
Detection and Exploitation of
Information Flow Leaks
Erkennung und Ausnutzung von Informationsflusslecks
Vom Fachbereich Informatik der Technischen Universität Darmstadt genehmigte Dissertation
zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
vorgelegt von Quoc Huy Do Master of Information Technology geboren in Hanoi, Vietnam

Tag der Einreichung: 15.03.2017
Tag der Prüfung: 27.04.2017

1. Referent: Prof. Dr. Reiner Hähnle
2. Referent: Prof. Dr. David Sands

Erscheinungsort: Darmstadt
Erscheinungsjahr: 2017

Darmstädter Dissertation — D 17

Fachbereich Informatik
Fachgebiet Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/84136066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Detection and Exploitation of Information Flow Leaks
Erkennung und Ausnutzung von Informationsflusslecks

Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation von Quoc Huy Do Master of Information Technology aus Hanoi, Vietnam

1. Referent: Prof. Dr. Reiner Hähnle
2. Referent: Prof. Dr. David Sands

Tag der Einreichung: 15.03.2017
Tag der Prüfung: 27.04.2017

Erscheinungsort: Darmstadt
Erscheinungsjahr: 2017

Darmstädter Dissertation — D 17

Wissenschaftlicher Werdegang
Doktorand am Fachgebiet Software Engineering der Technischen Universität Darmstadt
von Juli 2013 bis April 2017

Studiengang Informatik: Master of Information Technology
University of Engineering and Technology, Vietnam National University, Hanoi
von Januar 2008 bis Juni 2010

Studiengang Informatik: Bachelor of Science (B.Sc.)
People’s Security Academy, Hanoi
von September 1999 bis Juni 2004

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-62587
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/6258

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Nicht kommerziell – Keine Bearbeitung 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de

Abstract
This thesis contributes to the field of language-based information flow analysis with a focus
on detection and exploitation of information flow leaks in programs. To achieve this goal, this
thesis presents a number of precise semi-automatic approaches that allow one to detect, exploit
and judge the severity of information flow leaks in programs.

The first part of the thesis develops an approach to detect and demonstrate information flow
leaks in a program. This approach analyses a given program statically using symbolic execution
and self-composition with the aim to generate so-called insecurity formulas whose satisfying
models (obtained by SMT solvers) give rise to pairs of initial states that demonstrate insecure
information flows. Based on these models, small unit test cases, so-called leak demonstrators,
are created that check for the detected information flow leaks and fail if these exist. The de-
veloped approach is able to deal with unbounded loops and recursive method invocation by
using program specifications like loop invariants or method contracts. This allows the approach
to be fully precise (if needed) but also to abstract and allow for false positives in exchange
for a higher degree of automation and simpler specifications. The approach supports several
information flow security policies, namely, noninterference, delimited information release, and
information erasure.

The second part of the thesis builds upon the previous approach that allows the user to judge
the severity of an information flow leak by exploiting the detected leaks in order to infer the
secret information. This is achieved by utilizing a hybrid analysis which conducts an adaptive
attack by performing a series of experiments. An experiment constitutes a concrete program
run which serves to accumulate the knowledge about the secret. Each experiment is carried out
with optimal low inputs deduced from the prior distribution and the knowledge of secret so
that the potential leakage is maximized. We propose a novel approach to quantify information
leakages as explicit functions of low inputs using symbolic execution and parametric model
counting. Depending on the chosen security metric, general nonlinear optimization tools or
Max-SMT solvers are used to find optimal low inputs, i.e., inputs that cause the program to leak
a maximum of information.

For the purpose of evaluation, both approaches have been fully implemented in the tool KEG,
which is based on the state-of-the-art program verification system KeY. KEG supports a rich
subset of sequential Java programs and generates executable JUnit tests as leak demonstrators.
For the secret inference, KEG produces executable Java programs and runs them to perform the
adaptive attack.

The thesis discusses the planning, execution, and results of the evaluation. The evaluation
has been performed on a collection of micro-benchmarks as well as two case studies, which are
taken from the literature.

The evaluation using the micro-benchmarks shows that KEG detects successfully all informa-
tion flow leaks and is able to generate correct demonstrators in case the supplied specifications
are correct and strong enough. With respect to secret inference, it shows that the approach pre-
sented in this thesis (which computes optimal low inputs) helps an attacker to learn the secret
much more efficiently compared to approaches using arbitrary low inputs.

i

KEG has also been evaluated in two case studies. The first case study is performed on an
e-voting software which has been extracted in a simplified form from a real-world e-voting
system. This case study focuses on the leak detection and demonstrator generation approach.
The e-voting case study shows that KEG is able to deal with relatively complicated programs
that include unbounded loops, objects, and arrays. Moreover, the case study demonstrates that
KEG can be integrated with a specification generation tool to obtain both precision and full
automation. The second case study is conducted on a PIN integrity checking program, adapted
from a real-world ATM PIN verifying system. This case study mainly demonstrates the secret
inference feature of KEG. It shows that KEG can help an attacker to learn the secret more
efficiently given a good enough assumption about the prior distribution of secret.

ii

Zusammenfassung
Diese Dissertation befasst sich mit dem Bereich der sprachbasierten Informationsflussanalyse
und erweitert den aktuellen Kenntnisstand insbesondere in den Gebieten der Erkennung und
Ausnutzung unsicheren Informationsflusses in Programmen.

Zum Erreichen dieses Ziels werden im Rahmen dieser Arbeit Verfahren entwickelt, die es
ermöglichen, unsicheren Informationsfluss in Programmen zu erkennen und dessen Folgen fun-
diert einzuschätzen. Die entwickelten Verfahren zeichnen sich durch einen hohen Automatisie-
rungsgrad sowie eine hohe Präzision aus.

Im ersten Teil der Dissertation wird ein Verfahren entwickelt, das es erlaubt unsicheren Infor-
mationsfluss zu entdecken und aufzuzeigen. Das entwickelte Verfahren kombiniert symbolische
Ausführung mit Selbstkomposition (self-composition) von Programmen mit dem Ziel logische
Formeln, sog. Unsicherheitsformeln, abzuleiten. Die Modelle dieser Formeln beschreiben initiale
Zustandspaare, mit deren Hilfe unsicherer Informationsfluss demonstriert werden kann. Dazu
werden Unit-Tests (Leak Demonstrators) erzeugt, die das Programm jeweils in einem der in-
itialen Zustände ausführen und fehlschlagen, wenn ein unsicherer Informationsfluss entdeckt
wird. Das entwickelte Verfahren unterstützt unbegrenzte Schleifenausführungen und rekursive
Methodenaufrufe mit Hilfe von Programmspezifikationen wie Schleifeninvarianten und Metho-
denverträgen. Diese Vorgehensweise erlaubt auf der einen Seite eine hohe Präzision (d.h., keine
False Positives) und auf der anderen Seite aber auch Abstraktion (und damit eine Zunahme von
False Positives) bei höherem Automatisierungsgrad. Der Ansatz unterstützt die Informations-
flusspolitiken Noninterference, Delimited Information Release und Information Erasure.

Der zweite Teil der Dissertation baut auf dem oben beschrieben Verfahren auf. Es erlaubt
jedoch nicht nur die Demonstration des Vorhandenseins von unsicherem Informationsfluss, son-
dern ermöglicht es dessen Auswirkungen einzuschätzen. Dazu bettet es das bisherige Verfahren
in eine hybride Analyse ein, die einen adaptiven Angriff auf das Programm unter Ausnutzung
der entdeckten Unsicherheitsstellen realisiert. Das entwickelte Verfahren führt dazu eine Rei-
he von Experimenten durch und reichert systematisch das Wissen über das im Programm
enthaltene Geheimnis an. Ein Experiment besteht aus einer konkreten Programmausführung
mit optimal gewählten Eingabewerten basierend auf einer angenommenen A-priori-Verteilung
der Werte des Geheimnisses und des durch die vorherigen Experiment angesammelten Wis-
sens über das aktuell vorliegende Geheimnis. Optimal bedeutet, dass die Programmausführung
einen maximalen Wissenszuwachs bedingt. Das entwickelte Verfahren grenzt sich von bisher
existierenden Ansätzen dadurch ab, dass es den Informationsfluss als explizite Funktion in Ab-
hängigkeit von öffentlichen Eingabewerten (low inputs), basierend auf Ergebnissen aus der
symbolischen Programmausführung und parametrischer Modellzählung präsentiert. In Abhän-
gigkeit von der gewählten Sicherheitsmetrik werden allgemeine nicht-lineare Optimierer und
Max-SMT-Problemlöser verwendet, um optimale Eingabewerte zur Geheimnisextraktion zu be-
stimmen.

Die beiden Ansätze wurden implementiert und sind als Programmanalysewerkzeug KEG,
basierend auf dem deduktiven Verifikationssystem KeY, verfügbar. KEG ermöglicht (zu einem
hohen Grad) die Analyse sequentieller Java-Programme und erzeugt JUnit Testfälle, um un-

iii

sicheren Informationsfluss zu demonstrieren. Für die Geheimnisextraktion erzeugt KEG zum
Durchspielen eines Angriffs kleine Java Programme und führt diese aus.

Im Rahmen dieser Arbeit wurden die Verfahren mit Hilfe von Microbenchmarks und zweier
Fallstudien evaluiert. Die Arbeit beschreibt die Planung sowie Durchführung der Evaluationen
und diskutiert deren Ergebnisse.

Die Durchführung der Microbenchmarks zeigte, dass KEG alle unsicheren Informationsflüsse
erkennen konnte und entsprechende Demonstratoren erzeugte, sofern die notwendigen Spezifi-
kation korrekt und ausreichend vollständig waren. Es konnte auch nachgewiesen werden, dass
KEG bei der Geheimnisextraktion wesentlich effizienter ist als ein Angreifer, der mit zufällig
gewählten Experimenten arbeitet.

KEG bewies in den beiden Fallstudien, dass die Verfahren auch zur Analyse realistischerer
Programme eingesetzt werden können. Die erste Fallstudie betrachtet eine vereinfachte Version
einer realen e-Voting Software mit unbegrenzten Schleifenausführungensowie, Objekt- und Ar-
raydatentypen. Neben der allgemeinen Anwendbarkeit von KEG konnte insbesondere demons-
triert werden, dass sich KEG gut mit einem Spezifikationserzeugungswerkzeug kombinieren
lässt, um eine vollautomatische Analyse des Programms zu erreichen.

Die zweite Fallstudie betrachtet einem der Literatur entnommenen Algorithmus zum Überprü-
fen der Integrität von PINs. KEG bewies hier, dass es unter Annahme einer ausreichend guten
A-priori-Verteilung der Geheimniswerte einem Angreifer erlaubt, die geheimen PINs effizienter
zu extrahieren.

iv

Acknowledgments
First and foremost, I would like to take this opportunity to express my deepest gratitude to
my thesis advisor, Prof. Dr. Reiner Hähnle, for everything he has done for me and my family.
Reiner is a wonderful supervisor who always believes in me, encourages and gives me a lot of
freedom to come up with new ideas, and provides me wise research guidance to keep me on
track. Moreover, he is an extremely thoughtful, reliable friend whom I can always count on. His
support was crucial for my family to settle down in Germany. I have learned a lot from him, not
only in scientific research but also in many other aspects of life.

I would like to give my special thanks to Dr. Richard Bubel for all of his unconditional helps
during my time in Darmstadt. Richard has always been the first one I look for whenever I have,
for example, a raw research idea in mind to discuss, an implementation problem to solve, a
piece of writing to revise, or even a mess of paperwork to clarify. He has never said no to any
request from me. There is no doubt that his comments helped improve this thesis substantially.

I am grateful to Prof. Dr. David Sands for being the second reviewer of my thesis with many
insightful feedbacks. I would like to thank all other members of the committee of my defense
for their time and effort in reading and grading this thesis.

My sincere thanks go to my (former) colleagues who are also my good friends: Dr. Martin
Hentschel for being my mentor in SED; Dr. Nathan Wasser for helping me in proof-reading
and for showing me how interesting a boardgame could be; Antonio Flores Montoya, Dominic
Steinhöfel, and Eduard Kamburjan for converting my office into a joyful place. Thank you all
for the happiness and unforgettable memories we have together. I also would like to thank our
secretary Gudrun Harris for all of her helps and also for being so nice to me in spite of my poor
progress in German.

I was very lucky to be a member of two great communities: the KeY project and the RS3

program. Both gave me the opportunity to meet a lot of excellent researchers. I would like to
acknowledge all fruitful discussions and collaborations I had with them. Those helped expand
my knowledge and also inspire many of my research ideas, some of which were realized in this
thesis.

I thank program 165 for the scholarship that partly supports for the living of my family in
Germany. My first contact with Reiner and Richard was carried out with the help of World
University Service (WUS). I would like to thank people of WUS, especially Mr. Christoph Jöcker,
for their support at the beginning of my PhD.

My family has adapted well in Germany thanks to the support of my big family in Vietnam
as well as my friends in Germany. I am grateful to my parents and my parents in law for their
unconditional support and love. I would like to thank all of my friends in Germany for all of their
helps and more importantly, for the friendship that makes our life in Germany much happier.

Last but not least, I would like to express my deep appreciation to my wonderful wife Ha
Thuong for her tremendous sacrifice and love. She postponed her career and gave up many
opportunities in Vietnam to reunite with me in Germany. She gives me a true home for coming
back after work and brings me two lovely angels, Hanh Chi and Mai Khue. Ha Thuong, I
dedicate this thesis to you and our daughters. You are simply all of my life.

v

Contents

1 Introduction 1
1.1 Information Flow Analysis . 1

1.1.1 Qualitative Approaches . 2
1.1.2 Quantitative Approaches . 3

1.2 Approaches and Contributions of The Thesis . 5
1.2.1 Information Flow Analysis of The Thesis . 5
1.2.2 Contributions . 7

1.3 Publications . 8
1.4 Structure of The Thesis . 9
1.5 Notational Conventions . 9

2 Preliminaries 11
2.1 Information Flow Policies . 11

2.1.1 Noninteference . 11
2.1.2 Declassification . 12

2.2 Quantification of Information Leakage . 13
2.2.1 Measuring Leakage by Uncertainty . 13
2.2.2 Shannon Entropy . 14
2.2.3 Min Entropy . 17
2.2.4 Guessing Entropy . 18
2.2.5 Channel Capacity . 19

2.3 Self-composition . 20
2.4 Symbolic Execution . 21
2.5 Program Specification with JML . 25

2.5.1 JML . 25
2.5.2 Method Contract . 25
2.5.3 Loop Specification . 26

2.6 The KeY System . 27
2.6.1 Architecture . 27
2.6.2 KeY as Symbolic Execution Engine . 28

3 Detection and Demonstration of Information Flow Leaks 31
3.1 Logic Characterization of Insecurity . 31
3.2 Generalized Noninterference Policy . 32
3.3 Targeted Conditional Delimited Release . 34
3.4 Leak Detection Using Program Specification . 35

3.4.1 Loop Specification . 35
3.4.2 Method Contracts . 36
3.4.3 General Observations and Remarks . 38

vii

3.5 Leak Demonstration . 39
3.5.1 Leak Demonstration Program . 39
3.5.2 Leak Demonstrator Generation . 40

4 Automatic Secret Inference 43
4.1 Attacker Model and Overview . 43
4.2 Knowledge Representation of High Input . 44
4.3 Algorithm for Inferring High Input . 46
4.4 Finding Optimal Low Inputs . 48

4.4.1 Low-independent Program . 48
4.4.2 Exploiting Risky Paths and Reachable Paths 49
4.4.3 Implementation of Method findLowInput . 52

5 Leakage Maximization with Low Input 53
5.1 Quantifying Leakage with Low Input . 53

5.1.1 Parametric Counting Function . 53
5.1.2 Logic Characterization of Probability Distribution 53
5.1.3 Quantifying Leakage with Arbitrary Distribution of Secret 55
5.1.4 Example . 60

5.2 Finding Low Input Maximizing Leakage . 63
5.2.1 Leakage Computed using Parametric Counting 63
5.2.2 Max-SMT Approach for Min Entropy-Based Leakage 66

5.3 Discussion . 68
5.3.1 The Set OD(L) . 69
5.3.2 Parametric Counting . 70
5.3.3 Optimization Tool . 70

6 Implementation and Experiments 73
6.1 The KEG Tool . 73

6.1.1 Architecture . 73
6.1.2 Workflow . 74
6.1.3 Implementation Features . 75
6.1.4 Usage . 76

6.2 Workflow Illustration . 77
6.2.1 Leak Demonstrator Generation . 77
6.2.2 Secret Inference Simulation . 80

6.3 Experiments . 82
6.3.1 Leak Detection and Demonstrator Generation 83
6.3.2 Secret Inference . 84

7 Electronic Voting Case Study 89
7.1 Electronic Voting System sElect . 89
7.2 Ballot Confidentiality with Declassification . 90

7.2.1 Simplified E-Voting System . 90
7.2.2 Checking Noninterference and Declassification 92

viii

7.3 Ballot Confidentiality with Privacy Game . 95
7.3.1 Fully Automatic Logic Based Approach . 95
7.3.2 From Privacy to Noninterference . 96
7.3.3 Leak Detection for Correct Implementation . 97
7.3.4 Leak Detection for Faulty Implementation . 100

7.4 Discussion . 101

8 PIN Integrity Check Case Study 103
8.1 PIN Integrity Check Problem . 103
8.2 PIN Integrity Check Program . 104
8.3 Learning a PIN’s value by Performing PIN Integrity Check 105
8.4 Discussion and Remark . 106

9 Related Work 109
9.1 Related to Leak Detection and Demonstrator Generation 109
9.2 Related to Quantitative Information Flow Analysis and Secret Inference 110

10 Conclusion and Future Work 113
10.1 Conclusion . 113
10.2 Future Work . 115

ix

List of Figures
2.1 A program and its symbolic execution tree . 22
2.2 Infinite symbolic execution tree of method max in Listing 2.1 24
2.3 Architecture of the KeY tool set (simplified version of [1, chapter 1]) 27
2.4 Generating symbolic execution tree by KeY . 28
2.5 Finite representation of an infinite symbolic execution tree for method max using

the loop specification in Listing 2.3 . 30

4.1 Structure of the algorithm to infer secrets . 44

6.1 Top-level architecture of KEG . 73
6.2 The workflow of KEG . 75
6.3 Bits revealed per experiment on RelaxPC with uniform distribution of high input . 85
6.4 RelaxPC: Non-uniform prior distribution of h’s input value 86
6.5 RelaxPC: The average and standard deviation of revealed bits of h’s value after

10 experiments using non-uniform distribution . 87
6.6 RelaxPC: The average and standard deviation of time consumptions value after

10 experiments using non-uniform distribution . 88

7.1 UML class diagram of the e-voting system in the case study 91
7.2 Fully automatic leak detection for Java programs . 96

8.1 Number of experiments needed to achieve maximum knowledge of PIN with uni-
form PIN distribution . 105

8.2 Number of experiments needed to achieve maximum knowledge of PIN with non-
uniform PIN distribution: {µ(0≤ PIN≤ 5) = 2,µ(6≤ PIN≤ 9) = 1} 106

8.3 Number of experiments needed to achieve maximum knowledge of PIN with non-
uniform PIN distribution: {µ(0≤ PIN≤ 8) = 1,µ(PIN= 9) = 10} 107

xi

List of Tables
6.1 Benchmark statistics of leak detection and demonstrator generation 83
6.2 Benchmark statistics of secret inference w.r.t. uniform distribution of high input . 84

xiii

List of Listings
2.1 Method max containing unbounded loop . 23
2.2 Contract of method max in Listing 2.1 . 26
2.3 Loop specification for for-loop of method max in Listing 2.1 27

3.1 Ticket vending machine . 33
3.2 Recursive method call . 38

4.1 Running example program rPC for secret inference 44

6.1 Example program to illustrate leak demonstrator generation of KEG 78
6.2 JUnit test as leak demonstrator program . 79
6.3 Attack program to perform method magic and return the output value of l 81
6.4 Relaxed Password Checker (RelaxPC) . 82

7.1 Class VotingServer . 91
7.2 Class CountingServer . 92
7.3 Loop invariant in method countBallots . 93
7.4 Leak demonstrator for class CountingServer . 94
7.5 Privacy game establishing ballots confidentiality . 98
7.6 Precondition as JML specification of method privacyGame 98
7.7 Correct implementation of method compute . 99
7.8 Input file input.key . 99
7.9 Annotated SimplifiedEVoting.java.mod.0 . 100
7.10 Faulty implementation of method compute . 100

8.1 PIN Integrity check program . 104

xv

List of Algorithms
3.1 Leak detection and demonstrator generation . 41

4.1 Secret inference . 47
4.2 Implementation of method findLowInput . 52

5.1 Finding low input maximizing leakage using parametric counting 64
5.2 Finding low input maximizing leakage using Max-SMT solver 67

xvii

1 Introduction
We are living in a sharing, connecting world that heavily relies on a variety of IT systems to
create, store and exchange information. With an enormous and dramatically increasing amount
of data, protecting confidential data from improper observers/accessors is vital for such IT sys-
tems and their users. For example, online banking or e-commerce systems must keep the credit
card number of a customer from the others. Mobile phone apps should not access or modify
personal data such as photos, messages or locations without permission. Server-side programs
must guarantee that user names and passwords of their clients cannot be read and changed by
a third-party. We are talking about confidentiality and integrity, two of three main attributes of
the well-known CIA triad in information security (the remaining is availability) [6]. This thesis
focuses on confidentiality.

According to the standard for information security management systems (ISO27000), confi-
dentiality “is the property, that information is not made available or disclosed to unauthorized
individuals, entities, or processes”. To keep confidential data from disclosure, several tech-
niques and mechanisms have been devised and applied e.g. access control and cryptography.
Access control restricts the access of authorized users to confidential resources by using, for
example, an access control list. Cryptography provides confidentiality by encrypting private
messages so that third-parties (i.e. adversaries), even if they are able to access the encrypted
message (cipher-text), cannot infer the original information (plain-text).

The mentioned methods are definitely useful in the sense that they can limit the information
that is released by a system. However, they are insufficient to guarantee about its propaga-
tion [104]. For example, access control is not able to ensure that confidential data, after being
accessed by an authorized user, will not be sent to an unauthorized agent. Similarly, once ci-
phertext is decrypted, cryptography can do nothing to ensure that the secret information is not
read by the adversary afterwards. General speaking, if unclassified data can somehow interfere
confidential data (secret information) throughout program execution, one might gain partial or
even complete knowledge about a secret by observing unclassified data at the time a program
terminates. In this case confidentiality is likely to be broken.

To ensure end-to-end confidentiality of data for an IT system, secure information flow, which
tracks and regulates information flows during program executions, is crucial. This thesis con-
tributes to language-based information flow analysis with a focus on detection and exploitation
of information flow leaks in programs. State-of-the-art approaches securing information flow
in programs are discussed in Section 1.1. Section 1.2 sketches the approaches proposed in this
thesis and highlights its main contributions. Important publications constituting the thesis are
listed in Section 1.3. Section 1.4 outlines the structure and Section 1.5 fixes some notational
conventions that are used throughout this thesis.

1.1 Information Flow Analysis

Secure information flow has a long history since the 1970s. Denning [43] pioneered the use of
a lattice model of security levels to specify the information flow policies to which the IT system

1

needs to adhere. In language-based secure information flow [104], each program location,
i.e. field or variable, is labeled by a security level. Those security levels form a lattice that
specifies a noninterference policy: if the security level of a program variable x is higher than
the security level of a program variable y , then information flow from x to y is prohibited.
The opposite direction is allowed. Conventionally, x is called high variable and y low variable.
Noninterference is usually too strict for practical applications, therefore it is often downgraded
by declassification policies [105] that specify either what, who, where or when an information
leak can be accepted.

In the past decades, much theoretical and practical work on information flow analysis of pro-
grams was developed, for example, [7, 12, 16, 17, 37, 39, 45, 54, 63, 69, 70, 72, 91, 94, 103,
107, 110, 111, 113, 117]. Its focus is to ensure that an outside agent with well-defined prop-
erties cannot infer secret inputs by observing (and initiating) several runs of a program. The
methods developed in the area of information flow analysis can be classified into either quali-
tative approaches that check whether a program leaks confidential information, or quantitative
approaches that measure how much information might be leaked.

1.1.1 Qualitative Approaches

Qualitative information flow analysis is concerned with the development of methods ensur-
ing that programs do not leak secret information, i.e., that it is not possible to learn secret
information by looking at publicly accessible output. We discuss first static approaches.

Type-based approaches [12, 63, 91, 103, 117]) are light-weight approaches utilizing type sys-
tems to perform taint analysis on programs w.r.t. a lattice of security levels. These approaches
are usually automatic and very efficient (they can be polynomial in the program’s size [112]) for
checking large programs. However, type-based approaches are value-insensitive, i.e. the actual
values of program variables are not taken into account. Because of that, type-based approaches
lack precision and often report many false positives.

Program dependence graph-based approaches [55, 58, 62] are another light-weight static in-
formation flow analysis. A program dependency graph (PDG) captures data-dependence and
control-dependence information of its instructions that can be used to check information flow
of the program. PDG-based approaches are relatively efficient that can scale to 100 kLOC [55].
However, they are also value-insensitive and, like type-based approaches, tend to raise false
alarms. A formal comparison of the precision of a type-based and a PDG-based information
flow analysis was conducted in [83] showing that they have the same precision.

In contrast to light-weight approaches that tend to be automatic and efficient but imprecise,
heavy-weight logic-based approaches [17, 39, 107] tend to be precise, but require sometimes
nontrivial user interactions and are not fully automatic. Roughly speaking, such approaches
capture information flow properties of programs by means of a program logic and use verifica-
tion tools i.e. theorem provers to prove those properties. Logic-based approaches are usually
precise in the sense that they can formally prove whether a program is secure. However, they
suffer from an inevitable drawback: constructing the proofs is often expensive and requires ex-
pert interactions. Hence, it is difficult to apply logic-based approaches for real-world programs
that are usually large and complex.

With static qualitative information flow analysis approach, it is difficult to obtain precision and
automation at the same time. However, this can be achieved dynamically for a concrete program
run. Security monitors (e.g., [7, 37]) raise a warning as soon as a program violates a given

2

security policy and try to contain the leak. Secure multi-execution ([45] and several follow-up
papers [15, 67, 100]) determines whether a given concrete run might violate a policy. However,
such dynamic approaches have their own problems. Because they only consider the single current
execution, it is difficult for them to establish confidentiality on all possible executions like static
approaches [102, 104]. In addition, dynamic approaches usually require their own runtime
infrastructures that might be expensive to construct.

1.1.2 Quantitative Approaches

Qualitative information flow analysis tries to establish that a program is secure and reject pro-
grams as insecure otherwise. However, in case of a leak (even if allowed by a given declassifi-
cation policy) it does not provide details about how much information is leaked. Quantitative
information flow analysis [3, 4, 9, 69, 72, 98, 110, 111] complements qualitative approaches
by measuring the amount of leaked information. Developers/auditors can use this value to de-
cide whether the leakage is acceptable. In addition, quantitative information flow analysis can
provide a means to compare two programs in terms of insecurity, i.e. program A is considered
as more secure than program B if A leaks less information than B.

All quantitative information flow analysis approaches are based on a common scenario: the
attacker observes the (observable) outcome of the program to learn something about the initial
value of high input (the secret). Generally, to compute how much information can be leaked
by a program, one has to quantify the amount of unknown information in the secret (w.r.t.
the attacker) before running the program (the attacker’s initial uncertainty about the secret)
and after observing the output (the attacker’s remaining uncertainty about the secret). Then,
the leakage is measured as the difference between the initial uncertainty and the remaining
uncertainty. This can be expressed with the following equation:

information leaked = initial uncertainty − remaining uncertainty

Many approaches borrow the notion of entropy in information theory to interpret the at-
tacker’s uncertainty about the secret, that is treated as a random variable. Most common metrics
are Shannon entropy [31, 44], min entropy [110] and guessing entropy [9, 70]. Such entropies
are computed via the prior probability distribution (aka a prior) of secret. Thus, the leakage,
computed using above entropies, also depends on that distribution.

Channel-capacity, which is the maximum leakage over all possible prior distributions of high
inputs, is used to address worst-case analysis. It is first defined in the work of Denning [44] as
the maximum Shannon entropy-based leakage over all possible probability distribution of high
inputs (Shannon-capacity). In [110, 111], Smith extends the definition of channel capacity
for the case of min entropy-based leakage (min-capacity) and proves that if the program is
deterministic, Shannon-capacity and min-capacity coincide and both are the logarithm of the
number of possible observable outputs.

Due to the hardness of quantitative information flow problems [30, 119], instead of com-
puting exactly the leakage, which can be very expensive, it might be easier to estimate the
upper bound of leakage. Channel-capacity, by definition, provides a natural, precise upper
bound. Computing the channel-capacity of a deterministic program requires one to estimate
the number of possible observable output values. This is addressed in many works in the field
of quantitative information flow analysis [81, 86, 93, 98].

3

All secret data seems to be valued equally in above security metrics. To address the scenario
that some secret data might be worth more than the others, e.g. leaking the credit card number
of a user is more harmful than leaking the address, some approaches have been proposed. The
approaches proposed in [3, 25] use a gain function to characterize the benefit that an attacker
can derive from a certain guess. Alvim et al. [4] uses worth assignment to map each structure (a
part of the whole secret) to a worth value.

Clarkson et al. [33] claim that uncertainty is not an adequate metric for the case when the
attacker models his knowledge about the secret in terms of a probability distribution of secret. In
this case, after observing the output of a program’s run, the uncertainty of the attacker about the
secret is reduced whereas the attacker might become more wrong about the secret. Clarkson et
al. point out that the attacker’s distribution is subjective, therefore it should be treated as a belief.
To address this scenario, they introduce an alternative metric for leakage, namely accuracy, that
is the distance from the attacker’s distribution (her belief) to the actual distribution of the secret.

In practice, the observable outputs usually depend not only on high inputs but also low inputs.
For example, a typical password checker outputs either succeed or fail depending on whether
the value chosen by the user (low input) is equal to the actual password (high input). Although
information leakage depends on low input, there are only a few approaches taking low inputs
into account. Some papers [69, 94] parameterize information leakage on low inputs. They
assume that the attacker will choose low inputs that maximize the leakage but do not point out
how to find those optimal values. This problem is addressed in [70, 96] that target only side-
channel attacks. Nevertheless, those approaches only either use channel-capacity as a security
metric or consider the case that the prior distribution of high inputs is uniform.

Although channel-capacity is useful in the sense that it gives the precise upper bound of
information that might be leaked, it is often too pessimistic. We illustrate this by the example
taken from [8]. A typical password checker returns two possible observable outcomes succeed
and fail, thus the capacity of the channel from secret passwords to observable outputs is 1 bits,
corresponding to the distribution that assigns probability 0.5 for both outcomes. Consequently,
a naive analysis might infer that an n-bit password can be discovered completely after at most
n login attempts hence conclude that the system is insecure. However, that distribution is not
likely to happen in practice. If the password is well-chosen from a large set of values so that its
distribution is almost uniform, a login attempt leaks much less than one bit and the password
checker is in fact secure.

On the other hand, assuming that the high inputs have a uniform distribution might severely
restrict the applicability of a quantitative approach. For example, the password or PIN chosen
by the users are non-uniform: typically some values can have higher probability, i.e. “123456” or
“password” [24]. The adversary can obviously leverage the information of a secret’s distribution
to attack the system more effectively. Approaches that only work on the assumption that the
secret has uniform distribution might not be adequate for such attack scenario, thus might fail
to judge precisely about the vulnerability of the application.

Most quantitative information flow analysis approaches are static: program source code is
analyzed to induce a numeric value indicating the severity of an information flow leak. Although
static quantitative approaches might be able to estimate a program’s vulnerability, or even to
compare the vulnerabilities of different programs, they can be wrong in practice because of
their approximative nature (the over-pessimistic judgment based on channel capacity metric for
password checker is an example). Moreover, such existing approaches do not point out how
an attacker can exploit the leak to infer the secret in practice. This suggests a complementarity

4

from dynamic analysis that actually runs a program. Although some hybrid/dynamic approaches
exist [72, 85], they only concentrate on estimating the leakage instead of exploiting discovered
leaks.

1.2 Approaches and Contributions of The Thesis

The work presented in this thesis is concerned with both qualitative and quantitative informa-
tion flow analyses, and combines static and dynamic techniques. We highlight the approaches
devised in this thesis in Section 1.2.1 and summarize its main contributions in Section 1.2.2.

1.2.1 Information Flow Analysis of The Thesis

Detection and Demonstration of Information Flow Leaks

This thesis contributes to qualitative information flow analysis by a novel approach detecting
and demonstrating information flow leaks in programs. This approach connects the static and
dynamic view: by static analysis we discover as many as possible information flow leaks and
then produce test cases for such detected leaks, so called leak demonstrators, that are guaranteed
to violate a given security policy. Such leak demonstrators can then be used independently
for system testing, regression testing, documentation, etc. We take a similar view here as in
functional verification: an information flow policy can be seen as a requirements specification.
Its violation is a software fault witnessed by a test case, i.e. leak demonstrator.

In functional verification it is well-known that static verification is not a replacement for test-
ing, but both techniques complement each other [19]: static verification gives strong guarantees
for the modeled part of a system, while testing is incomplete, but validates actual executables
and can also find problems in the underlying runtime environment or hardware platform. In
our work we intend to achieve similar goals as in white-box software test generation frame-
works [2, 51, 40]:

• Under the assumption that a sound and complete specification is provided, no further user
interaction is required and the approach is automatic.

• Completenness is achieved only in specific cases (e.g., no loops present or else strong loop
invariants are supplied), however, strong and precise coverage guarantees can be given.

• Like test cases, leak demonstrators can be used to validate a program in its actual runtime
environment.

• Like test cases, leak demonstrators become part of a library that is regularly executed to
protect against regression. They are useful even after changes were made.

• Like test cases, leak demonstrators can serve as a documentation and illustration of in-
tended system behavior.

Like other white-box software test generation frameworks [2, 51, 40, 68], the leak detection
and demonstrator generation approach proposed in this thesis is based on symbolic execution of
the target program. The relational nature of information flow (two runs of a program must be

5

compared) is captured by the technique of self-composition (first introduced in [38]; the name
self-composition was coined in [17]). The result is an insecurity formula for a given information
flow policy that is satisfiable if and only if the policy is violated. Model generation with the help
of SMT solvers [41] yields the input data for the leak demonstrator. In addition to standard
information flow policies like noninterference, we also support relativized properties that tend
to be used in practice, including delimited information release [105] and information erasure.

Unlike monitoring and multi-execution, no special runtime infrastructure is required, because
we generate leak demonstrators in the form of self-contained JUnit tests. These run the program
under test multiple times with the generated input in order to produce a security violation. In
addition, the generated leak demonstrators come with statically determined coverage guaran-
tees.

A huge problem in software testing is the creation of oracles [13] that tell whether a test
succeeded or not. Among the problems are i) missing or insufficient specifications, ii) complex-
ity of general functional specifications which might contain quantifications over all objects and
similar, and iii) possible unintended side-effects of specification code (runtime exceptions and
similar). Even in automatic test generation, these must often be supplied manually. But infor-
mation flow policies (see [105] for an overview) can usually be expressed in a uniform manner
for any given program. Hence, it is possible to generate test oracles automatically from them. In
fact, our approach goes one step further in being oracle-sensitive: only such leak demonstrators
that violate a given policy are generated at all.

In this thesis, the leak detection/demonstrator generation approach is explained in detail in
Chapter 3. Chapter 6 presents the implementation and evaluation for this approach. An e-voting
case study showcasing the approach is given in Chapter 7.

Quantification and Exploitation of Information Flow Leaks

As discussed in Section 1.1.2, existing approaches in quantitative information flow analysis do
not provide a proper answer for the question “how easy an attacker can learn the secret input
by observing the public output of a program in practice?”. This thesis proposes a novel ap-
proach tackling this problem for deterministic programs. We exploit detected leaks to construct
a multiple-run adaptive attack that allows the attacker to learn the values of high inputs by per-
forming a series of experiments. An experiment constitutes a concrete program run which serves
to accumulate the knowledge about the secret (high inputs). Such knowledge is a set of logic
constraints for the actual input values of high variables. It helps to infer the whole secret or at
least to narrow down the space of possible values of the secret. The attack is adaptive because
the attacker can use her latest knowledge of the secret to deduce the low inputs for the next
experiment. During the attack, the secret is assumed to remain unchanged.

To judge the severity of information leaks, the work presented in this thesis applies techniques
developed for quantified information flow analysis to guide the systematic creation of an (as
small as possible) set of experiments to be conducted to gain maximal knowledge about a secret.
The set of experiments is built incrementally. New experiments are added only if they are non-
redundant and lead to a “maximal” knowledge gain. This sets our approach apart from previous
approaches [9, 69, 98] that use a random set of experiments (or simply state the existence of
such a set) and enables us to obtain a tighter characterization of secret.

The low inputs to be used in experiments are chosen so that at least they bring non-redundant
experiments with respect to current knowledge (that the attacker can learn something new

6

about the secret), or in the best case they are optimal: they maximize the information leakage
with respect to a specific security metric. To find optimal low inputs, we quantify information
leakages as explicit functions of low inputs. Those functions are constructed using path condi-
tions and symbolic output values of observable variables. Optimal low inputs are generated by
solving an optimization problem, employing either (non-linear) optimization tools [21, 53] or
Max-SMT solvers [14, 41]. The secret inference approach presented in this thesis differs from
(and advances) [70, 96] in the sense that an arbitrary prior distribution of secret is taken into
account, and information theoretic entropy-based leakage metrics, i.e. Shannon, min and guess-
ing entropy are used, while [70, 96] either ignore that distribution and use channel-capacity as
leakage metric, or deal only with the assumption that the possible secret values have a uniform
distribution.

By choosing low inputs that potentially maximize gained knowledge, this approach also opti-
mizes the attack strategy of the attacker and hence, can provide an upper bound for the severity
of information leaks. Of course, finding optimal low inputs is more expensive than just simply
choosing a random one. However, it might be crucial in many attack scenarios, especially with
the case that the maximum number of experiments that the attacker can perform is limited, e.g.
a password checker might accept at most three consecutive failed login attempts. Moreover, it
addresses the worst-case scenario in which the computation power of the attacker is assumed
to be unlimited.

The secret inference approach proposed in this thesis can be seen as an exploit-oriented ap-
proach in nature: it creates a small program to run the target system multiple times to learn
the secret. Actually, information leaks, detected by the leak detection approach proposed in this
thesis, can be exploited further: only risky paths (symbolic paths that might cause information
leaks) and reachable paths are taken into account while computing the leakage and constructing
the knowledge of secret.

In this thesis, the fundamental concepts of the secret inference approach is introduced in
Chapter 4. Chapter 5 explains in detail how to quantify the information leakage by parametric
counting or Max-SMT problem and how to find optimal low input maximizing such leakage.
The implementation and evaluation of this approach is given in Chapter 6. Chapter 8 presents
a PIN integrity checking case study for this approach.

1.2.2 Contributions

In summary, the main contributions of this thesis are:

• A novel approach for detecting all possible information flow leaks based on self-
composition and symbolic execution (Sections 3.1). In particular, this approach utilizes
program specifications i.e. loop invariants and method contracts to deal with unbounded
loops and recursion (Section 3.4).

• A generalization for noninterference that supports more information flow polices, i.e. in-
formation erasure (Sections 3.2), and an extension of delimited information release policy
addressing acceptable targets as well as conditions for declassification (Section 3.3).

• A technique to generate automatically leak demonstrators that can be used as fail test cases
for leaks. Leak demonstrators can also be used for regression test and do not require any
special runtime infrastructure (Section 3.5).

7

• A novel approach judging the severity of information leaks by simulating an adaptive at-
tack to infer the secret (high inputs). This approach combines static and dynamic analysis
to maximize the gained knowledge about the secret while minimizing the number of ex-
periments/program runs (Sections 4.1, 4.3, and 4.4).

• A logic characterization of the secret synthesized from multiple concrete program runs and
results obtained from symbolic execution (Section 4.2).

• A novel approach quantifying leakages as explicit functions of low inputs using symbolic
execution and parametric counting. This approach uses Shannon, guessing or min en-
tropy as security metric. In particular, this approach can take into account non-uniform
distributions of the secret if the chosen security metric is Shannon or guessing entropy
(Section 5.1).

• An algorithm finding optimal low inputs using Max-SMT solvers that min entropy-based
leakage is quantified by means of a Max-SMT problem of low inputs (Section 5.2.2).

• An algorithm finding optimal low inputs using nonlinear optimization tools, applied for
the cases i) the leakage metric is based on either Shannon or guessing entropy; and ii) the
leakage metric is based on min entropy, and the prior distribution of the secret is uniform
(Section 5.2.1).

• A tool, namely KEG, that implements the proposed approaches on top of the state-of-the-
art deductive verification framework KeY and supports a rich subset of sequential Java
(Sections 6.1 and 6.2).

• An evaluation for KEG using micro-benchmarks (Section 6.3) and two case studies:

– An e-voting case study (Chapter 7): KEG is used to detect and demonstrate all possible
information flow leaks in a simplified e-voting program adapted from a real-world e-
voting system (Section 7.2). A fully automatic logic-based approach combining KEG
with another specification generation tool is also proposed (Section 7.3).

– A PIN integrity checking case study: KEG is used to infer the PIN value of a PIN in-
tegrity checking program adapted from a real-world ATM PIN verifying system (Chap-
ter 8).

1.3 Publications

This thesis includes some previous publications on well established journal and conferences.
The author of this thesis is main author of all publications being used in the thesis. To be more
specific, the author of this thesis designed main theories, implemented proposed approaches,
carried out all experiments/evaluations, and was responsible for the majority of writing.

Parts of Chapter 1, Chapter 2, Chapter 6 and Chapter 9 are based on [47] and [48]. The
content of Chapter 3 heavily relies on [47] and [48]. Chapter 7 is a synthesis of [48] and [49].
Parts of Chapter 4, Chapter 5 and Chapter 8 appear in the technical report [46].

Further journal/conference publications of the author that are not directly relevant to this
thesis are [28, 66, 65].

8

1.4 Structure of The Thesis

This thesis consists of ten chapters, beginning with the introduction given in this chapter. Chap-
ter 2 introduces the necessary background for this thesis. The approach detecting and demon-
strating information flow leaks is presented in Chapter 3. The secret inference approach is
introduced in Chapter 4. Chapter 5 discusses in detail how to generate optimal low inputs max-
imizing information leakage. Chapter 6 describes the KEG tool, performs an evaluation using
a collection of micro benchmarks, and gives some insightful discussions. Bigger case studies
showcasing KEG’s features are given in the next two chapters. Chapter 7 presents an e-voting
case study that utilizes the leak detection and demonstrator generation features. Chapter 8 in-
troduces a PIN integrity checking case study that mainly focuses on secret inference and leakage
quantification functions of KEG. Related works are discussed in Chapter 9. Finally, Chapter 10
concludes this thesis and points out some future works.

1.5 Notational Conventions

Throughout this thesis, the following notational conventions are used:

• Similar to [56], we always use the standard equality symbol = to indicate equality on the
meta-level. To represent the equality predicate in logic, we use its counterpart

.
=. The same

for the inequality sign 6= and its logical counter parts 6 .=.

• For three sets X , Y, Z , we write X ∪̇Y = Z to represent that Z is partitioned into X and Y ,
i.e. X ∪ Y = Z and X ∩ Y = ;.

• The power set of a set S is denoted by 2S, |S| is used to refer the cardinality of S.

• Given an ordered set of variables V = {v1, . . . , vn} and an ordered set V ′ = {v ′1, . . . , v ′n} hav-
ing the same cardinality with V in which each v ′i is either a concrete value in the domain
of vi or a variable having the same domain as vi, for an expression e we use e[V ′/V] to
represent the expression obtained by replacing each vi occurring in e by v ′i . In case of two
disjoint variables sets V1, V2 we write e[V ′1 , V ′2 / V1, V2] instead of e[V ′1/V1][V ′2/V2].

• For an ordered set of expressions Se = {e1, . . . , en}, we write Se[V ′/V] to denote the ordered
set {e1[V ′/V], . . . , en[V ′/V]}. Similarly to the set Se[V ′1 , V ′2 / V1, V2].

• If an expression is explicitly represented by an ordered set of all free variables occurring
in it, i.e. e(V)(V = {v1, · · · , vn}), for the sake of readability we simply use e(V ′) (V ′ =
{v ′1, · · · , v ′n}) instead of e(V)[V ′/V]. Likewise, we write e(V ′1 , . . . , V ′m) to represent the
expression obtained from e(V1, . . . , Vm) by replacing all variables in Vi by their counterparts
in V ′i .

• For two ordered, disjoint sets S = {x1, . . . , xn} and S′ = {x ′1, . . . , x ′n} having the same
cardinality, to represent the formula

∧n
i=1 x i

.
= x ′i we simply write S

.
= S′. We also apply

this for the negation form that S 6 .= S′ means
∨n

i=1 x i 6
.
= x ′i .

• For a logic formula f and V the set of all free variables occurring in f , we denote by Sat(f)
the set of all different concrete models of V that satisfy f .

9

• For a singleton set {x}, we usually use x instead of {x} when the set is a parameter of a
function while the context is unambiguous, or an operand in a set operation.

• All logarithms given without explicit base value are binary logarithm (the base is 2).

10

2 Preliminaries
This chapter provides the background of this thesis. The basic notions of qualitative and quan-
titative information flow security are introduced in the two first sections, including insecurity
policies (Section 2.1) and leakage metrics (Section 2.2). The information flow analysis approach
proposed in this thesis relies on self-composition that is presented in Section 2.3 and symbolic
execution (Section 2.4). Section 2.5 mentions program specifications i.e. method contracts and
loop invariants, as well as their representations in JML. Finally, Section 2.6 introduces the KeY
system and its symbolic execution engine, that is the back-end for the implementation. Parts
of this chapter are based on previous works of the author of this thesis, including two formal
publications [47, 48] and a technical report [46].

2.1 Information Flow Policies

Before we can analyze that a program does not leak confidential information, we need to define
the security requirements. This has two aspects: the security level of each program location (i.e.
program variables and fields) as well as an information flow policy defining whether and what
kind of information may flow between program locations with a different security level.

We recall the definitions of two well-known information flow policies supported by our ap-
proach.

2.1.1 Noninteference

Noninterference [35, 117] is the strongest possible information flow policy. It typically involves
two security levels (high/confidential vs. low/public) and completely prohibits any information
flow from program locations containing confidential information to publicly observable program
locations. The opposite direction is allowed. This thesis considers only deterministic programs.
In this case, noninterference can be formalized by comparing two program runs:

Definition 2.1 (Noninterference—Informal). A program has secure information flow with respect
to noninterference, if any two executions of the program starting in initial states with identical
values of the low variables, also end in final states which coincide on the values of the low variables.

In other words the final value of low variables is solely determined by the initial value of low
variables and does not depend on the initial values of high variables.

We define some basic notions required to formalise information flow policies. In the remaining
thesis we use p to denote a program and Var = {x1, . . . , xn} to denote an ordered set of all
program variables occurring in p.1

1 To keep the presentation manageable, in the formal definitions we mention only variables, however, our im-
plementation works also for fields

11

Definition 2.2 (Program State). A program state σ maps each program variable v ∈ Var of type T
(write v : T) to a value of its concrete domain DT , i.e.:

σ : Var→ D

with σ(v : T) ∈ DT and D being the union of all concrete domains. The set of all states for a given
program p is denoted as Statesp.

We define coincidence of program states relative to a set of program variables:

Definition 2.3 (State Coincidence). Given a set of program variables V and two states σ1,σ2 ∈
Statesp. We write σ1 'V σ

2 if and only if σ1 and σ2 coincide on V , i.e., σ1(v) = σ2(v) for all
v ∈ V .

A concrete execution trace τ of a program p is a possibly infinite sequence of program states
τ = σ0σ1σ2 · · · produced by starting p in state σ0. In this thesis, we concern ourselves only
with terminating programs, consequently, all of our execution traces are finite. Then the big-
step semantics is defined as follows: let X be a concrete execution of a program p defined by
a trace τX . We represent X by a pair 〈σX ,σX

out〉, where σX ∈ Statesp is the first state of τX and
σX

out ∈ Statesp is the last. The set of all possible concrete executions of p is denoted as Excp. We
can now formally define noninterference for two security levels low and high:

Definition 2.4 (Noninterference). Given a program p over variables Var and a noninterference
policy NI = H 6 L where L ∪̇ H = Var such that L contains the low variables and H the high
variables. Program p has secure information flow with respect to NI if and only if for all concrete
executions X , Y ∈ Excp it holds that if σX 'L σ

Y then σX
out 'L σ

Y
out.

Example 2.1. The program

if (h > 0) { l = 2; }

with high variable h and low variable l is insecure as it does not satisfy the noninterference property
for the policy N I = {h} 6 {l}. Given two initial states σ1 with σ1(h) = 5, σ1(l) = 0 and σ2

with σ2(h) = −5, σ2(l) = 0, respectively. They satisfy σ1 '{l} σ2, but in the final states we have
σ1

out(l) = 2 6= σ2
out(l) = 0.

2.1.2 Declassification

In practice noninterference is too restrictive. For instance, a program that authenticates users
with their login password leaks the information whether an entered password is correct. Or
take a database that may be queried for aggregated values like the average salary, but not for
the income of an individual person.

Declassification is a class of information flow policies that allows one to express that some
precisely specified confidential information may be leaked. The paper [105] provides an ex-
tensive survey of declassification approaches. Here we consider delimited information release
as introduced in [103]. Delimited information release is a declassification policy which allows
one to specify what kind of information may be released. To this end, so called escape hatch

12

expressions are specified in addition to the security level of the program locations. For instance,
the escape hatch

∑

e∈Person salary(e)
|Person|

can be used to declassify the average of the income of all persons in a database. The formal
definition of delimited information release extends Definition 2.4. Both definitions coincide for
trivial escape hatches such as e = true.

Definition 2.5 (Delimited Information Release). Given a program p over variables Var and a
delimited information release policy Decl = (L, H, E) with L, H as before and E denoting a set of
escape hatch expressions. Program p has secure information flow with respect to Decl if and only
if for all concrete executions X , Y ∈ Excp it holds that if σX 'L σ

Y and for all e ∈ E : [[e]]σX =
[[e]]σY , then σX

out 'L σ
Y
out . The expression [[e]]σ denotes the semantic evaluation of e in state σ.

Example 2.2. Consider again the program from Example 2.1:
if (h > 0) { l = 2; }

Given the delimited information release policy Decl = ({l}, {h}, {h > 0}) where the escape hatch
allows the sign of h to be leaked. The counter example for noninterference from Example 2.1 is no
longer a counter example as

[[h> 0]]σ1
= true 6= false= [[h> 0]]σ2

.

In fact the program is secure for the given policy, as the decision whether l may be altered is only
based on the guard. The same policy for the program

if (h > 0) { l = h; }

is insecure as can be demonstrated by the following counter example: Given initial states σ1 with
σ1(h) = 3, σ1(l) = 0 and σ2 with σ2(h) = 5, σ2(l) = 0 we observe (i) both states coincide on
the value of the low variable l; and (ii) they evaluate the escape hatch expression to the same value
[[h > 0]]σ1

= [[h > 0]]σ2
= true, but their final states differ on the value of l: σ1

out(l) = 3 6= 5 =
σ2

out(l).

2.2 Quantification of Information Leakage

In this section we introduce notions of quantitative information flow analysis and leakage met-
rics from the literature to the degree required for this thesis. To take low inputs into account,
we adapt the approach proposed in [119].

2.2.1 Measuring Leakage by Uncertainty

Given a program p and a noninterference policy H 6 L. Let O ⊆ L (usually: O = L) be a subset of
low variables whose value can be observed by an attacker after termination of p. We assume that
before running p, the attacker knows about the values of low variables (or can even manipulate

13

them); and that the initial values of variables in H and L are independent (i.e. from an attacker’s
perspective knowledge about L does not entail any knowledge about H).

Conventionally, the amount of information that is leaked from H to O can be measured by
quantifying the amount of unknown information about H’s value (the secret) w.r.t. the attacker
before running the program (the attacker’s initial uncertainty about the secret) and after ob-
serving the output value of O (the attacker’s remaining uncertainty about the secret). Then
information leakage from H to O can be seen as the reduction of uncertainty of the attacker
about the values of H that can be achieved by observing the final values of the variables in O
after a run of program p:

information leaked = initial uncertainty − remaining uncertainty

Let L,H denote the finite sets of all possible values of L and H, e.g., for two 32-bit integer
program variables H = {h1, h2}, H is the Cartesian product Z32×Z32 of their domain. Similarly,
let O be the set of all possible output values of O. Let the function OD : L→ 2O that computes
the set of all possible output values of O for a given low input be defined as follows:

OD : l 7→ {o | o final values of O after executing p(l, h), for each h ∈H}

Each low input value l defines a random variable Oout(l) corresponding to the observed output
values in the set OD(l) after running program p with fixed low level input l. We denote with
Oout(L) the function from L to the space of random variables as defined above. The random
variables corresponding to the initial values of H are denoted with Hin.

The following subsections describe different measures to compute information leakage of
a program p with parameter L. We discuss three possible definitions of leakage: ShELp(L),
MELp(L), and GELp(L) based on Shannon entropy, min entropy, and guessing entropy, respec-
tively. The last subsection introduces channel-capacity that is the upper bound of the leakage
over all prior distribution of secret (the initial value of high variables).

2.2.2 Shannon Entropy

Shannon entropy, as introduced by C. E. Shannon [109], is widely used in quantifying informa-
tion flow leaks [31, 44]. The formal definition of Shannon entropy and its conditional variant
are given in Definition 2.6. Recall that all logarithms given without an explicit base are the
binary logarithm (base is 2).

Definition 2.6 (Shannon and conditional Shannon entropy). Given random variables X , Y with
sample space X and Y, respectively. The Shannon entropy of X is defined as

H (X) = −
∑

x∈X
P(X = x)log(P(X = x))

and the conditional Shannon entropy of X given Y as

H (X|Y) =
∑

y∈Y
P(Y = y)H (X|Y = y)

whereH (X|Y = y) = −
∑

x∈X P(X = x|Y = y)log(P(X = x|Y = y)).

14

Intuitively, H (X) is the average number of bits required to encode the values of X and
H (X|Y = y) quantifies the average number of bits needed to describe the outcome of X un-
der the condition that the value of Y is known.

Shannon entropy and its conditional variant are used to quantify information leakage as fol-
lows: the initial uncertainty of the attacker about the initial values of the high variables is
interpreted as Shannon entropy of Hin, while the remaining uncertainty of the attacker about
Hin when Oout(L) is known is interpreted as conditional entropy. Then the information leakage
is the mutual information of Hin and Oout(L):

ShELp(L) = I(Hin; Oout(L))=H (Hin)−H (Hin|Oout(L))

Theorem 2.1. If program p is deterministic then the Shannon entropy-based leakage can be com-
puted as

ShELp(L) =H (Oout(L)) (2.1)

Proof. Because mutual information is symmetric, we get

ShELp(L) = I(Hin; Oout(L))=H (Oout(L))−H (Oout(L)|Hin)

To prove Theorem 2.1, we will prove thatH (Oout(L)|Hin) = 0 in case program p is deterministic.
By Definition 2.6 we have

H (Oout(L)|Hin) =
∑

h∈H

P(Hin = h)H (Oout(L)|Hin = h)

= −
∑

h∈H

P(Hin = h)
∑

o∈OD(L)

P(Oout(L) = o|Hin = h)log(P(Oout(L) = o|Hin = h))

Let l0 be an arbitrary value of L and o0 an arbitrary value ∈ OD(l0). Let H[l0, o0] ⊆ H be the
set of all values h0 ∈ H satisfying that at final state obtained after executing program p with
initial state L = l0, H = h0 the output value of O is o0. Because o0 ∈ OD(l0), by definition of OD
we have H[l0, o0] 6= ;. Because program p is deterministic, we can see that

P(Oout(l0) = o0|Hin = h) =

¨

1, if h ∈H[l0, o0]
0, otherwise

(2.2)

From (2.2), it is easy to see that
∑

o∈OD(l0)

P(Oout(l0) = o|Hin = h)log(P(Oout(l0) = o|Hin = h)) = 0

with l0 ∈ L is an arbitrary value of L. HenceH (Oout(L)|Hin) = 0 and Theorem 2.1 is proven.

Example 2.3. Consider a simple password checker pwc as follows:

pwc≡ if (h==l) l=1; else l=0;

15

Program pwc models a simple password checker that determines whether a value given by the user
is a correct password by comparing it with the actual secret password. Here h is the password (high
value) and l is the guess chosen by the user (low value). For the sake of simplicity, we assume that
the attacker can observe the output value of l to decide whether the input value of l is the password
or not (in practice, a real-world password checker usually returns a notification for a wrong guess
and accepts the correct one silently). It is easy to see that pwc is insecure w.r.t. the noninterference
policy h 6 l. We concentrate on measuring how much information of h could be leaked to the
attacker after running pwc.

Assume that h is a 32 bits integer number, e.g. −231 ≤ h< 231. It is obvious that program pwc is
deterministic. We make an assumption that the distribution of the input value of h is uniform. The
initial uncertainty (measured by Shannon entropy) of the attacker about the input value of h is:

H (hin) = −
231−1
∑

i=−231

P(hin = i)log(P(hin = i)) = −
231−1
∑

i=−231

1
232

log(
1

232
) = 32

Denote the initial value of l by l0 (l0 is chosen by the attacker), the remaining uncertainty of the
attacker after observing the output value of l is:

H (hin|lout(l0)) = −P(lout(l0) = 1)
231−1
∑

i=−231

P(hin = i|lout(l0) = 1)log(P(hin = i|lout(l0) = 1))

− P(lout(l0) = 0)
231−1
∑

i=−231

P(hin = i|lout(l0) = 0)log(P(hin = i|lout(l0) = 0))

If l0 /∈ [−231, 231 − 1], we have

P(lout(l0) = 1) = 0, P(lout(l0) = 0) = 1

∀i ∈ [−231, 231 − 1]. P(hin = i|lout(l0) = 0) =
1

232

In this case H (hin|lout(l0)) = 32 =H (hin), hence ShELpwc(l0) = 0 which means that there is no
information of h being leaked.

If l0 ∈ [−231, 231 − 1], we have:

P(lout(l0) = 1) =
1

232
, P(lout(l0) = 0) =

232 − 1
232

∀i ∈ [−231, 231 − 1]. P(hin = i|lout(l0) = 1) =

¨

1, if i = l0
0, otherwise

∀i ∈ [−231, 231 − 1]. P(hin = i|lout(l0) = 0) =

¨

0, if i = l0
1

232−1 , otherwise

In this case we can compute the remaining uncertainty H (hin|lout(l0)) ≈ 31.9999999922 which
means that the leakage is ShELpwc(l0)≈ 0.0000000078.

Now we consider the case that the space of password is narrowed down, i.e. h is an 8 bits integer
number (−128 ≤ h ≤ 127). Similarly to above, we can compute the Shannon entropy-based
leakage for the case l ∈ [−128,127] is approx. 0.037, which is much greater than the case of
32 bits password. The quantitative information flow analysis confirms the intuition that password
checking program is relatively safe w.r.t. brute force attack if the space of the password is large
enough and the distribution of the password is almost uniform.

16

2.2.3 Min Entropy

While Shannon entropy is a natural way to quantify leakage, it fails to reflect the vulnerability
that high values might be guessed correctly in a single try. Consider the two programs

p1 ≡ if (h%8==0) l=h else l=1, p2 ≡ l=h&0777

taken from [110]. Using Shannon entropy, the mutual information leakage of program p1 is
smaller than that of p2, i.e., p1 is considered to be more secure than p2. However, the risk
of leaking the complete value of h in a single run is significantly higher for p1 than for p2.
Smith [111] proposed min entropy as an alternative metric to address this problem. As Smith
focuses on programs without low input, we use the extension given in [119]:

Definition 2.7 (Min and conditional min entropy). Given random variables X , Y with sample
space X and Y, respectively. The min entropy of X is defined as

H∞(X) = −logV (X)

and the conditional min entropy of X given Y as

H∞(X |Y) = −logV (X |Y)

where V (X) =maxx∈XP(X = x) and V (X |Y) =
∑

y∈Y P(Y = y)maxx∈XP(X = x|Y = y).

Intuitively, the min entropy of X represents the highest probability that X can be guessed
in a single try. Using min entropy allows to measure information leakage as follows: the initial
uncertainty is interpreted as min entropy of Hin and the remaining uncertainty is the conditional
min entropy of Hin given Oout . The min entropy-based leakage becomes then

MELp(L)=H∞(Hin)−H∞(Hin|Oout(L))=log
V (Hin|Oout(L))
V (Hin)

(2.3)

Theorem 2.2. If program p is deterministic and Hin is uniformly distributed then the min entropy-
based leakage can be computed as

MELp(L) = log|OD(L)| (2.4)

Proof. Because the probability distribution of Hin is uniform, by definition 2.7 we have

V (Hin) =
1
|H|

(2.5)

By Definition 2.7, we have

V (Hin|Oout(L)) =
∑

o∈OD(L)

P(Oout(L) = o)maxh∈HP(Hin = h|Oout(L) = o)

=
Bayes

∑

o∈OD(L)

P(Oout(L) = o)maxh∈H
P(Oout(L) = o|Hin = h)P(Hin = h)

P(Oout(L) = o)

=
∑

o∈OD(L)

maxh∈HP(Oout(L) = o|Hin = h)P(Hin = h)

17

Because Hin has uniform distribution, we have ∀h ∈H. P(Hin = h) = 1
|H| . Hence

V (Hin|Oout(L)) =
1
|H|

∑

o∈OD(L)

maxh∈HP(Oout(L) = o|Hin = h) (2.6)

Because program p is deterministic, we can derive from (2.2) that

maxh∈HP(Oout(L) = o|Hin = h) = 1

Therefore, from (2.6) we have

V (Hin|Oout(L)) =
1
|H|

∑

o∈OD(L)

1=
|OD(L)|
|H|

(2.7)

Theorem 2.2 is proven by combining (2.3), (2.5) and (2.7).

Example 2.4. We continue with password checking program pwc presented in Example 2.3. Again
we denote the initial value of l with l0. Assume that the value of h ranges between lower bound
lb and upper bound ub (lb ≤ h ≤ ub). If l0 /∈ [lb, ub] then we have the set of output values of l
is {0}. By Theorem 2.2 we have the min entropy-based leakage of program pwc is MELpwc(l0) =
log(1) = 0. If l0 ∈ [lb, ub], we have the set of output value of l is {1, 0} and the min entropy-based
leakage is MELpwc(l0) = log(2) = 1. We can see that with password checking program, the min
entropy-based leakage does not depend on the size of password space and is always 1 if the chosen
guessing value is in the range of the password.

2.2.4 Guessing Entropy

The formal definitions of guessing entropy and its conditional variant are given below:

Definition 2.8 (Guessing entropy and conditional variant). Given random variables X , Y with
sample space X and Y, respectively. The guessing entropy of X is defined as

G (X) =
∑

1≤i≤m

i · P(X = xi) (m= |X|)

where x1, . . . , xm satisfy ∀i, j.(i ≤ j→P(X = xi)≥P(X = xj)).
The conditional guessing entropy of X given Y is defined as

G (X |Y) =
∑

y∈Y
P(Y = y)G (X |Y = y)

where

G (X |Y = y) =
∑

1≤i≤m

i · P(X = x|Y = y)

and x1, . . . , xm satisfy ∀i, j.(i ≤ j→ P(X = xi|Y = y)≥ P(X = xj|Y = y)).

18

Intuitively, the guessing entropy of a random variable X is the average number of questions of
the kind: “Is the value of X equal to x?” that are needed to infer the value of X correctly [84].

The derivation of the computation of the guessing entropy-based leakage is similar to the
previous ones and yields:

GELp(L) = G (Hin)−G (Hin|Oout(L)) (2.8)

Example 2.5. Consider the password checking program pwc from Example 2.3. We compute the
guessing entropy-based leakage of pwc for the case that h has integer type whose value is in the
range [lb, ub] and has uniform distribution. By Definition 2.8, the initial guessing-uncertainty of h
is:

G (hin) =
1

ub− lb+ 1

ub−lb+1
∑

i=1

i =
ub− lb+ 2

2

If the input value l0 of l is not in the range [lb, ub], we can see easily that P(lout(l0) = 1) =
0, P(lout(l0) = 0) = 1. Similar to Example 2.3, the remaining uncertainty is:

G (hin|lout(l0)) = P(lout(l0) = 0)G (hin|lout(l0) = 0) =
1

ub− lb+ 1

ub−lb+1
∑

i=1

i =
ub− lb+ 2

2
= G (hin)

The guessing entropy-based leakage is 0 in this case. If l0 ∈ [lb, ub], we have:

G (hin|lout(l0)) = P(lout(l0) = 0)G (hin|lout(l0) = 0) + P(lout(l0) = 1)G (hin|lout(l0) = 1) =

ub− lb
ub− lb+ 1

1
ub− lb

ub−lb
∑

i=1

i +
1

ub− lb+ 1
1=
(ub− lb+ 1)(ub− lb) + 2

2(ub− lb+ 1)

The guessing entropy-based leakage in case low the input value is in the range [lb, ub] is ub−lb+2
2 −

(ub−lb+1)(ub−lb)+2
2(ub−lb+1) = 1− 1

ub−lb+1 . If the domain of password is large then GELpwc(l0) = 1− 1
ub−lb+1 ≈

1. This leakage value can be intuitively explained as follows: after observing the outcome of the
password checking, one wrong value is removed from the space of possible passwords, hence the
average number of guesses needed to discover the actual password is also reduced by one.

2.2.5 Channel Capacity

The information leakage computed using Shannon, min, or guessing entropy is parameterized
on the probability distribution of Hin. Hence, computing the leakage using those metrics re-
quires that the probability distribution of high input is given explicitly. In case that the distribu-
tion of high input is unknown, channel capacity [44] can be used to measure the upper bound
of the leakage.

Definition 2.9 (Channel capacity - Informal). Channel capacity is the maximum amount of infor-
mation leakage (measured by using Shannon entropy or min entropy) over all possible probability
distributions of high input. The channel capacities calculated using Shannon entropy and min
entropy are named Shannon-capacity and min-capacity respectively.

19

Because Shannon entropy-based leakage and min entropy-based leakage depend on low
input, Shannon-capacity and min-capacity also depend on low input. Denote the sets of
all Shannon-capacities and min-capacities of program p by SCSp,MCSp respectively. Let
SCp : L 7→ SCSp be a function computing the Shannon-capacity of program p with a low in-
put, i.e. SCp(l) is the Shannon-capacity of program p given that l is the input value of L.
Similarly, we define function MCp : L 7→MCSp for min-capacity.

Theorem 2.3. If program p is deterministic then SCp(L) = MCp(L) = log|OD(L)|.

Proof. Let l0 ∈ L be an arbitrary concrete value of L. From Theorem 3.3 in [111] we derive
SCp(l0) = MCp(l0) = log|OD(l0)|. Thus we have ∀l ∈ L. SCp(l) = MCp(l) = log|OD(l)| and
Theorem 2.3 is proven.

Channel capacity is useful if we need a worst case analysis of quantitative information flow.
For example, the attacker can exploit her knowledge of the distribution of Hin to derive an attack
strategy that maximizes the amount of leakage, in this case channel capacity can give a precise
upper bound of the amount of secret information that the attacker can learn, no matter what
attack strategy is used. However, because of taking only the worst case into account, in some
cases channel-capacity becomes over-pessimistic. We recall here the example adapted from [8]
that has been mentioned already in Section 1.1.2 of this thesis.

Example 2.6. Consider the password checking program pwc in Example 2.3 where the password
h is a 32-bit integer number. Because the set of observable output values is {0, 1}, the Shannon-
capacity of program pwc is log(2) = 1, which means that after one guess, the attacker can reveal
one bit from the password. This amount of leakage can be obtained with a distribution of input
value of h that assigns probability 0.5 to both output value 0 and 1. Because of this, a naive analysis
can conclude that pwc is insecure because the value of h can be found within 32 guesses. However,
if h is uniform, program pwc leaks a very small amount of password’s information (see Example
2.3). Hence, if the value of h is well-chosen (the distribution is almost uniform), program pwc can
be considered as secure.

2.3 Self-composition

Self-composition [17, 38, 39] is a technique to formalize information policies with respect to a
program as the functional/behavioral properties of its self-composed version. The self-composed
program is specified in the following definition.

Definition 2.10 (Self-composed program). Given a program p with the set of program variables
Var, the self-composed program of p is the program p; p(Var′) where

• p(Var′) is constructed from p by renaming all program variables of p, i.e. from v to v ′, Var′

is the set of all program variables of p(Var′)

• Var∩ Var′ = ;

• p and p(Var′) do not share any memory

20

Self-composition can be used to formalize information flow policies like noninterference and
declassification by means of a classic program logic like Hoare logic, temporal logic or dynamic
logic. We demonstrate this formalization explicitly using Hoare logic [61].

The Hoare triple {Pre} p {Post} characterizes that whenever the program p, started in an
initial state satisfying Pre (precondition) and terminates, Post (postcondition) must hold in the
final state. Noninterference, as given in Definition 2.4 requires the comparison of two program
runs. Let without loss of generality l ∈ L, h ∈ H be the only variables of p = p(l,h). Further,
let p(l’,h’) be the copied program constructed from p by renaming variable l to l’and h to h’

as in Definition 2.10. Then

{l .
= l’}p(l,h); p(l’,h’){l .

= l’}

is a direct formalization of noninterference.
The delimited information release policy Decl = {{l}, {h}, {e}} (see Definition 2.5) can be

formalized similarly as following:

{l .
= l’∧ e

.
= e[l’,h’/l,h]}p(l,h); p(l’,h’){l .

= l’}

Example 2.7. Consider program p extracting the last bit of high variable h to the low variable l:

l = h % 2;

The formalization of noninterference policy h 6 l in Hoare logic is as follows:

{ l=l’} l = h % 2; l’ = h’ % 2 { l=l’}

The program is insecure which can be confirmed by a counter example for the above Hoare triple:
l= l’= 0;h= 0;h’= 1.

Self-compostion enables existing general-purpose verification tools e.g. KeY [1] to be used to
verify the information flow security of programs. A major drawback of this formalization is that
it requires program p to be analyzed twice. Several refinements have been presented to avoid
the repeated execution [16, 113]. The approach proposed in this thesis is based on symbolic
execution. The fundamental idea is to execute the program symbolically only once and then to
use the path conditions and symbolic states to carry out self-composition. Instead of copying
program and renaming all the variables, it is sufficient to copy path conditions and symbolic
values, replacing the symbolic input values with fresh copies. The technical details are given in
Chapter 3.

2.4 Symbolic Execution

Symbolic execution (SE) [68] is a versatile technique used for various static program analyses.
Symbolic execution of a program means to run it with symbolic input values instead of concrete
ones. Such a run results in a tree of symbolic execution traces, which cover all possible concrete
executions.

A symbolic execution tree represents all possible concrete execution paths; moreover, a single
symbolic execution path may represent infinitely many concrete execution paths. Each node

21

of a symbolic execution path corresponds to a code location and contains the symbolic state at
that point: a mapping from program variables to their symbolic value and a path condition. The
path condition is obtained as the conjunction of all branch conditions up to the current point of
execution and unambiguously defines the execution path to be taken. The initial state of any
execution path through a node with path condition pc must necessarily satisfy pc. As long as
the program does not contain loops or method invocations, a path condition is a quantifier-free
formula in first-order logic.

Example 2.8. Consider the simple program depicted in Figure 2.1a.

1 if (x >= 0){

2 y=y-1;

3 }

4 else {

5 y=y+1;

6 }

7 y=2*y;

(a) Program source code

if(x >= 0)

x : x0, y : y0

y = y+1;

x : x0, y : y0

y = 2*y;

x : x0, y : y0 + 1

x : x0, y : 2(y0 + 1)

y = y-1;

x : x0, y : y0

y = 2*y;

x : x0, y : y0 − 1

x : x0, y : 2(y0 − 1)

x0 ≥ 0 x0 < 0

(b) Symbolic execution tree for symbolic input values
(x= x0,y= y0)

Figure 2.1: A program and its symbolic execution tree

We start symbolic execution at the first statement in line 1 of the listing in Figure 2.1a. We begin
with an initial state where x and y have symbol input values x0 and y0, respectively. The root
node is a branching node whose outgoing edges are annotated by their branch conditions. Here
the symbolic execution splits into two branches: the left one for the case where the symbolic value
x0 is non-negative and the right one for a negative x0. We continue symbolic execution on the first
branch, the next statement (line 2) is the assignment of value y0 − 1 to y. The final statement on
the first branch is in line 7 that doubles the value of y. Thus, in case of a non-negative input value
for x, the program terminates in a final state in which the final value of y is 2(y0 − 1). Similarly,
symbolically executing next statements on second branch whose branch condition is x0 < 0 (lines
5 and 7) gives us a symbolic final state in which the final value of y is 2(y0 + 1). In contrast to
y, there is no statements assigning value to x, hence in both branches, the final value of x remains
unchanged (i.e., x0) at the final state. The obtained symbolic execution tree having two symbolic
execution paths with path conditions and symbolic states of each node is shown in Figure 2.1b.

Path conditions and symbolic values are always expressed relative to the initial symbolic val-
ues present in the initial symbolic state as illustrated in Example 2.8. In the following, instead
of introducing a new constant symbol v0 to refer to the initial value of a program variable v ,
we simply use the program variable v itself. This means program variables occurring in path
conditions and symbolic values refer always to their initial value.

We make some notational conventions: We use SETp to refer to the symbolic execution tree
of program p and Np to refer to the number of symbolic execution paths of SETp. For each leaf
node of a symbolic execution path i (1 ≤ i ≤ Np) the corresponding path condition is denoted

22

with pci and the symbolic value of variable v ∈ Var in the final state of path i is denoted with

the expression f v
i . With an ordered set of program variables V = {v1, . . . , vm}, we use f V

i to
refer to the ordered set of symbolic values of all variables of V in the final state of path i, i.e.
f V
i = { f

v1
i , . . . , f vm

i }.
Symbolic execution suffers from the severe problem of path explosion. The number of sym-

bolic execution paths grows exponentially in the number of program branches. If the pro-
gram contains unbounded loops or recursive method calls, the symbolic execution tree even
becomes infinite. We illustrate the case of unbounded loops by an example. Consider a Java
class IntArray wrapping an integer array and its method max returning the maximum value of
the array as given in Listing 2.1. Method max returns the maximum value of array arr in case
arr is not null and has at least one element, otherwise it returns an exception. In case arr is
not empty, the maximum value is assigned by the first element (line 10), then it is compared to
all other elements of the array. If the current maximum value is smaller than an array element,
this element’s value becomes new maximum value. This is implemented by a for-loop construct
from lines 11 - 13.

Listing 2.1: Method max containing unbounded loop
1 public class IntArray{

2 private int[] arr;

3 ...

4 public int max(){

5 if(arr==null)

6 throws new Exception("array is null");

7 else if(arr.length==0)

8 throws new Exception("array contains no elements");

9 else{

10 int max = arr[0];

11 for(int i=1; i<arr.length; i++)

12 if(max< arr[i])

13 max = arr[i];

14 return max;

15 }

16 }

17 ...

18 }

We perform symbolic execution on method max taking a0 as symbolic value of array arr in
the initial state. The if-construct checks first whether a0 is null or an array of length 0. If
that is not the case, the maximum is computed in lines 10 - 14. Before entering the loop, the
value of max and i is assigned a0[0] and 1, respectively. The loop body is executed iff the loop
guard (i < arr.length) holds. Checking the loop guard causes two branches: if its value is
false (a0.length = 1), then the return statement (line 14) is executed yielding the maximum
value of the array. Otherwise (a0.length > 1), the current maximum value stored in variable
max (a0[0]) is compared to the element of array a0 indexed by i. If the current maximum
value is smaller than considering array’s element (a0[0] < a0[1]), then max is assigned a new
maximum value (a0[1]), otherwise there is no need to change the value of max. Afterwards,
the index i is increased by 1 and the loop guard is checked again. The symbolic execution only

23

terminates if the loop guard cannot be true anymore. Under the assumption that the length
of an integer array is unbounded (actually in Java the maximum length of an array is bounded
by Integer.MAX_VALUE), the loop guard is always possible to hold, no matter what the value
of indexing number is. Thus symbolically executing method max produces an infinite symbolic
execution tree that is sketched in Figure 2.2.

if(arr == null)

arr: a0

if(arr.length == 0)

arr: a0 {a0 6= null}

max = arr[0];

arr: a0 {a0 6= null∧ a0.length≥ 1}

int i = 1;

max: a0[0]

i < arr.length;

i: 1, max: a0[0]

max < arr[i];

i: 1, max: a0[0]

i++;

i: 1, max: a0[0]

...

max = arr[i];

i: 1, max: a0[0]

i++;

i: 1, max: a0[1]

i < arr.length;

i: 2, max: a0[1]

max < arr[i];

i: 2, max: a0[1]

i++;

i: 2, max: a0[1]

...

max = arr[i];

i: 2, max: a0[1]

...

a0[1]<a0[2] a0[1]≥ a0[2]

return max;

max: a0[1]

a0.length=2 a0.length>2

a0[0]<a0[1] a0[0]≥ a0[1]

return max;

max: a0[0]

a0.length=1 a0.length>1

throws new Exception("...");

arr: a0 {a0 6= null∧ a0.length= 0}

a0.length = 0 a0.length > 0

throws new Exception("...");

arr: a0 {a0= null}

a0 = null a0 6= null

Figure 2.2: Infinite symbolic execution tree of method max in Listing 2.1

To deal with loops and recursions, a number of solutions have been introduced. One nat-
ural approach implemented within popular symbolic execution tools such as KLEE [29], Java
Pathfinder [5] or Pex [114] is to unfold loops or inlining method calls up to a fixed depth. This
solution brings an under-approximation of the infinite symbolic execution tree, hence some criti-
cal behaviors might not be taken into account. The paper [59] proposes an alternative approach
achieving a finite representation of symbolic execution tree by making use of specifications. This
is realized in the symbolic execution engine of the verification system KeY [1], that is used as
implementation basis of the information flow analysis approach proposed in this thesis.

24

2.5 Program Specification with JML

Formal program specifications describe the intended program behavior. We introduce here
briefly the program paradigm and specification language used throughout the thesis.

2.5.1 JML

The Java Modeling Language (JML) [78, 79] is a specification language for Java programs. It
specifies Java modules following the design-by-contract paradigm [87]. JML specifications are
added into Java source code as special comments beginning with an @ symbol. A JML comment
either has the form

//@ ...

or

/*@ ... @*/

in which the latter can be used for multi-line specifications.
The following sections show how to specify some method contracts and loop invariants in

JML.

2.5.2 Method Contract

Contracts are central to the design-by-contract paradigm [87] and used to specify the input/out-
put behavior of methods. The behavior of a program method is specified by means of precondi-
tions and postconditions that constitute a method contract. We give here a formal definition for
method contracts adapted from [59].

Definition 2.11 (Method contract). Given a method m, a contract Cm for m is a triple
(Prem, Postm, Modm) with precondition Prem, postcondition Postm and modifies (or assignable) clause
Modm. Prem and Postm are formulas. Modm is the set of all locations whose value m can possibly
change.

Method contract Cm defines an agreement between method m and its callers: given that the
precondition Prem holds when calling m, m guarantees that the postcondition Postm is established
when it returns. In JML, Prem and Postm are boolean JML expressions (super set of Java boolean
expressions). Preconditions are specified by expressions placed after the keyword requires,
while the keyword ensures is used for postconditions. Keyword assignable is used to spec-
ify the set of all locations Modm whose values can be changed by executing m. Some special
keywords can be used to express the set Modm: \everything means that all locations can be
changed by m and \nothing states that no location is changed.

Example 2.9. Consider class IntArray and its method max taken from Listing 2.1. We specify
a contract for max claiming that the maximum value of array arr is returned if arr is neither
null nor empty. Listing 2.2 shows this contract in the form of a JML specification, from line 4 to
line 8. The precondition at line 5 claims that method max should only be called if the array has
been instantiated with at least one element (arr.length > 0). If this precondition holds, then max

25

Listing 2.2: Contract of method max in Listing 2.1
1 public class IntArray{

2 private int[] arr;

3 ...

4 /*@ normal_behavior

5 @ requires this.arr!=null && this.arr.length>0

6 @ ensures \result ==(\max int i; 0<=i && i < this.arr.length; this.arr[i]);

7 @ assignable \nothing;

8 @*/

9 public int max(){

10 ...

11 }

12 ...

13 }

guarantees that it returns the maximum value of the array (ensures clause at line 6). The JML
expression \result is the identifier for the return value of the considered method. The maximum
value of array arr is expressed by JML generalized quantifier \max. The assignable clause at line 7
claims that max does not change the heap (but may create new objects). Method max also guarantees
that no exception is thrown (normal_behavior) if the array is non empty.

2.5.3 Loop Specification

A Loop invariant [52, 61] is a logical assertion that has to be true before (and after) each
iteration of a loop. Basically, it over-approximates the properties of all program states reached
after each loop iteration. Loop invariants are a popular approach to deal with loops in program
verification.

To help a program verification tool to deal with loops, not only the loop invariant is needed
but also additional information about the effect of the loop on program locations is required.
They are encompassed within a loop specification.

Definition 2.12 (Loop specification). A loop specification is a tuple (I , mod) in which I is the loop
invariant formula and mod is a set of program locations that the loop can possibly modify.

Definition 2.12 is a simplified version of the one given in [1] (Definition 3.23). It drops the
witness of loop termination that does not contribute for constructing the symbolic execution
tree (introduced in Section 2.6). The JML loop specification is added right before the corre-
sponding loop. The loop invariant is specified after the keyword loop_invariant. Similar to
method contracts, the set of modifiable locations is declared by the keyword assignable. The
termination witness is placed after the keyword decreases.

Example 2.10. Consider the loop structure finding the maximum value of a non-empty integer
array in Listing 2.1, its specification is given in Listing 2.3 from line 1 to line 5. The loop invariant,
specified at lines 1 and 2, preserves that the current value of max is the maximum value over the
fragment of array arr, from the beginning to position i-1, and that the value of index variable i

cannot exceed the array’s length. The assignable clause at line 3 claims that only max and i can

26

Listing 2.3: Loop specification for for-loop of method max in Listing 2.1
1 /*@ loop_invariant i>=1 && i <= arr.length &&

2 max == (\max int j; 0 <= j && j < i; arr[j]);

3 @ assignable max, i;

4 @ decreases arr.length-i;

5 @*/

6 for(int i=1; i<arr.length; i++)

7 ...

be changed by loop execution. Finally, the difference between the array’s length and index i is used
as the termination witness (line 4). Because the value of i is increased after each iteration, this is
strictly decreased by each iteration and always ≥ 0, that is a guarantee of loop termination.

2.6 The KeY System

This section introduces the deductive verification system KeY, that is used as the back-end sym-
bolic execution engine for the implementation of the approaches proposed in this thesis. We
briefly present the main architecture of KeY, then we explain how KeY generates the symbolic
execution tree for a Java program.

2.6.1 Architecture

The KeY tool is a deductive verification system targeting Java programs at source code level. In
recent years, KeY has evolved from a formal verification tool [20] into a framework that benefits
the developers during software development process in many aspects [1]. The main architecture
of the KeY framework is depicted in Figure 2.3.

SED Integration

Symbolic Execution API Eclipse Integration

KeY GUI

PO Type Rule Set K
eY

T
es

tG
en

Java + JML

.key, .proof

 JavaDL PO

KeY Framework

KeY System

Translator KeY Prover

Figure 2.3: Architecture of the KeY tool set (simplified version of [1, chapter 1])

The central task of KeY is to verify the functional correctness of Java programs. There are
two ways to provide a verification problem for KeY: defining the problem (along with the Java
source code) in a .key file or specifying the problem by JML specifications (usually in the form

27

of a method contract) annotated in a .java file. The latter is more natural and allows users
to define multiple verification problems in one .java file. The annotated Java source code
is then translated into corresponding proof obligations expressed in Java Dynamic Logic (Java
DL) [1, 99] formulas.

To prove the validity of a Java DL formula, the KeY Prover - heart of the KeY framework - is
used. The KeY prover uses sequent calculus to construct the proof: the formula to be proven is
expressed as a sequent of the form φ1, . . . ,φn =⇒ ψ1, . . . ,ψm where φ1, . . . ,φn,ψ1, . . . ,ψm are
Java DL formulas. A sequent is valid if and only if the formula

∧n
i=1φi →

∨m
j=1ψ j is valid. KeY

proves sequents by constructing a proof tree where: the root is the original proof obligation; the
child nodes are obtained from the parent node by applying rules on its sequent. A leaf of a proof
tree is called “closed goal” if its sequent is evaluated to true by a closing rule, otherwise it is an
“open goal”. A formula is proven if all leaves of its proof tree are closed. Rules can be applied
either automatically with help of a proof strategy, or manually by the user using the KeY GUI.

Java source code to be verified is embedded in Java DL formulas. While constructing the proof
for a Java DL formula, its embedded source code can be symbolically executed by applying a
number of symbolic execution rules. The symbolic execution tree extracted from the proof tree
by Symbolic Execution API can be used for different purposes such as test case generation or
program debugging. KeY as a symbolic execution engine plays an important role as the backend
of information flow analysis approaches in this thesis. That engine will be explained in the next
section.

Beside the theorem proving engine and the symbolic execution engine, KeY also offers test
case generation with component KeyTestGen. The KeY framework also supplies the Symbolic
Execution Debugger (SED) as an interactive symbolic execution and debugging tool in Eclipse.
SED is made available to be used in Eclipse by SED Integration. The developer can also use KeY
directly within Eclipse with the help of Eclipse Integration.

2.6.2 KeY as Symbolic Execution Engine

KeY can be used as a stand-alone symbolic execution engine for Java programs. It supplies
a symbolic execution API for general usage. Figure 2.4 illustrates the process generating the
symbolic execution tree of a Java method by KeY.

Java + JML Translate
Proof

obligation

Construct
proof

Proof tree

SE strategy

Generate
SE tree

SE tree

Figure 2.4: Generating symbolic execution tree by KeY

First of all, a Java method annotated by JML specification is translated into proof obligations.
Then, the proof tree will be constructed. Instead of using the standard proof strategy, KeY
offers a special proof strategy, namely Symbolic Execution Strategy, that helps to build a proof

28

optimized for generating the symbolic execution tree. During the proof construction, infeasible
paths are also pruned. Whenever the proof tree has been built, the symbolic execution tree is
generated. Path conditions and symbolic state are extracted from the logical content contained
in the sequent of the proof nodes.

To deal with unbounded loops and recursive method calls, the symbolic execution engine
of KeY uses loop specifications and method contracts to achieve finite representations of infinite
symbolic execution trees. The basic idea is that all possible loop executions can be represented
by loop specification and the guard of loop, while method contracts can be used to describe
the effect of method call from the caller’s side. When the symbolic execution reaches a loop
or method call, instead of unfolding the loop or inlining the called method (that might result
enormous, or even infinite symbolic execution branches), only two branches are generated, one
of them allows symbolic execution to go further to the statement after the loop/method call.
Branch conditions and the modification of symbolic states are contributed by loop specifications
and method contracts. Details can be found in [59].

Example 2.11. Consider method max() whose infinite symbolic execution tree is sketched in Fig-
ure 2.2, we show how a finite presentation of that tree is achieved by KeY using the loop specification
supplied in Listing 2.3. Let a0 be the symbolic value of array arr in the initial state. When reaching
the loop (line 6, Listing 2.1), the loop specification, including loop invariant and set of modifi-
able locations is taken into account and is represented as a node of the symbolic execution tree.
Then two execution branches are generated. Both branch conditions contain the loop invariant
(i ≥ 1 ∧ i ≤ arr.length ∧ max = maxi−1

j=0(arr[j])) as a conjunct, and they vary on the value
of the loop guard (i < arr.length and i ≥ arr.length). The values of max and i are fresh
symbolic values: max0, i0 in the first branch and max1, i1 in the second to eliminate the knowl-
edge of their initial values as they might be changed by the previous loop iteration. The first
branch leads to a subtree representing for all loop executions that are performed if the loop guard
holds (i< arr.length), in which all statements of loop structure are symbolically executed (using
max0, i0 as symbolic values of max, i respectively). The second branch leads to another subtree
representing the execution of program after the loop is terminated. In this case the loop guard
does not hold anymore (i ≥ arr.length) and the symbolic execution is continued with the first
statement after the loop structure, here the return statement, using max1, i1 as symbolic values of
max and i. The constraints for fresh variables are defined in corresponding branch conditions. The
finite symbolic execution for max() using loop specification is represented in Figure 2.5.

The usage of specifications allows KeY to obtain a finite symbolic execution tree. The draw-
back is that correct and strong specifications are required to be provided by the users. Details of
how to use program specification for leak detection are explained in Section 3.4.

29

...

int i = 1;

arr: a0, max: a0[0]

loop_invariant i >= 1 && i <= arr.length &&

max==(\max int j; 0 <= j && j < i; arr[j]);

assignable max, i;

i:1

return max

i: i1, max: max1

if (i < arr.length)

i: i0, max: max0

if(max < arr[i])

i: i0, max: max0

i++;

i: i0, max: max0

max = arr[i];

i: i0, max: max0

i++;

i: i0, max: a0[i0]

max0 < a0[i0] max0 ≥ a0[i0]

i0≥ 1 ∧ i0 < a0.length ∧
max0=maxi0-1j=0 (a0[j])

i1 = a0.length ∧
max1=maxi1-1j=0 (a0[j])

Figure 2.5: Finite representation of an infinite symbolic execution tree for method max using the
loop specification in Listing 2.3

30

3 Detection and Demonstration of
Information Flow Leaks

This chapter introduces a novel approach to detect and demonstrate information flow leaks with
respect to a given information flow policy, i.e. noninterference and declassification. First, the
formalization in logic for insecurity is given in Section 3.1. This formalization is extended to
incorporate generalized noninterference policies that support information erasure (Section 3.2)
and targeted conditional delimited release as declassification policy (Section 3.3). Section 3.4
demonstrates the usage of program specifications, i.e. method contract and loop specification in
leak detection. Finally, Section 3.5 explains how the demonstrations of information leaks can
be generated. Parts of this chapter are based on previous publications [47, 48] of the author of
this thesis.

3.1 Logic Characterization of Insecurity

This section describes the formalization in logic for various information flow policies. Given a
complete symbolic execution tree for a program and an information flow policy, we construct
formulas that are unsatisfiable when the program is secure and satisfiable if the policy can be
violated by some inputs. This approach permits to use an SMT solver or model finder to search
for satisfying models from which one can then read off concrete input states for two program
runs that demonstrate a violation of the given policy.

First, we show how to construct a formula that characterizes noninterference (Definition 2.4)
from a complete symbolic execution tree for program p with paths i ∈ {1, . . . , Np}. We recall here
some notational conventions defined in Chapter 2, Section 2.4: pci denotes the path condition
that uniquely determines path i, f v

i represents the symbolic value of variable v at the final

state corresponding to symbolic path i, and f V
i denotes { f v1

i , . . . , f vm
i } where V = {v1, . . . , vm}.

The noninterference policy involved is NI = H 6 L with H, L are set of high and low variables,
respectively and L ∪̇H = Var (Var is the set of all program variables of p).

To represent two independent program runs, we create a copy of all program variables Var′ =
{v ′ | v ∈ Var} with the notational convention that v ′ always refers to the copy of v . Now we
obtain the sets L′ and H′ as copies of L and H, i.e., L′ = {l ′ | l ∈ L} (analogously H′). To refer
to the initial (symbolic) value of a program variable v , instead of introducing a new constant
symbol v0, we simply use the program variable v itself. Intuitively, the first run is performed
using Var, while the second one uses the copy Var′. Both runs are independent as they do not
share any common memory.

Then the NI-insecurity formula

∨

1≤i≤ j≤Np

�

L
.
= L′ ∧ pci ∧ pc j[Var′/Var]∧ f L

i 6
.
= f L

j [Var′/Var]
�

(3.1)

31

is satisfied if and only if there is a model (i.e., concrete state) σ assigning values to the
program variables Var, Var′ such that

• the input values of the low variables L coincide with the values of their copies in L′,

• there are two paths i, j (i = j possible) with consistent path conditions (i.e., both paths
can actually be taken), but

• for which the final value of at least one low variable differs.

In other words, the model σ assigns concrete values to Var and Var′ such that p produces
different low level output for two runs from initial states with identical low input.

Example 3.1. The insecurity formula (3.1) for the example program from Figure 2.1 on page 22
and the NI policy {x} 6 {y} is:

y0
.
= y ′0 ∧ x0 ≥ 0∧ x ′0 ≥ 0∧ 2(y0 − 1) 6 .= 2(y ′0 − 1)

∨ y0
.
= y ′0 ∧ x0 ≥ 0∧ x ′0 < 0∧ 2(y0 − 1) 6 .= 2(y ′0 + 1)

∨ y0
.
= y ′0 ∧ x0 < 0∧ x ′0 < 0∧ 2(y0 + 1) 6 .= 2(y ′0 + 1)

It is easy to see that the first and third disjunct are unsatisfiable, but the second disjunct is satisfiable,
e.g., for the model x0 7→ 0, x ′0 7→ −1, y0 7→ 1, y ′0 7→ 1.

The NI-insecurity formula (3.1) can be rewritten into the equivalent formula:

∨

l∈L

∨

1≤i≤ j≤Np

LeakNI(H,L,l,i, j)
︷ ︸︸ ︷

�

L
.
= L′ ∧ pci ∧ pc j[Var′/Var] ∧ f l

i 6
.
= f l

j [Var′/Var]
�

(3.2)

This formulation will be easier to incorporate declassification into. The intuition behind the
formula LeakNI(H, L, l, i, j) is that it allows us to ascribe leaks to a specific target, i.e., it is satis-
fiable, if some information is leaked from the program variables in H to variable l.

The copy of the low level variables is actually not needed (as we require their equality for all
models), so formulas (3.1), (3.2) can be made more succinct by replacing L′ with L and omitting
the first conjunct, which states L

.
= L′. In the future we will tacitly perform this simplification.

Then the first disjunct in Example 3.1 becomes x0 ≥ 0∧ x ′0 ≥ 0∧ 2(y0 − 1) 6 .= 2(y0 − 1).

3.2 Generalized Noninterference Policy

Sometimes it is not sufficient to simply ensure that no information is leaked, but one wants
also to guarantee that secret data is not kept longer than needed, because of legal reasons or
to make data dumps (initiated by an attacker) less useful. Information erasure is for a desired
property for cryptographic devices (secret keys must be erased after usage), online transactions
(credit card information must be erased after the transaction is completed), e-voting (all data
connecting voter and ballot must be erased after the result has been published), etc. Information
erasure policies have been presented in [42, 64].

32

Listing 3.1: Ticket vending machine
1 void buy() {

2 charge(ticketCost, ccNumber);

3 log();

4 ccNumber = 0;

5 }

Example 3.2. Consider a simple ticket vending machine model (adapted from [42]) as shown in
Listing 3.1. Assume that before executing the program the buyer’s credit card number was read
from a terminal and stored in variable ccNumber. To complete the purchase, method buy is called
and the card account debited. After logging the purchase, the credit card number is erased from
memory by setting ccNumber to 0. This ensures that even a powerful attacker who can dump the
memory of the vending machine to read the location of variable ccNumber cannot learn anything
about the credit card number of the buyer.

In more technical terms, we want to ensure that after execution of buy the value of ccNumber is
permitted to flow to any low location. This policy is not expressible within the standard noninter-
ference framework. A naive and ad hoc extension would be to classify ccNumber as high and to add
a constraint f ccNumber(L, H) 6= 0 to the insecurity formula. But this does not work, for instance, if
we want to erase the secret with a random number.

To provide support for some of information erasure policies [42, 64] we generalize our notion
of interference (cf. Definition 2.4)

Definition 3.1 (Generalized Noninterference). Given a program p over variables Var. A gener-
alized noninterference policy (GNI) is an ordered pair, written as H 6 GNIL, where L, H ⊆ Var are
sets of low and high variables. Program p has secure information flow with respect to GNI if and
only if for all concrete executions X , Y ∈ Excp it holds that if σX 'Var\H σ

Y then σX
out 'L σ

Y
out .

The definition omits the requirement that L and H form a partitioning of Var, i.e. a variable
v is allowed to be a member of both variable sets. In addition, it potentially strengthens the
condition on the output values of the low variables in the final states. The output values of the
low variables in the final states must now be identical for any two initial states that coincide on
the variable set of Var \H. The set Var \H might not contain all variables in L (e.g., variable v
from before would not be in H) and hence allows for more pairs of initial states to be considered.
Generalized noninterference reduces to standard noninterference when L ∪̇H = Var.

Example 3.3 (Example 3.2 Continued). To ensure that the credit card number is erased we specify
the GNI policy

H = {ccNumber} 6 GNI {ccNumber, ticketCost}= L .

To keep the analysis simple, assume that methods charge(int, int) and log() do nothing. First
we assume that line 4 that peforms the erasure was forgotten. The following test case demonstrates
a violation of the policy: Given initial states σ1, σ2 with:

ccNumber ticketCost

σ1 1234 50
σ2 5678 50

33

Both initial states coincide on the variable set Var \ H = {ticketCost}. To adhere to the GNI
policy, the final states σ1

out ,σ
2
out must coincide on all low variables, i.e. on the variables ticketCost

and ccNumber. But as none of the values is changed by the runs, they still differ in the value
of ccNumber, hence, the GNI property is not valid. Now assume line 4 is present; then, in both
executions the final value of ccNumber is 0 and the GNI property holds.

The logic formalisation of the corresponding insecurity formula is almost identical to (3.2):

∨

l∈L

∨

1≤i≤ j≤Np

LeakGNI(H,L,l,i, j)
︷ ︸︸ ︷

�

Var \H
.
= Var′ \H′ ∧ pci ∧ pc j[Var′/Var] ∧ f l

i 6
.
= f l

j [Var′/Var]
�

(3.3)

3.3 Targeted Conditional Delimited Release

We further extend the insecurity formula for generalized noninterference (3.3) to delimited
information release (DIR) [103]. In contrast to the standard version of DIR, our policy describes
not only what information can be released by escape hatches, but also allows to express under
which condition and to whom (target) the information might be leaked.

Definition 3.2 (Targeted Conditional Delimited Release). Given a program p over variables Var
and a GNI = H 6 GNIL. A Targeted Conditional Delimited Release (TCD) policy (D, GNI) is a set
of specification triples where each (e, C , T) ∈ D consists of

• an escape hatch expression (i.e. first-order term) e over Var,

• a declassification condition formula C over Var, and

• T ⊆ L, a set of program variables to which the specified escape hatch is allowed to be leaked.

A program satisfies a given TCD policy (D, GNI) if it satisfies the GNI policy, except for the cases
covered by a triple (e, C , T) ∈ D. Here, the program is free to release the information captured by
the escape hatch expression e to a location in T , provided that condition C is satisfied in the initial
state of the execution.

Given a TCD policy (D, GNI) and a program p. We give the insecurity formula for the case
that D = {(e, C , T)} consists of a single TCD specification triple:

∨

l∈L

∨

1≤i≤ j≤Np

Leak(D,GNI)(H,L,l,i, j)
︷ ︸︸ ︷

�

LeakGNI(H, L, l, i, j) ∧
�

l∈̇T ∧ C ∧ C[Var′/Var]→ e
.
= e[Var′/Var]

�

�

(3.4)

The formula coincides with the noninterference insecurity formula for locations l 6∈ T that are
not among the allowed release targets. Otherwise, the new second conjunct adds

C ∧ C[Var′/Var]→ e
.
= e[Var′/Var] (3.5)

as an additional restriction to the initial states for both runs: if both initial states satisfy the
declassification condition C then they must also coincide on the value of the escape hatch ex-
pression. The justification is that if there are two runs such that their initial states coincide on
the low level input and on the escape hatches and if the final value for an allowed target differs,
then more information than just the escape hatch must have been released.

34

Example 3.4 (Example 2.2 Continued). Consider the program from Example 2.2:
if (h > 0) { l = 2; }

Let (
�

h>0, true, {l}
	

, {h} 6 GNI{l}) be a declassification TCD policy. This is the insecurity formula
resulting from symbolic execution starting in (l0, h0):

(l0
.
= l ′0 ∧ h0 > 0∧ h′0 > 0∧ 2 6 .= 2)∧ ((true∧ true)→ (h0 > 0)

.
= (h′0 > 0)) ∨

(l0
.
= l ′0 ∧ h0 ≤ 0∧ h′0 > 0∧ l0 6

.
= 2)∧ ((true∧ true)→ (h0 > 0)

.
= (h′0 > 0)) ∨

(l0
.
= l ′0 ∧ h0 ≤ 0∧ h′0 ≤ 0∧ l0 6

.
= l ′0)∧ ((true∧ true)→ (h0 > 0)

.
= (h′0 > 0))

The first and third disjunct are trivially invalid. The second disjunct is invalid, because the
second conjunct implies h0 > 0 if and only if h′0 > 0 which contradicts the path condition in the
first conjunct. Consequently, the insecurity formula is unsatisfiable, i.e. the program is secure for
the specified policy. Consider a slightly altered program:

if (h >= 0) { l = 2; }

We analyze it with the same policy and initial state as above. Now in the resulting insecurity
formula

(l0
.
= l ′0 ∧ h0 ≥ 0∧ h′0 ≥ 0∧ 2 6 .= 2)∧ ((true∧ true)→ (h0 > 0)

.
= (h′0 > 0)) ∨

(l0
.
= l ′0 ∧ h0 ≤ 0∧ h′0 ≥ 0∧ l0 6

.
= 2)∧ ((true∧ true)→ (h0 > 0)

.
= (h′0 > 0)) ∨

(l0
.
= l ′0 ∧ h0 ≤ 0∧ h′0 ≤ 0∧ l0 6

.
= l ′0)∧ ((true∧ true)→ (h0 > 0)

.
= (h′0 > 0))

the second disjunct is satisfiable, for instance, when the initial value of h is −1 and the initial value
of h’ is 0. Consequently, the program does not adhere to the specified policy.

3.4 Leak Detection Using Program Specification

Code with unbounded loops or recursive method calls gives rise to infinite symbolic execu-
tion trees. Another difficulty is posed by calls to library methods for which no source code is
available. And in general symbolic execution trees tend to become infeasibly large when the im-
plementations of called methods are simply inlined. To overcome these problems we annotate
programs with specifications in the form of loop invariants and method contracts. This allows
to approximate a loop by an invariant and a method call by a contract. In the paper [59] it is
shown how to use such specifications during symbolic execution and we can adapt that solu-
tion to our setting. To keep the presentation readable, in this section we focus on the standard
noninterference analysis case. The extension to declassification and erasure is straightforward.

3.4.1 Loop Specification

To compute the path conditions and the final values of symbolic execution paths we need to
be able to execute unbounded loops without unwinding them infinitely often. In program ver-
ification this is achieved by providing a loop specification. According to Definition 2.12, a loop
specification LS = (I , mod) consists of a loop invariant formula I and a set of program variables
mod that contains at least those program variables the loop can possibly modify.

35

We need to integrate loop specifications into the NI-insecurity formula (3.2). Let b be the
guard of a loop and LS = (I , mod) its specification. The basic idea in [59] is that the loop
specification describes the state after exiting the loop. This means, we can treat the loop as a
black-box and continue execution after the loop in a state for which the variables mod that might
have been modified by the loop are set to an unknown value. Unknown values are represented
by fresh symbolic values Vmod. The only knowledge about these values is provided by the loop
invariant and by the fact the loop guard b must be false after exiting the loop.

Our insecurity formulas express a constraint over the initial state. For instance, the final value
f l
i of variable l is given in terms of the initial symbolic values of the program variables. The

same holds for the path conditions. We make this implicit weakest precondition computation
here explicit for the loop guard and the invariant, i.e., Iwp is the weakest precondition of I
computed in the state directly after the loop (similar for the loop guard).

For the sake of simplicity, we only show how to adapt LeakN I(H, L, l, i, j) for the case that both
paths i, j contain the same loop:

LeakN I(H, L, l, i, j) = L
.
= L′ ∧ pci ∧ pc j[V

′
S/VS]∧

Iwp ∧¬bwp ∧ Iwp[V ′S/VS]∧¬bwp[V ′S/VS]∧ f l
i 6

.
= f l

j [V
′

S/VS] (3.6)

Here VS = Var ∪ Vmod and bwp is the symbolic value of the guard after the loop terminates
expressed in terms of the initial values of VS. If one or both paths i, j do not contain the loop or
a different loop, then the conjuncts corresponding to the invariants and loop guards are omitted
or added accordingly.

Example 3.5. We illustrate formula (3.6). Consider the loop below with low variable l and high
variable h. We want to establish whether this code is secure with respect to the policy {h} 6 {l}.
The loop specification is (l ≥ 0, {l}). This loop invariant could easily have been inferred with
automated methods.

l = h * h;

while (l > 0) { l = l - 1; }

l = l + h;

Let lmod, l ′mod be the fresh values representing the value of l directly after the loop. Computing the
weakest precondition of the invariant gives us lmod ≥ 0 and for the guard lmod > 0 for the first run
(analogous for the second run). The resulting formula is (please note that there is only one path
and no path condition):

l0
.
= l ′0 ∧ lmod ≥ 0∧¬(lmod > 0)∧ l ′mod ≥ 0∧¬(l ′mod > 0)∧ lmod + h0 6

.
= l ′mod + h′0

The formula is satisfiable, for example, with l0 = l ′0 = 10, lmod = l ′mod = 0, h0 = 1 and h′0 = 2.
Indeed, the program is insecure. Removing the final statement would make it secure. In this case the
final conjunct in the insecurity formula would change to lmod 6

.
= l ′mod which renders it unsatisfiable.

3.4.2 Method Contracts

We recall here the Definition 2.11 for method contract. Let m be a method name. A contract
Cm for m is a triple (Prem, Postm, Modm) with precondition Prem, postcondition Postm and modifies

36

(or assignable) clause Modm. The latter is the set of all program variables whose value m can
possible change (similar as mod in loop specifications).

A method satisfies its contract, if it ensures that when invoked in a state for which the pre-
condition is satisfied, then in the final state the postcondition holds and at most the value of
program variables in the assignable clause has been modified.

Analysing Noninterference Relative to a Precondition.
Given a method m with contract Cm. We want to analyze whether m respects a noninterference

policy H 6 L under the condition that m is only invoked in states satisfying its precondition
Prem. Adapting the noninterference formula (3.2) is straightforward and merely requires to add
a restriction to the initial states that they must satisfy the method’s precondition:

LeakN I(H, L, l, i, j)∧ Prem ∧ Prem[Var′/Var]

Example 3.6 (Example 3.1 Continued). The insecurity formula checking whether the program
from Figure 2.1 on page 22 respects the NI policy {x} 6 {y} under the condition that the initial
state satisfies x > 0 is:

y0
.
= y ′0 ∧ x0 ≥ 0∧ x ′0 ≥ 0∧ 2(y0 − 1) 6 .= 2(y ′0 − 1)∧ x0 > 0∧ x ′0 > 0

∨ y0
.
= y ′0 ∧ x0 ≥ 0∧ x ′0 < 0∧ 2(y0 − 1) 6 .= 2(y ′0 + 1)∧ x0 > 0∧ x ′0 > 0

∨ y0
.
= y ′0 ∧ x0 < 0∧ x ′0 < 0∧ 2(y0 + 1) 6 .= 2(y ′0 + 1)∧ x0 > 0∧ x ′0 > 0

The precondition x > 0 and path condition x < 0 are exclusive, hence the second and third disjunct
are unsatisfiable. The first disjunct that corresponds to path condition x ≥ 0 is also unsatisfiable
because it is obvious that y0

.
= y ′0 ∧ 2(y0− 1) 6 .= 2(y ′0− 1) cannot be satisfied. Hence the insecurity

formula is unsatisfiable which means that if the precondition x > 0 holds then the program satisfies
the given NI policy.

Analyzing Programs with Method Contracts for Noninterference.
This problem is solved in [59] by using method contracts in a similar way loop specifications

have been used. Instead of a loop invariant, the pre- and postconditions become part of the path
conditions. The modifies clause again introduces fresh values to represent the symbolic value of
program variables that might have been changed as a side effect of method invocation.

Let m be the method analyzed for secure information flow and assume it invokes method n.
Let the contract of n be (Pren, Postn, Modn). In the case that each of the paths i, j contains
exactly one method call for n we obtain:

LeakN I(H, L, l, i, j) = L
.
= L′ ∧ pci ∧ pc j[V

′
S/VS]∧

Prewp
n ∧ Postwp

n ∧ Prewp
n [V

′
S/VS]∧ Postwp

n [V
′

S/VS]∧ f l
i 6

.
= f l

j [V
′

S/VS] (3.7)

where VS = Var ∪ VModn (analagous for the copies) and Prewp
n , Postwp

n are the weakest precon-
ditions of Pren, Postn computed directly before and after method invocation, respectively. If
method n returns a value, a fresh variable representing the return value of n is added to VS. The
return value can be referenced in Postn. The general case (no method call, different method
calls, or more than one method call) is handled similarly as in the loop case.

37

Example 3.7. We illustrate formula (3.7) with method run shown in Listing 3.2. We want to
establish whether run is secure with respect to the policy {h} 6 {l}. We expect that it is insecure:
the returned value of method calc depends on its parameter. In line 3, h is passed as argument,
hence, the returned value depends on high input, but it is assigned to low variable l.

We construct the insecurity formula: method run invokes the recursive method calc. To analyse
the information flow resulting from this invocation, we have to use a method contract for calc,
because the recursion does not have a fixed bound.1 Let calc’s contract be given as follows:

Precalc: true
Postcalc: (x≤ 0→ result

.
= 0)∧ (x> 0→ 2 ∗ result .

= x*(x+1))
Modcalc: ;

where result refers to the return value and Modcalc is empty as calc does not change the state.
Let r be a program variable representing the return value of calc. To apply the contract for the

invocation at line 3, we need to instantiate the above contract as follows:

Prewp
calc: true

Postwp
calc: (h+2≤ 0→ r

.
= 0)∧ (h+2> 0→ 2 ∗ r .

= (h+2)*((h+2)+1))

The insecurity formula is then

l0
.
= l ′0 ∧ (h0 + 2≤ 0→ r0

.
= 0)∧ (h0 + 2> 0→ 2r0

.
= (h0 + 2)(h0 + 3))∧

(h′0 + 2≤ 0→ r ′0
.
= 0)∧ (h′0 + 2> 0→ 2r ′0

.
= (h′0 + 2)(h′0 + 3))∧ r0 6

.
= r ′0

The formula is satisfiable, for example, with l0 = l ′0 = 10, h0 = 1, h′0 = 2, r0 = 6 and r ′0 = 10
which means that method run is insecure.

Listing 3.2: Recursive method call
1 public void run() {

2 h = h + 2;

3 l = calc(h);

4 }

5

6 private int calc (int x) {

7 if (x <= 0)

8 return 0;

9 else

10 return x + calc(x-1);

11 }

3.4.3 General Observations and Remarks

Using loop specifications or method contracts has one major drawback, namely, that not all
models of a formula give rise to an actual information leak, or even worse, the insecurity for-
mula of a secure program might become satisfiable. This case does not effect the soundness,
1 Strictly speaking, the Java type int and stack size are bounded, but the bound is far too large to be feasible.

38

but triggers false warnings. The reason is that the specifications might be too weak and allow
behaviours that are not possible in the actual program. These false warnings can be filtered out
by actually running the generated leak demonstrators (Section 3.5). If the leak demonstrator
fails to demonstrate the information leak, we know that our model was a spurious one. We can
even start a feedback loop with a conflict clause which rules out the previously found model.

On the other hand, if loop or method specifications are not only too weak, but wrong in
the sense that they exclude possible behaviour, then leaks might go undetected. As we are
concerned with bug detection and not verification, this is not too serious as we do not claim to
find all bugs. Nevertheless, incompleteness can be avoided by verifying the specifications using
a program verification tool such as KeY [1].

3.5 Leak Demonstration

3.5.1 Leak Demonstration Program

The main idea of leak demonstration program is that an information flow leak can be exposed
by comparing two program runs. To be more specific, a leak demonstration program basically
runs the target program twice in two disjoint memories, using two initial states that coincide in
their low part and differ in their high part. The low outputs of two runs can then be compared
to check whether they differ. We call this program leak demonstrator. The definition of leak
demonstrator is given in Definition 3.3.

Definition 3.3 (Leak demonstrator). Given a program p and an information flow policy X where
X is either GNI (Definition 3.1) or (D, GNI) (Definition 3.2). Let l ∈ L be a low variable w.r.t. the
information flow policy X and l satisfies that its output value, obtained by running program p,
depends only on the initial input values of all program variables of p w.r.t. this run. Then a leak
demonstrator of p w.r.t. the information flow policy X and the low variable l , denoted by LDX ,l

p , is
a program executing p twice using two initial program states σ1,σ2 that satisfy:

1. ∃v ∈ H. σ1(v) 6= σ2(v) (H is the set of high variables)

2. σ1 'Var\H σ
2 (Var is the set of all program variables of p)

3. ¬[[C]]σ1 ∨¬[[C]]σ2 ∨ [[e]]σ1 = [[e]]σ1 (C , e are defined in Definition 3.2)

where the third condition is applied only for the case X = (D, GNI). LDX ,l
p must guarantee that at

the final states of two executions, denoted byσ1
out andσ2

out , the output values of l (σ1
out(l),σ

2
out(l))

do not depend on the order of executions.

The first and the second condition of two initial states ensure that if the output values of the
low variables observed in two program executions differ, such differentiation is caused by the
different values of high variables. The third one guarantees that if two executions expose a leak,
such a leak is not allowed by the conditional delimited release policy. The condition that the
output value of low variable produced by each execution does not change when the order of two
executions changes ensures that the low output of an execution only depends on its initial state.
It requires that all sharing memories between two executions i.e. global or static variables, must
be reconfigured before executing the program and cannot be changed during this execution by
another one.

39

The leak demonstrator LDX ,l
p can be considered as a test case that checks whether information

flow policy X is violated by program p. The test oracle is simply the assertion σ1
out(l) = σ

2
out(l).

If that assertion succeeds, the policy is respected and LDX ,l
p is a false warning. Otherwise, LDX ,l

p
is correct, confirming the existence of information flow leak w.r.t. policy X .

Example 3.8. Consider the program in Example 2.2:
if (h > 0) { l = 2; }

and the noninterference policy {h} 6 {l}. The leak demonstrator using two initial states σ1,σ2 in
which σ1(h) = 1,σ2(h) = −1,σ1(l) = σ2(l) = 1 exposes an information flow from h to l because
at the final states of the two executions, the output values of y are different: σ1

out(l) = 2,σ1
out(l) =

1. However, if two initial states σ1,σ2 are defined by σ1(h) = 1,σ2(h) = 2,σ1(l) = σ2(l) = 1
then this leak demonstrator is a false warning because the output values of l at two final states are
identical (σ1

out(l) = σ
1
out(l) = 2).

It is worth noting that leak demonstrator LDX ,l
p is dedicated only to the information flow

policy X and cannot be used for other policies. For example, the first leak demonstrator in
Example 3.8 is not applicable to the TCD policy (

�

h>0, true, {l}
	

, {h} 6 GNI{l}), because the
condition [[h > 0]]σ1 = [[h > 0]]σ2 is not satisfied. In addition, if program p is changed,
leak demonstrator LDX ,l

p can change from a correct one to a false warning and vice versa. For
instance, if we add the assignment “l = 0;” to the end of the program in Example 3.8, the
correct leak demonstrator whose initial states are σ1(h) = 1,σ2(h) = −1,σ1(l) = σ2(l) = 1
becomes a false warning, because σ1

out(l) = σ
1
out(l) = 0. This coincides with the fact that the

program is secure after being modified.

3.5.2 Leak Demonstrator Generation

The leak detection approach, proposed in previous sections of this chapter, enables one to gen-
erate leak demonstrators. Algorithm 3.1 presents how to detect possible leaks of program p
w.r.t. information flow policy X and generating leak demonstrators.

In a nutshell, for each pair of symbolic path i, j and each low variable l, we compose the
insecurity formula LeakX (H, L, l, i, j) as defined in (3.3) and (3.4). Then, the formula is passed
to an SMT solver to check its satisfiability. If it is satisfiable, one leak has been found and
a concrete model M satisfying the insecurity formula is returned by the SMT solver. A leak
demonstrator generated with M is used to set up for two initial states σ1,σ2 of two runs of p
occurred in it. By iterating all possible ordered pairs of symbolic execution paths i, j (i ≤ j) and
low variable l, we can know the exact sinks of the leak (if it exists) and can detect specific risky
paths (path might contribute to a leak).

Two initial states σ1,σ2 are set up using M as follows: for each program variable v , σ1(v)
is assigned the value of variable v in M while σ2(v) is assigned v ′. From the definition of
insecurity formula LeakX (H, L, l, i, j) in (3.3) and (3.4), it can be seen that two initial states
σ1,σ2 fulfill all requirements in Definition 3.3.

40

Data: SETp: symbolic execution tree of program p, X : information flow policy (X is either
GNI or (D, GNI))

Result: A set of leak demonstrators for p w.r.t. policy X
1 begin
2 LD← ;; // LD is the set of all leak demonstration programs

3 for i = 1; i < Np; i ++ do
4 // Np is the number of symbolic paths of SETp programs

5 for j = i; j ≤ Np; j ++ do
6 foreach l ∈ L do
7 Build insecurity formula LeakX (H, L, l, i, j);
8 if LeakX (H, L, l, i, j) is satisfiable then
9 M ← concrete model satisfying LeakX (H, L, l, i, j) ;

10 LDX ,l
p ← GenLeakDemonstrator(M) ;

11 LD← LD∪ LDX ,l
p ;

12 end
13 end
14 end
15 end
16 return LD;
17 end

Algorithm 3.1: Leak detection and demonstrator generation

41

4 Automatic Secret Inference
Concerning information flow security, there are two common questions raised if one wants
to judge whether a program is safe to be used: “are there any information flow leaks w.r.t a
given policy?” and “if such leaks exist, how severe are they?”. Chapter 3 presented a novel
approach tackling the first question. The second one motivates many quantitative information
flow analyses that aim to measure information leakage by means of a security metric. However,
most of the approaches quantifying information flow leaks are static and do not show explicitly
how the secret data of a program can be revealed throughout the information leaks in this
program in practice.

This chapter proposes a novel approach combining static and dynamic analysis addressing the
second question. To judge the severity of information flow leaks, we propose a model where the
attacker can learn the secret by running program and observing the secret. This model is given
in Section 4.1. Logical representation of the attacker’s knowledge of a secret is explained in
Section 4.2. Section 4.3 explains in detail the adaptive algorithm inferring high input. Finally,
Section 4.4 describes how “good” low inputs can be generated to optimize the secret inference
strategy.

4.1 Attacker Model and Overview

Given a deterministic program p, the set of variables of p is denoted by Var. Var is partitioned
into two sets H, L that are sets of high and low variables respectively. We assume that the
attacker knows the source code and can run the program multiple times. In our setting, the
attacker can choose a value for L before each run and observe the value of a subset O of L after a
program execution terminates. The attacker’s aim is to infer the value of H via concrete runs, so
called experiments. We assume that high variables are not modified by or in between concrete
runs. We use hs ∈H to refer to a secret, i.e. concrete (to us unknown) values of H.

Figure 4.1 shows an overview of our approach. First, the source code is analyzed statically by
symbolic execution to identify execution paths, called risky paths, that might cause information
leakage (directly or indirectly) from H to O. Based on this analysis a number of experiments
is performed to infer the secret. An experiment is a program run with concrete input together
with the outcome. To perform an experiment the algorithm selects suitable low input based
on knowledge about risky execution paths and knowledge accumulated in previous runs. The
algorithm terminates when one of the following conditions holds: (i) all secrets have been
inferred unambiguously; (ii) it can be determined that no new knowledge can be inferred; (iii)
a specified limit of concrete program runs is reached.

We give here the formal definition of risky path that is a symbolic execution path which might
contribute to an information leakage.

43

Symbolically execute Detect leaksSymbolic
execution tree

Set of
risky paths

Perform experiment

Attacker's knowledge
of secret

Deduce
low input value

Low input
High input

(secret)

List of possible
secret values

Leak detection

 Secret inference

Figure 4.1: Structure of the algorithm to infer secrets

Definition 4.1 (Risky path). Let p be a program and Np be the number of all symbolic paths
of p. A symbolic path i (1 ≤ i ≤ Np) is called a risky path for a generalized noninterference policy
H 6 GNIO iff

∃k.(1≤ k ≤ Np ∧ Leak(H, O, i, k) is satisfiable)

where Leak(H, O, i, k) =
∨

v∈O LeakGNI(H, O, v , i, k) (LeakGNI(H, O, v , i, k) is defined in Section 3.2
(formula (3.3)). The set of all risky paths of p is denoted with Riskp.

Listing 4.1: Running example program rPC for secret inference
1 if (l < 100) {

2 if (l == h)

3 l = 3;

4 else if (l < h)

5 l = 0;

6 else

7 l = -3;

8 } else

9 l = 2;

Example 4.1. The SE tree of the program rPC in Listing 4.1 has four paths with path condi-
tions pc1 = l < 100 ∧ l

.
= h, pc2 = l < 100 ∧ l < h, pc3 = l < 100 ∧ l > h and

pc4 = l ≥ 100. We analyze this program with respect to noninterference policy {h} 6 {l}
using the approach proposed in Chapter 3. It can be seen that all of four insecurity formulas
Leak({h}, {l}, 4, 1), Leak({h}, {l}, 4, 2), Leak({h}, {l}, 4, 3), Leak({h}, {l}, 4, 4) are unsatisfiable,
while the two formulas Leak({h}, {l}, 1, 2), Leak({h}, {l}, 2, 3) are satisfiable. According to Def-
inition 4.1, we have the set of risky paths is {1, 2,3} while 4 is not a risky path of the given
program.

4.2 Knowledge Representation of High Input

We fix a program p, a noninterference policy H 6 L, and a set O ⊆ L of observable low variables.
The concrete value sets L,H,OD(·) are as before.

44

To gain knowledge about a secret, a series of experiments is performed.

Definition 4.2 (Experiment). A pair 〈l , o〉 with l ∈ L, o ∈ OD(l) is called an experiment for p.
By convention, we denote with hs the high input value that was used in the run.

Let E = {〈l j, o j〉 | 1 ≤ j ≤ m} be a set of experiments for a program p. Symbolic execution of
p yields a precise logical description of all reachable final states, see Section 3.1. Recall that Np
is the number of all feasible symbolic execution paths. For each symbolic execution path i, we
obtain its path condition pci and the final symbolic values f v

i of any program variable v . Let O′

be an ordered set of fresh program variables such that for any v ∈ O there is a corresponding
v ′ ∈ O′ and the cardinality of O and O′ is equal, i.e. |O|= |O′|. The formula

Info(L, H, O′) =
∨

1≤i≤Np

InfoPathi(L, H, O′) (4.1)

where InfoPathi(L, H, O′) = pci ∧O′
.
= f O

i “records” the information about final values contained
in a symbolic execution path. It is true whenever the variables in H, L, O′ are assigned values
h, l, o such that executing p in an initial state 〈l , o〉 terminates in a final state where the variables
in O have values o. For a concrete experiment 〈l , o〉 formula (4.1) is instantiated to

Info〈l ,o〉(H) = Info(l, H, o) = Info(L, H, O′)[l, o / L, O′] (4.2)

This formula must be true at the time of running the experiment, because (i) the taken ex-
ecution path must be contained in one of the symbolic execution paths, and (ii) the observed
output values must be equal to those obtained by evaluating the symbolic values with the con-
crete initial values of the low and high variables.

We write Info〈l ,o〉(H) to emphasize that the truth value of the formula only depends on the
assignment of concrete values to the program variables in H. The formula Info〈l ,o〉(H) constrains

the possible high values and can be seen as the information about hs that can be learned from
experiment 〈l , o〉. The knowledge about hs gained from all experiments in a set E is then

KE(H) = K;(H)∧
∧

〈l ,o〉∈E

Info〈l ,o〉(H) (4.3)

where K;(H) is the initial knowledge about hs that is known before performing any experiment,
for example, domain restrictions. If nothing is known about hs, then the initial knowledge K;(H)
is simply true. The set of all models of KE(H) contains by construction also the actual secret hs
(a simple inductive argument with base case that K;(H) is satisfied by hs).

Example 4.2. Consider again program rPC from Listing 4.1 with l as low variable and h as high
variable. Initially, the knowledge about the value of h is its domain −231 ≤ h < 231. Assume that
the value of h is 10. If we run this program with low input l = 5, because 5 < 10, the (concrete)
output value of l is 0 and 〈5, 0〉 is an experiment of the given program. The information about h
gained by experiment 〈5,0〉 is

Info〈5,0〉(h) = (5< 100∧ 5
.
= h∧ 0

.
= 3)∨

(5< 100∧ 5< h∧ 0
.
= 0)∨

(5< 100∧ 5> h∧ 0
.
= −3)∨

(5≥ 100∧ 0
.
= 2)

45

Info〈5,0〉(h) can be simplified to equivalent formula 5 < h. The knowledge of h after performing
experiment 〈5,0〉 is

K{〈5,0〉}(h) = −231 ≤ h< 231 ∧ 5< h≡ 5< h< 231

We want to design a set of experiments that reduces, as much as possible, the number of
possible concrete values for H that satisfy (4.3). The smaller this number is, the more we
succeeded to narrow down the possible values for the secret. In particular, if only one possible
value remains, we know the secret.

We recall here some notational conventions. The set of all values of a variable set X that
satisfy a formula ϕ(X) is denoted by Sat(ϕ). Hence, Sat(KE(H)) is the set of all values of H that
satisfy KE(H). By convention we use |S| to denote the cardinality of a set S.

Example 4.3 (Example 4.2 cont’d). We continue performing experiments on the program in List-
ing 4.1. Consider two experiment sets X = {〈5, 0〉, 〈3, 0〉, 〈8,0〉}, Y = {〈5, 0〉, 〈17,−1〉}. The
knowledge about the secret input value of h that can be gained from X and Y is KX ({h}) = 8 <
h < 231 and KY ({h}) = 5 < h < 17, respectively. Even though |X | > |Y |, it is obvious that
|Sat(KY({h}))| � |Sat(KX({h}))|, hence the knowledge about the secret value of h obtained from Y
is significantly higher than the one obtained from X .

We want to accumulate maximal knowledge about a secret with as few experiments as pos-
sible. In particular, we do not want to perform experiments that do not create any knowledge
gain. Avoiding redundant experiments is essential to achieve performance.

Definition 4.3 (Redundant experiment). An experiment 〈l , o〉 is called redundant for KE(H) if
the following holds:

∀h.(KE(h)→ Info〈l ,o〉(h))

A redundant experiment 〈l , o〉 gains no new information about a secret hs for knowledge
KE(H), because KE(h)∧ Info〈l ,o〉(h)≡ KE(h).

Example 4.4 (Example 4.2 cont’d). Experiment 〈5,0〉 results in the knowledge K{〈5,0〉}(h) = 5 <
h < 231 (recall that the secret value of h is 10). Experiment 〈3,0〉 is a redundant experiment for
knowledge K{〈5,0〉}(h) because Info〈3,0〉(h) = 3 < h brings no new information about h, due to the
fact that formula 5< h< 231→ 3< h is true for all possible values of h.

4.3 Algorithm for Inferring High Input

Algorithm 4.1 implements the core of our approach. The result is a logic formula that represents
the accumulated knowledge about the high variables the algorithm was able to infer. The result
can be used as input to an SMT solver or another model finder to compute concrete models
representing possible secrets.

Algorithm 4.1 receives as input the program p, the symbolic execution result for p, i.e. p’s SE
tree together with all path conditions and symbolic values in the final symbolic execution state,
the attacker’s initial knowledge, etc. In particular, the formula Info〈l ,o〉(H) can be computed.

46

Data: p: program to be attacked (with the high input already set); noninterference policy
H 6 L; O ⊆ L: observable low variables; K;(H): initial knowledge about H; maxE:
maximum number of experiments

Result: KE(H): the accumulated knowledge about H obtained by executing the
experiments E

1 begin
2 E← ;;
3 K ← K;(H);
4 while |E|<maxE do
5 (l, leakage)← findLowInput(E, K);
6 if leakage> 0 then
7 execute p with low input l;
8 o← values of O when p terminates;
9 E← E∪ 〈l , o〉;

10 K ← K ∧ Info〈l ,o〉(H);
11 if |SatH(K)|= 1 then
12 exit while;
13 end
14 else
15 exit while;
16 end
17 end
18 return K
19 end

Algorithm 4.1: Secret inference

First, the set of already performed experiments E is initialized with the empty set and the
accumulated knowledge K is initialized with the initial knowledge of the attacker. Thereafter,
the main loop of the algorithm is entered. At the beginning of each iteration K contains the
accumulated knowledge of all experiments executed up to now, i.e. K = KE(H). At the be-
ginning of each loop iteration the low input l for a new experiment is determined by method
findLowInput(E, K) based on the set of experiments E and the knowledge K accumulated so
far. That method returns also a measure of the leakage expected to be observed by executing
p with the provided low input. The method returns 0 as leakage only if all low input values
would result in redundant experiments. In its most rudimentary implementation the method
returns simply random values and a positive number for the leakage. We discuss more refined
implementations in Section 4.4.

In case the expected leakage is positive (i.e. something new might be learned), program p
is executed with the computed low input l and the set of experiments is extended by the pair
〈l , o〉 where o are the values of the observable variables when p terminates. In the next step we
update the accumulated knowledge by adding the conjunct Info〈l ,o〉(H). Afterwards, we check
whether the accumulated knowledge uniquely determines the values of the high variables. If
this is the case we know the exact secret and return. Otherwise, we continue another loop

47

iteration until the maximal number of experiments maxE is reached. In case that the expected
leakage is zero, no useful low input can be found any longer and the algorithm terminates.

4.4 Finding Optimal Low Inputs

This section discusses method findLowInput in detail and aims to provide more efficient im-
plementations than the trivial one sketched above. We begin with the case that observable
outputs do not depend on low inputs (Subsection 4.4.1). Some exploitations of risky paths and
reachable paths to avoid potential redundant experiments as well as to simplify the knowledge
computation are given in Subsection 4.4.2. Subsection 4.4.3 introduces an algorithm generating
low input that maximizing the leakage measured by some general security metrics.

4.4.1 Low-independent Program

We consider programs whose observable output values only depend on high input values. In
this case, two program runs that agree on high inputs and differ on low inputs at their initial
states will produce the same observable output value at their final states. We call this program
low-independent. A formal definition for low-independent program is given below:

Definition 4.4 (Low-independent program). Given program p, noninterference policy H 6 L
and observable variables O ⊆ L, p is called low-independent w.r.t. policy H 6 L and observable
variables O if and only if it enjoys generalized noninterference policy L 6 GNIO.

In the context that the noninterference policy and the set of observable variables are de-
fined unambiguously, we simply call the program low-independent. We will show that if p is
low-independent, finding optimal low input for an experiment is unnecessary because all ex-
periments bring the same knowledge of high input (the secret high input value involved in all
experiments is hs).

Theorem 4.1. If program p is low-independent, then KE(H) ≡ KE′(H) for any two non-empty sets
of experiments E and E′.

Proof. Let l1, l2 ∈ L be two arbitrary input values of L. Because p is low-independent, by
Definitions 4.4 and 2.4 we have that the observable output values obtained by running p with
two initial states (L = l1, H = hs) and (L = l2, H = hs) are identical. We denote this value by o
(o = {ov |v ∈ O}). Theorem 4.1 can be trivially concluded if we can prove that Info

〈l1,o〉
(H) ≡

Info
〈l2,o〉
(H). Assume that Info

〈l1,o〉
(H) 6≡ Info

〈l2,o〉
(H), there exists h ∈H such that Info(l1, h, o) =

true and Info(l2, h, o) = false, or vice versa. Without loss of generality, we assume that h ∈
Sat(Info(l1, H, o)) and h /∈ Sat(Info(l2, H, o)). Because Info(l1, h, o) = true, from (4.1) we have

(
∨

1≤i≤Np
pci[l1, h/L, H]∧ o

.
= f O

i [l1, h/L, H]) = true, hence there exists j ∈ [1, Np] such that

(pc j[l1, h / L, H]∧ o
.
= f O

j [l1, h / L, H]) = true (4.4)

Because Info(l2, h, o) = (
∨

1≤i≤Np
pci[l2, h / L, H] ∧ o

.
= f O

i [l1, h / L, H]) = false, we have

∀i ∈ [1, Np]. (pci[l2, h / L, H] ∧ o
.
= f O

i [l2, h / L, H]) = false. Let k be the symbolic execution

48

path describing the concrete one gained by executing program p with initial state L= l2, H = h,
we have pck[l2, h / L, H] = true that implies (o

.
= f O

k [l2, h / L, H]) = false. Consequently, we
have

(pck[l2, h / L, H]∧ o 6 .= f O
k [l2, h / L, H]) = t rue (4.5)

From (4.4) and (4.5) we have

pc j[l1, h / L, H]∧ pck[l2, h / L, H]∧ f O
j [l1, h / L, H] 6 .= f O

k [l2, h / L, H] = t rue

which means that formula Leak(L, O, j, k) is satisfied by L = l1, L′ = l2, H = H′ = h. Hence
generalized noninterference policy L 6 GNIO is violated which contradicts to the assumption that
p is low-independent. Therefore, Info

〈l1,o〉
(H)≡ Info

〈l2,o〉
(H) and Theorem 4.1 is proven.

A trivial corollary of Theorem 4.1 is that we need one and only one experiment with ar-
bitrary low input value to achieve the maximum knowledge of high input if program p is
low-independent. In this case, finding optimal low input is clearly unnecessary.

Example 4.5. The following program
if (h > 0) { l = 2; } else {l = 1;}

is low-independent w.r.t. noninterference policy {h} 6 {l} and observable variable l because it
enjoys the generalized noninterference policy {l} 6 GNI{l}. The maximum knowledge of h is simply
its sign and can be obtained by a single experiment with arbitrary input value of l. For instance,
assume that the input value of h is −5, any experiment will return 1 as the output value of l,
bringing h≤ 0 as the maximum knowledge of h’s input value.

4.4.2 Exploiting Risky Paths and Reachable Paths

If program p is not low-independent, different low inputs might bring different knowledge of
high input. We start with a set of experiments E (|E| = m) and the accumulated knowledge
about the high inputs in the form of a logic formula KE(H). We assume the initial knowledge
about secret K;(H) is correct (hs satisfies K;(H)), hence hs also satisfies KE(H). Our aim is to find
the low level input lm+1 for a new experiment that is most promising for a maximal knowledge
gain. In this subsection we discuss how to avoid generation of low input that would lead to a
redundant experiment.

Definition 4.5 (Path-matched low input). An input value l of L is called i-matched for KE(H) iff
the formula ∀h. (KE(h)→ pci[l, h / L, H]) holds.

Intuitively, if a concrete low input l is i-matched for KE(H) and KE(H) is correct, then pci[l/L]
holds for all possible values of high inputs.

Since all path conditions are mutually exclusive, we can conclude that if l is i-matched
for KE(H) and 〈l , o〉 is the corresponding experiment, then KE(H) ∧ Info〈l ,o〉(H) ≡ KE(H) ∧
InfoPathi(l, H, o). If KE(H) = true then we have Info〈l ,o〉(H)≡ InfoPathi(l, H, o).

Lemma 4.1. If l is i-matched for KE(H) for some i /∈ Risk, then any program run with input l leads
to the same output o ∈OD(l) for all high inputs h for which KE(h) holds.

49

Proof. Consider two arbitrary concrete values h1, h2 ∈ H for which KE(h1) and KE(h2) hold. Let
o1, o2 ∈ OD(l) be output values observed in the final state of two program runs taking (l, h1)
and (l, h2) as input values, respectively. We will prove that o1 = o2. Assume that o1 6= o2,
because l is i-matched and KE(h1), KE(h2) hold, we get as direct consequence of Definition 4.5
that pci[l, h1/L, H] and pci[l, h2/L, H] are true. This means that the two concrete runs with
(l, h1) and (l, h2) as input values correspond to the symbolic execution path i, and hence, by
the correctness of symbolic execution that o1 = f O

i [l, h1 / L, H] and o2 = f O
i [l, h2 / L, H]. By

assumption o1 6= o2, i.e., f O
i [l, h1 / L, H] 6= f O

i [l, h1 / L, H]. Consequently, we have

pci[l, h1/L, H]∧ pci[l, h2/L, H]∧ f O
i [l, h1 / L, H] 6 .= f O

i [l, h1 / L, H] = t rue

Thus formula Leak(H, O, i, i) (see Definition 4.1) is satisfied by l, h1, h2, which means that i is a
risky path. It contradicts the assumption of the lemma that i is not a risky path. Hence o1 = o2
and this lemma is proven.

Theorem 4.2. If l is i-matched for KE(H) and some i /∈ Risk, then experiment 〈l , o〉 is redundant.

Proof. By Lemma 4.1 we know that for a given l ∈ L that is i-matched with i /∈ Risk, all program
runs produce the same output o ∈O for any high input h ∈H for which KE(h) holds.
Hence we have only to prove that

∀h.(KE(h)→ Info〈l ,o〉(h)) (4.6)

Let h0 be an arbitrary but fixed value in H. We have to show that

KE(h0)→ Info〈l ,o〉(h0) (4.7)

is true.

Case 1: If KE(h0) is false then (4.7) is trivially true (semantics of implication) and we are done.

Case 2: We can now assume that KE(h0) is true. Because l is i-matched (assumption of the
theorem) we have Info〈l ,o〉(h0)≡ InfoPathi(l, h0, o)≡

pci[l, h0/L, H]∧ o
.
= f O

i [l, h0 / L, H]

• The validity of pci[l, h0/L, H] follows directly from Definition 4.5 and our case assump-
tion (KE(h0) holds).

• The second conjunct o
.
= f O

i [l, h0 / L, H] is a direct consequence of the correctness of
symbolic execution: The o are the result of running program p with input l, h0, hence,
given the correctness of symbolic execution the symbolic output values must evaluate
to the same concrete values.

Theorem 4.2 has the following corollary:

50

Corollary 4.1. InRisk(L) denotes the formula ∃h.
�

KE(h)∧
∧

i /∈Risk¬pci[h/H]
�

. If for some l ∈ L
the formula InRisk(l) is false then the experiment 〈l , o〉 is redundant for KE(H).

Example 4.6. [Example 4.1 cont’d] According to Example 4.1, the SE tree of program rPC has four
paths with path conditions pc1 = l < 100∧ l = h, pc2 = l < 100∧ l < h, pc3 = l < 100∧ l > h

and pc4 = l ≥ 100. The set of risky paths is Risk = {1, 2,3}. The fourth path is not a risky path
as it does not contribute to any leak. We have InRisk({l}) = ∃h.¬(l ≥ 100) ≡ l < 100 indicating
that only low input values less than 100 may lead to any information gain.

Definition 4.6 (Reachable path). An SE path i is called a reachable path for KE(H) iff the follow-
ing formula is satisfiable:

KE(H)∧ pci (4.8)

RE denotes the set of all reachable paths for KE(H).

Example 4.7. (Example 4.6 cont’d) Assume the initial knowledge about the value of h is −231 ≤
h < 231 and the secret value of h is 1000. We execute the program in Listing 4.1 with l= 98.
The execution terminates in a state where l has been set to 0. Using this experiment, we obtain as
accumulated knowledge about h: −231 ≤ h < 231 ∧ ((98

.
= h∧ 3 = 0)∨ (98 < h∧ 0

.
= 0)∨ (98 >

h∧−3
.
= 0)) ≡ 98 < h < 231. With this knowledge about h, the risky path 3 becomes unreachable

because the formula 98< h< 231 ∧ l< 100∧ l> h is unsatisfiable.

Theorem 4.3. For all experiments 〈l , o〉, it holds that

KE(H)∧ Info〈l ,o〉(H)≡ KE(H)∧
∨

i∈RE

InfoPathi(l, H, o)

Proof. We can rewrite the definition of Info〈l ,o〉(H) (o = {ov |ov ∈ Ol , v ∈ O}) (from (4.1) and
(4.2)) simply to

�
∨

i∈RE

InfoPathi(l, H, o)
�

∨
�

∨

i /∈RE∧1≤i≤Np

InfoPathi(l, H, o)
�

To prove Theorem 4.3, we prove that for all i /∈ RE and 1≤ i ≤ Np

KE(H)∧ InfoPathi(l, H, o) (4.9)

is unsatisfiable (i.e., equivalent to false).
Let i0 /∈ RE be an arbitrary but fixed unreachable path. InfoPathi0(l, H, o) is defined as

pci0[l/L]∧ o
.
= f O

i0
[l/L]

Because i /∈ RE, by Definition 4.6, we have KE(H)∧ pci0 is unsatisfiable, hence

KE(H)∧ InfoPathi0(l, H, o)

is unsatisfiable. which proves (4.9) and therewith Theorem 4.3.

Theorem 4.3 shows that all unreachable paths can be ignored while constructing the knowl-
edge about hs. Moreover, it allows us to consider only reachable paths when deducing optimal
low input, which we explain in the next sections.

51

4.4.3 Implementation of Method findLowInput

In case p is not a low-independent program, we want to extend E by adding a new experi-
ment 〈l , o〉 to gain as much information about the secret as possible. The mission now is finding
the optimal low input value l. Quantitative information flow analysis gives us a hint: the low in-
put value to be used should be one that maximizes the leakage quantified by means of a security
metric. This idea is implemented in Algorithm 4.2.

Data: Set of performed experiments E, current knowledge KE(H)
Result: (l, leakage): optimal low input value and corresponding leakage

1 begin
2 RE← findAllReachablePaths(KE(H));
3 if |RE|> 0∧ RE ∩ Risk 6= ; then
4 QLeak(L)← appropriatly instantiated entropy formula;
5 l ← findL2Maximize(QLeak(L));
6 if l = null then
7 l ← random value that does not appear in E;
8 end
9 leakage← QLeak(l);

10 else
11 l ← null;
12 leakage← 0;
13 end
14 end
15 return (l, leakage)

Algorithm 4.2: Implementation of method findLowInput

Algorithm 4.2 shows the pseudo-code of method findLowInput. It computes the optimal low
input values for a given leakage metric together with the computed leakage. First, the set of
reachable paths RE is determined by checking the reachability of all paths using formula (4.8).
If no reachable paths exists or all reachable paths are not risky, the algorithm exits and returns
0 as leakage value (in those cases the low input values are irrelevant). Otherwise, the optimal
low input values for the leakage metric are computed.

Here QLeak(L) is one of ShELp(L), GELp(L), MELp(L) according to the chosen security metric.

The low input values are determined by solving the optimization problem: argmaxl∈LQLeak(l).
The details of how to construct QLeak(L) as well as how to find l maximizing QLeak(L) are the
content of Chapter 5.

52

5 Leakage Maximization with Low Input
This chapter discusses in detail how to generate optimal low input that maximizes information
leakage. Section 5.1 introduces a novel approach that precisely quantifies information leakage
with low inputs. Based on the result of Section 5.1, Section 5.2 provides some algorithms to
find optimal low input. Drawbacks and applicable use cases of the approach are discussed in
Section 5.3. Parts of this chapter are based on the technical report [46] of the author of this
thesis.

5.1 Quantifying Leakage with Low Input

This section provides explicit representations for different information leakages measured from
Section 2.2 as corresponding functions of low inputs. This approach employs symbolic execution
and parametric counting and is based on the essential assumption that the knowledge KE(H) is
correct.

5.1.1 Parametric Counting Function

We give here the formal definition and notational convention for parametric counting functions
that will be used throughout this chapter.

Definition 5.1 (Parametric counting function). For a formula g, let V be the set of all program
variables occurring in g and let V = X ∪̇Y be a partitioning. Function CX [Y](g) is called paramet-
ric counting function iff it returns the number of assignments to the variables of X that satisfy g
(i.e. the number of models) as a function of Y .

Example 5.1. Given V = {h,l} and g = 0 ≤ h < 100 ∧ h ≥ l ∧ 0 ≤ l < 100. Then the
number of models of h satisfying g depends on l and can be determined for any value of l satisfying
0≤ l< 100 by C{h}[{l}](g) = 100− l.

5.1.2 Logic Characterization of Probability Distribution

The leakage quantification approach proposed in the following section makes use of parametric
counting on logical formulas composed by means of symbolic execution. To incorporate the prior
distribution of high input into counting formulas more conveniently, we give a formalization of
probability distribution based on logic formulas. It can be seen as an equivalent characterization
and an alternative of a weight function that is a popular encoding of probability distributions in
the literature.

Given program p with H the set of high variables and H the set of all possible values of H,
the distribution of high input is given in the form of a weight function w : H 7→ Z≥0 that assigns
each possible high value a non-negative integer number that is its frequency of occurrence.
The following definition gives a logic characterization of a weight function w. We restrict the
definition to a set of high variables H.

53

Definition 5.2 (Logic-characterization of probability distribution). Given a set of high variables
H whose value’s distribution is defined by the weight function w :H 7→ Z≥0. A logic characterization
of w, denoted by ∆w

H is a tuple 〈FOH,µ〉 where FOH = {ϕi(H)|i = 1 . . . n} is a set of logic formulas
over H that satisfies following conditions:

• ∀i, j ∈ [1, n]. i 6= j⇒ Sat(ϕi(H))∩ Sat(ϕj(H)) = ;

• ∀h ∈H. ∃i ∈ [1, n]. h ∈ Sat(ϕi(H))

and µ : FOH 7→ Z≥0 is a function mapping each formula ϕi(H) to a non-negative integer number
that satisfies:

• ∀i ∈ [1, n]. ∀h ∈ Sat(ϕi(H)). w(h) = µ(ϕi(H))

• ∀i, j ∈ [1, n]. i 6= j⇒ µ(ϕi(H)) 6= µ(ϕ j(H))

µ(ϕi(H)) is called weight value of formula ϕi(H).

Intuitively, the set H is partitioned into subsets {SatH(ϕi(H))|i = 1..n} in which each partition
contains all high inputs having the same frequency value determined by the weight function w.
We call ϕi(H) partition formula of partition i. It can be seen that the logic characterization of
w preserves the weight function of all values of the sample space. We show that it can be used
as an alternative for the weight function to define the distribution of high inputs by following
lemma:

Lemma 5.1. For any weight funtion w, there exists a logic characterization of w as defined in
Definition 5.2.

Proof. We prove Lemma 5.1 by pointing out how to construct a logic characterization for a
weight function w on the joint domain H of the set of variables H. We start with an empty set
FOH then iterate all elements of H. For each h ∈ H, if there is a formula ϕi(H) ∈ FOH that
satisfies w(h) = µ(ϕi(H)) then we add a disjunct H = h to ϕi(H), otherwise we add a new
formula ϕ|FOH|+1(H) ≡ H = h to FOH and assign µ(ϕ|FOH|+1(H)) = w(h). It is easy to see that
〈FOH,µ〉 satisfies all conditions given in Definition 5.2.

From now on, we always use a logic characterization of weight functions to define the dis-
tribution of high input. Instead of using notation ∆w

H, we simply use ∆H to refer to the prior
distribution of high input. ∆H is called a formula-based distribution of a secret.

Example 5.2. We consider program rPC in Listing 4.1 with the set of high variables {h}. The uni-
form distribution on input values of h can be characterized by formula-based distribution 〈FOh,µ〉
in which FOh = {t rue} and µ(t rue) = c (c ∈ Z+ is a positive integer number, e.g. 1). On the other
hand, the formula-based distribution 〈FOh,µ〉 in which FOh = {h ≥ 0,h < 0} and µ(h ≥ 0) = 1,
µ(h < 0) = 2 determines a non-uniform distribution, which defines that the probability that a
number c is the input value of h is identical for all c being negative, and this probability is two
times bigger than the probability that a non-negative number is the input value of h.

The next section explains how to quantify the leakage with respect to a formula-based distri-
bution of secret. In case of guessing entropy, the computation iterates over all possible values of
the sample space in descending order of probability (see Definition 2.8). Therefore, to ease the
computation and representation, with guessing entropy we use the sorted form of formula-based
distribution defined as follows:

54

Definition 5.3 (Sorted formula-based distribution). A formula-based distribution ∆H = 〈FOH,µ〉
is called sorted if and only if it holds that the set FOH is ordered and µ(ϕ1(H)) > µ(ϕ2(H)) > .. >
µ(ϕn(H)) with n= |FOH|.

5.1.3 Quantifying Leakage with Arbitrary Distribution of Secret

We show how to quantify the leakage given that the prior distribution of the input value of
H is ∆H = 〈FOH,µ〉 (FOH = {ϕ1(H), · · · ,ϕn(H)}). We assume that an experiment set E has
been conducted establishing KE(H) as the correct knowledge about H’s value. The following
theorems provide an iterative method to compute leakage using Shannon, guessing or min
entropy as leakage metric. Because the approach takes prior distribution of high inputs into
account, the channel-capacity metric, which is the maximum leakage over all prior distributions
of high inputs, is not considered.

Shannon Entropy

Theorem 5.1. Given the prior distribution of high inputs ∆H = 〈FOH,µ〉 where FOH =
{ϕ1(H), . . . ,ϕn(H)}, the Shannon entropy-based leakage can be computed as follows:

ShELp(L) = log(S∆H
E)−

1

S∆H
E

∑

o∈OD(L)

�

n
∑

i=1

co
i (L)µ(ϕi(H))log(

n
∑

i=1

co
i (L)µ(ϕi(H)))

�

(5.1)

where OD(l) is the set of all possible output value of O given l is input value of L and the input
value of H satisfies KE(H), and

S∆H
E =

n
∑

i=1

ciµ(ϕi(H))

ci = |Sat(KE(H)∧ϕi(H))|

co
i (L) = CH[L](gi(L, H, o)), (1≤ i ≤ n)

gi(L, H, O) = KE(H)∧ InRisk(L)∧ (
∨

j∈RE

InfoPath j(L, H, O))∧ϕi(H)

in which O′ is defined as in Section 4.2.

Proof. According to (2.1), we have

ShELp(L) =H (Oout(L)) =
Def. 2.6

−
∑

o∈OD(L)

P(Oout(L) = o)logP(Oout(L) = o) (5.2)

By definition, Oout(L) is the value of O observed after running program with low input L and
Hin. We have by the law of total probability

P(Oout(L) = o) =
∑

h∈H

P(Hin = h)P(Oout(L) = o|Hin = h) (5.3)

55

Under the assumption that KE(H) is correct, from Corollary 4.1 and Theorem 4.3, we only con-
sider values of L that satisfy InRisk(L) (to avoid redundant experiments) and take into account
only reachable paths for KE(H). Because program p is deterministic, for any l ∈ L, we have:

P(Oout(l) = o|Hin = h) =

¨

1, if h ∈ Sat(KE(H)∧ InRisk(l)∧
∨

i∈RE pci[l/L]∧ o
.
= fO

i [l/L])
0, otherwise

(5.4)
Because Hin has formula-based distribution ∆H = 〈FO,µ〉, we have:

P(Hin = h) =

(

µ(ϕi(H))

S
∆H
E

, if h ∈ Sat(KE(H)∧ϕi(H))

0, otherwise
(5.5)

where S∆H
E =

∑n
i=1 |Sat(KE(H)∧ϕi(H))|µ(ϕi(H)).

Recall that gi(L, H, o) = KE(H) ∧ InRisk(L) ∧ (
∨

j∈RE pc j ∧ o
.
= f O

j) ∧ ϕi(H), from (5.3), (5.4)
and (5.5) we have

∀l ∈ L. P(Oout(l) = o) =

∑n
i=1 |Sat(gi(l, H, o))|µ(ϕi(H))

S∆H
E

=
Def. 5.1

∑n
i=1 co

i (l)µ(ϕi(H))

S∆H
E

hence

P(Oout(L) = o) =

∑n
i=1 co

i (L)µ(ϕi(H))

S∆H
E

(5.6)

Equation (5.1) can be derived from (5.2) and (5.6)

Intuitively, S∆H
E is the weighted sum of all possible values of H that satisfy the current knowl-

edge KH(H), while ci is the weighted sum of all values correctly described by the current knowl-
edge and belongs to partition characterized by distribution formula ϕi(H). To compute Shannon
entropy-based leakage for the case of uniform distribution, we derive the following corollary
from Theorem 5.1:

Corollary 5.1. If the prior distribution of high inputs ∆H is uniform then

ShELp(L) = log(SE)−
1
SE

∑

o∈OD(L)

�

CH[L](g(L, H, o))log(CH[L](g(L, H, o)))
�

(5.7)

where SE = |Sat(KE(H))| and g(L, H, O′) = KE(H) ∧ InRisk(L) ∧ (
∨

j∈RE InfoPath j(L, H, O′)) (O′ is
defined as in Section 4.2).

Proof. We show that formula (5.1) can be reduced to (5.7) in case of uniform distribution of high
input. For the sake of simplicity, we characterize uniform distribution by∆H = 〈FOH,µ〉 in which
FOH = {t rue} and µ(t rue) = 1. Then we have S∆H

E =
∑n

i=1 |Sat(KE(H)∧ϕi(H))|µ(ϕi(H)) =
|Sat(KE(H))| = SE and

∑n
i=1 co

i (L)µ(ϕi(H)) = CH[L](g(L, H, o)). Thus we can obtain equa-
tion (5.7) from (5.1).

56

Formula g(L, H, O′) captures a big-step operational semantics for program p: g(l, h, o) de-
scribes the transition from initial state σ that σ(L) = l,σ(H) = h to final state σout that
σout(O) = o, where l satisfies InRisk(L) and h satisfies KE(H). Apart from g, formula
gi(L, H, O′)(i = 1 · · ·n), which is equivalent to g(L, H, O′) ∧ ϕi(H), enriches the constraint of
the high input value by specifying that it also satisfies distribution formula ϕi(H). Such trans-
formation relations are characterized within g(L, H, O′) and gi(L, H, O′) using symbolic execution
that takes into account only reachable paths (w.r.t. KE(H)) to reduce the complexity.

In a special case where the observable outputs depend only on the chosen symbolic execution
path, but not on the actual values of the low or high variables, formula g(L, H, O′) (and thereby
gi(L, H, O′)) can be simplified significantly. Going into detail, consider program p satisfying
above condition, let j be a reachable path with path condition pc j and symbolic output values

f O
j . By assumptiom, the symbolic values in f O

j are constants (i.e. independent of any program
variables), so they can be evaluated to concrete values o j. We may assume that the output values
for all SE paths j 6= k differ, hence o j 6= ok (otherwise, paths j, k are merged into one with path
condition pc j ∨ pck). Further, OD(L) = {o j| j ∈ RE}, because we only consider reachable paths.
Taking both observations together, we conclude that for all j, k ∈ RE with j 6= k the formula
InfoPath j(L, H, ok) is equivalent to false and InfoPath j(L, H, o j) simplifies to pc j. We use this to
simplify the definitions of g in Corollary 5.1:

g(L, H, o j)≡ KE(H)∧ InRisk(L)∧ pc j

Guessing Entropy

Theorem 5.2. Given the prior distribution of high inputs ∆H = 〈FOH,µ〉 where FOH =
{ϕ1(H), . . . ,ϕn(H)}. If ∆H is sorted, the guessing entropy-based leakage can be computed as fol-
lows:

GELp(L) =
n
∑

i=1

µ(ϕi(H))

S∆H
E

(
ci + 1

2
+

i−1
∑

j=1

c j)ci−

∑

o∈OD(L)

�

n
∑

i=1

µ(ϕi(H))

S∆H
E

(
co

i (L) + 1

2
+

i−1
∑

j=1

co
j (L))c

o
i (L)

�

(5.8)

where ci, S∆H
E , co

i (L) are defined as in Theorem 5.1.

Proof. By Definition 5.2, the set Sat(KE(H)) is partitioned into subsets {Sat(KE(H)∧ϕi(H))|i =
1 . . . n}. Recall that SE = |Sat(KE(H))| is the number of all possible values of H satisfying KE(H),
it can be seen that SE =

∑n
i=1 ci (ci as in Theorem 5.1). By Definition 2.8 we have

G (Hin) =
∑

1≤k≤SE

k · P(Hin = hk) (5.9)

57

Consider an arbitrary partition defined by formula ϕi(H) and arbitrary k satisfying that hk ∈
Sat(KE(H)∧ϕi(H)). From (5.5) we have P(Hin = hk) =

µ(ϕi(H))

S
∆H
E

. Because ∆H is sorted, we can

see that k must range from 1+
∑i−1

j=1 c j to
∑i

j=1 c j. Therefore we have from (5.9):

G (Hin) =
∑

1≤k≤SE

k · P(Hin = hk) =
n
∑

i=1

µ(ϕi(H))

S∆H
E

c1+···+ci−1+ci
∑

j=c1+···+ci−1+1

j

=
n
∑

i=1

µ(ϕi(H))

S∆H
E

(
ci + 1

2
+

i−1
∑

j=1

c j)ci (5.10)

Pay attention that if i = 1 then
∑i−1

j=1 j =
∑i−1

j=1 c j = 0 by convention. According to Definition 2.8
we also have

G (Hin|Oout(L)) =
∑

o∈OD(L)

P(Oout(L) = o)G (Hin|Oout(L) = o)

where

G (Hin|Oout(L) = o) =
∑

1≤k≤SE

k · P(Hin = hk|Oout(L) = o)

Because P(Hin = hk|Oout(L) = o) =
Bayes

P(Oout(L)=o|Hin=hk)P(Hin=hk)
P(Oout(L)=o) we have

G (Hin|Oout(L)) =
∑

o∈OD(L)

∑

1≤k≤SE

k · P(Oout(L) = o|Hin = hk)P(Hin = hk) (5.11)

from (5.4) and (5.5) we have

∀l ∈ L. P(Oout(l) = o|Hin = hk)P(Hin = hk) =

(

µ(ϕi(H))

S
∆H
E

, if hk ∈ Sat(gi(l, H, o))

0, otherwise
(5.12)

Similar to computing G (Hin), from (5.11) and (5.12) we have

G (Hin|Oout(L)) =
∑

o∈OD(L)

n
∑

i=1

µ(ϕi(H))

S∆H
E

(
co

i (L) + 1

2
+

i−1
∑

j=1

co
j (L))c

o
i (L) (5.13)

Theorem 5.2 is proven by combining (2.8), (5.10) and (5.13).

In case the prior distribution of high inputs is uniform, the following corollary shows the
simplified version of guessing entropy-based leakage

Corollary 5.2. If the prior distribution of high inputs ∆H is uniform then

GELp(L) =
SE + 1

2
−

1
2SE

∑

o∈OD(L)

�

CH[L](g(L, H, o))(CH[L](g(L, H, o)) + 1)
�

(5.14)

Where SE and g(L, H, O′) are defined as in Corollary 5.1.

Proof. For the sake of simplicity we assume that FOH = {t rue} and µ(t rue) = 1. We have
n = 1, S∆H

E = SE = c1, and co
1(L) = CH[L](g(L, H, o)). In this case equation (5.8) is reduced to

(5.14).

58

Min Entropy

Theorem 5.3. Given the prior distribution of high inputs ∆H = 〈FOH,µ〉 where FOH =
{ϕ1(H), . . . ,ϕn(H)}, for any l ∈ L as low input value, the min entropy-based leakage can be com-
puted as follows:

MELp(l) = log(

∑

o∈OD(l)
µ(ϕxo

(H))

µ(ϕx(H))
) (5.15)

where x ∈ [1, n] satisfies

• Sat(KE(H)∧ϕx(H)) 6= ;

• ∀i ∈ [1, n]∧ i 6= x . Sat(KE(H)∧ϕi(H)) 6= ; ⇒ µ(ϕi(H))< µ(ϕx(H))

and xo ∈ [1, n] satisfies

• Sat(gxo
(l, H, o)) 6= ;

• ∀i ∈ [1, n]∧ i 6= xo. Sat(gi(l, H, o)) 6= ; ⇒ µ(ϕi(H))< µ(ϕxo
(H))

where gi(L, H, O′) is defined as in Theorem 5.1

Proof. By Definition 2.7 we have

V (Hin) =maxh∈HP(Hin = h) =
µ(ϕx(H))

S∆H
E

(5.16)

where x is defined as in Theorem 5.3. We also have from Definition 2.7

∀l ∈ L. V (Hin|Oout(l)) =
∑

o∈OD(l)

P(Oout(l) = o)maxh∈HP(Hin = h|Oout(l) = o)

We have P(Hin = h|Oout(l) = o) =
Bayes

P(Oout(l)=o|Hin=h)P(Hin=h)
P(Oout(l)=o)

, hence

∀l ∈ L. V (Hin|Oout(l)) =
∑

o∈OD(l)

maxh∈H

�

P(Oout(l) = o|Hin = h)P(Hin = h)
�

(5.17)

From (5.12) and (5.17) we have

∀l ∈ L. V (Hin|Oout(l)) =
∑

o∈OD(l)

µ(ϕxo
(H))

S∆H
E

(5.18)

where xo is defined as in Theorem 5.3. From (2.3), (5.16) and (5.18) we conclude

∀l ∈ L. MELp(l) = log(

∑

o∈OD(l)
µ(ϕxo

(H))

µ(ϕx(H))
)

59

The computation of min entropy-based leakage for the case of non-uniform distribution does
not rely on parametric counting as the two other metrics. This leads to a different technique
to find the optimal value of low input that will be explained in Section 5.2. If the distribution

∆H is uniform, it is easy to see that ∀l ∈ L. MELp(l) = log(
∑

o∈OD(l)
µ(ϕxo

(H))

µ(ϕx (H))
) = log(

∑

o∈OD(l)
1) =

log(|OD(l)|). This result coincides to Theorem 2.2. In this case, parametric counting can be used
to compute min entropy-based leakage.

Theorem 5.4. If the prior distribution of high inputs ∆H is uniform then

MELp(L) = log(CO′[L](∃h. g(L, h, O′))) (5.19)

where formula g(L, H, O′) is defined as in Corollary 5.1.

Proof. According to (2.4), the min entropy-based leakage of a deterministic program p with
uniform distribution of Hin can be computed as below:

MELp(L) = log|OD(L)|

Under the assumption that the attacker’s knowledge of H is correct, we have for any low input
l ∈ L, o ∈ OD(l) if and only if there exists a concrete value h0 ∈ SatH(KE(H)) such that program
p taking h0 and l as high and low input, respectively, produces observable output o. Thus we
have

∀l ∈ L. MELp(l) = log|OD(l)|= log|Sat(∃h.KE(h)∧
∨

i∈RE

pci[l, h/L, H]∧O′
.
= fO

i [l, h/L, H])|

= log|Sat(∃h.g(l, h, O′))|

Hence by Definition 5.1, MELp(L) = log(CO′[L](∃h.g(L, h, O′))).

5.1.4 Example

Consider program rPC in Listing 4.1 with noninterference policy h 6 l, Example 4.6 gives us the
set of risky paths Risk= {1,2, 3} with path conditions pc1 = l< 100∧l .

= h, pc2 = l< 100∧l<
h, pc3 = l< 100∧l> h. Assume that h,l are integer. We first show how to compute information
leakage as a function of low input if the input value of h has uniform distribution. We assume
that the initial knowledge about h is that it is a 32 bits integer number, thus K;(h) = −231 ≤
h < 231. The number of the values of h that satisfy K;(h) is S; = |Sat(−231 ≤ h< 231)| = 232.
To avoid redundant experiments, we know already that l must be chosen such that l < 100 (=
InRisk(l)). From the symbolic output values, we obtain O{l} ⊆ {3, 0,−3} and:

g(l,h, 3) = −231 ≤ h< 231 ∧ l< 100∧ h .
= l

g(l,h, 0) = −231 ≤ h< 231 ∧ l< 100∧ h> l

g(l,h,−3) = −231 ≤ h< 231 ∧ l< 100∧ h< l

g(l,h,l’) = −231 ≤ h< 231 ∧ l< 100 ∧
�

(l
.
=h∧ l′ .

= 3)∨ (l< h∧ l′ .
= 0)∨ (l> h∧ l′ .

= −3)
�

60

where l′ is a new program variable representing the final value of l. Model counting (we used
the tool Barvinok [116]) yields the following functions:

C{h}[l](g(l,h, 3)) =

¨

1, if− 231 ≤ l< 100

0, otherwise

C{h}[l](g(l,h, 0)) =

231 − 1− l, if − 231 ≤ l< 100

0, if l≥ 100

232, otherwise

C{h}[l](g(l,h,−3)) =

¨

231 + l, if − 231 ≤ l< 100

0, otherwise

C{l′}[l](∃h.g(l,h,l′)) =

3, if − 231 < l< 100

2, if l= −231

1, otherwise

Shannon entropy-based leakage, computed by using Corollary 5.1, is as follows:

ShELrPC(l) =

¨

32− (2
31−1−l)log(231−1−l)+(231+l)log(231+l)

232 , if − 231 ≤ l< 100

0, otherwise
(5.20)

Corollary 5.2 gives us the guessing entropy-based leakage:

GELrPC(l) =

¨

232+1
2 − (2

31−1−l)(231−l)+(231+l)(231+1+l)
233 , if − 231 ≤ l< 100

0, otherwise
(5.21)

By Theorem 5.4, the min entropy-based leakage is computed as follows:

MELrPC(l) =

log(3), if − 231 < l< 100

1, if l= −231

0, otherwise

(5.22)

Now we illustrate the leakage for the case of non-uniform distribution. Assume that the secret
input has prior distribution described by formula-based distribution ∆h = 〈FOh,µ〉 defined as
belows:

FOh = {ϕ1(h),ϕ2(h)}
ϕ1(h) = h< 0 µ(ϕ1(h)) = 2

ϕ2(h) = h≥ 0 µ(ϕ2(h)) = 1

We illustrate how to compute information leakage w.r.t. given non-uniform prior distribution
of high input. Recall that O{l} ⊆ {3,0,−3}, we have:

g1(l,h, 3) = −231 ≤ h< 231 ∧ l< 100∧ h .
= l∧ h< 0

g1(l,h, 0) = −231 ≤ h< 231 ∧ l< 100∧ h> l∧ h< 0

g1(l,h,−3) = −231 ≤ h< 231 ∧ l< 100∧ h< l∧ h< 0

g2(l,h, 3) = −231 ≤ h< 231 ∧ l< 100∧ h .
= l∧ h≥ 0

g2(l,h, 0) = −231 ≤ h< 231 ∧ l< 100∧ h> l∧ h≥ 0

g2(l,h,−3) = −231 ≤ h< 231 ∧ l< 100∧ h< l∧ h≥ 0

61

Model counting provides us with the following functions:

c3
1(l) = C{h}[l](g1(l,h, 3)) =

¨

1, if − 231 ≤ l< 0

0, otherwise

c0
1(l) = C{h}[l](g1(l,h, 0)) =

−1− l, if − 231 ≤ l< −1

231, if l< −231

0, otherwise

c−3
1 (l) = C{h}[l](g1(l,h,−3)) =

231, if 0< l< 100

l+ 231, if − 231 ≤ l≤ 0

0, otherwise

c3
2(l) = C{h}[l](g2(l,h, 3)) =

¨

1, if 0≤ l< 100

0, otherwise

c0
2(l) = C{h}[l](g2(l,h, 0)) =

231 − 1− l, if 0≤ l< 100

231, if l< 0

0, otherwise

c−3
2 (l) = C{h}[l](g2(l,h,−3)) =

¨

l, if 0< l< 100

0, otherwise

We have c1 = |Sat(−231 ≤ h< 0)| = 231, c2 = |Sat(0≤ h< 231)| = 231, S∆h
; = 2c1 + c2 = 3 · 231.

By Theorem 5.1, the Shannon entropy-based leakage of program rPC is

ShELrPC(l)=

log(3 · 231)− (2
31−1−l)log(231−1−l)+(l+232)log(l+232)

3·231 , if 0< l< 100

log(3 · 231)− (2
31−1)log(231−1)+232log(232)

3·231 , if l= 0

log(3 · 231)− 231log(231)+2(231−1)log(2(231−1))
3·231 , if l= −1

log(3 · 231)− (2
31−2(l+1))log(231−2(l+1))+2(l+231)log(2(l+231))+2

3·231 , if − 231 ≤ l< −1

0, otherwise
(5.23)

It is easy to see that ∆h is a sorted formula-based distribution. By Theorem 5.2, the guessing
entropy-based leakage is

GELrPC(l) =

5·231+3
6 − 2+(231−l)(231−l−1)+232(231+1)+l(232+l+1)

3·232 , if 0< l< 100
5·231+3

6 − 1+230(231−1)+231(231+1)
3·231 , if l= 0

5·231+3
6 − 2+230(231+1)+231(231−1)

3·231 , if l= −1
5·231+3

6 − 2+l(l+1)+230(231+1)−231(l+1)+(l+231)(l+231+1)
3·231 , if − 231 ≤ l< −1

0, otherwise

(5.24)

To compute min entropy-based leakage, we need to find x , x3, x0, x−3 (see Theorem 5.3).
We have x = 1 because Sat(K;(h)∧ϕ1(h)) = Sat(−231 ≤ h< 0) 6= ;. The value of x3, x0, x−3

62

depends on the value of l. Assume that 10 is the input value of l, we have x3 = x0 = 2, x−3 = 1
because two formulas −231 ≤ h < 0∧ h = 10 and −231 ≤ h < 0∧ h > 10 are unsatisfiable while
the set Sat(−231 ≤ h< 0∧ h< −10) is not empty. The min entropy-based leakage for the case
l = 10 is MELrPC(10) = log(1+1+2

2) = 1. Choosing another input value for l, i.e. −1, might
result in a different leakage value: we have x3 = x−3 = 1, x0 = 2 because −231 ≤ h< 0∧h> −1
is unsatisfiable (recall that h is integer) while −231 ≤ h < 0∧ h = −1 can be satisfied. Thus we
have the min entropy-based leakage when l = −1 is MELrPC(−1) = log(2+1+2

2) = log(2.5) that
is larger than MELrPC(10).

5.2 Finding Low Input Maximizing Leakage

5.2.1 Leakage Computed using Parametric Counting

Finding optimal low input is equivalent to the optimization problem argmaxl∈LQLeak(l) in
which QLeak(L) can be ShELp(L), GELp(L) or MELp(L). If the leakage can be represented by
means of a parametric counting function of low input as shown in Theorems 5.1, 5.2, and 5.4,
the low input maximizing such leakage can be determined by solving an optimization problem.
The objective function of this problem is derived directly from the function calculating the cor-
responding leakage, and the constraints of this problem are synthesized from the conditions of
parametric counting results. By definition, the values of S∆H

E and SE are constant in the sense
that they depend only on the current knowledge KE(H) and the distribution ∆H while they do
not depend on low input. Hence, in cases of Shannon or guessing entropy, maximizing the
leakage can be reduced to minimizing the sum expressions in their corresponding functions.

The result of parametric counting, as shown by the examples in Section 5.1.4, is usually
a collection of ordered pairs of a counting result and its corresponding condition. Hence,
solving the optimization problem argmaxl∈LQLeak(l) might require to consider a number of
aggregated conditions, each of which corresponds to an unique objective function. To be more
specific, let’s assume that to compute QLeak(L), we need to consider a set of parametric counting
function {CH[L](cfi(L, H))|i = 1 · · ·ncf}. For the case of Shannon or guessing entropy, the num-
ber of parametric counting formulas ncf is |OD(L)| × |FOH|, while there is only one parametric
counting formula to quantify min entropy-based leakage provided that ∆H is uniform (see The-
orem 5.4). We assume that, counting the number of H satisfying cfi(L, H) returns a set of pairs
{〈cri

j(L),cc
i
j(L)〉| j = 1 · · ·ni}, in which the function cri

j(L) is the counting result for the case L
satisfies condition cci

j(L). Hence, the set {CH[L](cfi(L, H))|i = 1 · · ·ncf} can be determined by
a list of indices {d1, · · · , dnc f } so that CH[L](cfi(L, H)) = cri

di
(L) and the corresponding aggre-

gated condition is
∧nc f

i=1 cc
i
di
(L). If a condition

∧nc f
i=1 cc

i
di
(L) is satisfiable, the list {d1, · · · , dnc f }

is called a candidate indexing list. Let S be the set of all possible candidate indexing lists, the
optimal value of L is found by iterating through S. The process of finding optimal low input that
uses parametric counting is shown in Algorithm 5.1.

To find all possible candidate indexing lists, a simple backtracking algorithm can be used. In
a nutshell, we start with i = 1, k = 1, if cci

k(L) ∧
∧i−1

j=1 cc
j
d j
(L) is satisfiable, we assign di by k

and go further with i + 1, otherwise we increase the value of k by 1. If we cannot assign di by
k ∈ [1, ni], we go back to choose another value for di−1 and start over the process. Whenever

63

Data: Ordered set of parametric counting formulas {cfi(L, H)|i = 1 · · ·ncf} with
corresponding counting results {〈cri

j(L),cc
i
j(L)〉| j = 1 · · ·ni}, metric: leakage metric

(Shannon, guessing, min entropy)
Result: (l, leakage): optimal low input value and corresponding leakage

1 begin
2 S← find all possible candidate indexing lists;
3 l ← random value;
4 leakage← 0;
5 foreach {d1, · · · , dncf} ∈ S do
6 Obj(L)← createObjectiveFunction({cr1

d1
(L), · · · ,crncf

dncf
(L)}, metric);

7 Constraint(L)←
∧ncf

i=1 cc
i
di
(L);

8 lopt← solve optimization problem (Obj(L), Constraint(L));
9 leakagetmp← computeLeakage(lopt, metric);

10 if leakage< leakagetmp then
11 l ← lopt;
12 leakage← leakagetmp;
13 end
14 end
15 return (l, leakage);
16 end

Algorithm 5.1: Finding low input maximizing leakage using parametric counting

dnc f is determined, a candidate indexing list has been found and we continue to find another
one until all possible combinations are explored.

Whenever S is found, the process of finding optimal low input and corresponding maximum
leakage begins. The maximum leakage value is instantiated with 0 and low input is generated
randomly. For each candidate indexing list in S, an optimization problem is constructed using
this list. Solving this problem returns a value of L that is used to compute the corresponding
leakage. Current low input value and maximum leakage are assigned by the new found values if
the current maximum leakage is smaller than one computed using the new low input. Algorithm
5.1 guarantees that the generated low input is the optimal value in the sense that it maximizes
the leakage computed using corresponding metric.

Example 5.3. Consider program rPC in Listing 4.1 with noninterference policy h 6 l (l,h are
integer), we aim to find the value of low input that maximizes the information leak throughout
the execution of rPC. A closer inspection of the program reveals the following: as long as our only
knowledge about h is that its value is within an interval [a, b] and all values in the range [a, b]
have the same likelihood (uniform distribution), then choosing the arithmetic middle b+a

2 for the
input value of l is the best choice. The initial knowledge about h is that its value is between −231

and 231 − 1, hence, the best choice is 0 or −1. We show that the solution computed automatically
by our algorithm comes close to this inspection.

Section 5.1.4 gives details about the computation of information flow leak in program rPC. For
the case of uniform distribution, the Shannon, guessing and min entropy-based leakage is computed
by equations (5.20), (5.21) and (5.22) respectively. From (5.22) we see that the maximum leak-

64

age measured by the min entropy-based metric is log(3) for all values of low input in the range
(−231, 100). This restricts the choice of a suitable value for l only slightly. Computation of the
maximal leakage for the Shannon and guessing entropy-based metrics requires more effort. To find
l maximizing ShELrPC(l) we have to solve an optimization problem:

minimize
l

(231 − 1− l)log(231 − 1− l) + (231 + l)log(231 + l)

subject to − 231 ≤ l< 100

and for GELrPC(l) the problem:

minimize
l

(231 − 1− l)(231 − l) + (231 + l)(231 + 1+ l)

subject to − 231 ≤ l< 100

Using the optimizers Bonmin1 and Couenne2 with default settings, we get as result l= 0 for the
second problem, which meets our intuition. However, these optimizers only return an approximate
result l = 3 for the first problem. Nevertheless, the Shannon entropy-based leakages computed
with l = 0 and l = 3 are very close and approximately 1, i.e. 1 bit of h is revealed. For this
program, the Shannon and guessing entropy based-metric perform significantly better than the min
entropy-based metric. In both cases their successive application generates a series of experiments
that performs binary search to uncover the secret.

Now we consider the case that the prior distribution of h is non-uniform. We continue with
the distribution given in Section 5.1.4 defining that the probability that h has negative value is
twice as high as the non-negative case. This distribution brings an intuition that we should choose
a negative value for l. We consider the case Shannon entropy is used to measure the leakage.
From (5.23), we have ShELrPC(0) ≈ 0.9182958391 and ShELrPC(−1) ≈ 0.9182958444. It is
clear that ShELrPC(−1)> ShELrPC(0). To find the optimal value of l, we still need to solve the two
following optimization problems:

minimize
l

(231 − 1− l)log(231 − 1− l) + (l+ 232)log(l+ 232)

subject to 0< l< 100

and

minimize
l

(231 − 2(l+ 1))log(231 − 2(l+ 1)) + 2(l+ 231)log(2(l+ 231))

subject to − 231 ≤ l< −1

then compute the leakages using values returned by the optimizer and compare them (also to
ShELrPC(−1)) to decide what value is the best choice. The solution of the first problem is l= 1 with
corresponding leakage ShELrPC(1) ≈ 0.9182958389. For the second problem, the optimizer Bon-
min yields the solution l = −536871000 with corresponding leakage ShELrPC(−536871000) ≈
1.0000000099. Hence the optimal value of l is −536871000 that meets our intuition. The com-
putation for the case of guessing entropy-based leakage using optimizer Bonmin brings the same
result that the optimal value of l is −536871000.
1 http://www.coin-or.org/Bonmin
2 https://projects.coin-or.org/Couenne

65

http://www.coin-or.org/Bonmin
https://projects.coin-or.org/Couenne

5.2.2 Max-SMT Approach for Min Entropy-Based Leakage

If the prior distribution of high inputs is uniform, the parametric counting approach can be used
to find low inputs maximizing min entropy-based leakage, thanks to Theorem 5.4. The general
computation of min entropy-based leakage for an arbitrary prior distribution of high input is
given in Theorem 5.3. Take a closer look into equation (5.15), we can see that µ(ϕx(H)) de-
pends only on the experiment set E and the formula-based distribution∆H. Intuitively, µ(ϕx(H))
is the highest frequency value of all high values satisfying the current knowledge KE(H).

To find µ(ϕx(H)), we simply iterate over all ϕi(H) ∈ FOH and choose among satisfiable formu-
las KE(H)∧ϕi(H) (i = 1, . . . , n) the formula KE(H)∧ϕx(H) where the frequency value µ(ϕx(H))
is highest.

Because µ(ϕx(H)) does not depend on L, to maximize MELp(L) we only need to find l so that
∑

o∈OD(l)
µ(ϕxo

(H)) maximizes. We introduce a Max-SMT approach to solve this problem.
The Max-SMT problem [95] is an extension of the SMT problem that concentrates on op-

timization. Generally, a Max-SMT problem can be defined as follows: given a set of pairs
{(Ci, wi)|i = 1, · · · , m)} where each Ci is a formula and wi is a positive number that is the weight
of Ci, find an assignment A that maximizes (or equivalently minimizes) the sum of the weights
of all true clauses in A. Max-SMT problems can be solved by a number of Max-SMT solvers such
as Z3 [41], Yices [50], CVC4 [14], VeryMax [27].

According to Theorem 5.3, for each low input l, to compute min entropy-based leakage
MELp(l), we have to iterate over all possible output values (the set OD(l)). For each o ∈ OD(l),
we have to find the probability partition xo where µ(ϕxo

(H)) is the probability of the most likely

input value of H that satisfies the current knowledge KE(H). The set {xo|o ∈ OD(l)} is deter-
mined only by l and we denote it by X l . Finding l maximizing the leakage is equivalent to
choosing l to maximize the sum of weights

∑

i∈X l µ(ϕi(H)) under the condition that all formu-

las of the set {gi(l, H, o)|i ∈ X l} are satisfiable. This inspires a Max-SMT approach to find the
optimal value of L. The basic idea is to encode the optimization problem argmaxl∈L(MELp(l))
as a Max-SMT problem using the weights of partition formulas as the weights of corresponding
SMT clauses and then, let the Max-SMT solver find the value of L that maximizes the sum of
weights.

Algorithm 5.2 lays out the approach using a Max-SMT solver to find the optimal low input
and the corresponding maximum min entropy-based leakage. For each observable output value
o j and each partition formula ϕi(H) ∈ FOH, a Max-SMT clause gi(L, H j, o j) with the weight
µ(ϕi(H)) is built. Here H j is a set of fresh variables obtained by renaming all variables in H,
e.g. H j = {v j|v ∈ H}. Afterwards, the generated Max-SMT problem is passed to a Max-SMT
solver to find the solution. That solver returns an assignment A for L, H1, · · · , Hm. The value of L
given by A, denoted by l, is the optimal value of L in the sense that MELp(l) is the maximum min
entropy-based leakage. Along with A, the Max-SMT solver also returns a set DA of true clauses
in A. After iterating over all clauses in DA to compute the sum of the weights SWA, the min
entropy-based leakage is computed as the logarithm based 2 of the fraction SWA

µ(ϕx (H))
.

Theorem 5.5. Algorithm 5.2 yields the optimal low input and the maximum min entropy-based
leakage of program p w.r.t. formula-based distribution ∆H.

Proof. Because the assignment A is found by a Max-SMT solver, the sum of the weights of all
true clauses in A must be a maximum, which means that there exists no assignment B satisfying

66

Data: Set of performed experiments E, set of reachable paths RE, knowledge of secret
KE(H), formula-based distribution of secret ∆H = 〈FOH,µ〉 with |FOH|= n, set of
possible observable output O= {o1, o2, .., om}, µ(ϕx(H)): the highest frequency value
of all high input satisfying KE(H)

Result: (l, leakage): optimal low input value and corresponding min entropy-based leakage
1 begin
2 foreach ϕi(H) ∈ FOH do
3 foreach o j ∈O do
4 Build Max-SMT clause with weight µ(ϕi(H)): Ci j :: gi(L, H j, o j);
5 end
6 end
7 Solve {(Ci j,µ(ϕi(H)))|1≤ i ≤ n, 1≤ j ≤ m} by Max-SMT solver;
8 A← assignment found by Max-SMT solver;
9 l ← the value assigned for L given by A;

10 DA← set of all true clauses in A;
11 SWA← 0;
12 foreach Ci j ∈ DA do
13 SWA← SWA+µ(ϕi(H));
14 end
15 leakage← log(SWA

µ(ϕx (H))
);

16 return (l, leakage);
17 end

Algorithm 5.2: Finding low input maximizing leakage using Max-SMT solver

that SWB > SWA. Recall that l is the value of L given by A, we denote the value of H1, . . . , Hm
defined in A by h1, . . . , hm, respectively. To prove Theorem 5.5, we will prove that the leakage
computed by Algorithm 5.2 is MELp(l) (i) and it is actually the maximum min entropy-based
leakage (ii).

To prove (i), we will prove that SWA =
∑

o∈OD(l)
µ(ϕxo

(H)). Consider an arbitrary value

o j ∈ O, we will prove that if o j ∈ OD(l) then there exists one and only one i that Ci j is true in
A, otherwise Ci j is false for all i ∈ [1, n]. Assume that ∀i ∈ [1, n]. gi(l, h j, o j) = false, because
o j ∈ OD(l), then there exists h ∈ |Sat(KE(H))| such that program p runs with input values l and
h of L and H respectively and returns o j as output value of O. Because l ∈ Sat(InRisk(L)) we
have gk(l, h, o j) = true where k satisfies ϕk(h) = true. Consider assignment A1 that is identical
to A except that the value of H j is h not h j, we can see that all clauses that are true in A also hold
in A1, furthermore Ck j is true in A1 not in A. Hence we have SWA1

= SWA+ µ(ϕk(H)) > SWA,
which means that SWA is not maximal (contradiction). Hence, there exists such i that Ci j is true
in A if o j ∈OD(l). Assume that ∃k 6= i satisfying that Ck j is also true in A, we have ϕi(h j) = true
and ϕk(h j) = true leading to Sat(ϕi(H))∩Sat(ϕk(H)) 6= ; that contradicts Definition 5.2. Hence,
we have if o j ∈ OD(l) then there exists one and only one true clause Ci j. In case of o j /∈ OD(l),
the formula g(l, H, o j) is unsatisfiable, hence Ci j is false for all i ∈ [1, n]. Consequently, (i) will
be proven if we can prove that: ∀Ci j ∈ DA. i = xo j

(xo j
is defined as in Theorem 5.3).

67

Consider an arbitrary clause Ci j ∈ DA, because gi(l, h j, o j) = true, we have Sat(gi(l, H, oj)) 6= ;.
Now proving (i) is equivalent to proving that >k. Sat(gk(l, H, oj)) 6= ; ∧ µ(ϕk(H)) > µ(ϕi(H)).
Let’s assume that such k exists, because gk(l, H, o j) is satisfiable, gk(l, H j, o j) can also be satisfied

by a value h
′
j of H j. Consider assignment A2 that is identical to A except that the value of H j is h

′
j

not h j. Analog to above, we have all clauses true in A are also true in A2 and vice versa, except
that Ci j ∈ DA∧ Ci j /∈ DA2

∧ Ck j ∈ DA2
∧ Ck j /∈ DA. Therefore, SWA2

= SWA+µ(ϕk(H))−µ(ϕi(H)).
Because µ(ϕk(H))> µ(ϕi(H)), we have SWA2

> SWA (contradiction), hence (i) is proven.

Now we prove (ii). Assume that ∃l
′
6= l satisfying that MELp(l

′
) > MELp(l), for each o j ∈

OD(l
′
), we have Sat(gxoj

(l
′
, H, oj)) 6= ; where xoi

is defined as in Theorem 5.3. Let h
′
j ∈ H be a

value of H such that gxo j
(l
′
, h
′
i, o j) = true. Consider assignment A′ in which L is assigned l

′
and H j

is assigned h
′
j if o j ∈OD(l

′
) or a random value otherwise. As above we have MELp(l

′
) = SWA′

µ(ϕx (H))
,

thus from MELp(l
′
) > MELp(l) we have the result SWA′ > SWA (contradiction). Hence, (ii) is

proven that brings the correctness of Theorem 5.5.

Example 5.4. We continue the example in Section 5.1.4 to find an input value of l maximizing
min entropy-based leakage of program rPC (Listing 4.1), given that the prior distribution of h is
the same as the non-uniform distribution defined in Section 5.1.4 as follows:

FOh = {ϕ1(h),ϕ2(h)}
ϕ1(h) = h< 0 µ(ϕ1(h)) = 2

ϕ2(h) = h≥ 0 µ(ϕ2(h)) = 1

We also have the set of observable output values O{l} ⊆ {3,0,−3}. Using Algorithm 5.2 we obtain
the following Max-SMT clauses:

C11 = g1(l,h1, 3) = −231 ≤ h1 < 231 ∧ l< 100∧ h1
.
= l∧ h1 < 0 : weight = 2

C12 = g1(l,h2, 0) = −231 ≤ h2 < 231 ∧ l< 100∧ h2 > l∧ h2 < 0 : weight = 2

C13 = g1(l,h3,−3) = −231 ≤ h3 < 231 ∧ l< 100∧ h3 < l∧ h3 < 0 : weight = 2

C21 = g2(l,h1, 3) = −231 ≤ h1 < 231 ∧ l< 100∧ h1
.
= l∧ h1 ≥ 0 : weight = 1

C22 = g2(l,h2, 0) = −231 ≤ h2 < 231 ∧ l< 100∧ h2 > l∧ h2 ≥ 0 : weight = 1

C23 = g2(l,h3,−3) = −231 ≤ h3 < 231 ∧ l< 100∧ h3 < l∧ h3 ≥ 0 : weight = 1

Look at the above Max-SMT problem, we can see that the maximum sum of the weights of true
clauses is 6 and can only be obtained with an assignment in which C11, C12, C13 are true. Hence
the value of l must belong to the range (−231,−1). A Max-SMT Solver (here we use Z3) returns a
concrete model with l= −2147450800. This model maximizes the sum of weight values computed
via three true clauses C11, C12, C13. The maximum min entropy-based leakage of program rPC

therefore is log(2+2+2
2) = log(3).

5.3 Discussion

In the two previous sections of this chapter, we have introduced an approach quantifying
entropy-based leakages and finding optimal low inputs. The proposed approach is precise

68

w.r.t. a correct and complete symbolic execution tree. However, it has some drawbacks that
might limit the applicability for real world programs. We discuss in this section such limitations,
point out applicable conditions and show some directions to overcome those drawbacks.

5.3.1 The Set OD(L)

The computation of entropy-based leakages requires to enumerate all possible output values
of O, except for the case that the security metric is based on min entropy and the secret’s
distribution is uniform.

Determining all possible output values of O is a tough task that might be very expensive. A
quick estimation can be made by using symbolic execution. The basic idea is deriving the set
OD(L) from the set of symbolic observable output values f O

i . If they (i) either depend only on
the chosen SE path, but not on the actual values of the low or high variables (i.e. each SE path
assigns only constant values to the observable variables), (ii) or the output values depend only
on the low input (i.e. for a specific concrete low input, their concrete value can be determined
by evaluating the corresponding symbolic value f), then determining OD(L) is significantly
cheaper, because the cardinality of the set of possible observable outputs is bounded by the
number of reachable paths.

Section 5.1.3 demonstrates how the set OD(L) is determined and how formula g is simplified
for case (i). We illustrate here the case (ii). For the sake of simplicity, we assume that the set O
is a singleton, i.e. O = {o}(o ∈ L), the extension for the case |O|> 1 is straightforward.

Consider the set of reachable paths RE, assume that there exists a path j ∈ RE satisfying that
output value of o given at path x depends on and only on low input, while other reachable paths
yield constant output values of o. Because the symbolic value f o

i (i 6= x) is constant, it can be
evaluated to a concrete value, denoted by oi. By assumption, f o

x depends only on L, it can be
represented by a function of L, denoted as fx(L). Without loss of generality, we assume that
oi 6= o j for all different reachable paths i and j (i 6= x ∧ j 6= x). Let l be an arbitrary, concrete
value of L, the set of observable output values OD(l) becomes either {oi|i ∈ RE ∧ i 6= x} if there
exists a path j ∈ RE and j 6= x such that o j = fx(l), or {oi|i ∈ RE ∧ i 6= x} ∪ { fx(l)} otherwise. To
find an optimal low input, the leakage needs to be computed w.r.t. both cases and the condition
must be incorporated into formula g(L, H, {o}′). Consider the first case, for each concrete ouput
oi (i 6= x), formula g in Corollary 5.1 becomes

g(L, H, {oi}) = KE(H)∧ InRisk(L)∧
�

pci ∨ (pcx ∧ oi
.
= fx(L))

�

Formula g is simplified in the second case as following:

g(L, H, {o′i}) = KE(H)∧ InRisk(L)∧ pci ∧
∧

i∈RE\{x}

oi 6
.
= fx(L)

where i ∈ RE and o′i = oi if i 6= x and o′i = fx(L) if i = x .
If the program satisfies (i) or (ii), computation of entropy-based leakages might also be con-

siderably cheaper, because not only the number of observable outputs is bounded by the number
of reachable paths, but also formulas g and gi that are supplied to the parametric counting tool
are much simpler. However, if the program does not fall into either (i) or (ii), finding all el-
ements of the set OD(L) might be very expensive and even infeasible in practice. In this case,

69

using Shannon entropy or guessing entropy as security metric might become inapplicable. The
same for min entropy if the high input has non-uniform probability distribution. However, if
this distribution is uniform, computing min entropy-based leakage does not suffer from the
same problem, because it merely requires to estimate the cardinality of the observable output
values.

5.3.2 Parametric Counting

Another limitation of our approach comes from parametric model counting, that computes the
number of assignments to the set of integer variables X that satisfy formula g(X , Y) in the form
of a function of Y , denoted by CX [Y](g(X , Y)). Generally, this problem is intractable, however if
formula g(X , Y) fulfills some special conditions then it becomes feasible. One of them is that if
g(X , Y) is an integer linear arithmetic formula, then computing CX [Y](g(X , Y)) can be reduced
to counting the number of integer points in parametric and non-parametric polytopes for which
efficient approaches (and tools) exist [116].

The limitation of parametric counting approach requires that formulas g(L, H, O′) and
gi(L, H, O′) are linear. This can only be fulfilled if all of the path conditions pci, the sym-

bolic observable output values f
O

i and the partition formulas ϕ j(H) are also linear. Even for
a linear formula, if it contains many disjuncts, then the counting tool may return many different
results along with respective conditions. This increases computational overhead significantly.
Such limitation, indeed, restricts the scalability of our approach. To overcome this problem,
approximation techniques that accept “good enough” low input instead of optimal one need to
be devised.

On the other hand, The Max-SMT based approach for the case of min entropy does not suf-
fer from the same problem with parametric counting, because many Max-SMT solvers support
nonlinear arithmetic. Moreover, not only integer but also other types, such as String and arrays,
can be supported by Max-SMT solvers. This equips Max-SMT approach the ability to work with
a wider class of programs.

5.3.3 Optimization Tool

Even if the leakage can be computed by using parametric counting, it might be difficult to
find optimal low input. The reason is that the parametric counting-based approach requires to
solve a number of non-linear optimization problems. Those problems can be too expensive to
solve, even by the most powerful optimization tool. Moreover, most non-linear optimizers use
a combination of several heuristic and approximation techniques that could bring not an actual
optimal low input value but an approximate one (that is shown in Example 5.3). Although this
approximation is “good enough” in many cases, in some other cases it might fail to help the
attacker learn the secret via corresponding experiment efficiently.

One naive solution to deal with the drawback of approximate optimization results is to use
a combination of several different optimizers instead of a single one. The idea is that different
tools might be better for different problems. Hence, in the implementation, we use several
tools to solve a single problem and we recompute the values of objective functions with the low
inputs returned by them and choose the best one. Although this solution generally generates a
“better” low input than using only one optimizer, it obviously reduces the performance. It could

70

be relaxed by using a heuristic approach to decide what optimizer should be used to solve a
specific problem. This is out of the scope of this thesis and is left for future work.

71

6 Implementation and Experiments
Chapter 3, Chapter 4 and Chapter 5 of this thesis have proposed a number of approaches to
detect, demonstrate and exploit information flow leaks in programs. Those approaches have
been fully implemented in a prototype tool, namely KeY Exploit Generation1 (KEG) . This chapter
describes the KEG tool and evaluates KEG using a collection of micro benchmarks. The main
architecture, work-flow and usage of KEG are given in Section 6.1. Section 6.2 illustrates the
work-flow of KEG with a focus on the leak demonstrator and the secret inference program.
Section 6.3 presents the evaluation results. Parts of this chapter are based on previous formal
publications [47, 48] and a technical report [46] of the author of this thesis.

6.1 The KEG Tool

6.1.1 Architecture

KEG is implemented on top of the KeY system [1]. KEG can be used to detect information
flow leaks in sequential Java programs, to generate demonstrators for detected leaks, and to
exploit information flow leaks to infer program’s secrets. Its top-level architecture is shown in
Figure 6.1.

KeY

Leak Demonstrator
Generation

Secret Inference
Simulation

(Max-)SMT
Solver

Optimizer

KEG

Leak Detection

Parametric
counting tool

Figure 6.1: Top-level architecture of KEG

KEG comprises three main modules implementing its main features. Information flow leaks of
insecure Java programs, i.e. programs that do not adhere to a specified information flow policy,
are discovered within module Leak Detection. Information flow leaks are detected by using an
1 www.se.tu-darmstadt.de/research/projects/albia/download/exploit-generation-tool

73

www.se.tu-darmstadt.de/research/projects/albia/download/exploit-generation-tool

SMT solver to check insecurity formulas characterizing the violation of a given information flow
policy. Such formulas are composed using the symbolic execution tree (SET) of a program.
The SET is generated by the symbolic execution engine of KeY. Concrete models for satisfying
insecurity formulas are found by an SMT solver. These models are then used to generate leak
demonstrators (KEG module Leak Demonstrator Generation) as JUnit test cases for insecure Java
programs. The leak detection also indicates a set of symbolic risky paths (path might contribute
to a leak) that can be exploited by module Secret Inference Simulation.

Module Secret Inference Simulation conducts simulated attacks to demonstrate how detected
leaks can be exploited to guess the secret (the input values of high variables). A simulation
basically runs the insecure program multiple times using low input values generated automati-
cally by KEG and (secret) high input values. Those runs, so called experiments, build up a logic
characterization of the secret as the attacker’s knowledge. The set of risky paths is used to gen-
erate low inputs for the program runs. Those values are found with the help of optimizers or
Max-SMT solvers. KEG employs a parametric counting tool to quantify the leakage. The counting
tool can also be used to calculate the number of possible high inputs that satisfy the knowledge
synthesized from experiments.

6.1.2 Workflow

Figure 6.2 outlines KEG’s workflow. The input is a Java program annotated with information
flow policies and necessary JML specifications. KEG checks each method m of the input program
with class-level noninterference policies and method-level declassification policies (if they are
specified) to which m has to adhere. Possibly, m is annotated with loop specifications. Contracts
of methods called by m are provided by the user if they are not to be inlined during symbolic
execution. KEG expects the information flow policy to be present in the source code inside
specifically marked Java comments. For each method m to be checked, first, m is symbolically
executed (using KeY) to obtain a complete symbolic execution tree which can then be queried
for the method’s path conditions and the final symbolic values of the program locations modified
by m. Second, using the path conditions and symbolic final values, instances of the insecurity
formulas described in Sections 3.3 and 3.4 are generated. In a third step, these formulas are
passed to a model finder (currently we use the SMT solver Z3 [41]). If a model for the insecurity
formula has been found, it is used to determine the initial states of two runs which exhibit
a forbidden information flow. KEG outputs the leak demonstrator as a self-contained JUnit
test, which can then be included into a regression test suite. The generated leak demonstrator
executes two runs (one for each initial state) and inspects the final states to detect a leak in
the form of an assertion. In this way the conjuncts in the insecurity formulas that contain the
inequality over symbolic final values can be viewed as an automatically synthesized test oracle.

An on-demand secret inference simulation is launched after the leak detection finishes. It
simulates an adaptive attack where the attacker actively choses the low inputs and runs pro-
gram multiple times to guess the values of high inputs (the secret). KEG generates an attack
simulation setup that includes: an attack program conducting experiments on method m (it sets
the initial state, runs m and prints out the outputs); two input files storing high input values
and low input values; a file to specify the prior probability distribution of secret. The initial
knowledge of the attacker about the secret is specified in the precondition of m. High input
values are chosen by the user before starting simulation. During the simulation, those values
are unchanged. Besides high input values, the user can also define the high input distribution,

74

Derive
knowledge
of secret

Eliminate
unreachable

paths

Symbolically
execute
method

Compose all
insecurity
formulas

Find models
satisfying
formulas

Generate JUnit
tests from

found models

Generate
attack

simulation
system

Generate
low input value

Run attack
program

Load Java
program with
JML and IF

specifications

Figure 6.2: The workflow of KEG

decide the security metric to be used and fix the maximum number of experiments to be carried
out.

As soon as the attack simulation’s fixtures are set, KEG generates optimal low input values
maximizing the leakage measured by the chosen security metric. Then the attack program ex-
ecutes method m using high and low inputs given in corresponding input files. Using observed
outputs, KEG derives a new knowledge about the secret. Furthermore, all unreachable paths
with respect to the new knowledge are found and marked so that they can be ignored in subse-
quent steps. The simulation halts and the result is reported if one of the followings happens: the
number of experiments exceeds the limit, the whole secret is inferred, or all low inputs lead to a
redundant experiment. If the secret inference simulation finishes, KEG with the help of an SMT
solver tries to provide all possible values of secrets satisfying achieved knowledge. Otherwise,
new low input values for the next experiment are generated using updated knowledge about
the secret and method m is executed again.

6.1.3 Implementation Features

By default, KEG uses Z3 [41] to solve composed insecurity formulas and Max-SMT problems.
Nevertheless, all (Max-)SMT solvers that support SMT-LIB can be easily integrated.

Information flow policies supported by KEG are noninterference (generalized version) and
declassification (targeted conditional delimited information release). KEG allows the user to
supply those policies by explicitly specifying them as source code comments. Noninterference is
defined as a class-level policy that affects all methods of a class. Declassification, on the other
hand, is specific to a method and specified as part of a JML method contract. KEG introduces
some new keywords to specify declassification.

The symbolic execution engine of KeY enables KEG to use loop invariants and method con-
tracts to deal with unbounded loops and recursive method calls. The user can flexibly choose
whether loop invariants and/or method contracts are used. Similar to KeY, KEG supports a rich
subset of Java, including primitive types, objects types and arrays. Class inheritance, object
creation and aliasing are also supported. However, the secret inference feature is restricted to
primitive types and objects. To test the value of variables that have a reference type for equality,
KEG uses the approach proposed in [18].

75

The crucial aspect in the secret inference approach is finding optimal low input. KEG outputs
the optimization problems as AMPL [53] specifications in case the leakage is quantified by
means of parametric counting. This makes it possible to use all optimizers that support AMPL.
Currently, KEG uses a combination of two open source optimizers, Bonmin and Couenne, as well
as the commercial optimizer Local Solver [21].

For model counting KEG uses Barvinok [116] that only supports parametric polytopes. This
restricts the use of Barvinok to programs whose path conditions and symbolic output values are
linear. However, this restriction does not affect other features of KEG, including leak detection
(and generation of code demonstrating the leakage). Nonlinear path conditions and symbolic
values also do not restrict the use of Max-SMT solvers for finding optimal low inputs.

6.1.4 Usage

Specifying Information Flow Policies

Noninterference
(Generalized) noninterference policies are class-level and can be annotated directly as Java

comments. A noninterference policy consists of two elements: source (high variables) and sink
(low variables). It prohibits all information flow from the source to the sink. The syntax to
specify a noninterference policy is as below

/*! sink | source ; !*/

where sink and source are two sets of memory locations in the program, i.e. fields, array
elements.

KEG allows more than one noninterference policy to be defined. The syntax is given as below

/*!

sink1 | source1 ;

sink2 | source2 ;

...

sinkn | sourcen ;

!*/

If there is more than one noninterference policy being specified in a program, KEG tries to find
information leaks in the annotated program w.r.t. the specified policies.

Declassification
KEG supports targeted conditional delimited information release for declassification. A de-

classification policy is specified within the JML method contract specification of a method and
affects only that method. The syntax for targeted conditional delimited release is as follows:

@escapes (released expression E) [\if condition C] [\to destinations D];

The escape hatch expression is defined after the keyword escapes. If the declassification
condition and specific targets are given, they are specified after the keywords \if and \to
respectively. The above syntax defines following declassification policy: secret information (de-
fined by a class-level noninterference policy) can be leaked through expression E to destinations
D (set of memory locations) if condition C is satisfied before the execution of the method.

76

Defining the Set of Observable Variables

By default, the set of low variables L, defined by a generalized noninterference policy H 6 GNIL,
is also the set of observable variables. KEG allows one to restrict the set of observable variables
by specifying the set of observable variable O within the method contract of a method (affecting
only this method). The syntax is as follows:

@observes varName1, . . . ,varNamen ;

Supplying Prior Probability Distribution of High Input

Secret inference simulation requires the prior probability distribution of high input. The user
can define this distribution in an input file. This file is generated by KEG with the default content
“true: 1” that specifies the uniform prior distribution for high input. Non-uniform distributions
can be specifed as:

formula1 : weight1 ;

formula2 : weight2 ;

...

formulan : weightn ;

where formulai is a formula on set of high variables and weighti is a positive integer number
that is the weight value of all high values satisfying formulai. All formulas must be pairwise
exclusive and they must describe all possible values of high variables.

6.2 Workflow Illustration

6.2.1 Leak Demonstrator Generation

We illustrate the specification for information flow policies and the leak demonstrator generation
process in KEG by a simple Java program in Listing 6.1.

Class Simple declares three integer typed fields l, x, y as well as a method called magic which
assigns a value to l depending on the sign of field x.

The information flow policy of the class is {x, y} 6 {l} and specified in a comment starting
with “/*!” in Line 4. Variables x, y are implicitly declared as high variables and l as a low
variable. This strict noninterference policy is relaxed in line 6 for method magic by providing a
targeted conditional release specification consisting of an escape hatch x*y, the target l and the
condition x>-1.

Running KEG on the above example produces a symbolic execution tree consisting of two
paths; one for each branch of the conditional statement. KEG generates for each unique pair of
these paths the corresponding insecurity formulas and passes these to an SMT solver. Only one
of the three generated insecurity formulas is satisfiable. The following model is found by Z3:

77

Listing 6.1: Example program to illustrate leak demonstrator generation of KEG
1 public class Simple {

2 public int l;

3 private int x, y;

4 /*! l | x y ; !*/

5

6 /*@ escapes (x*y) \to l \if x>-1; @*/

7 public void magic() {

8 if (x>0) {

9 l=x*y;

10 } else {

11 l=0;

12 }

13 }

14 }

Insecurity Formula (in SMT-LIB syntax) Model

(let ((a!1 (not (and (> x_1 (- 1)) (> x_2 (- 1))))))

(and (>= x_1 1) (<= x_2 0)

(or (not (= x_1 x_2)) (not (= y_1 y_2)))

(= l_1 l_2) (not (= (* y_1 x_1) 0))

(or a!1 (= (* x_1 y_1) (* x_2 y_2)))))

x_1: 1

x_2: -1

y_1: 1

y_2: -1

l_1: 0

l_2: 0

The model describes two runs: The first run, labelled with 1, starts in an initial state with
x, y and l initialized with 1, 1 and 0, respectively. We identify variable v in execution X by
v_X. The second run, labelled with 2, has initial values −1, −1, and 0. The first run enters the
then-branch of the conditional, the second one does not.

As the value of l is altered in the first run when executing the then-branch but not by the
second run, where it remains 0, a leak is detected (the leaked information is the sign of field x).
KEG generates exactly one leak demonstrator, which is output as a well-structured and human
readable JUnit test. The leak demonstrator program is depicted in Listing 6.2. KEG outputs the
leak demonstrator exactly as shown, i.e. pretty printed and structured with comments. We have
only renamed a few fields to increase readability further.

The two initial states for the two runs of method magic are set up in lines 6–14 and 23–31. To
ensure that the runs do not interfere, two instances of class Simple are created (lines 6 and 23).
In general, more work needs to be invested to ensure independent runs (for instance, if static
members are modified by a run). This can be achieved by running the program on two different
Java Virtual Machines and by querying those for the required information (this is currently not
supported by KEG).

Before invoking method magic, the initial values of all fields and method parameters are
assigned. In Listing 6.2, the initial value of each field l, x, y of both runs are stored in the
corresponding variables l_1, x_1, y_1 (lines 7–9) and l_2 , x_2, y_2 (lines 24–26). These
initial values are taken from the counter example produced by the SMT solver. To assign values

78

Listing 6.2: JUnit test as leak demonstrator program
1 @Test

2 public void test_magic_l_0 ()

3 throws NoSuchFieldException, SecurityException,

4 IllegalArgumentException, IllegalAccessException {

5 /* Prepare for execution 1 */

6 Simple s1 = new Simple();

7 int l_1 = 0;

8 int x_1 = 1;

9 int y_1 = 1;

10

11 /* Configure variable: s1 */

12 setFieldValue(s1,"l",l_1);

13 setFieldValue(s1,"x",x_1);

14 setFieldValue(s1,"y",y_1);

15

16 /* Perform execution 1 */

17 s1.magic();

18

19 /* Get the value of low variable l after execution 1 */

20 int l_out_1 = ((Integer)getFieldValue(s1,"l")).intValue();

21

22 /* Prepare for execution 2 */

23 Simple s2 = new Simple();

24 int l_2 = 0;

25 int x_2 = -1;

26 int y_2 = -1;

27

28 /* Configure variable: s2 */

29 setFieldValue(s2,"l",l_2);

30 setFieldValue(s2,"x",x_2);

31 setFieldValue(s2,"y",y_2);

32

33 /* Perform execution 2 */

34 s2.magic();

35

36 /* Get the value of low variable l after execution 2 */

37 int l_out_2 = ((Integer)getFieldValue(s2,"l")).intValue();

38

39 assertNotNull(l_out_1); assertNotNull(l_out_2);

40 /*
41 * assert that the value of low variable l is not changed after performing

42 * two executions

43 */

44 assertTrue(l_out_1 == l_out_2);

45 }

79

to the fields of an object, the auxiliary method setFieldValue makes use of Java’s reflection
framework.

After each run (at line 17 and line 34), the concrete output value of l is extracted (line 20
and 37). Line 44 asserts that the output values of l observed at the end of each run are equal.
The JUnit test throws an assertion failure exception, if the output values of the two runs are
different and thus an actual leak happened. If no exception is thrown then the counter example
was spurious, for instance, due to a too weak loop specification. Tests that do not result in an
assertion failure can then be omitted from our test suite.

6.2.2 Secret Inference Simulation

If a target program is insecure w.r.t. a noninterference policy, KEG can perform a secret inference
simulation on an insecure method. After the user selected the insecure method, KEG generates
a Java program to run an attack on this method. With class Simple in Listing 6.1, there is
only one method (magic) that violates noninterference policy {x,y} 6 {l}. The attack program
for method magic is depicted in Listing 6.3, with few changes in variable names to increase
readability.

The program in Listing 6.3 executes method magic and prints out the output value of l.
One instance of class Simple is created to invoke method magic at line 4. Before executing
magic, the initial values of all fields of s (l, x, y) are set up by low and high inputs read from
corresponding input files (lines 16 - 22). Then method magic is invoked (line 25) and the output
value of l is extracted (line 28) and printed out (line 29).

The high input, i.e. the input values of x and y, is chosen by the user and does not change
during the secret inference simulation. On the other hand, the low input, i.e. the input value of
l, is generated automatically by KEG to maximize the potential leakage and is updated before
each run. With method magic, KEG automatically detects that it is low-independent w.r.t. non-
interference policy {x, y} 6 {l} (Definition 4.4), hence KEG simply generates a random value
to assign to l and runs the attack program only once. Finally, the knowledge of high input is
computed and given to the user in the form of a formula on x,y. For example, if the user chooses
2 and 3 as the input value of x and y respectively, with an arbitrary input value of l, the output
value of l is always 6 and KEG returns the formula xy

.
= 6 as the full knowledge of x and y.

With this knowledge, KEG offers (1,6), (6, 1), (2,3), (3, 2), (−1,−6), (−6,−1), (−2,−3), (−3,−2)
as the possible input values of x and y.

We give another example for the secret inference simulation using a program that is not low-
independent. We use a relaxed password checker program, namely RelaxPC, that is presented
in Listing 6.4. This program is modified from the running example program in Listing 4.1 by
simply removing the condition statement checking whether l is smaller than 100. RelaxPC can
be seen as a relaxed version of a typical password checker, in which h is the secret password and
l is the guess of the user. This program not only returns whether an user’s guess is correct, but
also tells the user whether her guess is smaller than the password (here password and guess are
integer numbers).

Class RelaxPC declares two long integer typed fields l, h as well as a method called check

which assigns a value to l depending on the comparison result between l and h. The class-level
information flow policy is {h} 6 {l} and specified at line 4. Method check is supplied by a
precondition requiring that h is a 32-bits integer number, with the value is bounded in the half-
open interval [−231, 231). The precondition −231 ≤ h < 231 is used as the initial knowledge of

80

Listing 6.3: Attack program to perform method magic and return the output value of l
1 public class Simple_magic_SecretInferSimulator {

2 public static void main (String[] args)

3 throws NoSuchFieldException, SecurityException, IllegalArgumentException,

IllegalAccessException, NumberFormatException, IOException {

4 Simple s = new Simple();

5 Integer x = new Integer(0);

6 Integer y = new Integer(0);

7 Integer l = new Integer(0);

8

9 Map<String, Object> mapObj = new HashMap<String,Object>();

10 mapObj.put("x", x);

11 mapObj.put("y", y);

12 mapObj.put("l", l);

13

14 String highInputFile = "...";

15 String lowInputFile = "...";

16 readInputValuesFromFile(highInputFile,mapObj);

17 readInputValuesFromFile(lowInputFile,mapObj);

18

19 /* Configure variable: s */

20 setFieldValue(s,"x",((Integer)mapObj.get("x")).intValue());

21 setFieldValue(s,"y",((Integer)mapObj.get("y")).intValue());

22 setFieldValue(s,"l",((Integer)mapObj.get("l")).intValue());

23

24 /* Perform execution */

25 s.magic();

26

27 /* Get the value of low variable l after execution */

28 int l_out = ((Integer)getFieldValue(s,"l")).intValue();

29 System.out.println("l: " + l_out);

30 }

31 ...

32 }

81

Listing 6.4: Relaxed Password Checker (RelaxPC)
1 public class RelaxPC{

2 private long h;

3 public long l;

4 /*! l | h ; !*/

5

6 /*@ requires h >= -2147483648 && h < 2147483648; @*/

7 public void check(){

8 if (l == h)

9 l = 3;

10 else if (l < h)

11 l = 0;

12 else

13 l = -3;

14 }

15 }

the attacker about h. The output value of l is either 3, 0 or −3 depending on whether l = h,
l< h or l> h respectively.

Running KEG on program RelaxPC with respect to the noninterference policy specified at
line 4, KEG detects three information leaks and generates three leak demonstrators for them.
If the user wants to perform a secret inference simulation, KEG creates an attack program for
method check. KEG detects that method check is not low-independent w.r.t. the policy {h} 6
{l}, hence beside the initial value of h, KEG requires the user to choose a maximal number
of experiments to be carried out. It also generates a file in which the distribution of h’s input
value is specified. The default uniform distribution is given as “true : 1” . This file can also be
modified by the user to supply an arbitrary formula-based distribution. Then the user is asked
to choose a leakage metric among Shannon, guessing and min entropy. This metric is used in
finding optimal input values for l.

Let’s assume that the user has fixed already the setting: the input value of h is 1000, the
maximum number of experiments is 32, the distribution of h’s input values is uniform and the
leakage metric is Shannon entropy. By using the combination of three optimization tools Local
Solver, Bonmin and Couenne, KEG produces 3 as low input and writes it to low input file. Then
the attack program is performed within a subprocess created by KEG. The output value of l

obtained by running the attack program using 3 as input value of l is 0. Based on that, KEG
synthesizes 3< h< 231 as the knowledge about h’s input value. From this new knowledge, KEG
deduces 1073740000 as the input value of l for the next experiment and changes the content
of low input file by the new optimal value. Then KEG continues to infer the input value of h
by running the attack program again. With this setting, KEG successfully discovers 1000 as the
input value of h after 31 experiments.

6.3 Experiments

We separately evaluate the main features of KEG (leak detection/demonstrator generation and
secret inference) using a collection of micro benchmarks.

82

6.3.1 Leak Detection and Demonstrator Generation

We performed experiments on a set of programs2 to evaluate the leak detection and demonstra-
tor generation of KEG. Table 6.1 shows the aggregated results. All experiments were done on
an Intel Core i7-4702HQ processor with JVM setting -Xmx4096m.

Table 6.1: Benchmark statistics of leak detection and demonstrator generation

File Analyzed #L/MI Policy S/I TL TSE TMF TTot #LD/FW
name Method (NI/D) (ms) (ms) (ms) (ms)

Mul product 0 / 0 D I 4187 847 1188 6266 1 / 0
Mul_StrongLI product 1 / 0 D I 4275 1746 1211 7274 1 / 0
Mul_WeakLI product 1 / 0 D I 4214 1909 1293 7463 2 / 1
Mul_WrongLI product 1 / 0 D I 4397 1678 1169 7285 0 / 0
Comp_StrongMC doWork 0 / 1 NI I 4181 1491 2278 7995 3 / 0
Comp_WeakMC doWork 0 / 1 NI I 4217 1383 2417 8065 3 / 3
Comp_WrongMC doWork 0 / 1 NI I 4182 1395 2275 7887 0 / 0
Company calculate 1 / 1 NI I 4283 2496 1990 8816 3 / 0
ExpList magic 0 / 0 NI I 4178 1911 2535 8668 1 / 0
ExpLinkedList magic 0 / 4 NI I 4229 4690 6564 15526 2 / 0
ExpArrayList magic 0 / 5 NI I 4230 8975 11505 24752 3 / 0
ArrSearch search 1 / 0 D S 4199 2934 2400 9568 0 / 0
ArrMax findMax 1 / 0 NI I 4215 3584 963 8804 1 / 0
ArrMin findMin 1 / 0 D S 4746 3128 983 8925 0 / 0
ArrSum calcSum 1 / 0 D S 5481 2504 788 8846 0 / 0

#(L/MI/LD/FW): nr of Loops/Method Invocations/generated Leak Demonstrators/False Warnings
NI/D: Non-Interference/Declassification, S/I: Secure/Insecure

TX : Time for Loading/Symbolic Execution/Model Finding/Total

Concerning the runtime performance: A significant amount is spent for parsing the program,
this can be reduced by parser optimizations, for example, by using a hand-coded version in-
stead of a generated parser. Model finding time can be further optimized by performing simple
techniques like symmetry reduction, learning and caching, all of which have not yet been imple-
mented. Another factor is the programming language Java whose optimizations are performed
at runtime and, hence, code that is run only few times will not be optimized at all.

A few observations concerning the benchmarks: For the examples Mul and Comp, we analyzed
the effect of loop and method specifications in case of strong, weak and wrong specifications
(filename_Strong/Weak/Wrong_LI/MC). As expected, with sufficiently strong specifications, all
insecure paths could be precisily identified and only actual leak demonstrators were generated.
Weak specifications over-approximate the behaviour, leading to false positives, while wrong
specifications can prevent to analyze all possible behaviours and some existing leaks were
missed. The analysis of method search in classes ArrSearch, ArrMin, ArrSum identified the
method correctly as secure with respect to the specified declassification policy and generated no
leak demonstrators.

2 www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Tools/KEG/experiments.zip

83

www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Tools/KEG/experiments.zip

6.3.2 Secret Inference

Uniform Distribution

The secret inference approach implemented in KEG is evaluated on a collection of insecure
programs3 under the assumption that the distribution of the high input is uniform. We also
assume that for any program the attacker knows nothing about the secret except that it is a
32 bit integer number. Loop specifications and method contracts are supplied for programs
containing unbounded loops and recursive method invocations. KEG has been configured to
terminate its attack when it was able to infer the values of the high variables, the maximum
achievable knowledge has been reached (there is no way to avoid redundant low input), or the
number of experiments exceeded the limit of 32. The evaluation was performed on a Macbook
Pro Retina late 2013 (2.67GHz Processor, 8GiB RAM). The results are shown in Table 6.2.

Table 6.2: Benchmark statistics of secret inference w.r.t. uniform distribution of high input

File #SP High Shannon entropy Min entropy Guessing entropy
name /RP input #RB/E T(s) #RB/E T(s) #RB/E T(s)

PassChecker 2/2 2135451222 10−8/32 159 10−8/32 13.3 10−8/32 139.3
RelaxPC 4/3 -1208665253 32/31 31.7 11.1/32 6.9 32/31 29.4
MultiLows 6/3 395444738 32/20 22.6 32/30 14.3 32/22 24.3
ODependL 4/3 -13484756 1/1 1.8 1/4 1.8 1/1 1.6
ODependL 4/3 95464630 32/31 39 13/32 13.7 32/31 33.1
ODependLH 6/5 -941087637 n/a n/a 32/1 1.5 n/a n/a
ODependLH 6/5 23269332 n/a n/a 1/1 1.2 n/a n/a
LoopPlus 3/2 -552256949 n/a n/a 1/1 0.4 n/a n/a
LoopPlus 3/2 1707132530 n/a n/a 32/1 0.9 n/a n/a
EWallet 3/2 692935244 n/a n/a 20.9/1 0.6 n/a n/a

#(SP/RP): nr of Symbolic Paths/Risky Paths
#(RB/E): nr of Revealed Bits/necessary Experiments

T(s): Time for experiments (seconds)

Table 6.2 shows that using min entropy to guide experiment generation is in most cases
the fastest option, but it lags often behind the other entropies regarding the amount of in-
ferred information, because it considers merely the number of output values. The Shannon
and guessing entropy-based metrics can only be used for analysing the programs PassChecker,
RelaxPC, MultiLows, and ODependL, because only those fall into the class of programs character-
ized in Section 5.3.1. For these programs (exception PassChecker) the Shannon and guessing
entropy-based metrics turn out to be very effective. Both reveal almost 1 bit per experiment.

Figure 6.3 compares for program RelaxPC the number of bits revealed after each experiment
for each of the supported metrics and with a simple exhaustive brute force attack (the latter
could be lucky and hit the secret in one of the first 32 attempts). For this program we can see
that the Shannon and guessing entropy-based metrics perform best, extracting almost one bit
per experiment and reveal the complete secret after 31 steps. The amount of bits revealed by

3 www.se.tu-darmstadt.de/research/projects/albia/download/secret-inferring/

84

www.se.tu-darmstadt.de/research/projects/albia/download/secret-inferring/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

#Experiments

R
ev

ea
le

d
bi

ts

Shannon entropy
Guessing entropy

Min entropy
Exhaustive brute force

Figure 6.3: Bits revealed per experiment on RelaxPC with uniform distribution of high input

using min entropy-based metric, although is less than one using Shannon or guessing entropy, is
still significant better than a brute force attack. The reason is that, with a knowledge a ≤ h≤ b,
the optimization tools tend to yield a number that is close to a+b

2 as the optimal value of l (that
maximizes Shannon or guessing entropy-based leakages), whereas the Max-SMT solver only
returns a value in the range (a, b). Consequently, using Shannon or guessing entropy leads to a
binary search on the range [a, b].

The program PassChecker is a simple password checker, leaking only whether the given input
is equal to the secret or not. The amount of leakage does not depend on the low input and all
entropy-based approaches perform equally bad as random experiments or exhaustive brute-
force attacks.

For programs whose observable output depends on high variables (ODependLH, LoopPlus and
EWallet), Shannon entropy and guessing entropy are practically infeasible as the range of ob-
servable values is too large. However, min entropy is still applicable and quite effective as well,
as it leads to the generation of low input for execution paths on which the observable output
depends on the high input. Observe that LoopPlus and EWallet contain unbounded loops and
recursive method calls.

The programs ODependL, ODependLH and LoopPlus witness the fact that successful secret infer-
ence may also depend on the values of high variables. The reason is that in these programs the
high variable influences the taken symbolic execution path and the final output values, which
renders the set of reachable paths value-dependent on high variables. Hence, the quality of the
generated experiments depends as well on the high variables.

85

−
2.

15
–
−

1.
5

−
1.

5
–
−

1

−
1

–
−

0.
5

−
0.

5
–
−

0.
1

−
0.

1
–

0.
1

0.
1

–
0.

3

0.
3

–
0.

5

0.
5

–
1

1
–

1.
5

1.
5

–
2.

15

·1
09

1

3

5

7
8

6

4

2

h’s input value

Fr
eq

ue
nc

y

Figure 6.4: RelaxPC: Non-uniform prior distribution of h’s input value

Non-Uniform Distribution

Intuitively, if the attacker can make a good estimation about the secret’s distribution, she can
optimize her guessing strategy based on such a distribution to learn the secret more efficiently.
In order to confirm this intuition, we conduct a secret inference simulation on program RelaxPC

(Listing 6.4) using a non-uniform distribution for the input value of h as follows:

µ(h< −1.5 · 109 ∨ h≥ 1.5 · 109) = 1

µ(h≥ −1.5 · 109 ∧ h< −109) = 3

µ(h≥ −109 ∧ h< −5 · 108) = 5

µ((h≥ −5 · 108 ∧ h< −108)∨ (h≥ 108 ∧ h< 3 · 108)) = 7

µ(h≥ −108 ∧ h< 108) = 8

µ(h≥ 3 · 108 ∧ h< 5 · 108) = 6

µ(h≥ 5 · 108 ∧ h< 109) = 4

µ(h≥ 109 ∧ h< 1.5 · 109) = 2

Recall that µ(f (x)) defines the frequency of all values in the domain of x that satisfy formula
f (x). For example, with the above distribution, all input values of h that are in the range
[−108, 108) have the frequency value 8. This distribution is depicted in Figure 6.4, where we
restrict that the value of h to be in the range [−231, 231), which is also the initial knowledge
of the attacker about the input value of h, similar to other small benchmarks used for secret
inference.

We perform KEG on the program RelaxPC using different input values of h. Those values are
chosen as follows: For each range of h’s values depicted in Figure 6.4, we generate 20 random
values. For each input value of h and each security metric (Shannon, guessing and min entropy)
we perform a secret inference simulation by KEG. We fix 10 as the limit for the number of
experiments for all simulations.

86

−2
31 ..−

1.5
· 1

0
9

[−
1.5
· 1

0
9 ..−

10
9)

[−
10

9 ..−
5 ·

10
8)

[−
5 ·

10
8 ..−

10
8)

[−
10

8 ..1
0
8)

[1
0
8 ..3
· 1

0
8)

[3
· 1

0
8 ..5
· 1

0
8)

[5
· 1

0
8 ..1

0
9)

[1
0
9 ..1

.5
· 1

0
9)

[1
.5
· 1

0
9 ..2

31)
0

2

4

6

8

10

12

14

h’s input value

R
ev

ea
le

d
bi

ts

Shannon entropy
Guessing entropy

Min entropy

Figure 6.5: RelaxPC: The average and standard deviation of revealed bits of h’s value after 10
experiments using non-uniform distribution

For each set of simulations that use the same security metric and take h’s input values in
the same range, we compute the average and standard deviation of bits revealed after 10 ex-
periments as well as the average and standard deviation of time consumptions. The result is
aggregated in Figure 6.5 for bits revealed and Figure 6.6 for time consumption. All secret in-
ference simulations are executed on the same computer used also for the experiments in the
uniform distribution case.

Figure 6.5 shows that in general, the higher the frequency of the input value of h is, the more
amount of bits are revealed. In particular, if the input values of h are in the range that has the
highest frequency value, the average amount of revealed bits is maximal for all three security
metrics. This amount, in the case of Shannon entropy, is significantly higher than the amount
of bits extracted by using Shannon and guessing entropy under the assumption that the input
value of h has uniform distribution (almost 10 bits, see Figure 6.3). However, if the actual input
value of h has a low frequency, the number of bits that can be revealed is usually lower than
10 bits. Figure 6.5 also shows that the fluctuations of revealed bits obtained by using guessing
entropy are considerably smaller than those in the case of using Shannon entropy.

The amount of revealed bits in the case of min entropy is always less than that of Shannon
or guessing entropy. In case the input value of h is in the range that has the highest frequency,
the amount of discovered bits using min entropy is significantly higher than the amount in the
uniform distribution case (where min entropy is also used). However, with values that are not
in the highest frequency range, using min entropy turns to be much less efficient, with only
about 1 bit is discovered. The reason is that, with the given non-uniform distribution, the Max-
SMT solver Z3 always provides a number in the range (−108, 108) as the optimal low input.

87

[−
2
31 ..−

1.5
· 1

0
9)

[−
1.5
· 1

0
9 ..−

10
9)

[−
10

9 ..−
5 ·

10
8)

[−
5 ·

10
8 ..−

10
8)

[−
10

8 ..1
0
8)

[1
0
8 ..3
· 1

0
8)

[3
· 1

0
8 ..5
· 1

0
8)

[5
· 1

0
8 ..1

0
9)

[1
0
9 ..1

.5
· 1

0
9)

[1
.5
· 1

0
9 ..2

31)

0

20

40

60

80

100

120

h’s input value

Ti
m

e
(s

ec
on

d)

Shannon entropy
Guessing entropy

Min entropy

Figure 6.6: RelaxPC: The average and standard deviation of time consumptions value after 10
experiments using non-uniform distribution

Consequently, if the actual secret value is not in that range, the low input generated by using
min entropy does not help much to infer the secret.

The aggregated result in Figure 6.5 confirms the intuition that if the attacker’s assumption
about the probability distribution of the secret is close to the actual distribution, she can learn
the secret more efficiently, no matter what security metric she uses.

Concerning the runtime overhead, Figure 6.6 shows that using guessing entropy is the most
expensive choice, while using min entropy is significantly cheaper than two other metrics. Along
with the results in Table 6.2, it can be seen that the approach using a Max-SMT solver to find op-
timal low inputs is much cheaper than the approach using parametric counting and optimization
tool.

88

7 Electronic Voting Case Study
In this chapter, the KEG tool is employed to check the confidentiality of individual ballots on
an electronic voting system. The main aim of this case study is to showcase the leak detection
and demonstrator generation function of KEG. Section 7.1 briefly introduces sElect, a real-world
e-voting system on which the case study is based. The case study is twofold. We show that ballot
confidentiality can be established with a proper declassification policy in Section 7.2. Another
approach to establish vote privacy is using a privacy game, that is introduced in Section 7.3.
The analysis in Section 7.3 is performed with a combination of KEG and a loop invariant gen-
eration tool, that constitute a scheme for fully automatic logic-based information flow analysis.
Section 7.4 concludes the chapter with insightful discussions. This chapter is based on two
publications [48, 49] of the author of this thesis.

7.1 Electronic Voting System sElect

Electronic voting (e-voting) has been widely used for years in various kinds of election due to its
undeniable advantages: auditable, transparent, accurate, faster result, etc. However, those ben-
efits rely mostly on a well-designed, error-free e-voting system, that is very difficult to achieve
in practice due to the high complexity of such a system and the many (usually contradictory)
requirements that have to be taken into account. Designing an e-voting system requires to bal-
ance between usability, simplicity and security that greatly differ on kinds of election. Moreover,
verifying e-voting systems to ensure that they satisfy some essential requirements e.g. ballot
privacy or coercion-resistance is still a very challenging task.

sElect [77] is a remote electronic voting system implemented in Java that allows voters to vote
over the Internet. It is a lightweight web-based system being designed towards simplicity and
security, and targeting low-risk elections (elections within clubs and associations). Its main char-
acteristics are fully automated verification, voter-based verification and simple cryptography and
design.

The protocol of sElect includes four main phases. The election begins in the setup phase where
all election parameters (list of candidates, list of eligible voters, time frame, etc) are fixed and
public/private keys are generated. The voting phase starts after the setup phase completes, in
which the voters make a choice and let their voter supporting devices (VSDs) cast the ballots.
Here the VSD could be simply the voter’s web browser. The ballots are encrypted by VSDs and
sent to the authentication server. For each ballot, a verification code is also generated. When the
voting phase is over, the list of cypher texts (encrypted ballots and verification code) is passed to
the mix servers, where they are validated and decrypted to compute the final result. This phase
is called mixing phase. The final phase is the verification phase: after the final result has been
published on the bulletin board, the voters can verify that their ballots were counted correctly.
The verification can be carried out by both the voters and their VSDs (the verification performed
by VSDs is fully automated).

Like any other electronic voting systems, sElect rises a plethora of security issues like integrity,
verifiability and coercion-resistance. In this case study, we focus on the confidentiality of individ-

89

ual ballots, i.e. we aim to detect all possible information flow leaks from individual ballots to
the public result. Even though being defined as a lightweight e-voting system, the complexity
of sElect is beyond the power of KEG, mainly because of its distributed architecture and cryp-
tography deployment. The key that enables KEG as well as other logic-based information flow
analysis/verification tools to be used is simplifying sElect. The simplified version must be simple
enough to be analyzed by the tools while it still can be used to guarantee the ballots’ privacy un-
der some specific assumptions. The simplified version of sElect and the ballots’ privacy checking
are detailed in the next two sections of this chapter.

7.2 Ballot Confidentiality with Declassification

Because the final result is aggregated from all individual ballots, it is obvious that there is an
information flow from each ballot to the result. This information flow is crucial for any e-voting
system, hence using a noninterference policy to enforce ballots privacy is insufficient. In this
section, we establish ballots confidentiality for a simplified version of sElect using declassifica-
tion policy. For the case study, we adapted the electronic voting system presented in [56, 106],
which is based on sElect.

7.2.1 Simplified E-Voting System

Vote confidentiality in sElect is guaranteed by the use of cryptography. Cryptographic algorithms
and protocols are based on advanced mathematical theories (and even unproven assumptions
about the hardness of an underlying mathematical problem). This makes it infeasible to verify
sElect using current information flow analysis tools.

To be able to analyse such systems, Küsters et al. [76] proposed a solution using ideal en-
cryption. In a nutshell, their solution removes the encryption component from the system and
enables the use of information flow analysis tools, which can now be run on the “simpler” pro-
gram. The authors prove that information flow analysis results for the transformed program
keep their validity for the original system.

Grahl [56] and Scheben [106] (their works are synthesized in [1, chapter 18]) apply the
formal verification tool KeY on an e-voting system that contains the essential components of
sElect. They focus on formal verification of vote confidentiality and integrity. Even though their
e-voting program is not distributed and does not contain complex features, i.e. cryptography
and networking, its verification requires considerable effort and user interaction.

Figure. 7.1 shows a UML class diagram of the e-voting system used in our case study1, which is
based on the implementation presented in [56]. We redesigned, but did not simplify, the system
slightly to be able to show the capabilities of KEG, in particular, its support for information
erasure policies. It consists of five classes: VotingServer, CountingServer, Voter, Message

and Result. The voting protocol is as follows: First, voters (class Voter) register and obtain
a unique identifier from the voting server (class VotingServer). Then, they send their vote to
the server using a message (class Message) composed of the voter’s identifier and vote. Voters
are not allowed to change their vote once cast, even if the voting is still ongoing. The voting
server receives the messages sent by the voters and forwards the ballots to the counting server
(class CountingServer). Once all voters have cast their vote, the counting server computes the
1 www.se.tu-darmstadt.de/research/projects/albia/download/e-voting-declassification-erasure

90

https://www.se.tu-darmstadt.de/research/projects/albia/download/e-voting-declassification-erasure/

election result and returns it to the voting server. The result is then published. The counting
server must not keep any ballots after the election result has been computed.

e_voting::VotingServer

-numberOfCandidates: int
-voters: Voter[]
-countServer: CountingServer

+VotingServer(int): ctor
+VotingServer(): ctor
+election(CountingServer): void
+publishResult(Result): void

e_voting::Result

+bulletin: int[]

+Result(): ctor
+Result(int n): ctor

e_voting::Message

-id: int
-ballot: int

+Message(int, int): ctor
+getID(): int
+getBallot(): int

e_voting::CountingServer

-result: Result
-numberOfCandidates: int
-ballots: int[]

+CountingServer(): ctor
+CountingServer(int, int): ctor
+addBallot(int, int): void
+countBallots(): void
+getResult(): Result

e_voting::Voter

- id: int
-vote: int

+Voter(): ctor
+onSendBallot(): Message

Figure 7.1: UML class diagram of the e-voting system in the case study

Listing 7.1: Class VotingServer
1 public class VotingServer {

2 private int numberOfCandidates;

3 private Voter[] voters;

4 private CountingServer countServer;

5 ...

6 public void election(){

7 for (int i=0; i<voters.length; i++){

8 Message message = voters[i].onSendBallot();

9 countServer.addBallot(i, message.getBallot());

10 }

11 countServer.countBallots();

12 publishResult(countServer.getResult());

13 }

14 }

Class VotingServer (Listing 7.1) is responsible for the overall election process which is coor-
dinated by method election. Each voter is queried for her/his ballot, which is then passed on to
the counting server (lines 7–10). After all voters cast their vote, the counting server starts count-
ing all ballots (line 11) and computes the election’s result. Finally, the voting server publishes
the computed election result (line 12).

The relevant methods of class CountingServer are shown in Listing 7.2. Its field result keeps
the bulletin, which is the aggregated result of all ballots counted so far. Counting must only

91

Listing 7.2: Class CountingServer
1 public class CountingServer {

2 private Result result;

3 private int numberOfCandidates;

4 private int[] ballots;

5 /*! result ballots numberOfCandidates | ballots ; !*/

6 ...

7 public void addBallot(int idx, int vote) { ballots[idx] = vote; }

8

9 /*@ requires numberOfCandidates>0 && ballots.length>0; @*/

10 public void countBallots() {

11 result = new Result(numberOfCandidates);

12 for (int i=0; i<ballots.length; i++)

13 if (ballots[i] >= 0 && ballots[i] < numberOfCandidates) {

14 result.bulletin[ballots[i]]++;

15 }

16 }

17

18 public Result getResult() { return result; }

19 }

take place, if there is at least one candidate and one ballot. This assumption is specified in the
precondition of method countBallots at line 9. Line 5 specifies the generalized noninterference
policy

{ballots} 6 GNI{result, ballots, numberOfCandidates}

which disallows any information flow from ballots to any other field, including ballots itself.
If an object or array appears in a noninterference policy, then KEG also includes in the policy
all of its fields or elements, respectively. The election protocol described above requires the
deletion of all ballots once countBallots finished computing the result. Hence, the GNI policy
contains the field ballots on both sides to enforce the field’s erasure as well as the erasure of
all elements of the referred array.

To be able to analyse method countBallots with respect to secure information flow, KEG
needs to reason about the flow of information within the (unbounded) loop iterating over all
ballots. Hence, a correct and sufficiently strong loop specification is required. Listing 7.3 shows
one possible loop invariant which guarantees that all ballots are counted correctly. It is quite
simple and expresses (a) that the loop counter i stays within valid bounds and (b) that all
ballots up to i have been correctly counted. The assignable clause (line 6) states that the loop
may modify all elements of the array result.bulletin and the loop counter.

7.2.2 Checking Noninterference and Declassification

To analyse class CountingServer with respect to the GNI policy defined above we ran KEG on a
Macbook Pro Retina late 2013 (2.6 GHz Intel Core i5 processor, 8 GiB RAM, Mac OS X 10.11.5).

92

Listing 7.3: Loop invariant in method countBallots

1 /*@ loop_invariant

2 @ i>=0 && i<=ballots.length &&

3 @ (\forall int k; k >= 0 && k < numberOfCandidates;

4 @ result.bulletin[k] == (\sum int j; 0 <= j && j < i;

5 @ (k==ballots[j]?1:0)));

6 @ assignable result.bulletin[*], i;

7 @*/

By default, KEG analyses all public methods of a class. After 63 seconds KEG finished its analysis
and generated seven exploits showcasing different violations of the specified GNI. Listing 7.4
shows one of the generated leak demonstrators exposing an information leak from ballots to
result in method countBallot.

Running the generated leak demonstrators results in assertion failures for all of them which
means that genuine leaks were found. Looking closer at the generated exploit in Listing 7.4, we
see that both initial states (lines 5–13 and lines 18–25) are identical except for the content of
the ballots array whose entries are set to 2006 in the first initial state and to 0 in the second
one. Consequently, the assertion failure in line 31 must be the result of an information flow
from ballots (or its contents) to the aggregated result result.bulletin.

This is not very surprising, because the outcome of an election depends on the votes. We have
to fix our policy by allowing some information to be leaked to the election result, namely, the
aggregated number of votes per candidate. To specify this we use the TCD policy introduced
in Sect. 3.3 and relax the noninterference policy of method countBallots by adding an escape
hatch expression:

@ escapes

@ (\seq_def int i; 0; numberOfCandidates;

@ (\num_of int j;

@ 0<=j && j<ballots.length; i==ballots[j]));

The escape hatch expression uses JML’s \seq_def constructor to define a sequence whose i-
th element is equal to the number of votes cast for the i-th candidate. This means that the
program is allowed to leak the number of votes for each candidate. For each candidate i, the
comprehension expression \num_of returns the number j of indices between 0 (inclusive) and
ballots.length (exclusive) that satisfy the Boolean expression i==ballots[j].

After changing the policy we rerun KEG on CountingServer. It finds six leak demonstrators in
ca. 50 seconds, one less than before. Running the exploits results again in assertion failures for
all which means they are genuine. But inspection of the generated leak demonstrators shows
that none of them indicates an information flow from votes to the result. This is a strong hint
that no such leak exists (by proving the loop invariant and method contracts this can even be
verified). Therefore, the problem must lie elsewhere. By similar reasoning as above, it can be
easily seen that the test cases fail, because the information erasure policy ballots 6 GNIballots

is violated by methods countBallot, addBallot, and getResult. Inspecting the source code
reveals that the ballots are not erased at all.

93

Listing 7.4: Leak demonstrator for class CountingServer
1 public class TestCountingServer extends TestCase {

2 @Test

3 public void test_countBallots_result_bulletin_0()

4 throws NoSuchFieldException, ... {

5 /* Prepare for execution 1 */

6 CountingServer cs_1 = new CountingServer();

7 e_voting.Result cs_result_1 = new e_voting.Result();

8 ...

9 int cs_numberOfCandidates_1 = 2006;

10 int[] cs_ballots_1 = new int[1];

11 ...

12 /* Configure variable: cs_ballots_1 */

13 for (int i=0; i<cs_ballots_1.length; i++) cs_ballots_1[i] = 2006;

14 /* Perform execution 1 */

15 cs_1.countBallots();

16

17 /* Prepare for execution 2 */

18 CountingServer cs_2 = new CountingServer();

19 e_voting.Result cs_result_2 = new e_voting.Result();

20 ...

21 int cs_numberOfCandidates_2 = 2006;

22 int[] cs_ballots_2 = new int[1];

23 ...

24 /* Configure variable: cs_ballots_2 */

25 for (int i=0; i<cs_ballots_2.length; i++) cs_ballots_2[i] = 0;

26 /* Perform execution 2 */

27 cs_2.countBallots();

28 ...

29 /* assert that the value of low variable cs_result_bulletin

30 * is not changed after performing two executions */

31 Assert.assertArrayEquals(cs_result_bulletin_out_1,

32 cs_result_bulletin_out_2);

33 }

34 }

94

Let us now fix these issues one method at a time. We decide that method countBallot is
responsible to erase the individual ballots once it computed the result. To do this, we add the
new private method clearBallots to class CountingServer

private void clearBallots() { ballots = new int[0]; }

and add an invocation of clearBallots as a final statement to countBallots. Now those ex-
ploits related to countBallots pass without assertion failure.

We turn to method getResult. The leak demonstrators related to it still fail, because the
method does not erase any information about the ballots. If the method were only called after
countBallots terminates, this would actually be fine, because countBallots erases all informa-
tion. This shows that one has to be extremely careful when refactoring security-critical code:
seemingly harmless rearrangements can introduce subtle leaks.

One can argue in favor of defensive programming and simply add a call to clearBallots to
getResult. Another strategy is to weaken the security policy. We discuss this possibility now for
method addBallot.

Assume we fixed getResult, then the remaining failing test cases are related to method
addBallot. This method is used to collect the individual votes before the result is computed.
The solution to erase the ballots is not applicable, because method countBallots needs this
information. Instead, we decide to alter the information flow policy for this method by adding
the escape hatch expression

@ escapes ballots;

as a local method annotation. This “deactivates” the information erasure requirement, but still
enforces the noninterference part of the policy. We run KEG now on the corrected version of
CountingServer. KEG finishes without generating any leak demonstrators after 20 seconds.

7.3 Ballot Confidentiality with Privacy Game

In this section we present another approach to establish the confidentiality of votes that relies
on a privacy game. In fact, using the privacy game was in part motivated by the need to avoid
declassification. We perform the case study on verifying the privacy property of sElect by proving
the noninterference property of a simplified, ideal Java counterpart2. Moreover, the case study
is carried out using a combination of KEG and a loop invariant generation tool to achieve full
automation while still keeping high precision.

7.3.1 Fully Automatic Logic Based Approach

The logic-based information flow analysis approach proposed in Chapter 3 of this thesis re-
quires that specifications that are necessary for information flow analysis, i.e. loop invariants
and method contracts, must be supplied by the user. This is usually a tough task and requires
a considerable effort. In this section we demonstrate an approach that reduces the workload of
the user towards obtaining a fully automatic analysis of information flow for Java programs. The
fundamental idea is to integrate KEG with specification generation techniques [73, 101, 118] to
reduce the need of user-specified loop invariants and method contracts.

2 www.se.tu-darmstadt.de/research/projects/albia/download/e-voting-case-study/

95

www.se.tu-darmstadt.de/research/projects/albia/download/e-voting-case-study/

In the paper [57] and [1, Chapter 6], an approach to generate loop invariants for unbounded
loops is proposed. The needed loop invariants are automatically generated by abstraction tech-
niques, including array abstraction with symbolic pivots, based on abstract interpretation [36]
of partitions in an array. Loop invariants are generated without user interaction by repeated
symbolic execution of the loop body and abstraction of modified variables or, in the case of ar-
rays, the modified array elements. The invariant generation provides loop invariants which are
often precise enough to be used in information leak detection. The approach has been imple-
mented based on the KeY system. The tool can output loop invariants for respective unbounded
loops in the form of JML specifications.

Java
source code

Generate
Loop invariants and
Method contracts

Specify IF policies,
preconditions

Verify generated
specifications

Leak detection

Figure 7.2: Fully automatic leak detection for Java programs

Figure 7.2 shows the combination of the two tools to automatically detect information leaks
in a Java program. The solid border rectangle boxes represent automatic actions performed
by our tools, while the dashed border one is for manual action done by the user. If the Java
program contains unbounded loops and/or recursive method calls, the specification generator is
activated to generate corresponding specifications and insert them into the original source code.
Generated specifications are also verified by a verification tool, here we use the theorem prover
KeY. Finally, the specified program is automatically analysed w.r.t. user-defined information flow
policies and other specifications (usually preconditions) using KEG to create JUnit tests helping
to demonstrate discovered leaks as well as serving for regression tests.

7.3.2 From Privacy to Noninterference

Our case study is a modified, extended version of the e-voting case study introduced in [74, 75].
In order to prove the cryptographic privacy of the votes of honest voters, the authors constructed
a cryptographic privacy game formulated in Java. In that game, the environment (the adver-
sary) can provide two vectors c0 and c1 of choices of voters such that the two vectors yield the
same result according to the counting function, otherwise the game is stopped immediately.
Afterwards, the voters vote according to cb, where b is a secret bit. The adversary tries to dis-
tinguish whether the voters voted according to c0 or to c1. If they succeed, the cryptographic
privacy property is broken. By defining this game, instead of proving the cryptographic privacy
property of the complex e-voting system sElect, the authors of [75] prove the noninterference
property of its ideal simplified counterpart, which states that there is no information flow from
secret bit b to the public result on the bulletin board. It states that if the voting machine com-
putes the result correctly, then this result is independent of whether the voters voted according
to c0 or c1.

We re-implement the simplified version of the e-voting system in [74] by a slightly more
complicated version in which the system can handle an arbitrary number of candidates rather

96

than only two. Listing 7.5 depicts the core of our case study program that includes two
classes: Result (that has been proposed in Section 7.2.1) wraps the result of the election
and SimplifiedEvoting reproduces the privacy game mentioned in [75]. Class Result has
one public integer array field bulletin, where bulletin[i] stores the number of votes for can-
didate i. Class SimplifiedEVoting has the following fields: a private logic variable secret as
the secret bit, an integer variable n representing the number of candidates indexed by n con-
secutive integer number from 0 to n − 1; two integer arrays votesX, votesY as two vectors of
votes supplied by the adversary, where each array’s element i is an integer number j (ideally
0 ≤ j ≤ n − 1) which mean that voter i votes for candidate j; and finally the public variable
Result that can be observed by the adversary. Method privacyGame of class SimplifiedEvoting
mimics the process that the result is computed using one of two vectors of votes based on the
value of the secret bit. Method compute of class SimplifiedEvoting computes the result of the
election using the corresponding vector of votes passed as its parameter. Line 7 is the noninter-
ference policy claiming that there is no information flow from secret to result. To deal with
this object-sensitive noninterference policy, we implement the approach introduced in [18]. We
experiment using our approach on two versions of compute: one is a correct implementation,
while the other is faulty.

The precondition of method privacyGame is depicted in Listing 7.6, enforcing that two vec-
tors of votes (votesX and votesY) have the same size and produce the same result before
privacyGame is executed. It also makes sure that the number of candidates is greater than 1
and every single vote belongs to one of those candidates.

7.3.3 Leak Detection for Correct Implementation

We first show the result of our approach for the correct implementation of method compute

as shown in Listing 7.7. It is identical to method countBallots of class CountingServer in
Listing 7.2, except that the vector of votes to be counted is a parameter of compute rather than
a field. This helps to count both vectors of votes (votesX and votesY) conveniently.

To check the security of the method privacyGame, it is necessary to generate the loop speci-
fications for the loop commands executed in method compute. This is performed by employing
the approach in the paper [57] that has been implemented in KeY. Firstly, method privacyGame

is symbolically executed by the KeY tool. The input file is shown in Listing 7.8.

This first step symbolically executes the loop 7 times in total, opens 105 side proofs and
needs 148 seconds on a i5-3210M CPU with 6 GB RAM. As the implementation is not opti-
mized for speed, we suppose that it is possible to generate the invariants in significantly less
time. The output of the symbolic execution is, besides the proof tree, a file named SimplifiedE-
Voting.java.mod.0, which contains the Java file with the annotations. In Listing 7.9 the result
of the loop invariant generation for the loop in method compute is depicted. The invariant is
generated by calling the method compute, not by calling the method privacyGame, because the
loop invariant generation is local, in the sense that it produces invariants valid under a given
precondition. Calling privacyGame would produce two invariants, one for each branch, which
must be combined using the splitting condition distinguishing them. This may lose precision
because the splitting condition may be not fully known, thus the generating call should be to
the method containing the loop.

97

Listing 7.5: Privacy game establishing ballots confidentiality
1 public class SimplifiedEVoting {

2 private boolean secret;

3 public Result result;

4 int n; //number of candidates

5 int[] votesX, votesY;

6

7 /*! result | secret ; !*/

8

9 private Result compute(int[] votes){

10 /* implementation of compute */

11 }

12

13 /*@requires ... @*/

14 public void privacyGame(){

15 if(secret)

16 result = compute(votesX);

17 else

18 result = compute(votesY);

19 }

20 }

21

22 public class Result {

23 public int[] bulletin;//result of votes

24 public Result(int n) {

25 if(n>0)

26 this.bulletin = new int[n];

27 else

28 this.bulletin = null;

29 }

30 }

Listing 7.6: Precondition as JML specification of method privacyGame

1 /*@requires votesX!=null && votesY != null

2 && (votesX.length == votesY.length) && (votesX.length>0) && n>=2

3 && (\forall int j; j>=0 && j<votesX.length;

4 votesX[j]>=0 && votesX[j]<n && votesY[j]>=0 && votesY[j]<n)

5 && (\forall int i; 0 <= i && i < n;

6 (\sum int j; 0 <= j && j < votesX.length; (votesX[j]==i ? 1 : 0))==

7 (\sum int j; 0 <= j && j < votesY.length; (votesY[j]==i ? 1 : 0)));

8 @ diverges true;

9 @*/

98

Listing 7.7: Correct implementation of method compute

1 private Result compute(int[] votes){

2 Result rs = new Result(n);

3 for(int i = 0; i< votes.length; i++){

4 if(votes[i]>=0 && votes[i]<n)

5 rs.bulletin[votes[i]] = rs.bulletin[votes[i]] + 1;

6 }

7 return rs;

8 }

Listing 7.8: Input file input.key

1 \javaSource ".";

2

3 \programVariables{

4 SimplifiedEVoting2 vt;

5 int[] v;

6 Result2 r;

7 }

8

9 \problem{

10 vt != null &

11 vt.<created> = TRUE &

12 vt.<inv> &

13 vt.n >0 &

14 v != null &

15 v.<created> = TRUE &

16 wellFormed(heap) &

17 (\forall int i; (i >=0 & i <v.length -> (v[i] >= 0 & v[i] <vt.n))) &

18 r = null

19 ->

20 \[{

21 r = vt.compute(v);

22 }\](r != null)

23 }

99

The automatically generated loop invariant in Listing 7.9 is longer and more complex than
the loop invariant defined in Listing 7.3. How ever, both loop invariants have the same strength
in the sense that all ballots up to the loop counter i are guaranteed to be counted correctly.

Listing 7.9: Annotated SimplifiedEVoting.java.mod.0

1 //@ghost int iter = 0;// AUTO_GENERATED BY KeY

2 /*@ // AUTO_GENERATED BY KeY

3 loop_invariant

4 rs.bulletin == rs.bulletin

5 && i >= 0

6 && i == (\sum int q; 0 <= q & q <iter;1 + 0)

7 &&(\forall int j_27;

8 (0 <= j_27 & j_27 < rs.bulletin.length

9 ==> (\sum int q_1; 0 <= q_1 & q_1 <iter; (votes[q_1] == j_27)

10 ? (1 + 0)

11 : (0))

12 == rs.bulletin[j_27]))

13 && (iter >= 0 & iter * 1 == i)

14 && i - votes.length <= 0

15 &&(\forall int j_28;

16 (j_28 < i & 0 <= j_28 ==> votes[j_28] >= 0)

17);

18 assignable

19 rs.bulletin[*],i;

20 @*/

21

22 for(int i = 0; i< votes.length; i++){

23 //@set iter = iter + 1;// AUTO_GENERATED BY KeY

24 if(votes[i]>=0 && votes[i]<n)

25 rs.bulletin[votes[i]] = rs.bulletin[votes[i]] + 1;

26 }

27 return rs;

28 }

In the next step, the file SimplifiedEVoting.java.mod.0 is renamed to SimplifiedEVoting.java
and used as input for the KEG tool. KEG finished checking the program w.r.t noninterference
policy in 41 seconds on the same system without finding any information flow leak.

7.3.4 Leak Detection for Faulty Implementation

Now we change the implemenation of method compute slightly, such that it ignores the first
element in the vector of votes when calculating the result. It is obviously an incorrect im-
plementation, in that two vector of votes votesX, votesY can produce two different results
even if the precondition of method privacyGame holds. The faulty implementation is given in
Listing 7.10.

100

Listing 7.10: Faulty implementation of method compute

1 private Result compute(int[] votes){

2 Result rs = new Result(n);

3 for(int i = 1; i< votes.length; i++){ //omit votes[0]

4 if(votes[i]>=0 && votes[i]<n)

5 rs.bulletin[votes[i]] = rs.bulletin[votes[i]] + 1;

6 }

7 return rs;

8 }

For this method, the loop invariant generation opens 86 side proofs, executes the loop 7 times
in total and needs 161 seconds on a i5-3210M CPU with 6 GB RAM.

The KEG tool finishes checking method privacyGame calling the faulty implementation of
compute in 145 seconds and finds a leak. It reports that there is an implicit information flow
leak caused by two different symbolic execution paths branched by the value of secret. Using
precondition of method privacyGame as in Figure 7.6, KEG generates input values for votesX

and votesY in order to demonstrate the leak as follows:

array
element at index

0 1 2 3 4 5 6 7 8
votesX 1 2 2 1 1 0 0 1 0
votesY 2 1 1 1 1 0 0 0 2

It is easy to see that the generated values of votesX and votesY bring the same election result
by using the correct version of compute, however the results computed by the faulty method
compute differ. This helps the attacker infer the value of bit secret and break the privacy
property of the e-voting system.

7.4 Discussion

We chose the simplified e-voting system as case study for our approach for the following rea-
sons: (i) its noninterference property has been verified using a hybrid approach [75] that is not
automatic and requires the program to be modified; (ii) it is a sequential Java program having
complex features of real-life object oriented programs such as reference types, arrays and object
creation; and (iii) the program requires complex specifications containing comprehension sum
that challenge both the specification generation tool and the KEG tool.

In contrast to [56, 106] our main interest is not to formally verify that the given program
is secure, but to detect and to demonstrate the existence of leaks. The case study shows that
information erasure can be represented as a generalized noninterference policy and be actually
checked by KEG in practice.

We showed that KEG can be applied to object-oriented programs with unbounded loops. KEG
was able to generate leak demonstrators that demonstrated violations of the specified informa-
tion flow policy. The leak demonstrators assisted in identifying and fixing the existing leaks.
The fixes were validated by checking that the generated leak demonstrators passed and that
KEG was not able to generate any new ones. Except for the provision of the specifications, the
approach does not require any user interaction. Specifically, no expert knowledge in logic or
theorem proving is required.

101

Some words on scalability for real-world programs. Our approach is contract-based and thus
only one (or very few methods) need to be considered at one time. It is also possible to restrict
the analysis to critical modules and thus to reduce the number of required additional specifica-
tions like loop invariants. In addition, the approach is more about bug finding than verification,
so even simple contracts and loop invariants are useful.

Comprehension expressions like sum, max and min are usually not natively supported by SMT
solvers. KEG uses the SMT solver Z3 to solve insecurity formulas. While Z3 is very powerful,
it does not natively support comprehension expressions. KEG treats sum in a similar way to
the approach proposed in [80], where each sum is translated into a self-contained function
characterized by its axioms. The original implementation for the translation of sum (and other
comprehension expressions such as max and min) binds each expression to a corresponding
function that has two parameters describing the interval. For example, consider the following
sum expression in JML syntax:

(\sum int i ; 0<= i && i < votes . length ; votes[i])

This can be translated into a function call sum_0(0, votes.length-1), where sum_0 is char-
acterized by the following axioms:

∀ x,y ∈ {0,1, ..,votes.length− 1} :

x> y⇒ sum_0(x,y) = 0 ∧
x= y⇒ sum_0(x,y) = votes[x] ∧
x< y⇒ sum_0(x,y) = votes[x] + sum_0(x+ 1,y)

This translation approach is simple but versatile and can be used for all types of compre-
hension expressions. The drawback of this approach is that it does not support quantification,
i.e. if sum is nested in a universal expression (as shown at lines 3 - 7 in Figure 7.6). To solve
this problem, we tailor a new translation approach for sum if it is quantified. We extend the
generated sum functions with a parameter representing the quantified variable. For example,
following quantified clause in the precondition shown in Figure 7.6:

(\ forall int i ; 0<= i && i < n;
(\sum int j ; 0<=j && j<votesX . length ; (votesX[j]==i?1:0))==
(\sum int j ; 0<=j && j<votesY . length ; (votesY[j]==i?1:0)))

can be translated into following expression:

∀ i ∈ {0,1, ..,n− 1} :

sum_1(0,votesX.length− 1,i) = sum_2(0,votesY.length− 1,i)

The corresponding axioms chracterising sum_1 and sum_2 are also added into the insecurity
formula. Although this approach allows quantifying over sum expressions (also other compre-
hensions), it is not suitable for all instances of sum and brings considerable extra workload
for the SMT solver. We do believe that there is no one-size-fits-all method translating compre-
hension expressions to SMT first order formulas that exists and it is necessary to optimize the
translation w.r.t. each specific case.

102

8 PIN Integrity Check Case Study
This chapter showcases the secret inference approach proposed in this thesis along a case study.
The software to be analyzed implements an integrity check for Personal Identification Number
(PIN) assured by an Automated Teller Machine (ATM). The case study originated in [71] and has
been used in [8] to evaluate an approach to transform the problem of quantitative information
flow analysis (QIF) w.r.t. non-uniform distribution into the problem of QIF for uniform case. The
problem of PIN integrity checking is briefly introduced in Section 8.1. Section 8.2 outlines the
program modeling the PIN integrity check in detail. We explain how KEG can be used to extract
the value of the PIN in Section 8.3. The case study is concluded with some discussion given in
Section 8.4.

8.1 PIN Integrity Check Problem

This section describes the PIN integrity check problem proposed in [8] that in turn is picked
up from literature [22, 23, 71, 82]. In a nutshell, when a customer requests a service from an
Automated Teller Machine (ATM), she inputs her Personal Identification Number (PIN) that will
be sent to the bank to verify. If the ATM is not connected directly to the bank, the PIN must
be transmitted through a number of intermediate switches, that might be compromised by the
attacker.

To maintain the secrecy (and integrity) of the PIN during the transaction, the ATM will send
the PIN as an encrypted PIN block. This block, as described in the ISO standard, is constructed
by XORing each digit of the PIN with a digit of the customer’s Personal Account Number (PAN).
Each digit of PIN is represented by 4 bits [22]. Before sending the PIN block (PIN⊕PAN) to the
next switch, it is encrypted using symmetric cryptography. Each pair of adjacent switches shares
a common transport key that is used to encrypt and decrypt the PIN block transfered between
them.

At each switch, the encrypted PIN block is decrypted and the PIN is extracted by XORing the
decrypted PIN block with a given account number. Then the integrity checking is performed to
inspect whether the PIN has been changed during the transaction. After that, the PIN block is
encrypted and sent to the next switch. Those tasks are performed within the Hardware Security
Modules (HSMs) that are tamper-resistant cryptographic devices [71].

The HSM performs an integrity check by simply checking whether all PIN digits are < 10. In
case the PIN is not changed, this check will succeed if the given account number is the customer’s
PAN.

Although HSMs are designed towards protecting the communication keys and the PINs even
if the switch is compromised, they fail to fulfill this goal because the attacker can actually learn
the value of the PIN by observing the outcome of the PIN integrity check [34]. The reason is
that the PIN integrity check protocol allows an arbitrary account number PAN′ to be used, hence
the HSM will reveal whether PIN⊕PAN⊕PAN′ is a valid PIN or not. Because the value of PAN is
not secret, we can assume that the attacker knows that value. If the attacker can compromise
the switch, she is able to set a value for PAN′ and observe the outcome of the integrity checking

103

(whether all digit of PINs are < 10). Hence, by choosing different values for PAN′ and observing
the output of the PIN integrity check, the attacker can learn some information about the PIN.

Because the attacker knows the value of PAN, the integrity check can be considered as a
process that takes an input m and reports whether all digits of PIN⊕m are < 10. Here m can be
chosen by the attacker.

8.2 PIN Integrity Check Program

In this case study we only consider the case of a one-digit PIN (PIN ranges from 0 to 9). To
enable the KEG tool to be used, we adapt the PIN integrity check for one digit PINs in [8] by a
Java program, namely PINIntegrityCheck, that is outlined in Listing 8.1.

Listing 8.1: PIN Integrity check program
1 public class PINIntegrityCheck {

2 public int m;

3 private int PIN;

4 /*! m | PIN ; !*/

5 /*@ requires 0 <= PIN && PIN <= 9; @*/

6 public void check(){

7 if((m>15)|(m<0))

8 m=-1;

9 else{

10 if((PIN ^ m)<10)

11 m=1;

12 else

13 m=0;

14 }

15 }

16 }

Class PINIntegrityCheck consists of two integer variables: PIN representing the PIN and m

representing the XOR mask value that can be chosen by the attacker. To keep our setup simple,
we assume that the attacker observes the result of PIN integrity checking from the output value
of m. Therefore, in program PINIntegrityCheck, PIN is a high variable and m is a low variable.
The noninterference policy PIN 6 m is specified at line 4.

Method check models the PIN integrity checking process. Because PIN is a 4-bit number, the
mask value to be used also has four bits. Thus the value of m should be in the range [0,15]. In
program PINIntegrityCheck, this is enforced by a branch condition at line 7.

The PIN integrity check is carried out by simply XORing PIN with m and compare the result
with 10 (line 10). If the check succeeds, the output value of m is assigned by 1 (line 11), other-
wise 0 (line 13). Before performing the integrity check, the attacker already knows that PIN is
an integer number in the range [0, 9]. This initial knowledge is specified as the precondition of
method check at line 5.

104

8.3 Learning a PIN’s value by Performing PIN Integrity Check

To show how the value of a PIN value can be revealed by the PIN integrity check, we will perform
KEG on the program PINIntegrityCheck with the intend to learn the input value of PIN. For
each value of PIN (ranging from 0 to 9), KEG carries out an adaptive attack (as explained in
Chapter 4) to obtain the maximum information about this value. KEG starts with the initial
knowledge 0 ≤ PIN ≤ 9 that is specified as the precondition of method check (Listing 8.1,
line 5). The input value of the mask m is generated to maximize information leakage that is
measured by one of three security metrics based on Shannon, guessing and min entropy.

First, we check how the value of PIN can be learned in case the attacker assumes that the value
of PIN has uniform distribution, i.e. the probability P(PIN= x) is 1

10 for all 0≤ x ≤ 9. Figure 8.1
shows the number of experiments needed to obtain the maximal knowledge about PIN’s value
w.r.t. each possible PIN’s value from 0 to 9. It can be seen that the number of experiments needed
in case the leakage metric is Shannon entropy is the same for all possible PINs as when using
guessing entropy. Using min entropy as leakage metric gives different results. Nevertheless, for
all three metrics, KEG needs at least two experiments and at most three experiments to achieve
the maximal knowledge about the PIN’s value.

0 1 2 3 4 5 6 7 8 9

2

3

PIN’s value

#
Ex

pe
ri

m
en

ts

Shannon entropy Guessing entropy
Min entropy

Figure 8.1: Number of experiments needed to achieve maximum knowledge of PIN with uniform
PIN distribution

Whenever KEG reaches the maximum knowledge about the PIN’s value, it provides a list of
concrete values that satisfies the obtained knowledge. Taking a closer look into such concrete
values, we see that KEG always provides one of five pairs of the PIN’s values: [0,1], [2, 3],
[4,5], [6,7], [8, 9]. This coincides with the fact that there does not exist an m satisfying that
(m⊕PIN1 < 10) 6= (m⊕PIN2 < 10) where the pair [PIN1,PIN2] is one of five above pairs. We
call such pairs indistinguishable pairs. Figure 8.1 also shows that with respect to each leakage
metric, the number of experiments needed to achieve the maximum knowledge of PIN’s value
for the case the value is PIN1 is equal to the case the value is PIN2 for all indistinguishable pairs
[PIN1,PIN2].

Now we inspect how the PIN’s value can be learned assuming the PINs are non-uniformly
distributed (and this distribution is known by the attacker). First, we consider the distribution
given in [8]

w(PIN) =

¨

1, if 6≤ PIN≤ 9

2, if 0≤ PIN≤ 5

105

The number of experiments needed to achieve the maximum knowledge about a PIN w.r.t.
each PIN’s value and each leakage metric is shown in Figure 8.2.

0 1 2 3 4 5 6 7 8 9

3

2

PIN’s value

#
Ex

pe
ri

m
en

ts

Shannon entropy Guessing entropy
Min entropy

Figure 8.2: Number of experiments needed to achieve maximum knowledge of PIN with non-
uniform PIN distribution: {µ(0≤ PIN≤ 5) = 2,µ(6≤ PIN≤ 9) = 1}

As shown in Figure 8.2, the number of experiments that KEG needs to provide an indistin-
guishable pair is almost identical to the case when the PIN’s value has uniform distribution,
except for two pairs [0,1] and [2, 3] where Shannon or guessing entropy is used. Overall, KEG
still needs from 2 to 3 experiments to obtain the maximum knowledge of the PIN’s value. In
this case, the knowledge about the distribution of the PIN’s values does not help the attacker to
learn the PIN’s value more effectively.

We consider another distribution in which the probabilities of the PIN’s values are more dif-
ferent than in distribution above. It is given as follows:

w(PIN) =

¨

1, if 0≤ PIN≤ 8

10, if PIN= 9

This distribution states that 9 is the most likely value of the PIN while other values have
significantly lower probability. We perform KEG on the program PINIntegrityCheck using the
new PIN distribution. The number of experiments needed to reach the maximal knowledge
about the PIN is depicted in Figure 8.3.

Figure 8.3 shows that for the case PIN=9 (the greatest likelihood), KEG obtains the maximum
knowledge about the PIN’s value by only one experiment, in case the leakage metric is Shannon
or min entropy. The same holds for the case PIN = 8 because [8, 9] is an indistinguishable pair.
On the other hand, when Shannon or min entropy is used, for some other PIN values whose
likelihood is relatively small, KEG needs up to 4 experiments to obtain maximum knowledge
about the PIN’s value. However, the polarized distribution of PIN’s values does not affect the
number of needed experiments in case guessing entropy is used, that is identical to the case that
the attacker assumes that PIN’s value has uniform distribution.

8.4 Discussion and Remark

The PIN integrity check problem has been used in the papers [8, 71]. In these papers, adaptive
attacks for a PIN integrity check program are mentioned, but they only consider the uniform

106

0 1 2 3 4 5 6 7 8 9

2

4

3

1

PIN’s value

#
Ex

pe
ri

m
en

ts

Shannon entropy Guessing entropy
Min entropy

Figure 8.3: Number of experiments needed to achieve maximum knowledge of PIN with non-
uniform PIN distribution: {µ(0≤ PIN≤ 8) = 1,µ(PIN= 9) = 10}

distribution [71] or they reduce the analysis of a non-uniform distribution to the uniform one
by using an auxiliary program as the distribution generator [8]. This case study addresses an
adaptive attack performed on a PIN integrity check program that directly uses non-uniform
distribution of PIN’s values. The case study shows that in case of a uniform distribution of the
PIN, KEG helps the attacker to learn the maximum information of a PIN’s value in at most 3
experiments. This result is identical to the result in [8], that is obtained by using the optimal
attack strategy proposed in [70].

In the real world, the distribution of the value of PIN and other passwords is often non-
uniform [24], in which some values, e.g. “1234” or “password”, have a higher probability than
others. The case study confirms an intuition that the attacker can exploit her knowledge about
the distribution of PIN’s values to learn the PIN’s value more efficiently: the more the attacker
knows about the PIN distribution, the less experiments she needs to conduct to achieve the
maximum knowledge about the PIN’s value.

Program PINIntegrityCheck, although small in the size, poses a surprising challenge for
the KEG tool due to the XOR operator. KEG uses parametric counting to derive optimization
problems to find optimal low input w.r.t. Shannon or guessing entropy-based security metrics.
Unfortunately, XOR is a bitwise not integer arithmetic operator, hence to the best of our knowl-
edge, it is not supported by an integer parametric counting tool like Barvinok. We solve this
problem by using a bounded translation that converts an XOR expression into an equivalent ex-
pression using the conditional operator. For example, assume a and b are 2-bit integer numbers,
a ⊕ b can be translated to ((a%2

.
= b%2)?0 : 1) + 2((a/2

.
= b/2)?0 : 1). However, the condi-

tional operator is also not supported by the Barvinok tool, thus we have to further split it into
two disjuncts (true-case and false-case). Hence the number of disjuncts is exponential in the
number of conditional operators. For the case study program PINIntegrityCheck, both the PIN
and the XOR mask are 4-bits integer value, hence each XOR operator leads to four conditional
expressions and consequently, 16 disjuncts in the parametric counting formula. For the case of
4-digits PIN (PIN has 16 bits), it leads to 164 = 65536 disjuncts that overwhelm the parametric
counting tool Barvinok.

Luckily, the min entropy as a security metric and the Max-SMT based approach do not suffer
from the same above problem about the XOR operator. The Max-SMT problem used to find

107

optimal low input can be encoded using the bit vector theory that supports XOR. We examine
KEG with the case of 4-digits PIN and a PIN distribution having 16 partitions, KEG successfully
determines the optimal mask value and the corresponding maximum min entropy-based leakage
in a few seconds. It turns out that min-entropy and Max-SMT could be a promising approach
applicable for large programs.

108

9 Related Work
This chapter compares our work with related work in the literature in two main areas: leak
detection and demonstrator generation (Section 9.1), quantitative information flow analysis
and secret inference (Section 9.2). The content of this chapters is inherited and revised from
previous publications/technical reports of the author of this thesis [46, 47, 48, 49].

9.1 Related to Leak Detection and Demonstrator Generation

Our approach to detect information leaks and generate leak demonstrators is based on self-
composition [17, 38, 39]. Paper [39] addresses also declassification. Its authors observe that
in their formalization it is possible to express and verify that a program is insecure. Our for-
malization of insecurity uses this observation. Our leak detection and demonstrator generation
approach follows techniques that were first explored in automatic test generation. In particular,
we build on work presented in [2, 40, 51, 68], where symbolic execution is used as a means to
generate test cases for functional properties.

Deductive approaches to information flow analysis [18, 107] are fully precise and at the same
time can flexibly express various information flow properties beyond the policies presented in
this paper. The verification process is not fully automatic, however, and non-trivial interactions
with a theorem prover are required. This restricts usability of these approaches seriously. In [92]
higher-order logic is used to express information flow properties for object-oriented programs,
which is highly expressive, but imposes even higher demands on user expertise.

Pairs of symbolic execution paths to improve the efficiency of self-composition have been
independently introduced in [97] to check programs for noninterference. However, that paper
focuses on checking noninterference and does not support declassification. Unbounded loops
and recursive methods are not handled either.

In [115], leaks are inferred automatically and expressed in a human-readable security policy
language, helping programmers to decide whether the program is secure or not, however, they
cannot give concrete counter examples that could suggest further corrections. Counter examples
can be used not only to generate executable exploits as in our approach, but also to refine
declassification policies by quantifying the leakage [9, 11]. However, none of these approaches
provides a solution for unbounded loops and recursion.

ENCoVer [10] uses epistemic logic and makes use of symbolic execution (concolic testing) to
check noninterference for Java programs. In [88], the authors proposed a tool which checks
that a C program is secure with respect to noninterference. It transforms the original program
and makes use of dynamic symbolic execution to analyze the program’s information flow. Both
tools check loops and recursive method invocations only up to a fixed depth.

Type-based approaches to information flow like [63, 91, 103, 117] and those based on de-
pendency graphs [54, 55] distinguish themselves by their high performance and ability to check
large systems. Their common drawbacks are a lack of precision with a resulting high number of
false positives and restrictions on the syntactic form of programs.

109

None of the logic-based and type-based approaches to noninterference analysis mentioned
above does generate leak demonstrators from a failed proof or analysis. Our work does not
intend to replace these approaches, but is intended to be used complementary, just like testing
complements formal verification.

9.2 Related to Quantitative Information Flow Analysis and Secret Inference

An information-theoretic model for an adaptive side-channel attack is proposed in [70]. The
idea of the attacker strategy is to choose at each step the query that minimizes the remaining
entropy. Even though this greedy heuristic attack strategy is similar to our guided experiments
approach, it requires to enumerate all possible queries to choose the best one, which is rather
expensive. Our approach differs in the sense that we quantify the potential leakage as a function
of low input, and hence, we can make use of many available, efficient optimization tools to find
the optimal input value. Furthermore, our work takes into account non-uniform distribution of
secret, while the paper [70] only considers uniform case.

Pasareanu et al. [96] propose a non-adaptive side-channel attack to find low input that max-
imizes the amount of leaked information. To find optimal low input, they solve a number
of Max-SMT problems whose formalisation is based on path conditions and user-defined cost
models. In contrast to our approach, only path conditions are considered, but not symbolic
states. Hence, they cannot measure leakage caused by explicit information flow. The authors
of [60] define a quantitative policy which specifies an upper bound for permitted information
leakage. The model checker CBMC is used to generate low input that triggers a violation of
the policy. Both of [60, 96] use channel capacity as their leakage metric which is the worst
case over all prior distributions over high inputs. Low input is generated with the aim to max-
imize the number of equivalence classes on high inputs. The size of the individual class is not
taken into account. Hence, they are less precise than our approach that takes into account prior
distributions. Their generated low input often is not the optimal one: for example, in case of
Listing 6.4, we are able to generate a sequence of low inputs for l, each of which extracts nearly
1 bit of information, allowing to find the exact secret after 31 experiments. Their approach can
only return a single, arbitrary input for l ∈ (−231, 231), hence, using it for an attack would not
perform better than brute force (see discussion in Section 6.3.2). Both approaches require a
bound on the number of loop iterations or the recursion depth, whereas we can make use of
specifications to deal with unbounded loops and recursion.

Low input as a parameter of quantitative information flow (QIF) analysis is also addressed in
[94, 119]. In [119], the authors only analyze the bounding problem of QIF for low input, but
do not provide a method to determine a bound for the leakage. The authors of [94] model the
program with low input as a set of information channels, where each channel corresponds to a
specific value of low input. While considering that the leakage depends on low input, they do
not discuss how to find the input maximizing the leakage.

Symbolic execution as a static analysis technique is used in several quantitative information
flow analyses [69, 98]. In [69] a precise quantitative information flow analysis based on calcu-
lating cardinalities of equivalent classes is presented. The approach is first applied for uniform
distribution and extended for the case of non-uniform one. The author assumes an optimally
chosen set of experiments, but does not describe how to construct such a set.

The authors of [32, 33] model the attacker’s knowledge about the secret as belief and show
how to update the knowledge after each experiment. In [9], the authors briefly discuss the cor-

110

relation between the set of experiments and an attacker’s knowledge about the secret. However,
none of these papers describes how to construct an optimal experiment set that maximizes the
leakage. Other approaches in quantitative information flow [81, 86, 98, 110] do not address
low input in their analyses and consider only channel capacity with the same drawbacks as
discussed earlier.

Finding low input maximizing the leakage is investigated in few works, but they either only
use channel-capacity as leakage metric [60, 96] or only take uniform distribution of high input
into account [70]. On the other hand, information leakage with non-uniform secret distribution
has been studied in many works [3, 4, 8, 25, 26, 69, 89], but none of them quantifies the
leakage as an explicit function of low input or shows how to find low input maximizing the
leakage. Details of those works will be discussed in the next paragraphs.

Backes et. al [8] propose a technique representing non-uniform distribution in terms of a
generator program that received uniform distribution input and produces output according to
the desired distribution. With this technique they can reduce a problem of QIF w.r.t. non-uniform
distribution to a problem of QIF w.r.t. uniform distribution. However, their approach does not
take low input into account.

Mu and Clark [89] introduce an interval-based abstraction method that transforms a do-
main equipped by an arbitrary, explicit non-uniform distribution to a set of partitions each of
which has uniform distribution. It allows them to mitigate the restriction of their previous ap-
proach [90] that requires an explicit representation of the probability distribution thereby being
hard to apply for a large state space. Both works are based on a distribution transformer se-
mantics and compute the upper bound on the leakage. While allowing quantifying information
leakage w.r.t. non-uniform distribution, those works only deal with a simple while-language and
do not take into account low input.

Gain function [3] and worth-assignment [4] are introduced to extend and generalize current
security metrics. Those metrics not only enrich the security’s semantics but also affect the
attacker’s strategies in guessing a secret. Boreale and Pampaloni [26] prove that the maximum
information leakage over attacking strategies under generic leakage function and an adaptive
attacker can be expressed in term of a Bellman equation that can be used to compute the optimal
finite strategies recursively. In [25], the authors model the gain function by a pair of cost and
reward assigned for each set of secret corresponding to an attacker’s guess. By using Bayes
decision theory, the optimal action that maximizes the overall expected gain can be derived.
All of those approaches, although dealing with arbitrary secret distribution, only consider the
program as the channel between secret input and observable output, and hence the role of low
input is omitted.

111

10 Conclusion and Future Work

10.1 Conclusion

Although many information flow analysis approaches have been proposed, there are still some
remaining challenges: i) achieving full automation and precision in static qualitative informa-
tion flow analysis, ii) path coverage and the requirement of runtime infrastructure in dynamic
qualitative information flow analysis, iii) quantifying leakage with low input and non-uniform
distribution of secrets in quantitative information flow analysis. In addition, to the best of our
knowledge, exploiting information flow leaks to infer the secret have not been investigated very
much in language-based information flow analysis. This thesis has complemented other existing
approaches in the field of language-based information flow analysis by introducing a number of
novel approaches combining static and dynamic analysis. Such approaches allow one to detect,
exploit and judge the severity of information flow leaks in programs. We summarize the work
of this thesis in following paragraphs.

To detect (as much as possible) information leaks in a program w.r.t. an information flow
policy, this thesis proposed a static approach based on self-composition and symbolic execution.
We formalize the violations of a given information flow policy in the form of insecurity formulas
composed from pairs of symbolic execution paths of the program. SMT solvers are used to check
the satisfiability of such formulas to discover possible information leaks.

Unlike other logic-based approaches, the leak detection approach proposed in this thesis does
not aim to prove that a program is secure/insecure, but tries to find all potential leaks. Under
the assumption that the symbolic execution tree of a target program is correct and finite, our
approach is fully automatic and precise: it can formally conclude whether the program is se-
cure without any user interactions. For the case of an infinite symbolic execution tree, due to
unbounded loops or recursive method calls, our approach uses program specifications, i.e. loop
invariants or method contracts, for composing insecurity formulas. This allows the approach
to be fully precise (if needed) but also to abstract (and allow for false positives) in exchange
for a higher degree of automation and simpler specifications. The approach supports several
information flow security policies, namely, noninterference, delimited information release and
information erasure.

To verify detected leaks and avoid false alarms, we introduced the concept of leak demonstra-
tor. A leak demonstrator is a program exposing an information flow leak in the target program
and terminates with an assertion failure if such a leak has been detected. A leak demonstrator
can be seen as a test case for secure information flow where the test oracle is the assertion that
the low outputs of two runs are equal. A leak demonstrator confirms an actual leak if this as-
sertion fails, otherwise it is a false alarm. One nice thing about leak demonstrators is that they
do not only confirm information leaks and filter false alarms, but that they can also be used for
regression testing to avoid the reintroduction of a fixed leak.

To judge the severity of information leaks, this thesis proposed an approach that exploits
detected leaks to infer the secrets of a program. It basically conducts an adaptive attack in which

113

the attacker tries to infer the secret by performing a series of experiments. Each experiment
is carried out as follows: the attacker chooses the input values of low variables, then runs
the program (initialized by secret high input and chosen low input), and observes the output
values. The execution of a set of experiments accumulates knowledge about a secret in the form
of a first order formula that constrains the possible values of the secret. The presented approach
combines static and dynamic aspects into a hybrid analysis. Leak detection and quantification of
a leak are achieved by static analysis, while the knowledge accumulation depends on concrete
program runs. The approach allows developers to judge the severity of an information leak by
measuring how much information is leaked and by actually demonstrating that (some parts of)
the secret can be inferred.

The secret inference approach is designed to be optimal: it aims to extract a maximum of
information about the secret with as few experiments as possible. Within this thesis, several op-
timizations have been investigated that allow one to avoid redundant experiments and even to
determine when the knowledge accumulation is saturated. We explained in detail how to gener-
ate optimal low inputs for the experiments in two steps: (i) quantifying low input-parameterized
leakages and (ii) solving the resulting optimization problems. The approach supports the secu-
rity metrics Shannon, guessing and min entropy. It also supports arbitrary prior distributions
of high input values. Symbolic execution and parametric model counting are used to compute
a leakage representation as a function of low inputs. The resulting optimization problems are
solved with help of (non-linear) optimization tools or Max-SMT solvers. Although there are still
some drawbacks in scalability, the proposed approaches improve significantly upon the current
state-of-the-art.

The proposed approaches have been implemented and integrated into the tool KeY Exploit
Generation (KEG). The KEG tool is built on top of the deductive verification system KeY and
makes use of KeY as symbolic execution engine. This symbolic execution framework allows KEG
to use program specifications, e.g. loop invariants and method contracts to support unbounded
loops and recursive method calls. Except for floating points, reflection and generic types, KEG
supports full sequential Java, i.e. primitive and reference types (objects and arrays), object
creation and aliasing. The information flow policies are specified as part of the source code
embeded as special Java comments. Besides class-level (generalized) noninterference policies,
we introduced new JML-style keywords to embed method-level declassification policies into
method contracts.

With a Java program annotated with information flow policies and other auxiliary specifi-
cations i.e. method contracts and loop invariants, KEG can automatically detect all possible
information leaks for which corresponding leak demonstrators as JUnit tests are generated. To
infer as much information as possible about a program’s secret data, KEG generates an exe-
cutable Java program, which performs an adaptive attack. KEG allows the user to define the
prior distribution and to specify the maximal number of experiments to be carried out. KEG
uses the parametric counting tool Barvinok, the Max-SMT solver Z3 and a three optimizers:
Local Solver, Bonmin, Couenne to quantify the leak and find optimal low input.

The approaches proposed in this thesis as well as the KEG tool have been applied to a collec-
tion of micro benchmarks. KEG proved to be successful in leak detection and leak demonstrator
generation. Further, it showed that using its secret inference capabilities allowed to accumulate
knowledge about the secret data of a program more efficiently than with a brute force attack.

Besides micro benchmarks, KEG was used in two case studies known from the literature.
The first one considers an e-voting system that challenges the leak detection and demonstra-

114

tor generation approach. We used KEG to check a simplified e-voting program adapted from
the real-world e-voting system sElect. The aim was to find all possible information leaks and
to demonstrate them by executing the generated leak demonstrators. The e-voting case study
showed that KEG is able to deal with relatively complicated programs including unbounded
loops, objects and arrays. Moreover, we also showed that KEG can be integrated with a spec-
ification generation tool to obtain both high precision and full automation. The second case
study used KEG to infer secret PIN numbers by observing the output of a PIN integrity checking
program. The PIN integrity checking program was adapted from real-world system. The case
study showed that KEG can make use of assumptions about prior distribution to infer secrets
significantly more efficient than when just assuming a uniform distribution (if the assumed prior
distribution is close enough to the acutal one).

In conclusion, this thesis contributes to the field of language-based information flow analysis
with a number of precise semi-automatic approaches that allow one to detect, exploit and judge
the severity of information flow leaks in programs. Those approaches have been implemented
in the KEG tool and evaluated by a number of small benchmarks. Case studies showcasing the
practical application of KEG have also been provided.

10.2 Future Work

Path explosion is a well-known bottle neck for all symbolic execution-based techniques, includ-
ing the approach proposed in this thesis. Using (correct and strong) program specifications in
leak detection can significantly reduce the total number of symbolic paths. However, manually
supplying necessary specifications could be a tough task. The case study in Section 7.3 shows
that specifications automatically generated by a specification generation approach [57, 118] can
be used effectively by our approach (implemented in the KEG tool) for detecting information
flow leaks. Because the methods in [57, 118] have been implemented in the KeY system, it is
feasible to integrate them with KEG to achieve full automation in a transparent manner: re-
quired specifications will be automatically generated for leak detection and secret inference on
demand.

One promising approach for mitigating path explosion is state merging. In [108], the authors
proposed an approach that makes use of an abstract domain lattice to merge two symbolic
states satisfying some specific conditions. This approach has also been implemented in KeY
from which KEG can benefit, at least when using the If-Then-Else merging technique. Further
research about utilizing information flow polices i.e. noninterference or delimited information
release to optimize the state merging could be interesting and worth to come up with.

The approach finding optimal low inputs in this thesis is precise, but has some limitations
in scalability as discussed in Section 5.3. Examples and small benchmarks for secret inference
approach proposed in this thesis show that generally, “good enough” low input is still very
efficient for finding the secret. To make the secret inference approach feasible for real world
programs, it is crucial to devise some approximation and heuristic techniques to obtain a good
tradeoff between precision and scalability.

The complexity of high inputs distribution is another source of computational overhead of
leakage quantification. The paper [8] proved that the leakage is robust with respect to small
variations in the distribution of high inputs. Simplifying supplied high inputs distribution, there-
fore, seems to be a promising way to enhance the performance of secret inference.

115

At the moment, our secret inference approach only consider the scenario that the attacker
does not revise his assumption about the prior distribution of high inputs after observing the
outputs. It could be very interesting to incorporate the concept of belief [32, 33] into our
approach: the attacker’s knowledge about the secret could be not only the constraint of the
secret but also its prior distribution that can be updated after each experiment. This enables us
to model a more general attack scenario that can capture a practical use case: the attacker does
not completely trust his assumption about the secret’s distribution and needs to revise it using
the observed values.

On the other hand, in practice the attacker might try to infer only the worthiest part of a secret
instead of the whole secret value. Incorporating gain function [3] and worth-assignment [4]
seems to be a potential dimension to extend and generalize our secret inference approach to
capture that attack scenario.

116

Bibliography
[1] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. Schmitt, and M. Ulbrich, editors. Deductive

Software Verification—The KeY Book: From Theory to Practice, volume 10001 of Lecture
Notes in Computer Science. Springer, Dec. 2016.

[2] E. Albert, M. Gomez-Zamalloa, and G. Puebla. PET: A Partial Evaluation-based Test Case
Generation Tool for Java Bytecode. In ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-based Program Manipulation (PEPM), pages 25–28. ACM Press, 2010.

[3] M. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith. Measuring Information Leak-
age Using Generalized Gain Functions. In Computer Security Foundations Symp. (CSF),
2012 IEEE 25th, pages 265–279, June 2012.

[4] M. S. Alvim, A. Scedrov, and F. B. Schneider. When Not All Bits Are Equal: Worth-Based
Information Flow. In M. Abadi and S. Kremer, editors, Principles of Security and Trust,
volume 8414 of LNCS, pages 120–139. Springer, 2014.

[5] S. Anand, C. S. Păsăreanu, and W. Visser. JPF-SE: A Symbolic Execution Extension to Java
PathFinder. In Proceedings of the 13th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’07, pages 134–138, Berlin, Heidelberg,
2007. Springer-Verlag.

[6] J. M. Anderson. Why we need a new definition of information security. Computers &
Security, 22(4):308 – 313, 2003.

[7] A. Askarov, S. Chong, and H. Mantel. Hybrid Monitors for Concurrent Noninterference. In
C. Fournet, M. W. Hicks, and L. Viganò, editors, IEEE 28th Computer Security Foundations
Symp., CSF, Verona, Italy, pages 137–151. IEEE Computer Society, 2015.

[8] M. Backes, M. Berg, and B. Köpf. Non-Uniform Distributions in Quantitative Information-
Flow. In B. S. N. Cheung, L. C. K. Hui, R. S. Sandhu, and D. S. Wong, editors, Proceedings
of the 6th ACM Symposium on Information, Computer and Communications Security, ASI-
ACCS 2011, Hong Kong, China, March 22-24, 2011, pages 367–375. ACM, 2011.

[9] M. Backes, B. Köpf, and A. Rybalchenko. Automatic Discovery and Quantification of
Information Leaks. In 2009 30th IEEE Symposium on Security and Privacy, pages 141–
153, May 2009.

[10] M. Balliu, M. Dam, and G. Le Guernic. ENCoVer: Symbolic Exploration for Information
Flow Security. In 25th IEEE Computer Security Foundations Symposium, pages 30–44.
IEEE CS, 2012.

[11] A. Banerjee, R. Giacobazzi, and I. Mastroeni. What You Lose is What You Leak: Informa-
tion Leakage in Declassification Policies. Electron. Notes Theor. Comput. Sci., 173:47–66,
Apr. 2007.

117

[12] A. Banerjee and D. A. Naumann. Stack-based Access Control and Secure Information
Flow. J. Funct. Program., 15(2):131–177, 2005.

[13] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The Oracle Problem in
Software Testing: A Survey. IEEE Transactions on Software Engineering, 41(5):507–525,
May 2015.

[14] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds,
and C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings, volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, 2011.

[15] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Secure Multi-execution
Through Static Program Transformation, pages 186–202. FMOODS’12/FORTE’12.
Springer-Verlag, Berlin, Heidelberg, 2012.

[16] G. Barthe, J. M. Crespo, and C. Kunz. Relational Verification Using Product Programs. In
Proc. of the 17th Intl. Conf. on Formal Methods, FM’11, pages 200–214. Springer, 2011.

[17] G. Barthe, P. R. D’Argenio, and T. Rezk. Secure Information Flow by Self-Composition.
In Proc. of the 17th IEEE Workshop on Computer Security Foundations, CSFW ’04, pages
100–114. IEEE CS, 2004.

[18] B. Beckert, D. Bruns, V. Klebanov, C. Scheben, P. H. Schmitt, and M. Ulbrich. Informa-
tion Flow in Object-Oriented Software. In G. Gupta and R. Peña, editors, Logic-Based
Program Synthesis and Transformation: 23rd International Symposium, LOPSTR 2013,
Madrid, Spain, September 18-19, 2013, Revised Selected Papers, pages 19–37, Cham, 2014.
Springer International Publishing.

[19] B. Beckert and R. Hähnle. Reasoning and Verification. IEEE Intelligent Systems, 29(1):20–
29, Jan.–Feb. 2014.

[20] B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of Object-oriented Software: The KeY
Approach. Springer, 2007.

[21] T. Benoist, B. Estellon, F. Gardi, R. Megel, and K. Nouioua. LocalSolver 1.x: a black-box
local-search solver for 0-1 programming. 4OR, 9:299–316, 2011.

[22] O. Berkman and O. M. Ostrovsky. The Unbearable Lightness of PIN Cracking. In S. Di-
etrich and R. Dhamija, editors, Financial Cryptography and Data Security: 11th Inter-
national Conference, FC 2007, and 1st International Workshop on Usable Security, USEC
2007, Scarborough, Trinidad and Tobago, February 12-16, 2007. Revised Selected Papers,
pages 224–238, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[23] M. Bond and P. Zieliński. Decimalisation table attacks for PIN cracking. Technical Report
560, University of Cambridge - Computer Laboratory, February 2003.

[24] J. Bonneau. Guessing human-chosen secrets. PhD thesis, University of Cambridge, May
2012.

118

[25] M. Boreale and F. Corradi. Searching secrets rationally. International Journal of Approxi-
mate Reasoning, 69:133 – 146, 2016.

[26] M. Boreale and F. Pampaloni. Quantitative information flow under generic leakage func-
tions and adaptive adversaries. Logical Methods in Computer Science, 11(4), 2015.

[27] M. Brockschmidt, D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. Composi-
tional Safety Verification with Max-SMT. In Proceedings of the 15th Conference on Formal
Methods in Computer-Aided Design, FMCAD ’15, pages 33–40, Austin, TX, 2015. FMCAD
Inc.

[28] D. Bruns, H. Q. Do, S. Greiner, M. Herda, M. Mohr, E. Scapin, T. Truderung, B. Beckert,
R. Küsters, H. Mantel, and R. Gay. Security in E-Voting. Poster presented at the 36th IEEE
Symposium on Security and Privacy (S&P), 2015.

[29] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation of
High-coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, pages 209–224,
Berkeley, CA, USA, 2008. USENIX Association.

[30] P. Cerný, K. Chatterjee, and T. A. Henzinger. The Complexity of Quantitative Information
Flow Problems. In CSF, pages 205–217. IEEE Computer Society, 2011.

[31] D. Clark, S. Hunt, and P. Malacaria. A Static Analysis for Quantifying Information Flow
in a Simple Imperative Language. J. Comput. Secur., 15(3):321–371, 2007.

[32] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in Information Flow. In 18th IEEE
Computer Security Foundations Workshop, (CSFW-18), Aix-en-Provence, France, pages 31–
45. IEEE Computer Society, 2005.

[33] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Quantifying information flow with
beliefs. Journal of Computer Security, 17(5):655–701, 2009.

[34] J. Clulow. The Design and Analysis of Cryptographic Application Programming Interfaces
for Security Devices. Master’s thesis, University of Natal, Durban, South Africa, 2003.

[35] E. S. Cohen. Information Transmission in Sequential Programs. Foundations of Secure
Computation, pages 297–335, 1978.

[36] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL
’77, pages 238–252, New York, NY, USA, 1977. ACM.

[37] M. Dam, B. Jacobs, A. Lundblad, and F. Piessens. Provably correct inline monitoring for
multithreaded Java-like programs. Journal of Computer Security, 18(1):37–59, 2010.

[38] A. Darvas, R. Hähnle, and D. Sands. A Theorem Proving Approach to Analysis of Secure
Information Flow. In R. Gorrieri, editor, Workshop on Issues in the Theory of Security. IFIP
WG 1.7, ACM SIGPLAN and GI FoMSESS, 2003.

119

[39] Á. Darvas, R. Hähnle, and D. Sands. A Theorem Proving Approach to Analysis of Secure
Information Flow. In D. Hutter and M. Ullmann, editors, Security in Pervasive Com-
puting: Second International Conference, SPC 2005, Boppard, Germany, April 6-8, 2005.
Proceedings, pages 193–209, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[40] J. de Halleux and N. Tillmann. Parameterized Unit Testing with Pex. In B. Beckert and
R. Hähnle, editors, Tests and Proofs, Second International Conference, TAP 2008, Prato,
Italy, April 9-11, 2008. Proceedings, volume 4966 of LNCS, pages 171–181. Springer,
2008.

[41] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. Ramakrishnan and J. Re-
hof, editors, Tools and Algorithms for the Construction and Analysis of Systems, volume
4963 of LNCS, pages 337–340. Springer, 2008.

[42] F. Del Tedesco, S. Hunt, and D. Sands. A Semantic Hierarchy for Erasure Policies. In
S. Jajodia and C. Mazumdar, editors, Information Systems Security: 7th Intl. Conf., ICISS,
Kolkata, India, pages 352–369. Springer, 2011.

[43] D. E. Denning. A Lattice Model of Secure Information Flow. Commun. ACM, 19(5):236–
243, May 1976.

[44] D. E. R. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[45] D. Devriese and F. Piessens. Noninterference through Secure Multi-execution. In 31st
IEEE Symp. on Security and Privacy, S&P, Berleley/Oakland, USA, pages 109–124. IEEE
Computer Society, 2010.

[46] Q. H. Do, R. Bubel, and R. Hähnle. Inferring Secrets by Guided Experiments.
Technical report, TU Darmstadt, Feb. 2017. Available at https://www.se.

informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Publications/

ALBIA/SecretInference.pdf.

[47] Q. H. Do, R. Bubel, and R. Hähnle. Exploit Generation for Information Flow Leaks in
Object-Oriented Programs. In H. Federrath and D. Gollmann, editors, ICT Systems Security
and Privacy Protection, volume 455 of IFIP Advances in Information and Communication
Technology, pages 401–415. Springer, 2015.

[48] Q. H. Do, R. Bubel, and R. Hähnle. Automatic detection and demonstrator generation for
information flow leaks in object-oriented programs. Computers & Security, 67:335 – 349,
2017.

[49] Q. H. Do, E. Kamburjan, and N. Wasser. Towards Fully Automatic Logic-Based Informa-
tion Flow Analysis: An Electronic-Voting Case Study. In F. Piessens and L. Viganò, editors,
Principles of Security and Trust, 5th Intl. Conf., POST, Eindhoven, The Netherlands, volume
9635 of LNCS, pages 97–115. Springer, 2016.

[50] B. Dutertre. Yices 2.2. In A. Biere and R. Bloem, editors, Computer Aided Verification:
26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 737–744, Cham, 2014.
Springer International Publishing.

120

https://www.se.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Publications/ALBIA/SecretInference.pdf
https://www.se.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Publications/ALBIA/SecretInference.pdf
https://www.se.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Publications/ALBIA/SecretInference.pdf

[51] C. Engel and R. Hähnle. Generating Unit Tests from Formal Proofs. In B. Meyer and
Y. Gurevich, editors, Proc. of Tests and Proofs, volume 4454 of LNCS, pages 169–188.
Springer, 2007.

[52] R. W. Floyd. Assigning Meanings to Programs. In J. T. Schwartz, editor, Mathematical
Aspects of Computer Science, volume 19 of Proceedings of Symposia in Applied Mathematics,
pages 19–32, Providence, Rhode Island, 1967. American Mathematical Society.

[53] D. M. Gay. The AMPL Modeling Language: An Aid to Formulating and Solving Opti-
mization Problems. In M. Al-Baali, L. Grandinetti, and A. Purnama, editors, Numerical
Analysis and Optimization: NAO-III, Muscat, Oman, January 2014, pages 95–116, Cham,
2015. Springer International Publishing.

[54] J. Graf, M. Hecker, and M. Mohr. Using JOANA for Information Flow Control in Java Pro-
grams - A Practical Guide. In Proc. of the 6th Working Conf. on Programming Languages,
LNI 215, pages 123–138. Springer, Feb. 2013.

[55] J. Graf, M. Hecker, M. Mohr, and G. Snelting. Tool Demonstration: JOANA. In F. Piessens
and L. Viganò, editors, Principles of Security and Trust - 5th International Conference, POST
2016, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9635 of
Lecture Notes in Computer Science, pages 89–93. Springer Berlin Heidelberg, 2016.

[56] D. Grahl. Deductive Verification of Concurrent Programs and its Application to Secure Infor-
mation Flow for Java. PhD thesis, Karlsruhe Institute of Technology, Oct. 2015.

[57] R. Hähnle, N. Wasser, and R. Bubel. Array Abstraction with Symbolic Pivots. In
E. Ábrahám, M. Bonsangue, and E. B. Johnsen, editors, Theory and Practice of Formal
Methods: Essays Dedicated to Frank de Boer on the Occasion of His 60th Birthday, volume
9660 of LNCS, pages 104–121. Springer, 2016.

[58] C. Hammer and G. Snelting. Flow-sensitive, Context-sensitive, and Object-sensitive Infor-
mation Flow Control Based on Program Dependence Graphs. Int. J. Inf. Secur., 8(6):399–
422, Oct. 2009.

[59] M. Hentschel, R. Hähnle, and R. Bubel. Visualizing Unbounded Symbolic Execution. In
M. Seidl and N. Tillmann, editors, Tests and Proofs: 8th International Conference, TAP
2014, Held as Part of STAF 2014, York, UK, July 24-25, 2014. Proceedings, pages 82–98,
Cham, 2014. Springer International Publishing.

[60] J. Heusser and P. Malacaria. Quantifying Information Leaks in Software. In Proceedings of
the 26th Annual Computer Security Applications Conference, ACSAC ’10, pages 261–269,
New York, NY, USA, 2010. ACM.

[61] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM,
12(10):576–580, Oct. 1969.

[62] C. Hsieh, E. A. Unger, and R. A. Mata-Toledo. Using program dependence graphs for
information flow control. Journal of Systems and Software, 17(3):227 – 232, 1992.

[63] S. Hunt and D. Sands. On Flow-Sensitive Security Types. In ACM SIGPLAN Notices,
volume 41, pages 79–90. ACM, 2006.

121

[64] S. Hunt and D. Sands. Just Forget it – The Semantics and Enforcement of Information
Erasure. In Programming Languages and Systems. 17th European Symposium on Program-
ming, ESOP 2008, number 4960 in LNCS, pages 239–253. Springer Verlag, 2008.

[65] P. V. Huong, T. M. Tuan, D. Q. Huy, L. H. Trang, V. T. Nhan, N. N. Binh, T. A. Hoang, and
V. Q. Dung. Some Approaches to Nôm Optical Character Recognition. VNU Journal of
Science, Natural Sciences and Technology, 24(3S):90–99, October 2008.

[66] D. Q. Huy, T. A. Hoang, and N. N. Binh. Extending Crest with Multiple SMT Solvers and
Real Arithmetic. In Proceedings of the 2010 Second International Conference on Knowledge
and Systems Engineering, KSE ’10, pages 183–187, Washington, DC, USA, 2010. IEEE
Computer Society.

[67] M. Jaskelioff and A. Russo. Secure Multi-execution in Haskell. In E. Clarke, I. Virbitskaite,
and A. Voronkov, editors, Perspectives of Systems Informatics: 8th International Andrei
Ershov Memorial Conference, PSI 2011, Novosibirsk, Russia, June 27-July 1, 2011, Revised
Selected Papers, pages 170–178, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[68] J. C. King. Symbolic Execution and Program Testing. Commun. ACM, 19(7):385–394,
1976.

[69] V. Klebanov. Precise quantitative information flow analysis—a symbolic approach. Theo-
retical Computer Science, 538:124–139, 2014.

[70] B. Köpf and D. Basin. An Information-theoretic Model for Adaptive Side-channel Attacks.
In Proc. of the 14th ACM Conf. on Computer and Communications Security, CCS ’07, pages
286–296. ACM, 2007.

[71] B. Köpf and D. Basin. Automatically Deriving Information-theoretic Bounds for Adaptive
Side-channel Attacks. J. Comput. Secur., 19(1):1–31, Jan. 2011.

[72] B. Köpf and A. Rybalchenko. Approximation and Randomization for Quantitative
Information-Flow Analysis. In Proceedings of the 2010 23rd IEEE Computer Security Foun-
dations Symposium, CSF ’10, pages 3–14, Washington, DC, USA, 2010. IEEE Computer
Society.

[73] L. Kovács. Symbolic Computation and Automated Reasoning for Program Analysis. In
E. Ábrahám and M. Huisman, editors, Integrated Formal Methods, 12th Intl. Conf., IFM,
Reykjavik, Iceland, volume 9681 of LNCS, pages 20–27. Springer, 2016.

[74] R. Küsters, T. Truderung, B. Beckert, D. Bruns, J. Graf, and C. Scheben. A Hybrid Ap-
proach for Proving Noninterference and Applications to the Cryptographic Verification
of Java Programs. In Grande Region Security and Reliability Day 2013, 2013. Extended
Abstract.

[75] R. Küsters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and M. Mohr. A Hybrid
Approach for Proving Noninterference of Java Programs. In C. Fournet and M. Hicks,
editors, 28th IEEE Computer Security Foundations Symposium, 2015.

[76] R. Küsters, T. Truderung, and A. Vogt. Verifiability, Privacy, and Coercion-Resistance: New
Insights from a Case Study. In 32nd IEEE Symp. on Security and Privacy, S&P, Berkeley,
CA, USA, pages 538–553, 2011.

122

[77] R. Küsters, J. Müller, E. Scapin, and T. Truderung. sElect: A Lightweight Verifiable Remote
Voting System. In 2016 IEEE 29th Computer Security Foundations Symposium (CSF), pages
341–354, June 2016.

[78] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary Design of JML: A Behavioral Interface
Specification Language for Java. ACM SIGSOFT Software Engineering Notes, 31(3):1–38,
2006.

[79] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry, P. Chalin,
D. M. Zimmerman, and W. Dietl. JML Reference Manual, 2013. draft, revision: 2344.

[80] K. R. M. Leino and R. Monahan. Reasoning About Comprehensions with First-order SMT
Solvers. In Proceedings of the 2009 ACM Symposium on Applied Computing, SAC ’09, pages
615–622, New York, NY, USA, 2009. ACM.

[81] P. Malacaria and H. Chen. Lagrange Multipliers and Maximum Information Leakage in
Different Observational Models. In Proc. of the 3rd ACM SIGPLAN Workshop on Prog.
Languages and Analysis for Security, PLAS ’08, pages 135–146. ACM, 2008.

[82] M. Mannan and P. C. van Oorschot. Weighing Down “The Unbearable Lightness of PIN
Cracking”. In G. Tsudik, editor, Financial Cryptography and Data Security: 12th Inter-
national Conference, FC 2008, Cozumel, Mexico, January 28-31, 2008. Revised Selected
Papers, pages 176–181, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[83] H. Mantel and H. Sudbrock. Types vs. PDGs in Information Flow Analysis. In E. Albert,
editor, Logic-Based Program Synthesis and Transformation: 22nd International Symposium,
LOPSTR 2012, Leuven, Belgium, September 18-20, 2012, Revised Selected Papers, pages
106–121, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[84] J. L. Massey. Guessing and entropy. In Proceedings of 1994 IEEE International Symposium
on Information Theory, pages 204–, Jun 1994.

[85] S. McCamant and M. D. Ernst. Quantitative Information Flow As Network Flow Capacity.
SIGPLAN Not., 43(6):193–205, June 2008.

[86] Z. Meng and G. Smith. Calculating Bounds on Information Leakage Using Two-bit Pat-
terns. In Proc. of the ACM SIGPLAN 6th Workshop on Prof. Languages and Analysis for
Security, PLAS ’11, pages 1:1–1:12. ACM, 2011.

[87] B. Meyer. Applying “Design by Contract”. Computer, 25(10):40–51, Oct. 1992.

[88] D. Milushev, W. Beck, and D. Clarke. Noninterference via Symbolic Execution. In H. Giese
and G. Rosu, editors, Formal Techniques for Distributed Systems: Joint 14th IFIP WG 6.1
International Conference, FMOODS 2012 and 32nd IFIP WG 6.1 International Conference,
FORTE 2012, Stockholm, Sweden, June 13-16, 2012. Proceedings, pages 152–168, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[89] C. Mu and D. Clark. An Interval-based Abstraction for Quantifying Information Flow.
Electronic Notes in Theoretical Computer Science, 253(3):119 – 141, 2009.

123

[90] C. Mu and D. Clark. Quantitative Analysis of Secure Information Flow via Probabilistic
Semantics. In Proceedings of the The Forth International Conference on Availability, Relia-
bility and Security, ARES 2009, March 16-19, 2009, Fukuoka, Japan, pages 49–57. IEEE
Computer Society, 2009.

[91] A. C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In Proc. of 26th
ACM Symp. on Principles of Programming Languages, pages 228–241, 1999.

[92] A. Nanevski, A. Banerjee, and D. Garg. Verification of Information Flow and Access
Control Policies with Dependent Types. In Proc. of the 2011 IEEE Symp. on Security and
Privacy, SP ’11, pages 165–179. IEEE CS, 2011.

[93] J. Newsome, S. McCamant, and D. Song. Measuring Channel Capacity to Distinguish
Undue Influence. In Proceedings of the ACM SIGPLAN Fourth Workshop on Programming
Languages and Analysis for Security, PLAS ’09, pages 73–85, New York, NY, USA, 2009.
ACM.

[94] T. M. Ngo and M. Huisman. Quantitative Security Analysis for Programs with Low Input
and Noisy Output. In Proc. of the 6th Intl. Symp. on Engineering Secure Software and
Systems, volume 8364 of ESSoS 2014, pages 77–94. Springer, 2014.

[95] R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization Problems. In
Proceedings of the 9th International Conference on Theory and Applications of Satisfiability
Testing, SAT’06, pages 156–169, Berlin, Heidelberg, 2006. Springer-Verlag.

[96] C. S. Pasareanu, Q. Phan, and P. Malacaria. Multi-run Side-Channel Analysis Using Sym-
bolic Execution and Max-SMT. In IEEE 29th Computer Security Foundations Symposium,
CSF 2016, Lisbon, Portugal, pages 387–400. IEEE Computer Society, 2016.

[97] Q.-S. Phan. Self-composition by Symbolic Execution. In A. V. Jones and N. Ng, editors, Im-
perial College Computing Student Workshop, volume 35 of OASIcs, pages 95–102. Schloss
Dagstuhl, 2013.

[98] Q.-S. Phan, P. Malacaria, O. Tkachuk, and C. S. Păsăreanu. Symbolic Quantitative Infor-
mation Flow. SIGSOFT Softw. Eng. Notes, 37(6):1–5, Nov. 2012.

[99] V. R. Pratt. Semantical Considerations on Floyd-Hoare Logic. In 17th Annual Symposium
on Foundations of Computer Science, Houston, Texas, USA, 25-27 October 1976, pages
109–121. IEEE Computer Society, 1976.

[100] W. Rafnsson and A. Sabelfeld. Secure Multi-execution: Fine-Grained, Declassification-
Aware, and Transparent. In Proceedings of the 2013 IEEE 26th Computer Security Foun-
dations Symposium, CSF ’13, pages 33–48, Washington, DC, USA, 2013. IEEE Computer
Society.

[101] E. Rodríguez-Carbonell and D. Kapur. Automatic generation of polynomial invariants
of bounded degree using abstract interpretation. Sci. Comput. Program., 64(1):54–75,
2007.

[102] A. Russo and A. Sabelfeld. Dynamic vs. Static Flow-Sensitive Security Analysis. In Pro-
ceedings of the 2010 23rd IEEE Computer Security Foundations Symposium, CSF ’10, pages
186–199, Washington, DC, USA, 2010. IEEE Computer Society.

124

[103] A. Sabelfeld and A. C. Myers. A Model for Delimited Information Release. In K. Futat-
sugi, F. Mizoguchi, and N. Yonezaki, editors, Software Security - Theories and Systems,
Second Mext-NSF-JSPS International Symposium, ISSS 2003, Tokyo, Japan, November 4-6,
2003, Revised Papers, volume 3233 of Lecture Notes in Computer Science, pages 174–191.
Springer, 2003.

[104] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. Selected Areas
in Communications, IEEE Journal on, 21(1):5–19, 2003.

[105] A. Sabelfeld and D. Sands. Declassification: Dimensions and Principles. Journal of Com-
puter Security, 17(5):517–548, 2009.

[106] C. Scheben. Program-level Specification and Deductive Verification of Security Properties.
PhD thesis, Karlsruhe Institute of Technology, 2014.

[107] C. Scheben and P. H. Schmitt. Verification of Information Flow Properties of Java Pro-
grams without Approximations. In Formal Verification of Object-Oriented Software, volume
7421 of LNCS, pages 232–249. Springer, 2012.

[108] D. Scheurer, R. Hähnle, and R. Bubel. A General Lattice Model for Merging Symbolic
Execution Branches. In Proceedings of the 18th International Conference on Formal Engi-
neering Methods (ICFEM), number 10009 in Lecture Notes in Computer Science, pages
57–73. Springer, 2016.

[109] C. E. Shannon. Communication theory of secrecy systems. The Bell System Technical
Journal, 28(4):656–715, Oct 1949.

[110] G. Smith. On the Foundations of Quantitative Information Flow. In Proc. of the 12th
Intl. Conf. on Foundations of Software Science and Computational Structures, FOSSACS
’09, pages 288–302. Springer, 2009.

[111] G. Smith. Quantifying Information Flow Using Min-Entropy. In 8th Intl. Conf. on Quanti-
tative Evaluation of Systems, QEST 2011, pages 159–167. IEEE Computer Society, 2011.

[112] T. Terauchi. A Type System for Observational Determinism. In Proceedings of the 2008 21st
IEEE Computer Security Foundations Symposium, CSF ’08, pages 287–300, Washington,
DC, USA, 2008. IEEE Computer Society.

[113] T. Terauchi and A. Aiken. Secure Information Flow as a Safety Problem. In C. Hankin
and I. Siveroni, editors, Static Analysis, 12th International Symposium, SAS 2005, London,
UK, September 7-9, 2005, Proceedings, volume 3672 of Lecture Notes in Computer Science,
pages 352–367. Springer, 2005.

[114] N. Tillmann and J. de Halleux. Pex–White Box Test Generation for .NET. In B. Beckert and
R. Hähnle, editors, Tests and Proofs: Second International Conference, TAP 2008, Prato,
Italy, April 9-11, 2008. Proceedings, pages 134–153, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[115] J. A. Vaughan and S. Chong. Inference of Expressive Declassification Policies. In Proc. of
the 2011 IEEE Symp. on Security and Privacy, pages 180–195. IEEE CS, 2011.

125

[116] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe. Counting Inte-
ger Points in Parametric Polytopes Using Barvinok’s Rational Functions. Algorithmica,
48(1):37–66, 2007.

[117] D. Volpano, C. Irvine, and G. Smith. A Sound Type System for Secure Flow Analysis.
Journal of Computer Security, 4(2):167–187, 1996.

[118] N. Wasser. Generating Specifications for Recursive Methods by Abstracting Program
States. In X. Li, Z. Liu, and W. Yi, editors, Dependable Software Engineering: Theories,
Tools, and Applications: First International Symposium, SETTA 2015, Nanjing, China,
November 4-6, 2015, Proceedings, pages 243–257, Cham, 2015. Springer International
Publishing.

[119] H. Yasuoka and T. Terauchi. On Bounding Problems of Quantitative Information Flow. J.
Comput. Secur., 19(6):1029–1082, 2011.

126

	Introduction
	Information Flow Analysis
	Qualitative Approaches
	Quantitative Approaches

	Approaches and Contributions of The Thesis
	Information Flow Analysis of The Thesis
	Contributions

	Publications
	Structure of The Thesis
	Notational Conventions

	Preliminaries
	Information Flow Policies
	Noninteference
	Declassification

	Quantification of Information Leakage
	Measuring Leakage by Uncertainty
	Shannon Entropy
	Min Entropy
	Guessing Entropy
	Channel Capacity

	Self-composition
	Symbolic Execution
	Program Specification with JML
	JML
	Method Contract
	Loop Specification

	The KeY System
	Architecture
	KeY as Symbolic Execution Engine

	Detection and Demonstration of Information Flow Leaks
	Logic Characterization of Insecurity
	Generalized Noninterference Policy
	Targeted Conditional Delimited Release
	Leak Detection Using Program Specification
	Loop Specification
	Method Contracts
	General Observations and Remarks

	Leak Demonstration
	Leak Demonstration Program
	Leak Demonstrator Generation

	Automatic Secret Inference
	Attacker Model and Overview
	Knowledge Representation of High Input
	Algorithm for Inferring High Input
	Finding Optimal Low Inputs
	Low-independent Program
	Exploiting Risky Paths and Reachable Paths
	Implementation of Method findLowInput

	Leakage Maximization with Low Input
	Quantifying Leakage with Low Input
	Parametric Counting Function
	Logic Characterization of Probability Distribution
	Quantifying Leakage with Arbitrary Distribution of Secret
	Example

	Finding Low Input Maximizing Leakage
	Leakage Computed using Parametric Counting
	Max-SMT Approach for Min Entropy-Based Leakage

	Discussion
	The Set OD(L)
	Parametric Counting
	Optimization Tool

	Implementation and Experiments
	The KEG Tool
	Architecture
	Workflow
	Implementation Features
	Usage

	Workflow Illustration
	Leak Demonstrator Generation
	Secret Inference Simulation

	Experiments
	Leak Detection and Demonstrator Generation
	Secret Inference

	Electronic Voting Case Study
	Electronic Voting System sElect
	Ballot Confidentiality with Declassification
	Simplified E-Voting System
	Checking Noninterference and Declassification

	Ballot Confidentiality with Privacy Game
	Fully Automatic Logic Based Approach
	From Privacy to Noninterference
	Leak Detection for Correct Implementation
	Leak Detection for Faulty Implementation

	Discussion

	PIN Integrity Check Case Study
	PIN Integrity Check Problem
	PIN Integrity Check Program
	Learning a PIN's value by Performing PIN Integrity Check
	Discussion and Remark

	Related Work
	Related to Leak Detection and Demonstrator Generation
	Related to Quantitative Information Flow Analysis and Secret Inference

	Conclusion and Future Work
	Conclusion
	Future Work

