status.

The application was developed to provide benefits for both the user and the experi-
menter. Hence, a considerable effort was put into the presentation of the collected data,
ease of use, and general user friendliness and energy efficiency. The application consists
of four Activities, showing the current network status, a map of the aggregated data as
available on the data collection server, an overview of the locally available measurements,
and another activity, where the user can manually run throughput or RTT measurements
at locations of interest. Screenshots of these activities are given in Figure A.1

Data collection and measurement are handled by a background service. This is struc-
tured into a passive monitoring component, registering on system callbacks for signal
strength, location, or battery updates, plus an active measurement component, running

1 https://play.google.com/store/apps/details?id=de.tudarmstadt.networkcoverage, accessed 2017-01-02

https://play.google.com/store/apps/details?id=de.tudarmstadt.networkcoverage
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Figure A.2: Block diagram of the NetworkCoverage App

periodic throughput and RTT measurements, and the data handling routines, responsible
for storing and uploading the collected data, as well as providing a local cache for the
visualization of recorded network metrics. The application provides two main operating
modes: active and passive. In active mode, the user interacts with the application, while
in passive mode the application is configured to periodically run measurements in the
background. Figure A.2 gives an overview of the structure of the App.

When the application is started, the background service starts the location monitor-
ing with a preference on GPS and registers for the callbacks. It also registers on the
signal strength changes periodically broadcasted by the telephony manager. Thus, signal
strength, and network technology changes are recorded together with the latest location
and timestamp. This information is stored in the local database to periodically be up-
loaded to the central data collection server.

A further feature implemented in the NetworkCoverage Application is an indoor/out-
door detection algorithm based on cellular signal strength samples. Therefore, a classifi-
cation approach is implemented, observing the available cells and their signal strengths.
During the learning phase it was observed that in indoor scenarios often only one cell
shows a strong signal, while the remaining cells are comparatively weak. Contrary in out-
door settings, the observed signal strengths are more similar, and the strongest cell tends
to change frequently. Based on these observations it becomes possible to derive a classifi-
cation tree, returning the setting of the device, and the certainty of this decision. This is
appended to the location data to assess the measurements depending on the environment
and setting of the device. Further, this is an important metric for later modeling and evalu-
ation of network optimization approaches, as usually the performance of cellular network
is better outside, while WiFi performance there is poor, and vice versa indoors.

Besides cellular data, also the available WiFi networks and their signal strengths are
recorded. For this, a periodic scan is triggered. Similar to the cellular signal strength, this
data is annotated with the latest location and timestamp.
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Active measurements in the published version comprise of RTT, throughput, with an
extended feature set for dedicated measurements as will be described in Section 5.3. RTT
and throughput measurements are either started automatically while in active scanning
mode, or triggered by the user at locations or times of interest.

The amount of traffic consumed by the measurements is limited by requesting a monthly
traffic allowance from the user when first starting the application. By monitoring the traf-
fic consumed by the measurements, and comparing it with the allowance interpolated to
the current day, a decision on the execution of RTT or throughput measurements is made.
For each connected network technology an average consumed traffic volume per test is
configured in the application, thus allowing the scheduler to decide whether further tests
may be run without exceeding the traffic budget. Clearly, thus the measurements are more
probable to the end of the month. Still, due to differing accounting intervals (as defined
by the network operators), measurements are again distributed over the full month.

To reduce energy consumption, a special background mode was introduced. This reg-
isters a callback on a system broadcast, and only then activates the App for a single
measurement when the devices become active. Further, only network localization (e.g.
triangulation based on the observed WiFi SSIDs and cell IDs) is used. The observed loca-
tion accuracies are generally better than 100m in an urban or suburban context. As urban
users spend most of the time in vicinity of some form of WiFi coverage, the accuracy of the
collected measurement samples in urban environments is generally sufficient [CTS+11].
Further, GPS is not suitable for indoor localization; hence no accuracy is lost when resort-
ing to WiFi localization for the background measurements.

For outdoor localization in remote areas, accurate localization is achieved by passively
listening on location updates, which may be requested by some other application on
the end-user device. Thus, whenever an updated location is received, another coverage
sample is recorded. Depending on the configured probing intervals, also an RTT or thro-
ughput measurement may be triggered.

All measurements are first collected on the mobile device, to be periodically uploaded
to the data collection server. For this, a custom representational state transfer (REST) end-
point is installed, authenticating the connecting devices, accepting and checking the up-
loaded data, as well as storing it for later processing in a local database.

This server runs a modified version of the da_sense2 server, adapted to the requirements
of the network measurements described above. This server is split into several compo-
nents, handling different tasks. The API endpoints for data retrieval are written in plain
PHP, while the website consists of PHP templates combined with JavaScript files pro-
viding interactive elements. For data upload and user management, a custom solution

2 http://www.da-sense.de/ accessed 2017-01-03

http://www.da-sense.de/
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based on laravel3 is used. The data is stored in a PostgreSQL database4 with the PostGIS
extension5 installed. Details on the individual components are given in the following.

The user management is handled by an API endpoint written in laravel. There, users
may register with a username, password and email address. From the password string
a secure hash string is derived using a salt only known to the server. On each user lo-
gin, a token is generated, which is used in the following interactions to authenticate the
incoming connections and map the data to the respective user accounts.

The data sent by the mobile application is recorded using another API endpoint. Af-
ter authentication and integrity of the received data are assured, the data is stored in
respective tables in the PostgreSQL database.

The JSON upload is structured as follows: The main object contains a device identifier,
measurement type (for compatibility reasons with da_sense), and a series object, containing
the actual measurement samples. The series object has a name, visibility, and timestamp
field as well as an array of measurements. Each of these measurements contains a time-
stamp, version field, and – depending on the measurement – cells, pings, throughput,
WiFi scans and tags. For RTT and throughput measurements, individual measurement
samples are stored. Thus, the versatility of the data protocol is maximized, including the
possibility to add additional measurement modes with increased accuracy in a future
App release. This versatility is also visible in the various timestamps. Using these, the lo-
cation accuracy of the measurements is maximized by allowing the post-processing steps
to interpolate different metrics based on the path of the user. Further, differences in mea-
surements over time can be identified, thus giving a more fine-granular insight into the
measured network performance. An example object as received by the server is given in
Listing A.1.

In the database, tables for series, measurement samples (termed values), cells, WiFi
networks, ping measurements, throughput measurements, and the respective measure-
ment samples are created and referenced accordingly. As database server PostgreSQL in
combination with PostGIS is used. Here, PostGIS extends the PostgreSQL database with
additional data formats, supporting the efficient storage and retrieval of 2-dimensional
data such as location data. Thus, data from a given region can efficiently be requested
from the database, simplifying later analysis and processing. The combination of both is
used, as it is well tested, free of charge, and widely used.

Storing raw data assures that all data is available as recorded by the devices, thus
allowing the experimenter to later change aggregation and visualization algorithms as
required as well as extract metrics not identified during planning, setup and execution of
the measurement. The collected data is processed in a pre-processing step to assure high
quality of the data for visualization. This filtering eliminates samples with insufficient
accuracy, missing values, impossible combinations of values, and otherwise invalid data.

3 https://www.laravel.com/ accessed 2017-01-04

4 https://www.postgresql.org/ accessed 2017-01-03

5 http://postgis.net/ accessed 2017-01-03

https://www.laravel.com/
https://www.postgresql.org/
http://postgis.net/
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The processed data is stored in a separate table used for calculating map tiles for the
website6 and the mobile application. For each network provider, map tiles visualizing
the signal strength, RTT, and throughput for the different network technologies can be
requested from the server. These are generated on-demand. If these have previously been
requested, these are served from the built-in cache.

The da_sense framework already provides two different visualization algorithms: con-
ventional squares, and a visually more pleasing hexagonal visualization. To plot the col-
lected network performance data, these are adapted to useful variable ranges and color
schemes (e.g. higher throughput in green, while higher RTT in red).

These map tiles provide a means of increasing user participation by showing availabil-
ity and performance of the network at previously surveyed locations. This increases the
motivation to contribute by giving the users a sense of participation in the measurement
study. Further, when showing and aggregating measurements from multiple participants,
a more detailed view of the network is available at the locations of interest of the particular
user.

Listing A.1: Example of an uploaded, JSON formatted, measurement sample

{

"deviceIdent": "a0881a8b8802f99d2c0abdc02aa551650fe2db38",

"measurementType": 7,

"series": [{

"name": "testseries",

"visibility": 1,

"timestamp": "2017-01-23 01:01:16+01",

"values": [{

"timestamp": "2017-01-23 01:01:16+01",

"app_version": "33",

"locations": [{

"longitude": 49.8145200,

"latitude": 8.6459600,

"altitude": 122,

"accuracy": 5,

"speed": 7.5,

"indoor":false,

"indoorConfidence":0.9,

"timestamp": "2017-01-23 01:01:16+01"

}],

"cells": [{

"cellId": 26414338,

"lac": 24005,

"networkType": "LTE",

"networkProvider": "Telekom.de",

6 https://mona.ps.e-technik.tu-darmstadt.de/ accessed 2017-01-03

https://mona.ps.e-technik.tu-darmstadt.de/
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"asu": 30,

"signalStrengthDb": -80,

"isActive": true,

"updateTimestamp": "2017-01-23 01:01:16+01"

}],

"pings": [{

"timeStart": "2017-01-23 01:01:16+01",

"timeEnd": "2017-01-23 01:02:16+01",

"remoteServer": "someServer",

"samples": [{

"value": 123,

"timestamp": "2017-01-22 01:01:16+01"

}],

"receivedPingCount": 2,

"pingCount": 5

}],

"throughput": [{

"direction": "up",

"benchmarkType": "sometype",

"remoteServer": "someServer",

"timeStart": "2017-01-23 01:01:16+01",

"timeEnd": "2017-01-23 01:02:16+01",

"errorCode": 10,

"samples": [{

"value": 113,

"timestamp": "2017-01-23 01:01:16+01"

}]

}],

"wifi": [{

"signalStrength": -90,

"ssid": "Meins",

"bssid": "74:ea:3a:be:1f:aa",

"capabilities": "wpa2",

"frequency": 2412,

"isActive": false,

"updateTimestamp": "2017-01-23 01:01:16+01"

}],

"tags": [{

"name": "someKey",

"value": "someValue"

}]

}

]}

]}
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a.3 architecture of the openflow power measurement environment

The architecture of the measurement environment is detailed in Figure A.3. The Floodlight
OpenFlow controller is extended by a number of components implementing the above
described functionality. Namely, the added components are the TestCoordinator, TestInter-
preter, the test cases as defined in Figure 4.9, the EnergyMonitor, and the MessageHandler.
The MessageHandler connects to the corresponding component at the SyncClient. Via this
channel the remote TrafficGenerator and DataCollector are configured.

The TestCoordinator is the high level coordinator of the tests. It executes the TestCases
sequentially or in random order, while coordinating via the MessageHandler with the Sync-
Client to start traffic generation and power measurement, or collecting recorded data.

The TestCases are read by the TestCoordinator to configure the connected DUT. The Test-
Cases contain the full configuration required for configuring the DUT via OpenFlow com-
mands, traffic generation on the SyncClient and power measurements.

On the SyncClient side, the TrafficGenerator is started as soon as the respective message
is received. Simultaneously, the DataCollector is started, polling the connected power me-
ter for measurements. These are stored on the SyncClient but also made available to the
SyncMaster via a REST interface.

The TestInterpreter reads the recorded data, combines it with the configuration of the
DUT as defined in the TestCases and aggregates both into power models. Such, after fin-
ishing the tests, the power model of the DUT can be automatically generated.

The generated energy models are then used by the EnergyMonitor to estimate the power
consumption of connected devices solely based on device configuration and observed traf-
fic patterns. Thus, the power consumption of the device can be estimated in real-time. For
the analysis of the measurement accuracy, a live energy monitor is implemented, showing
the power consumption as measured on the SyncClient, estimated by the EnergyMonitor,
and the error between both.

The remaining modules shown in the Floodlight container in Figure A.3 are the default
components included in the Floodlight framework. These are required for the correct
functioning of the power measurement and modeling framework, but were not modified.
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Figure A.3: Modular representation of the system design (from [Mel14])
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