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Summary 
 

Natural killer cells (NK cells) are effector lymphocytes of the innate immune system, which 

are able to recognize and eliminate virus-infected and malignantly transformed cells. 

Therefore, they play an important role for the containment of pathophysiological processes. 

An understanding of the molecular mechanisms that lead to NK cell activation is crucial to 

enhance the effectivity of NK cell-based anti-cancer therapies. Effector functions are 

regulated by a variety of germline-encoded activating and inhibitory receptors on the surface 

of the NK cell. One of the major activating NK cell receptors is NKp30, belonging to the 

natural cytotoxicity receptors (NCRs). NKp30 is a functional receptor in humans and primates 

(macaques and chimpanzees) as well as on rat NK cell subsets. In contrast, it is only present 

as a pseudogene with two premature stop-codons in mouse. The only exception is the 

mouse strain Mus caroli, where two single nucleotide polymorphisms (SNPs) eliminate the 

premature stop-codons. The evolutionary reasons for the development of the murine NKp30 

pseudogene are currently unknown.  

For signaling, NKp30 associates with immunoreceptor tyrosine-based activation motif 

(ITAM)-containing adaptor proteins like CD3ζ or FcεRIγ. Until now, the mechanism how 

ligand binding at the ectodomain of NKp30 is communicated to the adaptor protein CD3ζ is 

still unknown. Therefore, the molecular details of receptor activation as well as the role of the 

murine NKp30 pseudogene were analyzed in this thesis.  

Formerly, it was shown that the stalk domain of NKp30, a 15 amino acid sequence stretch 

between the immunoglobulin (Ig) domain and the transmembrane domain, is important for 

ligand binding and signaling. Therefore, in this thesis, mutated NKp30 variants were 

produced as full length receptors in A5-GFP reporter cells or NKp30::hIgG1-Fc (NKp30-Fc) 

fusion proteins in HEK 293T/17 cells and subsequently analyzed in binding studies (surface 

plasmon resonance, SPR) and signaling reporter assays. Surprisingly, analysis of 

NKp30/NKp46 tandem mutants showed that despite the existence of a conserved sequence 

motif in the membrane-proximal region, the stalk domains of NKp30 and NKp46 are not 

exchangeable without drastic deficiencies in folding, plasma membrane targeting and/or 

ligand-induced receptor signaling. Additionally, it was shown that the stalk domain of NKp30 

is very sensitive to sequence alterations, as alanine substitution of any of the stalk amino 

acids led to impaired ligand binding and/or signaling capacity. Mutation of the arginine on 

amino acid position 143 to alanine (R143A) had the most drastic effect. Based on further 

mutational studies, N-glycosylation mapping and plasma membrane targeting studies, the 

existence of two interconvertible types of NKp30/CD3ζ complexes can be hypothesized: (1) a 

signaling incompetent structural NKp30/CD3ζ complex and (2) a ligand-induced signaling 

competent NKp30/CD3ζ complex. Furthermore, it can be proposed, that ligand binding at the 

Ig-fold of NKp30 triggers translocation of amino acid R143 of the stalk domain from the 
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interface between membrane and extracellular region more deeply into the lipid bilayer to 

enable alignment with oppositely charged aspartate residues within CD3ζ and activation of 

CD3ζ signaling.  

Although several cellular and pathogen-derived NKp30 ligands have been identified in the 

last years, there is evidence for the existence of further, yet unknown cellular ligands. This 

assumption is based on former studies that showed binding of NKp30-Fc fusion proteins to 

tumor cell lines that do not express the cellular NKp30 ligands B7-H6 and BAG-6 on their 

surface. Therefore, in the present thesis, a screening method was established, based on 

transduction of ligand-bearing cell lines with a genome-wide shRNA library. After shRNA 

knockdown of putative ligands, cells were decorated with NKp30-Fc fusion proteins and 

sorted for reduced NKp30 ligand expression (fluorescence activated cell sorting, FACS). 

shRNA sequences were amplified from genomic DNA of the cells by PCR and subsequently 

analyzed via deep sequencing. The same screening method was additionally implemented 

for the identification of ligands of the other two NCRs, NKp44 and NKp46. Interestingly, 

inspite of the high number of advantages in contrast to conventional screening strategies, the 

existence of further cellular proteinaceous NCR ligands could not be confirmed with this 

screening. 

There are different suggestions about the evolutionary appearance of the NCRs. Divergence 

from a common ancestor (at least in case of NKp30 and NKp44) might have led to an 

increase in complexity and fine-tuning of the immune system. Different studies suggest 

development of the NKp46 gene from a common NCR ancestor or from a common ancestor 

with the KIR genes. Interestingly, murine NKp46 is a functional protein, while NKp30 is only 

present as a pseudogene and NKp44 is completely lost in mouse. To shed light on the 

evolutionary reasons for the development of the murine NKp30 pseudogene, the two 

premature stop codons in the extracellular domain of the M. musculus NKp30 gene 

sequence were repaired and the protein was expressed as full length receptor in A5-GFP 

reporter cells and as soluble mNKp30-Fc fusion protein in HEK 293T/17 cells. Interestingly, 

the full length receptor as well as the mNKp30-Fc fusion protein were intracellularly retained. 

Repair of the three N-linked glycosylation sites in the extracellular region of mNKp30 

(mNKp30-glyco) led to the secretion of the Fc fusion protein, while the full length receptor 

stayed intracellularly retained. As shown previously, association with CD3ζ impacts plasma 

membrane targeting and retention of human NKp30. Therefore, failure of mNKp30 to 

assemble with CD3ζ might be the reason for intracellular retention of the full length receptor. 

Furthermore, the mNKp30-glyco-Fc fusion protein showed specific binding to P815 murine 

mastocytoma cells. This speaks for the existence of a cancer- or mast cell-related mNKp30-

glyco ligand. Altogether, these were the first experiments to show expression and functional 

analysis of a putative mNKp30 on protein level.  
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Based on these data, the present thesis provides deeper insight into the function of the major 

activating NK cell receptor NKp30. This might contribute to a better understanding of the 

molecular mechanisms that lead to NK cell activation, and this knowledge is crucial to 

enhance the effectivity of related treatments like anti-cancer and anti-viral therapies.
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Summary (German) 
 

Natürliche Killerzellen (NK-Zellen) sind Effektor-Lymphozyten des angeborenen 

Immunsystems. Sie zeichnen sich besonders durch die Fähigkeit aus, eine Vielzahl von 

Tumor- und Virus-infizierten Zellen zu erkennen und zu eliminieren. Aus diesem Grund 

spielen sie eine wichtige Rolle bei der Eindämmung pathophysiologischer Prozesse. Ein 

Verständnis der molekularen Vorgänge, die zur NK-Zell-Aktivierung führen, ist wichtig für die 

Verbesserung der Effektivität von NK-Zell-basierten Krebstherapien. Die Erkennung von 

Zielzellen durch NK-Zellen wird über spezifische Oberflächenrezeptoren vermittelt, wobei die 

Aktivität der NK-Zellen durch antagonistisch wirkende aktivierende und inhibierende Signale 

reguliert wird. Einer der wichtigsten aktivierenden NK-Zell-Rezeptoren ist NKp30, welcher zu 

den Natürlichen Zytotoxizitäts-Rezeptoren (natural cytotoxicity receptors, NCRs) gehört. 

NKp30 ist sowohl in Menschen und Primaten (Makaken und Schimpansen) als auch auf 

bestimmten NK-Zell-Untergruppen in der Ratte ein funktionaler Rezeptor. Im Gegensatz 

dazu ist es in der Maus nur als Pseudogen mit zwei vorzeitigen Stop-Codons vorhanden. Die 

einzige Ausnahme ist der Maus-Stamm Mus caroli, in dem zwei Einzelnukleotid-

Polymorphismen (single nucleotide polymorphisms, SNPs) die vorzeitigen Stop-Codons 

eliminieren. Die Gründe für die Entwicklung des NKp30 Pseudogens in der Maus sind derzeit 

unbekannt. Für die Signalweiterleitung assoziiert NKp30 mit Adapter-Proteinen die 

intrazelluläre Immunrezeptor-Tyrosin-basierte Aktivierungsmotive (immunoreceptor tyrosine-

based activation motifs, ITAMs) tragen (CD3ζ und FcεRIγ). Bisher sind die Ligandenbindung 

und die nachfolgende Rezeptor-Aktivierung, sowohl im Hinblick auf die Art der Liganden als 

auch auf die initialen Schritte der Signalweiterleitung an das Adapter-Protein, unzureichend 

verstanden. Daher sollten diese molekularen Mechanismen, sowie die Rolle des NKp30 

Pseudogens in der Maus in der vorliegenden Arbeit genauer untersucht werden.  

Frühere Studien haben gezeigt, dass die Stalk-Domäne von NKp30, ein 15 Aminosäuren 

langer Sequenzbereich zwischen der Immunglobulin (Ig) Domäne und der Transmembran-

Domäne, wichtig für die Liganden-Bindung und die Signalweiterleitung ist. Deshalb wurden in 

der vorliegenden Arbeit mutierte Varianten des NKp30 Rezeptors als Volllängen-Proteine in 

A5-GFP Reporterzellen und als NKp30::hIgG1-Fc (NKp30-Fc) Fusionsproteine in HEK 

293T/17 Zellen produziert und auf ihre Fähigkeit zur Liganden-Bindung 

(Oberflächenplasmonresonanz [surface plasmon resonance, SPR] Experimente) und 

Signalweiterleitung (Reporterassays) untersucht. Überraschenderweise zeigten Analysen 

von NKp30/NKp46 Tandem Mutanten, dass die Stalk Domänen beider Rezeptoren, trotz der 

Existenz eines konservierten Sequenz-Motivs in der Membran-nahen Region, ohne 

drastische Beeinträchtigungen von Faltung, Plasmamembran-Targeting und/oder Liganden-

induzierter Signalweiterleitung nicht austauschbar sind. Zusätzlich zeigte sich, dass 

Änderungen der Aminosäure Sequenz der Stalk Domäne starke Auswirkungen auf die 
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Funktionalität des Rezeptors haben, da ein Aminosäure Austausch durch Alanin an jeder 

Stelle der Stalk Domäne zu einer Beeinträchtigung der Liganden-Bindung und/oder der 

Fähigkeit zur Signalweiterleitung führte. Die gravierendsten Auswirkungen hatte die Mutation 

von Arginin zu Alanin an Aminosäure Position 143 (R143A). Basierend auf den Ergebnissen 

weiterer Mutationsstudien, N-Glykosylierungskartierung (N-glycosylation mapping) und Ko-

Expressionsstudien in HeLa Zellen kann die Existenz von zwei unterschiedlichen Typen von 

NKp30/CD3ζ Komplexen postuliert werden: (1) ein nicht zur Signalweiterleitung fähiger, 

struktureller NKp30/CD3ζ Komplex und (2) ein durch Liganden-Bindung induzierter, zur 

Signalweiterleitung fähiger NKp30/CD3ζ Komplex. Des Weiteren kann angenommen werden, 

dass die Liganden-Bindung an der Immunglobulin (Ig)-Domäne von NKp30 zu einer 

Translokation der Stalk-Aminosäure R143 von der Grenzfläche zwischen Membran und 

extrazellulärer Region zu einer tiefer in der Lipid-Doppelschicht liegenden Position führt. Dies 

ermöglicht eine Interaktion zwischen R143 und den entgegengesetzt geladenen Aspartat-

Resten des CD3ζ-Proteins und damit die Aktivierung der Signalweiterleitung durch CD3ζ. 

Obwohl in den letzten Jahren mehrere zelluläre und Pathogen-assoziierte NKp30-Liganden 

identifiziert wurden, ist die Existenz weiterer, bisher unbekannter zellulärer Liganden 

möglich. Diese Annahme basiert auf der Tatsache, dass frühere Studien die Bindung von 

NKp30-Fc Fusionsproteinen an Krebs-Zelllinien zeigten, die keinen der beiden bekannten 

zellulären NKp30-Liganden (B7-H6 und BAG-6) auf ihrer Oberfläche trugen. Auf Grund 

dessen sollte in der vorliegenden Arbeit die Existenz weiterer Protein-Liganden genauer 

untersucht werden. Hierfür wurde eine Screening-Methode etabliert, welche auf der 

Transduktion von Liganden-tragenden Zelllinien mit einer genom-weiten shRNA Bibliothek 

basiert. Nach dem knockdown der putativen Liganden durch die shRNAs wurden die Zellen 

mit NKp30-Fc Fusionsproteinen dekoriert und Zellen mit reduzierter NKp30-Liganden-

Expression mittels Fluoreszenz-aktivierter Zell-Sortierung (fluorescence activated cell 

sorting, FACS) angereichert. Die shRNA Sequenzen wurden anschließend durch PCR aus 

der genomischen DNA der angereicherten Zellen amplifiziert und mittels Deep sequencing 

analysiert. Die selbe Screening Methode wurde auch zur Identifizierung von Liganden für die 

anderen beiden NCRs NKp44 und NKp46 eingesetzt. Interessanterweise konnten trotz 

diverser Vorteile dieser Screening Methode keine weiteren zellulären Protein-Liganden für 

die NCRs identifiziert werden. 

Über das evolutionäre Auftreten der NCRs gibt es unterschiedliche Ansichten. Die 

Entwicklung aus einem gemeinsamen NCR-Vorläufer-Gen (zumindest im Fall von NKp30 

und NKp44) könnte zu einer Erhöhung der Komplexität und Spezialisierung einzelner 

Komponenten des Immunsystems geführt haben. Studien halten sowohl die Entwicklung des 

NKp46 Gens aus einem gemeinsamen NCR-Vorläufer als auch aus einem gemeinsamen 

Vorläufer mit den KIR Genen für möglich. Interessanterweise ist murines NKp46 ein 
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funktionales Protein, während NKp30 nur als Pseudogen und NKp44 gar nicht in der Maus 

vorkommt. Um die evolutionären Gründe zu verstehen, die zur Entwicklung des murinen 

NKp30 (mNKp30) Pseudogens führten, wurden die zwei vorzeitigen Stop-Codons in der 

extrazellulären Domäne der M. musculus Gen-Sequenz repariert und das Protein als 

Volllängen-Rezeptor in A5-GFP Zellen sowie als mNKp30-Fc Fusionsprotein in HEK 293T/17 

Zellen produziert. Interessanterweise wurden sowohl der Volllängen-Rezeptor als auch das 

mNKp30-Fc Fusionsprotein intrazellulär zurückgehalten. Eine Reparatur der drei fehlenden 

N-Glykosylierungsstellen in der extrazellulären Region von mNKp30 (mNKp30-glyco) führte 

zur Sekretion des Fc-Fusionsproteins, während der Volllängen-Rezeptor weiterhin 

intrazellulär zurückgehalten wurde. Wie in vorherigen Studien und auch in der vorliegenden 

Arbeit gezeigt wurde, beeinflusst die Assoziation mit CD3ζ die Verweilzeit des humanen 

NKp30 Rezeptors auf der Plasmamembran (Targeting und Retention). Daher kann die 

intrazelluläre Lokalisation des mNKp30 Proteins möglicherweise dadurch erklärt werden, 

dass der Rezeptor nicht in der Lage ist mit CD3ζ zu assoziieren. Des Weiteren zeigte das 

mNKp30-glyco-Fc Fusionsprotein eine spezifische Bindung an P815 Maus Mastozytom 

Zellen. Dies spricht für die Existenz eines Tumor- oder Mastzell-spezifischen mNKp30-glyco 

Liganden. Insgesamt waren dies die ersten Experimente zur Expression und 

Funktionsanalyse eines putativen mNKp30 Rezeptors auf Protein-Ebene. 

Basierend auf diesen Daten liefert die vorliegende Arbeit tiefere Einblicke in die Funktion des 

aktivierenden NK Zell-Rezeptors NKp30. Dies trägt zu einem besseren Verständnis der 

molekularen Mechanismen bei, die zur Aktivierung von NK Zellen führen. Dieses Wissen ist 

wichtig für die zukünftige Entwicklung und Verbesserung von NK-Zell-basierten antiviralen 

und Krebs-Therapien. 
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1. Introduction 

 

1.1 Natural Killer Cells 

 

Natural killer cells (NK cells), belonging to the family of innate lymphoid cells (ILCs), play a 

special role in immunity, as they are part of the innate immune system, but have additional 

features of adaptive immune cells, like memory functions [1–5]. They were first identified as 

non-B/ non-T lymphocytes that are able to mediate cytotoxicity without prior antigen priming 

[6,7]. They arise from common lymphatic progenitors (CLPs) in the bone marrow and 

develop/differentiate in secondary lymphoid organs, including liver, spleen, decidua and 

lymph nodes [8,9]. NK cells recognize target cells via a complex interplay between germline-

encoded activating and inhibitory receptors, which enables them to differentiate between 

healthy and infected or transformed cells [10–13]. Additionally, they are able to exert 

antibody-dependent cellular cytotoxicity (ADCC) via FcγRIIIα (cluster of differentiation 16 (CD 

16)) [14]. Human NK cells can be divided into an immunoregulatory and a cytotoxic subset, 

depending on their surface expression of CD56 (neural cell adhesion molecule, NCAM) and 

CD16 [15]. CD56bright/CD16- NK cells are immunoregulatory cells that produce high levels of 

cytokines but exert low cytotoxic activity and ADCC. In contrast, CD56dim/CD16+ NK cells are 

cytotoxic but produce only low levels of cytokines. CD56bright/CD16- cells are the predominant 

NK cell species in secondary lymphoid tissues, while CD56dim/CD16+ NK cells are the major 

subset in peripheral blood, spleen and non-lymphoid tissues [15–17]. It is assumed that 

CD56bright/CD16- NK cells might develop to CD56dim/CD16+ NK cells, as CD56bright/CD16- cells 

appear first after hematopoietic stem cell (HSC) transplantation and in cytokine-driven 

models of in vitro differentiation, and they have longer telomeres than CD56dim/CD16+ NK 

cells [8,18,19]. 

NK cells play a major role in recognition and eradication of infected and malignantly 

transformed cells [20]. This is underlined by the fact that low activity of peripheral blood NK 

cells is linked to an increased cancer risk in adults [21]. Despite this, NK cells are involved in 

diverse other physiological and pathological processes. 

Uterine NK cells, a special NK subpopulation, express CD94, but no CD16, and secrete 

cytokines like macrophage inflammatory protein 1α (MIP1α), granulocyte macrophage 

colony-stimulating factor (GM-CSF), colony-stimulating factor 1 (CSF1) and interferon γ 

(IFNγ) [22]. They play a role in controlling trophoblast invasion [23] and are important 

regulators of spiral artery remodeling and maintenance of decidual integrity [24]. Additionally, 

they regulate pathogenic T helper 17 (TH17) cells at the maternal-fetal interface, thereby 

promoting immune tolerance and maintenance of pregnancy [20,25]. 
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Furthermore, NK cells play a role in allergic asthma [26–30], autoimmune diseases [31–35], 

development of type I diabetes [36–41], rheumatoid arthritis [42,43] and systemic lupus 

erythrematosus [44–47]. 

NK cells in secondary lymphoid tissue like tonsils, lymph nodes and spleen secrete cytokines 

such as IFNγ upon activation by dendritic cells (DCs), which stimulates a more efficient killing 

response by T cells [48,49]. Additionally, NK cells can impair the effect of antigen 

presentation by antigen presenting cells (APCs), reduce T cell proliferation [50] and kill 

immature DCs in human and mouse [51,52]. Moreover, they can promote the maturation of 

DCs by secretion of IFNγ and tumor necrosis factor α (TNFα). The DCs in turn activate NK 

cells via interleukin 12 (IL-12) [53–55]. Furthermore, NK cells can promote priming of CD4+ 

T helper 1 cells (TH1) by secretion of IFNγ [56,57] and they can kill activated T cells unless 

these express sufficient amounts of major histocompatibility complex (MHC) class I 

molecules [58]. NK cells were also shown to suppress autoreactive B cells in vitro, and NK 

cell depletion in vivo increased the severity of autoimmunity in a Fas-deficient mouse model 

[59]. Moreover, human mast cells were shown to recruit NK cells via IL-8 in models of viral 

infection [60] and activated bone marrow-derived cultured mast cells were shown to stimulate 

IFNγ secretion by NK cells [61]. 

 

1.2 Regulation of Natural Cytotoxicity 

 

NK cells are able to discriminate between target cells and healthy host cells. Their activity is 

regulated by a variety of activating and inhibitory cell surface receptors (Fig. 1) [62]. Inhibitory 

receptors detect the presence or absence of constitutively expressed self-molecules on 

susceptible target cells, in particular the presence of MHC class I molecules, which interact 

for example with the MHC class I-specific promiscuous inhibitory receptor Ig-like transcript 2 

(ILT2) in humans, the lectin-like Ly49 dimers in mouse and the lectin-like CD94/NKG2A 

heterodimers in mouse and human [13,63–66]. Additionally, MHC class I molecules are 

recognized by killer cell immunoglobulin-like receptors (KIRs). These receptors are 

characterized by two (KIR2D) or three (KIR3D) extracellular immunoglobulin (Ig) domains 

and have either short (S) or long (L) intracytoplasmic tails which transduce activating or 

inhibitory signals, respectively [67–70]. In addition, there are other non-MHC self molecules 

like C-type lectin related B (ClrB), lectin-like transcript 1 (LLT-1) and CD48, which are 

recognized by other inhibitory NK cell receptors, like mouse natural killer cell receptor P1B 

(NKR-P1B), human NKR-P1A and mouse and human 2B4, respectively [71]. Interestingly, 

mouse and human 2B4 are able to mediate both, inhibitory and activating signals [72]. 
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Figure 1. Human NK cell receptors and 
their ligands. Simplified schematic 
representation of a variety of human NK 
cell receptors and their corresponding 
ligands on target cells, modified after [62]. 
NK cell cytotoxicity is regulated by the 
integration of multiple activating and 
inhibitory signals. Inhibitory receptors are 
shown in red, activating receptors are 
shown in blue. 2B4 (green) is able to 
mediate both, inhibitory and activating 
signals. 
 

 

 

 

 

 

 

 

 

 

Major activating receptors on NK cells are natural killer group 2D (NKG2D, also known as 

KLRK1 and CD314) [73] and the Ig-like natural cytotoxicity receptors (NCRs) NKp30 (also 

known as NCR3, NCTR3 and CD337) [74], NKp44 (also known as NCR2, NCTR2 and 

CD336) [75,76] and NKp46 (also known as NCR1, NCTR1 and CD335) [77,78]. NKG2D is a 

C-type lectin-like type II transmembrane protein which associates with DNAX-activation 

protein 10 (DAP10) for subsequent signaling. It forms a disulfide-linked homodimer, which is 

expressed on all mouse and human NK cells, and on several T cell subsets [79]. Human 

NKG2D ligands are the MHC class I chain-related genes A and B (MICA/MICB) and the 

UL16 binding proteins (ULBPs) [80]. Additionally, NK cells are assumed to express functional 

toll-like receptors (TLRs), allowing them to respond rapidly to invading pathogens [81]. 

Interactions of all of these receptors with their corresponding ligands on target cells regulate 

NK cell responses (Fig. 2). Healthy host cells are tolerated by NK cells because inhibitory 

signals (derived from inhibitory receptors after engagement of MHC class I molecules on 

target cells) overcome signals from interactions of activating receptors with their ligands [63].  
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Figure 2. Regulation of NK cell 
responses. Schematic representation 
of the regulation of NK cell responses 
by interactions between activating and 
inhibitory receptors and their 
corresponding ligands, reprinted from 
[82]. (A) NK cells are tolerant to healthy 
host cells because activating signals 
are overcome by signals of inhibitory 
receptors. (B) Missing-self: Due to the 
absence of inhibitory signals NK cells 
become activated by cells that have 
lost the expression of MHC class I 
molecules. (C) Stress-induced self: NK 
cells become activated by cells that 
upregulate activating ligands. Due to 
this, activating signals overcome the 
inhibitory signals derived from the 
interaction with MHC class I molecules. 
 

 

 

 

 

 

 

 

 

 

As a result of malignant transformation or viral infection, cells may lose the expression of 

MHC class I molecules. This leads to activation of the NK cells and is known as ‘missing-self’ 

triggering [10,13]. Additionally, upregulation of stress-induced ligands on target cells can 

activate NK cells (‘stress-induced self’) [73,79,83]. Tumor cell elimination by activated NK 

cells occurs directly through NK cell mediated cytotoxicity [84–87] and indirectly through the 

release of pro-inflammatory cytokines and chemokines [1,88]. 

Cytotoxicity, as well as many other NK cell effector functions, requires direct contact between 

the NK cell and the target cell. Upon this contact, an immunological synapse is formed, which 

is defined as an intentional arrangement of molecules in an immune cell at the interface with 

another cell [89]. Formation of the lytic (activating) NK cell synapse can be divided into 

different stages. First of all, a close association facilitates initial signaling and adhesion of the 

NK cell to its target cell. After initiation of synapse formation and in the absence of 

predominant inhibitory signals, effector stages proceed, including: (1) formation of a stable 

NK cell/target cell interface, (2) recruitment of preformed lytic granules to the synapse and 

(3) fusion of lytic granules with the NK cell membrane and release of contents (perforin, 

granzymes, Fas ligand (FasL), TNF-related apoptosis-inducing ligand (TRAIL), granulysin) 
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into the synaptic cleft [90]. Important for these steps is the initial actin reorganization, as well 

as receptor clustering, lipid raft aggregation, activating signaling and lytic granule 

redistribution [91–94]. Termination stages of the lytic synapse occur after secretion of the 

lytic granule contents and include a period of inactivity, downmodulation of accumulated 

activating receptors, NK cell detachment and recycling of cytolytic components (reviewed in 

[89]). In contrast, NK cells are also able to form an inhibitory synapse, which excludes lipid 

rafts [95–98], does not accumulate F-actin [99], but includes inhibitory signaling molecules 

like Src homology 2 domain-containing phosphatase-1 (SHP-1) [98,100]. This way, it 

prevents actin reorganization [101,102], blocks the recruitment of activating receptors 

[103,104] and promotes detachment from the target cell (Fig. 3) [105]. Altogether, the 

formation of inhibitory and activating synapses facilitates discrimination between healthy 

(self-) cells and infected, transformed or foreign cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3. Lytic and inhibitory synapse in NK  cells. Schematic 
 representation of the differences between NK cell immunological 
 synapses, adapted from [106]. KIR: killer cell immunoglobulin-
 like receptor, MHC I: major histocompatibility complex class I, 
 MTOC: microtubule organizing center. 

 

1.3 NK Cell Signaling 

 

As stated earlier, NK cells express a large panel of receptors that allows them to discriminate 

between target and non-target cells. Effector functions are regulated by a dynamic interplay 

between multiple signaling pathways that can be simultaneously engaged [107]. 
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1.3.1 Activating Signaling 

 

Elimination of target cells is facilitated by activating NK cell receptors that recognize ligands 

on infected or transformed cells [108]. The main activation pathways are depicted in figure 4. 

NCRs associate with immunoreceptor tyrosine-based activation motif (ITAM, sequence: 

YXX(I/L)X6-12YXX(I/L)) -bearing adaptor molecules for signaling. After receptor engagement, 

ITAM sequences are phosphorylated by Src family kinases. In a second step, tryrosine 

kinases Syk (spleen tyrosine kinase) and ZAP70 (zeta chain associated protein of 70 kDa) 

bind to the phosphorylated ITAMs. These kinases phosphorylate transmembrane adaptors 

like LAT (linker for activation of T cells) and NTAL (non-T cell activation linker), which leads 

to the association, phosphorylation and activation of several signaling complexes, which 

include signaling molecules like phospholipase Cγ (PLC-γ1, PLC-γ2) and Vav isoforms 

(Vav1, Vav2, Vav3) [109]. Murine and human NK cell signaling differs in the importance of 

different PLC-γ and Vav isoforms [110–113]. 

 
Figure 4. Activating signaling of NK cell receptors. Schematic representation of the major 
interactions that occur after engagement of activating receptors on NK cells, modified after [109,114]. 
Engagement of activating receptors leads to recruitment and activation of major signaling molecules 
like Vav and PLC-γ isoforms (red) and to the assembly of the c-Cbl-CrkII-C3G complex, resulting in 
subsequent actin reorganization and degranulation. For clarity reasons, phosphorylations are only 
depicted for the initial step. 
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Signaling of other activating NK cell receptors like integrins, DNAM-1, CD2, CD16, NKG2D 

and 2B4 also depends on phosphorylation of tyrosine-based signaling motifs by Src kinase 

family members [109]. Phosphorylation of PLC-γ isoforms during activating signaling results 

in subsequent mobilization of Ca2+ from the endoplasmic reticulum and thereby contributes to 

exocytosis of lytic granules [111,113,115,116]. Phosphorylation of Vav isoforms (Vav1, Vav2, 

Vav3) activates small GTPase proteins of the Rho family, primarily Rac1. These mediate 

actin reorganization. Rac1 additionally activates the PAK1-MEK-Erk pathway, which induces 

granule polarization and release [117]. Additionally, Vav1 associates with c-Cbl during NK 

cell activation [118]. c-Cbl is a scaffold protein of the cytoskeleton which forms complexes 

with CrkII and C3G. These complexes are able to activate Rap1 and contribute to actin 

reorganization and formation of lamellae [119–121]. 

 

1.3.2 Inhibitory Signaling 

 

Although inhibitory NK cell receptors are diverse in their extracellular regions, they all share a 

common signaling motif in their cytoplasmic domains. This preserved sequence motif 

(I/L/V/S)XYXX(L/V) is called immunoreceptor tyrosine-based inhibition motif (ITIM) [122–

124]. After interaction of the inhibitory receptor with its ligand, the ITIM motif becomes 

phosphorylated. This phosphorylation leads to the recruitment of cytoplasmic phosphatases 

containing a Src homology 2 (SH2) domain [125–127], like the inositol phosphatase SHIP-1 

(SH2 domain-containing inositol phosphatase 1) or the tyrosine phosphatases SHP-1 and 

SHP-2 [128,129]. Additionally, some of the ITIM-containing receptors interact with other 

molecules, like Leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) and human 

leukocyte Ig-like receptor (LILR) with C-terminal Src kinase (Csk), Siglecs with suppressor of 

cytokine signaling 3 (SOCS3), CD300 with PI3K, and KIRs with β-Arrestin 2 [109]. The 

recruitment of tyrosine phosphatases leads to the dephosphorylation of Vav1, a key 

component in the signaling pathway (Fig. 5). Vav1 has a central role in promoting Rac-1 

dependent actin cytoskeleton rearrangement, synapse formation and receptor clustering. 

Due to this, inhibition of Vav1 counteracts signaling via activating receptors [103,104,109]. 

Another mechanism for inhibitory signaling is used by KIR and CD94/NKG2A receptors. 

Here, inhibitory signaling leads to an active disassembly of the c-Cbl-CrkII-C3G complex, 

which is formed during NK cell activation and may contribute to the strength of LFA-1-

mediated adhesion through activation of Rap1. This active disassembly is achieved by 

phosphorylation of CrkII and binding of the phosphorylated protein to the tyrosine kinase Abl 

[118]. 
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 Figure 5. Inhibitory signaling of NK cell receptors. Schematic representation of 
 the interactions that occur after engagement of inhibitory receptors on NK cells, 
 modified after [109,114]. Signaling of activating receptors requires the 
 c-Cbl-CrkII-C3G complex and the phosphorylated guanine nucleotide exchange 
 factor Vav1. Phosphorylation of ITIM motifs leads to recruitment of cytoplasmic 
 phosphatases like SHP-1 and thereby to dephosphorylation of Vav1 and its 
 inactivation. Additionally, signaling of inhibitory receptors recruits the tyrosine kinase 
 Abl, which binds to CrkII and phosphorylates it, thereby leading to the disassembly 
 of the c-Cbl-CrkII-C3G complex.  

 

 

1.4 Natural Cytotoxicity Receptors  

 

The activating receptors NKp30, NKp44 and NKp46 were grouped together in the natural 

cytotoxicity receptor (NCR) family. They are mainly expressed on NK cells and certain ILC 

subsets [130–134] and all of them are specific for non-human leucocyte antigen (non-HLA) 

ligands. NK cell cytotoxicity is triggered by antibody crosslinking and inhibited by antibody 

masking of these receptors [135]. Interestingly, NKp30, NKp44 and NKp46 show no 

sequence homology.  

The NCRs are type I transmembrane proteins that comprise an ectodomain with one (NKp30 

and NKp44) or two (NKp46) Ig-like domains, that is connected to a membrane-spanning 

α-helix via a stalk domain, and a short cytosolic tail (Fig. 6). While NKp30 and NKp46 are 

constitutively expressed on NK cells, expression of NKp44 is only detected after activation 

[136].  
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For signaling, the NCRs associate with ITAM-bearing adaptor molecules like CD3ζ/FcεRIγ 

(NKp30 and NKp46) and DAP12 (NKp44) [74–78,137]. Signaling via the adaptor proteins is 

believed to be mediated by formation of an intramembrane charge contact between 

negatively charged amino acids of the adaptor protein and positively charged residues in the 

transmembrane region of the receptor [137,138]. 

  

 

 

 

 

 

 

 

 

 Figure 6. Natural cytotoxicity receptors. Schematic representation of the natural 
 cytotoxicity receptors NKp30 (red; PDB: 3NOI), NKp44 (green; PDB: 1HKF) and 
 NKp46 (blue; 1P6F). All NCRs contain either one (NKp30, NKp44) or two (NKp46) 
 Ig-like domains, a stalk domain, a transmembrane domain and a short cytosolic tail. 
 As the receptors themselves do not possess any intracellular ITAM motifs, they 
 associate with ITAM (light green)-bearing adaptor proteins like CD3ζ homodimers, 
 CD3ζ/FcεRIγ heterodimers (NKp30 and NKp46) and DAP12 (NKp44) for subsequent 
 signaling. Notably, in contrast to the other NCRs, NKp44 contains an ITIM motif in its 
 intracellular region (orange). Structural illustrations were made with PyMol. 

 

There are different suggestions about the evolutional appearance of the NCRs [139–141]. 

Divergence from a common ancestor (at least in case of NKp30 and NKp44) might have led 

to an increase in complexity and fine-tuning of the immune system. This is underlined by the 

fact that all NCRs recognize a large panel of cellular and pathogen-derived ligands, which 

can lead to their activation or inhibition (Tab. 1). 
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Table 1. Ligands of human NCRs. HCMV: human cytomegalovirus, PfEMP1: Plasmodium 
falciparum erythrocyte membrane protein 1, HA: haemagglutinin, HN: haemagglutinin-neuraminidase, 
PCNA: proliferating cell nuclear antigen, MLL5: mixed-lineage leukemia-5. Currently unidentified 
interacting molecules are not included. 

Receptor Ligand Source Cellular 
localization 

Effect  
[activating (+)/ 
inhibitory (-)] 

References 

NKp30 B7-H6 tumor cells plasma 
membrane 

+ [142] 

BAG-6 stressed 
cells, tumor 
cells, DCs 

nucleus, cytosol, 
plasma 
membrane, 
exosomes 

+/- [143–145] 

pp65 HCMV cytosol - [146] 

PfEMP1 plasmodium 
falciparum 

plasma 
membrane 

+ [147] 

viral HA ectromelia 
virus, 
vaccinia virus 

plasma 
membrane 

- [148] 

heparin, 
heparan 
sulfate 

all animal 
cells 

plasma 
membrane 

+ [149,150] 

Gal-3 tumor cells mainly soluble - [151] 

NKp44 sialylated  
and 
sulfated 
proteo-
glycans 

all animal 
cells 

plasma 
membrane 

+ [152] 

viral HA 
and HN 

influenza 
virus, sendai 
virus, 
newcastle 
disease virus 

plasma 
membrane 

+ [153–156] 

PCNA tumor cells nucleus, cytosol - [157] 

heparin, 
heparan 
sulfate 

all animal 
cells 

plasma 
membrane 

+/- [149,158, 
159] 
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Receptor Ligand Source Cellular 
localization 

Effect  
[activating (+)/ 
inhibitory (-)] 

References 

NKp44 
MLL5 
isoform 
(also 
known 
as 
NKp44L) 

tumor cells plasma 
membrane 

+ [160] 

viral 
envelope 
glyco-
proteins 

dengue virus, 
west nile 
virus 

plasma 
membrane 

+ [161] 

NKp46 viral HA 
and HN 

influenza 
virus, 
ectromelia 
virus, 
vaccinia 
virus, sendai 
virus, 
newcastle 
disease virus 

plasma 
membrane 

+ [162–164] 

heparin, 
heparan 
sulfate 

all animal 
cells 

plasma 
membrane 

+ [149] 

Epa1, 
Epa6, 
Epa7 

C. glabrata plasma 
membrane 

+ [165] 

vimentin M. 
tuberculosis 
H37Ra 

plasma 
membrane 

+ [166,167] 

 

1.4.1 NKp46 

 

The domain organization of NKp46 is the same as in NKp30 and NKp44, with the exception 

that the ectodomain of NKp46 comprises two Ig-like domains that are oriented in a defined 

angle of 85° relative to each other and connected via a hinge region [168], which might be 

the ligand binding site (Fig. 7) [136]. NKp46 contains a charged arginine at the border 

between extracellular and transmembrane region that is assumed to be involved in 

subsequent signaling [76]. The receptor is expressed in a variety of mammalian species and 

interestingly, it is the only NCR that has an orthologue in mice [155,169,170]. This suggests 

that NKp46 is the major NCR involved in pathogen and tumor recognition. 
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 Figure 7. Amino acid sequence and crystal structure of NKp46. (A) 
 Amino acid sequence of NKp46 isoform a. Signal peptide is shown in 
 italics. Dark blue: Ig domains, light blue: stalk domain, green: 
 transmembrane domain, red: cytosolic domain. (B) Crystal structure of the 
 ectodomain of NKp46 (only Ig domain) (PDB: 1P6F). C- and N-terminus 
 are indicated. Structural illustrations were made with PyMol. 

 

The gene for human NKp46 is located within the leucocyte receptor complex (LRC) on 

chromosome 19 [77], together with the genes for FcαR, ILT/LIR, LAIRs and KIRs [171]. 

Interestingly, all of these genes are linked within a short region of 19q13.14 [172], which 

suggests the existence of a common ancestral gene [77]. 

Human NKp46 is expressed in four isoforms (a-d), with isoform a being the canonical form. 

Isoforms a and b contain two V-type Ig domains, whereas isoforms c and d contain only one 

V-type Ig domain. Isoforms b and d lack amino acids 228-244a of the stalk domain of NKp46. 

The intracellular domains of the NKp46 isoforms are conserved [169]. 

In addition to already identified ligands (Tab. 1), NKp46 recognizes unknown ligands on 

pancreatic β cells (leading to the development of type I diabetes) [36], and stellate cells in the 

liver (leading to protection from liver fibrosis) [173]. While the recognition of hepatic stellate 

and tumor cells seems to be independent from glycosylation, interaction with pancreatic β 

cells and viral HA seems to be glycosylation dependent [164,173,174]. In addition to the 

protein backbone, sialylation of NKp46 was shown to be necessary for HA binding [163]. 

Recognition of HA from several virus families (influenza virus, pox virus, newcastle disease 

virus) also depends on O- and N-glycosylation of NKp46 [162,164]. 

                                                      
a
 Amino acid annotation refers to the canonical NKp46 sequence (isoform a) 
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Further evidence for the importance of NKp46 in elimination of virus infected and tumor cells 

was shown by the fact that NKp46 knockout in mice (NCR1gfp/gfp) led to an increase in tumor 

metastasis and susceptibility to influenza virus infection [36,155,173,175,176]. 

 

1.4.2 NKp44 

 

NKp44 belongs to the family of triggering receptors expressed on myeloid cells (TREM) and 

its sequence is encoded in the MHC class III region of human chromosome 6 [75,76]. The 

extracellular domain of NKp44 contains a V-type Ig-fold with a large positively charged 

groove on one side of the domain, suggesting an interaction with anionic ligands [177]. In 

contrast to NKp30 and NKp46, the cytoplasmic tail of NKp44 contains an ITIM motif (Fig. 8) 

[75,178], which was shown to be functional as it inhibits the release of cytotoxic agents and 

IFNγ [75,157,178]. NKp44 associates with ITAM containing DAP12 homodimers for signaling, 

which seems to be facilitated by a charged lysine in the transmembrane domain [75]. 

Interaction with activating ligands leads to signaling, transduced through the ITAMs of 

DAP12, which results in release of the cytotoxic agents TNFα and IFNγ [76,178].  

 

 

 

 

 

 

 

 

 

 

 Figure 8. Amino acid sequence and crystal structure of NKp44. (A) 
 Amino acid sequence of NKp44. Signal peptide is shown in italics. Dark 
 blue: Ig domain, light blue: stalk domain, green: transmembrane 
 domain, red: cytosolic domain. The ITIM motif in the cytoplasmic tail is 
 boxed. (B) Crystal structure of the ectodomain of NKp44 (only Ig 
 domain) (PDB: 1HKF). C- and N-terminus are indicated. Structural 
 illustrations were made with PyMol. 
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On circulating NK cells, NKp44 is only found upon activation. In contrast, a specialized 

subset of NK cells in the decidua was shown to express NKp44 constitutively, implicating that 

the receptor plays a role in placentation [75,179,180]. NKp44 expression was also found on a 

subset of interferon-producing cells located in human tonsils and ILC3s in mucosa-

associated lymphoid tissues and human decidua [132,181–184]. Trophoblast cells and 

maternal stromal cells of the decidua both express unidentified NKp44 ligands [185]. It is 

suggested that PCNA could be the major NKp44 ligand in this case, as it is overexpressed in 

trophoblast cells during the first trimester [186] and its inhibitory character could explain the 

diminished ability of decidual NK cells to lyse trophoblasts despite low levels of classical HLA 

expression [187]. 

In addition to other, already identified ligands (Tab. 1), an activating NKp44 ligand was found 

on uninfected CD4+ T cells during HIV infection, whose expression is induced by gp41 

envelope protein of HIV [188]. 

 

1.4.3 NKp30 

 

NKp30 was initially described by Pende et al. in 1999 [74]. It is a functional protein on human 

and primate (macaque and chimapanzee) [74,139,189] as well as on rat NK cell subsets 

[190–192]. Interestingly, in chimpanzee, NKp30 is only expressed upon NK cell activation, 

similar to NKp44 expression in human [189]. In contrast, NKp30 is only a pseudogene with 

two premature stop codons in mouse, with the exception of M. caroli [169,193]. 

The NKp30 sequence is located in the MHC class III region (human: chromosome 6, mouse: 

chromosome 17) [194,195]. It contains a leader sequence for plasma membrane targeting, 

an extracellular Ig-like domain, a short stalk domain, a single transmembrane domain and a 

short cytosolic tail, which does not contain any tyrosine-based phosphorylation motifs [74]. A 

positively charged arginine in the transmembrane region is assumed to facilitate signaling via 

adaptor proteins (homodimers of CD3ζ or CD3ζ/FcεRIγ heterodimers) [196,197]. 

In mammals, NKp30 sequences are highly conserved, except for exon 4, which encodes the 

intracellular region [139,169,193,195]. Human NKp30 is expressed in six splice variants 

(isoforms a-f) with isoforms a-c being most abundant and ubiquitously expressed. These 

isoforms result from alternative splicing of exon 2 (extracellular region) and exon 4 [169,194]. 

While isoforms a-c include the complete ectodomain sequence (V-type Ig domain), isoforms 

d-f are lacking amino acids 66-99b of the extracellular region (C-type Ig domain). Isoforms a 

and e contain the longest (36 amino acids (aa)) and isoforms b and d the shortest (12 aa) 

intracellular domain, while the length of the cytoplasmic tails of isoform c and f lies in 

between (25 aa; appendix, 6.2). Isoform a represents the canonical sequence of NKp30. 

                                                      
b
 Amino acid annotation refers to the canonical NKp30 sequence (isoform a) 
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According to their structural heterogeneity, the transcripts adopt different NK cell functions, 

with isoforms a and b stimulating the immune system and isoform c acting 

immunosuppressive [198]. 

The currently known ligands of NKp30 include: (1) the cellular proteins B7-H6 [142], BAG-6 

[143–145] and Gal-3 [151], (2) the viral HCMV protein pp65 [146] and certain viral 

haemagglutinins [148], (3) the parasite protein PfEMP1 [147] and (4) certain heparin/heparan 

sulfate molecules [149,150]. B7-H6, one of the cellular ligands of NKp30, is involved in 

immunosurveillance of malignantly transformed cells. B7-H6 is a type I transmembrane 

protein, which is exclusively expressed on tumor cells, and not induced by cellular stress 

[142]. Binding of NKp30 to B7-H6 induces NK cell activation and cytotoxicity [142,199]. In 

addition to its function in NK cell cytotoxicity against infected and malignantly transformed 

cells, NKp30 plays a role in immune regulation. In this context, it interacts with BAG-6 on the 

surface of immature DCs, which triggers NK cell mediated killing and facilitates the selection 

of a more immunogenic subset of DCs by killing immature, but tolerating mature DCs 

[144,200]. BAG-6 is a nuclear protein involved in p53-dependent DNA repair [201]. 

Interestingly, several studies showed that the protein can also be targeted to the plasma 

membrane of tumor cells and DCs or released on exosomes in response to stress signals 

[143,144]. However, the physiological role of non-nuclear BAG-6 localization is currently 

unknown. The third cellular NKp30 ligand Gal-3 is a β-galactoside-binding protein which is 

highly expressed in many types of cancer cells [151,202–204]. Tumor cells were shown to 

release a soluble form of Gal-3, which specifically binds to NKp30 and inhibits the NKp30-

mediated cytotoxicity of NK cells [151]. In addition, NKp30 and NKp46 are able to recognize 

poxviral haemagglutinins on the surface of infected cells [148]. Interestingly, the 

NKp46/poxvirus HA interaction results in NK cell activation, while the NKp30/poxivrus HA 

interaction has an inhibitory effect [148]. The tegument protein pp65 of HCMV is another viral 

ligand of NKp30. Binding of pp65 to NKp30 leads to NK cell inhibition, which is caused by the 

dissociation of the NKp30/CD3ζ complex [146]. pp65 localizes to the nucleus and cytoplasm 

of infected cells [146,205] and could be released by lytic cells. Another pathogen derived 

ligand of NKp30 is PfEMP1 of Plasmodium falciparum [147]. PfEMP1 binds NKp30 via its 

Duffy-binding like (DBL)-1α domain, which leads to NK cell mediated killing of parasitized 

erythrocytes [147]. In addition, non-proteinaceous structures like heparin/heparan sulfate 

molecules on the surface of animal cells were shown to interact with NKp30 as well as 

NKp44 and NKp46 [149,150,159,206,207]. Interestingly, the currently known NKp30 ligands 

are unrelated in structure and sequence, and there is evidence for the existence of further 

yet unknown NKp30 ligands on tumor cells [137]. 

The structure of the Ig domain of NKp30 was resolved in an unbound (PDB: 3NOI) [136] and 

a B7-H6 bound state (PDB: 3PV6) [199] (Fig. 9). NKp30 and B7-H6 assemble in a 1:1 
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stoichiometry with a binding interface formed by the front and back β-sheets of the NKp30 

C-type Ig domain and the front β-sheet of the B7-H6 V-type Ig domain. Interestingly, binding 

of B7-H6 leads to slight conformational changes underneath the binding interface [199]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  
 Figure 9. Amino acid sequence and crystal structures of NKp30. 
 (A) Amino acid  sequence of NKp30 isoform a. Signal peptide is shown 
 in italics. Dark blue: Ig domain, light blue: stalk domain, green: 
 transmembrane domain, red: cytosolic domain. Sites for N-linked 
 glycosylation are underlined. (B) Crystal structures of the ectodomain of 
 NKp30 (only Ig domain, C- and N-terminus are indicated) in unbound 
 (PDB: 3NOI, left) and B7-H6 bound (PDB: 3PV6, right) state. Red: 
 NKp30, orange: B7-H6. Structural illustrations were made with PyMol. 

 

Interaction sites between NKp30/B7-H6 and NKp30/BAG-6 seem to be partially overlapping 

but not fully identical (Janina Binici, AG Koch, unpublished data). This leads to the 

assumption that the diversity of NKp30 ligands engages different binding pockets and not a 

common binding site on the receptor. 

The Ig domain of NKp30 contains three N-linked glycosylation targeting sites (N42, N68, 

N121). Glycosylation of N42 seems to be important for B7-H6 binding, while glycosylation of 

N42 and N68 was shown to be essential for intracellular signaling [208]. Interestingly, all of 

the N-glycosylation sites are located outside of the binding pocket for B7-H6. In case of 

NKp30/BAG-6 binding, only glycosylation of N68 is critical, while glycosylation of N42 and 

N121 had less impact [208]. This additionally speaks for differences in the binding interfaces 

of NKp30/B7-H6 and NKp30/BAG-6.  

Moreover, it was shown that the stalk domain of NKp30 influences the binding affinity for 

B7-H6 and BAG-6 [145,208], presumably involving stalk-dependent clustering of NKp30 
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[209]. C-terminal truncations of the stalk domain as well as substitution by a length-matched 

glycine-serine linker led to a reduced binding affinity to BAG-6 and B7-H6 and to a total loss 

of signaling capacity [208]. The exact mechanism, how the stalk domain of NKp30 

contributes to ligand binding and signaling is still unknown. 

 

1.5 Objectives 

 

An important function of NK cells is the eradication of infected and malignantly transformed 

cells. Therefore, they play a major role in counteracting pathogenic processes and an 

understanding of the molecular mechanisms that lead to NK cell activation is crucial to 

enhance the effectivity of related treatments like anti-cancer and anti-viral therapies. One of 

the major activating receptors on NK cells is NKp30, belonging to the NCR family. Currently, 

some of the crucial steps leading from ligand binding at the ectodomain of NKp30 to 

activation of the NK cell are still unknown. Therefore, this thesis aimed to investigate the 

following points: 

1. Engagement of NKp30 leads to phosphorylation of the ITAM sequence in the cytoplasmic 

tail of the adaptor protein CD3ζ and subsequently to actin reorganization and degranulation 

of the NK cell. The exact mechanism, how ligand binding at the ectodomain of NKp30 is 

communicated to the adaptor protein, is still unknown. It is suggested, that a positively 

charged arginine in the transmembrane domain of NKp30 facilitates the association and/or 

communication with the adaptor protein. Former studies already indicated the importance of 

the stalk domain of NKp30 for ligand binding and signaling [208]. Therefore, in this thesis, the 

function of the stalk domain, especially in signaling initiation, should be investigated in more 

detail by analysis of a large set of NKp30 stalk mutants for their ligand binding and signaling 

properties as well as for their ability to associate with the adaptor molecule CD3ζ. 

2. Although a panel of cellular and pathogen-derived NKp30 ligands was identified in the last 

years, the existence of further, yet unknown cellular ligands of the receptor is still 

questionable as former studies showed binding of NKp30-Fc fusion proteins to cell lines that 

neither express B7-H6 nor BAG-6 on their surface. Therefore, a suitable ligand screening 

method should be established, based on transduction of cell lines with a genome-wide 

human shRNA library and subsequent deep sequencing analysis. The existence of further 

cellular protein-ligands of NKp30 should be analyzed by implementation of this method. 

3. Phylogenetic trees of NKp30 sequences (on nucleotide as well as on protein level) 

showed the existence of two major clusters, one containing human and primates and the 

other containing rodents [169]. NKp30 was shown to be a functional receptor in human, 

macaque and chimpanzee, as well as on rat NK cell subsets [74,139,189–192]. In contrast, it 

is only a pseudogene in mouse, with the exception of Mus caroli [169,193]. To understand 
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the evolutionary reason for the development of the murine NKp30 pseudogene, the two 

premature stop codons in the M. musculus NKp30 sequence should be repaired, and the 

emerging protein should be analyzed for its functional properties. 
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2. Material and Methods 

 

2.1 Material 

 

2.1.1 Instruments, Chemicals, Consumables 

 

Unless otherwise denoted, all instruments were common lab equipment. All chemicals were 

obtained from Applichem GmbH (Darmstadt, Germany), Biozym Scientific GmbH (Hessisch 

Oldendorf, Germany), Carl Roth GmbH (Karlsruhe, Germany), GE Healthcare 

(Buckinghamshire, UK), PAN Biotech GmbH (Aidenbach, Germany), Roche (Mannheim, 

Germany), Sigma-Aldrich GmbH (Saint Louis, USA; part of Merck KGaA), Thermo Fisher 

Scientific Inc (Waltham, USA) and all consumables were obtained from Greiner Bio-One 

(Kremsmünster, Austria), Merck Millipore (Darmstadt, Germany; part of Merck KGaA), Lonza 

(Basel, Switzerland), Sarstedt AG & Co (Nümbrecht, Germany), Bio-Rad Laboratories 

(Hercules, USA), BD (Becton, Dickinson and Company, Franklin Lakes, USA) and 

Whatmann GmbH (Dassel, Germany; part of GE Healthcare). 

 

2.1.2 Enzymes, Antibiotics, Inhibitors and Additives 

 

Enzyme Supplier 

DreamTaqTM Polymerase Thermo Fisher Scientific 

FastAPTM Thermo Sensitive Alkaline Phosphatase Thermo Fisher Scientific 

FastDigest® Restriction Endonucleases Thermo Fisher Scientific 

High Fidelity (HF®) Restriction Endonucleases New England Biolabs 

Phusion® Polymerase Thermo Fisher Scientific /              
New England Biolabs 

T4 DNA Ligase Thermo Fisher Scientific 

 

Antibiotic Concentration (Application) Supplier 

Ampicillin 100 µg/ml (E.coli) Applichem 

Gentamicin 10 µg/ml (A5) Gibco 

Penicillin/Streptomycin 100 U/ml Penicillin, 100 µg/ml 

Streptomycin (mammalian cell lines) 
Gibco 
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Antibiotic Concentration (Application) Supplier 

Puromycin 1 µg/ml (MelJuSo, HeLa),                 
2 µg/ml (293T/17, DU145) 

Invitrogen 

Zeocin 100 µg/ml (E.coli), 150 µg/ml (HeLa) Invitrogen 

 

Inhibitor Concentration Supplier 

cOmpleteTM EDTA-free 
Protease Inhibitor Cocktail 

1 tablet/500 ml cell culture 
supernatant 

Roche 

 

Additive Concentration                                   
(in cell culture medium) 

Supplier 

Fetal Bovine Serum (FBS) 10% (v/v) PAN Biotech 

HEPES 10 mM Gibco 

L-Glutamine  5.4 mM (A5 cells), otherwise 2 mM Gibco 

MEM Non-Essential Amino 
Acids 

1x Gibco 

β-Mercaptoethanol 55 µM Gibco 

Sodium Pyruvate 1 mM Gibco 

 

2.1.3 Antibodies, Isotype Controls and Cell Staining Reagents 

 

Primary Antibodies                                    
(Name, Clone, Conjugation) 

Species/Isotype Supplier 

anti-human BAG-6, D-1 mouse IgG Santa Cruz 
Biotechnology 

anti-human B7-H6, 1.45c mouse IgG A. Cerwenka 

anti-human CD3ζ, 6B10.2, FITC-conjugated mouse IgG BioLegend/Biozol 

anti-human NKp30, polyclonal goat IgG R&D Systems 

anti-human NKp30, P30-15, APC-conjugated mouse IgG BioLegend/Biozol 

anti-human NKp30, P30-15, hybridoma mouse IgG C. Watzl 

                                                      
c
 kindly provided by S. Textor (AG Cerwenka) 
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Primary Antibodies                                    
(Name, Clone, Conjugation) 

Species/Isotype Supplier 

anti-human NKp30, 210845 mouse IgG R&D Systems 

anti-human NKp46, 9E2, APC-conjugated mouse IgG BioLegend/Biozol 

anti-human NKp46, 195314 mouse IgG R&D Systems 

anti-mouse CD4, GK1.5, APC-conjugated rat IgG eBioscience 

 

Secondary Antibodies/Reagents            
(Name, Conjugation) 

Species/Isotype Supplier 

anti-human IgG-Fc, HRP-conjugated goat IgG Sigma-Aldrich 

anti-human IgG1-Fc mouse IgG Jackson 
ImmunoResearch 

Streptavidin, HRP-conjugated streptavidin 
polymer 

Sigma-Aldrich 

anti-human IgG-Fc, Alexa647-conjugated goat IgG Dianova 

anti-mouse IgG-Fc, Alexa647-conjugated goat IgG Thermo Fisher 
Scientific 

anti-mouse IgG-Fc, Alexa546-conjugated donkey IgG Thermo Fisher 
Scientific 

 

Isotype controls (Name, Clone, Conjugation) Supplier 

mouse IgG, MOPC-21, APC-conjugated BioLegend/Biozol 

mouse IgG, MOPC-21, FITC-conjugated BioLegend/Biozol 

 

Cell staining Supplier 

SYTOX Blue Dead Cell Stain Life Technologies 

DAPI Life Technologies/ 
Molecular Probes 

Trypan Blue Solution 0.4 % Gibco 
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2.1.4 Kits 
 

Kit Supplier 

DNA Clean & Concentrator 5 Kit Zymo 

GeneJETTM Plasmid Miniprep Kit Thermo Fisher 
Scientific 

GeneJETTM Gel Extraction Kit Thermo Fisher 
Scientific 

HRP-Juice Kit PJK 

Novex® ECL HRP Chemiluminescent Substrate Reagent Kit  Thermo Fisher 
Scientific 

NucleoBond Xtra Midi/Maxi Kit Macherey-Nagel 

QIAamp Blood DNA Maxi Kit QIAGEN 

Qubit dsDNA BR Assay Kit Thermo Fisher 
Scientific 

Qubit Protein Assay Kit Thermo Fisher 
Scientific 

 

2.1.5 Buffers and Solutions 

 

Application Buffer/Solution Composition 

Agarose Gel Electrophoresis 
(2.3.5) 

TAE 40 mM Tris                                      
1 mM EDTA                               
1.14 % (v/v) acetic acid 

EtBr stain 0.01 % (v/v) EtBr in TAE buffer 

Cultivation of Cell Lines 
(2.4.1) 

PBS/EDTA 0.5 mM EDTA                                
in PBS (pH 8.0) 

Enzyme-linked 
Immunosorbent Assay 
(2.5.6) 

5 % BSA/PBS 5 % (w/v) albumin fraction V 
(bovine serum albumin, BSA)        
in PBS 

PBS-T 0.05 % (v/v) Tween 20 in PBS 

Flow Cytometry (2.4.6) FACS buffer 2 % (v/v) FBS                                 
in PBS 

FIX-I  4 % formalin                                   
in FACS buffer 



Material and Methods 43 
 

Application Buffer/Solution Composition 

Flow Cytometry (2.4.6) Perm buffer 0.2 % saponin                                 
1 % BSA                                         
in FACS buffer 

FIX-II  1 % formalin                                   
in FACS buffer 

Generation and 
Transformation of Chemo 
Competent Bacteria (2.2.2) 

TFB I 30 mM CH3COOK                         
10 mM CaCl2                                                   

50 mM MnCl2                                               

100 mM RbCl                                
15 % (v/v) glycerol                        
pH 5.8 with CH3COOH 

TFB II 10 mM MOPS                               
75 mM CaCl2                                 
10 mM RbCl                                  
15 % (v/v) glycerol                        
pH 6.8 with KOH    

Immunofluorescence 
Microscopy (2.4.7) 

FIX buffer 1 % formalin                                   
in PBS 

IF buffer 5 % (w/v) BSA in PBS 

IF-Perm buffer 0.2 % saponin                                 
5 % BSA                                         
in PBS 

DAPI stain 300 nM 4′,6-Diamidine-2-
phenylindole dihydrochloride 
(DAPI) in PBS 

Protein Production in 
Mammalian Cells (2.4.3) 

Sodium azide stock 
solution 

25 % (w/v) sodium azide 

Protein Purification (2.5.1) Elution buffer 0.1 M glycine pH 2.7 

Regeneration buffer 20 mM NaH2PO4                                     

0.05 % (v/v) sodium azide            
pH 7.4 with 20 mM Na2HPO4 

Collection buffer 1 M Tris pH 8.8 

Preparation of Cell Lysates 
(2.5.2) 

Membrane buffer 10 mM Tris-HCl pH 7.4                 
50 mM NaCl                                    
5 mM MgCl2                                                  

320 mM sucrose                           
10 mM NaF 
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Application Buffer/Solution Composition 

SDS-Polyacrylamide Gel 
Electrophoresis (2.5.3) 

SDS running buffer 25 mM Tris                                  
192 mM glycine                            
0.1 % (v/v) SDS 

3x SDS sample buffer 
(reducing) 

180 mM Tris pH 6.8                        
6 % (v/v) SDS                               
30 % (v/v) glycerol                   
0.003 % (w/v) bromophenol blue  
15 % (v/v) β-mercaptoethanol 

3x SDS sample buffer 
(non-reducing) 

180 mM Tris pH 6.8                        
6 % (v/v) SDS                               
30 % (v/v) glycerol                   
0.003 % (w/v) bromophenol blue 

Signaling Reporter Assay 
(2.4.8) 

P/I 50 ng/ml phorbol 12-myristate 13-
acetate (PMA)                             
750 ng/ml ionomycin                      
in A5-GFP medium 

Surface Plasmon Resonance 
(2.5.7) 

PBS-T 0.05 % (v/v) Tween 20                   
in PBS 

Transfection of Mammalian 
Cells (2.4.2) 

TA-Trans 18 mM polyethyleneimine (PEI), 
branched, in H2O (cell culture 
grade) 

Glucose solution 5 % (w/v) glucose in H2O (cell 
culture grade) 

Western Blot (2.5.5) Transfer buffer 192 mM glycine                             
25 mM Tris                                    
20 % (v/v) ethanol  

TBS-T 50 mM Tris                                  
150 mM NaCl                               
0.1 % (v/v) Tween 20 

Blocking buffer 2.5 % (w/v) skimmed milk powder 
in TBS-T 

 

2.1.6 Oligonucleotides 

 

All oligonucleotides were purchased from Sigma-Aldrich. Nucleotides matching the annealing 

sequence are written in capital letters, whereas bases that were introduced by the primer are 

written in lower case. Endonuclease restriction sites are underlined. Barcode sequences for 

deep sequencing samples are written in bold. 
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Application Primer Sequence (5’→3’) TM [°C] 

Cloning of  

pFc-Avi-B7-H6 

EcoRI BamHI B7-
H6EC for 

ccggaattcacgcggatccGATCTGAAAGTAG
AGATGATGGC 

85.8 

B7-H6EC NcoI 
EcoRV BglII rev 

tccagatctgatatcccatggAGGCCACCAATG
AATGG 

83.6 

Cloning of 
LeGO-iZ-Flag 

NotI-Flag-XbaI for cgtacgcggccgcTCAATCAGAAACTC 78.7 

NotI-Flag-XbaI rev ccgactctagaCGGCCGTTTAAACCTTATC
G 

75.2 

Deep 
Sequencing 

pMK1047_bc1_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctatcacgCTCTAGAT
GACTGACCCCTTG 

92.4 

pMK1047_bc1_rev caagcagaagacggcatacgagatcgtgatgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.6 

pMK1047_bc2_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctaaacgaCTCTAGAT
GACTGACCCCTTG 

91.5 

pMK1047_bc2_rev caagcagaagacggcatacgagattcgtttgtgactg
gagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.0 

pMK1047_bc3_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctaaagtcCTCTAGAT
GACTGACCCCTTG 

91.2 

pMK1047_bc3_rev caagcagaagacggcatacgagatgactttgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.7 

pMK1047_bc4_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctaacggtCTCTAGAT
GACTGACCCCTTG 

92.0 

pMK1047_bc4_rev caagcagaagacggcatacgagataccgttgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.9 

pMK1047_bc5_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctaacttcCTCTAGATG
ACTGACCCCTTG 

91.2 

pMK1047_bc5_rev caagcagaagacggcatacgagatgaagttgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.7 
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Application Primer Sequence (5’→3’) TM [°C] 

Deep 
Sequencing 

pMK1047_bc6_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctaagaacCTCTAGAT
GACTGACCCCTTG 

91.2 

pMK1047_bc6_rev caagcagaagacggcatacgagatgttcttgtgactg
gagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.7 

pMK1047_bc7_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctaatgtgCTCTAGAT
GACTGACCCCTTG 

91.1 

pMK1047_bc7_rev caagcagaagacggcatacgagatcacattgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.1 

pMK1047_bc8_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctacatgtCTCTAGAT
GACTGACCCCTTG 

91.6 

pMK1047_bc8_rev caagcagaagacggcatacgagatacatgtgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.5 

pMK1047_bc9_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctaccaaaCTCTAGAT
GACTGACCCCTTG 

91.5 

pMK1047_bc9_rev caagcagaagacggcatacgagattttggtgtgactg
gagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.0 

pMK1047_bc10_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctacgataCTCTAGAT
GACTGACCCCTTG 

91.0 

pMK1047_bc10_rev caagcagaagacggcatacgagattatcgtgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.5 

pMK1047_bc11_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctacgtttCTCTAGATG
ACTGACCCCTTG 

91.5 

pMK1047_bc11_rev caagcagaagacggcatacgagataaacgtgtgac
tggagttcagacgtgtgctcttccgatctATGGACG
AGCTGTACAAGTAA 

91.4 

pMK1047_bc12_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctactaggCTCTAGAT
GACTGACCCCTTG 

91.2 
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Application Primer Sequence (5’→3’) TM [°C] 

Deep 
Sequencing 

pMK1047_bc12_rev caagcagaagacggcatacgagatcctagtgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.4 

pMK1047_bc13_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctactccaCTCTAGAT
GACTGACCCCTTG 

91.8 

pMK1047_bc13_rev caagcagaagacggcatacgagattggagtgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.3 

pMK1047_bc14_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctagactcCTCTAGAT
GACTGACCCCTTG 

91.5 

pMK1047_bc14_rev caagcagaagacggcatacgagatgagtctgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.0 

pMK1047_bc15_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctagcattCTCTAGAT
GACTGACCCCTTG 

91.6 

pMK1047_bc15_rev caagcagaagacggcatacgagataatgctgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.5 

pMK1047_bc16_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctaggagaCTCTAGAT
GACTGACCCCTTG 

91.5 

pMK1047_bc16_rev caagcagaagacggcatacgagattctcctgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.0 

pMK1047_bc17_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctagtaagCTCTAGAT
GACTGACCCCTTG 

90.7 

pMK1047_bc17_rev caagcagaagacggcatacgagatcttactgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

90.9 

pMK1047_bc18_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctagtcctCTCTAGAT
GACTGACCCCTTG 

91.5 

pMK1047_bc18_rev caagcagaagacggcatacgagataggactgtgac
tggagttcagacgtgtgctcttccgatctATGGACG
AGCTGTACAAGTAA 

91.4 
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Application Primer Sequence (5’→3’) TM [°C] 

Deep 
Sequencing 

pMK1047_bc19_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctagttacCTCTAGAT
GACTGACCCCTTG 

90.7 

pMK1047_bc19_rev caagcagaagacggcatacgagatgtaactgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.1 

pMK1047_bc20_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctataaccCTCTAGAT
GACTGACCCCTTG 

91.0 

pMK1047_bc20_rev caagcagaagacggcatacgagatggttatgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.5 

pMK1047_bc21_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctgaccaaCTCTAGAT
GACTGACCCCTTG 

92.6 

pMK1047_bc21_rev caagcagaagacggcatacgagatttggtcgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.5 

pMK1047_bc22_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctcctgaaCTCTAGAT
GACTGACCCCTTG 

92.4 

pMK1047_bc22_rev caagcagaagacggcatacgagatttcagggtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.2 

pMK1047_bc23_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctatggagCTCTAGAT
GACTGACCCCTTG 

92.1 

pMK1047_bc23_rev caagcagaagacggcatacgagatctccatgtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.3 

pMK1047_bc24_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctatgtccCTCTAGAT
GACTGACCCCTTG 

92.1 

pMK1047_bc24_rev caagcagaagacggcatacgagatggacatgtgac
tggagttcagacgtgtgctcttccgatctATGGACG
AGCTGTACAAGTAA 

92.6 

pMK1047_bc25_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctcaattgCTCTAGAT
GACTGACCCCTTG 

92.4 
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Application Primer Sequence (5’→3’) TM [°C] 

Deep 
Sequencing 

pMK1047_bc25_rev caagcagaagacggcatacgagatcaattggtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.0 

pMK1047_bc26_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctcagagtCTCTAGAT
GACTGACCCCTTG 

92.1 

pMK1047_bc26_rev caagcagaagacggcatacgagatactctggtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

91.4 

pMK1047_bc27_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctcatcagCTCTAGAT
GACTGACCCCTTG 

92.7 

pMK1047_bc27_rev caagcagaagacggcatacgagatctgatggtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.3 

pMK1047_bc28_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctcatctcCTCTAGATG
ACTGACCCCTTG 

92.4 

pMK1047_bc28_rev caagcagaagacggcatacgagatgagatggtgac
tggagttcagacgtgtgctcttccgatctATGGACG
AGCTGTACAAGTAA 

92.3 

pMK1047_bc29_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctccacttCTCTAGATG
ACTGACCCCTTG 

92.4 

pMK1047_bc29_rev caagcagaagacggcatacgagataagtgggtgac
tggagttcagacgtgtgctcttccgatctATGGACG
AGCTGTACAAGTAA 

91.6 

pMK1047_bc30_for aatgatacggcgaccaccgagatctacactctttccct
acacgacgctcttccgatctcccataCTCTAGAT
GACTGACCCCTTG 

92.1 

pMK1047_bc30_rev caagcagaagacggcatacgagattatggggtgact
ggagttcagacgtgtgctcttccgatctATGGACGA
GCTGTACAAGTAA 

92.0 

Sequencing 45 pFUSE seq for TGCGCCGTTACAGATCCAAG 68.3 

47 pFUSE seq rev CGGGAGATCATGAGGGTGTC 66.9 

53 LeGO seq rev AAGCGGCTTCGGCCAGTAAC 69.4 

61 LeGO seq for ATGACCCTGCGCCTTATTTG 65.9 
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2.1.7 Plasmids 

 

Unless otherwise denoted, plasmids were replicated in E. coli DH5α or E. coli Top10. The 

corresponding plasmid maps are listed in the appendix (6.1).  

 

Mammalian expression plasmids 

 

Protein sequences for NKp30 variants contained in mammalian expression plasmids were 

generated by de novo gene synthesis and delivered in pUC57 vectors by GenScript 

(sequences kindly constructed by Sandra Weil). All plasmids used in 3.1.1 to 3.1.3 and 3.1.5 

were cloned in collaboration with Sandra Weil and Steffen Beyer. 

Plasmid Selection Supplier 

pDisplay-BirA-ER ampR J. Hartmann 

pDisplay-sBirA ampR J. Hartmann 

pFUSE-hIgG1-FcEQ zeoR J. Hartmann [208] 

pFUSE-hIgG1-FcEQ-NKp30Stalk zeoR J. Hartmann [208] 

pFUSE-hIgG1-FcEQ-NKp44Stalk zeoR J. Hartmann 

pFUSE-hIgG1-FcEQ-NKp46Stalk zeoR J. Hartmann 

pFUSE-hIgG1-FcEQ-IFNAR2 zeoR J. Hartmann [208] 

pFUSE-hIgG1-FcEQ-NKp30-K129A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-E130A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-H131A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-P132A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-Q133A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-L134A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-G135A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-G137A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-T138A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-V139A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-L140A zeoR this thesis 
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Plasmid Selection Supplier 

pFUSE-hIgG1-FcEQ-NKp30-L141A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-L142A zeoR this thesis 

pFUSE-hIgG1-FcEQ-NKp30-R143A zeoR this thesis 

pFc-Avi zeoR T. Zöller 

pcDNA3.1-TNFss-B7H6-hIgG1-Fc ampR/neoR A. Cohnen 

pFc-Avi-B7-H6 zeoR this thesis 

pFUSE-hIgG1-FcEQ-mNKp30 zeoR this thesis 

pFUSE-hIgG1-FcEQ-mNKp30-glyko zeoR this thesis 

 

Lentiviral transfer plasmids 

 

Gene sequences for NKp30 and NKp46 variants contained in lentiviral transfer plasmids 

were generated by de novo gene synthesis and delivered in pUC57 vectors by GenScript 

(sequences kindly constructed by Sandra Weil). All plasmids used in 3.1.1 to 3.1.3 and 3.1.5 

were generated in collaboration with Sandra Weil and Steffen Beyer. 

Plasmid Selection Supplier 

LeGO-iZ ampR/zeoR J. Hartmann [208] 

LeGO-iZ-NKp30FL-His ampR/zeoR J. Hartmann [208] 

LeGO-iZ-NKp46FL-His ampR/zeoR this thesis 

LeGO-iZ-NKp46Ig/30Stalk/30TM-His ampR/zeoR this thesis 

LeGO-iZ-NKp46Ig/30Stalk/46TM-His ampR/zeoR this thesis 

LeGO-iZ-NKp30Ig/46Stalk/46TM-His ampR/zeoR this thesis 

LeGO-iZ-NKp30Ig/46Stalk/30TM-His ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-K129A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-E130A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-H131A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-P132A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-Q133A ampR/zeoR this thesis 
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Plasmid Selection Supplier 

LeGO-iZ-NKp30FL-His-L134A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-G135A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-G137A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-T138A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-V139A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-L140A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-L141A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-L142A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-R143A ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-R143K ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-Y161F ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-Y162F ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-Y161F/Y162F ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-A144L/G145L ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-A144L/G145L/K165→161 ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-V126N/E128S ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-K129N/H131S ampR/zeoR this thesis 

LeGO-iZ-NKp30FL-His-Q133N/G135S ampR/zeoR this thesis 

LeGO-iZ-NKp46FL-His-G241N/Q243S ampR/zeoR this thesis 

LeGO-iZ-NKp46FL-His-K244N/H246S ampR/zeoR this thesis 

LeGO-iZ-NKp46FL-His-L248N/W249S/D250S ampR/zeoR this thesis 

LeGO-iZ-Flag ampR/zeoR this thesis 

LeGO-iZ-B7-H6-Flag ampR/zeoR this thesis 

LeGO-iZ-CD68-Flag ampR/zeoR this thesis 

LeGO-iZ-CD74-Flag ampR/zeoR this thesis 

LeGO-iZ-CD164-Flag ampR/zeoR this thesis 
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Plasmid Selection Supplier 

LeGO-iZ-CD302-Flag ampR/zeoR this thesis 

LeGO-iZ-CD320-Flag ampR/zeoR this thesis 

LeGO-iZ-CLDN8-Flag ampR/zeoR this thesis 

LeGO-iZ-CLEC6A-Flag ampR/zeoR this thesis 

LeGO-iZ-CEACAM1-Flag ampR/zeoR this thesis 

LeGO-iZ-CEACAM5-Flag ampR/zeoR this thesis 

LeGO-iZ-FAS-Flag ampR/zeoR this thesis 

LeGO-iZ-GJB5-Flag ampR/zeoR this thesis 

LeGO-iZ-GPC3-Flag ampR/zeoR this thesis 

LeGO-iZ-GRINA-Flag ampR/zeoR this thesis 

LeGO-iZ-LIN7A-Flag ampR/zeoR this thesis 

LeGO-iZ-PDZK1-Flag ampR/zeoR this thesis 

LeGO-iZ-PRKCD-Flag ampR/zeoR this thesis 

LeGO-iZ-RAB23-Flag ampR/zeoR T. Zöller 

LeGO-iZ-ZDHHC4-Flag ampR/zeoR this thesis 

LeGO-iZ-mNKp30FL-His ampR/zeoR this thesis 

LeGO-iZ-Flag-mNKp30FL-His ampR/zeoR this thesis 

LeGO-iZ-Flag-mNKp30FL-His-glyco ampR/zeoR this thesis 

 

Packaging plasmids 

 

Plasmid Selection Supplier 

pMD2.G ampR D. Trono 

pCMV-∆R8.91 ampR D. Trono 
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2.1.8 Viruses 

 

All viruses used in this thesis were replication incompetent, self-inactivating lentiviral 

particles, produced with a third generation lentiviral transfer plasmid (LeGO-iZ or LeGO-iZ-

Flag) packaged by a second generation packaging system (pCMV-∆R8.91 and pMD2.G). 

The shRNA library was delivered in lentiviral particles pseudotyped with vesicular stomatitis 

virus glycoprotein (VSV-G). Viruses used in 3.1.1 to 3.1.3 were produced in collaboration 

with Sandra Weil and Steffen Beyer. 

Application Virus Virus 
core 

Supplier 

chapter 3.1  [LeGO-iZ(VSV-G)] (Mock) HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp46FL-His(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp46Ig/30Stalk/30TM-His(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp46Ig/30Stalk/46TM-His(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30Ig/46Stalk/46TM-His(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30Ig/46Stalk/30TM-His(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-K129A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-E130A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-H131A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-P132A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-Q133A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-L134A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-G135A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-G137A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-T138A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-V139A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-L140A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-L141A(VSV-G)] HIV-1 this thesis 
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Application Virus Virus 
core 

Supplier 

chapter 3.1 [LeGO-iZ-NKp30FL-His-L142A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-R143A(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-R143K(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-Y161F(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-Y162F(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-Y161F/Y162F(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-A144L/G145L(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-NKp30FL-His-
A144L/G145L/K165→161(VSV-G)] 

HIV-1 this thesis 

chapter 3.2 

 

[pMK1047(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-a(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-b(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-c(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-d(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-e(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-f(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-g(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-k(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-l(VSV-G)] HIV-1 Viracore, 
UCSF 

[pMK1047-chip-m(VSV-G)] HIV-1 Viracore, 
UCSF 
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Application Virus Virus 
core 

Supplier 

chapter 3.2 [LeGO-iZ-Flag(VSV-G)] (Mock) HIV-1 this thesis 

[LeGO-iZ-B7-H6-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CD320-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-ZDHHC4-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-GRINA-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-RAB23-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-PDZK1-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CLDN8-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CLEC6A-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CD164-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-FAS-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-GPC3-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-PRKCD-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CD302-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-GJB5-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CRIM1-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CD68-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CEACAM5-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-LIN7A-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-ABCG2-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CEACAM1-Flag(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-CD74-Flag(VSV-G)] HIV-1 this thesis 

chapter 3.3 [LeGO-iZ-Flag-mNKp30FL-His(VSV-G)] HIV-1 this thesis 

[LeGO-iZ-Flag-mNKp30FL-His-glyco(VSV-G)] HIV-1 this thesis 
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2.1.9 Proteins 

 

All recombinant hIgG1-Fc fusion proteins used in this thesis were produced by transient 

transfection of HEK 293T/17 cells. 

 

Proteins expressed in mammalian cells 

 

Application Protein Supplier 

chapter 3.1 - 
3.3 

IFNAR2-hIgG1-FcEQ this thesis 

NKp30-hIgG1-FcEQ this thesis 

chapter 3.1 B7-H6-hIgG1-FcEQ-Bio this thesis 

NKp30-K129A-hIgG1-FcEQ this thesis 

NKp30-E130A-hIgG1-FcEQ this thesis 

NKp30-H131A-hIgG1-FcEQ this thesis 

NKp30-P132A-hIgG1-FcEQ this thesis 

NKp30-Q133A-hIgG1-FcEQ this thesis 

NKp30-L134A-hIgG1-FcEQ this thesis 

NKp30-G135A-hIgG1-FcEQ this thesis 

NKp30-G137A-hIgG1-FcEQ this thesis 

NKp30-T138A-hIgG1-FcEQ this thesis 

NKp30-V139A-hIgG1-FcEQ this thesis 

NKp30-L140A-hIgG1-FcEQ this thesis 

NKp30-L141A-hIgG1-FcEQ this thesis 

NKp30-L142A-hIgG1-FcEQ this thesis 

NKp30-R143A-hIgG1-FcEQ this thesis 

chapter 3.2 NKp44-hIgG1-FcEQ this thesis 

NKp46-hIgG1-FcEQ this thesis 

chapter 3.3 mNKp30-hIgG1-FcEQ this thesis 

mNKp30-hIgG1-FcEQ-glyco this thesis 
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2.1.10 Bacterial Strains and Culture Media 

 

Strain Genotype Supplier 

E. coli DH5α F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 
hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

Invitrogen 

E. coli Top10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 

recA1 araD139 Δ(araleu)7697 galU galK rpsL (StrR) 
endA1 nupG 

Invitrogen 

 

E. coli bacteria were maintained in Luria Broth medium with the low salt formulation of 

Lennox (LB; trypton 1 % (w/v), yeast extract 0.5 % (w/v), NaCl 0.5 % (w/v)). Bacteria were 

either cultivated in liquid culture or on plates containing 1.5 % agar and the appropriate 

antibiotic for selection.  

 

2.1.11 Cell Lines and Culture Media 

 

Unmodified cell lines 

 

Cell line Characterization Supplier 

Ba/F3d (IL-3 
independent subclone) 

murine pro B cells DSMZ,  

ACC-300 

EL-4e murine T cell lymphoma ATCC, TIB-39 

DU145 human prostate cancer cells ATCC, HTB-81 

HEK 293T/17 human embryonic kidney cells, highly 
transfectable derivative of the HEK 293T cell line 

ATCC,      
CRL-11268 

HeLa human cervix adenocarcinoma cells ATCC, CCL-2 

MEF (CF-1)e murine embryonic fibroblasts ATCC,   
SCRC-1040 

MelJuSo human melanoma cells DSMZ, ACC 74 

MODE-Ke murine intestinal epithelial cells [210] 

NIH/3T3e murine embryonic fibroblasts ATCC,      
CRL-1658 

                                                      
d
 kindly provided by C. Watzl 

e
 kindly provided by A. Steinle 
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Cell line Characterization Supplier 

P815e murine mastocytoma ATCC, TIB-64 

RAW 309 Cr.1e murine monocytes/ macrophages ATCC, TIB-69 

YAC-1e murine lymphoblasts ATCC, TIB-160 

 

Genetically modified cell lines 

 

DU145, MelJuSo and 293T/17 cells used for the shRNA screening were transduced with 

pooled shRNAs (chip a,b,c,d,e,f,g,k,l,m; compare to 3.2). Cell lines used in 3.1.1 to 3.1.3 

were generated in collaboration with Sandra Weil and Steffen Beyer.  

Cell line Modification Supplier 

A5-GFP GFP expression under three NF-AT binding 
sites in the IL-2 promoter region 

A. Diefenbach 
[211,212] 

A5-GFP-NKp30FL human NKp30 full length protein containing a 
C-terminal His10 tag; zeocin resistance 

K. Oberle,      
J. Hartmann 
[208] 

A5-GFP-NKp46FL human NKp46 full length protein containing a 
C-terminal His10 tag; zeocin resistance 

this thesis 

A5-GFP-
NKp46Ig/30Stalk/30TM 

chimeric human NCR protein containing the 
Ig-fold of NKp46, the stalk of NKp30, the TM and 
cytosolic domain of NKp30, and a C-terminal 
His10 tag; zeocin resistance 

this thesis 

A5-GFP-
NKp46Ig/30Stalk/46TM 

chimeric human NCR protein containing the 
Ig-fold of NKp46, the stalk of NKp30, the TM and 
cytosolic domain of NKp46, and a C-terminal 
His10 tag; zeocin resistance 

this thesis 

A5-GFP-
NKp30Ig/46Stalk/46TM 

chimeric human NCR protein containing the 
Ig-fold of NKp30, the stalk of NKp46, the TM and 
cytosolic domain of NKp46, and a C-terminal 
His10 tag; zeocin resistance 

this thesis 

A5-GFP-
NKp30Ig/46Stalk/30TM 

chimeric human NCR protein containing the 
Ig-fold of NKp30, the stalk of NKp46, the TM and 
cytosolic domain of NKp30, and a C-terminal 
His10 tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-K129A human NKp30 full length protein containing an 
amino acid exchange from lysine to alanine at 
position 129 (K129A), and a C-terminal His10 
tag; zeocin resistance 

this thesis 
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Cell line Modification Supplier 

A5-GFP-NKp30-E130A human NKp30 full length protein containing an 
amino acid exchange from glutamic acid to 
alanine at position 130 (E130A), and a 
C-terminal His10 tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-H131A human NKp30 full length protein containing an 
amino acid exchange from histidine to alanine at 
position 131 (H131A), and a C-terminal His10 
tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-P132A human NKp30 full length protein containing an 
amino acid exchange from proline to alanine at 
position 132 (P132A), and a C-terminal His10 
tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-Q133A human NKp30 full length protein containing an 
amino acid exchange from glutamine to alanine 
at position 133 (Q133A), and a C-terminal His10 
tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-L134A human NKp30 full length protein containing an 
amino acid exchange from leucine to alanine at 
position 134 (L134A), and a C-terminal His10 tag; 
zeocin resistance 

this thesis 

A5-GFP-NKp30-G135A human NKp30 full length protein containing an 
amino acid exchange from glycine to alanine at 
position 135 (G135A), and a C-terminal His10 
tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-G137A human NKp30 full length protein containing an 
amino acid exchange from glycine to alanine at 
position 137 (G137A), and a C-terminal His10 
tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-T138A human NKp30 full length protein containing an 
amino acid exchange from threonine to alanine 
at position 138 (T138A), and a C-terminal His10 
tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-V139A human NKp30 full length protein containing an 
amino acid exchange from valine to alanine at 
position 139 (V139A), and a C-terminal His10 
tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-L140A human NKp30 full length protein containing an 
amino acid exchange from leucine to alanine at 
position 140 (L140A), and a C-terminal His10 tag; 
zeocin resistance 

 

 

this thesis 



Material and Methods 61 
 

Cell line Modification Supplier 

A5-GFP-NKp30-L141A human NKp30 full length protein containing an 
amino acid exchange from leucine to alanine at 
position 141 (L141A), and a C-terminal His10 tag; 
zeocin resistance 

this thesis 

A5-GFP-NKp30-L142A human NKp30 full length protein containing an 
amino acid exchange from leucine to alanine at 
position 142 (L142A), and a C-terminal His10 tag; 
zeocin resistance 

this thesis 

A5-GFP-NKp30-R143A human NKp30 full length protein containing an 
amino acid exchange from arginine to alanine at 
position 143 (R143A), and a C-terminal His10 
tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-Y161F human NKp30 full length protein containing an 
amino acid exchange from tyrosine to 
phenylalanine at position 161 (Y161F), and a C-
terminal His10 tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-Y162F human NKp30 full length protein containing an 
amino acid exchange from tyrosine to 
phenylalanine at position 162 (Y162F), and a C-
terminal His10 tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-
Y161F/Y162F 

human NKp30 full length protein containing two 
amino acid exchanges from tyrosine to 
phenylalanine at position 161 and 162 
(Y161F/Y162F), and a C-terminal His10 tag; 
zeocin resistance 

this thesis 

A5-GFP-NKp30-
A144L/G145L 

human NKp30 full length protein containing an 
amino acid exchange from alanine to leucine at 
position 144 (A144L) and from glycine to leucine 
at position 145 (G145L), and a C-terminal His10 
tag; zeocin resistance 

this thesis 

A5-GFP-NKp30-
A144L/G145L, 
K165→161 

human NKp30 full length protein containing an 
amino acid exchange from alanine to leucine at 
position 144 (A144L), and from glycine to 
leucine at position 145 (G145L), an amino acid 
shift from position 165 to 161 (K165→161), and 
a C-terminal His10 tag; zeocin resistance 

this thesis 

A5-GFP-Flag-mNKp30 M. musculus NKp30 containing two point 
mutations that change the premature stop 
codons TGA to TGG (Exon 2), an N-terminal 
Flag-tag, and a C-terminal His10 tag; zeocin 
resistance 

 

 

this thesis 
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Cell line Modification Supplier 

A5-GFP-Flag-mNKp30-
glyco 

M. musculus NKp30 containing two point 
mutations that change the premature stop 
codons TGA to TGG (Exon 2), three point 
mutations that transfer three glycosylation sites 
NAS, NVT and NRT in the extracellular domain,  
an N-terminal Flag-tag, and a C-terminal His10 
tag; zeocin resistance 

this thesis 

Ba/F3-mockf mock transduced Ba/F3 cells; puromycin 
resistance; intracellular GFP-expression; IL-3 
independent subclone 

A. Cohnen,     
J. Hartmann 
[208] 

Ba/F3-B7-H6f human B7-H6 full length protein; puromycin 
resistance; intracellular GFP-expression; IL-3 
independent subclone 

A. Cohnen,     
J. Hartmann 
[208] 

HeLa-ABCG2-Flag human ABCG2 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-B7-H6-Flag human B7-H6 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-CD3ζ human CD3ζ full length protein; puromycin 

resistance 
E. Peters 

HeLa-CD68-Flag human CD68 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-CD74-Flag human CD74 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-CD164-Flag human CD164 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-CD302-Flag human CD302 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-CD320-Flag human CD320 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-CLDN8-Flag human CLDN8 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-CLEC6A-Flag human CLEC6A containing a C-terminal Flag 
tag; zeocin resistance 

this thesis 

HeLa-CEACAM1-Flag human CEACAM1 containing a C-terminal Flag 
tag; zeocin resistance 

 

this thesis 

                                                      
f
 generated and kindly provided by A. Cohnen 
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Cell line Modification Supplier 

HeLa-CEACAM5-Flag human CEACAM5 containing a C-terminal Flag 
tag; zeocin resistance 

this thesis 

HeLa-CRIM1-Flag human CRIM1 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-FAS-Flag human FAS containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-GJB5-Flag human GJB5 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-GBC3-Flag human GPC3 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-GRINA-Flag human GRINA containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-LIN7A-Flag human LIN7A containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-Mock (LeGO-iZ-
Flag) 

zeocin resistance this thesis 

HeLa-PDZK1-Flag human PDZK1 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-PRKCD-Flag human PRKCD containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-RAB23-Flag human RAB23 containing a C-terminal Flag tag; 
zeocin resistance 

this thesis 

HeLa-ZDHHC4-Flag human ZDHHC4 containing a C-terminal Flag 
tag; zeocin resistance 

this thesis 

HeLa-NKp30FL human NKp30 full length protein containing a 
C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-NKp46FL human NKp46 full length protein containing a 
C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30FL human CD3ζ full length protein; puromycin 

resistance; human NKp30 full length protein 
containing a C-terminal His10 tag; zeocin 
resistance 

this thesis 

HeLa-CD3ζ-NKp46FL human CD3ζ full length protein; puromycin 

resistance; human NKp46 full length protein 
containing a C-terminal His10 tag; zeocin 
resistance 

this thesis 
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Cell line Modification Supplier 

HeLa-CD3ζ-NKp30-

K129A 

human CD3ζ full length protein; puromycin 

resistance; human NKp30 full length protein 
containing an amino acid exchange from lysine 
to alanine at position 129 (K129A), and a C-
terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-

E130A 

human CD3ζ full length protein; puromycin 

resistance; human NKp30 full length protein 
containing an amino acid exchange from 
glutamic acid to alanine at position 130 (E130A), 
and a C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-

H131A 

human CD3ζ full length protein; puromycin 

resistance; human NKp30 full length protein 
containing an amino acid exchange from 
histidine to alanine at position 131 (H131A), and 
a C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-
P132A 

human CD3ζ full length protein; puromycin 
resistance; human NKp30 full length protein 
containing an amino acid exchange from proline 
to alanine at position 132 (P132A), and a 
C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-
Q133A 

human CD3ζ full length protein; puromycin 
resistance; human NKp30 full length protein 
containing an amino acid exchange from 
glutamine to alanine at position 133 (Q133A), 
and a C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-
L134A 

human CD3ζ full length protein; puromycin 
resistance; human NKp30 full length protein 
containing an amino acid exchange from leucine 
to alanine at position 134 (L134A), and a 
C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-

G135A 

human CD3ζ full length protein; puromycin 

resistance; human NKp30 full length protein 
containing an amino acid exchange from glycine 
to alanine at position 135 (G135A), and a 
C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-

G137A 

human CD3ζ full length protein; puromycin 

resistance; human NKp30 full length protein 
containing an amino acid exchange from glycine 
to alanine at position 137 (G137A), and a 
C-terminal His10 tag; zeocin resistance 

 

 

 

this thesis 
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Cell line Modification Supplier 

HeLa-CD3ζ-NKp30-

T138A 

human CD3ζ full length protein; puromycin 

resistance; human NKp30 full length protein 
containing an amino acid exchange from 
threonine to alanine at position 138 (T138A), 
and a C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-

V139A 

human CD3ζ full length protein; puromycin 

resistance; human NKp30 full length protein 
containing an amino acid exchange from valine 
to alanine at position 139 (V139A), and a C-
terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-

L140A 

human CD3ζ full length protein; puromycin 

resistance; human NKp30 full length protein 
containing an amino acid exchange from leucine 
to alanine at position 140 (L140A), and a 
C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-
L141A 

human CD3ζ full length protein; puromycin 
resistance; human NKp30 full length protein 
containing an amino acid exchange from leucine 
to alanine at position 141 (L141A), and a 
C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-
L142A 

human CD3ζ full length protein; puromycin 
resistance; human NKp30 full length protein 
containing an amino acid exchange from leucine 
to alanine at position 142 (L142A), and a 
C-terminal His10 tag; zeocin resistance 

this thesis 

HeLa-CD3ζ-NKp30-
R143A 

human CD3ζ full length protein; puromycin 
resistance; human NKp30 full length protein 
containing an amino acid exchange from 
arginine to alanine at position 143 (R143A), and 
a C-terminal His10 tag; zeocin resistance 

this thesis 

p30-15 murine B cells, spleen, hybridoma producing the 
anti-NKp30 antibody clone p30-15 

C. Watzl 

RMA neoe murine T cell lymphoma A. Steinle 
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Culture Media 

 

A5-GFP (and modified subclones) 

 

DMEM  + 10 % FBS 

  + 5.4 mM L-glutamine 

  + 100 U/ml penicillin 

+ 100 µg/ml streptomycin 

  + 10 mM HEPES 

  + 1x MEM non-essential amino acids 

  + 10 µg/ml gentamicin 

  + 55 µM β-mercaptoethanol 

 

Ba/F3 (and modified subclones) 

 

RPMI  + 10 % FBS 

  + 2 mM L-glutamine 

  + 100 U/ml penicillin 

+ 100 µg/ml streptomycin 

  + 55 µM β-mercaptoethanol 

 

DU145, 293T/17, HeLa, MelJuSo (and modified subclones) 

 

DMEM  + 10 % FBS 

  + 2 mM L-glutamine 

  + 100 U/ml penicillin 

+ 100 µg/ml streptomycin 

 

EL-4, P815, YAC-1 

 

RPMI  + 10 % FBS 

  + 2 mM L-glutamine 

  + 100 U/ml penicillin 

+ 100 µg/ml streptomycin 

  + 1 mM sodium pyruvate 
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HeLa-CD3ζ (and modified subclones) 

 

DMEM  + 10 % FBS 

  + 2 mM L-glutamine 

  + 100 U/ml penicillin 

+ 100 µg/ml streptomycin 

  + 1 µg/ml puromycin 

 

MEF, NIH/3T3, RAW 309 

 

DMEM  + 10 % FBS 

  + 2 mM L-glutamine 

  + 100 U/ml penicillin 

+ 100 µg/ml streptomycin 

  + 1 mM sodium pyruvate 

 

MODE-K 

 

RPMI  + 10 % FBS 

  + 2 mM L-glutamine 

  + 100 U/ml penicillin 

+ 100 µg/ml streptomycin 

  + 1 mM sodium pyruvate 

  + 1x MEM non-essential amino acids 

  + 55 µM β-mercaptoethanol 

 

RMA neo 

 

RPMI  + 10 % FBS 

  + 2 mM L-glutamine 

  + 100 U/ml penicillin 

+ 100 µg/ml streptomycin 

  + 1 mM sodium pyruvate 

  + 1 mg/ml G418 
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2.2 Methods of Microbiology 

 

2.2.1 Cultivation of Bacteria 

 

E. coli bacteria were grown in LB medium with the respective antibiotic for selection over 

night at 37°C. Bacteria were either cultivated in liquid culture on a bacteria shaker, or on 

plates containing 1.5 % agar.  

 

2.2.2 Generation and Transformation of Chemo-Competent Bacteria 

 

Chemo-competent bacteria were generated by implementation of the CaCl2/RbCl method 

[213]. Therefore, 100 ml of LB medium were inoculated with 2 ml of an overnight E. coli 

culture (DH5α or TOP10) and incubated at 37°C and 120 rpm until an OD600 of 0.4-0.6 was 

reached. Afterwards, bacteria were incubated on ice for 10 minutes and pelleted by 

centrifugation (2000xg, 10 min, 0°C). The pellet was resuspended in 7.5 ml TFB I buffer 

(sterile filtrated, ice-cold) and incubated on ice for one hour. After that, bacteria were pelleted 

(2000xg, 10 min, 0°C) and resuspended in 2 ml TBF II buffer (sterile filtrated, ice-cold). The 

bacteria suspension was frozen in 50 µl aliquots and stored at -80°C. 

For transformation of chemo-competent bacteria, either 50 ng plasmid DNA or 5-10 µl 

ligation reaction (2.3.4) were mixed with 50 µl bacteria suspension and incubated on ice for 

20 min. Afterwards, bacteria were heat-shocked at 42°C for 45 seconds and again incubated 

on ice for 2 min. After addition of 800 µl LB medium, bacteria were incubated at 37°C and 

600 rpm for 30-60 min. Finally, the bacteria suspension was either applied to LB plates or 

liquid LB medium containing the respective antibiotic for selection (2.1.2). 

 

2.3 Methods of Molecular Biology 

 

2.3.1 Preparation of Plasmids 

 

Plasmids were isolated from transformed bacteria using either the GeneJETTM Plasmid 

Miniprep kit or the NucleoBond® Xtra Midi/Maxi kit according to manufacturers’ instructions. 

Small amounts of DNA (plasmid mini preparation) were isolated from 5 ml and larger 

amounts of DNA (plasmid midi or maxi preparation) from 100-500 ml liquid cultures. 

Precipitated and dried DNA was reconstituted with 50-1000 µl (depending on the amount of 

DNA) nuclease-free water. The DNA concentration was determined either 

spectrophotometrically (NanoDrop ND 1000, PeqLab) or fluorometrically (Qubit® Fluorometer, 

Thermo Fisher Scientific). For spectrophotometric determination, 1 µl of DNA (aqueous 

solution) was measured at the UV absorbance spectrum (220-300 nm). H2O served as blank. 
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For fluorometric determination the Qubit dsDNA BR assay kit was used according to 

manufacturers’ instructions. 1 µl of DNA (aqueous solution) was applied to the analysis. 

 

2.3.2 Isolation of genomic DNA 
 

Genomic DNA was isolated from approximately 5*106 mammalian cells using QIAamp blood 

DNA maxi kit (QIAGEN) according to manufacturers’ instructions. DNA was eluted with 

600 µl of nuclease-free water. 

 

2.3.3 Polymerase Chain Reaction (PCR) 

 

To amplify specific DNA sequences from either plasmid DNA or bacteria colonies, the 

polymerase chain reaction (PCR) [214,215] was applied. DNA was amplified either using 

DreamTaqTM (no proof-reading activity) or Phusion® (3’-5’ exonuclease activity) polymerase 

(both Thermo Fisher Scientific). Annealing temperatures and elongation times were 

dependent on the melting temperature of the primers (TM), length of the DNA fragment to be 

amplified, and elongation time of the polymerase. Standard reaction mixes and cycler 

protocols are represented in table 2 and 3. PCR reactions were afterwards analyzed via 

agarose gel electrophoresis (2.3.5), and DNA fragments of interest were isolated from 

agarose gels (2.3.6) for subsequent cloning. 

 

 Table 2. Standard reaction mix and cycler protocol for Phusion
®
 polymerase. 

Reaction Mix PCR protocol 

20 ng       template DNA 

0.5 µM     Primer (forward) 

0.5 µM     Primer (reverse) 

0.2 mM    dNTPs 

3 % (v/v)  DMSO 

1x            Phusion® GC- or HF-buffer 

1 U          Phusion® Polymerase 

                to 50 µl H2O 

1. 98°C 30 s initial 
denaturation 

2. 98°C 15 s denaturation 

3. 5°C below melting 
temperature (TM) of 
the primers 

15 s annealing 

4. 72°C 15-30 
s/kB 

elongation 

5. 72°C 5 min final elongation 

6. 4°C ∞ storage 

 step 2-4 are repeated in 25-35 cycles 
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Table 3. Standard reaction mix and cycler protocol for DreamTaq
TM

 polymerase. 

Reaction Mix PCR protocol 

20 ng       template DNA or 

1              bacterial colony 

0.5 µM     Primer (forward) 

0.5 µM     Primer (reverse) 

0.2 mM    dNTPs 

3 % (v/v)  DMSO 

1x            DreamTaqTM green buffer 

0.625 U   DreamTaqTM Polymerase 

                to 50 µl H2O 

1. 98°C 30 s initial 
denaturation 

2. 98°C 15 s denaturation 

3. 5°C below melting 
temperature (TM) of 
the primers 

15 s annealing 

4. 72°C 60 s/kB elongation 

5. 72°C 5 min final elongation 

6. 4°C ∞ storage 

 step 2-4 are repeated in 25-35 cycles 

 

2.3.4 Restriction, Dephosphorylation, Purification and Ligation of DNA 

 

Unless otherwise denoted, DNA restrictions were performed using FastDigest® restriction 

endonucleases (Thermo Fisher Scientific) or High fidelity (HF®) restriction endonucleases 

(New England Biolabs) according to manufacturers’ instructions. Either 1 µg (analytic 

restriction) or up to 4 µg (preparative restriction) DNA were incubated with the corresponding 

enzymes at 37°C for 30 min. A standard reaction mixture for double digestion is listed in 

table 4. If necessary, enzymes were inactivated at 80°C for 10 min. Afterwards, samples 

were either directly purified using the GeneJETTM Gel Extraction kit (Thermo Fisher 

Scientific) or applied to agarose gel electrophoresis (2.3.5). 
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Table 4. Standard reaction mix for preprarative and analytic restriction (double digestion using 
type II restriction endonucleases). 

Component Preparative Restriction Analytic Restriction 

DNA 4 µg 1 µg 

10x buffer (FastDigest or 
CutSmart) 

5 µl 2 µl 

Enzyme 1 2 µl 0.5 µl 

Enzyme 2 2 µl 0.5 µl 

H2O to 50 µl to 20 µl 

 

To prevent self-ligation, the phosphorylated 5’-end of the linearized vector DNA was 

dephosphorylated prior to ligation. For this, 1-5 µg vector DNA were incubated with FastAPTM 

thermo sensitive alkaline phosphatase (Thermo Fisher Scientific) in FastAP buffer for 10 min 

at 37°C, followed by enzyme inactivation for 5 min at 75°C. Dephosphorylated DNA was 

purified using the GeneJETTM Gel Extraction Kit (Thermo Fisher Scientific). 

For ligation, insert and vector DNA were applied at a molar ratio of 3:1 with the overall DNA 

amount of the mixture limited to 100 ng. Appropriate amounts of DNA were calculated with 

the following equation: 

 

                
                                            

               
 

 

The DNA was incubated either 60-120 min at room temperature or over night at 4°C with T4 

DNA ligase (Thermo Fisher Scientific) in the appropriate buffer and used directly for 

transformation or stored at -20°C. 

 

2.3.5 Agarose Gel Electrophoresis 

 

Agarose gel electrophoresis was used to separate DNA molecules by their size. Agarose 

concentrations were adjusted to the size of the DNA. For larger molecules (>500 bp) 0.8 % 

agarose gels were used, whereas fragments ≤ 500 bp were separated on 2 % agarose gels. 

Unless the buffer of the DNA samples did not already contain a density reagent and tracking 

dyes (DreamTaqTM green or FastDigest® green buffer), DNA samples were mixed with 6x 

loading dye (Thermo Fisher Scientific). GeneRulerTM 1 kb Plus DNA ladder or GeneRulerTM 

100 bp Plus DNA ladder (Thermo Fisher Scientific) were applied to the agarose gels as size 

standard together with the DNA samples. TAE buffer was used as running buffer and for 
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production of agarose gels. The electrophoresis was performed at 120 V for approximately 

50 min, depending on the size of the DNA molecules. Afterwards, gels were stained with 

EtBr stain (5-15 min) and DNA fragments were detected and photographically documented 

under UV light using a Gel Doc 2000 gel documentation system. 

 

2.3.6 Isolation of DNA Fragments from Agarose Gels 

 

For subsequent cloning, DNA fragments had to be isolated from agarose gels. For this 

purpose, the fragment of interest was cut from the gel under low intensity UV light and 

isolated using the GeneJETTM Gel Extraction kit (Thermo Fisher Scientific) according to 

manufacturers’ instructions. DNA was eluted with 30 µl of prewarmed nuclease-free water. 

Concentrations of the purified DNA samples were determined either spectrophotometrically 

(NanoDrop ND 1000, PeqLab) or fluorometrically (Qubit® Fluorometer, Thermo Fisher 

Scientific). 

 

2.3.7 Nucleic Acid Sequencing 

 

Nucleic acid sequencing (Lightrun sequencing) was performed by GATC Biotech using the 

chain-termination method [216]. Sequencing samples consisted of 5 µl template DNA 

(concentration: 80-100 ng/µl) and 5 µl primer (concentration: 5 µM). 

 

2.3.8 Deep Sequencing 

 

Deep sequencing samples were generated from genomic DNA by PCR using primers that 

introduce adaptor sequences suitable for Illumina sequencing and barcodes to distinguish 

between the samples (2.1.6). Phusion® polymerase was used to amplify the DNA fragments, 

as its 3’-5’ exonuclease activity is critical for the high quality needed for deep sequencing 

experiments. Standard reaction mix and cycler protocol are listed in table 5. 
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Table 5. Standard reaction mix and cycler protocol for generation of deep sequencing samples 
with Phusion

®
 polymerase. 

Reaction Mix PCR protocol 

195 µl      gDNA 

9.75 µl     Primer (forward, 100 µM) 

9.75 µl     Primer (reverse, 100 µM) 

39 µl        dNTPs (10 mM) 

58.5 µl     DMSO 

390 µl      Phusion® HF-buffer 

11.7 µl     Phusion® Polymerase 

                to 1950 µl H2O 

1. 98°C 30 s initial 
denaturation 

2. 98°C 15 s denaturation 

3. 56°C 15 s annealing 

4. 72°C 15 s elongation 

5. 72°C 10 min final elongation 

6. 4°C ∞ storage 

 step 2-4 are repeated in 25 cycles 

 

DNA fragments were extracted from agarose gels after electrophoresis using GeneJETTM Gel 

Extraction kit (Thermo Fisher Scientific). Afterwards, DNA was concentrated using the DNA 

Clean & Concentrator 5 kit (Zymo). All samples (30) for one cell line were barcoded 

differently and thus could be analyzed on the same Illumina lane. Therefor, 2000 ng of each 

sample (30) were pooled and again concentrated (Zymo DNA Celan & Concentrator 5 kit). 

The final concentrations of the three samples (293T/17, DU145, MelJuSo) were determined 

by Qubit assay and ranged between 50-80 ng/µl. Deep sequencing was done by Beckman 

Coulter Genomics using single end 100 base reads on Illumina HiSeq 2500 machines. 

 

2.4 Methods of Cell Biology and Virology 

 

2.4.1 Cultivation of Cell Lines 

 

All used cell lines were cultured according to suppliers’ recommendations in the appropriate 

medium (2.1.11). Cells were passaged 2-3 times a week, depending on cell density. 

Adherent cells were washed one time with PBS and detached using PBS/EDTA (incubation 

time cell line dependent). Suspension cells and detached adherent cells were counted in a 

Neubauer counting chamber and the appropriate fraction of cells was pelleted, resuspended 

in fresh medium and cultured in a cell culture incubator at 37°C, 5 % CO2 and saturated 

water atmosphere. 

For long term storage, cells were kept in liquid nitrogen as cryo cultures. For this purpose, 

detached cells or suspension cells were pelleted (300xg, 3 min, 4°C) and resuspended in 



Material and Methods 74 
 

freezing medium (either fresh medium or FBS containing 10 % (v/v) DMSO). The cell 

suspension was aliquoted in cryogenic vials, transferred to a freezing container (Mr. Frosty, 

Nalgene®) and stored at -80°C for 24 h. Afterwards, cryo cultures were stored in the gas 

phase of liquid nitrogen. 

To reconstitute cells from long term storage, cryo cultures were thawed at 37°C and 

resuspended in 5 ml fresh medium. Afterwards, cells were pelleted (300xg, 3 min, 4°C), 

resuspended in fresh medium and seeded into a cell culture flask. 

 

2.4.2 Transfection of Mammalian Cells 

 

Mammalian cells were transfected using the polyethyleneimine (PEI) method [217,218]. For 

this purpose, cells were seeded into T175 flasks (2*107 cells/T175) one day before the 

experiment. Immediately before transfection, medium was exchanged to DMEM containing 

no FBS (DMEM -FBS). The transfection reagent consisted of two solutions (A and B). 

Solution A contained the appropriate amount of DNA in 5 % glucose and solution B 

contained the appropriate amount of TA-Trans (PEI) in 5 % glucose. Both solutions were 

mixed independently and incubated for at least 10 min at room temperature. Afterwards, both 

solutions were combined, mixed properly and again incubated for at least 10 min at room 

temperature. Then, the transfection reagent was mixed with DMEM -FBS and added drop 

wise to the cells. After gentle shaking of the flask to suspend the transfection reagent 

properly, cells were incubated at 37°C for 4-6 h. Then, DMEM containing 12.5 % FBS was 

added to achieve a final FBS concentration of 5 % in the medium. In case of in vivo 

biotinylated Fc fusion proteins, a slightly different transfection protocol was used. Solution A 

contained two plasmids carrying the genes for ER-tagged and soluble E. coli biotin ligase 

(pDisplay-BirA-ER, pDisplay-sBirA) in addition to the expression plasmid, and solutions A 

and B contained DMEM -FBS instead of 5 % glucose solution. Incubation times were the 

same as for non-biotinylated proteins. After 4-6 hours, medium was exchanged to DMEM-Bio 

(DMEM + 2 mM L-glutamine, 5 % (v/v) Panexin-NTA, 20 µM biotin). Amounts of components 

used for transfection in T175 flasks are depicted in table 6. 
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Table 6. Formulation of transfection reagents for 293T/17 cells. Amounts were calculated for 
transfection in a T175 flask. 

Ingredient Non-Biotinylated                    
Fc Fusion Proteins 

Biotinylated                        
Fc Fusion Proteins 

Solution A Solution B Solution A Solution B 

mammalian expression 
plasmid 

65 µg  7 µg  

pDisplay-BirA-ER   14 µg  

pDisplay-sBirA   14 µg  

TA-trans  65 µl  140 µl 

5 % glucose 310 µl 310 µl   

DMEM -FBS   2.3 ml 2.2 ml 

 

2.4.3 Protein Production in Mammalian Cells 

 

Fusion proteins of the extracellular domain of the different NCR mutants, the extracellular 

domain of interferon α/β receptor subunit 2 (IFNAR2) or B7-H6 were produced by transient 

transfection of 293T/17 cells with the different pFUSE-hIgG1-FcEQ or pFc-Avi constructs, 

using the polyethyleneimine (PEI) transfection method (2.4.2). One protein production 

contained 10-80 T175 flasks. Cell culture supernatant containing the soluble receptor-hIgG1-

Fc fusion proteins was collected two days after transfection. The supernatant was sterile 

filtered (0.22 µm) and supplemented with 0.01 % sodium azide, 1x cOmpleteTM EDTA-free 

protease inhibitor cocktail (Roche) and protein A sepharose® 4B conjugate (Life 

Technologies). 

 

2.4.4 Production and Concentration of Lentiviral Particles in Mammalian Cells 

 

All viruses used in this thesis were replication incompetent, self-inactivating lentiviral particles 

produced by transfection of 293T/17 cells (2.4.2) with a third generation lentiviral transfer 

plasmid (LeGO-iZ or LeGO-iZ-Flag) packaged by a second generation packaging system 

(pCMV-∆R8.91 and pMD2.G). The DNA was applied at a ratio of 2.8 : 1.84 : 1 (transfer : 

packaging : envelope). This led to the formation of lentiviral particles consisting of the HIV-1 

core and pseudotyped with VSV-G. Virus-containing supernatant was collected and sterile 

filtered (0.45 µm) 2-3 days after transfection. Afterwards, supernatant (two T175 flasks/virus) 

was concentrated either by low speed (2,000xg, 24h, 4°C) or ultracentrifugation (50,000xg, 
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3h, 4°C). The virus pellet was resuspended in 1 ml of the respective cell culture medium 

(over night, 4°C). 

 

2.4.5 Transduction of Mammalian Cells 

 

For transduction, cells were passaged either one day (adherent cells) or directly (suspension 

cells) before the experiment (cell numbers depending on cell line; shRNA screening: 3.1*106 

cells/T75 [293T/17, DU145 or MelJuSo], all other transductions: A5: 2.5*105 cells/well [24-

well-plate], HeLa: 5*104 cells [12-well-plate]). Immediately before transduction, medium was 

exchanged to basal medium containing no additives. Afterwards, 8 µg/ml protamine sulfate 

and virus at a suitable multiplicity of infection (MOI; depending on cell line and experiment) 

were added and cells were incubated 5-7 h at 37°C. After incubation, medium was 

exchanged to fresh culture medium and cells were cultured 2-3 days before selection or 

analysis. 

 

2.4.6 Flow Cytometry 

 

For flow cytometry, 1-5*105 cells/sample were subjected to the respective staining 

procedures. Surface staining of cells was done with either the respective primary antibodies 

or recombinant Fc fusion proteins, diluted in FACS buffer (1 h, 4°C, dilutions are shown in 

tab. 7). Afterwards, cells were stained with the respective fluorochrome-conjugated 

secondary antibodies (30 min, 4°C, protected from light, dilutions are shown in tab. 8). 

Viability of cells was determined with SytoxBlue stain, according to manufacturers’ 

instructions. Samples incubated with the respective isotype control or secondary antibody 

alone served as negative control. Between all staining steps, cells were washed twice with 

FACS buffer (centrifugation 300xg, 3 min, 4°C). For intracellular staining, the cells were first 

fixed with FIX-I buffer and afterwards permeabilized and stained with Perm buffer and the 

respective staining agents (incubation conditions were equal to the surface staining 

procedure). In the end, cells were resuspended in FACS buffer (surface staining) or FIX-II 

buffer (intracellular staining) and analyzed on a BD FACSCanto II instrument using the BD 

FACSDiva software. For fluorescence activated cell sorting (FACS), cells were stained with 

the respective antibody under sterile conditions without fixation and sorted using the BD 

FACSAria sorter with the BD FACSDiva software. Data obtained by flow cytometry was 

further analyzed with FlowJo software. 
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Table 7. Primary antibodies used for flow cytometry. 

Primary Antibodies (Name, Clone, 
Conjugation) and Recombinant Proteins 

Species/Isotype Dilution 

anti-human BAG-6, D-1 mouse IgG 1 µg/ml 

anti-human B7-H6, 1.45 mouse IgG 4 µg/ml 

anti-human NKp30, P30-15, APC-conjugated mouse IgG 1.25 µg/ml 

anti-human NKp46, 9E2, APC-conjugated mouse IgG 2.5 µg/ml 

anti-mouse CD4, GK1.5, APC-conjugated rat IgG 0.2 µg/ml 

IgG1-FcEQ fusion proteins human IgG 75 µg/ml 

 

Table 8. Secondary antibodies used for flow cytometry. 

Secondary Antibodies (Name, Clone, 
Conjugation) 

Species/Isotype Dilution 

anti-human IgG-Fc, Alexa647-conjugated goat IgG 15 µg/ml 

anti-mouse IgG-Fc, Alexa546-conjugated donkey IgG 10 µg/ml 

 

Table 9. Isotype controls used for flow cytometry. 

Isotype controls Dilution 

mouse IgG, MOPC-21, APC-conjugated 1.25-2.5 µg/ml 

 

Table 10. Cell staining reagents used for flow cytometry. 

Cell staining Dilution 

SYTOX Blue dead cell stain 1 µM 

 

2.4.7 Immunofluorescence Microscopy 

 

For immunofluorescence microscopy, 2*105 adherent cells were seeded on Polysine® slides 

(Thermo Fisher Scientific) and incubated at 37°C for 16 h. Afterwards, cells were washed 

with PBS, fixed with FIX buffer for 10 min at room temperature, and blocked with IF buffer for 

30 min at room temperature. For surface staining, cells were incubated with specific 

antibodies in IF buffer for 1 h. For intracellular staining, cells were permeabilized with 

IF-Perm buffer for 30 min and afterwards incubated with specific antibodies for 1 h at room 

temperature. Subsequently, cells were stained with DAPI solution (300 nM) and covered with 
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mounting medium. Brightfield and fluorescence images were obtained with a TCS-SP5 laser 

scanning microscope (Leica) using a HCX PL APO Lbd.Bl 63x/1.4-0.6 oil objective. Images 

were analyzed using LAS-AF lite 2.0 and ImageJ software. 

 

Table 11. Primary antibodies used for immunofluorescence microscopy. 

Primary Antibodies (Name, Clone, 
Conjugation) 

Species/Isotype Dilution 

anti-human CD3ζ, 6B10.2, FITC-conjugated mouse IgG 10 µg/ml 

anti-human NKp30, P30-15, hybridoma mouse IgG 0.73 µg/ml 

anti-human NKp46, 195314 mouse IgG 5 µg/ml 

 

Table 12. Secondary antibodies used for immunofluorescence microscopy. 

Secondary Antibodies (Name, Clone, 
Conjugation) 

Species/Isotype Dilution 

anti-mouse IgG-Fc, Alexa647-conjugated goat IgG 10 µg/ml 

 

Table 13. Isotype controls used for immunofluorescence microscopy. 

Isotype controls (Name, Clone, Conjugation) Dilution 

mouse IgG, MOPC-21, FITC-conjugated 10 µg/ml 

 

Table 14. Cell staining reagents used for immunofluorescence microscopy. 

Cell staining Dilution 

DAPI 300 nM 

 

2.4.8 Signaling Reporter Assay 

 

Signaling reporter assays were carried out in two different settings. Reporter cells were 

mixed with equal amounts of Ba/F3 Mock or Ba/F3 B7-H6 cells or incubated in plates coated 

with the respective antibody against the receptor expressed on the reporter cell surface. For 

the first setting, reporter and target cells were washed with PBS and resuspended in A5-GFP 

medium. 5*104 target cells were mixed with 5*104 reporter cells in a final volume of 200 µl. 

For the second setting, plates were coated with 100 µl of anti-NKp30 or anti-NKp46 solution 

(5 µg/ml) for 2 h. Afterwards, 5*104 reporter cells/well were added. In both cases, treatment 

of reporter cells with PMA and ionomycin (P/I) served as positive control and treatment of 
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reporter cells with A5-GFP medium alone served as negative control. After overnight 

incubation at 37°C, cells were stained with a CD4-specific antibody in FACS buffer to 

distinguish between reporter and target cells. Additionally, cells were incubated with 

SytoxBlue solution to exclude dead cells. GFP expression of the reporter cells was 

determined by flow cytometry (2.4.6). Reporter assays with Ba/F3 Mock or Ba/F3 B7-H6 

cells, used in chapter 3.1.1 - 3.1.3 were performed by Sandra Weil. 

 

Table 15. Primary antibodies used for signaling reporter assays. 

Primary Antibodies (Name, Clone, 
Conjugation) 

Species/Isotype Dilution 

anti-human NKp30, 210845 mouse IgG 5 µg/ml 

anti-human NKp46, 195314 mouse IgG 5 µg/ml 

anti-mouse CD4, GK1.5, APC-conjugated rat IgG 0.2 µg/ml 

 

Table 16. Cell staining reagents used for signaling reporter assays. 

Cell staining Dilution 

SYTOX Blue dead cell stain 1 µM 

 

2.5 Methods of Protein Biochemistry 

 

2.5.1 Protein Purification 

 

Soluble multivalent NCR::hIgG1-Fc (NCR-Fc) fusion proteins were produced in HEK 293T/17 

cells. The Fc part of the fusion proteins contained two amino acid substitutions that reduce 

background binding to Fc receptors (L118E, N180Q, FcEQ) [208]. Proteins were purified 

from cell culture supernatant by protein A purification. All purification steps were performed 

on ice and with ice cold buffers. Proteins were produced as mentioned in 2.4.2 and 2.4.3, 

and the supernatant containing 0.01 % sodium azide, 1x cOmpleteTM EDTA-free protease 

inhibitor cocktail (Roche) and 1 ml/L protein A sepharose® 4B conjugate (Life Technologies) 

was incubated on a tilt/roller mixer over night at 4°C. To purify the proteins, the suspension 

was applied onto an Econo-Pac column (Bio-Rad) including a bed support frit (30 µm, 

polyethylene) and the flow through was stored at 4°C until further analysis. Afterwards, 

protein A beads were washed with 40 column volumes of PBS. After washing, proteins were 

eluted with 20 column volumes of elution puffer by pH shift. To neutralize the pH of the eluted 

proteins, collection buffer (1/10 of the volume of the elution fraction) was added to the 

collection tube prior to elution. To concentrate the purified protein, the elution fraction was 
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applied to an Amicon Ultra-4 centrifugal filter unit (Merck Millipore) with the appropriate 

molecular weight cut-off (MWCO). The elution fraction was washed three times with PBS to 

exchange the buffer and concentrated ~ 20-fold. Protein concentration was either determined 

fluorometrically using the Qubit® 2.0 fluorometer and the Qubit Protein Assay kit according to 

manufacturers’ instructions, or by enzyme-linked immunosorbent assay (ELISA; 2.5.6). 

Proteins were either short term stored at 4°C or frozen at -20°C. Repeated freezing and 

thawing was avoided. Samples of the whole purification process were taken for subsequent 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot 

analysis (2.5.3-2.5.5). Protein A beads were regenerated by adding 10 column volumes of 

regeneration buffer. Afterwards, beads were washed once, transferred to a reaction tube and 

stored in PBS. 

 

2.5.2 Preparation of Cell Lysates 

 

For preparation of membrane proteins from cell lysates, cells were detached and 

resuspended in membrane buffer containing 1x cOmpleteTM EDTA-free protease inhibitor 

cocktail (300 µl buffer/90 mg cell pellet). The cell suspension was sonicated for 5 min at high 

power in a Bioruptor® (Diagenode Inc.) and centrifuged (21,255xg, 10 min, 4°C) to separate 

crude membranes from cytosolic proteins. The membrane pellet was resuspended in 1x SDS 

sample buffer, incubated at 37°C for 30 min and centrifuged. The supernatant was applied to 

SDS-PAGE (2.5.3). 

 

2.5.3 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

 

To prepare samples for SDS-PAGE, the protein solutions were mixed with either reducing or 

non-reducing SDS sample buffer. In case of reducing buffer, 200-300 mM dithiothreitol (DTT) 

was additionally added to the samples. Samples for reducing SDS-PAGE were heated for 

10 min at 95°C in case of purified proteins (2.5.1) or for 30 min at 37°C in case of membrane 

protein samples (2.5.2). 

Polyacrylamide gels were prepared according to table 17. The polyacrylamide concentration 

in the gels was dependent on the molecular weight of the proteins to be separated. 
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Table 17. Polyacrylamide gel composition. The specifications refer to the preparation of two gels 
(100 mm x 100 mm x 1 mm). TEMED: N, N, N’,  N’-tetramethylethylene-1,2-diamine, APS: ammonium 
persulfate. 

Ingredients Resolving Gel Stacking Gel 

10 % 12 % 15 % 5 % 

30 % acrylamide 3.3 ml 4.0 ml 5.0 ml 1.0 ml 

H2O 4.0 ml 3.3 ml 2.3 ml 4.0 ml 

1.5 M Tris pH 8.8 2.5 ml 2.5 ml 2.5 ml ---- 

1.5 M Tris pH 6.8 ---- ---- ---- 750 µl 

20 % SDS 50 µl 50 µl 50 µl 30 µl 

10 % APS 100 µl 100 µl 100 µl 60 µl 

TEMED 4 µl 4 µl 4 µl 6 µl 

 

Electrophoresis was performed at 200 V in a Mini-PROTEAN® II electrophoresis cell (Bio-

Rad) with SDS running buffer according to Laemmli [219]. Duration of the electrophoresis 

was dependent on the molecular weight of the proteins and the acrylamide concentration of 

the gel. 

 

2.5.4 Coomassie Staining of Polyacrylamide Gels 

 

Coomassie staining was used to visualize proteins on polyacrylamide gels. For this purpose, 

gels were stained with InstantBlueTM (Expedeon) for one to three hours at room temperature. 

Afterwards, gels were washed twice with water, to reduce background staining. 

 

2.5.5 Western Blot 

 

To specifically visualize proteins by immunostaining, western blot analysis was applied. In a 

first step, proteins were transferred from polyacrylamide gels onto nitrocellulose membranes. 

Therefor, a Trans-Blot® SD Semi-Dry transfer cell (Bio-Rad) was used according to 

manufacturers’ instructions. In brief, one piece of blotting paper, the nitrocellulose 

membrane, the polyacrylamide gel, and another piece of blotting paper were stacked and 

every component was soaked with transfer buffer beforehand. Blotting was performed at 

10 V for 20 min. To avoid unspecific antibody binding, membranes were then incubated in 

blocking buffer for at least one hour at room temperature. Afterwards, membranes were 

stained with the appropriate antibody (diluted in blocking buffer) for one hour. In case of 
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Strep-HRP, the staining reagent was diluted in TBS-T without skimmed milk powder to avoid 

background staining. After washing (3 times, TBS-T, 5-10 min, room temperature), 

antibodies bound to the membrane were detected using the Novex® ECL HRP 

Chemiluminescent Substrate Reagent kit (Thermo Fisher Scientific) or HRP-Juice kit (PJK) 

according to manufacturers’ instructions. Chemiluminescence signals were detected using 

the FUSION FX system (Vilber Lourmat). 

 

 Table 18. Antibodies used for western blot analysis. 

Antibody (Name, Clone, Conjugation) Species/Isotype Dilution 

anti-human NKp30, polyclonal goat IgG 1:1,000 

anti-human NKp46, 195314 mouse IgG 1:500 

anti-goat IgG-Fc, HRP-conjugated donkey IgG 1:20,000 

anti-human IgG-Fc, HRP-conjugated goat IgG 1:10,000 

anti-mouse IgG-Fc, HRP-conjugated goat IgG 1:20,000 

Streptavidin-HRP streptavidin-
polymer 

1:1,000 

 

2.5.6 Enzyme-linked Immunosorbent Assay (ELISA) 

 

To determine concentrations of the Fc fusion proteins for surface plasmon resonance (SPR), 

ELISA plates were coated with 5 µg/ml mouse anti-human IgG over night at room 

temperature, blocked with 5 % BSA/PBS and incubated with ULBP2-Fc (R&D Systems) in 

1:1 dilutions (250 ng/ml - 0.12 ng/ml, standard curve), or the Fc fusion protein solutions in 

duplicates. Every incubation step was performed for one hour. Wells were washed once with 

PBS-T between all incubation steps. The amount of bound Fc fusion protein was quantified 

using a goat anti-human IgG-HRP antibody and 3,3’,5,5’-tetramethylbenzidine substrate 

(1-StepTM Ultra TMB-ELISA, Pierce) in a microtiter plate reader (λ = 450 nm). To stop the 

reaction, 50 µl of 1 N sulfuric acid were added per well. A standard curve was created from 

A450 values and concentrations of the ULBP2-Fc standard (R&D Systems). Concentrations of 

the samples were determined by comparison of A450 values of the samples to this standard 

curve. 
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 Table 19. Antibodies used for ELISA. 

Antibody (Name, Conjugation) Species/Isotype Diution 

anti-human IgG-Fc, HRP-conjugated goat IgG 1:50,000 

anti-human IgG1-Fc mouse IgG 5 µg/ml 

 

2.5.7 Surface Plasmon Resonance (SPR) 

 

To determine kinetic parameters (ka, kd) and equilibrium dissociation constants (KD) for the 

interaction of the different NKp30-Fc mutants with the cellular ligand B7-H6, the Biotin 

CAPture kit (GE Healthcare) and the Biacore T200 system (GE Healthcare) were used 

according to manufacturers’ instructions. Proteins were diluted in running buffer (PBS-T). 

150-200 response units (RU) of biotinylated B7-H6-Fc protein were immobilized on a Sensor 

Chip CAP (GE Healthcare). Different analyte concentrations of the NKp30-Fc mutants were 

sequentially injected over the flow cells at 25°C and a flow rate of 30 µl/min in the single 

cycle kinetics model. To substract background, the analyte was additionally injected over a 

second flow cell which was only activated with Biotin CAPture Reagent. Sensograms were 

analyzed using Biacore T200 Evaluation Software version 2.0 (GE Healthcare). Reference 

surface data was subtracted from sample data and KD values for the initial NKp30/B7-H6 

interaction were determined by bivalent analyte fit. In this model, one analyte molecule (A) 

can bind to one or two ligand molecules (B) and both analyte binding sites are assumed to 

be equivalent. 

   
   

 
   

   

 

    
   

 
   

    

 

Kinetic parameters: ka1: association rate constant for formation of AB 

   ka2: association rate constant for formation of AB2 

   kd1: dissociation rate constant for complex AB 

   kd2: dissociation rate constant for complex AB2 
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KD values were determined from the initial NKp30/B7-H6 interaction, as binding to the 

second site does not change the refractive index and therefore does not give rise to a 

response.  

   
   

   
 

 

 

 Table 20. Analyte concentrations used for SPR. 

Protein Concentrations [nM] 

IFNAR2-hIgG1-FcEQ 512, 256, 128, 64, 32 

NKp30-hIgG1-FcEQ 64, 32, 16, 8, 4 

NKp30-K129A-hIgG1-FcEQ 512, 256, 128, 64, 32 

NKp30-E130A-hIgG1-FcEQ 512, 256, 128, 64, 32 

NKp30-H131A-hIgG1-FcEQ 512, 256, 128, 64, 32 

NKp30-P132A-hIgG1-FcEQ 512, 256, 128, 64, 32 

NKp30-Q133A-hIgG1-FcEQ 256, 128, 64, 32, 16 

NKp30-L134A-hIgG1-FcEQ 256, 128, 64, 32, 16 

NKp30-G135A-hIgG1-FcEQ 256, 128, 64, 32, 16 

NKp30-G137A-hIgG1-FcEQ 256, 128, 64, 32, 16 

NKp30-T138A-hIgG1-FcEQ 256, 128, 64, 32, 16 

NKp30-V139A-hIgG1-FcEQ 64, 32, 16, 8, 4 

NKp30-L140A-hIgG1-FcEQ 64, 32, 16, 8, 4 

NKp30-L141A-hIgG1-FcEQ 64, 32, 16, 8, 4 

NKp30-L142A-hIgG1-FcEQ 64, 32, 16, 8, 4 

NKp30-R143A-hIgG1-FcEQ 64, 32, 16, 8, 4 
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3. Results 
 

The NKp30 receptor on NK cells plays an important role for the recognition of target cells. 

Like other immunoreceptors, it associates with adaptor proteins for intracellular signaling 

[135,137,220]. The mechanism, how ligand binding at the ectodomain of NKp30 is 

communicated to the adaptor protein is still unknown. Formerly, it was shown that the stalk 

domain of the NKp30 protein contributes to ligand binding and signaling [208]. Based on 

these results, this thesis aimed to investigate the influence of the stalk domain on NKp30 

function in more detail. Furthermore, as knowledge about cancer-associated NKp30 ligands 

is still scarce, the existence of other, yet unknown cellular NKp30 ligands was examined by 

implementation of a genome-wide shRNA screening. Additionally, the evolutionary role of the 

NKp30 protein was analyzed on the example of M. musculus, where NKp30 is only present 

as a non-expressed pseudogene. Parts of this thesis are published in Memmer et al. (2016) 

[221]. 

 

3.1 Contribution of the Stalk Domain of NKp30 to Ligand Binding and Signaling 
 

Signaling of the NCRs is mediated by the association with ITAM bearing adaptor molecules 

like CD3ζ/FcεRIγ (NKp30 and NKp46) or DAP12 (NKp44) [135,137,220]. The functional 

importance of this interaction is illustrated by the finding that NK cells from knockout mice 

lacking CD3ζ and FcεRIγ showed reduced cytotoxic activity against a large number of tumor 

cell lines [222]. Moreover, previous studies showed a reduced number of T cell receptor 

(TCR) molecules on the surface of T cells, due to intracellular TCR retention in the absence 

of CD3ζ [223–225]. The nuclear magnetic resonance (NMR) structure of a disulfide-stabilized 

transmembrane helix dimer of CD3ζ shows two aspartate residues in the proximity of the 

outer membrane leaflet (PDB: 2HAC) [226]. These amino acids are believed to form an 

intramembrane charge contact with positively charged residues in the transmembrane region 

of the TCR α chain, NKp30 and NKp46 [137,227]. Previous studies from our group showed 

that the stalk domain of NKp30 increases the affinity for binding of its cognate ligands B7-H6 

and BAG-6 and the signaling capacity of the receptor [145,208]. Despite this, not much is 

known about the interaction of immunoreceptor and adaptor protein that initiates signaling. 

 

3.1.1 Analysis of NKp30/NKp46 Chimera 

 

To shed more light on the initial steps of NKp30 signaling, and especially on the role of the 

stalk domain in this process, chimeric NKp30/NKp46 receptors were constructed and 

analyzed. Even though NKp30 and NKp46 differ in their number of Ig domains and the 

sequence and length of their stalk domains, they both signal via the same adaptor proteins. 
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Although the stalk domain of NKp46 is much longer than the stalk domain of NKp30, there is 

a conserved sequence motif in the membrane-proximal regions of both receptors 

[K129/244(-)HX9LLR143/258, (-) indicates a negatively charged amino acid; appendix, 6.3]. To 

analyze if the extracellular domains (Ig-fold and stalk) of NKp30 and NKp46 represent 

individual functional entities or if sequence stretches are interchangeable, A5-GFP reporter 

cells were transduced with chimeric receptors containing exchanged Ig domains or 

exchanged stalk domains in the NKp30 and NKp46 extracellular regions (Fig. 10 A). Notably, 

the N-terminal end of the stalk domain was determined by the C-terminal end of the Ig-fold 

(resolved in the crystal structure), and the border between stalk and TM domain was 

predicted using TMpred [208,228]. Expression and plasma membrane targeting of the NCR 

chimera or their wildtype counterparts was analyzed by flow cytometry (Fig. 10 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 10. Expression of NKp30/NKp46 chimera in A5-GFP cells. (A) 
 Schematic representation of NKp30 wildtype (wt) (red, PDB: 3NOI), NKp46 wt 
 (blue, PDB: 1P6F) and NKp30/NKp46 chimera (NKp30 domains in red, NKp46 
 domains in blue) in the plasma membrane (grey). (B) Surface and intracellular 
 expression of the receptors and corresponding NKp30/NKp46 chimera in 
 transduced A5-GFP cells, analyzed by flow cytometry. Grey: Mock control, red: 
 anti-NKp30, blue: anti-NKp46. One representative experiment out of three is shown.  
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Even though all of the NCR constructs were detectable intracellularly, only the wildtype 

NCRs and chimera containing the Ig domain of NKp30 and the stalk of NKp46 

(NKp30Ig/46Stalk/46TM and NKp30Ig/46Stalk/30TM) were targeted to the plasma 

membrane, while chimera containing the Ig domain of NKp46 and the stalk of NKp30 

(NKp46Ig/30Stalk/30TM and NKp46Ig/30Stalk/46TM) were intracellularly retained. This 

shows that the stalk domain of NKp46 is compatible with NKp30 maturation, whereas the 

stalk domain of NKp30 is unable to maintain folding, plasma membrane targeting and 

retention of NKp46. 

In a next step, the NCR chimera and their wildtype counterparts were analyzed for their 

signaling capacity in signaling reporter assays. A5-GFP reporter cells are murine T cells that 

were transduced with a reporter cassette and carry the genetic information for GFP under the 

IL-2 promoter. Signaling via the CD3ζ chain activates the transcription factor NF-AT, which 

binds to three NF-AT binding sites in the IL-2 promoter region and initiates GFP expression 

[211,212]. In a first setting, reporter cells transduced with NCR variants were incubated in 

plates coated with either anti-NKp30- or anti-NKp46-specific antibodies and subsequently 

analyzed by flow cytometry. In this setting, signaling of the constructs could be analyzed in a 

ligand-independent way via antibody crosslinking and therefore independent of the receptors 

affinity for their corresponding ligands (Fig. 11). 

 

 

 

 

 

 

 

  
 

 Figure 11. Antibody-induced signaling of NKp30/NKp46 chimera. 
 Signaling reporter assays of transduced A5-GFP cells after stimulation 
 with plate-bound NKp30-specific (A) or NKp46-specific (B) antibodies 
 (antibody epitopes are located in the Ig-fold of the respective NCR). GFP 
 expression was analyzed by flow cytometry of CD4

+
/SytoxBlue

- 
A5-GFP 

 cells. The percentage of GFP-positive cells normalized to NKp30 wt is 
 indicated as mean ± SEM of 3 independent experiments measured in 
 duplicates. Statistical significance of flow cytometry experiments was 
 assessed by one-way ANOVA and Dunnett’s multiple comparisons test 
 with Prism 6 software. n.s., not significant, p>0.05; **, p=0.001-0.01;        
 ***, p=0.0001-0.001. 
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Interestingly, both chimera containing the Ig domain of NKp30 and the stalk domain of 

NKp46 (NKp30Ig/46Stalk/46TM and NKp30Ig/46Stalk/30TM) showed receptor signaling 

comparable to NKp30 wt (Fig. 11 A). Signaling capacity after antibody crosslinking 

demonstrates principal functionality of these chimera with respect to signaling via CD3ζ. As 

expected, no signaling was observed for A5 cells expressing NKp46Ig/30Stalk/30TM or 

NKp46Ig/30Stalk/46TM (Fig. 11 B), which were both retained intracellularly and thus not 

present on the plasma membrane. 

The next question was, if the NCR chimera containing the Ig domain of NKp30 and the stalk 

domain of NKp46 are able to perform ligand-induced signaling. Therefore, NCR-transduced 

A5-GFP cells were co-cultured with Ba/F3 target cells either transduced with the NKp30 

ligand B7-H6 or Mock virus as negative control, which was described elsewhere [145,208]. 

Surprisingly, B7-H6 was unable to induce CD3ζ signaling and proportional GFP expression 

of the two chimera containing the Ig domain of NKp30 and the stalk of NKp46 (Fig. 12). 

Notably, none of the NCR transduced reporter cell lines showed signaling after co-incubation 

with Mock transduced Ba/F3 cells. 

 

Figure 12. Ligand-induced signaling of 
NKp30/NKp46 chimera. Signaling reporter assays 
of transduced A5-GFP cells after co-incubation with 
Ba/F3 B7-H6 cells. GFP expression was analyzed by 
flow cytometry of CD4

+
/SytoxBlue

- 
A5-GFP cells. The 

percentage of GFP-positive cells normalized to 
NKp30 wt is indicated as mean ± SEM of 3 
independent experiments measured in duplicates. 
Statistical significance of flow cytometry experiments 
was assessed by one-way ANOVA and Dunnett’s 
multiple comparisons test with Prism 6 software.     
****, p<0.0001. 
 
 
 
 
 
 

 
 
 
 
 

Due to these results, it was questionable if the impaired capacity for ligand-induced signaling 

might result from a reduced binding affinity for B7-H6. To exclude this, cells carrying the 

chimera or wildtype NKp30 were decorated with soluble B7-H6-Fc fusion proteins (Fig. 13). 

Interestingly, surface expression of the NKp30Ig/46Stalk/46TM mutant was much higher 

while surface expression of the NKp30Ig/46Stalk/30TM mutant was much lower than surface 

expression of wildtype NKp30 (red bars). These differences are also visible in total protein 

expression levels (surface and intracellular, compare to Fig. 10) and therefore do not result 

from differences in plasma membrane targeting. In all of the constructs, a correlation of 
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NKp30 expression and B7-H6 binding (red and black bars) was visible, indicating that 

signaling of the mutants is not influenced by impaired ligand binding.  

 
Figure 13. B7-H6 binding to 
NKp30/NKp46 chimera 
correlates with plasma 
membrane expression levels of 
the NCRs. Surface expression of 
NCR variants on transduced 
A5-GFP cells and binding of 
B7-H6-Fc fusion protein to these 
A5-GFP cells were analyzed by 
flow cytometry and related to 
plasma membrane expression 
levels and B7-H6-Fc binding 
capacity of NKp30 wt. Red bars: 
NCR expression based on NKp30-
specific antibodies, black bars: 
B7-H6-Fc binding after detection 
with hIgG1-Fc-specific antibodies. 
Results are shown as mean ± 
SEM of one representative 
experiment measured in         
duplicates.  

 

Altogether, this indicates that the Ig domain and the stalk domain of NKp30 and presumably 

NKp46 are a functional entity, mediating ligand-induced conformational changes required for 

CD3ζ signaling. In contrast, signaling capacity does not seem to depend on a cognate TM 

domain as no differences in signaling are visible between NKp30Ig/46Stalk/46TM and 

NKp30Ig/46Stalk/30TM. Moreover, as the stalk domain of NKp46 can substitute for the stalk 

domain of NKp30 during antibody crosslinking, but not during ligand-induced signaling, it 

seems that both stalk domains contain a sequence motif needed for signaling in general but 

not sufficient for ligand-induced signaling. This might be the above mentioned membrane-

proximal K129/244(-)HX9LLR143/258 motif, which is preserved in NKp30 and NKp46. Additionally, 

these results show that the mechanism of signaling after antibody mediated crosslinking is 

different from the mechanism of ligand-induced signaling and can not picture the 

physiological interaction. 
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3.1.2 Contribution of Individual Amino Acids within the Stalk Domain to Ligand 

Binding and Signaling 

 

Data from the NKp30/NKp46 chimera implicated the existence of specific sequence motifs in 

the stalk domain of NKp30 that are required for receptor function. Therefore, in a next step 

the specific contribution of individual stalk amino acids to ligand binding and signaling was 

analyzed by systematic alanine scanning mutagenesis. In this approach, the amino acids to 

be analyzed are sequentially replaced by alanine. Replacement by alanine eliminates the 

side chain at the β carbon but does not alter the main chain conformation, as replacement by 

glycine or proline would. Additionally, it does not lead to extreme electrostatic or steric effects 

[229]. In this approach, wildtype NKp30 and 14 NKp30 alanine mutants were produced as 

soluble NKp30-Fc fusion proteins and as full length receptor constructs. 

To analyze the effects of the different alanine substitutions on B7-H6 binding, fusion proteins 

of the NKp30 ectodomain and the Fc part of human IgG1 were used. Similar soluble 

multivalent Fc fusion proteins were shown to be valuable tools to study receptor/ligand 

interactions in vitro [146,153,230]. The Fc parts of the fusion proteins contained two amino 

acid substitutions (FcEQ: L118E, N180Q) for reduced background binding to Fc receptors 

[208]. For the production, 293T/17 cells were transiently transfected with the different 

constructs and the secreted Fc fusion proteins were purified from cell culture supernatants 

via protein A sepharose. The predicted molecular weight of the proteins was 39.8 kDa, but 

due to N-linked glycosylation, the apparent molecular weight in SDS-PAGE was around 50-

55 kDa. Fusion proteins of the different NKp30 alanine mutants as well as wildtype NKp30 

displayed comparable apparent molecular weight as expected (Fig. 14 A). Assembly of an 

intermolecular disulfide bridge between the Fc parts of two Fc fusion proteins led to the 

formation of homodimers as seen by comparison of reducing and non-reducing SDS-PAGE 

(Fig. 14 A/B). Under non-reducing conditions, a second signal was visible with approximately 

twice the size of the homodimer, which might be an aggregated form of the protein. 

Interestingly, the R143A mutant showed a bigger portion of putatively aggregated protein 

compared to the other mutants. 
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Figure 14. Purified soluble multivalent NKp30-Fc fusion proteins. (A) Reducing (+DTT) and (B) 
non-reducing (-DTT) coomassie-stained SDS-PAGE and corresponding western blots of mutant 
NKp30-Fc fusion proteins. 2 µg of Fc fusion protein were used for coomassie-stained SDS-PAGE and 
0.5 µg were used for western blot analysis. Blots were detected using an HRP-conjugated anti-human 
IgG1-Fc antibody. 
 

To determine kinetic parameters (ka and kd) and equilibrium dissociation constants (KD) for 

binding of NKp30 wt and the different alanine mutants to B7-H6, surface plasmon resonance 

(SPR) was applied. For this purpose, a biotinylated fusion protein of the B7-H6 ectodomain 

fused to human IgG1-Fc (B7-H6-Fc-Bio) was produced (Fig. 15). The protein was detectable 

in coomassie-stained SDS-PAGE and presence of the human IgG1-Fc part (anti-human 

IgG1-Fc-HRP) as well as presence of the biotinylation (streptavidin-HRP) was verified by 

western blot analysis. As visible under reducing conditions, B7-H6-Fc-Bio has an apparent 

molecular weight of 80-100 kDa whereas the predicted molecular weight is 56 kDa. This 

indicates that the protein is present in a highly glycosylated form, which is in accordance with 

the fact that the ectodomain of B7-H6 is reported to contain nine potential N-glycosylation 

sites [142]. In addition, assembly of homodimers was verified under non-reducing conditions, 

where the protein showed an apparent molecular weight of roughly 200-250 kDa. 
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Figure 15. B7-H6-Fc-Bio is biotinylated 
and highly glycosylated. Reducing 
(+DTT) and non-reducing (-DTT) 
coomassie-stained SDS-PAGE and 
corresponding western blot detection of 
B7-H6-Fc-Bio fusion proteins. 2 µg of Fc 
fusion protein were used for coomassie-
stained SDS-PAGE and 0.5 µg were used 
for western blot analysis. Blots were 
detected using an HRP-conjugated 
anti-human IgG1-Fc antibody and HRP-
conjugated streptavidin. red.: reducing. 

 

 

 

 

 

 

For SPR measurements, the biotinylated B7-H6-Fc fusion protein (ligand) was immobilized 

on the sensor chip via a biotin-streptavidin interaction. Afterwards, different concentrations of 

the NKp30-Fc mutants (analyte) were sequentially injected over the flow cells. As both, 

NKp30 and B7-H6 were present as Fc fusion proteins, data was fitted with the bivalent 

analyte model. According to Chi2 values, bivalent analyte fit was sufficient for all sensograms 

(Tab. 21). A KD value of 84.8 nM was obtained for NKp30 wt (Tab. 21 and appendix, 6.4), 

which was in accordance with previous measurements of NKp30-Fc fusion proteins [208]. 

Comparison of the alanine mutants showed that mutation of the amino acids close to the Ig-

fold had the most drastic effect, leading to KD values in the micromolar range 

(K129A: 2.6 µM, E130A: 2.4 µM, H131A: 1.7 µM). The greater the distance between the 

alanine mutation and the Ig-fold, the less prominent was the effect on KD values. Alanine 

mutations of the membrane-proximal amino acids showed KD values similar to NKp30 wt 

(V139A: 36.3 nM, L140A: 39.1 nM, L141A: 79.7 nM, L142A: 44.5 nM) except for the R143A 

mutant, which displayed a slightly higher KD value (253.9 nM). Altogether, this is in line with 

the fact that B7-H6 binds to the Ig-fold of NKp30 and influence of the mutations decreases 

with increasing distance from the binding pocket. 
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Table 21. Kinetic parameters (association rate constant [ka], dissociation rate constant [kd]) and 
equilibrium dissociation constants (KD) for binding of NKp30 variants to B7-H6 as determined 
by SPR. 

NKp30 
variant 

ka1[1/Ms] kd1[1/s] KD ka2[1/RUs] kd2[1/s] Rmax[RU] Chi2 

wt 1.848x105 0.01568 84.8 nM 1.695x10-4 4.747x10-4 29.51 0.0450 

K129A 3.983x103 0.01024 2.6 µM 1.010x10-4 3.565x10-4 82.87 0.200 

E130A 1.067x10-4 0.02601 2.4 µM 2.819x10-4 1.754x10-4 151.4 0.266 

H131A 4.317x103 0.007382 1.7 µM 1.251x10-4 2.043x10-4 92.42 0.141 

P132A 2.239x105 0.01715 76.6 nM 2.038x10-4 7.947x10-4 79.02 0.819 

Q133A 2.672x103 0.02109 7.9 µM 2.927x10-4 2.683x10-4 36.05 0.0672 

L134A 1.854x105 0.02435 131.3 nM 2.622x10-4 6.582x10-4 82.98 1.5 

G135A 7.102x103 0.005343 752.3 nM 3.222x10-4 2.295x10-4 178.6 0.0825 

G137A 8.123x104 0.005512 67.9 nM 0.002121 0.004202 71.58 3.16 

T138A 9.709x103 0.006610 680.8 nM 4.297x10-4 4.354x10-4 13.13 0.274 

V139A 4.008x105 0.01453 36.3 nM 1.432x10-4 0.001044 68.01 0.414 

L140A 4.527x105 0.01768 39.1 nM 2.254x10-4 0.001179 19.99 0.0296 

L141A 1.930x105 0.01538 79.7 nM 1.855x10-4 5.017x10-4 25.05 0.0224 

L142A 3.830x105 0.01705 44.5 nM 1.894x10-4 5.507x10-4 23.29 0.0466 

R143A 3.622x104 0.009299 253.9 nM 2.068x10-4 3.115x10-4 46.95 0.0075 

 

To investigate whether ligand binding of the individual NKp30 alanine mutants is correlated 

with their capacity to promote CD3ζ signaling, A5-GFP cells were transduced with the 

respective full length receptor constructs, and signaling reporter assays were performed by 

stimulation with plate-bound NKp30-specific antibodies or Ba/F3 B7-H6 cells. Ligand-induced 

signaling of NKp30 after stimulation with Ba/F3 B7-H6 cells was significantly reduced by 

alanine mutation at any of the amino acid positions within the stalk domain (Fig. 16 A). Most 

drastic loss of function was visible for the two amino acids at the transition of the N-terminal 

Ig domain and the stalk domain of NKp30 (K129A: 27.6 % and E130A: 37.0 % GFP+ cells 

normalized to wildtype) and two of the three C-terminal leucine residues at the transition 

between the stalk domain and the transmembrane domain (L140A: 30.0 % and L141A: 

36.3 % GFP+ cells normalized to wildtype). Mutation of R143, which is believed to mediate an 

intramembrane charge contact with CD3ζ, and mutation of L142 led to a complete loss of 
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signaling capacity (R143A: 2.5 % and L142A: 11.1 % compared to Mock control: 8.0 % GFP+ 

cells normalized to wildtype; Fig. 16 A). 

Figure 16. Contribution of individual amino acids of the NKp30 stalk to signaling. A5-GFP cells 
transduced with the different NKp30 alanine mutants were analyzed for their signaling capacity after 
co-incubation with Ba/F3 B7-H6 cells (A) or after stimulation with plate-bound NKp30-specific 
antibodies (B). GFP expression was analyzed by flow cytometry of CD4

+
/SytoxBlue

-
 A5-GFP cells. 

The percentage of GFP-positive cells normalized to wildtype is indicated as mean ± SEM of 3 
independent experiments measured in duplicates. Statistical significance of flow cytometry 
experiments was assessed by one-way ANOVA and Dunnett’s multiple comparisons test with Prism 6 
software. **, p=0.001-0.01; ***, p=0.0001-0.001; ****, p<0.0001. 

 

Notably, signaling reporter assays were performed at saturating conditions for more than 12 

hours, therefore excluding that slight differences in expression levels of the NKp30 variants 

might affect determination of their signaling capacity. Impaired signaling of the mutants can 

be due to (1) a failure to mediate ligand-induced conformational changes, needed for 

signaling, or (2) a lack of specific motifs that are generally needed for communication with 

CD3ζ. To evaluate this, signaling reporter assays were performed after receptor stimulation 

with plate-bound NKp30-specific antibodies (Fig. 16 B). Interestingly, also in this setting, the 

L141A and L142A mutants showed reduced signaling capacity (L141A: 66.0 % and 

L142A: 21.6 % GFP+ cells normalized to wildtype) and the NKp30 variant devoid of R143 

showed no CD3ζ signaling (R143A: 0.6 % compared to Mock: 0.1 % GFP+ cells normalized 

to wildtype). This demonstrates that the impaired signaling of L141A, L142A and R143A is 

due to a loss in signaling capacity in general. This again speaks for the importance of the 

conserved K129/244(-)HX9LLR143/258 motif in the stalk domains of NKp30 and NKp46. Notably, 

L141, L142 and R143 in the NKp30 stalk are also highly conserved among species (compare 

to Fig. 32).  

In order to investigate whether ligand-induced NKp30 signaling requires the side chain of 

R143 or only a positively charged residue at position 143, another NKp30 variant was 

produced, where R143 was substituted by a lysine (R143K). Surprisingly, the signaling 

capacity of the R143K mutant was maintained or even improved when compared to 

NKp30 wt after stimulation with Ba/F3 B7-H6 cells (Mock: 2.8 %, and R143K: 132.9 % GFP+ 

cells normalized to wildtype; Fig. 17). This demonstrates that a positive charge at position 

143 is essential and sufficient for NKp30 function. The evolutionary reason why NKp30, as 
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well as other immunoreceptors, contain a charged arginine instead of a lysine for interaction 

with CD3ζ is unknown. Even though lysine seems to be advantageous for signaling capacity, 

there might be other effects, like decreased protein stability, that negatively influence the 

receptor and that are not visible in overexpression experiments. 

 

Figure 17. A positive charge at position 143 is essential 
and sufficient for NKp30 function. A5-GFP cells 
transduced with a lysine mutant of R143 (R143K) were 
analyzed for their signaling capacity after co-incubation with 
Ba/F3 B7-H6 cells. GFP expression was analyzed by flow 
cytometry of CD4

+
/SytoxBlue

-
 A5-GFP cells. The percentage 

of GFP-positive cells normalized to wildtype is indicated as 
mean ± SEM of 3 independent experiments measured in 
duplicates. Statistical significance of flow cytometry 
experiments was assessed by one-way ANOVA and 
Dunnett’s multiple comparisons test with Prism 6 software. 
*, p=0.01-0.05; ****, p<0.0001. 
 

 

 

 

3.1.3 Involvement of Transmembrane and Cytosolic Residues in Signaling 
 

Based on the results from NKp30/NKp46 chimera and NKp30 alanine scanning mutants, it 

became obvious that a conserved sequence motif in the stalk domain of NKp30 (and the 

membrane-proximal stalk region of NKp46) is important for signaling capacity. Moreover, a 

positive charge on amino acid position 143 was shown to be essential for signaling. As 

TMpred analysis predicts R143 to be located outside of the membrane, it was hypothesized 

that ligand binding initiates a stalk-dependent shift of the transmembrane region of NKp30 in 

order to burry R143 more deeply into the membrane, thereby facilitating the association with 

CD3ζ. Presumably, such a register shift might expose residues from the lipid interface to 

secondary effector molecules in the cytoplasm. Therefore, signaling contributions of amino 

acids in the proximity of R143 and at the transition of transmembrane domain and cytosolic 

domain of NKp30 were investigated (Fig. 18). 

First, it was analyzed whether the tyrosine residues Y161 and Y162, which are located near 

the border between transmembrane and cytosolic region of NKp30, contribute to signaling. It 

was assumed that a ligand-induced conformational change in NKp30 might expose the two 

tyrosines to the cytoplasm, facilitate their potential phosphorylation and thereby start 

signaling cascades. To analyze if this was the case, either one or both of the tyrosines were 

substituted by phenylalanine (Y161F, Y162F, Y161F/Y162F; Fig. 18 A). As phenylalanine 

has a similar aromatic side chain as tyrosine but lacks the hydroxyl group, this kind of 

mutation prevents phosphorylation and can be used to analyze the contribution of tyrosine 

phosphorylation in signaling cascades. Surface expression of the mutants was analyzed by 
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flow cytometry, confirming similar expression levels (Fig. 18 B). Interestingly, the mutations 

even slightly enhanced signaling capacity of the receptor in reporter assays with Ba/F3 

B7-H6 target cells (Mock: 2.8 %, Y161F: 133.0 %, Y162F: 143.3 % and Y161F/Y162F: 

137.1 % GFP+ cells normalized to wildtype; Fig. 18 C). This shows that Y161 and Y162 do 

not contribute to NKp30/CD3ζ signaling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Influence of specific amino acids within, or in the vicinity of the transmembrane 
domain of NKp30 on CD3ζ signaling. (A) Schematic representation of NKp30 wt (PDB: 3NOI) and 
NKp30 mutants in the plasma membrane. Wildtype amino acids are shown in black, mutated amino 
acids are shown in red. (B) Surface expression of the receptor mutants in A5-GFP cells analyzed by 
flow cytometry. Grey: isotype control, red: anti-NKp30. One representative experiment out of three is 
shown. (C/D) A5-GFP cells transduced with the different receptor mutants were analyzed for their 
signaling capacity after co-incubation with Ba/F3 B7-H6 cells. GFP expression was analyzed by flow 
cytometry of CD4

+
/SytoxBlue

-
 A5-GFP cells. The percentage of GFP-positive cells normalized to 

wildtype is indicated as mean ± SEM of 3 independent experiments measured in duplicates. Statistical 
significance of flow cytometry experiments was assessed by one-way ANOVA and Dunnett’s multiple 
comparisons test with Prism 6 software. (E) Same experiment as in D, A5-GFP cells were co-
incubated with Ba/F3 Mock cells. GFP expression was analyzed by flow cytometry of CD4

+
/SytoxBlue

-
 

A5-GFP cells and normalized to the percentage of GFP-positive NKp30 wildtype cells after co-
incubation with Ba/F3 B7-H6 cells. n.s., not significant, p>0.05; *, p=0.01-0.05; ****, p<0.0001. 
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As the leucine residues preceding R143 (L140, L141 and L142) were found to be intolerant 

to alanine substitution (compare to Fig. 16), it was suggested that these residues might play 

a role for the relocation of R143 after ligand binding. A shift of R143 more deeply into the 

membrane might require strong forces to overcome charge repellence of the hydrophobic 

membrane interface. This might be achieved by ligand-induced receptor oligomerization 

[209,231] and an unpolar “lid” generated by L140, L141 and L142, that shields the positive 

charge of R143 from the hydrophobic transmembrane region. To verify this, it was tested if 

substitution of the two amino acids succeeding R143 by leucine could reduce charge 

repellence of R143 and thereby render NKp30 signaling independent from ligand binding 

(A144L/G145L; Fig. 18 A). This would lead to constitutive GFP expression of the reporter 

cells even in the absence of a stimulating ligand. Wildtype NKp30 and the A144L/G145L 

mutant were expressed equally well in A5-GFP reporter cells (Fig. 18 B). Interestingly, the 

double mutant showed no increase in signaling capacity after co-incubation with Ba/F3 

B7-H6 target cells (A144L/G145L: 100.1 % GFP+ cells normalized to wildtype; Fig. 18 D) and 

no GFP expression (signaling) without ligand stimulation (after co-incubation with Ba/F3 

Mock target cells; Fig. 18 E). 

Prediction of NKp30’s transmembrane region based on TMpred [228] suggests that the 

transmembrane domain is anchored between two flanking positive charges (R143 and 

K165). Therefore, it was analyzed if a combined mutation of A144 and G145 to leucine and a 

shift of K165 to amino acid position 161 (A144L/G145L/K165→161; Fig 18 A) uncouples 

signaling from ligand binding and forces R143 into the inner core of the membrane for 

permanent contact with CD3ζ. While expression of the A144L/G145L/K165→161 construct 

was preserved (Fig. 18 B), only moderate reduction of signaling capacity after co-incubation 

with Ba/F3 B7-H6 cells (A144L/G145L/K165→161 69.7 % GFP+ cells normalized to wildtype; 

Fig. 18 D) and no signaling without ligand stimulation (Fig. 18 E) were observed. 

Interestingly, in addition it was not possible to uncouple receptor signaling from ligand 

binding by systematically shifting R143 towards the C-terminus of NKp30 while 

simultaneously preserving the sequence order of the transmembrane domain, as none of the 

mutants was targeted to the plasma membrane (experiments performed by Sandra Weil, AG 

Koch). This demonstrates that a positive charge might not be permanently tolerated within 

the inner core of NKp30’s transmembrane domain. 

Altogether, these data argue for a strong charge repellence, which keeps the side chain of 

R143 at the transition interface between extracellular region and membrane. Alignment of 

R143 with the aspartate of CD3ζ to enable signaling might be achieved by ligand-induced 

receptor clustering and/or stalk-dependent conformational changes. 
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3.1.4 N-Glycosylation Scanning to Analyze the Positioning of Key Amino Acids in 

NKp30 and NKp46 

 

To investigate if a stalk-dependent conformational change might occur that leads to a 

temporary alignment of R143 with the aspartate of CD3ζ, it was necessary to analyze the 

positioning of R143 in ground state. For this purpose, N-glycosylation scanning was 

performed. N-glycosylation of eukaryotic membrane proteins is catalyzed by a membrane-

associated oligo saccharyl transferase (OST) complex in the lumen of the endoplasmic 

reticulum (ER). The OST complex transfers an oligosaccharide to the side chain of an 

asparagine (N) acceptor in the N-X-S/T motif (where X can be every amino acid except for 

proline). According to the 12+14 rule, such an acceptor site must be placed a minimum of 14 

amino acids N-terminal or 12 amino acids C-terminal from the membrane surface to be 

N-glycosylated, as the active site of the OST complex is positioned a certain distance away 

from the ER membrane [232]. This minimal distance can be used to map the ends of TM 

segments of membrane proteins [233–235]. Therefore, N-glycosylation scanning introduces 

N-glycosylation acceptor sites 14 amino acids N-terminal or 12 amino acids C-terminal from 

the amino acid to be analyzed. The addition of an oligosaccharide adds about 2 kDa to the 

protein and is visible as motility shift in SDS-PAGE. While the presence of glycosylation 

indicates that the amino acid to be analyzed is located outside of the plasma membrane, the 

absence of glycosylation is not that conclusive as it might be due to the fact that the used N-

X-S/T motif is an inefficient acceptor site or is located too close to the membrane [233]. 

In this thesis, the N-glycosylation scanning method was used to analyze the positioning of 

key amino acids that were assumed to be located near the interface between extracellular 

and membrane region of NKp30 (L140, R143, Y147) and the corresponding region of NKp46 

(N255, R258, A262). Therefor, N-gylcosylation acceptor sites were introduced 14 amino acid 

positions N-terminal from each residue to be analyzed (Fig. 19). 
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 Figure 19. Schematic representation of the N-
 glycosylation scanning. Amino acids mutated to 
 N-glycosylation acceptor sites are shown in bold 
 black, amino acids to be analyzed at the membrane 
 transition interface are shown in bold red. Brackets 
 indicate the 14 amino acid distance between N-
 glycosylation sites and the amino acids to be 
 analyzed. 

 

293T/17 cells were lentivirally transduced with the different NKp30 and NKp46 constructs 

and analyzed for receptor expression by flow cytometry (Fig. 20). All constructs were 

expressed and incorporated into the plasma membrane, thereby indicating that the 

introduction of N-glycosylation sites did not affect membrane targeting. Due to this, artifacts 

caused by glycosylation of constructs that were not inserted into the membrane correctly, 

could be excluded. 
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 Figure 20. Expression of N-glycosylation scanning constructs. Plasma 
 membrane and intracellular expression of the NKp30 (A) and NKp46 (B) 
 mutants in transduced 293T/17 cells, analyzed by flow cytometry. Grey: 
 isotype control, red: anti-NKp30, blue: anti-NKp46. One representative 
 experiment out of three is shown. 
 

Glycosylation of the different mutants was analyzed by western blot, showing that in case of 

NKp30, only the V126N/E128S mutant (showing the positioning of L140) is additionally 

glycosylated. This speaks for the fact that L140 is positioned outside of the membrane. In 

contrast, the absence of glycosylation of K129N/H131S and Q133N/G135S indicates that 

R143 and Y147 are located in the membrane region. Due to the fact that L140 lies outside of 

the transmembrane region, R143 can only be located a maximum of three amino acids inside 

of the membrane and therefore it is likely that its side chain does not align with the aspartate 

of CD3ζ in ground state. In contrast to that, glycosylation of all three N-glycosylation 

scanning mutants was detectable in case of NKp46, showing not only that R258 is located 
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outside of the membrane, but also that it is positioned at least four amino acids away from 

the border between extracellular and membrane region (Fig. 21 B). 

This shows that a ligand induced conformational change that leads to charge alignment 

between immunoreceptor and CD3ζ in the transmembrane region is possible. It is likely that 

slight differences in this mechanism exist between NKp30 and NKp46, as the positioning of 

the transmembrane domains of both receptors does not seem to be equal. 

 Figure 21. Glycosylation status of N-glycosylation scanning mutants. Western blot 
 analysis of NKp30 (A) and NKp46 (B) mutants detected with NKp30- or NKp46-specific 
 antibodies, respectively. Solid circles: glycosylated sites, open circles: non-glycosylated sites. 
 One representative experiment out of three is shown. 
 
 

3.1.5 Assembly of the NKp30/CD3ζ Complex 
 

Results from the former experiments revealed several stalk amino acids to be critical for 

NKp30 signaling and led to the assumption that signaling via CD3ζ might be facilitated by a 

conformational change in the receptor that is induced by ligand binding. However, at this 

stage it was unclear whether this might be essential to activate a pre-existing NKp30/CD3ζ 

complex or whether it enables recruitment of CD3ζ to a pre-activated receptor/ligand 

complex. To analyze this, the interaction of NKp30 and NKp46 with CD3ζ was investigated in 

non-lymphoid cells. Therefor, HeLa cells were transduced with CD3ζ and the different 

receptor variants. Expression of NKp30, NKp46 and CD3ζ was confirmed by confocal laser 

scanning microscopy (CLSM) after detection with specific antibodies (Fig. 22). Interestingly, 

NKp30 and NK46 co-localized with CD3ζ at the plasma membrane of the cells, speaking for 

a tight interaction of both proteins even in the absence of ligand. 
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 Figure 22. Plasma membrane co-localization of NKp30 and NKp46 
 with CD3ζ in the absence of ligand. Immunofluorescence staining of 
 CD3ζ-transduced HeLa cells additionally transduced with either NKp30 or 

 NKp46. Red: surface staining of the NCRs with specific antibodies, green: 
 intracellular staining of CD3ζ with specific antibodies, blue: DAPI, size bar: 
 10 µm. One representative picture out of at least five is shown. 

 

Additionally, CLSM analysis of the NKp30 alanine mutants showed co-localization of all the 

different receptor variants, including L141A, L142A and R143A, with CD3ζ (Fig. 23). This 

indicates that the membrane proximal amino acids are involved in signal transduction at the 

NKp30/CD3ζ interface rather than in assembly of the NKp30/CD3ζ complex itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 23. Alanine mutations within the stalk domain have no impact on NKp30/CD3ζ 
co-localization. Immunofluorescence microscopy of CD3ζ-transduced HeLa cells additionally 
transduced with NKp30 receptor mutants. Red: plasma membrane staining of NKp30 with specific 
antibodies, green: intracellular staining of CD3ζ with specific antibodies, blue: DAPI, size bar: 10 µm. 
One representative picture out of at least five is shown.  
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Furthermore, expression levels of NKp30 and NKp46 alone and in combination with CD3ζ 

were analyzed in comparative immunofluorescence and flow cytometry studies (Fig. 24).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 24. CD3ζ impacts surface expression levels of NKp30 and 
 NKp46 in the absence of ligand. (A) Immunofluorescence microscopy 
 analysis of NKp30 and NKp46 expression (plasma membrane and 
 intracellular) in HeLa cells with or without CD3ζ. Red: staining of the NCRs 
 with specific antibodies, size bar: 10 µm. One representative picture out of at 
 least five is shown. (B) Flow cytometry analysis of NKp30 and NKp46 
 expression (plasma membrane and intracellular) in HeLa cells with or without 
 CD3ζ. Grey: isotype control, red: anti-NKp30, blue: anti-NKp46. MFI ratios 
 (median fluorescence intensity of NCR staining normalized to median 
 fluorescence intensity of isotype control staining) are indicated. One 
 representative experiment out of three is shown.  
 

Each one of the experimental setups showed higher NCR expression levels in the presence 

of CD3ζ, indicating that both, NKp30 and NKp46, require CD3ζ for efficient plasma 

membrane targeting and/or retention. Additionally, these results support the hypothesis of 

pre-existing NKp30/CD3ζ and NKp46/CD3ζ complexes, as they clearly show that CD3ζ 

influences NCR expression levels in the absence of ligand, which can only be achieved if 

both proteins are able to interact without the need of prior ligand binding to the receptor. 

Taken together, these results speak for the formation of structural NKp30/CD3ζ and 

NKp46/CD3ζ complexes without the requirement of auxiliary factors specific for lymphoid 
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cells and without requiring a pre-activated receptor ligand complex. Therefore, ligand-

induced conformational changes, that lead to charge alignment between receptor and CD3ζ 

in the transmembrane region, might enable activation of pre-formed NKp30/CD3ζ and 

NKp46/CD3ζ complexes, respectively. 
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3.2 shRNA Screening to Analyze the Existence of yet Unidentified Cancer-associated 

Ligands of NKp30 

 

Up to now, only a few cellular ligands have been identified for NKp30. The receptor binds to 

B7-H6, a cell surface protein selectively expressed on cancer cells [142,236]. Additionally, 

two other cellular proteins were shown to bind to NKp30, BAG-6 (also known as BAT-3) and 

Gal-3. BAG-6 is a mainly nuclear protein, which is present in various tissues, on the plasma 

membrane of immune cells, tumor cells and on exosomes. Additionally, a soluble form of the 

protein can be secreted upon cellular stress [143–145]. Gal-3 is a mainly soluble ligand of 

NKp30, which is expressed and released by many types of tumor cells [151]. Previous 

experiments led to the assumption that other cancer-associated NKp30 ligands might exist, 

implicated by NKp30-Fc binding to tumor cell lines that neither express B7-H6 nor BAG-6 on 

their surface (as Gal-3 is a soluble ligand). Therefore, the existence of other, yet unknown, 

cellular NKp30 ligands (and NKp44/ NKp46 ligands) was analyzed using a genome-wide 

shRNA screening. 

 

3.2.1 Determination of Optimal Screening Conditions 

 

Since conventional strategies such as co-immunoprecipitation have mostly failed, a novel 

approach based on a genome-wide shRNA knockdown was established to identify yet 

unknown NCR ligands (Fig. 25). In this setting, cell lines were transduced with a lentiviral 

shRNA library, and transduced cells (mCherry+) were enriched by puromycin selection and 

sorted for decreased NCR ligand expression (NCRLlow phenotype). Afterwards, genomic 

DNA (gDNA) was isolated from sorted cells and sublibraries were generated and subjected 

to deep sequencing. Candidate lists were obtained from deep sequencing raw data by in 

silico analysis.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 25. Workflow of the shRNA screening. 
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The first goal was to identify suitable cell lines that express high amounts of NCR ligands and 

are easy to transduce with lentiviral vectors. Therefor, a large panel of cell lines was 

screened for their surface expression of NCR ligands using NCR-Fc fusion proteins. From 

this panel, three cell lines were selected for the shRNA screening. All of them expressed 

different levels of NCR ligands, as shown by differential decoration patterns with NCR-Fc 

fusion proteins. In all cases IFNAR2-Fc served as negative control to exclude background 

binding of the hIgG1-Fc part (Fig. 26). All selected cell lines were human cells from different 

origin. DU145 is a prostate cancer cell line, 293T/17 cell are embryonic kidney cells, and 

MelJuSo is a melanoma cell line. Interestingly, BAG-6 was not detectable on the surface of 

any of these cell lines, while B7-H6 was only expressed on the surface of 293T/17 cells. This 

demonstrates the existence of an unknown interaction partner of NKp30-Fc on the surface of 

DU145 and MelJuSo cells, which should be identified in this screening. In contrast, the 

B7-H6 expressing 293T/17 cells served as positive control. 

Figure 26. Cell lines selected for genome-wide shRNA screening. DU145, 293T/17 and MelJuSo 
cells were decorated with recombinant NCR-Fc fusion proteins or a specific antibody against the 
NKp30 ligands B7-H6 or BAG-6, respectively, and analyzed by flow cytometry. IFNAR2-Fc staining 
served as background control for NCR-Fc staining and secondary antibody staining served as control 
for BAG-6 and B7-H6 stainings (grey). One representative experiment out of three is shown. 
 

A genome-wide human shRNA library (kindly provided by Michael McManus and Sergio 

Covarrubias, University of California in San Francisco, UCSF) was used for the knockdown-

screening. This library contained 550,000 shRNAs with roughly 25 shRNAs targeting one 

gene. Due to the complexity of the library, the shRNAs were divided into 10 chips. shRNAs 

were delivered in lentiviral particles, pseudotyped with VSV-G by the Viracore core facility of 

the UCSF. Particles conferred an additional puromycin resistance and an mCherry 

fluorescence marker for selection. Such high-coverage shRNA libraries were shown to be a 

valuable tool for RNAi screenings [237,238]. 
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Before starting the screening, transduction efficacy of the shRNA library was determined on 

the selected cell lines. Therefor, cells were transduced with control virus [pMK1047(VSV-G)], 

which did only contain the selection markers but no shRNAs. The optimal MOI was 

determined by flow cytometry analysis of the mCherry selection marker (Fig. 27). Based on 

mathematical considerations and empirical observations, 30-40 % of the cells should be 

transduced in order to avoid multiple integrations and to maintain the complexity of the library 

(Sergio Covarrubias, personal communication). For DU145 and 293T/17 cells, an MOI of 0.5 

resulted in an optimal transduction rate (DU145: 35.2 % and 293T/17: 38.0 % of transduced 

cells). As transduction efficacy was slightly higher in MelJuSo cells (66.3 % of transduced 

cells at an MOI of 0.5), in this cell line an MOI of 0.3 was used for the screening. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Determination of the optimal MOI for target cell transduction. 
DU145, 293T/17 and MelJuSo cells were transduced with [pMK1047(VSV-G)] 
control virus and analyzed for expression of the transduction marker (mCherry) by 
flow cytometry. Percentages of mCherry-positive cells are indicated. 
 
 

 
3.2.2 shRNA Screening and Preparation of Deep Sequencing Libraries 

 

The screening was carried out by implementation of the optimized transduction parameters. 

After three to four days, puromycin was added to the culture medium for enrichment of 

transduced cells (MelJuSo: 1 µg/ml, 293T/17 and DU145: 2 µg/ml puromycin in cell culture 

medium). Cell sorting was carried out after another three to four days of puromycin selection. 

Cells were decorated with NCR-Fc fusion proteins and sorted for high mCherry expression 
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(transduction marker) and reduced decoration with NCR-Fc fusion proteins (Fig. 28). This 

sorting strategy was assumed to enrich cells carring shRNAs against NCR ligands.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 28. Sorting for mCherry
+
/NCR ligand

low
 

 phenotype. Schematic representation of the sorting progress. 
 mCherry-posititve (transduced) cells are shown in red, 
 untransduced cells are shown in grey. 

 

Altogether, 30 cell sorts (one sort for each chip and every NCR-Fc fusion protein) were 

performed per cell line (90 sorts altogether, Fig. 29 A-C). The sorting gate 

(mCherry+/NCR ligandlow) was roughly 5 % of 107 cells. gDNA was isolated from sorted cells 

and subjected to PCR for generation of deep sequencing sublibraries (collaboration with 

Zoltán Ivics and Csaba Miskey, Paul-Ehrlich-Institut, Langen). Adaptor sequences to attach 

the fragment to an Illumina flow cell and barcodes to distinguish the different samples from 

each other, were introduced by the respective primers (Fig. 29 D). As deep sequencing of 

the 90 samples was carried out in three lanes, no more than 30 different barcodes were 

needed to differentiate between the samples. 
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Figure 29. Cell sorting and preparation of deep sequencing samples. (A-C) Sorting gates for 
mCherry

+
/NCR ligand

low
 cells in the screening cell lines MelJuSo (A), 293T/17 (B) and DU145 (C) 

7 days post transduction. (D) Schematic representation of PCR fragment preparation for Illumina 
sequencing. Blue arrows indicate sequences that were introduced by PCR, white regions indicate 
spacer sequences. 
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3.2.3 Analysis of Deep Sequencing Data 

 

To identify putative NKp30 ligands, deep sequencing raw data had to be further processed 

and narrowed down. Trimming of the raw data, association of sequences to samples 

(barcoding) and to genes (NM accession numbers) was done in collaboration with Alexander 

Williams (Gladstone Bioinformatics Core, Gladstone Institutes, UCSF). Data was further 

processed according to the following quality parameters (collaboration with Csaba Miskey, 

Paul-Ehrlich-Institut, Langen): (1) To be included, the cumulative read numbers for a 

particular shRNA had to be more than 100 for all three NCR samples in the respective cell 

line. This led to the reduction of background. (2) For each receptor, only shRNAs were 

included, which displayed a log2-fold change above two when compared to samples from the 

other two NCR-Fc fusion protein decorations in the same cell line. This led to the exclusion of 

shRNAs with minor effects. (3) Candidate genes for which less than 8 independent shRNA 

sequences were detected, were regarded as non-specific hits and thus removed from the list. 

(4) Data sets were merged to a protein localization data set from Uniprot and only proteins 

that can be localized on the cell membrane were included in the candidate lists. This analysis 

led to 9 data sets (one for each receptor in each cell line), containing between 20-200 

candidate genes each. These data sets were further narrowed by (1) filtering for expression 

levels of the candidate genes in the screening cell lines, based on publicly available 

expression data (The Human Protein Atlas, RefExA, and EMBL Expression Atlas) and (2) 

documented association of the candidate with cancer and/or immunity. Additionally, 

candidate genes involved in the expression and plasma membrane targeting of membrane 

proteins were excluded from the final lists as they were likely to contribute to the surface 

expression of the putative ligand but not to be the NCR interaction partner itself. As such 

proteins are highly involved in shaping the cell surfaces, it was not surprising that they were 

present in high numbers in the initial candidate lists. Overall, this speaks for the fact that 

such a screening method is suitable to identify interacting membrane proteins. The final 

analysis resulted in candidate lists comprising 8 candidate genes for NKp30 (Tab. 22), 

4 candidate genes for NKp44 (appendix, 6.5) and 11 candidate genes for NKp46 (appendix, 

6.5). 

 

 

 

 

 

 

 

 



Results 111 
 

Table 22. Candidate list of putative NKp30 ligands. FPKM: fragments per kilobase of exon per 
million fragments mapped. 

 

 

3.2.4 Candidate Validation 

 

For validation of the candidates obtained in the shRNA screening, the respective proteins 

were expressed in HeLa cells. This cell line was chosen for validation experiments as it does 

not express any NCR ligands on its surface (Fig. 30). 

 

 

 

 

 

 

 

 

 Figure 30. HeLa cells are negative for NCR ligands. HeLa cells were decorated 
 with recombinant NCR-Fc fusion proteins and analyzed by flow cytometry. Grey: 
 IFNAR2-Fc (background control), red: NKp30-Fc, green: NKp44-Fc, blue: NKp46-Fc. 
 One representative experiment out of three is shown. 

 

For this purpose, commercially available cDNA clones (Origene) were purchased and the 

cDNA sequences were cloned into a lentiviral vector containing a zeocin resistance and a 

C-terminal Flag® tag (LeGO-iZ-Flag). Constructs were packaged into lentiviral particles, 

pseudotyped with VSV-G. Transient transfection of HeLa cells with the commercially 

available plasmids was not possible as the constructs conferred protein expression under a 

cytomegalovirus (CMV) promoter, which was rapidly silenced in HeLa cells. Three days after 

Nr. UniProt entry Accession 

numbers

Gene names Protein name Chromosome Localization/type

cancer immunity

1 CD320_HUMAN 

(Q9NPF0)

NM_001165895, 

NM_016579         

CD320_8D6A_UNQ198/P

RO224

CD320 antigen Mel-JuSo (45) 19 Membrane/ single-pass 

type I membrane protein

- +

2 ZDHC4_HUMAN 

(Q9NPG8)

NM_001134387, 

NM_001134388, 

NM_001134389, 

NM_018106          

ZDHHC4_ZNF374_DC1_

UNQ5787/PRO19576

Probable 

palmitoyltransferase 

ZDHHC4

Mel-JuSo (12), 

DU145 (13)

7 Membrane/ multi-pass 

membrane protein

- -

3 LFG1_HUMAN 

(Q7Z429)

NM_000837, 

NM_001009184    

GRINA_LFG1_NMDARA1

_TMBIM3

Protein lifeguard 1 Mel-JuSo (55), 

DU145 (36)

8 Membrane/ multi-pass 

membrane protein

- -

4 RAB23_HUMAN 

(Q9ULC3)

NM_001278666, 

NM_001278667, 

NM_001278668, 

NM_016277, 

NM_183227         

RAB23_HSPC137 Ras-related protein Rab-

23

Mel-JuSo (3), 

DU145 (6)

6 Cell membrane, 

cytoplasmic vesicle, 

autophagosome, 

endosome membrane / 

lipid-anchor

- -

5 NHRF3_HUMAN 

(Q5T2W1)

NM_001201325, 

NM_001201326, 

NM_002614         

PDZK1_CAP70_NHERF3

_PDZD1

Na(+)/H(+) exchange 

regulatory cofactor NHE-

RF3

293T (1-11.3) 1 Cell membrane, cytoplasm/ 

peripheral membrane 

protein

+ -

6 CLD8_HUMAN 

(P56748)

NM_199328         CLDN8_UNQ779/PRO15

73

Claudin-8 DU145 (na), 21 Cell junction, tight junction, 

cell membrane/ multi-pass 

membrane protein

+ -

7 CLC6A_HUMAN 

(Q6EIG7)

NM_001007033   CLEC6A_CLECSF10_DE

CTIN2

C-type lectin domain 

family 6 member A

DU145 (na) 12 Membrane/ single-pass 

type II membrane protein

- +

8 MUC24_HUMAN 

(Q04900)

NM_001142401, 

NM_001142402, 

NM_001142403, 

NM_001142404, 

NM_006016         

CD164 Sialomucin core protein 

24

DU145 (22) 6 Lysosome membrane, 

endosome membrane, cell 

membrane, isoform 2: 

secreted, isoform 1:  

expressed by prostate 

cancer tumors and 

prostate cancer cell lines/ 

single-pass type I 

membrane protein                                           

+ -

Expression 

(FPKM) 

screening cell 

line

Relation to
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transduction, cells were selected with zeocin. After two weeks of selection, cells were 

analyzed for expression of the candidate protein (Flag+) and decoration with the respective 

NCR-Fc fusion protein. Mock transduced cells served as negative control and B7-H6 

transduced cells served as positive control for putative NKp30 ligands (Fig. 31). 

 

Figure 31. Gating strategy for validation of NCR ligands. HeLa cells, stably transduced with 
empty vector (Mock, A) or B7-H6 (B) were stained for surface expression of NKp30 ligands with 
recombinant NKp30-Fc fusion proteins, and for intracellular expression of the Flag

®
 tagged protein 

with anti-Flag
®
 M2 antibody. Flag-positive and Flag-negative populations were analyzed for the 

amount of NKp30-Fc decoration. MFI ratios (median fluorescence intensity of NKp30-Fc staining 
normalized to median fluorescence intensity of IRNAR2-Fc control staining) are indicated. One 
representative experiment out of three is shown. 

 

Mock transduced HeLa cells showed only low background staining with anti-Flag® M2 

antibody (1.38 % Flag+ cells) and no differences in the amounts of NCR ligand+ cells were 

visible in both populations (Flag+: 1.38 % and Flag-: 1.85 %). In contrast, the NKp30 ligand 
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B7-H6 led to a clear shift in NKp30-Fc decoration (Flag+: 74.4 % NCR ligand+ cells and Flag-: 

42.6 % NCR ligand+ cells). Additionally, it was clearly visible that in the Flag+ (B7-H6+) 

population the NKp30-Fc/IFNAR2-Fc MFI ratio was much higher than in the Flag- (B7-H6-) 

population (Flag+: 23.6 compared to Flag-: 9.2), showing that introduction of the Flag tagged 

protein is the reason for increased NKp30-Fc decoration. This indicates the specific 

interaction of NKp30 and B7-H6 and shows that the experimental setup is suitable for 

candidate validation. 

In a next step, the 8 putative NKp30 ligands found in the shRNA screening (compare to Tab. 

22) were analyzed according to the developed validation protocol (Tab. 23). 

 

Table 23. Validation of putative NKp30 ligands.  

Candidate Population [%] Amount of NKp30-
ligand+ cells [%] 

MFI ratio NKp30-
Fc/IFNAR2-Fc 

 Flag+ Flag- Flag+ Flag- Flag+ Flag- 

CD320 12.7 87.3 9.3 2.3 2.0 2.2 

ZDHHC4 4.9 95.1 1.8 1.1 1.5 1.6 

GRINA 0.4 99.6 5.7 0.8 1.0 1.3 

RAB23 13.6 86.4 3.3 0.4 1.4 1.4 

PDZK1 0.4 99.6 35.7 1.6 2.4 2.1 

CLDN8 4.6 95.4 6.5 2.7 1.8 1.6 

CLEC6A 2.6 97.4 2.1 0.6 1.5 1.5 

CD164 23.4 76.6 1.9 1.5 1.5 1.6 

 

Over all, it was clearly visible that all of the candidates behaved like the negative control, 

showing no shift in NKp30-Fc decoration and no differences in MFI ratios of the Flag-positive 

and Flag-negative population. Expression of GRINA (0.4 % Flag+) and PDZK1 (0.4 % Flag+) 

was very low, suggesting that overexpression of these proteins might have negative effects 

on the cells. Therefore, the higher amount of NKp30-ligand+ cells (35.7 %) in the Flag+ 

population of PDZK1-transduced cells is assumed to be an artifact of the low expression 

rate, as underlined by the fact that the NKp30-Fc/IFNAR2-Fc MFI ratios of the Flag+ and 

Flag- populations were in the same range (2.4 and 2.1). In summary, this data indicates that 

none of the candidate proteins directly influences NKp30-Fc binding to the surface of HeLa 

cells. The same validation procedure was applied for the putative NKp44 and NKp46 ligands, 
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also with no hint for interaction with the respective NCR (appendix, 6.5). Altogether, no yet 

unknown NCR ligand could be identified with the established screening method. 
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3.3 Engineering of a Functional Mouse NKp30 Protein 

 

Human NKp30 was shown to be a highly potent receptor, involved in immune regulation and 

NK cell cytotoxicity against infected and malignantly transformed cells. Additionally, it was 

found as a functional protein in macaque and chimpanzee [74,139,189] as well as on rat NK 

cell subsets [190–192]. Interestingly, while the receptor is constitutively expressed in all the 

other species, in chimpanzee, NKp30 expression depends on NK cell activation [189]. 

Moreover, NKp30 is only a non-expressed pseudogene in a large number of inbred and wild 

mouse strains, due to the existence of two premature stop codons at the beginning of 

exon 2. The only exception is M. caroli, where two single nucleotide polymorphisms eliminate 

the premature stop codons [169,193,195].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 32. Sequence alignment of NKp30 in different species. (A) Multiple 
 sequence alignment (created by Clustal Omega) of NKp30 from H. sapiens 
 (canonical sequence, isoform a), M. mulatta, M. fascicularis, P. troglodytes, 
 B. taurus, R. norvegicus and M. caroli. (*) positions which have a single, fully 
 conserved residue; (:) conservation between groups of strongly similar properties; 
 (.) conservation between groups of weakly similar properties. (B) Percent identity 
 matrix of NKp30 sequences from vertebrate species (created by Clustal2.1). 
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Sequence alignment of NKp30 from different species showed that the protein is highly 

conserved in human and primates. In contrast to that, NKp30 sequences in rodents differ 

markedly in their extracellular and intracellular domains (Fig. 32). In addition, phylogenetic 

trees showed that at the nucleotide level as well as on protein level, the species are 

separated into two major clusters, one containing human and primates and the other 

containing rodents [169]. Currently, not much is known about the evolutionary role of this 

separation and the consequences for NKp30 function in rodents. 

 

3.3.1 Expression and Plasma Membrane Targeting of the mNKp30 Construct 

 

In order to decipher the evolutionary role and biological function of the NKp30 protein in 

mouse, the premature stop codons in exon 2 of the M. musculus NKp30 sequence were 

removed to generate a putative mouse NKp30 (mNKp30, appendix 6.2) full length receptor 

and an N-terminal Flag® tag was introduced to the sequence to facilitate antibody detection. 

A5-GFP reporter cells were transduced with the mNKp30 construct and expression as well 

as plasma membrane targeting of the full length receptor were analyzed by flow cytometry in 

comparison to mock transduced cells (Fig. 33). Interestingly, while intracellular detection of 

the protein was possible, no surface expression of the mNKp30 full length receptor was 

observed, indicating the absence of certain motifs within the mNKp30 sequence, that are 

required for plasma membrane targeting of the receptor. 

 

Figure 33. The mNKp30 full length receptor 
is intracellularly retained in A5-GFP cells. 
(A) Surface and (B) intracellular expression of 
full length mNKp30 in transduced A5-GFP 
cells, analyzed by flow cytometry. Mock 
transduced A5-GFP cells served as control. 
Grey = isotype control; black = anti-FLAG

®
 M2 

antibody. 
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3.3.2 Impact of N-Glycosylation on Plasma Membrane Targeting and Secretion of 

mNKp30 Constructs 

 

To find out more about the reasons for intracellular retention of the full length mNKp30 

receptor in A5-GFP cells, sequence differences between human (canonical) and murine 

NKp30 were analyzed in more detail. Interestingly, it was found that the putative mNKp30 

sequence additionally contains mutations that eliminate the three consensus N-glycosylation 

sites in the extracellular domain of the receptor. Since N-glycosylation is important for 

plasma membrane targeting and ligand binding of NKp30 in human [208], in a second step 

these three N-linked glycosylation motifs in the mNKp30 gene sequence were repaired 

(mNKp30-glyco, appendix 6.2). To analyze the impact of the N-glycosylation site mutations in 

detail, soluble mNKp30-Fc fusion proteins were produced in HEK 293T/17 cells and the 

secreted proteins were purified from cell culture supernatant via protein A sepharose. In 

contrast to the purified hNKp30-Fc, which could be detected with an apparent molecular 

weight of roughly 50 kDa under reducing conditions (~ 100kDa under non-reducing 

conditions), the mNKp30-Fc fusion protein which contained no N-linked glycosylations, was 

not detectable after purification (Fig. 34 A). Interestingly, the mNKp30-Fc construct with 

repaired N-glycosylation sites (mNKp30-glyco-Fc) could be purified from cell culture 

supernatant via protein A and showed the same behavior as hNKp30-Fc, speaking for an 

influence of N-glycosylation on Fc protein secretion in 293T/17 cells.  

 

 

 

 

 

 

 

 

 

 Figure 34. N-glycosylation impacts secretion of NKp30-Fc fusion proteins. 
 (A) Western blot analysis of hNKp30-, mNKp30- and mNKp30-glyco-Fc fusion 
 proteins under reducing (left) and non-reducing (right) conditions after protein A 
 purification from HEK 293T/17 supernatants. (B) Western blot analysis of hNKp30-, 
 mNKp30- and mNKp30-glyco-Fc fusion proteins after protein A pull-down from HEK 
 293T/17 cell lysates. Cell lysates of untransfected HEK 293T/17 cells served as 
 negative control. Proteins were detected with an HRP-conjugated anti-human IgG1-
 Fc antibody. 
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To analyze if mNKp30-Fc was not expressed, or intracellularly retained like the mNKp30 

full length receptor, cell lysates of transiently transfected HEK 293T/17 cells were generated 

and analyzed for the presence of NKp30-Fc (Fig. 34 B). Interestingly, all three NKp30-Fc 

variants were detectable in the lysates. While hNKp30-Fc and mNKp30-glyco-Fc were 

present in differently glycosylated forms (mono-, di-, tri-glycosylated), mNKp30-Fc was only 

detected as unglycosylated protein (each N-glycosylation leads to an increase of roughly 

2 kDa in protein size; Fig. 34 B). This clearly shows that the absence of N-gylcosylation sites 

in the extracellular domain of mNKp30-Fc leads to intracellular retention of the protein in 

293T/17 cells. In contrast to that, an N-glycosylated full length mNKp30 receptor (mNKp30-

glyco) was also intracellularly retained in A5-GFP cells (Fig. 35), speaking for the absence of 

additional transmembrane or intracellular motifs that are required for plasma membrane 

targeting and/or retention of the full length receptor in these cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 35. N-gylcosylation is not sufficient for 
 plasma membrane targeting of the mNKp30 full 
 length  receptor. (A) Surface and (B) intracellular 
 expression of full length mNKp30-glyco in 
 transduced A5-GFP cells analyzed by flow 
 cytometry. Mock transduced A5-GFP cells served as 
 control. Grey = isotype control; black = anti-FLAG

®
 

 M2 antibody. 
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3.3.3 Evidence for a Putative mNKp30-glyco Ligand on the Surface of a Mouse 

Mastocytoma Cell Line 

 

In a second step, the N-glycosylated putative mNKp30 protein should be analyzed for its 

functionality. As the full length mNKp30-glyco receptor was intracellularly retained in A5-GFP 

cells, reporter assays to analyze activation and signaling capacity of the receptor could not 

be performed. However, mNKp30-glyco’s ability to bind cellular ligands was analyzed by 

decoration of nine different mouse cell lines with hNKp30-Fc and mNKp30-glyco-Fc fusion 

proteins. IFNAR2-Fc fusion proteins served as background control (Fig. 36). 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 36. mNKp30-glyco-Fc has an unknown surface ligand on P815 mastocytoma 
cells. Binding of hNKp30-Fc and mNKp30-glyco-Fc to nine murine cell lines was analyzed by 
flow cytomtery. Median fluorescence intensity (MFI) ratios (MFI of NKp30-Fc fusion protein 
staining normalized to MFI of IFNAR2-Fc control staining) are indicated with mean ± SEM. 
Each dot represents an independent staining. 

 

As expected, hNKp30-Fc did not bind to any of the cell lines (mean MFI ratio < 2), showing 

that human NKp30 does not interact with surface structures on mouse cells. In contrast, 

mNKp30-glyco-Fc bound with varying extent to the different mouse cell lines. Low binding 

was observed on EL-4 (T lymphocytes) and MEF (embryonic fibroblasts) cells (EL-4: mean 

MFI ratio 2.1 and MEF: mean MFI ratio 2.3). In contrast, no binding was observed on other 

T lymphocyte (A5 Mock, RMA neo) or embryonic fibroblast (NIH/3T3) cell lines (mean MFI 

ratios < 2). This does not speak for the existence of a specific surface ligand of 

mNKp30-glyco on mouse T lymphocytes or embryonic fibroblasts. The most prominent 

binding was observed on P815 cells, showing a mean MFI ratio 4.5, which is comparable 

with values obtained for hNKp30-Fc staining of human B7-H6-expressing K562 cells [208]. 

This indicates that mNKp30-glyco-Fc is able to interact with an unknown surface structure on 

mouse mastocytoma cells, which could either be mast cell derived or of cancerous origin. 
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Notably, P815 is the only mastocytoma cell line tested in this setting. To verify this finding, 

mNKp30-glyco-Fc should be analyzed for binding to other murine mastocytoma cell lines. 

Additionally, mNKp30-glyco-Fc binding to the human NKp30 ligand B7-H6 was analyzed in 

comparison to hNKp30-Fc (Fig. 37). Therefor, Mock transduced or B7-H6 transduced Ba/F3 

cells were decorated with the different Fc fusion proteins in comparison to IFNAR2-Fc 

staining as background control. 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. mNKp30-glyco-Fc does not bind to human B7-H6. Binding of hNKp30-Fc and 
mNKp30-glyco-Fc to murine Ba/F3 Mock cells (transduced with an empty vector) and Ba/F3 
cells transduced with human B7-H6 (Ba/F3 B7-H6), analyzed by flow cytometry. Median 
fluorescence intensity (MFI) ratios (MFI of NKp30-Fc fusion protein staining normalized to MFI 
of IFNAR2-Fc control staining) are indicated with mean ± SEM. Each dot represents an 
independent staining. 

 

As expected, hNKp30-Fc bound to a high degree to Ba/F3 B7-H6 cells (Ba/F3 B7-H6: mean 

MFI ratio 20.3, compared to Mock: mean MFI ratio: 2.2). In contrast, binding of mNKp30-

glyco-Fc to Ba/F3 B7-H6 cells was not observed (Ba/F3 B7-H6: mean MFI ratio 1.2, 

compared to Mock: mean MFI ratio: 1.7). The absence of such an interaction is not surprising 

as hNKp30 and mNKp30-glyco only share a sequence homology of 62 % (appendix, 6.2). 

Additionally, the B7-H6 full length sequence is not present in mice [142]. 

Altogether, these results show that binding patterns of hNKp30 and the putative mNKp30-

glyco protein differ. While hNKp30-Fc showed no binding to surface structures on mouse 

cells, mNKp30-glyco-Fc seems to recognize a putative ligand of murine origin.
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4. Discussion 

 

NKp30 is one of the major activating receptors on NK cells mediating cytotoxicity against 

virally infected and tumor cells. An understanding of the molecular mechanisms, leading from 

ligand binding at the ectodomain of NKp30 to activation of the NK cell, is crucial to enhance 

the effectivity of NK cell-based cancer therapies. The results of this thesis demonstrated, that 

the Ig and stalk domain of NKp30 are a functional entity for signaling via CD3ζ. Moreover, 

they indicated that the NKp30/CD3ζ complex is pre-assembled, but signaling incompetent in 

ground state and switches to a signaling competent conformation after ligand binding. 

Furthermore, while a few proteinaceous ligands, like the tumor antigens B7-H6 [142,236], 

BAG-6 [143,145] and Gal-3 [151], the parasite protein PfEMP1 [147] and the viral ligands 

pp65 [146] and certain haemagglutinins [148], were identified for NKp30 in the last years, the 

existence of other, yet unknown ligands of the receptor is still questionable and could not be 

confirmed by implementation of a genome-wide shRNA screening in this thesis. 

Interestingly, in mouse, the major NKp30 ligand B7-H6 is absent [142], and NKp30 is only 

present as a non-expressed pseudogene, due to two premature stop codons in the beginning 

of exon 2 [169,193,195]. As the evolutionary reason for this is still unknown, a putative 

mouse NKp30 protein with repaired stop codons and repaired N-glycosylation sites was 

constructed. Analysis of this protein indicated the existence of an unknown murine cellular 

mNKp30 ligand on mastocytoma cells. This was the first time, expression and functional 

analysis of a putative mouse NKp30 receptor could be shown on protein level. 

 

4.1 The Stalk Domain of NKp30 Contributes to Ligand Binding and Signaling of a Pre-

assembled NKp30/CD3ζ Complex 

 

The importance of the stalk domain was already shown for all NCRs. While sialic acid 

moieties attached to the stalk domains of NKp44 [153,154] and NKp46 [163,239] mediate 

binding of the receptors to certain viral haemagglutinins, the amino acids of the NKp30 stalk 

domain were shown to contribute directly to receptor function, as truncation of the stalk 

domain or substitution by a length-matched GS-linker led to a significant reduction in ligand 

binding and a complete loss of CD3ζ signaling [208]. Interestingly, the stalk domain of NKp30 

has no influence on the physiological role of the receptor, as all NKp30 isoforms posses the 

complete stalk domain but some act stimulative while others act immunosuppressive [198]. 

The fact that the stalk sequence is preserved in all isoforms additionally speaks for the 

importance of this domain for the functionality of the receptor. Formerly, the NKp30 stalk was 

assumed to be a flexible region, as it was not resolved in the crystal structure of the 

NKp30/B7-H6 complex. Notably, the amino acid sequence used for crystallization contained 
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aa 19-135 of the extracellular NKp30 domain and therefore lacked 8 stalk aa compared to 

our predictions [199,208]. 

In this thesis, analysis of NKp30/NKp46 chimera showed that the ectodomains of both 

proteins form functional entities of an Ig domain and a cognate stalk domain, as indicated by 

the fact that the NKp30 stalk was incompatible with folding and plasma membrane targeting 

of NKp46 and the stalk of NKp46 was unable to facilitate ligand-induced signaling of NKp30. 

Intracellular retention of the chimera containing the Ig domain of NKp46 and the stalk of 

NKp30 might be explained by length differences of the two stalk domains. The stalk of 

NKp30 (15 aa) is much shorter than the stalk of NKp46 (47 aa), and NKp30 contains only 

one Ig domain while NKp46 contains two. Therefore, the short stalk of NKp30 together with 

the Ig domains of NKp46 might lead to sterical hindrance, thereby preventing membrane 

incorporation of the chimera. Notably, even though the stalk domain of NKp30 was 

indispensable for interconnecting ligand binding to signaling, the stalk domain of NKp46 was 

sufficient to maintain principal signaling capacity of NKp30 as demonstrated by retained 

signaling of the NKp30Ig/46stalk/46TM and NKp30Ig/46stalk/30TM chimera after antibody-

crosslinking. This phenotype might be partially explained by the existence of a preserved 

sequence motif in the NKp30 and NKp46 stalk [K129/244(-)HX9LLR143/258, where (-) indicates a 

negatively charged amino acid; appendix, 6.3]. The membrane-proximal LLR motif as well as 

the lysine on position 129 of the NKp30 stalk are additionally highly conserved among 

species (Fig. 32). This sequence motif seems to confer principal signaling capacity, 

independent of the stalk length. In this context, K129/244(-)H might be important for the integrity 

of the Ig domain (at least in case of NKp30) and LLR143/258 might be needed for signal 

transduction. Cell decoration experiments additionally showed that the inability of the 

NKp30Ig/46stalk/46TM and NKp30Ig/46stalk/30TM chimera to exert ligand induced signaling 

is not caused by impaired ligand binding to the constructs.  

A more detailed insight into the contribution of individual stalk amino acids to ligand binding 

and signaling was obtained by alanine scanning mutagenesis. Amino acid alterations close 

to the Ig-fold were shown to have the most drastic effect on ligand binding, whereas alanine 

mutations of the membrane-proximal stalk amino acids showed KD values similar to wildtype 

NKp30 (compare to 3.1.2). The only exception was the R143A mutant, which displayed a 

slightly higher KD value. In western blot analysis, under non-reducing conditions, apart from 

the signal of the homodimer, a second signal with approximately twice the size was visible 

for all NKp30-Fc fusion proteins. The R143A mutant showed an elevated amount of this 

higher molecular weight signal compared to the other mutants. It might be speculated that in 

this case the substitution of the positive charge led to a longer hydrophobic region that 

causes clustering of the proteins, which might be connected to differences in KD values. 

However, this was not addressed further. 
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Every alanine mutant showed impaired signaling capacity in reporter assays with Ba/F3 

B7-H6 cells, when compared to wildtype (3.1.2). As expected, signaling capacity was 

completely lost when R143, which is believed to enable an intramembrane charge interaction 

with aspartate residues of CD3ζ [226], was mutated to alanine. In contrast, signaling was 

maintained when R143 was substituted by lysine (R143K), showing that a positive charge on 

position 143 is essential and sufficient for signaling. In addition to R143, the two preceding 

leucine residues, which are conserved in NKp30 and NKp46, were shown to be of particular 

importance for NKp30 signaling. This suggested a similar mechanism for signal transduction 

to CD3ζ for both NCRs. Moreover, the presence of several leucine residues in front of the 

aspartic acid in the transmembrane domain of CD3ζ [226] further indicates the importance of 

such residues for the signaling interface and presumably for compensation of charge 

repellence within the hydrophobic membrane environment. In addition, the stalk domain is a 

highly hydrophobic region, which might induce the formation of NKp30 oligomers. An impact 

of the stalk on NKp30 ectodomain self-assembly was formerly shown by size exclusion 

chromatography (SEC) of soluble NKp30 ectodomain proteins produced in insect cells. 

NKp30 proteins containing the stalk domain (30Stalk-His) showed a higher amount of 

oligomers when compared to NKp30 proteins without stalk domain (30LBD-His) [209]. 

Ligand-induced receptor clustering is a common mechanism for receptor-mediated signaling 

in immune responses [240–242]. However, until now, this mechanism was not assured for 

NKp30 in in vivo settings. 

Surprisingly, insertion of additional leucine residues in the vicinity of R143 in order to 

increase local hydrophobicity had no effect on signaling capacity. Moreover, attempts to 

displace R143 towards the C-terminus of NKp30, in order to bury it more deeply into the 

membrane and to uncouple ligand binding and CD3ζ signaling, showed an incompatibility 

with folding and plasma membrane targeting of NKp30 (experiments performed by Sandra 

Weil, AG Koch). This suggests that R143 might require additional conformational changes for 

translocation of the charged side chain into the membrane.  

Formation of the NK cell immunological synapse generates a synaptic cleft of roughly 8 nm, 

which resembles the length of an NKG2D/MICA pair [89,243]. The length of the 

NKp30/B7-H6 complex is approximately the same as for KIR/HLA-C and NKG2D/MICA 

complexes [199]. This suggests that all receptor/ligand pairs within the immunological 

synapse must have a certain length to facilitate interactions. Additionally, the restricted space 

could cause conformational changes of the receptor after ligand binding, to adjust the 

receptor/ligand complex to the synaptic cleft. This could induce the conformational change 

needed to translocate the charged side chain of R143 into the membrane for signaling. 

Taken together, these data indicate that efficient ligand binding and its communication to 
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CD3ζ require a highly defined stalk domain with respect to length, sequence, conformational 

properties and charge. 

N-glycosylation mapping showed that R143 of NKp30 is located in close proximity to the 

interface between membrane and extracellular region, as shown by the fact that L140 is 

located outside and R143 inside, or directly at the border of the membrane (3.1.4). As, due to 

these results, R143 could only be located a maximum of three amino acids into the 

membrane region, the charged side-chain is likely to snorkle to the extracellular region [244–

248]. This suggests that in ground state, the positively charged side chain of R143 is not 

aligned with the negatively charged aspartate side chain of CD3ζ, which is located six amino 

acids into the membrane [226]. Interestingly, for NKp46, the location of R258 was mapped to 

be at least four amino acids away from the lipid bilayer, in the extracellular region. This 

speaks for slight differences in the conformational changes that lead to activation of NKp30 

and NKp46. These differences might also explain the fact that the stalk domain of NKp46 is 

not able to mediate ligand-induced signaling of NKp30, while principal signaling capacity is 

preserved. 

Until now, the mechanisms that induce signaling via adaptor proteins after ligand binding to 

immunoreceptors are largely unknown. For T cells it is suggested that both, TCR aggregation 

and conformational changes after ligand binding may play a role for signaling (reviewed in 

Smith-Garvin et al. [249]). As results from this thesis indicated that a translocation of R143 

from the interface between membrane and extracellular region to the inner core of the 

membrane might induce signaling, it was questionable if this translocation facilitates the 

assembly of the receptor/CD3ζ complex or leads to its activation. Immunofluorescence and 

flow cytometry experiments showed that the presence of CD3ζ clearly increases the plasma 

membrane expression of NKp30 and NKp46 even in the absence of ligand (3.1.5). This 

argues for the existence of pre-assembled NKp30/CD3ζ and NKp46/CD3ζ complexes on the 

plasma membrane of inactive cells. Therefore, R143 is more likely to provide a switch to 

induce CD3ζ signaling than to promote assembly of the NKp30/CD3ζ complex. This idea is 

compatible with previous reports showing that CD3ζ is essential for plasma membrane 

expression of the TCR [224,250] and that the TCR/CD3ζ complex is loosely associated in the 

absence of ligand [251]. Previous studies demonstrated that in the presence of lipid, the 

cytoplasmic tail of CD3ζ is folded, thereby preventing ITAM phosphorylation, whereas in 

aqueous solution, it loses its conformation and can be phosphorylated. This indicates, that 

without activation, the cytoplasmic tail of CD3ζ might be associated with the plasma 

membrane and therefore be inaccessible to phosphorylation. After activation via receptor-

crosslinking, it could be released from the membrane, leading to phosphorylation of the ITAM 

motifs [252]. Additionally, a piston-like movement of the TCR complex upon ligand binding is 

possible, which could be mediated by the transmembrane domain of CD3εγ [253]. Similar 
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mechanisms might be relevant for signal transduction of the NKp30/CD3ζ and NKp46/CD3ζ 

complex. 

Based on these data, two interconvertible types of NKp30/CD3ζ assemblies can be 

proposed: (1) a signaling-incompetent structural NKp30/CD3ζ complex and (2) a ligand-

induced signaling-competent NKp30/CD3ζ complex. Moreover, it can be suggested that 

ligand binding to the ectodomain of NKp30 (and presumably NKp46) induces translocation of 

R143 (R258 in NKp46) more deeply into the membrane for alignment with the aspartate of 

CD3ζ and activation of CD3ζ signaling. This conformational change might lead to the release 

of the previously membrane-associated cytoplasmic tail of CD3ζ, and thereby facilitate 

phosphorylation of the ITAM motifs (Fig. 38). Involvement of snorkeling residues in control of 

membrane signaling was already shown for integrins, where substitution of the snorkeling to 

a non-snorkeling amino acid leads to spontaneous integrin activation [254–256]. 

Interestingly, in the present study, substitution of R143 with a non-snorkeling amino acid had 

the opposite effect, leading to a complete loss of signaling capacity of NKp30, while 

substitution with a snorkeling-competent lysine did not impair signaling. This shows the 

mechanism of signaling control of NKp30 to be different from the mechanism found in 

integrins. Further studies are needed to elucidate the proposed contribution of R143 to 

signaling of NKp30 in more detail. 

 
Figure 38. Model for ligand-induced 
activation of NKp30 and signal 
transduction to CD3ζ. In ground-state 
(OFF), NKp30 (PDB: 3NOI) and CD3ζ 
form a signaling incompetent structural 
complex (NKp30/CD3ζ) with R143 
placed directly at the plasma membrane 
interface. Upon ligand binding 
(NKp30/B7-H6, PDB: 3PV6), 
conformational changes within NKp30 
enable translocation of R143 more 
deeply into the plasma membrane for 
alignment with aspartate residues of 
CD3ζ. Consequently, the structural 
NKp30/CD3ζ complex is converted into 
a signaling competent complex (ON), 
which releases the formerly membrane-
associated cytoplasmic tail of CD3ζ and 
mediates CD3ζ-dependent cellular 
signaling.  
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4.2 A Genome-wide shRNA Screening Did Not Confirm the Existence of Unknown 

Cellular NCR Ligands on Tumor Cell Lines 

 

Analysis of the existence of yet unknown NCR ligands has been shown to be a big 

challenge. Attempts to co-purify NCR ligands with their corresponding receptors have mostly 

failed or led to low recovery rates, thereby preventing subsequent identification. This might 

be caused by different reasons like low affinity or problems in solubilization of single-pass 

and multi-pass transmembrane proteins [257–259]. As observed in this thesis, solubilization 

of NCRs themselves is indeed critical and highly depends on lipid composition of the host 

cell membrane and characteristics of the detergent. In addition, NCRs are likely to be 

recruited to lipid rafts upon formation of the activating NK cell synapse, which might lead to a 

close interaction with other activating NK cell receptors and to solubilization problems. Lipid 

rafts, also called detergent resistant membranes (DRM), are plasma membrane 

microdomains, which are assumed to be important for cell signaling and membrane 

trafficking due to co-localization of certain surface receptors and signaling molecules 

[260,261]. They are rich in sphingolipids with saturated acyl chains and cholesterol in the 

outer leaflet [262]. It has been demonstrated that lipid rafts accumulate in the immunological 

synapse of cytotoxic T lymphocytes (CTL) [263–265] and NK cells [266]. Lipid rafts cluster at 

the contact site of NK cell and target cell upon formation of the activating NK cell synapse 

[266]. In contrast, clustering of lipid rafts does not appear upon formation of the inhibitory NK 

cell synapse [267,268]. Other activating NK cell receptors, like 2B4 and NKG2D were already 

shown to be associated with lipid rafts upon ligation [104,269]. For NCRs, recruitment to lipid 

rafts is assumed, but was not yet proven.  

Additionally, properties of the NCR ligands are unknown and the binding interfaces might 

depend on secondary modifications. Moreover, a stable NCR/ligand interaction might require 

additional actions on the cell surface, like complex formation with other receptors, which is a 

suggested mechanism for NCRs [270]. This can only be reflected by analysis of NCR ligands 

on living cells, and not for example in a co-purification setting with soluble NCR-Fc fusion 

proteins. Finally, NCRs have been shown to recognize non-proteinaceous ligands like 

heparan sulfate proteoglycans, which are not likely to be identified in conventional 

approaches [137]. 

Soluble NKp30-Fc fusion proteins can bind to tumor cell lines that neither express B7-H6 nor 

BAG-6 on their surface (Fig. 26 and [271]). For NKp46, no tumor cell surface ligands have 

been identified so far. However, also soluble NKp44- and NKp46-Fc fusion proteins were 

able to bind to tumor cell lines (Fig. 26). Other groups obtained identical results with NCR-Fc 

fusion proteins and NCR-ILZ fusion proteins [142,160,272,273]. This indicated a possible 

existence of yet unknown NCR ligands on tumor cells, which was further analyzed in this 
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thesis. As stated earlier, analysis of the existence of such ligands is critical. An shRNA 

screening like the one implemented in this thesis has the advantage that it allows for analysis 

of NCR ligands on living cells. Therefore, the chosen cell lines were transduced with a 

genome-wide shRNA library and afterwards selected for impaired NCR ligand expression by 

decoration with NCR-Fc fusion proteins and cell sorting. In this setting, failures due to low 

solubility of NCR ligands or NCRs themselves can be excluded. Additionally, secondary 

modifications of the binding interface and synergistic actions such as complex formation with 

other factors (like co-ligands) on the cell surface should be preserved, as long as they 

originate from the ligand and not from the NCR itself. 

Interestingly, even though this screening approach has a lot of advantages, no tumor cell 

surface ligands could be identified for the NCRs, which might be caused by different reasons. 

The NCR-Fc fusion proteins used in this study contained the complete ectodomain of the 

receptors and showed reduced background binding to Fc-gamma receptors (FcγR) and 

neonatal Fc receptor (FcRn) [208]. But apart from these advantages, the use of Fc fusion 

proteins is critical to identify yet unknown NCR ligands. For one, the Fc fusion proteins show 

a reduced background binding to Fc receptors, but no complete loss of it. Background 

binding might therefore hinder the identification of unknown ligands in this setting, especially 

if they are expressed in low levels. Additionally, it was shown, that the glycosylation pattern 

of NKp30-Fc fusion proteins is critical to mediate binding affinity to heparan sulfate and 

seems to depend on the cell line used for expression [150]. Glycosylation of NKp30-Fc 

proteins produced in 293T cells seems to differ from glycosylation of NKp30-Fc proteins 

produced in NK-92 cells [208]. This might negatively affect the outcome of a ligand 

screening. Furthermore, additional requirements like complex formation with other receptors 

on the NK cell surface or homo-oligomerization can not contribute to ligand binding in this 

setting. On the basis of their structure, monovalent receptor/ligand interactions are expected 

for all of the NCRs. In case of NKp30, the crystallization of the receptor bound to its ligand 

B7-H6 showed a 1:1 stoichiometry [199]. Dimerization or homo-oligomerization, as formerly 

shown for NKp30 ectodomains [209] might provide a mechanism how the receptors are able 

to interact with sequencially and structurally unrelated ligands. In T cells, ligand-induced 

receptor clustering is a common mechanism for receptor-mediated signaling [240–242]. A 

selective cross-talk between the NCRs could be another explanation [270]. Ligands 

recognized by the NCRs via one of these scenarios could not be found with the screening 

method implemented here, as NCR-Fc fusion proteins are not suitable to picture such 

physiological interactions. Ideally, such a screening should be carried out using NK cells 

instead of NCR-Fc fusion proteins for selection of cells with reduced ligand expression. This 

way, all additional requirements for receptor/ligand interactions would be fulfilled, as the 

interaction would be similar to the native process. In such a positive selection, cells with 
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reduced NCR-ligand expression after shRNA knockdown would be ideally resistant to NK 

cell-mediated killing while cells in which shRNA knockdown did not lead to reduced ligand 

expression would be killed. Therefore, cells containing shRNAs against potential NCR 

ligands would be enriched and shRNA sequences could be subsequently analyzed from this 

cell cohort. Problematically, this approach is not usable, due to the variety of different 

receptors mediating cytotoxicity on NK cells. Reduced expression of one NCR ligand on a 

cell is likely to be overcome by other receptor/ligand interactions, thereby preventing a 

positive selection of cells. Knockout approaches leaving just one functional receptor on the 

surface of the NK cell are not applicable due to the high number of different receptors 

(activating as well as inhibitory) and the amount of genetic modifications that would be 

needed. 

Many of the proteins found in the initial candidate lists were intracellular components 

involved in transport of membrane proteins. As these proteins are not present on the cell 

surface and can therefore not act as primary ligands of the NCRs, they were excluded from 

the final lists. Either way, they are likely to contribute to membrane targeting and/or retention 

of putative NCR ligands and could therefore play a role in recognition of tumor cells by NK 

cells. 

Furthermore, an autocrine influence of a secreted protein of the target cell is possible, which 

could act like a soluble adaptor molecule between the membrane-bound ligand protein and 

the receptor. As the final candidate lists only contained proteins that can be targeted to the 

plasma membrane, such secreted factors would not be identified in this screening. The 

requirement of such soluble proteins to facilitate the NCR/ligand interaction would also 

explain the difficulties in the identification of NCR ligands with other screening methods like 

pull-down, knock-in or bait-and-prey screenings. 

In addition, proteins that are essential for the survival of the cell are unlikely to be identified 

as ligands in this screening approach. This is caused by the fact that knockdown of an 

essential protein could lead to severely impaired viability of the cell, causing early cell death 

or decreased proliferation. In contrast, as implementation of shRNAs leads to knockdown but 

not knockout of the putative ligands, the remaining amount of protein could still be sufficient 

for an interaction with the Fc fusion protein and thereby lead to a false negative result. 

Furthermore, abnormal behavior of NCR ligands, like retargeting to the plasma membrane 

upon cellular stress (as it was shown for BAG-6)[143,144] could negatively influence the 

outcome of the established method. 

Validation might be another critical step in the identification of unknown NCR ligands. In case 

of complex formation between different proteins on the cell surface to form an NCR ligand, 

knockdown of a single component could be sufficient to lead to impaired NCR-Fc binding 

visible in the screening. But knock-in of this single component in a validation experiment 
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might not lead to increased NCR-Fc binding as other essential components could be 

missing. Therefore, other validation approaches might be needed to exclude the putative 

ligands. 

Finally, the existence of yet unknown NCR ligands on tumor cells could not be verified in this 

screening. It is possible that no yet unknown proteinaceous NCR ligands exist on tumor cells 

and NCR-Fc fusion proteins might bind to other surface structures like carbohydrates, which 

can not be found directly in such screenings. 

 

4.3 A Putative Mouse NKp30 Protein is Impacted by N-Glycosylation and has an 

Unknown Ligand on Murine Mastocytoma Cells 

 

On human NK cells, NKp30 is a major activating receptor that plays an important role 

mediating cytotoxicity against virally infected and malignantly transformed cells 

[142,143,146,148,236]. Additionally, it participates in maturation and killing of immature DCs 

[144,200,274]. Human NKp30 is expressed in six different splice forms. From an evolutionary 

point, the existence of these splice forms with different tissue distribution and function might 

reflect an increase in complexity and fine tuning of the innate immune response [139]. 

Alignment of NKp30 protein sequences from different species showed a high sequence 

similarity between human and monkey and between rat and mouse NKp30 (Fig. 32). 

Sequence similarity of NKp30 in human and chimpanzee (P. troglodytes) is 99%, while it is 

95% and 90% in human and macaques (M. mulatta and M. fascicularis, respectively, Fig. 

32). This is in accordance with the fact that chimpanzees and humans diverged 

approximately 5-6 million years ago, whereas macaques and humans diverged 

approximately 20 million years ago [275]. While NKp30 is expressed as a functional receptor 

on rat splenic NK cell subsets, it is only a pseudogene in mice, with exception of M. caroli 

[169,193]. The term “pseudogene” describes gene copies with coding-sequence deficiencies 

like frameshifts and premature stop codons, that have close similarities to orthologous genes 

but are nonfunctional [276,277]. In case of murine NKp30, the gene sequence is an 

unprocessed pseudogene that contains two premature stop codons and would encode a 

severely truncated and nonfunctional protein [169]. Such unprocessed pseudogenes emerge 

via gene duplication and have introns and regulatory sequences, only their expression is 

prevented [278,279]. Duplicated genes can either obtain new adaptive functions, can be 

maintained as they were at the time of duplication or can be silenced and become 

pseudogenes [280–284]. It is suggested that pseudogenes develop because the gene they 

arose of did not lead to a selection advantage or even conferred a selection disadvantage for 

the organism in evolutionary terms [277]. The murine NKp30 pseudogene might have 

developed from an ancestral NCR gene. Formerly, it was suggested that the NCRs 
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evolutionary appeared in the following progression: NKp46-NKp30-NKp44 [139]. 

Interestingly, newer studies suggest that NKp44 and NKp30 are evolutionary older than 

NKp46. NKp46 is only found in mammalian species, while NKp44 is also present in carp and 

NKp30 is present in almost all jawed vertebrate species (including cartilaginous fish). From 

this, NKp30 seems to be the most conserved and evolutionary oldest NK cell receptor (NKR) 

[140,141]. Additionally, it is suggested that NKp46 does not share the same ancestor than 

NKp30 and NKp44, but has a common ancestor with KIRs, as it maps to the LRC on human 

chromosome 19q13 near the KIR genes [140]. Both suggestions are in line with the fact that 

NKp46 is a functional protein in mouse, while NKp30 is only present as a pseudogene and 

NKp44 is completely lost. Interestingly, M. caroli is the only mouse strain that expresses 

NKp30 on mRNA level. Analysis of NKp30 mRNAs revealed the presence of two different 

transcripts, one of them containing an additional exon between exon 1 and 2, which leads to 

a frameshift and to generation of a new premature stop codon in the Ig domain. In the other 

transcript, a small intron between exon 2 and 3 is retained, which could lead to the 

production of a soluble NKp30 protein without transmembrane region. Soluble NKp30 can 

also be detected in rat, but not in any other mammals [169]. 

To shed light on the evolutionary role of the murine NKp30 pseudogene, the two premature 

stop codons in the extracellular domain of the M. musculus NKp30 gene sequence were 

repaired and the protein was expressed as full length receptor and as soluble mNKp30-Fc 

fusion protein. Interestingly, both mNKp30 constructs were expressed but intracellularly 

retained in A5-GFP and HEK 293T/17 cells, respectively. Failure of plasma membrane 

targeting due to mutations in the signal peptide could be excluded, since both constructs 

contained different signal peptides (full length receptor: mouse NKp30 signal peptide, Fc 

fusion protein: IL-2 secretion sequence) and the signal peptides of mouse and rat NKp30 

proteins are homologue. Interestingly, sequence comparison showed that the three N-linked 

glycosylation motifs in the extracellular domain of NKp30 are conserved between human and 

rat, but are missing in the murine sequence. Previous work showed that N-glycosylation at 

these sides is important for plasma membrane targeting, ligand binding and signaling of 

human NKp30 [208]. A triple mutant that lacks all N-glycosylation sides 

(N42Q/N68Q/N121Q) was not targeted to the cell surface of A5-GFP cells and only small 

amounts could be detected in membrane fractions of transduced 293T cells. B7-H6 binding 

of NKp30 was shown to depend on glycosylation of N42, while glycosylation of N42 and N68 

was important for intracellular signaling upon B7-H6 binding. In contrast, glycosylation of N68 

was critical for NKp30/BAG-6 binding [208]. Altogether this speaks for the high impact of 

N-glycosylation on NKp30 function. As the three N-glycosylation sites are also present in rat 

and dog (and two of them are present in cow), it is likely that the ancestral NKp30 gene 

contained the three N-glycosylation sites. In the present study, N-glycosylation facilitated 
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secretion of the mNKp30-Fc fusion protein (mNKp30-glyco-Fc), while the full length receptor 

(mNKp30-glyco) was still intracellularly retained. This indicates the existence of additional 

sequence motifs outside of the extracellular region, which lead to intracellular retention 

independent from N-glycosylation. The sequence identity of rat and mouse NKp30 

transmembrane domains leads to the assumption, that this sequence motif might be located 

in the cytosolic region of the NKp30 receptor. This is in line with the fact that the intracellular 

regions of NKp30 differ among species and might activate different signaling pathways 

[139,169,193,195]. As shown in this thesis, human NKp30 forms a pre-assembled complex 

with the signaling adaptor protein CD3ζ. This facilitates plasma membrane targeting and 

retention of the receptor. Therefore, it can be assumed that intracellular retention of the full 

length mNKp30 and mNKp30-glyco receptors might be due to an inability to assemble with 

CD3ζ, which is constitutively expressed in A5-GFP cells. While the intracellularly retained full 

length mNKp30-glyco receptor could not serve for investigation of ligand binding and 

signaling, mNKp30-glyco-Fc fusion proteins could be used to investigate a potential 

mNKp30-glyco/B7-H6 interaction and to screen different mouse cell lines for expression of 

potential mNKp30-glyco ligands. Binding of mNKp30-glyco-Fc to Ba/F3 B7-H6 cells was not 

observed. The absence of such an interaction is not surprising as the B7-H6 full length 

sequence is not present in mice [142] and the NKp30/B7-H6 system shows a clear co-

evolving receptor/ligand relationship [141]. Interestingly, hNKp30-Fc showed no binding to 

the different mouse cell lines analyzed in a cell decoration screening, while mNKp30-glyco-

Fc was able to bind to P815 cells (Fig. 36). Thus, mNKp30-glyco-Fc recognizes an unknown 

cellular ligand on murine mastocytoma cells. This unknown ligand might be of mast cell origin 

or emerge from cancerous cell transformation. Thus, it remains elusive, if a putative murine 

NKp30 receptor might be related to an immunoregulatory NK cell response or to the NK cell-

mediated recognition and elimination of transformed cells. Mouse bone marrow-derived 

cultured mast cells, activated with lipopolysaccharide, polyinosinic-polycytidylic acid, or CpG 

can stimulate NK cells to secrete IFNγ. This stimulation is cell contact-dependent and seems 

to be partly mediated by the OX40 ligand on mast cells. However, this interaction appears to 

be influenced by additional mediators, which were not yet determined [61]. Interestingly, 

mast cell/NK cell interactions seem to affect cytokine release by NK cells while their 

cytotoxicity is not affected. Differentially regulated cytotoxicity and cytokine production of NK 

cells have been shown for the human [16,285] as well as for the murine system [286,287]. 

Additionally, mast cell/NK cell interactions based on soluble mediators were shown to play a 

role in early virus infections. In dengue infection, immune surveillance by mast cells is 

important for NK cell recruitment and viral clearance [288], and human cord blood-derived 

mast cells, stimulated with virus-associated TLR3 agonist, can recruit NK cells via the 

CXCL8 (IL-8)/CXCR1 axis [289]. This data indicates a role of mast cells in recruitment and 



Discussion 132 
 

cytokine release of NK cells. Therefore, it is possible that an interaction of an ancient NKp30 

receptor with a surface ligand on mast cells might have played a role for immunoregulation of 

NK cells. However, this interaction got lost in mouse. In M. caroli, NKp30 is not likely to 

mediate a mast cell/NK cell interaction, due to its putative soluble character. An interaction of 

NKp30 with surface ligands on mast cells should be further investigated in other species, 

especially in human. 

 

4.4 Conclusion and Perspective 

 

Altogether, it was shown that the stalk domain of NKp30 contributes to signaling of a pre-

assembled NKp30/CD3ζ complex. Moreover, regulation of NKp30 signaling seems to depend 

on two interconvertible types of NKp30/CD3ζ assemblies: (1) a signaling-incompetent 

structural NKp30/CD3ζ complex and (2) a ligand-induced signaling-competent NKp30/CD3ζ 

complex. Presumably, the same is true in case of NKp46. To further verify the proposed 

model, pull-down experiments could be used to analyze the assembly of the NKp30/CD3ζ 

complex in the presence and absence of ligand. However, NCR solubilization for pulldown 

experiments is critical, due to low solubility. Conformational changes that bring R143 into 

closer contact with the aspartate of CD3ζ after ligand binding could be confirmed by either 

solution NMR (nuclear magnetic resonance) in micelle environments or solid-state NMR in 

bilayer environments. Additionally, the model could be verified by electron spin resonance 

(ESR) spectroscopy of lipids that are spin-labeled close to the terminal methyl end of the acyl 

chains. Such spectra can resolve between lipids directly contacting the protein and those in 

the fluid bilayer regions of the membrane [290]. Moreover, this method can be used to detect 

oligomer formation [291–294] from the stoichiometry of the protein-associated lipid, which is 

related to intramembrane structure and assembly of integral membrane proteins [295,296]. 

The possibility of conformational change mechanisms to facilitate signal transduction 

between receptor and adaptor molecule via repositioning of oppositely charged residues 

should be further analyzed for other immunoreceptors, especially for the T cell receptor. 

Despite the fact that tumor cell lines which neither express B7-H6 nor BAG-6 on their surface 

were shown to be stainable with NKp30-Fc fusion proteins, no yet unknown ligand could be 

identified by implementation of a genome-wide shRNA screening. The same was true in case 

of NKp44-Fc and NKp46-Fc. Anyway, as stated earlier, further validation approaches like a 

specific shRNA knockdown of the putative candidate could be needed to finally exclude or 

confirm the ligands. Additionally, negative selection by decoration with NCR-Fc fusion 

proteins and subsequent cell sorting might not be a perfect way to screen for ligands. Ideally, 

selection would be carried out by implementation of a cell line similar to the A5-GFP reporter 

cells, which only expresses one functional receptor on the surface. But receptor activation in 
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this cell line should not lead to GFP expression but to cytotoxic activity against the interaction 

partner mediated by release of perforin and granzymes. However, generation of such a cell 

line might be difficult due to the amount of genetic alterations that would be needed. Another 

possible approach to identify yet unknown proteinaceous ligands of the NCRs would be the 

plasmamembrane protein array (PMPA) technique as provided by Retrogenix. Here, NCR-Fc 

fusion proteins, produced in NK-92 cells, could be screenend for binding to ~ 4,500 human 

plasmamembrane proteins overexpressed in a ligand-negative cell line like HeLa. This 

approach has already successfully implemented to identify receptors for protein ligands, 

peptides and viruses [297–301]. 

In the present thesis, it was shown for the first time that a full length mNKp30 receptor, 

derived from the M. musculus NKp30 sequence by removal of the premature stop codons, 

would be intracellularly retained and that in case of receptor-Fc fusion proteins, glycosylation 

of the mNKp30 ectodomain is sufficient to counteract intracellular retention. Interestingly, the 

full length receptor stays intracellular despite glycosylation of the ectodomain. Additionally, it 

was shown that mNKp30-glyco is able to bind to an unknown surface molecule on P815 

mouse mastocytoma cells. However, it is interesting that in mouse, expression of a 

conventional NKp30 membrane protein is prevented in so many ways, even in the two 

mouse strains that contain single nucleotide polymorphisms (SNPs) that remove the 

premature stop codons. As stated earlier, in M. caroli, analysis of mRNA expression revealed 

the presence of two different transcripts, one of them containing an additional exon between 

exon 1 and 2, which leads to a frameshift and to the generation of a new premature stop 

codon in the Ig domain. In the other transcript, a small intron between exon 2 and 3 is 

retained, and the mRNA would encode a soluble protein which misses the transmembrane 

domain when expressed. In M. pahari, a base insertion leads to a frameshift and to the 

generation of an additional premature stop codon in the middle of the Ig domain [169]. This 

speaks for an evolutionary high pressure against the NKp30 protein, which indicates that 

NKp30 expression in mice might not be beneficial or even confers an evolutionary 

disadvantage. To find the reason for this, it would be interesting to identify the interaction 

partner of the putative mNKp30 receptor, which could shed light on the evolutionary 

disadvantage caused by this interaction. In a first step, mNKp30-glyco should be analyzed 

for its binding to murine BAG-6, Gal-3 and OX40L by implementation of SPR measurements. 

Furthermore, different screening approaches like co-immunoprecipitation should be carried 

out to find the unknown ligand. Additionally, the exact intracellular localization of mNKp30-

glyco should be analyzed by immunofluorescence with an antibody generated against the 

protein. Finally, it would be interesting to characterize mNKp30 proteins derived from other 

mouse strains like M. caroli and M. pahari in comparison to the one derived from M. 

musculus, to look for similarities in their behavior. 
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6. Appendix 

 

6.1 Plasmid Maps 
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pFUSE-hIgG1-FcEQ and variants    pFc-Avi and variants 
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pCMV-∆8.91       pMD2.G 
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6.2 Protein Sequences 

 

Human NKp30 (isoform a-f) 

  

 
Figure S1. Sequence alignment of NKp30 isoforms. (A) Multiple sequence alignment (created by 
Clustal Omega) of NKp30 isoforms a-f from H. sapiens. (*) positions which have a single, fully 
conserved residue; (:) conservation between groups of strongly similar properties. (B) Percent identity 
matrix of NKp30 isoforms (created by Clustal2.1). 
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Human NKp46 (isoform a-d) 

 
 
Figure S2. Sequence alignment of NKp46 isoforms. (A) Multiple sequence alignment (created by 
Clustal Omega) of NKp46 isoforms a-d from H. sapiens. (*) positions which have a single, fully 
conserved residue; (:) conservation between groups of strongly similar properties. (B) Percent identity 
matrix of NKp46 isoforms (created by Clustal2.1). 
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Human and mouse (engineered) NKp30 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S3. Sequence alignment of hNKp30 and mNKp30 forms. (A) Multiple sequence alignment 
(created by Clustal Omega) of NKp30 isoform a from H. sapiens (hNKp30_isoform_a), NKp30 from M. 
musculus without premature stop codons (mNKp30), and mNKp30 with repaired N-Glycosylation sites 
(mNKp30-glyco). (*) positions which have a single, fully conserved residue; (:) conservation between 
groups of strongly similar properties; (.) conservation between groups of weakly similar properties. (B) 
Percent identity matrix of NKp30 proteins (created by Clustal2.1). 
 
 

  



Appendix 156 
 

6.3 Comparison of NKp30 and NKp46 Stalk Domains 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S4. Stalk sequences of NKp30 and NKp46. 
Schematic representation of NKp30 wildtype (wt) (red, 
PDB: 3NOI) and NKp46 wt (blue, PDB: 1P6F). Stalk 
sequences are indicated, sequence identities are 
shown in red. 
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6.4 SPR Data 

Figure S5. Equilibrium binding of NKp30 variants to B7-H6. SPR sensograms of NKp30-Fc and 
IFNAR2-Fc fusion proteins (negative control). For construction of NKp30 alanine mutants, each 
individual amino acid of the stalk (position 129-143) was exchanged except for the alanine on position 
136 in the NKp30 wt receptor. Binding to immobilized biotinylated B7-H6-Fc fusion proteins was 
analyzed. Data was corrected for blank surface reference and fitted with the bivalent analyte model to 
determine the kinetic parameters and equilibrium dissociation constants. One representative out of at 
least three independent experiments is shown. Red: SPR sensogram, black: bivalent analyte fit.  
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6.5 NKp44 Ligand and NKp46 Ligand Candidate Genes from the shRNA Screening 

 

Table S1: Candidate list of putative NKp44 ligands. FPKM: fragments per kilobase of exon per 
million fragments mapped. 

 
 
 
Table S2: Candidate list of putative NKp46 ligands. FPKM: fragments per kilobase of exon per 
million fragments mapped. 

 

 

 

 

 

 

 

 

 

 

Nr. UniProt entry Accession 

numbers

Gene names Protein name Chromosome Localization/type

cancer immunity

1 NHRF3_HUMAN 

(Q5T2W1)

NM_001201325, 

NM_001201326, 

NM_002614         

PDZK1_CAP70_NHERF3

_PDZD1

Na(+)/H(+) exchange 

regulatory cofactor NHE-

RF3

Mel-JuSo (na) 1 Cell membrane, cytoplasm/ 

Peripheral membrane 

protein

+ -

2 KPCD_HUMAN 

(Q05655)

NM_006254, 

NM_212539 

NM_001316327 

PRKCD Protein kinase C delta 

type

Mel-JuSo (65) 3 Cytoplasm. Cytoplasm, 

perinuclear region. 

Nucleus. Endoplasmic 

reticulum. Mitochondrion. 

Cell membrane/ Peripheral 

membrane protein

+ +

3 N2DL1_HUMAN 

(Q9BZM6)

NM_025218         ULBP1_N2DL1_RAET1I NKG2D ligand 1, ULBP1 293T (2-27.8) 6 Cell membrane/ GPI-

anchor

+ +

4 TNR6_HUMAN 

(P25445)

NM_000043, 

NM_152871, 

NM_152872          

FAS_APT1_FAS1_TNFR

SF6 CD95

Tumor necrosis factor 

receptor superfamily 

member 6

DU145(3) 10 Isoform 1: Cell membrane, 

type-I-transmembrane 

protein, Isoform 2-6: 

Secreted

- +

Expression 

(FPKM) 

screening cell 

line

Relation to

Nr. UniProt entry Accession 

numbers

Gene names Protein name Chromosome Localization/type

cancer immunity

1 CXB5_HUMAN 

(O95377)

NM_005268        GJB5 Gap junction beta-5 

protein

Mel-JuSo (na) 1 Cell membrane/ Multi-pass 

membrane protein

+ -

2 CRIM1_HUMAN 

(Q9NZV1)

NM_016441          CRIM1_S52_UNQ1886/P

RO4330

Cysteine-rich motor 

neuron 1 protein

Mel-JuSo(35), 

293T (6-34.2)

2 Cell membrane/ Single-

pass type I membrane 

protein

- -

3 CD68_HUMAN 

(P34810)

NM_001040059, 

NM_001251          

CD68 Macrosialin Mel-JuSo (na) 17 Cell membrane, Endosome 

membrane/ Single-pass 

type I membrane protein

- +

4 MUC16_HUMAN 

(Q8WXI7)

NM_024690        MUC16_CA125 Mucin-16 Mel-JuSo (na) 19 cell membrane/ Single-

pass type I membrane 

protein

+ +

5 CD302_HUMAN 

(Q8IX05)

NM_001198763, 

NM_014880         

CD302_CLEC13A_DCL1

_KIAA0022

CD302 antigen DU145 (0.4) 2 Membrane, Single-pass 

type I membrane protein

+ -

6 CEAM5_HUMAN 

(P06731)

NM_001291484, 

NM_001308398, 

NM_004363        

CEACAM5_CEA CD66e Carcinoembryonic antigen-

related cell adhesion 

molecule 5

293T (0-29.7) 19 Cell membrane lipid-anchor + -

7 CLD8_HUMAN 

(P56748)

NM_199328         CLDN8_UNQ779/PRO15

73

Claudin-8 293T (0-13.3) 21 Cell junction, tight junction. 

Cell membrane/ Multi-pass 

membrane protein

+ -

8 LIN7A_HUMAN 

(O14910)

NM_004664        

CHIP A

LIN7A_MALS1_VELI1 Protein lin-7 homolog A 293T (5-13) 12 Cell membrane/ Peripheral 

membrane protein

- -

9 ABCG2_HUMAN 

(Q9UNQ0)

NM_001257386, 

NM_004827         

ABCG2_ABCP_BCRP_B

CRP1_MXR CD338

ATP-binding cassette sub-

family G member 2

293T (2-27.1) 4 Cell membrane, 

Mitochondrion membrane/ 

Multi-pass membrane 

protein

+ -

10 CEAM1_HUMAN 

(P13688)

NM_001024912, 

NM_001184813, 

NM_001184815, 

NM_001184816, 

NM_001205344, 

NM_001712          

CEACAM1_BGP_BGP1 

CD66a

Carcinoembryonic antigen-

related cell adhesion 

molecule 1

293T (0-43.4) 19 Isoform 1, 5-8: Cell 

membrane,  Isoform 2-4: 

Secreted/ Single-pass type 

I membrane protein.

+ +

11 HG2A_HUMAN 

(P04233)

NM_001025158, 

NM_001025159, 

NM_004355        

CD74_DHLAG HLA class II 

histocompatibility antigen 

gamma chain

293T (0-13.1) 5 Cell membrane, 

Endoplasmic reticulum 

membrane. Golgi 

apparatus, trans-Golgi 

network. Endosome. 

Lysosome/ Single-pass 

type II membrane protein

- +

Expression 

(FPKM) 

screening cell 

line

Relation to
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Table S3: Validation of putative NKp44 ligands. 

Candidate Population [%] Amount of NKp44 
ligand+ cells [%] 

MFI ratio NKp44-
Fc/IFNAR2-Fc 

 Flag+ Flag- Flag+ Flag- Flag+ Flag- 

PRKCD 3.4 96.6 32.2 8.1 3.9 3.4 

FAS 14.4 85.6 6.2 1.8 3.1 3.1 

PDZK1 2.0 98.0 13.5 2.3 2.8 2.9 

The putative NKp44 ligand ULBP1 was validated using SPR measurements. No interaction with 
NKp44 could be confirmed (Data not shown). 
 
 

Table S4: Validation of putative NKp46 ligands. 

Candidate Population [%] Amount of NKp46 
ligand+ cells [%] 

MFI ratio NKp46-
Fc/IFNAR2-Fc 

 Flag+ Flag- Flag+ Flag- Flag+ Flag- 

CD68 24.5 75.5 3.1 1.5 1.3 1.3 

CD74 6.4 93.6 0.6 0.7 1.0 1.2 

CD302 43.0 57.0 2.1 1.4 1.3 1.4 

GJB5 6.1 93.9 3.1 7.1 1.2 1.4 

LIN7A 5.8 94.2 10.7 18.1 1.3 1.3 

ABCG2 4.4 95.6 38.1 39.6 1.7 1.7 

CLDN8 4.8 95.2 1.8 1.1 1.4 1.5 

Expression of the putative NKp46 ligands CRIM1, CEACAM1 and CEACAM5 was too low for flow 
cytometric analysis.  
The putative NKp46 ligand MUC16 was validated unsing shRNA knockdown. No interaction with 
NKp46 could be confirmed (Data not shown). 
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