
Memory-Efficient and Parallel
Simulation of Super Carbon
Nanotubes
Vom Fachbereich Informatik der Technischen Universität Darmstadt genehmigte Dissertation zur
Erlangung des akademischen Grades Doktor rerum naturalium (Dr. rer. nat.)
von Michael Burger, M.Sc. aus Aschaffenburg
Tag der Einreichung: 15. März 2017, Tag der Prüfung: 5. Mai 2017
Darmstadt 2017 — D 17

1. Gutachten: Prof. Dr. Christian Bischof
2. Gutachten: Prof. Dr. Martin Bücker
3. Gutachten: Prof. Dr. Jens Wackerfuß

Informatik
Scientific Computing

Memory-Efficient and Parallel Simulation of Super Carbon Nanotubes

von Michael Burger, M.Sc. aus Aschaffenburg

1. Gutachten: Prof. Dr. Christian Bischof
2. Gutachten: Prof. Dr. Martin Bücker
3. Gutachten: Prof. Dr. Jens Wackerfuß

Tag der Einreichung: 15. März 2017
Tag der Prüfung: 5. Mai 2017

Darmstadt — D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-62292

URL: http://tuprints.ulb.tu-darmstadt.de/6229

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 Deutschland
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de

Erklärung zur

Hiermit versichere ich, die vorliegende ohne Hilfe Dritter nur mit den angege-

benen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quel-

len entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 15. Mai 2017

(M. Burger)

i

Contents

Vorwort vii

Acknowledgments ix

Zusammenfassung xi

Abstract xiii

1. Introduction and Motivation 1

2. Background 7
2.1. Important properties of super carbon nanotubes . 7

2.2. Simulation methods for super carbon nanotubes and single-walled carbon

nanotubes . 7

2.2.1. Molecular dynamics, molecular mechanics and the atomic-scale finite

element method . 8

2.2.2. Model sizes of the employed super carbon nanotubes 9

2.2.3. Exploiting symmetric structures . 10

2.3. Research of the MISMO group . 10

3. Graph Algebra Modeling of Super Carbon Nanotubes 13
3.1. Important graph algebra operations and their geometrical meaning 15

3.1.1. Basic operations . 15

3.1.2. Combined operations . 19

3.2. A general algorithm for constructing super carbon nanotubes of arbitrary order . . 20

3.2.1. Construction of high level junctions . 22

3.2.2. Building tubes . 30

3.2.3. Correlation of the construction process and the tuples 36

3.2.4. Terminology of super carbon nanotube models 37

3.3. Identifying symmetry and hierarchy . 38

4. Visualizing Super Carbon Nanotubes and the Result of Simulations 45
4.1. Principles of instanced rendering . 45

4.2. Features of the visualizer . 46

4.3. Rendering performance . 48

iii

5. Atomic-Scale Finite Element Method 51
5.1. The flow of the algorithm . 51

5.2. Governing equations and linearization . 52

5.3. Implementation in the context of the finite element method 55

6. Graph Data Structures 61
6.1. Different approaches to map tuples . 62

6.1.1. Tree-based flattening (TreeGraph class) . 62

6.1.2. IndexGraphs . 65

6.1.3. Perfect spatial hashing . 68

6.1.4. Comparison of different graph types . 76

6.2. Space-saving approach to store the edges . 78

7. Compressed Symmetric Graphs 83
7.1. General graph compression schemes . 83

7.2. Principles behind Compressed Symmetric Graphs . 85

7.3. Realization of Compressed Symmetric Graphs . 86

7.3.1. Nodes on the boundaries of the tube . 89

7.3.2. Nodes near the zero line . 90

7.3.3. Two implementations of the retrieval procedure 91

7.4. Implementation and optimizations . 94

7.4.1. Construction . 95

7.4.2. Avoiding the storage of tuples . 95

7.5. Achieving high compression rates . 98

8. Solving for Displacements with an Iterative Approach 101
8.1. Preconditioning of the equation system . 105

8.2. Parallelized reference solver . 107

8.3. On-the-fly calculation of intermediate results . 109

8.3.1. Memory savings . 109

8.3.2. Performance optimizations . 111

8.4. Software-controlled caching of intermediate results 112

8.4.1. Combination with Compressed Symmetric Graphs 113

8.4.2. Parallel preparing the cached data . 115

8.4.3. Cached sparse matrix-vector multiplication . 116

8.5. The case of small deformations . 119

iv

9. Results and Evaluation 123
9.1. Test setup . 124

9.1.1. Test environment . 124

9.1.2. Different load cases . 124

9.2. Mechanical simulation results . 125

9.3. Performance measurements and comparison . 126

9.3.1. On-the-fly solver versus reference solver . 127

9.3.2. Value-symmetric solver versus reference solver 131

9.3.3. Caching solver versus reference solver . 133

9.3.4. Caching solver with IndexGraph and Compressed Symmetric Graphs 135

9.3.5. Higher order tubes . 138

10.Conclusion and Outlook 143
10.1.Summary . 143

10.2.Future Work . 144

Appendices 147

A. Summary of all Tubes 149

B. Some Notes on Terminology of Super Carbon Nanotubes 150

C. Background on the Simulation of Super Carbon Nanotubes 152
C.1. The work of Coluci et al. 152

C.2. The work of Li et al. 153

C.3. General super carbon nanotube simulations . 153

C.3.1. Dependence on chirality . 154

C.3.2. Modeling of Y-junctions and scaling laws . 155

D. Performance Comparison of Different Container Structures 157

E. Heap Consumption of the new EdgeMap 160

F. Performance Results 163
F.1. On-the-fly versus reference solver . 163

F.2. Symmetry solver versus reference solver . 166

F.3. Caching solver versus reference solver . 167

F.4. Caching solver with CSGs and IndexGraphs . 168

F.5. Caching solver with CSGs and IndexGraphs and varying cache 169

v

List of Figures 172

Bibliography 174

Academic Curriculum Vitae 184

vi

Vorwort

Doch meine Burg ist der Herr, mein Gott

ist der Fels meiner Zuflucht.

Psalm 94,22

Fünf Jahre sind eine lange Zeit und der Weg bis zum Abschluss der Promotion war, wie wohl

bei so vielen, nicht immer leicht und wäre alleine im stillen Kämmerchen sicher ziemlich schnell

erfolglos zu Ende gewesen. Daher möchte ich versuchen diejenigen aufzulisten, ohne die das

Projekt „Dr. rer. nat.“ nie von Erfolg gekrönt worden wäre. Viele Personen haben ihren Beitrag

dazu geleistet.

Vielen Dank euch Mama und Papa für all die Unterstützung in den letzten 32 und besonders

in den vergangenen fünf Jahren. Ohne euch wäre das niemals möglich gewesen. Jeder kann

sich glücklich schätzen, wenn er Eltern wie auch hat. Danke natürlich auch an meine Geschwis-

terchen Thomas und Nicole, sowie meine ganze Verwandtschaft für das gezeigte Interesse an

meiner Arbeit und eure aufmunternden Worte. Hier soll sich bitte auch die „Seuberts-Seite“

angesprochen fühlen, vor allem Angelika, Franz-Josef und Jakob.

Mein aufrichtigster Dank gilt meinem Doktorvater Christian Bischof für das Betreuen des

Themas und es somit zu ermöglichen, dass diese Arbeit überhaupt erst geschrieben werden

konnte. Danke für die hilfreichen Kommentare und Ideen im Verlauf des Projektes.

Auch muss ich bei so vielen netten Kollegen bedanken. Iris, die stets ein offenes Ohr für alle

Problemchen und Schwierigkeiten hatte und bei Organisatorischem immer zu helfen wusste.

Danke an Johannes, der am Anfang viel Zeit aufwenden musste um die ganzen Fragen eines

Neulings erschöpfend zu beantworten und sowohl technisch als auch inhaltlich immer eine

große Hilfe war. Danke an Christian für die vielen fachlichen und weniger fachlichen Gespräche,

sowie die gute Zusammenarbeit in diversen Projekten und Aufgaben. Natürlich auch vielen

Dank an Alexander und Jan-Patrick für die reibungslose Zusammenarbeit in der Lehre und bei

Organisatorischem, den Kommentaren zur Dissertation und zum Vortrag, sowie den vielen un-

terhaltsamen Gesprächen und Diskussionen. Auch danke an euch Armin, Thomas, Andreas und

Alexandra. Dir Nam sei für deine unerschöpfliche Mühe um die Codeoptimierung rund um

SCNTs und PSH auch gedankt.

Crispin, dich möchte ich natürlich auch nicht vergessen. Vom ersten Tag der O-Phase an

haben wir uns immer gut verstanden und aus einem Kommilitonen wurde bald ein Freund. Ich

bin überzeugt davon, dass du mir bald auf den Pfad der Promovierten folgen wirst.

vii

Was wäre ein Mensch ohne seine Freunde? Danke für all die vielen Jahre, die ihr es schon

mit mir aushaltet. Stellvertretend möchte ich hier Sarah, Jan, Lisa, Nadine, Angelina, Max und

Kevin nennen.

Dank sei auch meinen Kameraden von der Feuerwehr und von den Fingerhaklern ausge-

sprochen.

Sollte ich irgendjemanden vergessen habe (was ich sicherlich getan habe), so liegt dem natür-

lich keine Absicht zu Grunde. Nehmt es mir nicht übel! Die Aufgabe wirklich alle in diesem Text

zu erwischen ist mindestens so komplex wie das Anfertigen der Dissertation selbst. Für die

„fachlichen“ Danksagungen bitte die Acknowledgements beachten.

Zum Schluss natürlich ganz besonderen Dank an dich Simone, die du die letzten Jahre und

vor allem Monate nicht immer die Aufmerksamkeit erhalten konntest, die du verdient gehabt

hättest. Danke für dein Verständnis und deine Unterstützung. Danke für die schon bald fünf

Jahre in denen ich dich an meiner Seite haben durfte und für die Zukunft auch hoffentlich

immer haben darf. Ich liebe dich.

Michael Burger,

Frohnhofen, den 15. 05. 2017

viii

Acknowledgments

I thank the MISMO group for our collaboration which enabled and motivated the work of this

thesis. First of all the head of the group Jens Wackerfuß for all the fruitful discussions about the

topic and that he took always time to answer my questions. I also thank Christian Schröppel for

the explanations and discussions about the graph algebra and Jonas Marczona for the hours of

technical assistance in using the dockSIM framework.

I thank Martin Bücker for the discussions about the preconditioning of the conjugate gradient

method and the project in general, Gerhard Wellein for the discussions about data structures,

and Michael Gösele for the introduction to the concept of perfect spatial hashing.

I thank Karsten Weihe, Andy Schürr and Michael Pradel for completing the committee for my

defense. Thanks for your time and the challenging questions.

Finally, I thank all responsible people at the Graduate School of Computational Engineering

for the opportunity of a full scholarship from 2013 until 2016.

ix

Zusammenfassung

Kohlenstoffnanoröhren (engl. carbon nanotubes, kurz CTNs) haben seit ihrer Beschreibung in

einem Nature-Artikel im Jahr 1991 viel Beachtung erfahren. Eine Kohlenstoffnanoröhren ist

prinzipiell ein aufgerolltes Stück Graphen, welches man sich als ein zweidimensionales Gitter

aus Kohlenstoffatomen vorstellen kann, in dem die Atome in einem Bienenwabenmuster ange-

ordnet sind. Dieses Allotrop des Kohlenstoffs weist einige sehr interessante Eigenschaften auf,

darunter eine sehr hohe Zugfestigkeit bei geringem Gewicht oder hohe Temperaturbeständig-

keit. Diese Eigenschaften motivieren Forschungen in denen versucht wird, mittels CNTs neue

Materialen zu erzeugen oder bestehende Materialien durch Integration von CNTs zu verstärken.

Des Weiteren haben CNTs interessante elektronische Eigenschaften, da sie sich, abhängig von

ihrem Syntheseprozess, bezüglich ihrer Leitfähigkeit wie Metalle oder wie Halbleiter verhalten

können.

Die Synthese sich verzweigender Kohlenstoffnanoröhren ermöglicht es, diese als Verbindungs-

glieder für geradlinige CNTs einzusetzen und somit Netzwerke aus Röhren zu generieren. Eines

dieser Netzwerke sind die im Jahr 2006 vorgestellten super carbon nanotubes (SCNTs). In die-

sen Strukturen wird jede Kohlenstoff-Kohlenstoff-Bindung im Atomgitter durch gleichförmige

CNTs und jedes Atom mit einem Y-förmig verzweigten Röhrchen ersetzt. Diese Y-Verzweigung

besitzt drei Arme mit gleicher Länge und Durchmesser, die zu ihrem Nachbararmen jeweils um

120° rotiert sind. Hieraus entsteht ein röhrenförmiges Gebilde, welches aus kleineren Röhr-

chen geformt wird. Es besteht die Möglichkeit diesen Konstruktionsprozess zu wiederholen. Die

Kohlenstoff-Bindungen im Gitter werden hierbei nicht mit CNTs, sondern mit SCNTs ersetzt,

was zu einer sehr regulären Struktur höherer Ordnung führt.

Mittels computergestützter Simulationen konnte gezeigt werden, dass SCNTs ebenso wie

CNTs interessante mechanische Eigenschaften aufweisen. Sie sind noch flexibler als CNTs, was

sie zu einer guten Grundlage für die Erforschung neuartiger besonders zugfester und dehnbarer

Materialien macht. Andere Anwendungsgebiete sind auch mikroelektronische Schaltungen, da

sich das elektronische Verhalten von SCNTs konfigurieren lässt, sowie, aufgrund ihrer Biokom-

patibilität, die Biologie und Medizin.

Trotz der Fortschritte bei den Syntheseverfahren für geradlinige und verzweigte CNTs liegt

die Herstellung von SCNTs noch jenseits der technischen Möglichkeiten. Außerdem sind Expe-

rimente mit Nanostrukturen teuer, komplex und fehleranfällig. Deshalb sind Simulationen von

SCNTs wichtig, um deren Eigenschaften vorauszusagen und Richtlinien für die experimentel-

le Forschung vorzugeben. Mit einer modifizierten Methode der Finiten Elemente für atomare

Strukturen (engl. atomic-scale finite element method, kurz AFEM) existiert bereits ein fest eta-

bliertes Verfahren zur Simulation von CNTs. Allerdings wächst die Modellgröße für größere

xi

SCNTs rasch an, was dazu führt, dass der Speicher moderner Rechner für die während der

Simulation erforderlichen Mehrkörper – und Gleichungssysteme nicht ausreicht. So lange die

reguläre Struktur von SCNTs nicht benutzt wird, um den Speicherverbrauch der Simulationen

zu reduzieren, ist die Simulation großer SCNTs auf atomarer Ebene nicht möglich. Die vorlie-

gende Arbeit zeigt Wege auf, die Symmetrie und Hierarchie innerhalb der SCNT Strukturen

auszunutzen, um somit die Simulation großer SCNTs auf atomarer Ebene zu ermöglichen. Es

werden spezielle Datenstrukturen beschrieben, die es ermöglichen sehr große SCNTs mit eini-

gen Milliarden Atomen zu speichern und effizienten Zugriff auf die Daten bieten. Dies wird in

der neuartigen Graph-Datenstruktur der Compressed Symmetric Graphs umgesetzt, die dyna-

misch Teile der Strukturinformation der SCNTs wiederberechnen kann, anstatt sie abspeichern

zu müssen.

Ebenso wird ein neuer, parallelisierter und Matrix-freier Löser für die auftretenden linea-

ren Gleichungssysteme vorgestellt, der einen effizienten Mechanismus zum Zwischenspeichern

von Matrix-Beiträgen einsetzt. Er ist doppelt so schnell wie ein Referenzlöser, der mit einer im

compressed-row-storage-Format gespeicherten Matrix arbeitet und benötigt dabei nur halb so

viel Speicher, wenn alle Beiträge zur Matrix zwischengespeichert werden. Es wird gezeigt, dass

es die Kombination dieses Lösers mit den Compressed Symmetric Graphs ermöglicht, auf ei-

nem einzelnen Rechnenknoten Gleichungssysteme der Ordnung 5∗107 aufzustellen1 und dabei

weiterhin die vollständigen Matrixdaten im Speicher zu halten.

1 Die entspricht einem Röhrchen mit 1.7 ∗ 107 Atomen. Das hier verwendete Modell ist also kleiner als die
größten, die modelliert wurden.

xii

Abstract

Carbon nanotubes (CNTs) received much attention since their description in Nature in 1991.

In principle, a carbon nanotube is a rolled up sheet of graphene, which can be imagined as a

honeycomb grid of carbon atoms. This allotrope of carbon has many interesting properties like

high tensile strength at very low weight or its high temperature resistance. This motivates the

application of CNTs in material science to create new carbon nanotube enforced materials. They

also possess interesting electronic properties since CNTs show either metallic or semiconducting

behavior, depending on their configuration.

The synthesis of branched carbon nanotubes allows the connection of straight CNTs to carbon

nanotubes networks with branched tubes employed as junction elements. One of these networks

are the so-called super carbon nanotubes (SCNTs) that were proposed in 2006. In that case,

each carbon-carbon bond within the honeycomb grid is replaced by a CNT of equal size and

each carbon atom by a Y-branched tube with three arms of equal length and a regular angle of

120° between the arms. This results in a structure that originates from tubes and regains the

outer shape of a tube. It is also possible to repeat this process, replacing carbon-carbon bonds

not with CNTs but with SCNTs, leading to very regular and self-similar structures of increasingly

higher orders.

Simulations demonstrate that the SCNTs also exhibit very interesting mechanical properties.

They are even more flexible than CNTs and thus are good candidates for high strength com-

posites or actuators with very low weight. Other applications arise again in microelectronics

because of their configurable electronic behavior and in biology due to the biocompatibility of

SCNTs.

Despite progress in synthesizing processes for straight and branched CNTs, the production

of SCNTs is still beyond current technological capabilities. In addition, real experiments at

nanoscale are expensive and complex and hence, simulations are important to predict properties

of SCNTs and to guide the experimental research. The atomic-scale finite element method

(AFEM) already provides a well-established approach for simulations of CNTs at the atomic

level. However, the model size of SCNTs grows very fast for larger tubes and the arising n-body

and linear equation systems quickly exceed the memory capacity of available computer systems.

This renders infeasible the simulation of large SCNTs on an atomic level, unless the regular

structure of SCNTs can be taken into account to reduce the memory footprint.

This thesis presents ways to exploit the symmetry and hierarchy within SCNTs enabling the

simulation of higher order SCNTs. We develop structure-tailored and memory-saving data struc-

tures which allow the storage of very large SCNTs models up to several billions of atoms while

providing fast data access. We realize this with a novel graph data structure called Compressed

xiii

Symmetric Graphs which is able to dynamically recompute large parts of structural information

for tubes instead of storing them.

We also present a new structure-aware and SMP-parallelized matrix-free solver for the linear

equation systems involving the stiffness matrix, which employs an efficient caching mechanism

for the data during the sparse matrix-vector multiplication. The matrix-free solver is twice as

fast as a compressed row storage format-based reference solver, requiring only half the memory

while caching all contributions of the matrix employed. We demonstrate that this solver, in

combination with the Compressed Symmetric Graphs, is able to instantiate equation systems

with matrices of an order higher than 5∗107 on a single compute node1, while still fully caching

all matrix data.

1 This corresponds to a tube with 1.7 ∗ 107 atoms, so the models employed here were smaller than the largest
models that were generated.

xiv

1 Introduction and Motivation

Carbon nanotubes (CNTs) have become popular in 1991, in particular, through an article by

Iijima in Nature [1]. Although images of them had already been published in 1952 by Radushke-

vich and Lukyanovich (see [2, Figure 4]), this prior publication was not widely perceived by the

scientific community since it was written in Russian. Hollow tubes of carbon were observed in

1976 and 1988 by Endo and Oberlin (see e.g. [3, Figure b] and [4, Figure 6a/7a]). Carbon nan-

otubes are, in principle, a graphene sheet that is rolled into a cylinder and can be distinguished

in multi- and single-walled tubes, depending on the thickness of the employed graphene, i.e., if

it has more than one or only one layer. This work focuses on single-walled carbon nanotubes

(SWCNT) that were described by Iijima [5] in 1993.

Carbon nanotubes have drawn much attention because of their outstanding mechanical prop-

erties. They can resist high mechanical and thermal stresses with a tensile strength which can be

up to 100 times higher than aluminum. Combined with their very high strength-to-weight ratio,

they allow the construction of new composites with extraordinary strength ([6], [7]). They are

also capable of transferring heat even better than diamonds [8]. Additionally, they possess an

either conducting or semiconducting behavior [9] which makes them an interesting subject for

microelectronic circuit design [10].

Only two years after the description of CNTs by Iijima, Chico et al. [11] reported the existence

of nanotube heterojunctions. Here, so-called defects, i.e., non-hexagonal connections, are inte-

grated in the graphene, interrupting the regularity of the hexagonal grid and forcing the tube

to branch. Chico et al. introduced pentagon-heptagon pair defects into the SWCNT to investi-

gate the changes in electronic behavior of the altered structures. Other groups extended those

ideas by integrating different kinds of defects, like octagons or pure pentagons, into graphene

walls motivated by advancements in the synthesis process ([12], [13], [14]). This resulted in

Y-branching tubes whose growth became more configurable and controllable to improve their

regularity and enabled the creation of structured CNT networks.

Biro [15] reported Y-branched SWCNTs with branches oriented at 120° in a growing process

by fullerene decomposition on graphite (highly ordered pyrolytic graphic substrate) in 2002.

In contrast to growth on templates, the decomposition process leads to an angle of about 120°
between each junction arm and not to varying angles. This allows very regular CNT networks

because of the equal angle between each connection point of the junction and its rotational

symmetry. The Y-junctions include several heptagon defects and can also include pentagon

defects.

Scuseria [16] had already theoretically proposed those regular Y-junctions consisting of three

intersecting tubes at 120° in 1992 calling this structure schwartzon. He described two different

1

junctions: One is built by a total of 114 carbon atoms including 6 heptagons. The other has

330 atoms containing 6 heptagons and 18 pentagons. Moreover, Scuseria already had the idea

of connecting these junctions with straight tubes to form hypermolecules (structures that have

again the outer shape of a molecule) and hypergraphite (a structure with graphene-like outer

shape). Macroscopic structures may be achieved by repeating this process on different levels.

Motivated by those advancements, Coluci et al. [17] proposed the structure of ’super’-carbon

nanotubes or super nanotubes as a new type of nanotube network in 2006. The nomenclature in

the literature is not consistent. This work employes the term super carbon nanotubes (SCNTs)

to identify these structures. They consist of SWCNTs that are connected by Y-junctions to sheets

of higher order, which are called super graphene. The super graphenes are rolled to a seamless

cylinder, thus forming »a carbon nanotube made of carbon nanotubes «[17, p. 617]. The tubes

are heuristically constructed by exploiting the honeycomb symmetry: As sketched in Figure

1.1, in a graphene sheet each carbon-carbon-bond is replaced by a carbon nanotube (shown

in the red box) and each carbon atom by a Y-junction (shown in the blue box). The bottom

shows a SWCNT from two different perspectives: A side view and looking through it with

some Y-junctions and SWCNTs being highlighted. Coluci et al. already indicated a hierarchical

construction procedure, too. The carbon-carbon-bonds are not replaced by single-walled carbon

nanotubes but by SCNTs to generate structures of higher order with SWCNTs representing the

order 0. The tubes between junctions are called arm tubes.

Figure 1.1.: Heuristical construction of SCNTs following Coluci et al.: Each C-atom is replaced by a
Y-junction that itself consists of carbon and each C-C-bond is replaced by a SWCNT.

Based on the estimated properties of SCNTs, Coluci et al. proposed mechanics as a field of

application. SCNTs may act as high strength composites or actuators with very low weight (see

also [18], [19]). Furthermore, Coluci also imagined the application in biological context as

catalyst for the synthesis of large biomolecules or as cavities and reservoirs. This is realistic

because of their large pores and biocompatibility.

2

Despite the progress in synthesizing pure, defect-free SWCNTs1 with predefined parameters

and more regular Y-junctions, the production of SCNTs is still beyond technological capabilities

[20]. Furthermore, real experiments at the nanoscale are expensive and complex. Hence,

simulations of SCNTs are important to predict properties and to guide experimental research.

Due to the recursive construction process, the amount of data to describe an SCNT increases

very fast. When increasing the order of the tube, the results of the previous order are reused as

basic building blocks. To get a first impression of the problem, Table 1.1 shows the development

of the SCNT size for the modeling procedure employed within this thesis. Although the starting

point is a very small tube of only 64 atoms, corresponding to a graphene sheet with 21 hexagons,

the resulting tube of order 4 already consists of more than a trillion of atoms. This is due to the

fact that the number of atoms grows by about three orders of magnitude when increasing the

order of the tube by one.

Table 1.1.: The top row shows the order of the considered tube. The second row gives the number of
atoms in the corresponding tube.
Order of tube 0 1 2 3 4
No. of atoms 6.4 ∗ 101 2.8 ∗ 104 1.2 ∗ 107 5.2 ∗ 109 2.2 ∗ 1012

State-of-the-art simulations on the atomic scale within the framework of molecular dynamics

(MD) or molecular mechanics (MM) require the solution of large n-body systems. Those generic

methods ignore the structure of the underlying objects and require to generate the n-body sys-

tems atom-by-atom to simulate on the atomic level, i.e., we are interested in the movement

of single atoms within the model. For higher order SCNTs with a large number of atoms this

quickly exceeds the memory capacity of computer systems when employing the state-of-the-art

methods, rendering such simulations infeasible.

However, resulting from their regular construction process, SCNTs possess a high amount of

inherent self-similarity, hierarchy and symmetry. New methods must be developed to enable

those simulations with available computer systems which exploit the inherent regularity of SC-

NTs for structure-aware data structures and improved solution algorithms. The work described

in this thesis exploits those properties during construction, storage, and simulation, to drasti-

cally reduce memory-demand and greatly extend the range of feasible problem sizes on single

compute nodes.

This thesis presents a novel framework for modeling, simulation, and visualization of higher

order SCNTs on multicore systems and addresses the following questions:

1. How is it possible to identify the symmetry and hierarchy in SCNTs to avoid storage over-

head without a time-consuming analysis of the whole structure?

1 Defect-free SWCNTs as arm tubes are important for consistent structure and behavior.

3

2. How can models for large and higher order tubes be constructed and stored memory-

efficient and fast?

3. Which ways exist to exploit the structural properties of SCNTs to enable a resource-saving

simulation?

4. What is the best compromise between memory consumption and runtime performance in

order to fully exploit the capabilities of the underlying computer system?

5. What can be done to efficiently parallelize the sparse algebra calculations during mechan-

ical simulation?

This thesis develops new algorithms and implementations to reply these questions and is

structured as follows: Chapter 2 presents the state-of-the-art methodology that was applied to

simulate the mechanical behavior of SCNTs and the results that were achieved so far, with a

focus on the work of the MISMO group at the University in Kassel, whose research inspired

this thesis. The limitations of the state-of-the-art methods are highlighted and contrasted to the

capabilities of the framework which was developed for this thesis.

Afterward, Chapter 3 describes the existing graph algebra based modeling approach for SCNTs

developed by the MISMO group that employs tuples to identify nodes in the graphs. For the

first time, the evolution of the tuples, the encoding process of structural information and the

resulting geometry is portrayed in detail from a geometric perspective for the SCNT models

of higher orders. It is explained precisely, how symmetry and hierarchy within SCNTs can be

identified with the tuples, because these properties are exploited by the data structures and

solvers in the thesis. The encoding of symmetry and topology within tuples is exploited for

memory-efficient storage, simulation, and visualization of SCNTs. In our earlier work [21], the

considerations were limited to SWCNTs and were less detailed due to space limitations.

In Chapter 4, we present a novel visualizer for graphs, based on the principles of instanced

rendering. This work was published in [22]. It is directly targeted to render SCNT models

and allows the inspection of large models even on slow hardware. The visualizer is capable of

highlighting structural properties and represents a new application of the tuple labeling.

The following Chapter 5 summarizes the theory behind the existing algorithm to simulate the

mechanical behavior of SCNTs which is the base for the simulations in the developed framework.

As its contribution, the thesis highlights those properties that enable and motivate a matrix-

free solution of the equation systems, like independence of calculations. In short form, the

ideas were published in [23]. Moreover, this chapter investigates, explains, and compares the

structure of the stiffness matrices for SCNTs up to order 3 as we have done in [24].

Chapter 6 covers the problem of indexing the tuple-based nodes in order to develop memory-

efficient data structures for the SCNT graph while taking properties of SCNTs into account. A

novel structure-tailored graph data type is outlined in detail, that delivers unique and compact

4

indices for the tuples quickly and was sketched in [24]. Furthermore, the chapter demonstrates

extensions to the principle of perfect spatial hashing (PSH), which were developed during the

work of this thesis, and allow to apply PSH to index tuples as well as general multidimensional

data. The implementation of the extensions and their effect are explained precisely as in [25].

Finally, both indexing schemes are compared with respect to several important properties.

The novel principle of Compressed Symmetric Graphs that was published in [26] is presented

in Chapter 7. Exploiting the properties of SCNTs enables to dynamically recompute the structure

of large parts of the tubes. This allows to avoid the storage of structural information for up to

99 % of the nodes in the SCNTs and greatly increases the range of tube sizes that can be kept in

memory on a particular system. During simulation, Compressed Symmetric Graphs can serve as

the underlying data structure and leave more memory for the actual calculations.

The following Chapter 8 mainly covers the new matrix-free solver that was developed during

this thesis. The overhead for recomputing contributions to the stiffness matrix is compensated

by an efficient caching scheme that we initially presented in [27]. Appropriate data structures

for the required sparse matrix-vector multiplication and methods to efficiently parallelize the

calculations are described that enable to outperform the reference implementation while only

requiring half the memory. Another contribution of this chapter is the presentation of a special

solver variant: it stores all required stiffness data for the sparse matrix-vector multiplication in

only a few megabytes of memory by exploiting symmetric values in the matrix in the case of

small deformations. The concepts behind this solver were outlined in [21].

In Chapter 9, the performance of the novel solver is compared in detail to the reference imple-

mentation, which stores the matrix in compressed row storage format, with different tubes and

on two parallel computer systems. Advantages and disadvantages of different graph structures

are highlighted and their effect on the total runtime of the simulation is investigated in different

scenarios. For the first time, an equation system resulting from a tube of order 2 with 2 ∗ 107

atoms is instantiated, practically verifying the theoretical statements in this thesis.

Last, Chapter 10 offers conclusions and directions for future research.

5

2 Background

This chapter begins with a brief summary of the properties of SCNTs in Section 2.1. A detailed

overview about the simulation of SCNTs can be found in Appendix C. Section 2.2 gives a short

introduction to the methodology of simulating on the atomic level. Finally, the research of the

MISMO group that inspired the work of this thesis is being outlined in Section 2.3.

2.1 Important properties of super carbon nanotubes

Super carbon nanotubes possess many interesting properties that were highlighted by several

studies. They differ in several mechanical properties from the SWCNTs which is mainly caused

by the integrated Y-junction elements. Under tension, first the angles between junction arms

begin to change before the arm tubes are actually stretched [28]. This results in a high flexi-

bility of SCNT structures [29] which allows to stretch and compress them further than SWCNT

[30]. Additionally, the behavior of the junctions causes a non-linear deformation process [31],

i.e., the forces that need to be applied to stretch the SCNT vary in dependence of the force

already applied and rupture processes normally occur near the junctions [20]. In general, the

mechanical properties seem to have a weaker dependence on the type of the SCNT than in the

case of SWCNTs.

Like for SWCNTs the electronic properties depend on their construction process, i.e., which

types of SWCNTs are employed as arm tubes and how the super sheet is rolled up to a tube,

resulting in semiconducting or metallic behavior [20].

Finally, Coluci [20] states that the principle of SCNTs is not limited to carbon nanotubes but is

also imaginable for other tube structures like boron nitride [32] or other connection types than

Y-junctions like X- or T-junctions [33]. The principles presented in this thesis may be adapted to

those novel structures.

2.2 Simulation methods for super carbon nanotubes and single-walled carbon

nanotubes

In the following, three approaches of atomistic simulations are summarized with a focus on the

atomic-scale finite element method as it is employed within this thesis (Section 2.2.1). Section

2.2.2 analyzes the model sizes investigated so far, while Section 2.2.3 presents approaches to

exploit symmetry in simulated structures.

7

2.2.1 Molecular dynamics, molecular mechanics and the atomic-scale finite

element method

Usually two methods are employed to simulate structures at the nanometer scale (1− 100 nm),

namely molecular dynamics (MD) and molecular mechanics (MM). Both model the interactions

between atoms and molecules while not taking into account any quantum mechanics [34].

Simulations on the atomic level, based on MD or MM, allow to predict the behavior of single

atoms which is not possible for constitutive models [35]. In principle, both methods treat the

atoms as particles in an n-body system and calculate the resulting movements of the atoms by

empirically determined or theoretically formulated force fields, also called potentials [36]. The

Brenner [37] and the Dreiding [38] potential are examples which have already been applied to

SWCNT simulation. They all have in common that atoms only interact with atoms in their local

neighborhood and not globally with all other atoms. Additionally, it is possible to employ the

classical Newtonian mechanics and the bonds between atoms are modeled as spring elements

since, in comparison to molecular dynamics, thermal and dynamic effects are also neglected in

molecular mechanics. This, for example, enables us to formulate and solve the minimization

problem for the global energy and to determine the equilibrium state of a system.

These facts motivated research to adapt the formalism of the finite element method (FEM) to

the simulation of atomic structures. In contrast to classical finite element methods in continuum

mechanics or fluid dynamics, there is no need to discretize the model into finite elements. Each

atom and its relevant neighborhood, determined by the employed potential, serve as one finite

element [34]. This approach is characterized as the atomic-scale finite element method (AFEM)

and was presented by Liu et al. [35]. AFEM-based simulations have the advantage that they

have an asymptotic complexity of O(N)with N representing the number of atoms and not O(N2)
like other classical methods do that are employed in MD and MM like the conjugate gradient

method [35]. Furthermore, the AFEM can also be extended by the combination with other

elements to take more interactions into account like, e.g., van der Waals forces [35]. It is also

possible to couple AFEM with traditional continuum FE methods which allows, for example, to

divide a large model into parts and to treat only critical parts with atomistic methods, while

a coarser grid is applied for the non-critical parts. For example, extended and modified AFEM

methods for single layer graphene sheets are presented in [39].

Atomic-scale FE methods have already been successfully applied to carbon nanotube simu-

lation. Liu et al. [35] took five SWCNTs with 400, 800, 1600, 3200 and 48,200 atoms, fixed

them at both ends and simulated a lateral force to their middle. By this example, they also em-

pirically demonstrated the linear dependence of runtime and problem size. Additionally, they

successfully investigated the bifurcation of a 6 nm-long SWCNT (resulting in several hundred

atoms) when it is compressed from both ends, agreeing with previous results (see also [35]). A

8

test for axial compression was also performed by Wackerfuß [34]. In that case an SWCNT with

320 atoms was employed and the simulation was performed with three different potentials. The

comparison to the reference in the literature reveals that the results of the AFEM simulation are

in very good agreement. Furthermore, Wackerfuß simulated the behavior of a tube with 800

atoms when it is twisted with two different tube versions: First, a defect-free SWCNT, and a

second one containing one vacancy defect (=one missing atom) in the middle. In both cases,

the AFEM leads to a stable simulation.

2.2.2 Model sizes of the employed super carbon nanotubes

In the literature, nothing is said about the required runtime or the resource allocation for the

SCNT simulations. Consequently, a comparison of these existing methods in regard to their

computational resources and their performance with the framework presented in this thesis is

not possible.

However, some information is given for the model sizes employed. For [17] the unit cell size

in the simulations ranged from 300 to 4500 atoms, while [29] investigated only a part of an

SCNT containing 21,960 atoms with molecular dynamics simulations under uniaxial tension.

Wang et al. [28] even state that atomic methods cannot be used for SCNTs due to the number

of arm tubes. Hence, they replace the SWCNT arm tubes by a thin shell model and employ

perfect Y-junctions that totally consist of hexagons with a mesh of a few hundred triangles. Up

to nine of those junctions are arranged side by side within their super graphene model. They

assume that super sheets with more than nine junctions in a horizontal line would behave in

the same way, since seven and nine junctions side by side already behave very similar.

A maximum of 50,000 atoms in a model is reported for the two already covered AFEM meth-

ods in [34] and [35] . For the models in [31] a size smaller than 50, 000 atoms can be deduced

from the specification of the employed SWCNT arm tubes and the fact that Scuseria junctions

[16] were employed to connect those.

In contrast, in this thesis, SCNTs with up to 2.0 ∗ 107 atoms are considered for the AFEM

calculations demonstrating that the methods presented in this thesis greatly increase the range

of feasible model sizes.

The studies in the literature also contain only direct simulations of order 1 SCNTs, while

properties for higher orders are only accessed indirectly by scaling laws [40] which exploit the

fractal nature of SCNTs ([41], [42]).

The results of this thesis demonstrate that the matrix-free solver presented is prepared to

execute simulations with higher order tubes which are modeled on an atomic base and which

are much more complex because of the additional levels of hierarchy compared to order 1 tubes.

9

2.2.3 Exploiting symmetric structures

Approaches already exist that try to reduce the amount of data during calculations with ma-

trices by exploiting symmetries in structures during the mechanical simulations. Kangwai et

al. [43], for example, employed mathematical group representation theory to block-diagonalize

the stiffness matrix and consequently partition it into several smaller problems. The main idea

is that symmetries in structure will correlate to symmetries in the matrix like symmetric lines or

blocks. The authors define symmetric structures as »left unaltered, geometrically and mechani-

cally, after a symmetry operation [rotations, reflections] «[43, p. 672]. Applying these symmetry

operations to parts of the modeled structure moves those parts to new spatial positions. To

that end, an appropriate coordinate system based on the symmetry of the structure, needs to be

found. Symmetry operations are grouped to symmetry groups and represented as matrices that

can be applied at low computational costs. As a result, it is no longer necessary to fully store

the stiffness matrix, reducing at the same time the complexity of the problem and the required

storage as well as the computational effort.

Koohestani [44] presented a modified form of the procedure of Kangwai et al. and applied

it to several use cases, e.g., to the buckling of a steel pipe. Here, the stiffness matrix was

decomposed to four blocks, resulting in a reduction of the time to solve the system by a factor

of 3.5.

In contrast to these two approaches, this thesis will present methods to exploit symmetry in

structures without analyzing or even assembling the stiffness matrix. These methods allow to

directly reveal symmetry information of the SCNT within the graph algebra based modeling

approach.

2.3 Research of the MISMO group

The research-group MISMO1 has already performed several mechanical simulations of SCNTs of

order 1 based on the AFEM presented in [34]. To that end, they modeled the SCNTs within their

Hierarchical Graph Meshing (HGM) method [45] which combines a self-defined graph algebra

with an iterative construction process for SCNTs. The high amount of symmetry and hierarchy

can be captured in the framework of the HGM method. This is also the modeling approach

that is employed for this thesis and its important aspects are outlined in Chapter 3. MISMO has

realized the HGM method as a Matlab script that is able to create data files containing the tube

models. Additionally, the authors of [45] demonstrated that the runtime of the construction

process in the HGM method depends linearly on the size of the structure, better than other

mesh generation schemes. This thesis will also show that:

1 Mechanische Instabilitäten in Selbstähnlichen Molekularen Strukturen höherer Ordnung, https://www.
uni-kassel.de/fb14bau/institute/ibsd/baustatik/startseite.html

10

https://www.uni-kassel.de/fb14bau/institute/ibsd/baustatik/startseite.html
https://www.uni-kassel.de/fb14bau/institute/ibsd/baustatik/startseite.html

1. A well-designed C++ implementation of these principles can construct large tubes very fast.

2. The construction of higher order tubes is possible in combination with an appropriate data

structure unlike with the native Matlab version.

Additionally, the research group MISMO developed the dockSIM framework2, a C/C++ soft-

ware solution for numerical calculations [46], which is employed to process the SCNT model

files and to perform the actual simulations. Important concepts for the dockSIM framework

were developed in a Bachelor’s thesis [47] in collaboration of the MISMO group and the Sci-

entific Computing group at TU Darmstadt. Furthermore, the performance of some parts of the

program was improved in a student research project [48] within the same collaboration.

For this thesis, dockSIM was mainly used to generate reference results to ensure the cor-

rectness of the calculations performed by the newly developed algorithm. Moreover, dockSIM

was employed for the relaxation of the input data, where the internal energy of the SCNTs

is minimized. This step is required because the SCNT models resulting from the construction

process within the HGM method are not in equilibrium state. In general, dockSIM is able to

perform the simulation of mechanical behavior of SCNTs but the feasible model size is limited

by the generic data structures and the direct solving approach employed for solving the linear

equation systems.

One main goal of dockSIM is to allow the integration of different numerical methods in a

consistent form by providing well-defined interfaces that allow a hierarchical composition of

the actual numerical method, the employed discretization method and the constitutive equa-

tions that mathematically describe the behavior of a material. The numerical method can

additionally be coupled with several external libraries, in particular, the required solver for

the linear equations. This allows the user to focus on aspects of interests for him, e.g., the

development of constitutive equations for new materials, while being able to reuse the exist-

ing functionality in dockSIM like reading input data or managing boundary conditions. The

dockSIM framework already contains the Newton-Raphson method which also involves the re-

quired finite elements and constitutive equations to simulate super carbon nanotubes. Also

other included numerical methods an implementations of different potentials may be employed

to simulate the mechanical behavior of SCNTs. However, the underlying generic data structures

that are not aware of the special properties of SCNTs and the PARDISO library3 employed to

directly solve the linear equation systems limit the range of feasible SCNT model sizes.

This thesis presents solutions to overcome these issues and enable the simulation of larger

and higher order SCNTs.

2 http://docksim.de/
3 http://www.pardiso-project.org/

11

http://docksim.de/
http://www.pardiso-project.org/

3 Graph Algebra Modeling of Super Carbon Nanotubes

This chapter summarizes the graph algebra construction approach employed for the SCNT mod-

els. We focus on those properties and concepts which are relevant for the graph data structures

and solvers presented in later chapters.

The representation of scientific models as graphs has a very long history and was successfully

applied in various problem domains [49]. The SCNT models in this thesis are also described

as graphs. The modeling approach and the graph algebra construction process that lead to the

SCNT models were published in detail in [45] with a focus on graph theoretic aspects. A short

summary of the construction of SCNTs of order 0 with a focus on the geometrical meaning of the

graph algebra operations has already been presented in [21]. Some definitions and explanations

from [21] are partly reused.

The following chapter extents those considerations and presents the construction process

for SCNTs of arbitrary order, for the first time with a focus on the geometrical meaning of

the operations and correlates the development of the tuples during the construction with the

geometric and structural information that they encode in detail. This highlights the elegance

of the tuple system and the properties of the operations that can be exploited for an efficient

implementation. The chosen approach may sometimes result in an intuitive but also informal

description. For theoretic background and details we refer to [45]. The basic definitions for the

graph theory employed are taken from [50].

The SCNT models are represented as directed graphs G = (V, E). Each carbon atom corre-

sponds to a node v (resulting from the synonym vertex for node) in the node set V while a

set of directed edges E represents the covalent C-C-bindings. Each edge e can be written as an

ordered pair of two nodes e = (vs, vt) with vs being the start node and vt being the terminal

node of the edge. An edge e is said to be incident to its start and end node. A node with no

incident edge is called to be isolated.

During the construction, there exist also several undirected graphs, i.e., a graph where edges

do not have a certain direction, but only have two incident vertices. In particular, the final

graphs representing the tubes are undirected graphs while several directed graphs occur in

some steps of the construction process. For the purposes of the graph operations, undirected

graphs are modeled in the following way: For each edge e = (vs, vt) ∈ E an undirected graph

also contains the edge with opposite direction e′ = (vt , vs).

Two unary functions are defined which help to process the edges. Function σ returns the

start node of an edge e, while function τ delivers the terminal node of the corresponding edge.

Consequently, an edge e can also be given in the form e = (σ(e),τ(e)). The functions σ and

τ can also be applied to whole edge sets E as well with σ(E) returning a set of all nodes that

13

are the start node of an edge and τ(E) returning all nodes that are the end node of an edge,

respectively.

In contrast to nearly all other graphs that can be found in the literature, the nodes within

the graphs covered in this thesis are not labeled by letters or numbers, but unique m-tuples are

employed to identify the nodes. Those graphs are called tuple-based graphs in the following.

The m-tuples t are ordered sets of integers: t = (xm, xm−1, ..., x2, x1) with m being the length

of the tuple and all tuples within a graph possessing the same length. A tuple-based graph

consisting of nodes with tuple length m is also defined as a graph of dimension m. The entry xm

is called the leading and xm−1 the second leading tuple entry while x1 is the lowest entry. The

distinct entries in a tuple can be accessed in a C-like fashion via the square brackets operator

t[j] with j ∈ [1, . . . , m− 1, m] and t[1] delivering the lowest entry x1.

Assume a set S of n tuples t i with i ∈ [1,2, . . . , n], then the so-called tuple extent is defined

as the tuple text =
�

max(t i[m]), max(t i[m− 1]), . . . , max(t i[1])
�

, that is, each entry of text is

set to the highest occurring value at the respective entry in all tuples of the set. The tuple extent

determines the set of all possible tuples that is called the tuple space. Its size, i.e., the number

of possible tuples, can be calculated by
∏m

k=1 text[k]. Each tuple that is really appearing in a

given graph is called existing. The only important thing to know about the nodes for the graph

algebra is the tuple which identifies them, thus, each v can be denoted as its respective tuple t.

Consequently, for simplicity the node set V is identical to the set S of existing tuples.

Another important term is the sub-tuple which is defined as (xv , xv−1, . . . , xu) of t with 1 ≤
u < v ≤ m, i.e., v − u consecutive entries of t are taken to create a new tuple, while the

other entries of t are neglected. The sub-tuple function ζv
u is defined as ζv

u (t i) = (t i[v], t i[v −
1], . . . , t i[u]). ζv

u can also be applied to a whole set of tuples ζv
u (S) resulting in a set of

sub-tuples of all tuples in S with duplicates removed.

Additionally, a lexicographic order on the tuples is defined by the algorithm in pseudocode in

Listing 3.1. This order is also employed to assign a unique index to each tuple, by sorting all

tuples with the function and indexing the tuples starting with 1 at the lowest one and going on

consecutively.

1 tup le f indGrea te r (tup le t1 , tup le t2) {

2 for (i=m; i > 0; i=i −1) {

3 i f (t1 [i] > t2 [i]) return t1 ;

4 i f (t1 [i] <= t2 [i]) return t2 ;

5 }

6 }

Listing 3.1: The algorithm returns the higher tuple.

Before describing the graph algebraic operations that are required for the construction of the

SCNT models, three types of base graphs need to be defined:

14

• Path Graph [Pl]: Create a chain of nodes with length l in which each node is connected to

its successor by a directed edge.

• Cyclic Graph [C yl]: Create a path graph of length l and connect additionally the end node

of the chain to the start node with a directed edge.

• Self-connected Graph [Dl]: Create l nodes and connect each node only to itself.

• Empty Graph [J0]: Connect a single node with a tuple length of 0 to itself. It represents

the junction element of level 0.

3.1 Important graph algebra operations and their geometrical meaning

This section summarizes the required graph algebra operations to construct SCNTs. First, the

basic operations are presented, followed by the combined operations consisting of the concate-

nation of different basic operations. Also some details for an efficient realization in C++ are

given.

3.1.1 Basic operations

The single basic unary operation within the graph algebra is the opposite, denoted by ∗ after the

graph identifier. The operator creates the complementary graph G∗(V, E∗), i.e., a graph that has

the same node set as the original G, but all edges in E∗ have the opposite direction compared to

E.

The first binary operation is the graph union, denoted by ∪. The union of two graphs G1 =
(V1, E1) and G2 = (V2, E2) is defined as

G1 ∪ G2 = Gu(V1 ∪ V2, E1 ∪ E2),

so each node and each edge that is contained either in G1 or G2 is contained in the re-

sult graph. This operation is mainly employed to add additional edges to the graph during

construction of SCNTs in order to connect former isolated parts.

Similarly, the intersection ∩ of graphs G1 and G2 is defined as

G1 ∩ G2 = Gi(V1 ∩ V2, E1 ∩ E2).

This operation keeps those nodes and edges in the result graph that are members of both G1

and G2.

15

Related to the principles of graph union and intersection is the subtraction of two graphs with

the graph minus operation denoted by −. For two graphs G1 and G2, the subtraction is defined

as

G1 − G2 = Gs(V1 − V2,→ Es).

Here, the notation → Es denotes the resulting edge set of the subtraction result Gs, which

is arrived at as follows: All nodes fulfilling V1 ∩ V2 are removed in Gs. Afterward, all edges e

fulfilling σ(e) ∈ (V1 ∩ V2) ∨ τ(e) ∈ (V1 ∩ V2) are also removed in Gs since edges starting from

or pointing to non-existing nodes are invalid. As a result, the minus operator requires several

search operations within the edge set. Geometrically, the graph minus can be employed to select

a part of interest out of a graph, by creating a temporary graph which describes the unwanted

nodes and which is subtracted from the original graph.

One very important operation is the so-called categorical product. It is the only basic opera-

tion that is able to increase the tuple length and is denoted as ⊗. Assume two graphs G1 and

G2 with tuple length m1 and m2, respectively. The categorical product G1⊗G2 creates the result

graph Gc whose node set Vc is the cross-product of the two input node sets. Its dimension mc is

determined by m1 +m2. The edges of Gc are constructed by the following rule: For all e1 ∈ E1

and e2 ∈ E2, the resulting edge ec ∈ Ec is determined by

ec =
�

�

σ(e1)×σ(e2)
�

,
�

τ(e1)×τ(e2)
�

�

,

where the × operator concatenates tuple pairs from σ(e1) and σ(e2), and τ(e1) and τ(e2),
respectively. An example of two applications of the categorical product is illustrated in Figure

3.1a. The first row shows the product of two 1-dimensional graphs G1 and G2, resulting in

the 2-dimensional graph G3. The node (1,2) in G3 has no incident edge and is isolated from

the remainder. The second calculation visualizes the main usage of the categorical product. A

categorical product of the self-connected graph G4 which is a D2-graph with a dimension of 1

and G3 with a dimension of 2 results in a graph that contains two non-connected parts with the

same structure as G3. They are boxed in G5 in Figure 3.1a. They only differ in their leading

tuple entry that is determined by the node labels of G4. It is sufficient to increase the length of

G4 to the desired number to create more copies of G3. This example also illustrates the behavior

of isolated nodes. Although (1, 2) from G3 is copied, its copies in G5 remain isolated. In general,

isolated nodes stay isolated in further applications of the categorical product and hence can be

removed to optimize further calculations. For the generic case G1⊗G2 = Gc this means that only

nodes fulfilling

16

v ∈ (σ(E1)×σ(E2))∪ (τ(E1)×τ(E2))

0

1

0,1

0,2

1,1

1,2

=
1

2

1

0

0,1

0,2

1,1

1,2

=

G1 G2 G3

G5G3G4

1,0,1

1,0,2

1,1,1

1,1,2

0,0,1

0,0,2

0,1,1

0,1,2

(a) Two examples for the categorical product
of graphs. The upper image shows the case
for graphs with equal dimension, while
the lower image illustrates the calculation
when both graphs differ in their dimension.

0,0

1,0 1,1

2,1

0,0

1,0 1,1

2,1

0,1 0,0

1,0 1,1

2,1

0,1

=

G1 G2 G3

0,0,0 1,0,0

0,1,0 1,1,0

0,1,1 1,1,1

0 1

=
0,1,0

1,0,0 1,1,1

G4 G5 G6

G'5

0,1,00,1,1

0,1,00,0,0

(b) Two examples of the graph composition.
The upper image shows the case for graphs
with equal dimension, while the lower im-
age illustrates the calculation when both
graphs differ in their dimension.

Figure 3.1.: Four examples of categorical product and graph composition.

are connected and need to be considered. The number of edges
�

�Ec

�

� is
�

�E1

�

� ∗
�

�E2

�

� and the

complexity of the categorical product is O
��

�E1

�

� ∗
�

�E2

�

�

�

. Finally, if text
1 is the tuple extent of G1

and text
2 that of G2, then the tuple extent of Gc = G1 ⊗ G2 is given by text

1 × text
2 with × again

representing a concatenation.

The last basic operation to cover is the graph composition denoted by ◦. For two edges e1 ∈ G1

and e2 ∈ G2 the composition is defined as

e1 ◦ e2 :=















(σ(e2),τ(e1)) if σ(e1) = τ(e2)

no edge otherwise

i.e., for each e1 ∈ G1 it needs to be tested if there exists an e2 ∈ G2 that ends at a node with

the same tuple as the start node of e1. This is shown in the first row of Figure 3.1b where the

composition is applied to two graphs with the same tuple length. No new nodes are generated

by ◦, but it is possible that the result graph contains nodes that previously where only part of

17

one of the input graphs, as the node (0,1) demonstrates. Moreover, it may happen that nodes,

which are connected in both input graphs, are isolated in the result graph as it is the case for

node (0,0). The second row of Figure 3.1b shows the general case of the composition with input

graphs G4 and G5 differing in their tuple length. We assume that the second input graph G5 has

shorter tuples. Thus, the second graph needs to be expanded, i.e., the tuples need to be adapted

in their length to G4. The procedure is similar if G4 has the shorter tuples with the difference

that G4 is expanded in that case. If the tuples of G4 have the length m4 and those of G5 the length

m5, the set of sub-tuples Stail = ζm4−m5
1 (V4) will be created. Now, conceptually,

�

�Stail
�

� temporary

graphs are generated from G5 by concatenating one element v tail ∈ Stail to all nodes v 5 ∈ G5 by

v 5 × v tail and repeating this for all elements of Stail. This results in Stail =
�

(0,0), (1, 0), (1,1)
	

with
�

�Stail
�

� = 3 for the example in Figure 3.1b and hence, three virtual non-connected copies of

G5 are generated, which are shown in the upper rectangle of the lower example in Figure 3.1b

and represent the graph G′5. Afterward, the composition G4 ◦ G′5 is calculated as in the upper

part of Figure 3.1b.

For the composition it is also possible to determine the tuple extent of the result graph in

advance. Assuming that we have a Graph Gshort with the shorter tuple length mshort compared

to Glong with tuple length mlong, then, the tuple extent of Gshort ◦ Glong and of Glong ◦ Gshort can

be constructed via the C++-code fragment of Listing 3.2 in which the extents text
short and text

long are

represented as std :: vector<> longer and std :: vector<> shorter.

1 vector<int> new_extent ;

2 in t d i f f = m_long − m_short ;

3

4 for (in t i = 0; i < m_long ; i++) {

5 i f (i < d i f f) { // copy tail of the longer tuple

6 new_extent . push_back (longer [i]) ;

7 }

8

9 else { // compare corresponding parts of the tuples

10 in t max_val = max(longer [i] , sho r t e r [i − d i f f]) ;

11 new_extent . push_back (max_val) ;

12 }

13 }

Listing 3.2: Constructing the tuple extent for the result graph of a graph composition before the actual

calculation.

The pre-computations of dimension, extent, and numbers of edges are important to allocate

appropriate efficient data structures for the operations.

18

3.1.2 Combined operations

There are four important combined graph operators. The unary operator υ transforms a directed

graph G into an undirected one, following the above representation of undirected graphs by

directed graphs. It combines the operations union ∪ and opposite ∗ by υ(G) = (G ∪ G∗).

Another unary operator is the n-fold composition of a graph G that is denoted by Gn and is

an abbreviation for:

Gn = G ◦ G ◦ · · · ◦ G
︸ ︷︷ ︸

n−times

The binary operator graph conjugation ◊ combines the two operations composition ◦ and

opposite ∗ by G1◊G2 = G2 ◦ G1 ◦ G∗2.

The last operator is the closure of a graph denoted by c(G). It is defined as:

c(G) =
∞
⋃

k=1

Gk

There always exists an n ≥ N for an N ∈ N for finite graphs which satisfies c(G) =
n
⋃

k=1
Gk as

discussed in[45, p. 10].

All operations based on the graph composition and their geometrical meaning are strongly

connected with the concept of transfer graphs. In simplified terms, transfer graphs represent

the relations of different node sets within different parts of the graph. When combining two

graphs, it may happen that several nodes coincide in the result graph. Assume we want to

mirror the graph G form Figure 3.2a horizontally with the symmetry axis running through the

nodes (5,2) and (5, 3), i.e., those nodes coincide between both copies of G. To that end, the

graph G has already been appropriately prepared by grouping its nodes in two different sets:

The nodes with leading tuple entry 1 and those with leading 5, differentiating the symmetry

axis from the part that is copied.

A second requirement for a successful mirroring is a so-called symmetry graph S that describes

the symmetry relations of the final graph, which is shown in Figure 3.2b. Informally, this graph

tells the construction process: There are those nodes of the initial graph that do not lie on the

symmetry axis and have a leading 0 in the result graph. The mirrored nodes lie in the part with

1-leading nodes. Nodes on the symmetry axis receive a leading 2.

The last important entity is the transfer graph T that describes the relations between different

node sets and is depicted in Figure 3.2c. In that case, it represents the fact that all nodes with

a leading 5 in G will not lie in the 0-leading part in the result graph, but on the 2-leading part,

19

1,1 5,3

1,0 5,2

(a) Original graph G that
should be mirrored.

0 2 1

(b) Symmetry graph S to mirror
graph G.

0,1 0,5 2,5

(c) Transfer graph T to mirror
graph G.

0,1,1 2,5,3

0,1,0 2,5,2

1,1,1

1,1,0

(d) Result Gm of the mirroring process of G.

Figure 3.2.: Mirroring graph G with the concept of transfer graphs.

which is the symmetry axis. The nodes with a former leading 1 are assigned to the left part of

the resulting graph with a leading 0.

In general, the process of mirroring G with respect to the symmetry graph S and the transfer

graph T is performed by:

Gm = c(S) ◦ T ◦ G ◦ T ∗ ◦ c(S)∗ = c(S) ◦ (G � T) ◦ c(S)∗

For graph theoretic details about transfer graphs and how to construct them refer to [45].

Important for this thesis is the fact that composition, closure and conjugation operations are

required several times. This results in many calls of the graph composition which is a complex

operation.

3.2 A general algorithm for constructing super carbon nanotubes of arbitrary order

Methods for generating SCNTs of higher order were proposed in [24] and Section 4 of [24] is

the base for this chapter. While Coluci [17] defines SCNTs as tubes formed by smaller tubes

connected via Y-junctions, the work of Schröppel and Wackerfuß follows a different approach

which was adapted for this thesis. Tubes of higher order are created by appropriately connected

Y-junctions with extended arms. This idea is visualized in Figures 3.3a and 3.3b. Considering

one single hexagon within a honeycomb sheet in Figure 3.3a, we see that each carbon atom

has three neighboring atoms. The colors indicate that each C-C-bond should be assigned to

one half to its left atom and to the other half to its right atom. Figure 3.3b depicts a situation

where each carbon atom and its half bonds are replaced by Y-junctions. The outer shape of the

20

resulting structure is still a hexagon. Like it is possible to create a flat honeycomb sheet out

of the hexagons of Figure 3.3a, it is possible to build an equivalent grid out of those hexagons

in Figure 3.3b. Since those new sheets can be used to roll up a super tube, they are called

super sheets [17]. Analogous to the relation of CNTs and SCNTs, a standard honeycomb grid of

carbon atoms is a super sheet of order 0.

Because of the properties mentioned above, the main abstraction for higher tube orders comes

from the idealization of single atoms with half bonds and Y-junctions to elements with the same

outer shape as shown in Figure 3.3c. Junctions of arbitrary complexity and single atoms with

half bonds have the following properties in common that enable the abstraction: They possess

one center of rotation and three arms of equal length l j and equal diameter d j. Taking one of

the three arms, the other two arms are rotated around 120° and 240° within the plane this arm

lies in, as shown on the right side of Figure 3.3c with all mentioned properties highlighted in

gray. Those abstracted objects are called junction element or element for short if the context

is clear. The geometric properties allow to arbitrarily connect the arm of one element with the

arm of another element and to form regular hexagons ([41],[51]).

(a) Hexagon out of car-
bon atoms.

(b) Hexagon out of level
0 junction elements.

120°

120°120°

lj

lj

lj

dj

dj

dj

(c) Junctions of all levels can be ab-
stracted as a Y-shaped figure.

Figure 3.3.: Junctions as basic elements of abstraction.

As mentioned above, super sheets are formed by replacing single atoms with Y-junctions.

Thus, an important question is how to construct these Y-junctions themselves. The answer is

that an iterative procedure exists that constructs (super) sheets and junction elements in an

alternate fashion, starting with a single atom from which the honeycomb sheet of C-atoms is

constructed. This super sheet of order 0 can be employed to create a Y-junction of level 0.

This thesis follows the naming convention of the MISMO group to categorize junctions (and

the so-called base elements presented later) in different levels while super tubes and their

corresponding super sheets have a certain order. The junctions can replace single atoms and

create a super sheet of level 1 that afterward is used as a base for level 1 junctions and so on.

In general, an order L super sheet consists of junction elements of level (L − 1). Single atoms

are defined as a junction elements of level (−1) to integrate into this scheme.

21

In principle, an SCNT of order L is a rolled up super sheet of order L created by level (L − 1)
junctions which is cut into shape where necessary.

The theory of constructing a junction of a certain order is summarized in Section 3.2.1, while

the general construction algorithm of a tube is discussed in Section 3.2.2.

3.2.1 Construction of high level junctions

The construction of an SCNT Y-junction within the graph algebra presented was first published

in [52] on a graph theoretic basis and in combination with the construction of a tube in [45] with

the same focus. Like in [24], the focus of this section lies on the geometric description of the

intermediate steps required, since they demonstrate the inherent self-similarity and hierarchy

within the SCNT models in a descriptive fashion. An additional focus lies on encoding the

construction process within the tuple system, since this information will later be exploited by

the data structures and by the different solvers.

Like the construction of an SCNT of order L, the construction of the required junction ele-

ments of level (L − 1) is an iterative process itself. In the sequel, the procedure for a level 0

junction, starting with a single atom, is demonstrated. Independent of the actual level of the

junction, the construction passes through four intermediate stages, denoted as S1 to S4, which

are covered in the following.

The shape of the junction is determined by a tuple of two input parameters (dx , lx) that is

explained during this section.

Please note that the appropriate geometry is already applied to the graphs to allow a clear

visualization, although, in principle, the graph algebra itself is independent of any geometry.

The way the geometry results from the tuples per node is discussed separately for each step.

The geometry per step is only dependent on the respective leading tuple entry tval. Additionally,

for a point p its single spatial x-, y- and z-coordinates are accessed with px , py and pz. The new

point after the transformation is denoted by p′ and its coordinates by p′x , p′y and p′z.

Stage S1: S1 on level 0 is a simple graph consisting of two tuples (0) and (1) of length 1

connected by two directed edges. In principle, during this stage, two connected copies of the

junction element from the previous order are connected. In the case of order 0, these junction

elements degenerate to the single node with an empty tuple of length 0 called J0. The colors

in all three images of Figure 3.4 link the parts of the respective equation to their contribution

in the graph. For Equation 3.1 this means that the green part D2 ⊗ J0 creates the two nodes (0)
and (1) while the right part in red instantiates the red edge from (0) to (1) and vice versa. The

tuple length is increased by 1 through stage S1, since the left copy of the input graph receives a

0 as leading tuple entry and the right copy receives a 1. For the geometry, a coordinate system is

indicated in gray. Please note that the construction process for the stages S1 to S4 only works in

two dimensions. The third dimension comes into play later. The origin of the coordinate system

22

is placed in the center of node (0) and the center of node (1) lies on the x-axis. Consequently, the

underlying geometric transformation between both nodes is a translation in x-direction whose

value is dependent on the so-called base length lbase as indicated in blue. With this base length

the distance of two carbon atoms within graphene is modeled, which is two times the atomic

radius of carbon ([53], [54, p. 227]). The values in the literature are, e.g., 67 pm based on

calculations of Clementi et al. [55] or 70 pm based on experiments of Slater [56]. To realize the

translation for each point the new position p′ = (px + tval ∗ 2 ∗ lbase, py , pz) is calculated.

y

x

2 * lbase

0 1
(a) Graph S1

S1 = D2 ⊗ J0 ∪ υ(P2) (3.1)

0,0 0,1

1,0 1,1

y

x

√3 * lbase

lbase

(b) Graph S2

S2 = D2 ⊗ S1 ∪ υ(P2 ⊗ P∗2) (3.2)

0,0,0 0,0,1

0,1,0 0,1,1

1,0,0 1,0,1

1,1,0 1,1,1

2,0,0 2,0,1

2,1,0 2,1,1

3,0,0 3,0,1

3,1,0 3,1,1

n * 2 * √3 * lbase

(c) Graph S3

S3 = Dd ⊗ S2 ∪ υ(C yd ⊗ P∗2 ⊗ P2) , d= 4 (3.3)

Figure 3.4.: The first stages steps S1 - S3 for constructing a sheet of order 0.

Stage S2: S1 is the input for S2 that is shown in Figure 3.4b. Again, two copies of the input

are created and connected from (0,1) to (1, 0) and vice versa. Like for S1, colors clarify the

correlation to Equation 3.2. The left side generates the copies while the right side connects them

appropriately. Since for the lower copy a leading 0 and the upper copy a leading 1 is appended

to the tuple, its length is increased by 1. This time, the geometry consists of two different

translations with one occurring in x-direction and the other one in y-direction as depicted by

blue arrows. The position calculation is: p′ = (px + tval ∗ lbase, py + tval ∗
p

3 ∗ lbase, pz).
Stage S3: d copies of S2 are instantiated for S3 as shown in Figure 3.4c. The parameter d

determines the number of copies to be made. In the context of S3 it is important to remember

that in contrast to S1 and S2, not only two copies of the input graph are created but d. d = 4 for

Equation 3.3 for the example in Figure 3.4c.

23

Please also note the C yd-graph which appears in the right side of Equation 3.3. The edges

from the top node (3, 1,0) to (0,0, 1) and vice versa are created additionally by employing the

C yd-graph which are shown as the dotted red line. These edges connect the bottom and the

top of the sheet when it is rolled up later in the process. They are only required if the graphene

sheet that is constructed is employed to build a CNT. If C y4 is replaced by P4 in Figure 3.4c, S3

looks identical, except for the missing edges between (3, 1,0) and (0,0, 1).

The tuple length is again increased by 1 in this step since each copy of S2 receives a consecu-

tive leading index from 0 up to (d−1). The underlying geometric transformation is a translation

in the y-direction so that the copies become stacked over each other, with the origin of the co-

ordinate system remaining in the bottom left node (0, 0,0). The position of new nodes can be

calculated by p′ = (px , py + tval ∗ 2 ∗
p

3 ∗ lbase, pz).

Stage S4: Finally, S4 is constructed as depicted in Figure 3.5. A second parameter l appears

that determines how many copies of S3 are created. l also depends on the type of junction

that is constructed. Equation 3.4 also contains a cyclic graph that ensures the connection of the

bottom with the top and vice versa shown as colored dotted lines. These edges are removed by

replacing the cyclic graph C yd by a path graph. Analogous to S3, each copy of the input graph

receives a new leading entry from 0 to (l − 1).

It is obvious that S4 represents a honeycomb grid whose size is determined by d and l. The

height and the width can also be expressed in terms of lbase as shown by the gray numbers

around the grid in Figure 3.5. At the bottom, we see that each copy of S3 increases the length

of the sheet by (2 + 4) times the base length. The only exception is the last copy of S3 that

is only (2 + 3) ∗ lbase long. This results from the fact that for this instance of S3 no diagonal

edge is required to connect it to its successor like, for example, the edges (k, 0, 1, 1) → (k +
1,0, 0,0) ∀k ∈ [0, l − 2] do. As a consequence, the length of the sheet can be expressed in

terms of l by (l ∗ 6− 1) ∗ lbase. Accordingly, on the left side of Figure 3.5, we see that the height

of the sheet can be calculated in dependence of d by (d ∗2 ∗
p

3−1) ∗ lbase since the last copy of

S2 at the top again represents an exception with a shorter length compared to the other copies.

The geometric transformation applied in S4 is a translation of the copies of S3 along the x-axis.

To that end, the translation xnew = xold+6.0∗ lbase∗ tval is applied with 6.0∗ lbase being the length

of one instance of S3.

Several incomplete hexagons on the left and the right boundary exist which are surrounded

by the blue boxes in Figure 3.5. They need to be removed before the construction can proceed

with a regular grid. Of course, the edges ending in or starting from those nodes also must be

eliminated within the cutting process. In terms of the graph algebra, a graph that only contains

the boundary nodes is created and subtracted from S4 via the graph minus operator. Overall,

the construction from S1 to S4 increases the length of the initial input graph, i.e., the junction

of the previous level, by 4 new entries.

24

Figure 3.5 also demonstrates another important concept. As already mentioned in the be-

ginning of this section, a lexicographical order is defined on the tuples to map each tuple to a

unique global index. Bearing that in mind, we can identify several properties about the distribu-

tion of the global index within the grid. The first point is that it starts with value 1 at the bottom

left of the cut grid at node (0,0, 0,1). This is the case for all order 0 sheets. Furthermore, recall

that S4, in principle, consists of many copies of S2. The four nodes within S2 are consecutively

numbered from left to right since the two leading entries x4 = t[4] and x3 = t[3] always are

identical and (x4, x3, 0, 0) < (x4, x3, 0, 1) < (x4, x3, 1, 0) < (x4, x3, 1, 1). The fact that several

copies of S2 are stacked within S3 leads to the situation that, in general, the global index in-

creases within S3 from bottom to top. In particular, the difference in the global index is always

3 between nodes (x4, x3, 1, 0) and (x4, x3+ 1, 0,1), which are connected by additional diagonal

edges. In the last step, S4 vertically lines up a varying number of S3 copies letting the global

index increase from left to right. These considerations about the distribution of the global index

are important for analyzing the simulation algorithm and its implementation.

0,0,0,0 0,0,0,1

0,0,1,0 0,0,1,1

0,1,0,0 0,1,0,1

0,1,1,0 0,1,1,1

0,2,0,0 0,2,0,1

0,2,1,0 0,2,1,1

0,3,0,0 0, 3,0,1

0,3,1,0 0,3,1,1

1,0,0,0 1,0,0,1

1,0,1,0 1,0,1,1

1,1,0,0 1,1,0,1

1,1,1,0 1,1,1,1

1,2,0,0 1,2,0,1

1,2,1,0 1,2,1,1

1,3,0,0 1,3,0,1

1,3,1,0, 1,3,1,1

2,0,0,0 2,0,0,1

2,0,1,0 2,0,1,1

2,1,0,0 2,1,0,1

2,1,1,0 2,1,1,1

2,2,0,0 2,2,0,1

2,2,1,0 2,2,1,1

2,3,0,0 2,3,0,1

2,3,1,0 2,3,1,1

3,0,0,0 3,0,0,1

3,0,1,0 3,0,1,1

3,1,0,0 3,1,0,1

3,1,1,0 3,1,1,1

3,2,0,0 3,2,0,1

3,2,1,0 3,2,1,1

3,3,0,0 3,3,0,1

3,3,1,0 3,3,1,1.

2 2 2 24 4 4 3

2* √3

2* √3

2* √3

√3

Figure 3.5.: Step S4 during construction of an order 0 sheet. The picture shows the graphene sheet that
needs to be cut into shape by removing the incomplete hexagons within the blue boxes.

S4 = Dl ⊗ S3 ∪ υ(Pl−1 ⊗ (Dd ∪ C yd)⊗ P∗2 ⊗ P∗2) , d = 4, l = 4 (3.4)

Construction of the base element: One required part to create a junction element of level L

is a so-called base element that is a cut-out of a super sheet of order L as represented by S4. One

example for a base element of level 0, that serves as a building block for a Y-junction of level 0,

is depicted in Figure 3.6a. The small insert on top shows an abstract view of this structure.

25

There is a dependence of the input parameters (dx , lx) for the junction configuration on the

two parameters d and l that determine how many copies of S2 are instantiated in S3 and how

many copies of S3 are instantiated within S4, respectively. The relations are: d = floor
�

3∗dx+1
2

�

+

1 and l = floor
�

lx
2

�

. The floor-operation creates truncated values of the fraction calculation. It is

important to note that only integer inputs for dx and lx lead to feasible junction configurations.

(a) Flat level 0 base element with dx = 2 and
lx = 6. The dotted blue line indicates influ-
ence of lx and the solid, red line the one of dx ,
respectively.

Set1

Set2

Set3

(b) Bent order 0 base element with dx = 2 and
lx = 6 with full geometry applied, and con-
sisting of 44 nodes.

Figure 3.6.: A base element of order zero.

Additionally, (dx , lx) have a directly visible influence on the shape of the base element that is

indicated in Figure 3.6a: On the one hand, the number of nodes along the zigzag-line on the

right side of the base element, being surrounded by the solid, red box, is given by 3 ∗ dx + 2.

On the other hand, the number of nodes on the horizontal line of the base element, being

highlighted by the dotted blue box, is given by lx+1. Please note, that the rightmost node, which

also belongs to the vertical zigzag line, is considered for both values. Thus, it can be deduced

that the depicted base element in Figure 3.6a results from the parameter set (dx = 2, lx = 6)
with seven nodes on the horizontal and eight nodes on the vertical line. For feasible junctions,

there is also the prerequisite lx > dx since, otherwise, the general shape of the base element

would be violated.

Concerning the geometry of the base element, it is already bent around the x-axis as shown in

Figure 3.6b while Figure 3.6a ignores this bending for sake of clarity. The transformation of this

bending only depends on the actual positions of the nodes within graph S4 and is very similar

to the wrapping process of the super sheet around an axis that are described in the following

section. Consequently, bending the base element is skipped here.

As a last step of constructing a base element, the nodes are internally partitioned into different

sets, as indicated in Figure 3.6b, where each of the six colors represents a different node set.

26

These node sets are distinguished by adding another fifth tuple dimension. The interior set is

the largest set, shown in black (refer to [45] for details), whose nodes receive a 0 as a fifth entry.

These nodes are all be contained in the final junction graph. In contrast to those, the remaining

sets are the connection line or single connecting nodes to other base elements and coincide with

corresponding sets and points of neighboring base elements. Several combined sets of nodes

are labeled in Figure 3.6b with Set1, Set2 and Set3 since they are important for the remainder of

the junction construction process. Altogether, the junction construction added five tuple entries

to the input graph so far. The new fifth tuple entry does not contribute to the geometry, i.e., no

transformation is associated with it. However, it impacts two other domains. The first one is the

lexicographic order of the tuples that differ if the fifth tuple entry is ignored. The second one is

a drastic reduction of the density of the tuple space. Let ttail be the part of the tuple following

the new partitioning entry tpart. Then, no two tuples with the same ttail but different tpart exist.

The construction of a Y-junction is internally divided into three stages, where the first two

stages result in the intermediate graphs J1 and J2, and the third one creates the final junction.

All these stages employ geometric mirroring and rotation operations of existing parts. This is

mainly realized by the graph algebra operation of conjugation (see Section 3.1.2) combined with

transfer graphs and the partitioning of nodes into the sets from the last step. The transfer graphs

describe the relation of different node sets within neighboring base elements. They determine

the nodes that coincide in the resulting graph and the way the remainder is connected. In total,

this results in 27 calls of the composition operation during the construction of a general junction

of level L starting with a base element of level L.

Stage J1: The incoming base element is mirrored and connected at the former cyan Set1 from

Figure 3.6b to create J1, i.e., these nodes of the original graph and its mirrored copy coincide in

the result graph J1, as shown in the box of Figure 3.7a. Therefore, J1 has four nodes less than the

sum of nodes of two base elements in the depicted example of Figure in 3.7a. One tuple entry is

appended in this stage whereby the nodes that only belong to the original base element receive

a leading 0 and those that are part of the mirrored base element receive a leading 1. Coincident

nodes in the rectangle (Set1) receive a leading 2. The underlying geometric transformation is

a mirroring on the xy-plane, realized by the calculation znew = (−1)tval ∗ zold. This means that

the nodes with leading 0 as well as the coincident nodes which lie on the symmetry plane do

not move. J1 represents a half junction arm. Please note the two nodes at the bottom and on

top which are marked by an arrow: These two nodes coincide in all junction arms of the final

junction and thus, lie on the symmetry axis of the junction.

Stage J2: J1 is mirrored in order to create the graph J2 which results in the graph depicted

in Figure 3.7b. Now, it contains four base elements. The sets which coincide in that stage are

highlighted by boxes. In that case, they consist of the nodes that belonged to the instances of

Set2 in the two copies of J1. Set2 formed the horizontal line at the bottom of the base element

whose number of nodes is determined by (lx + 1). Consequently, J2 has 2 ∗ J1 − 2 ∗ (lx + 1)

27

nodes. In an analogous fashion to the procedure in J1, the nodes in the original J1 receive a

leading 0, those in the generated copy a leading 1 and the coinciding nodes a leading 2. Here,

the plane for the mirroring is the xz-plane and this operation can be realized by the coordinate

transformation ynew = (−1)tval∗ yold, which again does not affect the 0-leading and the 2-leading

part that lies on the symmetry plane. J2 represents a junction arm.

Set1

(a) Graph J1, the half junction
arm, is created by mirroring
a base element and merging
the former cyan colored sets
shown in the dotted box.

Set2

Set2

(b) Graph J2, one of three junc-
tion arms, composed of four
base elements, i.e., two J1
graphs.

Figure 3.7.: A half and a complete junction arm of level 0.

Stage J3: The last stage creates two clones of the junction arm, connects them appropriately

and rotates the first cloned arm by 120° and the other by 240°. Red and orange nodes of

neighboring instances of S2 in Figure 3.7b coincide for the connection of the three arms. In that

case, the geometric operation applied is a rotation around the z-axis. Mathematically, this can

be described by applying the following matrix to the coordinates of each point:

Rz(α) =







cosα − sinα 0

sinα cosα 0

0 0 1







One tuple entry is appended during the rotation procedure which identifies the position of

the respective node within the junction. If it lies within the original arm, it has a 0 as leading

entry, and a 1 or 2 if it is located within one of the clones. Additionally, a 3 indicates that the

node is part of the coincident nodes between arm 0 and arm 1, while a 4 means that the nodes

28

belong to the coincident nodes between arm 1 and arm 2. Finally, those nodes between arm 2

and arm 0 possess a 5 at this tuple position. Nodes on the symmetry-axis of the junction have a

leading 6.

Now, J3 is constructed that consists of 434 single nodes and represents the junction with

configuration (dx , lx) = (2,6) as shown in Figure 3.8a. The final tuples are eight entries longer

than the input tuples. Hence, the tuples of the depicted level 0 junction have a length of eight,

since the construction started with a single node with an empty tuple. It is also demonstrated

that J3 consists of twelve base elements and thus, is a highly regular structure. However, the

junctions have one special property. In contrast to the order 0 super sheet that is employed to

construct the first base element, the nodes in J3 are not only arranged in a regular hexagon

mesh, but there are also some irregularities in the form of octagons as visualized in Figure

3.8b. The small insert at the bottom shows the orientation of the junction and the position

of the camera that is looking at the red point which represents the highlighted red octagon in

the junction. Three of those octagons occur within a junction at the positions where different

junction arms are connected. In the insert, the respective position of the other two octagons

is marked by green dots. The difficulty for the simulation that arises from these octagons is

explained in Section 5. They change the structure of the grid around several nodes.

(a) Level 0 junction element for constructing
an order 1 SCNT consisting of 434 nodes
with junction parameters dx = 2 and lx =
6.

(b) One of the three octagons contained within
the hexagon grid is highlighted in red. The
insert visualizes the scene from above and
marks the position of the octagons as well as
the viewing direction.

Figure 3.8.: Details about level 0 junctions.

29

3.2.2 Building tubes

In principle, the construction process of the super tubes is the same for all orders. Incoming

junction objects are used as a base for different, intermediate graphs that, in the end, are em-

ployed to build a super sheet that is rolled up to a tube. Additionally, the intermediate graphs

have the same structure, i.e., shape as those for the construction of a base element of order 0.

They are labeled with S t
1 up to S t

4. However, there are some differences for orders higher than

0, resulting from the replacement of single nodes as basic units for construction by junctions of

level (L − 1) to construct a tube of order L.

For example, in case of higher orders it is not the native distance between carbon atoms that

is relevant for the tube geometry, but the distance between centers of two junctions of level

(L − 1). Figure 3.9 shows for a (1, 3) junction of level 0 how this can be realized. The blue line

shows the distance between both centers of rotation for the two junctions. Red nodes indicate a

path between both centers which we follow to determine the distance in terms of lbase. In case of

Figure 3.9, its length equals to 7 ∗ 2 ∗ lbase and is calculated as follows: Between two connected

nodes on the blue line, the distance in horizontal direction is 2 ∗ lbase. The same is valid for

the nodes on the magenta line. Additionally, we need the distance in diagonal direction, where

jumps from the blue line to the magenta line occur. This distance is lbase. Now, following the

path determined by the red nodes from left to right, this results in (2+ 1+ 2+ 1+ 2+ 1+ 2+
1+ 2+ 1+ 2+ 1+ 2) ∗ lbase = 20 ∗ lbase for the depicted case of lx = 3. In general, this line has

the length (2 ∗ (3 ∗ lx + 1)) ∗ lbase = (6 ∗ lx + 2) ∗ lbase which solves the problem of determining

the distance between junctions of level 0. We call the half distance between two centers of level

0 junctions lbase−lvl−0.

Figure 3.9.: Determining the distance between two level 0 junctions with parameters (1,3). The dotted
blue line indicates the actual distance between two centers.

30

Now, to deal with higher orders, it is sufficient to imagine that each red node can be replaced

by an appropriate Y-junction. In case of level 1, the horizontal distance between two adjacent

nodes on one of the dotted lines is not 2 ∗ lbase but 2 ∗ lbase−lvl−0. Hence, the overall distance

between two level 1 junctions is (6 ∗ lx + 2) ∗ lbase−lvl−0 = (6 ∗ lx + 2) ∗ (6 ∗ lx + 2) ∗ lbase in that

case. Consequently, for the generic case of level L junctions we see the exponential dependency:

(6∗ lx+2)L ∗ lbase to calculate the half distance between the centers which is lbase−lvl−L and which

is then applied in the geometry calculations instead of lbase.

The way the different junctions are connected is the second difference in the construction of

higher order tubes compared to the order 0 case. Instead of directly connecting neighboring

nodes, an additional graph Gconnect needs to be introduced, that is aware of the tuples of the

nodes at the boundary of the junction. Because of the regular construction process, all junc-

tions are structurally identical and, independent of the arm that is considered, the tuples at

the boundary of the arms are equivalent at the corresponding positions between different arms

except the leading entries. This means that there is only one Gconnect for all connections that

need to be determined and considered during the super sheet construction. Such a Gconnect is

shown in Figure 3.10 from two different perspectives. On the right side, it is rotated by 90°
compared to its position between the involved junctions, while it is only slightly rotated on the

left side. The outer shape of Gconnect is a ring. One half of the nodes in this ring belongs to the

left junction and the other to the right one.

20 0

1 1

2

Figure 3.10.: Gconnect within the first step of construction S t
1.

The third change is also visible in Figure 3.10. In contrast to single atoms, the junctions are

not axisymmetric and consequently their orientation matters. For the first construction step S t
1,

this means that the second junction needs to be mirrored before moving it along the horizontal

axis and connecting it.

31

For the graph algebraic formula to calculate S t
1 these three differences result in:

S t
1 = D2 ⊗ JL ∪υ(P2 ∗ D1 ∗ Gconnect),

where JL is the highest level junction element, in contrast to the empty graph J0 for the order

0 case. The right side beside the ∪ establishes the connections between the two junctions. The

usage of D1 guarantees that the nodes at the boundary of both arms with internal number 0 are

connected. Because of the mirroring, both 0-arms are opposed to each other. The numbering

scheme for the arms is given in Figure 3.10 by the numbers in the circles.

The geometric transformation is split into two parts: The mirroring is realized by p
′

x =
(−1)tval, which mirrors the copy of JL with leading tuple entry 1 at the yz-plane, but the

initial copy with leading 0 stays untransformed. Afterward, the translation in x-direction is

performed by p
′

x = 2 ∗ lbase−lvl−L ∗ tval + px .

The other stages S t
2, S t

3 and S t
4 are adapted accordingly. There, no further mirroring occurs,

but arms with different numbers have to be connected. For S t
2, shown in Figure 3.11b, the arm

1 of the lower copy of S t
1 is connected to arm 2 of the upper copy. The Figures 3.11a and 3.11b

demonstrate graphically that the first two stages of the tube construction process, S t
1 and S t

2,

lead to graphs that are structurally identical to S1 and S2 concerning the necessary amount of

copied parts and their relations to each other.

(a) Graph S t
1 (b) Graph S t

2 (c) Graph S3
1

Figure 3.11.: First three steps for the construction of an order 1 sheet.

Figure 3.11c depicts the stage S t
3. In contrast to S3, the number of instances of S t

2 does not

depend on the junction parameter dx , but on the tube parameter d0. The correlation of d0 and

the number of copies dtube of S t
2 is simply dtube = d0. In the depicted case it is dtube = 4. Again,

the top is connected to the bottom, resulting in a structurally identical graph S t
3 compared to S3.

The graph S t
4, shown in Figure 3.12, represents a honeycomb grid formed by Y-junctions in

which ltube copies of S t
3 are aligned horizontally. There is again a direct connection of the number

of copies ltube and the input parameter l0 that is ltube = floor
�

l0
2 − 1

�

. As a consequence, it is also

32

possible to express the number of junctions at the bottom of the sheet and on the right boundary

in dependence of d0 and l0. The dotted blue rectangle at the bottom contains l0 junctions, while

the zigzag line on the right within the solid, red box consists of 2 ∗ dx junctions. Like for S4,

a cutting process removes some parts at the left and the right boundary to guarantee that only

complete (super) hexagons are part of the final sheet. The nodes to be removed are surrounded

by the orange rectangles.

We again analyze the distribution of the global indices for the individual tuples within the

super sheet S t
4 before finalizing the construction, as we did for S4 in the order 0 case. The

principles are the same with the numbering starting at the lower left and growing from left to

right in S t
2, from bottom to top in S t

3 and from left to right in S t
4. Additionally, the property can

be added that the global indices within a junction form a closed set in the sense that the global

index of the nodes contained within a junction are all smaller or all be greater than those in

another junction. One main difference is that the node count within S t
1 and S t

2 is not constant

anymore since the parameters (dx , lx) determine the junction size. This is particularly important

in S t
3 when the copies of S t

2 are connected, since the distance between the global index of the

nodes which are connected is not a constant value of 3 as in S3, but may become arbitrarily

large when increasing dx and lx .

Figure 3.12.: The graph S t
4, which is a super sheet for an order 1 tube with parameters (dx , lx , d0, l0) =

(2, 6,4, 8). The solid, red rectangle visualizes the impact of d0 and the dotted blue rectan-
gle the one of l0, respectively. Orange parts will be cut.

The last and main step for the geometry of the tube is to roll up the sheet around the x-

axis. Here, the procedure for an order 0 sheet is discussed exemplarily, since it already contains

all necessary information to comprehend the principles for the wrapping and demonstrate its

elegance, but it is more straightforward to describe and visualize. The wrapping process for

order 0 is divided into three steps that are discussed in the following.

In its initial orientation, the left side of the sheet lies on the y-axis and its bottom on the x-axis.

This is shown in Figure 3.13a. The axes are labeled at their respective end that is pointing to the

33

positive values. The blue rectangle is a schematic for the honeycomb sheet. The thickness of the

sheet is lbase. Its bottom (magenta) and its top (green) are colored to allow an easier tracking

of the single movements during the wrapping.

x

y

z
(a) The initial orientation of the sheet be-

fore starting the actual wrapping pro-
cess.

x

y

z
(b) The sheet is moved along the x-axis to

center it with the y-axis.

x

y

z

Translation
along z-axis by
radius of tube

(c) The sheet is moved along the z-axis by
the later radius of the tube.

x

y

z
(d) The sheet is rolled up around the x-

axis and centered on the y-axis.

Figure 3.13.: The four basic geometric transformations to roll up a sheet around the x-axis.

Step 1: The first step is a translation along the x-axis that aligns the middle of the rectangle

to the y-axis as shown in Figure 3.13b. To that end, the length in x-direction of the overall sheet

Lentube is calculated with the knowledge of the number of instances of S3 that is ltube and the

base length, as it has already been demonstrated by Lentube = (ltube ∗6−1) ∗ lbase. To center the

grid with the y-axis it has to be moved against the x-axis by Lentube
2 as indicated in Figure 3.13b

by the arrows.

Step 2: The next step is to move the grid along the positive z-direction. The distance by which

it is moved is the later radius r of the tube. It is dependent on the total height Heitube, i.e., extent

in y-direction, of the sheet that we can determine by Heitube = (dtube ∗ 2 ∗
p

3− 1) ∗ lbase.

Step 3: In this final step, the now correctly aligned sheet is actually wrapped around the

x-axis. Consequently, each node keeps its x-coordinate while the values for y and z may change.

Hence, the problem is reduced to a 2-dimensional problem to map each discrete point p = (y, z)

34

on a line g to a point p′ = (y ′, z′) on the orbit of a circle C with radius r and its center on the

x-axis at (px , 0, 0). The idea is visualized in Figure 3.14. For a line of length 2 ∗ π and a unit

circle, there is a straightforward solution. An angle α directly corresponds to the y-coordinate

of the point on g and needs to be plugged into the following equation that defines the position

p′ = (y ′, z′) on the orbit:

y ′ = sin(α) z′ = cos(α)

There are two green points in Figure 3.14 whose mapping is depicted. Point p1 is the point

where g contacts C as a tangent which is mapped to itself by the coordinate transformation.

Point p2 lies at a third of the length of g, resulting in the fact that the radian measure for this

movement on the orbit is 1
3 ∗ 2 ∗π. This corresponds to an angle of α = 120° that is shown in

the circle C in Figure 3.14 in red.

g

p'2=(y', z')

|g|=2*π

r = 1 p1=(0, z)
 = p'1

p2=(0.3, z)

z

y

α=120°

C

Figure 3.14.: Wrapping a line around a point on a circular path.

However, for the folding of super sheets there exist two additional problems. First, the radius

r of the circle C is unequal to 1 and hence the circumference ccircle differs from the unit circle.

Second, the length of g,
�

�g
�

�, is unequal to 2 ∗ π. As a consequence of the first problem, the

radius of the resulting tube and the heights of the input sheet need to be synchronized. Since

ccircle = 2 ∗ r ∗ π it follows that r = ccircle
2∗π and that is exactly the way how r for the tube is

determined. The height of the sheet can be calculated by the tube parameters and is equal to

ccircle (length of the red arrows in Figure 3.13c) which solves the first problem. The approach to

tackle the second problem is to map the length of line
�

�g
�

� to the range [0,2 ∗π] which is equal

to set the range of the angle α to [0,2 ∗π]. This is done by calculating α= 1
r ∗2 ∗π. It is r = pz

and piz = p jz∀pi, p j ∈ g since in the case of a non-unit circle its radius r has to be taken into

35

account for the movement on the orbit. The mapping of points pi ∈ g to elements p′i on the

orbit of C is given by:

y ′ = z ∗ sin(
1
z
∗ y) z′ = z ∗ cos(

1
z
∗ y)

The result is shown in Figure 3.13d. As visualized, the former magenta bottom line of the

rectangle stays at its position all the time, while the former green line at the top nearly does a

full move around the x-axis. Finally, it lies directly beneath the former bottom.

The actual wrapping process of a super sheet is indeed the same as for the graphene. The

only thing to change is to plug in lbase−lvl−L for the calculation of the super sheet’s width and

height and thus modifying the radius calculation of the tube.

To sum up this section: An SCNT model of order L is constructed within a two stage procedure

that first iteratively constructs a Y-junction of level (L − 1) and combines these elements in a

second step to the final tube. The shape and size of junctions are defined by a pair of parameters

(dx , lx), while the diameter and length of the tube are determined by the parameters (d0, l0).
Consequently, a specific tube of order L is unambiguously determined by the configuration:

(dx , lx , d0, l0)
L

which is the notation for this thesis. For order 0 tubes the configuration is abbreviated by

(d0, l0) since dx and lx do not have an influence in that case. The most important parameters of

all tubes employed in this thesis can be found in Appendix A, because depending on the focus

of the different chapters, different tubes are suitable for highlighting important points.

3.2.3 Correlation of the construction process and the tuples

The last section mentioned all points within the construction step that change the length of the

tuples which are required to identify a node within the structure. The construction of a base

element increases the tuple length by five. Using these base elements to create a junction adds

another three elements, resulting in eight new entries for the construction of a junction of level

L + 1 starting from one of level L. The final step, taking a junction and creating the tube, adds

36

four additional entries. The general shape of a tuple of length m that represents an SCNT of

order L can be summarized as shown by Equation 3.5.

tube part

¨

xm xm−1 xm−2 xm−3
︸ ︷︷ ︸

tube order L

junction part



















































xm−4 xm−5 xm−6
︸ ︷︷ ︸

topology junction arms level L−1

xm−7 xm−8 xm−9 xm−10 xm−11
︸ ︷︷ ︸

topology base elements level L−1
︸ ︷︷ ︸

junct ion lev el L−1

. . .

x8 x7 x6
︸ ︷︷ ︸

topology junction arms level 0

x5 x4 x3 x2 x1
︸ ︷︷ ︸

topology base elements level 0
︸ ︷︷ ︸

junct ion lev el 0

(3.5)

The first line represents the tube part of the tuple which is always four entries wide, while

the remainder represents the junction part whose length is always a multiple of eight. It can

be further divided into parts which code for a specific junction level. This regularity within the

tuple system is exploited by the data structures to store the graphs, which is presented in Section

6.

3.2.4 Terminology of super carbon nanotube models

The regular construction process results in SCNT models with self-similar parts. A very impor-

tant term in that context is a ring, which is a building block that appears recurrently. This is

shown in Figure 3.15 for a (1,4, 8,8)1 tube with 22,528 nodes. Each ring is colored differently

and vertical lines indicate a partition. One particularity of a ring is that all nodes in it have the

same leading tuple entry. Hence, we name the rings by the value of the leading tuple entries

starting with the tuples with a 0 as leading entry from the left. Consequently, a k-leading ring

is the abbreviation for «the circular part of the tube that contains all tuples with a k as leading

tuple entry». The differently colored parts in Figure 3.15 can also readily be identified in the

sheet. Although in that case the bottom and the top are not directly neighbored yet, the groups

of nodes with the same leading tuple entry are also called rings for simplicity.

By convention, the tubes are always assumed to be aligned to the x-axis after the construction

process has finished. The origin of the coordinate system lies in the middle of the tube and the

negative x-coordinates are on the left side. We see that the parameter 8 for the tube length l0 in

(1, 4,8, 8)1 results in l = 5 different rings. In general, there is the correlation l = floor
�

l0
2 + 1

�

between l0 and the number of rings as demonstrated in Section 3.2.2.

37

Figure 3.15.: An SCNT of order 1 with its different rings and their leading index.

3.3 Identifying symmetry and hierarchy

The last section mentioned that the rings are parts which reappear along the x-axis of the tube.

This indicates a kind of translational symmetry. Recalling a single hexagon like shown in Figure

3.16a, it is possible to number all nodes starting from 1 up to 6. In that case, the lower left

corner is chosen as start and the numbering is done counterclockwise. The node number 1 is

connected to node 2 on its right side and with 6 on the upper left. Now, imagine that this

hexagon is placed within a honeycomb grid as shown in Figure 3.16b. The three hexagons are

colored differently and nodes belonging to more than one hexagon are drawn in the mixture of

corresponding colors. Because of its connections to the neighboring hexagons the node 3 in the

red hexagon is also part of both other hexagons. It has position 5 in the lower green one as well

as position 1 in the blue hexagon at the top.

6

1 2

5 4

3

(a) Counterclockwise numbering of nodes
within a hexagon.

6

1 2

1 2/ 6

3/ 5/ 1 4/ 2

5 4/ 6

5 4

3

3

(b) Three hexagons and their numbered nodes
within a honeycomb grid.

Figure 3.16.: Orientation of hexagons.

38

Now, assume that these three hexagons are part of the 1-leading ring. Then, there exist

corresponding parts in the following rings as well, i.e., there is a corresponding node to the gray

node that has the same relative position in the three corresponding hexagons it belongs to. This

kind of repetition occurs in translational direction along the x-axis, since the tubes are aligned

to this axis. This kind of self-similarity is called translational symmetry. For a whole tube the

translational symmetry is visualized in Figure 3.17a for order 0 and in Figure 3.17b for order 1.

(a) Translational symmetry within an or-
der 0 SCNT.

(b) Translational symmetry within an or-
der 1 SCNT.

Figure 3.17.: Translational symmetry for order 0 and 1 tubes.

In the case of order 0, single nodes can be related by translational symmetry in the afore-

mentioned sense that the relative position of a node within its adjacent hexagons is identical

like for all the orange nodes in Figure 3.17a, lying on a line parallel to the x-axis. The first

node in this line lying closest to the view point, which is equivalent to having the most negative

x-coordinate, is called the base-symmetry node for translational symmetry. This is because all

nodes following on the orange line are embedded in the same local structure of the grid. All

other nodes on this orange line are the translational symmetric nodes or symmetric nodes if it is

clear from the context that translational symmetry is referenced. Now, imagine that the orange

line is moved clockwise by one node, so that it starts at the node which is surrounded by the

rectangle afterward. Here, the first node in the line differs in its connectivity from all the others

resulting in an anomaly. It is only connected to two other neighbors since it lies directly on the

boundary of the tube. The same may happen at the other end of the tube. These nodes that

lie in a line with symmetric nodes but possess a different number of incident edges are called

non-symmetric nodes. The symmetric nodes can easily be identified by the tuple system: The

translational symmetric counterpart of a node in a certain ring lies at the corresponding position

in the other ring. Consequently, all symmetric nodes have the same value at all tuple entries

except the leading one.

Figure 3.17b demonstrates that these principles are also applicable to tubes of higher order.

In that case, it is additionally possible to define symmetric Y-junctions as they are highlighted

39

in orange. They have the same positions and orientations within the super hexagons as their

symmetric counterparts. Following the definitions in Section 3.2, they are called symmetric ele-

ments, base-symmetry elements and non-symmetric elements, respectively. All nodes within

symmetric elements have the same value for the tuple entries xm−1, xm−2, xm−3 concerning

Equation 3.5. Furthermore, within two symmetric elements there exist symmetric nodes at

the corresponding positions that again only differ in their leading tuple entry. Independent

of the order of the tube, the amount of translational symmetry increases with the length of the

tube. This can be seen in Figure 3.17a. If two additional rings are appended to the existing tube,

the line of symmetric orange nodes will also receive two new members. The same happens for

symmetric junctions when increasing the length of the tube in Figure 3.17b.

A second type of symmetry is visualized in Figures 3.18a and 3.18b. The pattern of hexagon

orientation not only repeats when following the length of the tube along the x-axis, but this also

happens when following the diameter around that axis. Recapitulating the numbering of nodes

within hexagons in Figure 3.16b, we see that all orange nodes in Figure 3.18a belong to two

different hexagons. They always occupy position 1 in one hexagon and position 5 in the other

one. This type of symmetry is called rotational symmetry, since it can be resolved by rotating

around the x-axis.

(a) Rotational symmetry within an order
0 SCNT.

(b) Rotational symmetry within an order
1 SCNT.

Figure 3.18.: Rotational symmetry for order 0 and 1 tubes.

As in the case of translational symmetry, it is possible to determine the rotational symmetry of

two nodes by looking at their tuples. Since the second leading entry determines the placement

of a node along the y-axis in the former sheet, it also determines the position on the circular

arc around the x-axis. Several nodes lie on the same line around the x-axis of a tube if and only

if they were stacked over each other in the original sheet. Therefore, rotationally symmetric

nodes only differ in their second leading tuple entry. The base-symmetry node is defined as the

symmetric node within the circular arc that has the lowest entry at its second leading entry.

40

As in the translational case, the concept of rotational symmetry can be extended to whole sym-

metric elements as demonstrated by Figure 3.18b. All highlighted junctions and their adjacent

ones have the same orientation compared to their symmetric counterparts.

These two kinds of symmetry are called structural symmetry within this thesis. This symmetry

has the important property that it remains constant even if the tube is deformed, since it is

based on the structure of the neighborhoods and the orientation of the hexagons. Assuming, for

example, that the tube is stretched or twisted, then the aforementioned relations still hold. This

is a very important property of SCNTs and is exploited in the implementation of the graph data

structures and the solvers of this thesis.

Finally, we consider the hierarchy within SCNTs. The regular construction process leads nat-

urally to a very hierarchical structure that can be traversed from top to bottom as shown for an

order 2 tube by Figures 3.19a until Figure 3.19d.

(a) Total view of an order 2 SCNTs.

(b) Zoom to level 1 junctions.

41

The tube is composed of many identical level 1 junctions. They consists themselves of smaller

level 0 junctions which are all equal among themselves. The lowest level is composed of the

single atoms. The hierarchy can also be resolved within the tuple system. Recalling the tuple

structure of Equation 3.5, the tube part of the tuple allows the determination of the positions

of the highest level junctions within the tube in Figure 3.19a. Afterward, the junction part

is processed level by level, so in blocks of length eight, to walk through the remaining levels

of the hierarchy. Since each junction level has the same configuration, the tuple space within

the different levels is structured and occupied very similarly, resulting in regularities within the

distribution of the occurring tuples. This is another important property.

42

(c) Zoom to level 0 junctions.

(d) Zoom to the level of single atoms.

Figure 3.19.: Different levels of hierarchy in an order 2 tube.

43

4 Visualizing Super Carbon Nanotubes and the Result of Simulations

The framework developed in this thesis also includes the visualization of the simulated SCNTs.

An early version of this visualization software was published in [22]. The visualizer employs the

principle of instanced rendering. This enables it to cope with a large number of nodes within

the graphs rendered. Visualizing the tubes allows visual debugging, i.e., errors within the con-

struction process or implausible simulation results become obvious quickly without analyzing

large vectors with position or connectivity data. The visualizer also allows to highlight struc-

tural properties like symmetry or hierarchy by exploiting the tuple system. Thus, the software

presents another elegant application of the tuple system and shows that its use is not limited to

the construction and simulation of SCNTs. The applicability of the included visualizer is demon-

strated by the fact that all pictures and videos of SCNTs1 for this thesis were generated with

it.

4.1 Principles of instanced rendering

Instancing was integrated into the OpenGL-API in 2009 in version 3.3 [57, p. 128 - 139].

The technique allows to draw several elements with the same geometry with slight differences.

A forest is a sample scenario that, in principle, consists of few different base trees that often

reappear in the scene at varying orientation, scaling and shading. Instanced rendering enables

a reduction of the OpenGL API-calls by separating the geometry of an object from its position and

orientation in the scene. Thus, the creation of n instances of an object is possible by using one

instanced draw-call. This drastically reduces the CPU load since OpenGL-API calls are costly2.

The host only needs to pass the triangle mesh of the object itself and additional information

like the position of the models, their material etc. in separate buffers to the video memory

(VRAM) of the graphics card and not all triangles for each instance of an object separately when

instanced rendering is employed.

The visualizer targets the rendering of graphs. Hence, it only needs to cope with two different

kinds of objects: Spheres that represent the nodes of a graph and lines to draw the edges. This

also motivates the decision to employ instanced rendering since only one model for spheres is

used and repeated several million times within the scene. The graph is rendered in a two-step

approach. First, the connections between the nodes are drawn as GL_LINES, a primitive within

OpenGL. The second step adds the spheres modeled by a triangle mesh. Model transformations

are applied within GLSL-vertex-shader (OpenGL shading language) programs by the GPU (for

1 Some examples can be found online: https://www.youtube.com/channel/UCxKMz5tvGWFjMIYdyB0-_9Q
2 The same holds for DirectX.

45

https://www.youtube.com/channel/UCxKMz5tvGWFjMIYdyB0-_9Q

GLSL refer to [58]). The GLSL code conforms to version 3.3, which allows all graphics cards

compatible with the OpenGL 3.3 specification to execute the renderer (this version is required

to use instanced rendering anyway). The GLEW library 3 is employed in the 64 bit version to

create, compile and bind the shader programs.

Work load is moved from the CPU to the graphics card by the usage of instancing combined

with hand written shader code. This makes sense, since even the integrated graphics chips of

modern mobile processors offer enough performance to render relatively large SCNT models

with the presented renderer (see Section 4.3). The calculation of illumination is also done

by shading programs. There are two different shaders for the two distinct components of the

model. The one for spheres is based on the Phong-shading-model [59], while the lines are drawn

in a predefined color. Phong-shading consists of three different contributions of illumination

called ambient, diffuse and specular with increasing complexity for their calculation in this

order. The latter two contributions can be deactivated in the shader programs to improve the

performance on slower graphics cards.

4.2 Features of the visualizer

The main feature of the visualizer is an adaptive management of model quality. The average

frame rate is measured for a fixed time-interval. If it decreases under a predefined threshold,

the quality of the sphere models will be reduced. During its initialization, the visualizer reads

the sphere model in five different levels of detail starting from 15 triangles up to 720 which

correspond to five different quality levels of the renderer with quality level 5 employing the

sphere model consisting of 720 triangles. Thus, a change in rendering quality only involves the

replacement of the small triangle model in the graphics memory, while all other information,

i.e., edges, colors or transformations can be kept. Rendering of spheres can be skipped at all

for slow graphics cards or very large graph models and only the edges are drawn. This kind of

rendering is called quality level 0. Figure 4.1 compares quality level 5 with quality level 1 and

demonstrates that even level 1 is sufficient to identify the geometry and to investigate the SCNT

models.

The visualizer also allows an arbitrary rotation of the scene and a zooming to parts of interest.

It can also highlight several parts or properties of interest like specific elements within the tube,

symmetry or hierarchy relations between elements (see for example the figures in Section 3.3) or

nodes that are influenced by boundary conditions during the simulation by exploiting the tuple

system. The tuple system is a very elegant way to identify such properties without creating

additional information or analysis. Additionally, the visualizer is capable of exporting graph
3 http://glew.sourceforge.net

46

http://glew.sourceforge.net

(a) Part of an order 1 graph rendered in quality level 5.

(b) Part of an order 1 graph rendered in quality level 1.

Figure 4.1.: Comparison of two different renderer quality levels.

47

models to the vtk-format that is, amongst other formats, processable by the tool ParaView4.

This software may be employed for further investigation of the structure.

Finally, the visualizer can cope with multiple simulation steps and display them successively

allowing the creation of simulation videos.

4.3 Rendering performance

Two tubes are visualized on two different graphics cards, the mainstream desktop card RX480

with 8 GB VRAM from AMD and the integrated Intel HD4000 in the mobile CPU i7-3520M,

which represents the lower bound of available graphics solutions, to evaluate the performance

of the renderer. The renderer is configured to color the rings in the respective tubes in different

colors to enable all of its features. The scene is visualized in FullHD resolution and the camera

is oriented in that way that both ends of the tube have contact to the boundary of the screen,

so that all nodes are in the field of view. The frame rate is calculated as the median number

of frames per second (fps) over 15 seconds and a minimum number of about 10 fps is judged

sufficient for comfortable use of the renderer. Table 4.1 shows the performance results.

Table 4.1.: Summary of the frames per second achieved for two tubes at varying quality levels L0 to L5.
level 1 (1, 11,10, 8)1 tube, 8.2 ∗ 104 atoms

L5 L4 L3 L2 L1 L0
RX480 60.7 166.8 251.6 480.0 829.2 3098.4
HD4000 7.1 23.5 51.1 74.3 125.8 203.9

level 2 (1, 3,6, 6)2 tube, 1.2 ∗ 106 atoms
L5 L4 L3 L2 L1 L0

RX480 4.6 13.3 18.8 38.4 72.7 511
HD4000 0.6 1.7 4.1 6.2 13.5 28.4

The RX480 has no problems for the smaller tube at the different quality levels at all and even

the HD4000 can cope with the second highest quality level. For the large (1, 3,6, 6)2 tube, the

RX480 reaches the target of 10 fps from the second highest quality level on. It has to cope with

8.5 ∗ 108 triangles on quality level 5 and reaches nearly 5 fps while on quality level 4, there

are still 2.8 ∗ 108 triangles that have to be processed. But the scene can be also be investigated

with the HD4000 at a lower quality level which would be sufficient for visual debugging and

checking whether the geometry is plausible.

Altogether, the integrated visualization tool allows a convenient investigation of the models

even on slow graphics cards without the need of writing data to disk or to use additional tools.

The properties of the tuple system are exploited to enable structure related highlighting that

simplifies the evaluation of the models. The renderer can also be employed to render general

4 http://www.paraview.org/

48

http://www.paraview.org/

graphs when its interface is used to transfer the graph data. This enables its integration in other

codes as well. The code is available upon request.

49

5 Atomic-Scale Finite Element Method

Structural analysis of SCNTs involves the solution of equation systems with the so-called stiffness

matrix. One contribution of this thesis is the development of a matrix-free approach to solve

this system: The stiffness matrix is employed as operator in an iterative solver but need not be

assembled. A detailed description of the overall numerical approach and of the atomic-scale

finite element method can be found in [34]. The following Section 5.1 describes the algorithm

on a high abstraction level. Mechanical and mathematical details of the method are explained

in Sections 5.2 and 5.3 focusing on those properties which motivate a matrix-free approach and

enable an efficient parallelization of the resulting implementation. Matrices are represented by

capital letters in bold (e.g. A, K)1, vectors in bold lower case letters (e.g. x, b) and scalars by

lower case letters (e.g. n, α).

5.1 The flow of the algorithm

This section briefly summarizes the overall procedure that is applied to simulate the mechan-

ical behavior of SCNTs. The pseudocode for the general method which is employed in the

simulations is shown in Algorithm 1.

Algorithm 1 General simulation algorithm

1: for s=1, STEPS do
2: Prepare next step
3: for i=1, MAX do
4: instantiate equation system
5: solve equation system
6: if CONVERGENCE then
7: stop inner loop
8: end
9: update global values

10: end

This procedure is referenced as the Newton-Raphson method in the following and it is able to

solve a non-linear system of equations.

We see two nested loops which have a predefined maximum of steps called STEPS and MAX.

The outer loop iterates over the single simulation steps. If loads are applied to the tube that

would heavily deform it, they must be applied step by step. Otherwise the solution of the

1 An exception are the element stiffness matrices introduced in the following with lower case bold letters to be
conform with the literature.

51

arising equation system might fail because of numerical instabilities. Consequently, the second

line determines the changes in the loads for the next step, before the inner loop starts. Here,

a system of linear equations is instantiated depending on the actual positions of the atoms

within the model and solved in the following statement. Afterward, it is checked whether

the result satisfies a predefined convergence criterion. If the criterion is fulfilled, the resulting

deformation of the tube will be integrated in the actual atom positions and the next step can

be processed. If the result is not accurate enough, the equation system will be re-instantiated

with consideration of the calculated atom movements for the current step so far. So, in general,

the resulting movements from the inner loop become smaller with each iteration for a feasible

configuration. In principle, the maximum number of iterations for the inner loop MAX is optional

if the calculation converges, but helpful for non-converging calculations.

In this thesis, we mainly ignore the outer loop and only instantiate and solve the linear equa-

tion system within the inner loop, i.e., we are not dealing with a non-linear problem. The

exceptions are explicitly referenced as multi-step simulations where a non-linear equation sys-

tem is solved.

5.2 Governing equations and linearization

Some short introductions to the employed simulation algorithm have already been given in [23]

and [27] and we employ the definitions and nomenclature of these publications. We describe

the whole Newton-Raphson method enabling the solution of non-linear equation systems also

we only instantiate the linear equation system in the inner loop once and solve it unless stated

otherwise.

The models of the simulated SCNTs are composed of n indexed nodes. Each node is associated

with its spatial position xi which results from an embedding of the respective material points Xi.

These current positions of the nodes are determined by the sum xi = x0
i +∆xi, of their initial

position x0
i and the actual displacement of the node ∆xi, resulting from inner and outer forces

acting on the nodes. There are three degrees of freedom for every node which result from the

displacements of the nodes in the three spatial directions.

The internal energy U int is the sum of the potentials of interactions of adjacent atoms, derived

from existing generic force fields. Given a conservative external potential, the symmetric stiff-

ness matrix K (x) is given as the Hessian matrix of the second derivatives of the internal energy

w.r.t. the displacement of the atoms. The residual vector r (x) is given by the negative of the

first derivative of the total energy U , which is the difference of the external forces f (x), e.g.,

some external tension at the ends of the tube, and the first derivative of the internal energy U int.

In static equilibrium, a local minimum of the total energy is attained, i.e., ∂ U
∂ x (x) = 0. In the

Newton-Raphson algorithm, we obtain the Taylor expansion ∂ U
∂ x (x) = −r+K∆x+o

�

‖∆x‖
�

with

52

K := K
�

x0
�

and r := r
�

x0
�

. Thus, an estimate for ∆x can be obtained from solving the linear

system of equations

K∆x= r (5.1)

This estimate is also called the solution of the linearized minimization problem. In the most

cases within this thesis we are concerned with the calculation of the displacement ∆x, i.e., a

single iteration step of the Newton-Raphson algorithm is performed. Nevertheless, there are

some exceptions, as already mentioned in Section 2.3, where several steps were calculated

within the dockSIM framework.

As U int is invariant with regard to rigid body motions and K singular, suitable boundary con-

ditions must be incorporated into the system of Equation (5.1) to regularize K and to obtain a

unique estimate for the displacements.

We want to consider the case of performing a relaxation on an SCNTs for a closer look on the

boundary conditions. From a mechanical point of view, the problem comes from the fact that

the SCNTs can move as a reaction to the load without deformation. It is important to pin some

of the nodes to prevent such unwanted movements. This problem is shown for the simplified

2D case in Figure 5.1a through Figure 5.1d. A rigid rectangle can move in the xy-plane in x-

and y- direction and can be turned by a turning movement as indicated by red arrows in Figure

5.1a. The number of possible movements is reduced to two by employing one floating bearing

on the left side, i.e., movements in one translational direction are prevented but still possible

in the remaining translational direction and turning movements are still allowed as shown in

Figure 5.1b. If now the same node is additionally secured against translational movements in x-

direction by a second floating bearing, as done in Figure 5.1c, only the turning moment remains

for the plane. This last possibility can be removed by applying a third floating bearing at the

right side as demonstrated in Figure 5.1d. In general, three floating bearings are required to

prevent unwanted movements in the 2D case [60, p. 117-121].

(a) Rigid body in the
plane without bear-
ing.

(b) Rigid body in the
plane with one
floating bearing.

(c) Rigid body in the
plane with two
floating bearings.

(d) Rigid body in the
plane with three
floating bearings.

Figure 5.1.: Correct applications of bearings to immobilize a plane against rigid body movements.

Now, the analogous problem needs to be solved for SCNTs in three dimensions. In that case,

not only three movements are possible but there are six in total with three possible translations

53

(one along each axis) and three turning moments. Six different bearings are required to appro-

priately mount the tube as visualized in Figure 5.2. Here, one bearing attached to the node at

the upper left mounts the respective node against movements in all three spatial directions. The

opposite node at the bottom left is not allowed to move in y-direction. Finally, a third bearing at

the top right node prevents movements in y- and z-direction. This is one possible combination

of bearings to avoid unwanted rigid body motions, resulting in a regular stiffness matrix.

y

y, zx, y, z

Figure 5.2.: Appropriately mounted SCNT with six bearings to prevent rigid body movements.

The boundary conditions resulting from mounting the tube are given as Dirichlet conditions

∆xi = ūi, which prescribe the displacement of material points Xi. Mathematically, this means

that the corresponding lines and unknowns in the matrix K are decoupled from the remainder

of the equation system. Assume we want to set a Dirichlet condition for the second degree of

freedom for the node with index 1 within the model to simulate, i.e., a bearing in y-direction is

applied as depicted in Figure 5.2 on the bottom left.

This procedure is shown in Equation 5.2. The first three rows of the matrix and in the residual

vector belong to the node with index 1 and the second line to its second degree of freedom.

These relations are explained in detail in the next section. The corresponding entry in the

residual vector is set to zero to prescribe a movement of 0, i.e., fix the node in y-direction,

Additionally, all entries in the corresponding row and column of the matrix are set to 0 except

the entry in the second column which is set to 1. This guarantees that the second entry in ∆x is

54

evaluated to zero during the solution process and, thus, there is no movement of these nodes in

this direction.



























k1,1 0 k1,3 k1,4 k1,5 k1,6 · · · k1,n−2 k1,n−1 k1,n

0 1 0 0 0 0 · · · 0 0 0

k3,1 0 k3,3 k3,4 k3,5 k3,6 · · · k3,n−2 k3,n−1 k3,n
...

... · · · · · ·
...

...

kn−2,1 0 kn−2,3 kn−2,4 kn−2,5 kn−2,6 · · · kn−2,n−2 kn−2,n−1 kn−2,n

kn−1,1 0 kn−1,3 kn−1,4 kn−1,5 kn−1,6 · · · kn−1,n−2 kn−1,n−1 kn−1,n

kn,1 0 kn,3 kn,4 kn,5 kn,6 · · · kn,n−2 kn,n−1 kn,n



























︸ ︷︷ ︸

stiffness matrix Kn×n

×



























x1

x2(= 0)
x3
...

xn−2

xn−1

xn



























︸ ︷︷ ︸

displacement ∆xn

=



























r1

0

r3
...

rn−2

rn−1

rn



























︸ ︷︷ ︸

residual rn

(5.2)

Neumann conditions fi are the second type of boundary conditions that correspond, in this

context, to the external forces. We assume that the external forces acting on a given node

are invariant with regard to deformations of the structure. One example of external forces is

tension. In that case, a movement for specific nodes, e.g. at the boundary, is prescribed by

adding the value to the respective entries of the residual r.

5.3 Implementation in the context of the finite element method

The formalism of the finite element method (FEM) is employed to construct the global vari-

ables, namely the stiffness matrix K and the residual vector r. Element stiffness matrices ke and

element residual vectors re are computed and assembled into the global variables. The total

internal energy U int is given as the sum of the internal energies U int,e of the elements.

The internal energy is exclusively based on the bonded interaction forces modeled by the

Dreiding potential, a generic force field introduced in [38], while non-bonded interactions,

such as van-der-Waals forces, are ignored as well as interactions involving atoms located more

than three atomic bonds apart from each other. The minimum number of edges separating two

nodes ni and n j in the graph is denoted by the distance d
�

i, j
�

. A node n j is said to belong to the

neighborhood Ωe
i of ni if d

�

i, j
�

≤ 3. For a grid in which each node has at most three outgoing

edges, like it is the case for the carbon grid within an SCNT model, this means that each node

has at maximum three different neighbors, resulting in the structure for neighborhoods that is

shown in Figure 5.3a. A local index j′ for the 22 nodes in the neighborhood of a reference node

ni is introduced giving rise to a function σ :
�

j′, i
�

7→ j, i.e., σ returns the global index of node

n j that lies on the local index j′ ∈ [1,2, . . . , 22] in the neighborhood of the reference node ni.

The number of nodes in the neighborhood of nodes lying on the boundary of the grid may be

lower. If all possible 22 neighboring nodes exist for a certain node ni, i.e., each of the 22 local

55

indices in Figure 5.3a is assigned to a global index, the neighborhood of ni is called complete.

Consequently, all other neighborhoods are called incomplete neighborhoods. Following the

terminology of [34, p. 980], the nodes j′ = [2,3, 4] are the first, j′ = [5, . . . , 10] are the second

and j′ = [11, . . . , 22] are the third neighbors, respectively.
B = 2

B = 3

...

P = 2 P = 3 P = 4 · · ·

1

2
3

1

2

3

4

5

1 2

3 45

6

7

1

2

3

4

1

2

3
4

5
6

7

89

10

1

2

3
4

5

6

7

89

10

11

12 13

14

15

16

17
18

19

20

21

22

(a) The neighborhood Ωe
i of the reference node

i (local index j′ = 1) contains all the atoms
present in the finite element (taken from
[34]).

x

y

z

riji

j

θijk

i

j

k

atom✛

bond ❩❩⑦
ϕijkl

i

j

k
l

ψijkl

i

j

kl

χijkl

i
j

k

l

(b) The three atomic kinematics of the Dreiding
potential. Note that, in this context, i := ni,
j := n j, k := nk, l := nl (taken from [34]).

Figure 5.3.: Details of the Dreiding potential.

These neighborhood objects correspond to the finite elements of the atomic-scale FEM

(AFEM). Hence, there are n finite elements ei with i identifying the reference node in an

SCNT with n nodes. Each finite element e contributes one element stiffness matrix ke to the

global matrix K, and one element residual vector re to r. The components of the element stiff-

ness matrix are computed as sum of the second derivatives of the 2-, 3- and 4-atom interaction

energies with regard to the displacement of the reference node ni and the displacements of the

other up to three nodes n j, nk, and nk that may participate in these interactions. The interaction

energies are given by the Dreiding potential already mentioned. Figure 5.3b shows the three

types of interactions of the Dreiding potential and their respective kinematic values: the bond

length r (2-atom interaction), the valence angle θ (3-atom interaction) and the dihedral angle

ϕ (4-atom interaction). The internal energy U int,e related to one element e is given by the sum

of Equation 5.3 [34, Eq. 20]. The potential functions are defined in Table I on p. 978 of [34]

and omitted for brevity.

U int,e = − f1∗∆x1+
∑

L e
1 j

V1 j(r1 j)

︸ ︷︷ ︸

bond length

+
∑

L e
1 jk

V1 jk(θ1 jk) +
∑

L e
i1k

Vi1k(θi1k)

︸ ︷︷ ︸

valence angle

+
∑

L e
1 jkl

V1 jkl(ϕ1 jkl) +
∑

L e
i1kl

Vi1kl(ϕi1kl)

︸ ︷︷ ︸

dihedral angle
(5.3)

Here, − f1 denotes the external force that is applied to the reference node n1. It can be

seen that there are several instances of bond length calculations within the sum. The L e
i j[kl]

symbols denote small sets of possible configurations for the different summands of the Dreiding

56

potential. One very important fact of the finite element approach of Wackerfuß is that although

the finite elements overlap, i.e., nodes of Ωe
i may also be contained in Ωe

j of another node n j, the

calculation of the potential assures that contributions are not considered multiple times. This

is reached by only taking the influence of the neighboring nodes in Ωe
i on reference node ni

into account and not vice versa ([34, p. 981]). So, there are exactly three possible bond length

calculations within the finite element. With the local node indexing this results in the list:

L e
1 j = {(1, 2), (1,3), (1,4)} ([34, p. 984]), with the reference node always being the first entry.

Two cases have to be distinguished for the valence angle. In the first case, the reference node n1

is the start of the chain with length three, resulting in six possible contributions to the valence

angles like (1,2, 5) or (1, 4,10). In the second case, there are three valence angles where n1

lies in the middle of the chain: L e
i1k = {(2, 1,3), (3, 1,4), (4, 1,2)}. For the dihedral angle

there is also the case that n1 is the first node in the resulting 4-node chain with
�

�

�L e
1 jkl

�

�

� = 12

and the second case that it is the second node in the chain with
�

�

�L e
i1kl

�

�

� = 12. This gives 36

possible contributions to the sum of the Dreiding potential in total. It must be determined

which contributions actually are present for each element e (for the complete list see ([34, Eq.

24/25]).

Consequently, each contribution ke to the stiffness matrix related to a finite element e with

reference node ni with its local index 1 inside the finite element is defined as the second deriva-

tive of the Dreiding potential for this element: ke = δ2U int,e

δx1δxβ
with β = [1, . . . , 22], which gives:

ke =
h

ke
1,1 =

δ2U int,e

δx1δx1
, ke

1,2 =
δ2U int,e

δx1δx2
, · · · , ke

1,22 =
δ2U int,e

δx1δx22

i

. Each of these 22 terms ke
1, j′ represents

a 3 × 3 matrix which is called stiffness contribution in the following. Hence, in total ke is a

3× (22 ∗ 3) rectangular element stiffness matrix that we call stiffness contribution line or just

contribution line if it is clear that the stiffness matrix is referenced.

As a result of these definitions, only those 3 × 3 blocks in K corresponding to a ke
i, j′ with

σ
�

j′, i
�

∈ G can assume non-zero values. Thus, most entries in K vanish and no row may

consist of more than 3 ∗ 22 non-zero values. All summands needed for a given component of

the global stiffness matrix ki, j′ are present in the same element stiffness matrix ke. Therefore,

the parts of the global stiffness matrix associated with the respective elements are mutually

independent. This is an important property which allows an efficient parallel realization of

the matrix-free solver. Additionally, all boundary conditions considered in this thesis can be

readily included at the element level and thus, do not alter the validity of the results of the

aforementioned exposition with regard to the computation and assembly of the stiffness matrix.

Some global indices appear in several positions of the neighborhood, i.e., more than one local

index j′ may be associated with a global index j as the function σ is generally not injective

for the case of SCNT graphs. Hence, the assembling algorithm has to avoid double counting

of contributions. To that end, the neighborhoods store a vector which contains indices of the

neighborhood nodes but removes duplicates. As stated above, the algorithm limits non-zeros

57

per row to 66, but the actual number is still somewhat lower. Figure 5.4a demonstrates this

fact. The neighborhood of node (1, 1,0, 0) shows that there are two paths that lead to node

(1, 2,0, 1) which are highlighted in red and blue. Consequently, (1,2, 0,1) appears two times in

the neighborhood. The same holds for the nodes (0,1, 0,1) and (1, 0,0, 1) which can be reached

by two paths from (1,1, 0,0). All other nodes can only be reached by one path. Altogether, the

neighborhood of (1,1, 0,0) consists of 19 different nodes. This is the case for all nodes with a

complete neighborhood in a honeycomb grid that do not lie at the boundary of the grid.

0,0,0,1

0,0,1,0 0,0,1,1

0,1,0,1

0,1,1,0 0,1,1,1

0,2,0,1

0,2,1,0 0,2,1,1

1,0,0,0 1,0,0,1

1,0,1,0 1,0,1,1

1,1,0,0 1,1,0,1

1,1,1,0 1,1,1,1

1,2,0,0 1,2,0,1

1,2,1,0 1,2,1,1

2,0,0,0

2,1,0,0

2,2,0,0

(a) An excerpt of a honeycomb grid with tuple-
based node labeling. Two paths of length
3, marked in red and blue, lead from
(1,1, 0,0) to (1, 2,0, 1).

0,0,0,1

0,0,1,0 0,0,1,1

0,1,0,1

0,1,1,0 0,1,1,1

0,2,0,1

0,2,1,0 0,2,1,1

1,0,1,0 1,0,1,1

1,1,0,0 1,1,0,1

1,1,1,0 1,1,1,1

1,2,0,0 1,2,0,1

1,2,1,0 1,2,1,1

2,0,0,0

2,1,0,0

2,2,0,0

2,2,0,2

2,2,0,1

2,2,0,3

2,2,0,0

(b) An excerpt of a honeycomb grid containing
an irregularity with tuple-based node label-
ing. 20 different nodes lie in the neighbor-
hood of node (1, 1,0, 0).

Figure 5.4.: Nodes appearing several times within the same neighborhood.

The level 0 junction elements are a special case. As demonstrated in Section 3.2.1, connecting

different junction arms results in irregularities within the hexagonal grid and three octagons are

introduced per junction. A schematic grid for such a situation is shown in Figure 5.4b. Focusing

again on (1, 1,0, 0), we see that (0, 1,0, 1) and (1,0, 1,0) can be reached by two different paths

of length 3, while all other nodes are reachable from (1,1, 0,0) via a unique path. From this fol-

lows that nodes adjacent to an octagon may have up to 20 different nodes in their neighborhood.

This is also the upper limit within all possible SCNTs, since even the topology of the smallest

possible junction prevents that a node can be adjacent to more than one octagon. Hence, no

row can have more than 20 ∗ 3 non-zero entries within the stiffness matrix of an SCNT model.

Furthermore, these octagons prevent a regular stencil to run over the model which would be

conceivable for a regular honeycomb sheet of order 0.

Finally, we consider the structure of the stiffness matrix itself. To that end, Figures 5.5a -

5.5d plot the non-zero patterns resulting from tubes of different order reaching from 0 up to 3.

Each point in these plots represents a 3× 3 stiffness contribution whose position in the matrix

corresponds to the global indices of the two involved nodes. In all cases, the picture is zoomed

to the diagonal of the matrix because otherwise all pictures would be just white or look like a

58

single diagonal because of the high sparsity and large total size, like, e.g., 7 ∗ 107 rows for the

matrix of Figure 5.5d.

(a) Sparsity pattern of stiffness matrix K for or-
der 0 tubes, zoomed to diagonal.

(b) Sparsity pattern of stiffness matrix K for or-
der 1 tubes, zoomed to diagonal.

(c) Sparsity pattern of stiffness matrix K for or-
der 2 tubes, zoomed to diagonal.

(d) Sparsity pattern of stiffness matrix K for or-
der 3 tubes, zoomed to diagonal.

Figure 5.5.: Sparsitiy pattern of the stiffness matrix for tubes of orders 0 - 3.

Mainly three bands are noticeable for the matrix resulting from a tube of order 0 that rep-

resent the distance of nodes belonging to one neighborhood. The upper and lower bands can

be explained by the line of the original grid where top and bottom nodes are connected to cre-

ate the tube. Reference nodes lying at the former top of the sheet have a global index that is

considerably higher than those of the bottom nodes. The main parameter that influences the

structure of the bands is the chosen diameter d0 for the tube. A higher diameter increases the

distance between the global indices at the top and at the bottom causing a larger gap between

the entries directly around the diagonal of the matrix and those within the two bands.

The matrices for the tubes of order 1, 2 and 3 look very similar near their diagonal and

reflect the high self-similarity and hierarchy of SCNTs also on the matrix level. The pictures

59

can not show hat the number of entries lying farther away from the diagonal increases with the

order. This also means that the entries are spread more widely over the rows of the matrix.

In the higher order case, the configuration of the junction elements also becomes relevant. As

discussed in Section 3, the maximum distance between the global indices of connected nodes

grows with the parameters dx and lx of the junctions since only one junction can be the direct

neighbor to another one in terms of global indices. Thus, high values for (dx , lx) also increase

the grade of distribution of the non-zero entries within the stiffness matrix.

The order in which the global indices of the neighbors of a reference node are assigned to

the local indices [1,2, . . . , 22] is not identical to the arrangement of their respective column

positions from left to right in the matrix for tubes of all orders. This means that processing

the contributions in the order of the neighborhood results in many jumps within the rows of K,

which is not amenable to performance in multicore environments.

60

6 Graph Data Structures

In this chapter, we develop the underlying graph data structures which are employed within the

simulation framework presented in this thesis. We demonstrate how they exploit the symmetry

and hierarchy in the SCNT graphs, thus enabling a memory-efficient storage even of large graphs

and providing fast access to the information stored.

In principle, the creation of an SCNT graph model can be divided into two different steps. The

first one is the actual graph construction phase in which the geometric algebra operations are

performed that were described in Section 3. From the data point of view the node and edge set

need to be stored in what we call NodeMap and EdgeMap and the graph algebra operations can

be performed on these sets. The main challenge during the construction phase is to assign each

node, or to be more exact each tuple, a unique index value to avoid repeating storage of tuples

and to uniquely identify the nodes. This index is called the serial index. It is used to access the

nodes within the NodeMap and their position data. Additionally, the edges are represented as a

pair of two serial indices with the first one identifying its start node and the second one its end

node. In terms of implementation, the serial index is the key for the registered values within

various map structures. Although it is possible to directly employ vectors that represent the

tuples as keys as each tuple is unique, measurements in the following Section 6.1.3 demonstrate

that this option leads to a drastic slowdown of the program performance. Moreover it has a high

memory overhead which makes this approach infeasible. Hence, it is required to find a mapping

M : Nm
≥0→ N≥0 of the tuples to a corresponding serial index.

The mapping must have several properties to be suitable for the application. First of all, the

serial index assigned to a tuple must be unique to avoid conflicts within the data structure.

Additionally, the mapping should be resolvable with low effort to allow efficient access to the

data. The maximum size of the serial indices is determined by the range of unsigned 64 bit

integer values, i.e., there must be no case where the mapping leads to indices exceeding this

range. In that context, the term index space should be defined. It includes all values that lie

between the lowest and the highest serial index which are assigned by the mapping M . If one

of the values within this range is actually used by M as index for a tuple, this index is called

occupied. The top index of an index space is determined by the highest occupied index.

We complete the description of the SCNT model creation process before discussing the details

about possible mappings. Additional information has to be created after the graph construction

phase finishes to enable an efficient simulation based on the graphs. This second phase is called

data creation phase. Its first task is the assignment of the global index already defined as a

second type of indexing for actually existing and registered nodes. In contrast to the serial

index, it is always dense and has a range from [1,2, . . . , n] with n being the number of nodes

61

in the graph. This procedure is called flattening since the nodes are also identifiable by this flat

global index which cannot directly be mapped back to the original tuples afterward. The global

index is only set for the final tube and reflects the relation of nodes to the entities, i.e., rows

and columns of vectors and matrices within the solution process of the equation system. Finally,

neighborhoods are constructed for all nodes ending the data creation phase of the SCNT model.

In the following Section 6.1, three types of mappings for tuples are explored. They are inte-

grated in three different graph classes and implement a common interface for graph data types.

The mappings employed differ in their computational requirements, their top index in the index

space and their binding to the structure of SCNTs. Section 6.2 demonstrates how the serial

indices can be combined with the knowledge about SCNT models to implement a compact and

efficient container for the edges of the graph.

6.1 Different approaches to map tuples

This section introduces the TreeGraph (Section 6.1.1) and the HashGraph (Section 6.1.3) as two

graph data structures that internally employ two different kinds of mappings M : Nm
≥0 → N≥0

with a generalizable approach. They are called the tree-based flattening and perfect spatial

hashing. Section 6.1.2 presents the IndexGraph as a third option which uses a custom-tailored

mapping. The three approaches are compared in Section 6.1.4 regarding their top index and

their access performance to the information.

6.1.1 Tree-based flattening (TreeGraph class)

A straightforward way to map a tuple to a serial index is to treat the tuples as leaves of a tree,

which is based on the tuple extent of the respective graph. The tuple extent is computed as a

by-product of the graph construction phase. This concept called tree-based flattening is realized

in the TreeGraph class. Each entry of the tuple extent corresponds to one level of this tree. The

number of branches to the next level is determined by the entry in the extent at the respective

position. The tuple extent is processed from the leading entry to the lowest entry. So, the first

level of the tree corresponds to the leading entry, while each leaf corresponds to one tuple. The

set of all leaves contains all tuples of the tuple space. The intermediate nodes are labeled with

values which the tuple can attain at the respective entry. All leaves are numbered with a leaf

number from left to right. This leaf number corresponds to the serial index assigned by TreeGraph

. The number of leaves can directly be calculated by the product of all entries of the tuple extent.

These concepts are visualized in Figure 6.1 for an exemplary tuple extent of (3, 3,4). Only some

possible paths and leaves are drawn for reasons of clarity and comprehensibility. Nevertheless,

it is obvious that every node on level i has the same number of successors on level i + 1.

62

0 1 2

0 1 21 2 0 2 0 1...
0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 [4 - 15] 16 17 18 19 [20 - 31] 32 33 34 35

4 4 4 4 4

12 12

level 0

level 1

level 2

12

36

4

Figure 6.1.: Tree corresponding to tuple extent (3,3, 4). Serial indices for the leaves are shown in red
below them, while the blue numbers beside the intermediate nodes give the number of
leaf nodes in the sub-tree, rooted at the respective intermediate node. The orange arrows
visualize the mapping of the tuple (2,2, 1) to its serial index 33.

Calculation of the serial index can be imagined as following the corresponding path in the

tree and looking up the leaf number for the respective tuple after the tube is constructed. This

procedure is shown for tuple (2, 2,1) and its index 33 in Figure 6.1 by orange arrows.

The indexing trees are built implicitly by creating the required information to serialize a tuple.

This information mainly includes the number of leaves that belong to a sub-tree within the whole

tree. This is also indicated in Figure 6.1 by blue numbers on the left side of some intermediate

nodes. One sub-tree with 12 leaves and its root in level 1 is highlighted by dotted magenta lines

for illustration. It is sufficient to store a single value per level in the array subtree_size because of

the constant number of successors for nodes within one level.

The idea behind the calculation of the serial index is comparable to the linearization of a

multidimensional array: Assuming, for example, a 3-dimensional array A[size_dim_2][size_dim_1]

[size_dim_0], the corresponding linearized index for the access A[val_dim_2][val_dim_1][val_dim_0]

using a 3-vector can be calculated by val_dim_0 + val_dim_1 * size_dim_0 + val_dim_2 * size_dim_1 *

size_dim_0. The function to map a graph tuple tpl to its serial index is shown in Listing 6.1.

In case of flattening a tuple, the array subtree_size automatically contains the equivalent to the

products size_dim_i * size_dim_i−1 * . . . *size_dim_0 of the array case. In this way, their recalculation

for every tuple can be avoided since they represent the number of leaves in the sub-trees of a

respective level (see again blue numbers in Figure 6.1). The required memory can be neglected

since even for a tube of order 3 only 28 values need to be stored.

63

1 long TreeGraph : : s e r i a l i z e T u p l e (const vector<int>& t p l) {

2 long va l _ l en = t p l . s i z e () ;

3 long s e r i a l _ i d x =0;

4

5 for (long i=va l_ len −1; i >= 0; i=i −1) {

6 // search entry for this level

7 // work from top to bottom

8 in t va l = t p l [i] ;

9

10 // calculate the number of elements in other sub-trees that must be neglected

11 s e r i a l _ i d x += (va l * s u b t r e e _ s i z e [i]) ;

12 }

13 return s e r i a l _ i d x ;

14 }

Listing 6.1: Procedure to calculate the serial index for a tuple tpl within TreeGraph.

This demonstrates that the tree-based flattening is very space-efficient. Additionally, the cal-

culation is very fast since it mainly consists of several summations and product calculations.

Read-accesses to both arrays tpl and subtree_size are consecutive in backward direction and are

only dependent on the loop index i. This fact and the short length of the arrays enables an effi-

cient prefetching of values by the compiler. The serial indices created by the tree-based method

also reflect the lexicographic order defined on the tuples. This avoids time-consuming sorting or

index-mapping operations. Moreover, this mapping is also able to preserve symmetry relations

as shown, for example, by all sub-trees starting at level 1 in Figure 6.1. Following the same

paths after a different root node (e.g., always following the rightmost path) leads to tuples with

the same remainder. This would represent translational symmetry between different rings for a

tree with 4 levels corresponding to a CNT.

However, the main drawback of the tree-based flattening is also visible in Figure 6.1. The

tree always contains all tuples that can be created within a given tuple extent, i.e., also all

unoccupied tuple positions. Thus, for sparsely occupied tuple spaces, a large index space is

reserved. Assume a graph with two connected nodes (0,0, 2) and (2, 0,0) within the extent

(3, 3,4). They are mapped to the serial indices 2 and 20, although there are no other nodes.

Comparable situations may occur, e.g., if the right and the left side of the tree are removed by

cutting operations on the graph, resulting in large unoccupied regions in the index space. This

can cause the generation of indices for large SCNT models which exceed the range of 64 bit

integers and lead to the failure of the indexing scheme.

The method presented is similar to parts of the algorithm for indexing statistical datasets from

Ng and Ravishankar [61]. They encode records r = (a1, a2, . . . , an) in database tables as tuples

of integer values and apply the mapping process φ(r) = Σn
i=0

�

r[i] ∗
∏i−1

j=0

�

�

�A j

�

�

�

�

, where A j is the

highest a j at position j in all records r, to define a lexicographic order on their data-tuples. This

64

leads to identical indices as the tree-based flattening. Their approach goes one step further and

partitions the tuples into smaller groups and only encodes differences between tuples within

those groups. However, these steps are database oriented and cannot be directly applied to the

tuple-based graphs.

6.1.2 IndexGraphs

The IndexGraph (IG) is a graph data type which is able to reduce the range of serial indices by

up to several orders of magnitude compared to tree-based flattening because of its structure-

tailored tuple-to-index mapping. Recalling the correspondence of the entries x i of a tuple with

length m to the topology of an order L tube and the junctions at the different levels from

Equation 3.5 in Section 3.2.3, the tuple can be divided into a tube part and a junction part as

again shown in Equation 6.1.

tube part

¨

xm xm−1 xm−2 xm−3
︸ ︷︷ ︸

tube order L

junction part































xm−4 xm−5 xm−6 xm−7 xm−8 xm−9 xm−10 xm−11
︸ ︷︷ ︸

junction level L−1

. . .

x8 x7 x6 x5 x4 x3 x2 x1
︸ ︷︷ ︸

junction level 0

(6.1)

The mapping of IndexGraph takes into account that the occupation of the index space for the

junction part is very sparse, while the space of sub-tuples representing the tube part is relatively

densely. Hence, both parts are treated differently. The hierarchy of SCNT models is also taken

into account.

Figure 6.2 summarizes the principle of the serial index calculation by the IndexGraph. The left

side shows how the sub-tuple for the tube is treated with tree-based flattening as described in

the previous section. This is a good choice here because of the high density of the tuple space

for the tube part. In the depicted case, the tube consists of four junctions indicated by the red

leaves.

The right side of Figure 6.2 shows how the junction part is processed. It is divided into the

different junction levels within the hierarchy, and each sub-tuple of length 8, corresponding to

a junction level, is coded into a distinct map. In the following, for illustration purposes, we

consider the tree on the left side of Figure 6.2 as an implicit tree which represents a junction

level, although it only contains four and not eight tree levels and the map structure which is

appended to the leaves needs to be ignored. Nevertheless, the principles are the same for a tree

with a depth of eight. The procedure for each junction level works as follows:

65

Tree-based processing of tuple
entries for the tube part

Table-based processing of tuple
entries for the junction part

CorresMap
Junction
Level L-1

junction_
elements[L-1] =
ML-1 entries

theLocCorresMap[L]

CorresMap
Junction
Level L-2

CorresMap
Junction
Level 0

junction_
elements[L-2] =
ML-2 entries

junction_
elements[0] =
M0 entries

CorresMap
Junction
Level L-1

ML-1 entries =
junction_
elements[L-1]

theLocCorresMap[L]

CorresMap
Junction
Level L-2

CorresMap
Junction
Level 0

ML-2 entries =
junction_
elements[L-2]

M0 entries =
junction_
elements[0]

6

12 12

36

983

3

5

12

6

3

Figure 6.2.: The left side shows the tree-based indexing for the tube part of the SCNT. The right side
indicates that the junction part is coded within a hierarchy of maps corresponding to the
distinct junction levels.

First, an implicit tree representing the tuple space for the sub-tuples of a certain junction level

is created and for each sub-tuple a leaf number is assigned, which is called local_ser_idx, because

it is only unique within the junction level considered. The local_ser_idx never causes an overflow,

because of the upper bound of 8 for the number of tree levels and the fact that the extent of

the corresponding sub-tuple does not contain high values. Also pay attention that we have two

different kinds of levels here: The level of the junctions resulting from the construction process,

and the level within the implicit trees from the root to the leaves.

Second, all n′ actually existing tuples are identified. They are numbered by a consecutive

index from 1 . . . n′ starting from the left, i.e., the implicit order determined by the local_ser_idx

is kept. This correspondence of the local_ser_idx and the consecutive index is stored in a table

for each junction level separately. This results in an array of L local correspondence maps

called theLocCorresMaps for a tube of order L which is shown on the right side of Figure 6.2.

They are realized as hash maps. This map then contains four entries for the depicted tree:

3→ 1,5→ 2, 8→ 3 and 9→ 4.

The number of its entries is for each map stored in an array called junction_elements, also shown

in Figure 6.2. Now, it is possible to look up a dense index for each element of a junction level.

These maps are of relatively small size compared to the overall number of nodes in SCNTs. They

typically contain several hundred up to one thousand elements. The correspondence map for

66

level 0, for example, for the (2,6, 8,8)2 tube with 24 million nodes has 434 entries and the

map for level 1 has 680 entries. This corresponds to 0.002 % and 0, 003 % of the total nodes,

respectively. The situation is comparable for a tube of order 3 with configuration (2,3, 4,5)3

and 240 million nodes, i.e., one order of magnitude more nodes than the previous case of order

2: 182 entries (7.6 ∗ 10−5 %) for level 0 and 350 (1.4 ∗ 10−4 %) for levels 1 and 2. Therefore,

the additional memory overhead caused by the maps is negligible.

The hierarchy and self-similarity of the SCNTs can be exploited by the fact that, in principle,

all junction levels are of the same structure with some differences in level 0. In practice, this

means that only the correspondence maps for level 0 and 1 need to be constructed while the

latter one can be reused for all following levels. In total, the calculation of the serial index

requires L look-ups in the small correspondence maps for an SCNT of order L, resulting in equal

calculation time for all contained tuples in IndexGraph.

If both sides of Figure 6.2 are instantiated, the serialization of a tuple, i.e., the calculation of

the serial index ser_idx for the whole tuple, works as shown in Listing 6.2. The local_ser_idx of the

sub-tuple is calculated for each junction level by a call of function calculateSerialIndexPerLevel (line

8), starting from junction level 0. A factor is calculated (line 10) which is the product of the

number of elements within each junction level covered so far. Here the local_ser_idx is translated

to the corresponding consecutive index by a look-up in the correspondence map. Now, the dif-

ferent consecutive indices per level are combined again comparable to the linearization process

of a multidimensional array. Each junction level corresponds to one of the dimensions of that

fictive multidimensional array in the case presented. The intermediate results are summed up

in the variable junc_idx which, after the last iteration of the for-loop of line 6, contains the in-

dex representing the contribution of the junction part of the tuple tpl to the overall serial index

ser_idx.

The resulting index for the junction part is minimal since the index space of each junction level

is “compressed“ to the minimum value by the correspondence maps and only those minimum

values are combined. The tube part is serialized by tree-based flattening in line 16 of Listing 6.2.

It is again assumed that these two indices correspond to a two-dimensional array that needs to

be linearized to combine the tube and the junction index, resulting in the serial index for the

input tuple within the IndexGraph (line 17).

IndexGraph also preserves symmetry information like the tree-based flattening does. This is

shown on the left side in Figure 6.2 where all leaves of the tree are connected with the box.

This stands for the following: The tree-based flattening for a CNT has the tuples of nodes on its

leaves and thus indexes single atoms. In contrast, the implicit tree in IndexGraph manages and

sorts junction elements. Junctions that only differ at the level 1 entry in the tree are symmetric

by translation, while those only differing at the second level entries in the tree are symmetric

by rotation. Their serial indices follow the lexicographic order of the tuples as another result of

this. Depending on the actual step of the algorithm the structure may look differently during

67

1 long IndexGraph : : s e r i a l i z e T u p l e (const vector<int>& t p l) const {
2 // Get the first part that results from the junctions of different levels

3 long junc_ idx = 0; // Index contribution of the junction part to the overall
serial index

4 long l o c a l _ s e r _ i d x = 0; // Serial index of sub-tuple for a junction level
5 long f a c t o r = 1;
6 for (in t l v l =0; l v l < s c n t _ l e v e l ; l v l++) {
7 // Find leaf number of the corresponding sub-tuple

8 l o c a l _ s e r _ i d x = c a l c u l a t e S e r i a l I n d e x P e r L e v e l (tp l , l v l) ;
9 // How many elements were covered so far

10 f a c t o r = f a c t o r * junc t ion_e lements [l v l] ;
11 // Look up consecutive index and integrate it into linearization procedure

12 junc_ idx += theLocCorresMap [l v l] [l o c a l _ s e r _ i d x] * f a c t o r ;
13 }
14
15 // Get the contribution to the serial index that results from the tube part

16 unsigned long long tube_idx = ca l cu la t eSe r i a l IndexForTube (t p l) ;
17 unsigned long long s e r_ idx = junct ion_e lements [s c n t _ l e v e l] * f a c t o r * tube_idx +

junc_ idx ;
18
19 return s e r_ idx ;
20 }

Listing 6.2: Calculation procedure of a serial index for a tuple tpl within IndexGraphs.

the construction process with its different intermediate graphs. The tree on the left side may

reach a depth up to eight since this is the length of a sub-tuple that encodes a junction. No

correspondence map is created until a full junction is constructed. Otherwise, a step-by-step

reconstruction of the map is required which is very time-consuming. But after the junction is

completed, it will not be altered again and it makes sense to compress it.

6.1.3 Perfect spatial hashing

Perfect spatial hashing (PSH) is a technique, presented by Lefebvre and Hoppe [62], to com-

press multidimensional sparse position data sets in graphical applications. When interpreting

the tuples of the SCNT graph as multidimensional position data and applying tree-based flat-

tening on the resulting hashed data points, the techniques of [62] can be employed to solve the

mapping problem. This section demonstrates the extensions that need to be integrated into the

original PSH algorithm to enable coping with multidimensional data.

First, Section 6.1.3.1 introduces the principles behind PSH and its terminology which are

mapped to the application domain of tuple-based graphs. Second, Section 6.1.3.2 describes

the implementation and the way it copes with the challenges resulting from high dimensional

data. Last, Section 6.1.3.3 demonstrates the improvements in the quality of the hash function,

resulting from our extensions of the algorithm.

68

The initial version of HashGraph was developed in a Bachelor’s thesis together with Nam

Nguyen [63]. The implementation was further extended and recently published in [25]. Large

parts of this section were used for this publication, so they appear there literally.

6.1.3.1 Theory of perfect spatial hashing

Perfect spatial hashing originally works on a d-dimensional domain U where d ∈ [2, 3] be-

cause only 2D and 3D graphics are considered. In the case of tuple-based graphs we have a

d-dimensional problem where d ∈ [4, 12,20, 28] because tuples with these lengths are required

to represent SCNTs of order 0 to 3. The entries can assume u discrete entries from {0,1, . . . , u−1}
in each dimension. Thus, the domain U can have u= ud data points in total at positions pi when

fully occupied. In the case of tuple-based graphs, the cardinality of U is determined by the tuple

extent text with u =
∏m

k=1 t ex t[k]. For tuple-based graphs, U contains all possible tuples t that

can be created within the given tuple extent text. This is equal to the tuple space.

A subset S ⊂ U with cardinality n denotes all those positions pi that are occupied in U ,

corresponding to all pixels that have colors differing from the background color in an image.

The subset S corresponds in the tuple space to all actually existing tuples t i within a given graph

G. The density ρ of the data is given by the fraction ρ =
�

�S
�

�/
�

�U
�

�= n
u .

Each position pi is associated with a data record D(pi). This could be the actual color of the

pixel in the 2D picture and other information, for example, its transparency. Accordingly, each

tuple t i in tuple-based graphs is associated with the information of a node D(t i) like its position

or its neighborhood list.

Perfect spatial hashing tries to map the sparsely defined data D(pi) with pi ∈ S to a record in

a dense hash map H with a hash function h : D(pi) → H
�

h(pi)
�

. Perfect hashing means that

there are no collisions in the hash map, i.e., for all i, j ∈ [1, 2, · · · , n] and i 6= j it needs to be

true that h(pi) 6= h(p j). This goal can be achieved through the combination of two imperfect

hash functions h0 and h1, meaning that collisions may occur in both, with an offset table Φ.

This table has rd = r entries. The resulting hash table H has md = m slots and the perfect hash

function h is described by Equation 6.2.

h(p) = h0(p) +Φ
�

h1(p)
�

mod m. (6.2)

The procedure to fetch two tuples t1 and t2 with the help of h is visualized in Figure 6.3. It is

assumed that both tuples collide in h0. Therefore, Φ requires entries for both h1(t1) and h1(t2),
which resolve the collision and do not lead to further collisions with other tuples.

The two imperfect hash functions involved are defined as h0 = M0p mod m and h1 = M1p mod

r with M0 and M1 being m × m matrices. Since Lefebvre and Hoppe [62] found out that M0

and M1 can simply be set to m × m identity matrices, the hash function evaluation of h0 and

69

U

H
h(t

2
)

h(t
1
)

Ф

S
t
2

t
1

Ф[h
1
(t

1
)]

Ф[h
1
(t

2
)]

Ф[h
1
(t

2
)]

+

+

h(t
1
)

h(t
2
)

Ф[h
1
(t

1
)]

H
0

h
0
(t

1
)

= h
0
(t

2
)

h
0
(t

1
)

h
0
(t

2
)

Figure 6.3.: Fetching the data for two tuples t1 and t2 in the case of a collision in h0 (Figure based on
Figure 2 of [62]).

h1 reduces to an application of the mod m and mod r calculation to each entry of our tuples.

The authors of [62] add the recommendation to avoid that m and r have a common divisor.

After these theoretic concepts, the remainder of this section evaluates the applicability of PSH

to the tuple-based graphs and highlights several aspects that need to be taken into account for

an efficient implementation.

PSH compresses spatial multidimensional data into small, dense tables. The tuple extent of

the hashed tuples is much smaller than the original one which also means that the density of

the hashed domain is significantly higher. This allows the derivation of a serial index on the

base of the hashed domain with tree-based flattening. The property of the data set to allow

random access is also preserved by PSH. The random access is important during the simulation

of SCNTs, for example, when accessing neighbors of nodes. Very important is the fact that PSH

avoids collisions in the hash table and thus makes the calculated serial indices unique, which

is a prerequisite for the simulation to work. In contrast to most other perfect hash functions,

PSH seeks also to create a minimal hash function. This implies that all slots in the hash table H

are occupied. Applying the tree-based flattening algorithm to the hashed tuples in those tables

results in a consecutive serial indexing. Another positive property of PSH is the combination of

two hash functions h0 and h1 with an offset table Φ. Hence, a query for a node pointer always

requires two search operations in two tables, resulting in a more uniform access time compared

to other hashing schemes. The process of resolving collisions leads to varying access times there.

The concept of PSH also suffers from some drawbacks compared to other hashing schemes,

but they are no severe problems for tuple-based graphs. The fact that PSH only works on a

static data set is no limitation since the structure of the SCNTs and the contained nodes are

static during the simulation. The same holds for the problem that the construction of the offset

table Φ is complex and the process may fail, requiring several restarts. However, its runtime is

not that crucial since this pre-computing step needs only to be done once before the simulation.

70

In particular, as it is possible to store the hashing scheme for an SCNT configuration and to reuse

it for all simulations that are performed with this tube.

Some other aspects can be simplified in comparison to the original algorithm from [62]. In

contrast to spatial positions, tuples are discrete data, removing the need for discretization and

rounding. Furthermore, there is no need to work with normalized data since CPUs have direct

integer support1. There is neither a problem with false positives, because the graph algebra

construction process of SCNTs avoids those cases in advance. A false positive in the sense of

PSH and tuple-based graphs is that a tuple t> is queried which lies within the given tuple extent

but is not actually existing in the graph. Then, it may happen that PSH returns a false entry

t∃ from H since h(t>) is coincidentally equal to h(t∃). Lefebvre and Hoppe have to tackle this

problem by introducing an additional integer value per hash table entry, increasing the memory

requirements for the hashed data.

However, there are two main differences to the work of Lefebvre and Hoppe which the al-

gorithm has to cope with for tuple-based graphs. First, PSH only was applied to 2D and 3D

problems since it emerged within the context of computer graphics and not up to 28 dimensions

like for the SCNT models. The following sections demonstrate the influence of this difference.

Second, only domains with quadratic or cubic shape were employed for all the tests in [62]

which considerably simplifies the problem and, in particular, leads to minimal hash functions

more easily.

In general, several other spatial hashing schemes exist, but they can not be employed in

the case of tuple-based graphs for different reasons. Garcia et al. [64] present a GPU and

Pozzer et al. [65] a CPU algorithm with shorter construction time and faster access to the data

than PSH. However, both do not stick to absolutely perfect hash functions anymore but allow

a few collisions. The CPU schemes proposed by Buckland [66] and Hastings [67], which, in

contrast to PSH, employ dynamic data structures, suffer from the problem of imperfect hashing,

too. Alcantara et al. [68] propose a parallel, spatial hashing whose construction should be

magnitudes of orders faster than PSH. However, it is not feasible for high dimensional data,

because of the need to encode the multidimensional data within single integer values which is

impossible for vectors with 28 entries.

6.1.3.2 Implementation

The following three subsections highlight the extensions that are applied to the original PSH

algorithm and outline several important points for an efficient CPU realization since PSH was

designed for the execution on GPUs in its original implementation.

1 This is also the case for modern GPU architectures but not for those that Lefebvre and Hoppe worked with.

71

6.1.3.2.1 Creation of the offset table and minimization of the size of H

The construction of the offset table Φ is realized with a trial and error approach as proposed in

[62]. Nevertheless, several aspects are changed to optimize the speed of the table construction

and the quality of the result, especially the memory requirements and the value of the top

index. First of all, the concept of constant values r and m is abandoned. Instead, vectors −→r =
�

r1, r2, . . . , rd

�

and −→m =
�

m1, m2, . . . , md

�

with different entries rk and mk for each dimension

are allowed2. This is done to reduce the values of r and m which are, in that case, calculated

by r =
∏d

k=1 rk and m =
∏d

k=1 mk, respectively. High values of r lead to a large Φ since h1(t)
maps each t to a distinct slot, while a large m results in high serial indices and low density.

Before the actual construction of Φ can start initial values for the vectors −→r and −→m have to

be found in a first step. To that end, two heuristics are employed. Initially, all mk are set to the

smallest possible m satisfying m ≥ dpn following the prerequisites given in [62]. Afterward, all

entries rk are set to the smallest possible r satisfying rd ≥ σn with σ = 1/2d, which is also

proposed in [62]. Now, the value of m is compared to n, i.e., the sparsity of H is evaluated. If

m is at least a factor of 3 higher than n, the entries within the respective tuple extent text are

searched that have the greatest distance to m. At these positions, the entry mk is decremented

by 1 as long as
∏d

k=1 mk ≥ n. The factor 3 is an empirically determined value. The chance to

reach a significant improvement is very low for lower values.

In the second step, a first feasibility check is performed that ensures that there are no two

tuples t1, t2 with h0(t1) = h0(t2)∧h1(t1) = h1(t2), because it is impossible to construct a perfect

hash function in those cases. This check can be performed very efficiently with an additional

table T col−h1 that is required for the next step anyway. It stores those sets of tuples that are

mapped to the same hash value by h1. For each tuple t i, the hash-value h1(t i) is calculated.

Now, a lookup on table T col−h1 is performed that has h1(t i) as its key values. If the key h1(t i)
does not exist, a new entry in form of a vector is inserted. The vector has a reference to t i as

its only entry. In the case that an entry already exists for h1(t i), the reference to t i is appended

to the existing vector. In this way, the tuples are divided in sets with a typical size � 100. It

is sufficient to test every tuple t i against the other tuples in this set for a collision in h0, since

only nodes within the same set are candidates for violating h0(t1) = h0(t2) ∧ h1(t1) = h1(t2) .

If there is only one collision, −→r and −→m are not feasible and need to be updated, which enables

an early exit. The algorithm primarily tries to adapt the rk values, since it is the main goal to

create minimal serial indices for the tuples. This means that H must be as compact as possible

and, therefore, the mk values should not be increased. The adaption of the rk is realized by

searching those entries which have the greatest distance to their respective entries in text in −→r
and incrementing them by one.

2 Only in this subsection about PSH vectors are marked by arrows on top of the variable to avoid confusion with
the constant entries and other variables.

72

Out of the tuples resulting in collisions, k tuples are picked at random and the colliding

positions in the rk’s are also incremented as long as all k collisions are resolved. The hope is

to avoid many more, ideally all, collisions due to these changes. The values presented in the

remainder of this thesis were obtained with k = 1, resulting in the most optimization steps but

the lowest possible values for r and m. Also k = 10 was tested, resulting in a faster construction

but slightly higher values for r. Afterward, the second step is repeated until it succeeds.

The third step tries to construct an offset table Φ for the given −→r which resolves all collisions

in h0. To that end, the heuristic of [62] is applied and the procedure tries to find offsets for the

biggest colliding sets of U in T col−h1 at first. It is easy to deduce the order in which the sets should

be processed from this auxiliary table. An offset is randomly generated for each set and tested

for feasibility. As soon as an appropriate offset is found, i.e., it resolves existing collisions without

creating new ones, it is inserted into Φ. Then, the algorithm proceeds with the next largest set,

until all collisions are covered. In the case that it is not possible to find an appropriate offset

for a set cl , i.e., the l ’s set that is processed, the algorithm applies backtracking. The offset

chosen for the last set cl−1 is changed to another possible entry and cl is processed again. If this

loop does not succeed, the offset for cl−2 is changed. After several unsuccessful attempts the

algorithm adapts the values for −→m and −→r and restarts the current step with the new values.

This three step procedure is repeated until a perfect hash function is found or canceled when

m and r become too large to achieve a sufficient reduction because of the resulting large size of

H.

6.1.3.2.2 Dynamic data structures and 1-dimensional keys
In the original PSH, static multidimensional arrays are used for the tables Φ and H, since the

algorithm was designed to work on GPUs. The size of these tables is statically allocated and the

total number of allocated entries is md and rd , respectively. The hashed 2- and 3- dimensional

coordinates of the points are used to access the values in Φ and H. This is feasible under

the simplifying assumption that the problem domains are always quadratic or cubic. However,

this procedure wastes too much memory for longer tuples with unequal dimensions Table 6.1

visualizes this fact for several tubes prior to the cutting process that is why it differs slightly from

the tube data in other chapters. For example, nearly 1.6 ∗ 107 entries are statically allocated for

Φ for the tube (1,6, 12,18)1 while only 1.7∗104 entries are required, a difference of three orders

of magnitude. To cope with this problem, dynamic data structures are employed, namely the

std ::unordered_map. They only store the existing values and allow access in constant time.

Another issue is the usage of tuples and their hashes as keys for Φ and H, respectively. This

causes high access times and consumes a lot of memory. A detailed discussion of this problem

can be found in Appendix D. To tackle this problem, the extended PSH also uses serialized

indices as keys for the maps, which are calculated on the base of the tuples and the knowledge

of h0, h1, m and r. So, the keys for Φ result from applying h1 to the current tuple t and then

73

Table 6.1.: Comparison of the number of actual tuples in the graph with the number of entries that
would be statically allocated in Φ and H if PSH is applied without extensions.

Configuration No. tuples Entries in Φ Entries in H
(1,4, 8,4)1 1.7 ∗ 104 6.6 ∗ 103 2.6 ∗ 102

(1,4, 8,14)1 4.5 ∗ 104 6.6 ∗ 103 2.6 ∗ 102

(1,6, 12,18)1 1.3 ∗ 105 1.6 ∗ 107 5.3 ∗ 105

(2,6, 12,18)1 1.7 ∗ 105 1.6 ∗ 107 5.3 ∗ 105

(2,6, 12,116)1 1.0 ∗ 106 1.3 ∗ 1014 1.7 ∗ 107

(2,3, 6,12)2 5.6 ∗ 106 4.3 ∗ 107 6.6 ∗ 104

(1,2, 8,8)2 1.0 ∗ 106 9.5 ∗ 1013 1.0 ∗ 106

(1,2, 4,4)3 2.5 ∗ 107 2.3 ∗ 1013 2.7 ∗ 107

executing tree-based flattening with −→r as the corresponding tuple extent. In this way, only the

serialized index needs to be stored. This means that for SCNTs of order 3 only one 64 bit-value

is required instead of 28 16 bit-values. The storage for the keys is reduced by a factor of 7 from

530 MB to 75 MB for 1 ∗ 107 entries in H. Additionally, long tuples cause high construction-

and access-times. Generating a map with 1 ∗ 107 randomized 28-vectors as keys and values

requires about 30 s on the test system while the same test is done in about 10 s, if vectors are

serialized and inserted in an integer-based map. As a result, the extended PSH version avoids

both drawbacks of vectors as keys by exploiting the knowledge about the tuples.

6.1.3.2.3 Density threshold and different compression modes
It is obvious that the construction of a perfect hash function always succeeds if r or m are

large enough. In the first case, Φ may contain n entries, i.e., one for every possible tuple. In the

second case, H has so many slots that for each tuple one slot can directly be assigned without

collisions. In those cases, H reserves much more slots than
�

�U
�

�. The calculated serial indices

resulting from r and m are in the same range or even much higher than those calculated on the

original domain and, therefore, they are impractical.

An analysis of those cases reveals that they normally appear if domain U is occupied relatively

densely. This means that
�

�S
�

� is not much smaller than
�

�U
�

�. A density threshold ρthres =
�

�S
�

�/
�

�U
�

�<

0.15 is defined to exclude those cases. It is not tried to construct a full perfect hashing function

for all domains with higher ρthres, because of the low probability of finding a sufficiently compact

one. Instead, one of the following two options is chosen:

1. Try a perfect hashing on the whole junction part, i.e., the part of the tuple after the four

highest entries
�

xm, . . . , xm−3

�

.

2. Ignore
�

xm, . . . , xm−3

�

, partition the remainder in blocks of length 4 and try to construct a

perfect hash for each block.

The ideas behind these two additional options are the following: The first
�

xm, . . . , xm−3

�

entries, representing the tube part, are usually relatively dense and thus can prevent a compact

74

hash function. So, in case of failure, it makes sense to ignore them as a first step. If it is still

not possible to find a sufficiently compact hash function, the second option exploits the fact

that always eight consecutive entries of a tuple represent the information of one junction level.

Always the leading four entries within these eight entries are much sparser occupied than the

remaining four. Thus, option two normally leads to the situation that each second block of

length four is hashed by PSH while the remaining blocks are indexed with tree-based flattening

as they are dense. Compression of the whole domain is called mode 1, compression of the

junction part mode 2 and the dividing into sub-blocks and trying to hash those mode 3.

As a measure of efficiency of the hash junction, we define the reduction factor ψ =
�

�U
�

�/
�

�H
�

�.

For mode 2, ψ is equal to the reduction factor ψjuncs that is achieved on the junction part of

the tuple. For mode 3 the overall reduction factor can be calculated as the product of the ψi

resulting from all k blocks of length four:

ψ=ψ1 ·ψ2 · · ·ψk =

�

�U1

�

�

�

�H1

�

�

·

�

�U2

�

�

�

�H2

�

�

· · ·

�

�Uk

�

�

�

�Hk

�

�

6.1.3.3 Evaluation of the algorithmic extensions

Now, we investigate how the presented algorithmic extensions effect memory requirements and

the reduction factor compared to the original PSH version. To that end, PSH was applied to

all tubes that are presented in Table 6.2 and the results are summarized there. The three

configurations marked by an asterisk are hashed with mode 2 while all others are hashed with

mode 1.

Table 6.2.: Summary of the tested tubes. Fhe second column shows the number of tuples to hash for
each configuration. Columns r = rd and m = md give values achieved by the original PSH
algorithm while r∗ and m∗ give the new values resulting from our extended procedure. The
columns r/r∗ and m/m∗ give the factor by which the number of entries in both tables can
be reduced by the extensions. %Φ shows the fraction (used slots in Φ) / (No. tuples) while
the last column gives the time to construct PSH in seconds, using the extended procedure on
phase one nodes of the Lichtenberg cluster.

Configuration No. tuples r = rd r∗ r/r∗ m= md m∗ m/m∗ %Φ Con.(s)
(1,4, 8,4)1* 1.7 ∗ 104 6.6 ∗ 103 9.6 ∗ 102 6.9 2.6 ∗ 102 2.6 ∗ 102 1 99% < 1
(1,4, 8,14)1* 4.5 ∗ 104 6.6 ∗ 103 9.6 ∗ 102 6.9 2.6 ∗ 102 2.6 ∗ 102 1 99% < 1
(1,6, 12,18)1 1.3 ∗ 105 1.6 ∗ 107 9.4 ∗ 105 17.0 5.3 ∗ 105 1.6 ∗ 105 3.3 13% < 1
(2,6, 12,18)1 1.7 ∗ 105 1.6 ∗ 107 9.4 ∗ 105 17.0 5.3 ∗ 105 2.4 ∗ 105 2.2 13% < 1
(2,6, 12,116)1 1.0 ∗ 106 1.3 ∗ 1014 2.7 ∗ 106 4.8 ∗ 108 1.7 ∗ 107 1.0 ∗ 106 17 6% 4.7
(2,3, 6,12)2* 5.6 ∗ 106 4.3 ∗ 107 3.3 ∗ 105 130 6.6 ∗ 104 6.6 ∗ 104 1 97% < 1
(1,2, 8,8)2 1.0 ∗ 106 9.5 ∗ 1013 2.0 ∗ 107 4.8 ∗ 106 1.0 ∗ 106 1.0 ∗ 106 1 38% 11.8
(1,2, 4,4)3 2.5 ∗ 107 2.3 ∗ 1013 6.9 ∗ 109 3.3 ∗ 104 2.7 ∗ 107 2.7 ∗ 107 1 75% 370

75

The development of the number of slots and entries in Φ is not crucial for performance but

for the memory consumption of the PSH structure. Table Φ is the main difference concerning

the required storage compared to the IndexGraph whose small tables can be neglected. Addi-

tionally, the product of all entries in −→r must be small enough to allow tree-based flattening

without overflows. The total number of slots in Φ is much smaller when employing the vector
−→r with varying entries instead of rd for all tubes. The best demonstration of the efficiency of

the algorithmic extensions is the tube (2,6, 12,116)1 which is characterized by highly varying

entries within its tuple extent text = (5912 22 |6 33 84 42 2). This constitutes a difficulty for

the original PSH. The constraint to determine a uniform r forces the algorithm to choose r = 15

in order not to violate the prerequisite >t1, t2 ∈ S | h0(t1) = h0(t2) ∧ h1(t1) = h1(t2). This

value is actually higher than those for the tubes of order 2 and 3 with more or longer tuples.

In the extended algorithm, the original r12 = 1512 = 1.3 ∗ 1014 is replaced by the new vector
−→r = (15 33 3 |33 33 33 33) reducing the number of slots by nearly eight orders of magnitude.

The second to last column of Table 6.2 shows how many slots are used in Φ in relation to the

overall number of tuples in the respective tube. Nearly every tuple is hashed to a different slot

for the three tubes processed with hashing mode 2. That is not an issue, since in those cases the

number of tuples to hash is equal to the number of nodes within a junction. Their number is

much smaller than the total number of nodes in the tube, e.g., 176 compared to 1.7∗105 for the

tube (2, 6,12, 18)1. As already mentioned, the size of r influences the size of Φ with a higher

r leading to more entries. Hence, the optimization of r can also help to reduce the size of Φ.

This can be demonstrated for the tube (2,6, 12,116)1 where the number of entries is reduced

from 2.5 ∗ 105 to 6.5 ∗ 104. The percentage of slots used compared to the number of tuples

decreases from 25 % to 6 %. There is also a reduction from 6.4 ∗ 105 to 3.8 ∗ 105 entries for the

tube (1,2, 8,8)2.

It is also very important that m can be reduced by one order of magnitude as well in the case

of tube (2,6, 12,116)1 by replacing the uniform m = 4 with vector −→m = (4 42 2 |44 44 44 22),
which increases ψ from 5 to 73. |H| could also be decreased for the tubes (1, 6,12, 18)1 and

(2, 6,12, 18)1.

As explained, the runtime for the constructing a perfect hash function plays a subordinate role

but was also measured. The last column of Table 6.2 shows that for nearly all tubes, the perfect

hash function can be generated within a few seconds and can consequently be neglected. About

6 minutes are required only for the order 3 tube. We are confident that there is potential to

further optimize the runtime of the construction process.

6.1.4 Comparison of different graph types

This section compares the reduction factors ψ of the three described graph types, i.e., their

indexing schemes. ψ is for IndexGraph defined analogously as for PSH by the fraction of the

76

highest serial index that occurs within an instance of IndexGraph and |U |. The tree-based flat-

tening only serves as reference since its index space is always |U |. Hence, the reduction factor

is 1. The most important point about the tree-based flattening is that its principle is contained

in IndexGraph for indexing the tube part of the tuple as well as the nodes within each junction

level. Within PSH and HashGraph, tree-based flattening calculates the indices on the new hashed

domain. Hence, the focus lies on the comparison of the top index in the index spaces resulting

from IndexGraph and HashGraph. Figure 6.4 summarizes the results for these two graph classes

on various tubes. Additionally, it shows the ideal reduction factor that is calculated by dividing

|U |/ |S|. For tubes whose corresponding bar for PSH is marked by an asterisk, the algorithm

uses compression mode 2 because it delivers the best result.

(1,4, 8,4)1 (1, 4,8, 14)1 (1,6, 12, 18)1 (2, 6, 12, 18)1 (2,6, 12,116)1 (2, 3,6, 12)2 (1,2, 8,8)2 (1, 2,4, 4)3
100

101

102

103

104

105

106

107

*
−45%

*
−45% −21% −36% −3%

−4%
*

+167%

−375%

Tube configuration

re
du

ct
io

n
fa

ct
or
ψ

Comparison of reduction factors of both approaches with the ideal case

Reduction PSH ψPSH

Reduction IG ψIG

Ideal reduction ψideal

Figure 6.4.: The reduction factors achieved by PSH and the structure-tailored IndexGraphs for different
tube configurations. The percentage over the bars gives the relative difference between
IndexGraphs and PSH. * denotes tubes hashed in mode 2.

In most cases, PSH is able to achieve a reduction factor in the same range as the IndexGraphs

does for all tested orders of tubes. Remember that we are talking about reducing the index space

by several orders of magnitude compared to tree-based flattening. This relativizes differences

of a factor of 2 or 3 between both mapping approaches. In principle, two particularities show

up in the results: The only instance where PSH performs significantly worse is the tube of order

3 where the reduction factor is about four times lower than for IndexGraphs. In contrast, the

reduction is higher for PSH as for IndexGraphs and nearly reaches the optimum (reduction

of 18662 versus the optimum 19109) for tube (1,2, 8,8)2. The tube (1, 2,8, 8)2 is a kind of

best-case scenario for HashGraph. It consists of 1, 024,000 nodes which is very close to 220 =
1,048, 576 with 20 being the tuple length for an SCNT of order 2. In this case, m= 2 is chosen,

resulting in a hash table H with 1,048, 576 available slots. In combination with an appropriate

77

Φ, all nodes can be assigned a slot, resulting in an occupation of 98% and hence, a nearly

minimal hash function. Such a minimal function would lead to the ideal reduction factor.

The influence on the solver in PSH was also investigated. In a first test, a search of about

5 ∗ 107 random tuples was performed on different tube configurations with HashGraph and with

IndexGraph. The results show that the search time for PSH is higher by a factor of about 1.5 with

values ranging from 1.26 to 1.67 on these synthetic benchmarks. However, the influence of PSH

on our overall solver is not that significant. The performance difference is under 10% For single

threaded execution. Additionally, PSH has a negative influence on the scaling behavior of the

application, so that the difference increases to about 20% when running with four threads. This

difference remains when running with 8 and 16 threads.

To sum up: Although PSH is a general scheme, it delivers very good results in compression

of the index space compared to the structure-tailored IndexGraph. The extensions proposed to

the original algorithm have a very positive effect on the hashing quality, feasibility and speed

of creation. Hence, the extended PSH is a good candidate to be tested for indexing other mul-

tidimensional data as well. However, the compression results of IndexGraph are more constant

and better in nearly all cases which stems from their strong connection to the SCNT structure.

Simultaneously, the access time to the data in IndexGraph is lower. As a consequence, IndexGraph

is employed as underlying indexing scheme within the tests of this thesis.

6.2 Space-saving approach to store the edges

The presented way of indexing tuples is used extensively within the framework developed in

this thesis. During construction, the edges require a lot of storage. There exist three times

more edges than nodes for an SCNT model. It is also required to iterate over all edges or to

randomly access them during the execution of graph algebra operations. This section compares

the behavior of a self-developed and structure-aware edge-container to a boost::bimap from the

boost library [69] storing all edges without exploiting the structure. Simply put, a bimap is an

ordered map which allows to use either the left or the right side as keys to access corresponding

values and vice versa. The bimap employed to store edges has unsigned 64 bit integers on

the left and the right side, while the left side represents the start index of the edge and the

right side its end index, respectively. The motivation to chose the boost::bimap as a reference for

comparison arises from the fact that this implementation was the underlying data structure for

the storage of edges in publications [21], [23], [24] and [27].

Several properties for these graphs can be assumed if it is known that a graph represents an

SCNT or intermediate graphs during construction of SCNTs. The first and most important point

is that the occurring graphs only contain nodes that have at maximum four incident edges.

Although the nodes in the final SCNTs have only up to three incident edges, there are some

nodes in temporary graphs with one additional incident edge. The second point is that most

78

graphs also contain opposite edges to the forward edges, i.e., the edges inverted direction.

In the final SCNT model, all edges have a counterpart in opposite direction, but again some

intermediate steps are exceptions.

Exploiting these properties allows to reduce the amount of storage but requiring to deal with

the aforementioned exceptions. This results in a highly configurable container for the edges

whose complexity is hidden behind the EdgeMap class. Its interface allows to add, remove and

search edges as well as to create iterators over all edges. There mainly lies a hash map behind

this interface which contains special EdgeEntry objects encoding the information. The hash map

has the big advantage that it does not create as much overhead as a bimap. Another feature can

be deduced from the construction process: There are several steps in which some nodes need

to be removed from the graph which we summarize as cutting processes. All affected nodes are

removed before another query option is executed on the graph during this processes.

All edges with e = (n1, n2) where the serial index of n1 is smaller than that of n2 are defined as

forward edges within the graphs. Consequently, all other edges whose index of n1 is bigger than

that of n2 are opposite edges. The main feature of the EdgeMap is that it separates the incident

nodes of an edge from its direction. That means, if either the forward edge or the opposite edge

exists, the edge is stored and the direction is marked by a flag. Only another flag is set if the

opposite edge needs later also to be stored, avoiding additional storage.

This behavior is realized by the EdgeEntrys. These objects store the main information about

the edges and they are themselves stored within the hash map. The serial index of the node

that is incident to the edges in the respective object is the key of this internal map to address

the EdgeEntry objects. EdgeEntrys are only created for nodes that have at least one forward edge.

For example, assume a graph G = (V, E) with V = {1, (3,8} and E = {(1,3), (3,8), (8, 3)} where

{1,3, 8} are the serial indices corresponding to the tuples of the respective nodes. In such a case,

only two EdgeEntrys are created since the only outgoing edge (8, 3) for node 8 is an opposite edge

and must be encoded in the EdgeEntry corresponding to node 3. This principle results from the

fact that nearly all (but not all) edges in the graphs occurring during construction have opposite

edges and it allows to represent the exceptions, too.

Each EdgeEntry consists to one part of a dynamic array edges that stores the serial indices for

the end nodes of the edges. The default size of the edges array is set to two because most nodes

have 3 incident edges of which only two are forward edges in average. In the case that a third

or a fourth edge needs to be inserted, the size of the array is dynamically increased by one.

This procedure guarantees that only the minimal amount of space for the node indices within

EdgeEntry is allocated while the costs for reallocation are small since only few nodes are affected.

This exploits the knowledge about the edge structure within the occurring graphs.

The second part of an EdgeEntry is a std :: bitset 3 that encodes all other additional information.

Its space efficiency is the main advantage of a std :: bitset in comparison to a boolean array, since

3 http://www.cplusplus.com/reference/bitset/bitset/

79

http://www.cplusplus.com/reference/bitset/bitset/

each entry in an array requires one byte of storage in C++. In contrast, a std :: bitset always

requires a multiple of four bytes (32 bit). For example, it requires 32 bit for [1, . . . , 32] entries

and 64 bit for more than 33 but less than 64 entries. The std :: bitset is conceptually split into

four parts: The first part encodes the possible four forward edges, while the corresponding

four possible opposite edges are encoded by the second part. Part three stores the number of

registered edges in edges. Finally, part four stores the information whether the array has already

been resized, so if edges has two, three or four slots at the moment. In total, 12 entries are

required to store all information in the std :: bitset . The resulting size of 32 bit for the std :: bitset

is three times less than that of a comparable bool-array with 12 slots which requires 96 bit of

storage.

When inserting or deleting an edge e, the respective EdgeEntry must be determined by taking

the smaller value of the incident nodes of e and looking it up in the map. This lookup is possible

in constant time in hash maps. Afterward, the small edges array is searched for the second value

of e sequentially. The corresponding position in edges is then used to check and toggle the flags

for forward and opposite edges. After each insertion or deletion, the edges array is sorted to

avoid gaps in it. In the case that the last edge is removed from an EdgeEntry, the object is deleted

from the hash map.

The complexity of iterating over the edges is also hidden behind the EdgeMap interface. Inter-

nally, the iterator itself must work in a two stage process: The outer stage runs over all entries

of the internal hash map and the inner stage over the edges encoded in an EdgeEntry. The fact

that the elements in the EdgeEntry are sorted simplifies the iteration and speeds up the access.

One difficulty in EdgeMap is the removal of nodes from the graph and the deletion of all edges

incident to it. This operation requires the call of the member function erase for the left and

the right side with the index of the removed node as argument for the boost::bimap. Hence, the

removal is done automatically by the boost library. The situation is more complex for the new

EdgeMap: One part of the edges can be removed directly by searching for the index of the re-

moved node in the hash map. If a corresponding EdgeEntry is found it is deleted. However, the

second part of the edges is harder to identify, since they may be distributed in other EdgeEntry

objects that are assigned to a node with lower index. Hence, searching in the EdgeEntrys with

lower node indices for the occurrence of the node index and removing it there is a straightfor-

ward way to remove the remaining edges. Of course, this linear search results in a slow removal

process.

The structure of SCNTs opens ways to speed up this procedure with little memory overhead.

There only is a fixed number of possible offsets between the node to remove and the index of

the EdgeEntry containing incident edges due to the regularity of the structure. Thus, an analysis

is performed within the EdgeMap prior to the first call of a remove operation that identifies all

possible offsets, counts the number of their occurrence and sorts the offsets in descending order

of their frequency in the std :: vector offsetvec . If, now, one node should be removed, the EdgeEntry

80

s for the possible offsets are processed in the aforementioned order. The critical point is the

size of offsetvec . It depends for SCNTs of the same order on the junction configuration, i.e.,

the values of (dx , lx). The difference is at least a factor of 8 for different orders with the same

junction configuration for the tested configurations. In contrast, the tube parameters (d0, l0) do

not have any effect on the size of offsetvec . Table 6.3 shows the development of the number of

possible offsets for different tubes. It is obvious that their number and thus the search overhead

becomes very high for order 2 and 3 tubes. However, it should be noted that the number of

possible offsets is much lower than the overall number of nodes. For example, the tube of

order 3 consisting of (2,4) junctions contains over 3.0 ∗ 108 nodes, while there are 14, 621

possible offsets. Therefore, the exploitation of the knowledge of the structure reduces the size

of search space by a factor of over 20, 500. This allows to remove single nodes with acceptable

performance while the additional storage for these 14, 621 integers is very low compared to the

more than 3.0 ∗ 108 nodes and 9.0 ∗ 108 edges of this example graph.

Table 6.3.: Size of the vector offsetvec for the possible offsets in the EdgeMap. The first row shows the
junction configuration (dx , lx) that was used for the respective data row.

Junction Config. Order 0 Order 1 Order 2 Order 3
(1,2) 4 36 352 2890
(1,4) 4 51 485 4491
(2,4) 4 73 1033 14621
(4,8) 4 132 3039 -

The demonstrated procedure drastically increases the runtime but if more nodes need to be

removed, as it is the case for the cutting process of the tubes, it is still slower than the boost::bimap

approach. However, as investigation of the construction algorithm reveals, the cutting processes

forms a closed unit. No other accesses on the graph structure, like reads or iteration-operations,

take place during the removal of several nodes. This motivates a different approach when more

nodes need to be removed. Instead of directly deleting the edges belonging to a removed node,

the respective node index is stored in an additional associative container nodes_to_remove. Simul-

taneously, a flag marks the whole EdgeMap as non-synchronized. Following removal operations

merely insert more nodes in nodes_to_remove. The first reading operation to the EdgeMap triggers

a synchronizing operation within the map. Depending on the size of nodes_to_remove, either all

nodes are removed individually by single delete operations, as already explained, or a special-

ized delete method is called, if the number of entries in nodes_to_remove exceeds a particular

threshold.

This specialized method iterates over all edges in the EdgeMap and performs two tests on the

EdgeEntrys. The first one checks whether the key of the entry is contained in the nodes_to_remove

container and it deletes the whole EdgeEntry if this is the case. This lookup can be done in con-

stant time. If the key is not listed in nodes_to_remove, each entry in the edges array is searched in

81

nodes_to_remove and the corresponding edge is removed if it is found. An additional optimization

for the SCNT graphs and the final cutting of the boundaries is also integrated. Due to the fact

that the serial indices in IndexGraph have the same order as the global indices, all nodes with

small indices lie near the left end of the tube while the highest indices lie near the right end.

Hence, there is a large distance between the highest index on the left side lefthigh that needs

to be removed and the lowest index on the right side rightlow, respectively. Consequently, no

EdgeEntry for a key that lies between lefthigh and rightlow −maxoffset is affected by the cutting

operation, where maxoffset is the largest entry in offsetvec . The non-affected EdgeEntrys can be

skipped. This optimization reduces the number of edges to test, especially for long tubes.

The total heap-memory consumption of the two different EdgeMap variants was investigated

with the tool massif 4 from the valgrind tool suite. The heap profiling tool massif takes sev-

eral snapshots during the execution, so that the measurements may slightly vary for every run.

Hence, the following results are rounded to 5 MB steps, which covers all results attained. The

construction is stopped after applying the geometry for this test and no flattening and neighbor-

hood construction is executed.

The values for the (1,4, 8,8)2 tube with 4 million nodes are presented as an example. The

heap-memory consumption for the program with the bimap-based EdgeMap is about 1,575 MB.

1,000 MB of these belong to the EdgeMap while the remaining 575 MB are occupied by the node

information and some additional data. In contrast, the construction with the new EdgeMap based

on EdgeEntrys requires only 770 MB in total. The part for the edges is only 195 MB in that case

while the remainder is again 575 MB. The storage for edges can further be divided into the

space required for the EdgeEntry elements, which is about 160 MB and 35 MB for the internal

hash table structure. Consequently, the new map reduces the storage for the edges by a factor

greater than 5 from 1,000 MB to only 195 MB. The reduction for the whole graph is a factor of

2 (from 1, 575 MB to 770 MB) after the construction phase. These values are also the average

for the investigated tubes. Detailed measurements can be found in Appendix E.

A comparison for the runtime required for the construction of the (1, 4,8, 8)2 tube was also

performed. While the bimap approach requires 48 seconds, the construction phase of the tube

with the EdgeEntry version completes after 25 seconds, i.e., in roughly half the time. An analysis

of the runtime behavior reveals that the insertions in the bimap require a high amount of time,

especially when the bimap is already large. In contrast, the underlying unordered map behind

the EdgeEntry version does not show this drawback. More performance results can be found in

Appendix E.

Altogether, the new EdgeMap structure is able to halve the memory required during the con-

struction phase while the performance is doubled. It supports most of the graph algebra opera-

tions on the level of serial indices, further reducing the memory overhead and speeding up the

computation. The explicit processing of tuples is required in a few cases only.

4 http://valgrind.org/docs/manual/ms-manual.html

82

http://valgrind.org/docs/manual/ms-manual.html

7 Compressed Symmetric Graphs

The graph that represents an SCNT needs to be kept in memory during the actual simulation

and therefore, it is worth to minimize the space that is required for the graph data. To that

end, we present the custom-tailored data structure Compressed Symmetric Graphs (CSGs) in

this chapter. It reduces the storage of structural information, i.e., neighborhood information by

dynamically recomputing parts of the tube. We demonstrate that CSGs avoid the storage of up

to 99% of the structural information for a lot of SCNT models after the data creation phase.

CSGs exploit the fact that the structure of the tubes stays constant even under load. In

other words: The neighbors of a node ni will not change even if the tube is being deformed.

Additionally, CSGs combine exploitation of translational and rotational structural symmetry,

thus multiplying their effects. CSGs can replace the graph data structures presented in Chapter

6 during the actual simulation of the SCNTs y implementing a common interface.

The theory behind CSGs was published in [26]. This chapter is based on this publication and

its definitions. Some extensions to the original publication are highlighted and several points

are covered more detailed.

7.1 General graph compression schemes

There exist different ways to compress general graphs and graphs with some special properties

in the literature. Most procedures arise from the field of database compression. Hence, we

evaluate whether these methods can also be employed for an efficient compression of tuple-

based graphs.

Feder and Motwani [70] presented a graph compression algorithm for directed and undi-

rected graphs that allows several graph algorithms to be adapted to the compressed graphs.

This can speed up tasks like finding matchings or the solution of the all-pair shortest path

(APSP) problem mainly on dense graphs, i.e., finding the shortest path between all possible

pairs of nodes in a graph [71]. The main goal of the algorithm of Feder and Motwani is to

reduce the number of edges. To that end, a graph is partitioned into a number of bipartite

cliques and the order of these cliques, i.e., the number of nodes in them, is minimized. Accord-

ing to the authors, their compression algorithm is able to reduce the number of edges m∗ in the

compressed graph compared to the original number of edges m and number of nodes n by:

m∗ = O

�

m
k(n, m,δ)

�

with k = bδ ∗
log(n)

log(2 ∗ n2/m)
c and 0≤ δ ≤ 1

83

There is always a trade-off between runtime and quality of compression, since the runtime

complexity O(m ∗ nδ log2(n)) also depends on the choice of δ. However, it may happen that the

resulting n∗ of the compressed graph is even higher than the original n since the procedure is

targeted for dense graphs, i.e., m � n. This behavior makes the algorithm unsuitable for the

graphs representing SCNTs where we always have m≈ 3 ∗ n.

Chen and Reif proposed a lossless method to compress trees as well as undirected and directed

acyclic graphs [72]. The compressed data still allows efficient operations like searching for

nodes and has a similar structure to the original graph. They demonstrate their procedure for

binary trees but state that it can be readily extended to general trees as well. The input trees

are parsed in breadth-first search (BFS) and divided into sub-trees which are then compressed

with the dictionary based Lempel-Ziv compression [73], employing a suffix tree ([74], [75])

as main data structure. Suffix trees enable an efficient pattern matching in strings. Undirected

graphs are compressed by a two pass procedure. In the first pass, the graph is transformed into a

BFS tree and in a second pass over the original graph, the back-edges are covered, compressed,

and unified with the original BFS tree. Chen and Reif state that this may sometimes result in a

bigger size of the compressed graph than the original size which is not acceptable in the case of

tuple-based graphs.

The Graph Summarization, another method to compress graphs, was presented by Navlakha

et al. [76]. The technique uses similarities in the link structure and unifies nodes to supern-

odes if they are connected to the same set of nodes. The original graph is represented by two

parts. The first one is a graph summary that is a graph itself. Each node of this graph summary

corresponds to a set of nodes in the original graph. Additionally, a list of edge-corrections is

stored. The technique can be used for lossless compression. Internally, the Minimum Descrip-

tion Length (MDL) principle [77] is employed that exploits regularities in an input string to

compress it. Navlakha et al. achieve compression ratios between about 1.25 and 3.3 for the

four investigated data sets. These values are not sufficient for our SCNT models.

As many other graph compression schemes, Graph Summarization is employed in the area of

web and network graph compression (see e.g. [78], [79]) to compress huge graph data sets

and allow efficient adjacency queries. Other known graph compression schemes in this area are

the reference encoding proposed by Boldi et al. [80] and graph clustering [81].

In contrast to all above mentioned approaches, CSGs are custom-tailored to SCNTs. Hence,

they achieve high compression rates, combined with a fast calculation of the compression. They

directly work on the neighborhood structure and the node- and edge-level, respectively. There-

fore, there is no need to fully analyze the input graph or even to work on the binary level.

Furthermore, it is even not required to construct the full tube before instantiating the com-

pressed graph. This is a significant advantage over all presented approaches, where the whole

graph is needed initially.

84

7.2 Principles behind Compressed Symmetric Graphs

The Y-junctions are the basic building block for SCNTs of higher order and, at the same time, the

basis for the CSG-related symmetry considerations. They appear in two different orientations

within SCNTs as demonstrated in Figure 7.1a. Idealized junction elements can represent single

nodes or Y-junctions of arbitrary order. The orientation of the junction highlighted in blue

in Figure 7.1a is called type 1 whereas the junction colored in red is of orientation type 2.

This stage is labeled as S t
1 during the construction process described in Section 3.2. The next

construction step leads to S t
2 in which S t

1 is copied, moved in xy-direction and connected to the

original junction. A schematic drawing of a general S t
2 is shown in Figure 7.1b. In the following,

this structure is called Mirrored Z-like Structure (MZS) due to its shape. These MZSs which

always consist of four Y-junctions are the basic concept within CSGs as they reappear over and

over again within the tubes. It is important to note that all nodes that lie within an MZS have

the same leading and second leading tuple entry. No node outside a particular MZS has the

same combination of these two entries. Hence, an MZS can unambiguously be identified by a

tuple of two values: (leading entry , second leading entry).

(a) Two Y-junctions in a differ-
ent orientation as they ap-
pear within SCNTs. This
configuration corresponds
to the intermediate con-
struction step S t

1 for a tube
of order L.

(b) A mirrored Z-like structure
(MZS), consisting of four Y-
junctions. It corresponds to
the step S t

2 of the construc-
tion of SCNTs.

(c) Image selection of an order 0
tube. Vertically stacked (red)
MZSs are rotational symmet-
ric, those on the horizontal line
(green) are translational sym-
metric.

Figure 7.1.: Details for general Mirrored Z-like Structures.

The leading two tuple entries are indicators for translational and rotational symmetry as

demonstrated in Section 3.3. Thus, all MZSs are closely related with others by symmetry rela-

tions. Figure 7.1c demonstrates this fact for an order 0 tube. There are three vertically stacked

MZSs related by rotational symmetry within the solid box on the left side. Three MZSs are

depicted that are related by translational symmetry, visualized in a horizontal line at the top of

Figure 7.1c within the dotted rectangle.

Following our conventions, the tube is aligned with the x-axis and the leading indices of the

tuples increase from left to right. On the left side, some other nodes can be noticed in Figure

85

7.1c beside the rectangles. They belong to the left boundary of the tube and all of those nodes

are identified by tuples with a leading 0 and 1. Hence, the following three MZSs contain tuples

with leading 2, 3 and 4 respectively. The right boundary is formed by the two rings with the

highest leading indices. We assume for the rotational symmetry that the identifying second

index grows from bottom to top on the front side of the tube.

Combinations of rotational and translational symmetry, in this thesis called combined symme-

try, have to be resolved successively, as indicated in Figure 7.2. This combined symmetry is the

main principle behind GSCs and is exploited to compress the graphs. Analog to the definition

of base-symmetry elements for translation and rotation, base-symmetry elements for combined

symmetry can be defined. We assume that the base-symmetry node for combined symmetry for

the node (4, 5,0, 1) is searched. In the first step, it is required to identify the base-symmetry

node for translation for (4, 5,0, 1). This is indicated by the magenta arrows in Figure 7.2 and

the node (2,5, 0,1) is retrieved. The second step resolves the rotational symmetry and iden-

tifies (2,3, 0,1) as the base-symmetry node for rotation of node (2,5, 0,1), indicated by the

red arrows. At the same time, it is the base-symmetry node for combined symmetry of node

(4, 5,0, 1).

2,4,0,1

2,3,0,1

3,5,0,12,5,0,1 4,5,0,1

Figure 7.2.: Resolving combined symmetry with jumps in translational and rotational direction. Con-
nection of top and bottom of the former graphene in blue.

The main idea behind CSGs is that not only the considered nodes can have symmetry-relations

to other nodes in the graph but, at the same time, all nodes in their neighborhoods underlie

the same relation. Hence, if the symmetry-relation of the considered node is determined, its

neighborhood can be directly and efficiently constructed with this information. This removes

the need to store the neighborhood lists of all nodes in the graph.

7.3 Realization of Compressed Symmetric Graphs

It is possible to implement the resolution of combined symmetry with offset calculations within

the symmetric parts of the SCNT due to the regularity of SCNTs and an appropriate lexicograph-

ical ordering. This procedure is described in the sequel. The special cases for nodes near the

left and right boundary are described in Section 7.3.1. The problem of nodes in regions where

86

the former top and the bottom of the corresponding sheet are connected is covered in Section

7.3.2. This thesis already discussed ways of employing tuples to identify symmetry in Section

3.3. In that case, these two points do not arise. However, working directly on the tuples is

a time-intensive procedure as [21] demonstrated, which is why the fast index calculations are

preferred for the realization of CSGs.

There is just one offset for translation and one for rotation in the symmetric area of the

SCNT that lead from one symmetric node to another. These offsets can be determined directly

during the construction process. They are dependent on the parameters (d0, l0, dx , lx) that are

chosen for the tube construction. The number of nodes within one junction element, defined

as a junc, is dependent on dx and lx . A jump to the next ring is required to move from one

translational symmetric node to another adjacent one. The number of nodes within a ring is

given by offt rans = d0 ∗ 4 ∗ a junc because d0 determines how many MZSs are stacked per ring.

Furthermore, each MZS consists of four junctions, and each junction element consists of a junc

nodes. Jumps from one MZS to stacked neighbors are required to resolve rotational symmetry.

Hence, offrot = 4 ∗ a junc nodes need to be omitted. Thus, it is necessary to count the jumps

between adjacent rings jt rans for translational and between neighboring MZSs for rotational

symmetry jrot in order to resolve combined symmetry. The total offset to move from one node

to its base-symmetry node for combined symmetry is jt rans ∗ offt rans + jrot ∗ offrot . The order in

which these resolution steps are performed has no influence on the result in theory.

In addition to offt rans and offrot , the ranges of the base-symmetry nodes for translation and

rotation need to be stored, respectively. They are required to determine whether a ring is

reached that contains base-symmetry nodes for translation after performing a jump. Going

on to the non-symmetric rings at the boundary needs to be prevented. Similarly, it must be

prevented that jumps lead to MZSs which lie near the critical line that connects top and bottom

of the graphene for rotational jumps.

For the example tube (16, 16) in Figure 7.2, it is d0 = 16 and a junc = 1 since junction elements

are single nodes. This means that offt rans = 16 ∗ 4 ∗ 1 = 64 and offrot = 4 in this case. In the

global index system, node (4, 5,0, 1) has index 262. If we apply the resolution procedure for

combined symmetry as illustrated above, we first have to resolve the translational symmetry. To

that end, a jump in translational direction is performed arriving at (3,5, 0,1) with index 198.

Afterward, another jump to node (2,5, 0,1) with index 134 is required, since 198 lies outside

of the range of base-symmetry nodes for translation. In a second step, the rotational symmetry

is resolved. We start with a leap to (2,4, 0,1) (index 130) and a check reveals that (2, 4,0, 1)
is not in the range of base-symmetry nodes for rotation, resulting in another leap in rotational

direction reaching (2,3, 0,1)with index 126. This node is the base-symmetry node for combined

symmetry. In total, the resolution process requires the subtraction of (2 ∗64+2 ∗4) = 136 from

the start index 262. Four boundary checks are performed during the resolution process.

87

The neighborhood of node (4, 5,0, 1) can now be constructed from the neighborhood of

(2, 3,0, 1) by just copying it and adding an offset of 136 to the index of each neighbor node

of (2, 3,0, 1). This permits to define the term regular neighborhood in the following way:

Definition 1 Two neighborhoods Nn1
and Nn2

are called regular if they are both complete and

Nn1
[i]− Nn2

[i] == Nn1

�

j
�

− Nn2

�

j
�

∀i, j ∈ [1,22].

Put differently, if we know the indexing scheme of the regular neighborhood Nn1
, we can easily

deduce the indexing scheme of Nn2
by just adding or subtracting an offset. A neighborhood not

fulfilling the definition above is called an irregular neighborhood.

Only one regular neighborhood needs to be kept in memory while all regular neighborhoods

of symmetric nodes can be dynamically determined, if requested. Figure 7.3 gives a first visual

impression of the compression that CSGs state to realize. It shows all those 6352 nodes whose

neighborhood needs to be stored explicitly out of the original 39414 nodes of a (1, 4,8, 14)1

tube. The remaining 33062 nodes whose neighborhood can be dynamically reconstructed are

omitted in the picture.

(2,1,0,0,...

(2,0,0,0,...

(2,d,1,1,...

(2,d,1,0,... ...
(2,1,0,0,...

Figure 7.3.: Elements of a (1,4, 8,14)1 tube whose neighborhoods a CSG needs to store explicitly. Dif-
ferent colors indicate the different rings (cyan=0-, red=1-, green=2-, blue=(l − 1)- and
orange=l-leading ring). Dots symbolize that there exist more rings. The black letters show
the first four entries of the tuples in the respective parts with the abbreviation d = (d0− 1).

88

7.3.1 Nodes on the boundaries of the tube

Nodes lying on the boundary region belong to the non-symmetric nodes. Thus, they possess an

incomplete neighborhood or have nodes in their neighborhood which have incomplete neigh-

borhoods themselves. Hence, the neighborhoods for boundary nodes are irregular and the

MZSs which form the boundary rings are also incomplete. Fortunately, this does not mean that

all neighborhoods of those nodes need to be stored, because incomplete MZSs within those

boundary rings all have the same structure. This is visualized in Figure 7.4a, where a cutout of

the boundary part of the unfolded sheet for the (16,16) tube of Figure 7.2 is drawn. On the

right side, we see the complete MZSs of the ring with leading ones in green. The remainder of

the sheet on the right side of the green nodes is omitted. The left side shows the incomplete

MZSs of the 0-leading ring in magenta. It is possible to determine an offset which represents

a jump in rotational (vertical) direction from one incomplete MZS to its neighbor, because of

the identical structure of those MZSs. This offset is called offrotleft. In the case of Figure 7.4a

it is offrotleft = 3. Figure 7.4b, in which an excerpt of a super sheet for a (1, 4,16, 16)1 tube

is depicted. It demonstrates that the same holds for tubes of higher order: For this structure

offrotleft is 528 while its regular offset in the symmetric part is offrot = 704. Of course the same

is possible on the right end with a respective offset offrotright for tubes of all order.

(a) Incomplete MZSs on the left boundary of
a sheet for a (16,16) order 0 tube. The
two chains of arrows indicate that nearly
each node with a 1-leading tuple (green)
has nodes with an irregular neighborhood
in its own neighborhood.

(b) Incomplete MZSs on the left boundary of
an unfolded sheet for a (1, 4,16, 16)1 tube.
The insert shows that in the case of higher
orders only a few 1-leading nodes (green)
have nodes with irregular neighborhoods
in their own neighborhood.

Figure 7.4.: Adjacent MZSs in tubes of order 0 and 1.

Figures 7.4a and 7.4b also demonstrate another important point: Tubes of order 0 require

a special treatment compared to all tubes of higher order. As Figure 7.4a indicates with the

red and blue chains of arrows, nearly each node with a 1-leading tuple (green nodes) has

nodes in its neighborhood that themselves possess an irregular neighborhood. This implies that

those nodes have also an irregular neighborhood and can not be used as base-symmetry nodes.

89

Consequently, the CSGs assume that base-symmetry nodes for tubes of order 0 start at the ring

with 2-leading nodes. The same holds for the last two rings, meaning that the last symmetric

nodes can be found in the ring with the l − 2-leading tuples.

However, the situation is different for tubes of higher order. Of course, all nodes in the

ring with the 2-leading nodes are symmetric because no chain of length 3 can be constructed

connecting a 2-leading node to a non-symmetric one. In the case of higher orders, even most of

the 1-leading nodes have a regular neighborhood. Hence, they can be used as base-symmetry

nodes. There are only few exceptions, which are highlighted in Figure 7.4b. The zoom-in to

the connection of MZSs from the 0-leading and the 1-leading ring indicates that near to the

connection-line there are some green 1-leading nodes that have magenta colored nodes in their

resulting neighborhood. Consequently, those neighborhoods are irregular. Not all of them need

to be stored because of rotational symmetry between those nodes. Only one of those MZSs is

saved, because it is capable of serving as base-symmetry element for rotation in the 0-leading

ring.

7.3.2 Nodes near the zero line

Apart from the boundary-nodes, a second category of nodes exists which requires special treat-

ment. These are those nodes that are adjacent to the so-called zero-line. In a (super) sheet,

the zero-line runs through those chemical bonds that connect the bottom of the sheet to its top

when the sheet is rolled up. The zero line for the (16, 16) tube is shown in Figure 7.5 as dotted

blue line. The magenta nodes above the line are the former nodes at the bottom of the sheet

and the green nodes those at the top, respectively. Global indices increase from the bottom to

the top within a ring of a sheet. Nodes adjacent to the zero line have either low or high indices.

Thus, all nodes above the zero line that have at least one node below the zero line in their neigh-

borhood possess irregular neighborhoods. The same holds the other way round. Consequently,

these nodes can not be used as base-symmetry nodes for rotation.

Figure 7.5.: Zero line within a (16,16) tube shown in blue with the bottom of the graphene in magenta.

However, the irregularity within the neighborhoods of nodes near the zero line is constant

along the x-axis. Hence, we can avoid to store them all. Only those nodes are required which

are affected by the zero line and lie in one of both boundary rings or in the base-symmetry ring.

90

Now, reconsider Figure 7.3. For the 0-leading part in cyan, all those nodes are stored that

have a 0 or a (d0 − 1) as second leading tuple entry because of their neighborhood to the zero

line. Additionally, all nodes with a 1 as second leading entry are saved as they serve as base-

symmetry nodes for rotation within the 0-leading ring. There are also some small additional

0-leading parts around the circumference of the SCNT. These are regions where 0-leading nodes

have 1-leading nodes in their neighborhood. They are stored since neighborhoods of those

nodes are irregular.

The 1-leading part in red contains nearly all base-symmetry nodes for combined symmetry

for the remainder of the tube. It stores all MZSs with a 0, 1 and (d0 − 1) at the second leading

entry to avoid problems with the zero line. Additionally, those few nodes with connections to

0-leading tuples are saved.

In the 2-leading ring, only very few nodes need to be stored. They are drawn in green and

are highlighted by dotted rectangles. The numbers beside the highlighted parts show the first

four entries of the corresponding tuples in these parts. The insert demonstrates the context

of the green nodes for the part in the middle of the grid. In principle, two kinds of problems

arise if those green parts are left out. First, we discuss the case in which the (2,0, 0,0, . . .)
and (2, 1,0, 0, . . .) nodes are not present. Assume that we search the neighborhood for node

(3, 0,0, 0, . . .) where the (. . .) part is identical to one of the green (2,0, 0,0, . . .) nodes. The

algorithm would perform a step in translational direction, reaching node (2,0, 0,0, . . .) and go

on to (1,0, 0,0, . . .) since (2, 0,0, 0, . . .) is not registered. (1, 0,0, 0, . . .) is connected to 0-leading

nodes which would corrupt the neighborhood retrieved. Hence, the first group of green nodes

prevents such cases.

The meaning of the second group of green nodes with tuples (2, (d0−1), 1, 0, . . .) and (2, (d0−
1), 1, 1, . . .) is explained in the following section. Dots in the figure represent further rings that

follow the 2-leading part in the direction of the x-axis. No structural information needs to be

stored for those rings.

The nodes stored next lie in the (l − 1)-leading ring. Most of the nodes within this ring are

symmetric, except those that have l-leading nodes in their neighborhood which belong to an

incomplete and thus irregular ring.

The incomplete MZSs with 0, 1 and (d0−1) at the second leading entry are saved for this last

irregular l−leading ring, analogously to the 0-leading part. The same holds for those parts that

are connected to the (l−1)-leading ring on the circumference of the tube through neighborhood

relations as well.

7.3.3 Two implementations of the retrieval procedure

The actual algorithm for retrieving combined symmetry, as illustrated in Figure 7.2, is somewhat

more complex. In principle, there are two ways to generate the CSGs. The first one is to regard

91

the MZSs as an indivisible unit and to always store the whole MZS, if it contains nodes with

irregular neighborhoods. This leads to very fast construction and easy retrieval of symmetric

nodes since an MZS can directly be added to the compressed graph, if the existence of one

irregular node in it is proven. Furthermore, the retrieval of symmetry information would be

very fast since the structure only needs to check whether the base-symmetry MZS containing

the searched node exists. This procedure works well for tubes of low order with a large length

or diameter since only less than 5% of extra nodes need to be saved. However, the situation

changes considerably when the order is increased. This normally results in lower values for d0

and l0 and simultaneously in more nodes within each MZS. In those cases, the difference in the

number of stored neighborhoods can exceed 20% which is not reasonable. Hence, the CSGs try

to store as few nodes as possible and the storage of incomplete MZSs is allowed. However, this

means that not all base-symmetry nodes are located in the same MZS or not even in the same

ring. In SCNTs of order 1, most base-symmetry nodes lie in the 1-leading ring, but a few nodes

in this ring have connections to the 0-leading ring and have irregular neighborhoods. In that

case, the corresponding base-symmetry nodes lie at the left side of the 2-leading ring. These

numbers are higher for order 0 by one due to their small, constant number of four nodes in each

MZS. The CSGs contain two different ways to search for the index of a base-symmetry node

and both distinguish three different cases depending on the input node whose neighborhood is

requested:

1. The node lies in the 0-leading ring of the tube.

2. The node lies in the l-leading ring of the tube.

3. The node lies in the remainder of the tube.

Both ways only differ in case 3 being the most frequent and also computationally most expen-

sive. The index of the requested node sym_idx is passed to the function calcBaseIdx. A simplified

C++ pseudo code version for the first approach is shown in Listing 7.1. It is not initially clear

in which ring the base-symmetry node can be found due to the existence of incomplete MZSs.

Hence, both, the 1-leading and the 2-leading ring need to be covered.

1 in t CompressedGraph : : ca l cBase Idx (in t sym_idx) {

2 i f (neigbormap . f ind (sym_idx))

3 return sym_idx ;

4

5 // Go to ring 2 and search in it

6 in t idx_base = resolveTransSymmetryToRingTwo (sym_idx) ;

7 i f (neigbormap . f ind (idx_base))

8 return idx_base ;

9

10 in t i dx_be fo re_ ro t = idx_base

92

11 idx_base = resolveRotSymmetryInRingTwo (idx_base) ;

12 i f (neigbormap . f ind (idx_base))

13 return idx_base ;

14

15 // Undo rotation

16 idx_base = idx_be fo re_ ro t ;

17

18 // Go to ring 1 and search in it

19 idx_base = resolveTransSymmetryToRingOne (sym_idx) ;

20 i f (neigbormap . f ind (idx_base))

21 return idx_base ;

22

23 idx_base = resolveRotSymmetryInRingOne (idx_base) ;

24 i f (neigbormap . f ind (idx_base))

25 return idx_base ;

26 }

Listing 7.1: Search for the index of a base-symmetry node within CSGs with the first method.

Consequently, retrieving the neighborhood information for a node requires up to five accesses

to the internal hash table. One possibility to speed up the access to node information is to

switch the order of the resolution of rotational and translational symmetry and to store several

additional nodes which is realized in the second way, shown in Listing 7.2. There are two small,

additional parts in the 2-leading ring at the center of Figure 7.3 within the dotted rectangle.

They are also shown in the insert. These nodes belong to the upper part of the MZS with the

highest second leading index and have tuples of the form (2, (d0 − 1), 1, 0, . . .) and (2, (d0 −
1), 1, 1, . . .). They are connected to the MZSs (2, 0). These are nodes starting with (2, 7,1, . . .)
in the case of the depicted (1, 4,8, 14)1 tube. They are needed because of the slightly modified

calcBaseIdx routine that is shown in C++ pseudo code in Listing 7.2. In contrast to Listing 7.1,

only four instead of five find-operations take place in the hash table.

1 in t CompressedGraph : : ca lcBaseIdxOpt imized (in t sym_idx) {

2 i f (neigbormap . f ind (sym_idx))

3 return sym_idx ;

4

5 // Go to ring 2 and search in it

6 in t idx_base = resolveTransSymmetryToRingTwo (sym_idx) ;

7 i f (neigbormap . f ind (idx_base))

8 return idx_base ;

9

10 idx_base = resolveRotSymmetryInRingTwo (idx_base) ;

11 i f (neigbormap . f ind (idx_base))

12 return idx_base ;

13

14 // Go to ring 1 and search in it

93

15 idx_base = resolveTransSymmetryToRingOne (sym_idx) ;

16 i f (neigbormap . f ind (idx_base))

17 return idx_base ;

18 }

Listing 7.2: Optimized search for the index of a base-symmetry node.

The following example on the (1, 4,8, 14)1 tube demonstrates why additional nodes are re-

quired for the second search procedure. Assume that the combined symmetry of one of the

nodes starting with the sub-tuple (4, 7,1, . . .) should be resolved. For the first procedure this

means that the translational symmetry to ring 2 is resolved in a first step, arriving at the cor-

responding node (2, 7,1, . . .). Since this node is not stored, jumps in rotational symmetry are

performed leading to node (2,1, 1, . . .), which is not saved either. The algorithm goes back to

the index of (2, 7,1, . . .) and from there to (1,7, 1, . . .) in translational direction. This node is

stored and its index is returned as base-symmetry node corresponding to (4,7, 1, . . .).
The first two steps, checking (2, 7,1, . . .), which is not existent, and afterward moving to

(2, 1,1, . . .) that neither exists, are identical for the second procedure of Listing 7.2. The follow-

ing step in translational direction leads to node (1,1, 1, . . .). Now, there are two cases. Assume

that the insert in Figure 7.3 shows the corresponding part in the 4-leading ring which is fea-

sible since 2- and 4-leading rings have completely the same structure. In the first case, the

searched node lies above the green nodes in the remainder of the MZS (4, 7). Since all nodes

in this area possess a regular neighborhood, the resolution process finds the correct match with

node (1,1, 1, . . .) in MZS (1,1). In the second case, the input node lies in one of both green

areas. Then, the returned node in MZS (1, 1) is infeasible since the green nodes have irregular

neighborhoods because of their adjacency to the zero line.

For this example tube, only 48 nodes exist in the green region which is equal to less than

0.8% of the total nodes of the whole CSG. About 11,000 nodes need to be stored additionally

for higher order tubes like (2, 3,4, 6)2 with 800,000 nodes. This corresponds to about 1.4%

of the overall number of nodes. In general, the higher the order of the tube and the larger

the junctions are in relation to the length of the SCNT, the higher is the percentage of extra

nodes. The performance difference is lower than 10% which results from the fact that the base-

symmetry node is found in the last find-operation in both ways. Consequently, the CSGs are

configured to use the algorithm from Listing 7.1 for the tests in this thesis and to store as few

nodes as possible. This further optimizes the memory management of the application while the

alternative way can be chosen at compile time.

7.4 Implementation and optimizations

CSGs are realized as own class CompressedGraph which implements the same interface as

TreeGraph, IndexGraph and HashGraph already presented. This, in particular, allows to iterate

94

over all nodes and to randomly access nodes, hiding the complexity of their construction (Sec-

tion 7.4.1) and in retrieving additional node information (Section 7.4.2).

7.4.1 Construction

Construction of a CSG requires some additional memory in its current implementation. Initially,

an IndexGraph is instantiated which represents the highest level junction in the tube. Afterward,

the following rings or parts of it are constructed employing the IndexGraph junctions as building

blocks, because these rings contain all non-symmetric and base-symmetry nodes: The 0-, 1-,

(l − 1)- and l-leading rings are constructed completely, while the MZSs (2,0), (2, 1) and (2, d)
are added for the 2-leading ring. In the last step, a filtering is performed that removes all

symmetric nodes from the 1−, 2- and l − 1-leading rings. Additionally, it takes out those nodes

in the two boundary rings which can be reconstructed by employing the boundary offsets offrotleft

and offrotright for rotational symmetry.

7.4.2 Avoiding the storage of tuples

In addition to savings in storage of the neighborhood information by dynamically reconstructing

parts of it, CSGs also help to further reduce the overall memory consumption by avoiding the

explicit storage of tuples. They exploit the fact that each tuple can be mapped to its unique serial

index and that a reverse mapping is unique as well. Additionally, not each caller is interested

in the tuple when querying a node. Actually, most calls during the simulation have the goal

of retrieving the position or the neighborhood, while the tuples are mainly of interest during

construction of the tube, data preparation and visualization.

Hence, just the serial index is stored and the request-procedure can be configured to recon-

struct and return the tuples on demand. This method does not negatively affect the speed of the

simulation.

In this way, a lot of memory can be saved. Assume a very large (2, 6,4, 4)3 tube with more

than 5.2 ∗ 109 nodes. Its tuples have a length of 28 since the tube is of order 3. Employing 16

bit short integers for the single entries of the tuple vector results in about 270 GB of occupied

memory for the tuples, which we can avoid. The advantage further grows with increasing size

of the tube and especially its order.

The CSGs adapt the procedure to map tuples to a serial index from the IndexGraph as explained

in Section 6.1.2 and realize an inverse transformation. To that end, the tube part and the

junction part, which contribute to the overall serial index, are covered differently. The original

calculation of the serial index from the tuple processes the tuples from the lowest entry to

the leading entry. First, the junction part is taken into account and then the tube part. The

95

unfolding procedure needs to turn around the order and resolves the tube part to recover the

tuples correctly.

The algorithm only needs to know the structure of the implicit tree representing the tube part

to be able to reverse the mapping of a tuple tpl to its serial index ser_idx. This information is

contained within an array subtree_size storing the number of nodes in the sub-trees of the four

levels of the tree, as explained for the tree-based flattening in Section 6.1.1. Then, the tube part

can be reconstructed by the code in Listing 7.3 in reversed order.

1 in t ac t_ idx = se r_ idx ;

2 for (in t i = t p l . s i z e () − 2; i >= 0; i=i −1) {

3 in t t p l _ e n t r y = ac t_ idx / tube_sub t ree_ s i ze [i] ;

4 t p l . push_back (t p l _ e n t r y) ;

5 ac t_ idx = ac t_ idx − t p l _ e n t r y * tube_sub t r ee_ s i ze [i] ;

6 }

Listing 7.3: Reconstructing the tube part of a tuple in CSGs

Consider the tree of Figure 6.1 with its tuple extent (3,3, 4). This implies that the correspond-

ing tree_subtree_size1 array has four entries {1, 4 ∗ 1, 3 ∗ 4 ∗ 1, 3 ∗ 3 ∗ 4 ∗ 1} = {1, 4,12, 36}2. In

order to restore the tuple for the serial index 33, Listing 7.3 executes three iterations with the

state after each iteration being presented in Table 7.1.

Table 7.1.: Reconstructing the tuple of node (2,2, 1) with index 33 of Figure 6.1 with the procedure
given in Listing 7.3.

before loop after 1st iteration after 2nd iteration after 3rd iteration
act_idx 33 9 1 0
tpl_entry / 2 2 1
tpl / {2} {2,2} {2, 2,1}

The resolution process of the junction part is somewhat more complex. The input for this step

is the act_idx that is calculated in the last loop iteration of Listing 7.3. The idea is outlined in

Figure 7.6 which shows the initial situation in the junction part of the tuple on the left side in

which the junction part is compressed into a hierarchy of maps in IndexGraph.

The idea behind the reconstruction of the sub-tuple for the junctions is that junction levels

are processed one after the other. To that end, the information for the corresponding level is

temporarily uncompressed in the hierarchy from top to bottom. Uncompressing a junction level

means that the implicit tree with depth 8 is reconstructed that encodes a specific junction level.

In Figure 7.6 we see the implicit tree for junction level L − 1 in the middle and one for junction

level L − 2 on the right side.

It is important to know how many different tuples are encoded by each junction level although

it is still compressed. This number is the product of the sizes of all local correspondence maps
1 We have to distinguish sub-trees for tree and junction part in the case of IndexGraph.
2 The last entry is not required for the tuple reconstruction but important in other contexts.

96

for the lower junction levels. The red boxes surrounding and grouping the respective lower part

of the hierarchy in the middle and on the right side in Figure 7.6 indicate: They can be treated

as a black box in the sense that only the number of contained tuples is of interest.

CorresMap
Junction
Level L-1

ML-1 entries =
junction_
elements[L-1]

CorresMap
Junction
Level L-2

ML-2 entries =
junction_
elements[L-2]

CorresMap
Junction
Level 0

M0 entries =
junction_
elements[0]

0 1 2

0 1 21 2 0 2 0 1...

CorresMap
Junction
Level 0

Unfold next level

CorresMap
Junction
Level L-2

Need only total size
of following levels

CorresMap
Junction
Level 0

Ignore higher levels

Unfold next level

0 1 2

0 1 21 2 0 2 0 1...

Need only total size
of following levels

Figure 7.6.: Schematic of the procedure to unfold tuples.

The number of elements in different junction levels is already available in the array

junction_elements that is created during the instantiation of IndexGraph (see Section 6.1.2). An

integer variable junction_offset stores the product of all entries from junction_elements. Addition-

ally, an array is created once and stored within CSGs which represents the sub-tree sizes for the

implicit tree of the whole junction part, i.e., a tree with the order of the tube times eight levels.

This array is called junction_subtree_size.

The contribution to the serial index ser_idx of each junction level is extracted with this infor-

mation and translated to the sub-tuple. To that end, the highest junction level is conceptually

unfolded from the compact map to the implicit tree as shown in the middle of Figure 7.6. Re-

member that in these trees each possible tuple was assigned a local serial index loc_ser_idx from

the left to the right and each actually existing tuple additionally received a consecutive index in

the same direction.

The leaf, i.e., the local serial index loc_ser_idx corresponding to the respective consecutive

index is searched in the unfolded tree. The sub-tuple is recovered from the loc_ser_idx t. This

process is indicated by the red leafs and arrows in the drawing. Computationally, this search-step

is equivalent to a lookup in the local correspondence map of the current level for the consecutive

97

index that delivers the local serial index. The sub-tuple for loc_ser_idx can directly be calculated

in an equivalent fashion to the sub-tuple for the tube part considering this information.

Listing 7.4 summarizes the resolution procedure of the sub-tuple for the junction part. Lines

5−6 realize the unfolding of the respective junction level, while lines 10−14 realize the actual

reconstruction of the sub-tuple in a similar fashion as Listing 7.3. The last lines 17− 18 ensure

that the junction levels of the hierarchy already processed are neglected in the following steps.

To that end, the contribution of covered junction levels is removed from the current index act_idx

as it is done for the nodes already covered from the total number of nodes in the junction part.

1 // Process the junction levels from high to low

2 for (in t l v l = s c n t _ l e v e l − 1; l v l >= 0; l v l=i −1) {

3 // Find the consecutive index of the sub-tuple for this junction level, e.g.

unfold

4 // the sub-tree corresponding to this junction level

5 in t consecut ive_ index = ac t_ idx / j u n c t i o n _ o f f s e t ; // remainder can be neglected

in this line

6 in t l o c _ s e r _ i d x = findLeafNumberInCorrespondenceMap (consecut ive_ index , l v l) ;

7

8 // Restore each entry of the sub-tuple starting with the highest entry of this

junction level

9 // Equivalent to tube part but the implicit tree has a depth 8 this time

10 for (in t t = 7; t >= 0; t=t−1) {

11 in t t p l _ e n t r y = l o c _ s e r _ i d x / j u n c t i o n _ s u b t r e e _ s i z e [l v l * 8 + t] ;

12 t p l . push_back (t p l _ e n t r y) ;

13 se r_ idx −= t p l _ e n t r y * j u n c t i o n _ s u b t r e e _ s i z e [l v l * 8 + t] ;

14 }

15

16 // Ignore the upper tree-part in the following

17 ac t_ idx −= consecut ive_ index * j u n c t i o n _ o f f s e t ;

18 j u n c t i o n _ o f f s e t /= junc t ion_e lements [i] ;

19 }

Listing 7.4: Reconstruction of the junction part of a tuple in CSGs by processing the junction hierarchy

level by level.

7.5 Achieving high compression rates

We define the compression rate ρ to determine the quality of the compression achieved by CSGs

as the fraction of the number of nodes that are compressed in the corresponding CSG divided by

the number of nodes in the original graph which is denoted by n. Hence, its range lies between

0 % if no compression can be achieved at all and 100 % for the impossible case that all nodes

are compressed. The compression rate was evaluated for different tubes of order 0 up to 3 and

the results are presented in Table 7.2.

98

Table 7.2.: Compression results for several tubes. The respective tube configuration, order and the
resulting number of nodes are shown in the first two columns. The last two columns
demonstrate how many nodes of the original tube remain uncompressed and the result-
ing compression rate ρ.

Tube No. of Nodes Nodes uncompressed
Compression
rate (ρ)

(256,256) 1.3 ∗ 105 2.6 ∗ 103 98 %
(512,512) 5.4 ∗ 105 5.1 ∗ 103 99 %
(1,4,12,18)1 7.6 ∗ 104 6.1 ∗ 103 92 %
(2,6,12,18)1 1.6 ∗ 105 1.2 ∗ 104 93 %
(1,4,8,355)1 1.0 ∗ 106 6.5 ∗ 103 99%
(2,6,12,116)1 1.0 ∗ 106 1.2 ∗ 104 99%
(1,4,4,4)2 9.9 ∗ 105 7.5 ∗ 105 25%
(1,4,8,4)2 1.9 ∗ 106 7.5 ∗ 105 61%
(1,4,8,14)2 6.9 ∗ 106 7.5 ∗ 105 89%
(1,4,8,20)2 9.9 ∗ 106 7.5 ∗ 105 92%
(1,2,4,4)3 1.6 ∗ 107 1.2 ∗ 107 25%
(1,2,8,8)3 6.5 ∗ 107 1.2 ∗ 107 81%

A very high compression rate of more than 98% can be achieved for the two tubes of order 0.

This is possible because of the large values of the parameters d0 and l0 which generate a high

number of symmetric MZSs and most of them lie in the interior of the tube.

We observe comparable and even higher compression rates for the order 1 tubes. A special

case is the SCNT (1, 4,8, 355)1 which represents a very thin long tube with a lot of inherent

translational symmetry. Hence, a compression rate of 99% is attainable. The compression rates

for smaller tubes like (1,4, 12,18)1 are lower but still remarkably high.

The lowest compression rate of 25% of all tested tubes is attained for the SCNTs (1,4, 4,4)2

and (1, 2,4, 4)3 which are chosen intentionally to demonstrate the worst case scenario. The

(1, 4,4, 4)2 tube is the smallest possible SCNT of order 2. So most MZSs lie at one of both

ends or near the zero line. Consequently, the inherent translational and rotational symmetry

between the elements is highly limited. However, (1,4, 4,4)2 is also a good demonstration to

justify the decision of allowing the storage of incomplete MZSs as described in Section 7.4.1: If

only complete MZSs would be stored, there would be no compression for such kind of tubes at

all.

There is also a second important point to these worst case tubes: (1, 4,4, 4)2, (1,2, 4,4)3

and all other minimal tubes for the respective order are important for the question how CSGs

can extend the range of feasible simulations. As already shown, if all non-symmetric and base-

symmetry elements of a tube are stored, it is possible to arbitrarily increase the length l0 without

the need to store more structural data. Only the positions of additional nodes need to be stored.

We just need to keep those neighborhoods in memory whose reference node lies in the regions

where a non-regular ring is adjacent to a regular ring when the diameter d0 is increased. So,

99

in principle, if a minimum tube of order L (dx , lx , d0, l0)L can be stored with IndexGraphs, CSGs

make it possible to also store (dx , lx , d0 +∆d, l0 +∆l) where the size of ∆d and ∆l is limited

by additional position data. This is demonstrated by the tubes (1, 4,8, 4)2, (1,4, 8,14)2 and

(1, 4,8, 20)2. These SCNTs only differ in their d0 and l0 values. This results in a different

number of nodes for IndexGraphs, but the number of nodes in the corresponding CSGs is about

the same. In contrast, increasing d0 and l0 increases the amount of inherent symmetry and

hence also the compression rate. The same holds for the tubes (1, 2,4, 4)3 and (1,2, 8,8)3 of

order 3. Additionally, the CSGs leave more free memory even if the corresponding IndexGraph

can also be stored with the provided memory resources. As the following chapter demonstrates,

this additional memory can be used for other important tasks.

100

8 Solving for Displacements with an Iterative Approach

In this chapter, we first motivate the development of an iterative, matrix-free solver by highlight-

ing the limitations of a direct solver. Afterward, we summarize the iterative conjugate gradient

method that is the base of the matrix-free approach and demonstrate its advantages. We discuss

the challenge to appropriately preconditioning the equation system in order to reduce the num-

ber of steps required for the iterative method in Section 8.1. The following sections describe the

different solver implementations for this thesis, which exploit the structure of SCNTs and the

properties of the atomic-scale finite element method employed in different ways. A parallelized

solver with fully assembled stiffness matrix is discussed in Section 8.2 which is a reliable base-

line for performance comparisons. A highly memory-efficient solver, which completely avoids

the storage of values of the stiffness matrix, and thus, considerably increases the range of fea-

sible model sizes is presented in Section 8.3. It is also briefly compared to the runtime of the

dockSIM framework. Section 8.4 introduces a highly configurable and flexible solver which is

able to cache parts of the stiffness matrix but does not require to assemble it completely. Fi-

nally, we propose an additional solver for some special scenarios with only small deformations

of tubes, resulting in a considerable reduction of the required stiffness data in Section 8.5.

As mentioned in the related work, the dockSIM code of the MISMO group also implements

the atomic-scale finite element algorithm presented by Wackerfuß [34] but employs a direct

solver for the equation systems. This results in a double memory overhead: On the one hand,

the whole stiffness matrix K needs to be assembled and kept in memory. This includes all

bookkeeping data required for the compressed row storage (CRS) format (see e.g. [82] and

Section 8.2). On the other hand, a direct solver as realized in the Pardiso library ([83] ,[84],

[85]) consumes additional memory since it is based on an LU decomposition of the matrix.

This decomposition normally creates more non-zero elements in the decomposed matrix, the

so-called fill elements, than the number of non-zero elements in the original sparse matrix.

For example, Li and Demmel [86] proposed a new distributed direct solver and tested its

scalability and its memory demand at different sparse matrices. They achieve a pretty good

scaling for the factorization time. The efficiency is still up to 77% for 128 nodes. But their work

also reveals the high memory demand of direct solvers. Table 8.1 lists some of the test matrices

and their properties from [86]. There, |nze| denotes the number of non-zero elements, and

|nze| / row the maximum number of non-zero elements per row. The authors state that the

decomposition fails for single node execution for matrices BBMAT and Twotone since 256 MB

per node on their test-system are not sufficient. Hence, they only present the memory that is

used per node, if a distributed calculation is employed, including some overhead. A comparison

of the size of the matrices in CRS and the overall memory required for the execution on four

101

distributed nodes (columns 5 and 6 in Table 8.1) demonstrates that up to 33 times more memory

is required during execution than for the storage of the matrix alone. Based on the numbers of

the distributed case, we suspect that the values for single node execution lie in the same range,

regarding matrix Twotone with less than 10 MB of storage but overcharging a node with 256 MB

RAM during LU decomposition.

Table 8.1.: Properties of some example sparse matrices. Values taken from [86]. 32 bit datatypes are
assumed.

Name Order |nze| |nze| / row Size CRS in MB Size in MB on 2*2
Wang4-Tank 26068 177196 7 1.45 136
Inv-Extrusion-1 30412 1793881 59 13.80 192
Twotone 120750 1224224 10 9.80 320
BBMAT 38744 1771772 45 13.66 456
Mixing-Tank 29957 1995041 67 15.34 224

The increase of the non-zero values is another indicator for the memory overhead of direct

solvers. The two main authors of the Pardiso library Schenk and Gärtner proposed a method for

an efficient LU decomposition on shared memory multiprocessors [87]. They evaluated their

scheme on 22 different sparse matrices. Although they focus on throughput and scalability of

their solution, they list the number of non-zeros within the input matrix A and in the factorized

matrix. In average, the number of non-zeros increases by a factor larger than 10 and by even

26.1 and 26.6 in the two worst cases. Integration of well known reordering and symbolic

factorization schemes for symmetric sparse matrices into the algorithm [87, p. 160] cannot

prevent this behavior.

In addition to the results of [86] and [87], the vendor COMSOL performed measurements of

memory usage of their software, which internally employs Pardiso among other solvers. Run-

time and memory required for the solution of a linear equation system grow close to quadratic

with the number of degrees of freedom in the system1.

These facts demonstrate that a direct solver is inherently limited in the problem size that it

can cope with, especially on shared-memory systems. Consequently, the first step is to replace

the direct solver by an iterative method to allow simulation of larger SCNTs The conjugate

gradient (CG) method, originally proposed by Hestenes and Stiefel [88], is chosen. It is based

on the idea that solving An×n ∗ xn = bn is equal to the task to find the xn which minimizes

the quadratic form f (x) = 1
2xT Ax− bT x in the case that A is symmetric. A series of estimates

is generated in m steps to find this x, where, in general, in each step one direction of x is

minimized. In the case of no rounding errors, this method finds the exact solution xn in at

most n steps. Due to the limited floating point precision of computer systems, the algorithm

normally only delivers a good approximation xm of the real solution x. The CG-algorithm is
1 https://www.comsol.com/blogs/much-memory-needed-solve-large-comsol-models/, accessed 2017-01-

04

102

https://www.comsol.com/blogs/much-memory-needed-solve-large-comsol-models/

mainly targeted at symmetric and positive-definite matrices and these two requirements are

fulfilled by the underlying stiffness matrix K in the simulation of the SCNT (see Section 5). The

residual ri = b− xi is calculated for each step i. The original formulation in [88] consists of six

different calculations. The initial step is given in Equation 8.1 where x0 represents an arbitrary

estimation for the solution:

p0 = r0 = b−A ∗ x0 (8.1)

Afterward, the calculations in Equation 8.2 are executed for every step i.

ai =

�

�ri

�

�

2

pT
i ∗A ∗ pi

xi+1 = xi + ai ∗ pi

ri+1 = ri − ai ∗A ∗ pi

bi =

�

�ri+1

�

�

2

�

�ri

�

�

2

pi+1 = ri+1 + bi ∗ pi

(8.2)

An analysis of this algorithm reveals that it only consists of primitive matrix-vector operations

like sum, subtraction, sparse matrix-vector multiplication or scaling which is one of the main

advantages of the CG method. Furthermore, a straightforward implementation has a very low

memory footprint. It requires only the storage of the n-vectors ri, ri+1 and pi beside the inputs

and the output (A, b, xi). The values for xi+1 and pi+1 can directly be placed in xi and pi, respec-

tively since, in contrast to the residual, their old value is not required anymore if the update is

calculated. Two optimizations can reduce the number of calculations while not requiring more

memory. The sparse matrix-vector multiplication (SpMV) A∗pi is calculated two times. It makes

sense to pre-compute this product and store it in an additional n-vector since this is the most

compute intensive calculation within a step. Additionally, the norm
�

�ri

�

�

2
is also calculated twice

and the result of the first calculation can be stored and reused. In that case, ri is not required

after the calculation of ri+1 and its value can directly be overwritten, saving the space of one

n-vector. So, the CG method may require the storage of the matrix2 An×n and between four (x,

b, ri, pi) and eight n-vectors when additionally xi+1, ri+1 and pi+1 are stored and the result of

the SpMV is saved in a temporary vector.

2 Matrix-free versions, as presented in this thesis, can completely avoid it.

103

An extension of the original CG method is the so-called preconditioned conjugate gradient

(PCG) method [89] where an additional symmetric, positive-definite preconditioning matrix

C = E ∗ ET is employed to modify the system A ∗ x = b to an equivalent system C−1 ∗ A ∗ x =
C−1 ∗ b, where the condition number of A is improved [90, p. 39] and A has only a few distinct

eigenvalues [91, p. 532f]. The number of required steps is reduced with a suitably chosen C

that approximates A in some sense.

The NAG library, which is used within the simulation framework of this thesis, employs a

special formulation of the PCG algorithm3. The derivation of this alternative formulation can

be found in [91, p. 532 - 534]. A summary is also given in [92, p. 13]. The modified algorithm

is shown in pseudocode in Listing 8.1 adapted to the notation of this thesis. This algorithm also

demonstrates that C requires the property that equation systems with C need to be solvable at

low cost. Furthermore, Listing 8.1 shows that the preconditioning matrix needs to be saved in

addition to several vectors. In our case, this results in the additional constraint for C to contain

as few non-zero elements as possible to minimize the storage for the preconditioning matrix.

1 r0 = b−A ∗ x0

2 i = 0

3

4 do {

5 so lve C ∗ zi = ri ⇒ zi = C−1 ∗ ri

6 i = i + 1

7 i f (i == 1)

8 pi = zi−1

9 else {

10 bi =
rT

i−1 ∗ zi−1

rT
i−2 ∗ zi−2

11 pi = zi−1 + bi ∗ pi−1

12 }

13 qi = A ∗ pi

14 ai =
rT

i−1 ∗ zi−1

pT
i ∗ qi

15 xi = xi−1 + ai ∗ pi

16 ri = ri−1 − ai ∗ qi

17 }

18 while (te rminat ion c r i t e r i o n not f u l f i l l e d)

Listing 8.1: Version of PCG as employed by NAG library.

Again, only simple vector or scalar operations are performed in nearly all code lines with only

three exceptions. The first one is the occurrence of a sparse matrix-vector multiplication in lines

1 and 13, the second one is the solution of the equation system in line 5 and the third one is

the test of the convergence criterion in line 18. The remaining mathematical operations in this

3 http://www.nag.co.uk/numeric/CL/nagdoc_cl24/html/F11/f11gdc.html, accessed 2016-12-019

104

http://www.nag.co.uk/numeric/CL/nagdoc_cl24/html/F11/f11gdc.html

skeleton can be automated by a library, as realized by NAG, because of the simplicity of the

algorithm. Therefore, it is possible to treat it as a black box. The user needs to supply a custom

method for sparse matrix-vector multiplication and one routine that is able to solve the equation

in line 5 for the given type of preconditioning matrix.

8.1 Preconditioning of the equation system

The framework presented in this thesis offers three types of preconditioners. The first type is

the straightforward Jacobi preconditioner [90]. Here, the preconditioning matrix consists of the

diagonal of the stiffness matrix. The main advantage of this solver is, of course, its small size

since only the diagonal needs to be stored, without further structural information. In addition,

the solution of the preconditioning system can be calculated very fast since only N divisions

need to be executed for a diagonal of length N . The calculation of the preconditioning matrix

can be done in a memory-efficient and parallelized way since the same calculations of potential

are required as for the stiffness matrix itself. Consequently, the Jacobi preconditioner fulfills the

requirements of efficient solving and resource-conserving instantiation as mentioned by Benzi

[93].

The second type of preconditioner is a block-diagonal preconditioning, also being a common

technique ([94], [95]). In our case, blocks Bi of size 3× 3 are used. They directly correspond

to the stiffness contributions ke
1,1 =

δ2U int,e

δx1δx1
, i.e., the contribution related to element e on the

diagonal. This partitions the original matrix with N rows into N/3 independent equation sys-

tems with three equations and three unknowns each. The 3 × 3 symmetric, positive-definite

block matrices Bi are decomposed with a Cholesky decomposition Bi = Li ∗ Li
T by the dpofa

routine of the Linpack [96] library to prepare the repetitive solutions of the precondition system

with different vectors. Those can be realized in parallel because of the independence between

the block matrices. The resulting lower triangular matrices Li are stored, which require 2 ∗ N

storage places in total. Although Linpack also offers the dposl routine to solve equation systems

A ∗ x = b, where A were already decomposed by dpofa, this method is not employed due to

performance reasons. Instead, loops within the code of dposl was unrolled since the problem

size is known in advance. Additionally, the code of the called routines ddot (dot product) and

daxpy (vector plus vector) was inlined and unrolled, too. Afterward, the resulting code fragment

was vectorized using AVX vector intrinsics [97] (see Section 8.3.2 for more details about this

topic). This results in a very fast solving of the small, independent equation systems that can be

efficiently parallelized at near ideal scaling. Altogether, solving the precondition system of the

block-diagonal preconditioner is not measurably slower than that of the Jacobi preconditioner.

The last preconditioner that is available is the incomplete Cholesky factorization of the stiff-

ness matrix, which is a lower triangular matrix that approximates the Cholesky factorization

and contains less non-zero values than full Cholesky factorization. The number of the non-zero

105

elements depends on the usage of the so-called fill-in. If no fill-in is allowed at all, the resulting

factorization contains at maximum as many non-zero elements as the lower triangular of the

original matrix does. Increasing the fill-in rate improves the quality of the approximation, but

also increases the memory required to store it. Being employed as a preconditioner for PCG, the

incomplete Cholesky factorization can drastically improve the convergence rate (see e.g. [98]).

Preconditioning with incomplete Cholesky factorization is a field of ongoing research due to

its properties and several modified versions for fast or memory-efficient creation exist (see e.g.

[99], [100]). The factorization is realized by the NAG library routine nag_sparse_sym_chol_fac

within the framework presented. Usage of fill-in is minimized, i.e., setting the integer parame-

ter lfill to 0 or 1. Nevertheless, this type of preconditioner is only applicable for smaller problem

sizes because of its memory requirements. Hence, it is mainly used to estimate the quality of

the other preconditioners.

There is a multitude of other different preconditioning methods for CG (for an overview of

different techniques refer to [93], [101]). In most cases they are targeted to special mathemat-

ical problems like Toeplitz matrices [102] or matrices arising from very specialized application

fields like reconstruction of images resulting from positron emission tomography [103] or flow

simulations of ground water flow [104]. General preconditioning schemes normally result in

matrices with about the same or even more non-zero entries compared to the original matrix.

They are not applicable to the SCNT case.

This section is concluded by a short analysis of the convergence behavior of the different

preconditioners. To that end, a tension load case with the tubes (1, 4,8, 4)1 and (1,4, 8,14)1 was

simulated until NAG reported convergence NAG is generally configured to apply the following

termination criterion for the simulation runs of this thesis:

ri

∞ ≤ τ ∗
�

‖b‖∞ +‖A‖∞ ×

xi

∞

�

with τ being a user-defined tolerance value < 1. In our experiments, we used τ = 10−10.

After every fifty steps, the relative residual norm

rrel

∞ was calculated by the fraction ‖
ri‖∞
‖r0‖∞

of the initial residual norm

r0

∞ and the residual norm at the i’th step

ri

∞. Development of

rrel

∞ is plotted against the number of iterations in Figures 8.1a and 8.1b.

The development is similar for both tubes. The incomplete Cholesky factorization requires

about one third of the iterations of the others. The number of iterations for the block-diagonal

preconditioner is about 6 % lower in the case of (1, 4,8, 4)1. Or in absolute values: 6910 itera-

tions for the Jacobi and 6489 iterations for the block-diagonal preconditioning. The difference

is even smaller at 3 % (14, 851 iterations versus 14,431) for (1, 4,8, 14)1. While at the begin-

ning the difference in

rrel

∞ between both preconditioners is higher, it attains about the same

values from iteration 13, 800 on. So the block-diagonal preconditioner is of considerable advan-

106

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
10−10

10−8

10−6

10−4

10−2

100

Number of iteration i

R
el

at
iv

e
re

si
du

al
no

rm
||r

i||
/|
|r

0
||

Convergence analysis (1,4, 8,4)1

Jacobi
Block-diagonal
Incomp. Cholesky

(a) The convergence behavior of the three differ-
ent preconditioners for a tension calculation
on the (1,4, 8,4)1 tube.

r0

∞ = 4.00.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

10−10

10−8

10−6

10−4

10−2

100

Number of iteration i
R

el
at

iv
e

re
si

du
al

no
rm
||r

i||
/|
|r

0
||

Convergence analysis (1, 4,8, 14)1

Jacobi
Block-diagonal
Incomp. Cholesky

(b) The convergence behavior of the three differ-
ent preconditioners for a tension calculation
on the (1, 4,8,14)1 tube.

r0

∞ = 4.00.

Figure 8.1.: Convergence behavior of the three implemented solvers.

tage only if a less accurate solution is acceptable. In general, the simulations finish some percent

faster with the block-diagonal preconditioner. It requires some iterations less for convergence

and is as fast as the diagonal preconditioner because of its efficient implementation and near

ideal scaling. In this way, it moves some computational load from the SpMV to the solution of

the solution of the preconditioning system. Consequently, the block-diagonal preconditioner is

chosen for the measurements of this thesis.

8.2 Parallelized reference solver

A solver was implemented based on the widespread compressed row storage (CRS) storage

format [92, p. 57] to generate a baseline for performance . There are several specialized

variants of CRS for vector computers [105], GPUs [106], or FPGAs [107]. In general, the CRS

format works as follows: All non-zero values of Matrix A are processed row-wise and written

in the value vector a_v. Additionally, the index of the corresponding column to each non-zero

entry is appended in a vector called column vector icol_v. Finally, a third vector, the row pointer

irow_v, contains a pointer to those entries in icol_v where the first non-zero entry of a new row

is placed. The CRS implementation in the framework is not targeted to a special hardware. It

only exploits the symmetry of the matrix by only storing those entries ai j with i ≥ j and has no

further assumptions about the structure of the matrix. The straightforward implementation of

107

1 void matr ixVec torMul t ip ly (double* x , double* b) {
2 for (in t i =0; i<this−>nodecnt *3; i++) b[i] = 0 .0 ;
3
4 #pragma omp p a r a l l e l for
5 for (in t row=0; row < irow_v . s i z e ()−1; row++) {
6 double t v a l = 0 .0 ;
7 for (in t j = irow_v [row] ; j < irow_v [row+1] ; j++) {
8 in t co l = i c o l _ v [j] ;
9

10 t v a l += a_v [j] * x [c o l] ;
11
12 i f (row != co l) {
13 double r e s = a_v [j] * x [row] ;
14 #pragma omp atomic
15 b[c o l] += res ;
16 }
17 }
18 #pragma omp atomic
19 b[row] += t v a l ;
20 }
21
22 return 0;
23 }

Listing 8.2: OpenMP parallelized implementation of the CRS-based reference solver.

an OpenMP-parallelized4 sparse matrix-vector multiplication b = A ∗ x using CRS can be found

in Listing 8.2. This solver is called the reference solver in the following. It is obvious that this

solver always requires a fully assembled stiffness matrix.

Exploitation of symmetry occurs in line 12-16 where the value of A is reused. The symmetric

version of CRS requires two synchronization points between the OpenMP threads (lines 14 and

18) to avoid race conditions. The summations for each contribution of the symmetric parts are

synchronized while the values resulting from the actual row can be summed up in a temporary

variable t_val to reduce the number of atomics. In a Bachelor’s thesis, together with Tristan

Wirth [108], two other general data formats, namely blocked CRS [92, p. 58] and SELL-C-σ

[109] were investigated for their suitability to perform the sparse matrix vector multiplication

(SpMV) with the stiffness matrices arising in this framework on modern CPUs. The results

show that SELL-C-σ is not able to deliver a performance gain compared to CRS. This results

from the regular structure of the stiffness matrices. Consequently, sorting and permutation

operations for SELL-C-σ only cause overhead that neutralize the performance gain through a

faster multiplication. In contrast, the blocked CRS speeds up the calculation by about 20 % for

block-size 3×3 which directly fits the underlying matrix structure. However, the implementation

does not exploit the symmetry of the matrix and was compared against to a CRS version also

4 http://www.openmp.org/

108

http://www.openmp.org/

ignoring symmetry. Hence, the CRS reference solver in Listing 8.2 is used as a baseline for this

thesis.

One major drawback of the reference solver, as reported in [23], was its high time for matrix

assembly. This issue is solved in the recent implementation by a parallelized assembly with pre-

allocated data structures. The knowledge about the SCNTs allows to assume a non-zero count

of 90 times the number of nodes as an upper bound, which overestimates the real number by

at most 10% (see next section). During the assembly, t threads calculate t consecutive stiffness

contribution lines in parallel in each iteration. Then, each thread sorts its row in increasing

order of the global index. Afterward one thread after the other writes its newly calculated three

matrix lines into the CRS arrays. This speeds up the assembly by more than a factor of 11 when

running with 16 threads, compared to the version in [23].

8.3 On-the-fly calculation of intermediate results

The black box nature of the reformulated PCG algorithm makes it possible to completely avoid

the storage of the stiffness matrix K in order to reduce the memory required for solving K ∗
x = r. To that end, the required stiffness contributions are recomputed on-the-fly whenever

requested and they directly multiplied with the corresponding entries of the vector which the

SpMV is calculated with. This procedure was published in [23] and this chapter summarizes

the methods of this publication with updated performance results (see also Chapter 9), which

reflect the changes the code has undergone since the original publication date. Furthermore, a

more exact modeling of the storage required is presented (Section 8.3.1). The solver applying

these techniques is called the on-the-fly solver in the following.

8.3.1 Memory savings

The on the on-the-fly solver is compared to the reference solver with an assembled matrix in

CRS format to demonstrate its reduced memory requirements. Here, the memory for the user-

side is modeled, i.e., the data structures that need to be allocated and filled manually, as well

as to be passed to the PCG black box as inputs or outputs. The internal variables of the PCG

method itself like zi or pi (see Listing 8.1) are neglected since they are managed by the library

and they are the same independent of the solver employed.

The number of degrees of freedom, i.e., the number of rows and columns in K is defined as

N = 3 ∗ n with n being the number of nodes in the SCNT model. It is possible to estimate the

number of non-zero values by 60∗N . This results from the up to 20 different nodes in the neigh-

borhood of a reference node for tubes with an order > 0 which determine the regular structure

of KN×N . The actual number is slightly smaller, since three factors reduce the theoretical num-

ber. First, nodes at the boundary have incomplete neighborhoods, second, not all nodes are

109

adjacent to octagons within the Y-junctions and last, boundary conditions may set some entries

in K to 0.

Only the lower (or upper) triangular matrix, including the diagonal, needs to be stored in

CRS since K is symmetric which we realized in Listing 8.2. Equation 8.3 estimates the number

of non-zero values that need to be stored for K.

size(K) = (60 ∗ N)/2
︸ ︷︷ ︸

hal f
v alues

+ N
︸︷︷︸

diagonal
v alues

= 31 ∗ N
(8.3)

For the number of estimated non-zeroes this means that it can be halved. Comparing the

actual number of non-zeros for some configurations with this estimation as shown in Table 8.2

reveals that 60 ∗ N/2+ N overestimates the real value by roughly 5% for tubes of order 1 on,

where the case occurs that neighborhoods can consist of 20 distinct nodes. This overestimation

is, in our view, acceptable.

Table 8.2.: For several tube configurations, the real number of resulting non-zeros in the stiffness matrix
as well as the estimated number by the solver and the factor of overestimation.

Real Number Estimate Overestimation
(256, 256) 10733867 11796480 1.099
(512, 512) 43518536 47185920 1.084
(1, 4,8, 14)1 3442522 3311616 1.031
(1, 4,8, 355)1 87459644 89971200 1.029
(2, 6,12, 116)1 87409543 90201600 1.032
(1, 2,8, 8)2 72056649 73728000 1.023
(1, 2,8, 8)2 346253048 356843520 1.031

In addition to these values, the SpMV requires the storage of the actual solution approxima-

tion xN and the right-hand side bN . Furthermore, the bookkeeping data for CRS, namely the

column and the row pointer, have to be taken into account. There is one entry in the column

pointer for each non-zero value and for each row of K one value needs to be inserted into the

row pointer. Hence, Equation 8.4 gives the total number of values to store using CRS.

size(K) = (31+ 1) ∗ N
︸ ︷︷ ︸

pure
data

+(31+ 2) ∗ N
︸ ︷︷ ︸

CRS−
bookkeeping

+2 ∗ N
︸︷︷︸

xN , bN

= 67 ∗ N
(8.4)

The on-the-fly approach also stores xN and bN . Additionally, the preconditioning matrix C is

required. Assuming the Jacobi preconditioning matrix as preconditioner, it also needs to store

110

N values while 2∗N values are required for the block-diagonal preconditioner. Hence, the total

memory consumption can be summarized by Equation 8.5 which demonstrates that the one-the-

fly approach saves memory by a factor of up to 22. This method increases the range of feasible

problem sizes by more than one order of magnitude since memory is the limiting resource in

modern HPC systems [110].

Total storage=



















67 * N for reference version

3 * N for on-the-fly version, Jacobi preconditioner

4 * N for on-the-fly version, block-diagonal preconditioner

(8.5)

8.3.2 Performance optimizations

The recomputation of all stiffness contributions for each iteration of the PCG algorithm is com-

putationally expensive and, of course, slows down the solution of the equation system as demon-

strated in [23]. Calculation was parallelized with OpenMP to reduce this overhead. The scaling

analysis follows in Chapter 9.

Additionally, a hotspot analysis was performed which demonstrates that the calculation of

the dihedral angle and especially its second derivative within the Dreiding potential requires

about 80 % of the total runtime. Checking the report of the Intel compiler reveals that it is not

able to vectorize the code at all, although the three distinct lines in a stiffness contribution are

independent of each other. Augmenting the code with additional vector pragmas and reordering

the loops allow the compiler to create auto-vectorized code, resulting in a performance gain for

the dihedral calculations of 20 %.

However, examining the assembly code generated by the Intel compiler reveals that this vec-

torized code is far from being optimal. Hence, the calculation of the second derivative of the

dihedral angle was rewritten in AVX (Advanced Vector Extensions)-intrinsics ([111], [97]), an

assembly like, close-to-the-hardware level language to perform vectorized computations. AVX

allows to directly program the calculations on the SIMD units of modern processors and manu-

ally place/move data in the respective registers. The AVX unit has 16 registers which are 256 bit

wide and, thus, allow to calculate four double precision values in parallel. Vectorizing hotspots

with AVX is a common procedure to optimize scientific codes, see for example Tanikawa [112]

for N-body simulations, Fialko [113] for an FE solver or Agulleiro and Fernandez [114] for

3D reconstruction. 70 lines of C++-code were replaced by about 150 lines of AVX intrinsics to

employ the AVX units efficiently. A comparison of the old code with the hand-vectorized code

shows that the speedup is about 2.5 which is very near to the optimal value of 3. The theo-

111

retical maximum is limited to this value since there are only three lines of the result that can

be calculated in parallel. The performance of the on-the-fly solver is doubled when combined

with a restructuring of the code for the valance angle calculation to enable auto-vectorization

as shown in [23].

Another optimization is a stiffness contribution line-based processing of the contributions.

Instead of immediately multiplying a stiffness contribution with the input vector, the whole

contribution line is assembled first and multiplied afterward. This removes the interleaving of

two different tasks, namely to calculate the potential values and to perform the SpMV with the

goal to optimize the caching behavior and to facilitate the job of the compiler to generate fast

code for both tasks.

8.4 Software-controlled caching of intermediate results

Although the on-the-fly solution exhibits high savings memory, compared to the CRS reference

solver, the increased runtime is an issue as shown in [23]. It makes sense to try to reduce the

number of recalculations of the Dreiding potential, i.e., stiffness contributions, since most of the

runtime, usually around 80 %, is consumed by them.

This can be realized by caching intermediate results and reusing them in other iterations of

the PCG method. We decided to use stiffness contribution lines since each of them allows to

compute three entries of the result vector during matrix-vector multiplication. Caching single

stiffness contributions is also possible, but tests show that the overhead for managing those

small pieces of data is very high. As we demonstrate, the percentage of cached stiffness contri-

bution lines is the crucial factor for performance. The number of cached stiffness contribution

lines divided by the total number of existing lines is defined as the caching rate and the highest

rate 1.0 is also called full caching. Consequently, the framework tries to maximize the caching

rate by saving memory in other parts of the program, even if this may have a negative effect

on the performance of the respective parts, since this performance degradation is more than

compensated by the faster sparse matrix-vector multiplication. Corresponding stiffness contri-

butions are calculated in the same way as in the on-the-fly solver for all remaining lines of the

result vector. This concept of software controlled caching is realized in the caching solver that

is discussed in the following section which is mainly based on [27].

As already demonstrated, the storage requirements of the reference solver for the raw matrix

storage can be estimated by 65 ∗ N . In contrast, besides the actual stiffness contribution data,

no further data structures for bookkeeping are required in the caching solver, if full caching is

employed. The stiffness contribution data is accessed by traversing the underlying graph, which

needs to be stored anyway. Hence, in the case of full caching only non-zero values of K need

to be stored, which is 31 ∗ N . So, the caching solver requires only half the memory compared

to the reference solver. This means that all problems that can be solved by the reference solver

112

can also be calculated by the caching solver at full caching. The amount of RAM that is used

for caching can be either defined by the user at the program start-up or by the framework at

runtime. Note, that we can solve the linear equation systems with a storage of 3 ∗ N or 4 ∗ N

if no caching is performed, and any amount of storage up to 32 ∗ N or 33 ∗ N with our caching

solver, taking into account one or two N -vectors for the preconditioner.

8.4.1 Combination with Compressed Symmetric Graphs

The main advantage of the Compressed Symmetric Graphs becomes apparent when they are

combined with the caching solver and large tubes. Here, we realize a higher percentage of

cached contribution lines compared to the usage of IndexGraphs because of the high compres-

sion rate of CSGs. This is illustrated by Figure 8.2. There are mainly three data structures which

consume memory when running the caching solver. The first items, shown in red, are the vari-

ables, the fields and the private space for the PCG algorithm itself, like the residual or the result

vector, the preconditioner, and space consumed by the NAG library, respectively. The blue block

shows the second part that represents the graph data structure which needs to be available dur-

ing the simulation. The third contribution is the cache reserved for stiffness contribution lines

in green. Last, there is some unused RAM depicted in orange. If there is enough RAM to cache

all existing stiffness contribution lines, this represents the situation of full caching. However, if

the graph grows, the green bar also enlarges because of the increasing number of contribution

lines. At some point, the memory requirements exceed the memory capacity and the caching

solver has to recalculate a certain percentage of the contributions. This situation is shown on

the right side of Figure 8.2 where the hatched part stands for recalculated contributions that

would be cached if more memory is available. This shows the importance of data compression

of the CSGs: CSGs reduce the memory for the graph structure, which is equal to shrinking the

blue bar, and the green bar can enlarge while the hatched area shrinks. An increased percentage

of cached contributions decreases the overall runtime.

PCG Graph Cache free recalculate

full caching low memory

Figure 8.2.: The whole rectangle represents the memory of the system while the colored blocks show
the parts of the framework that mainly consume it. The left side depicts the case of full
caching and the left the case of low memory, in which stiffness contributions need to be
recalculated.

Hence, it is important to estimate how compression of graphs in CSGs correlates to shrinking

of the blue bar. This reduction is mainly based on three factors. The first one is the space

which is saved by compressing a node, the second one is the storage requirement to cache a

113

contribution line and the third is the number of nodes that can be compressed by CSGs. A node

object within the framework contains the following information:

1. Its global and its serial index, both realized as 64 bit integers (in total 16 bytes).

2. Its position composed of three double precision values (in total 24 bytes).

3. Its neighborhood consisting of 20 64 bit values and 23 short integers which relate the dis-

tinct neighboring nodes to their position(s) in the neighborhood. So 206 bytes in total.

4. A short integer giving the number of distinct nodes in the neighborhood (2 bytes).

5. A boolean that indicates if the neighborhood is complete (1 bytes).

6. A tuple which is composed of 32 bit integers per entry. In that case, the size in memory

depends on the order of the tube and thus, the length of the tuple. As an example, the

tuple for a tube of order 2 requires 80 bytes.

In this case, a node requires 16+24+206+2+1+80= 329 bytes in total. This value is slightly

higher due to memory alignment. The value determined with the sizeof-function is 336 bytes.

If such a node is compressed, no storage is required for the neighborhood, additional infor-

mation about the neighborhood and the tuple. However, both of its indices and position data

need to be explicitly stored anyway. Consequently, compressing a node frees 206+2+1+80=
289 bytes of memory. The value retrieved with sizeof-function is 296 bytes in that case.

The size of the contribution line can be estimated by the number of its individual contributions

and their size. Each contribution is a block of 9 doubles and needs 9 ∗ 8 = 72 bytes, i.e.,

the storage for the stiffness data corresponding to a node is higher than the storage required

for its structural information. The maximum number of contributions per line is 20. Due to

the symmetry of the matrix, in average 10 contributions have to be stored per line, resulting

in 72 ∗ 10 = 720 bytes per contribution line. Thus, to cache one additional contribution line

720/296 = 2.5 nodes of a graph need to be compressed. Now, we assume that for a certain

tube and a specific system we have the case of low memory, the caching solver is combined

with an IndexGraph, and is only able to cache 90 % of the contribution lines. Then, the CSG

corresponding to this IndexGraph needs to compress 2.5 ∗ 10% = 25% of the nodes of the

original graph to enable full caching. As shown in Table 7.2, this prerequisite is already fulfilled

for the worst case tube scenario. Consequently, the higher the compression rate ρ, the higher

the additional percentage of cached contribution lines µ. In general, it is µ = ρ
2.5 with an upper

bound of lim
ρ→100%

ρ
2.5 = 40 %.

114

8.4.2 Parallel preparing the cached data

The most important step for the caching solver is the instantiation and storage of the data.

This preparation step is separated to a CachingManger class. Its first task is the determination of

how many stiffness contribution lines can be cached and which lines need to be recomputed

in each iteration. Therefore, the length of each row is required, which varies between 1 and

60 since the symmetry of K is exploited and only the lower triangular part of the matrix is

taken into account. To that end, the CachingManger iterates over the neighborhood of each node,

counts those neighborhood nodes that have a lower or equal index than the reference node and

accumulates the result in cnnodes. Each node with this property contributes a 3× 3 matrix to K,

resulting in cnnodes ∗ 9 ∗ 8 bytes of data for the respective line. This value is subtracted from the

user-defined memory available for caching in the variable max_stiffness_storage. So, the nodes in

G are processed consecutively by their global index until the subtraction of the next node from

max_stiffness_storage would return a negative result. If this situation occurs at global index k this

means that the first k ∗3 lines of the stiffness matrix will be cached. Then, the required space is

allocated.

The next step are the calculation and insertion of corresponding stiffness contributions. Dur-

ing these calculations, the work for the later following SpMV is also statically distributed to the

user-defined number of threads. A consecutive portion of nodes is assigned to each thread while

trying to keep the number of stiffness contributions equally distributed. Hence, each thread only

needs to know the start and end node of its region and the corresponding memory address of

the cached contribution line to perform the SpMV. Afterward, each thread calculates its stiffness

contribution lines in parallel.

Initially, the stiffness contributions are stored in row-major order at different locations in

memory after their calculation. Then, the CachingManger writes the contribution values column-

wise in three different regions of contiguous memory contrib0, contrib1 and contrib2. This pro-

cedure is shown in Figure 8.3 for an exemplary stiffness contribution line consisting of three

contributions. Colors indicate the relation of entries to their stiffness contribution and numbers

give the correspondence of the entry in the 3× 3 contribution matrix and its position in one of

the regions of contiguous memory.

1 2 3

7 8 9

4 5 6

1 2 3

7 8 9

4 5 6

1 2 3

7 8 9

4 5 6

1 74 1 74 1 74

2 85 2 85 2 85

3 96 3 96 3 96contrib2 = ...

contrib0 = ...

contrib1 = ...

contribution line new layout in memory

Figure 8.3.: Memory layout for stiffness contributions within the caching solver. The entries in the orig-
inal stiffness contributions are arranged column-wise in three different consecutive arrays
contrib0, contrib1 and contrib2.

115

8.4.3 Cached sparse matrix-vector multiplication

The cached SpMV b = K ∗ x exploits some knowledge and properties of the underlying stiffness

matrices to increase the efficiency of calculation. Each thread iterates over its consecutive frac-

tion of the node list and each iteration covers the stiffness contribution line corresponding to the

respective node while taking the symmetry of K into account. Figure 8.4 demonstrates memory

accesses, which are required to calculate the contribution of one line to the SpMV result.

Matrix K is shown on the left side with the diagonal being represented by the dotted line.

Numbers within the different entries indicate the symmetry relations of the entries in the ma-

trix. Only the lower left diagonal of the matrix is cached while the upper triangle results from

symmetry. It is assumed that all values resulting from the highlighted row should be calculated.

In the row, the values are grouped around bands near the diagonal as shown in Section 5.3, i.e.,

in most cases, the higher the global index corresponding to the row, the more zeros lie left to the

first non-zero element. The grade of distribution depends on the tube configuration. Although

the element in pale yellow in K belongs to the highlighted row it is not processed during this

iteration, but is covered later when the row with the pale cyan entry is processed due to the

symmetry between both pale elements. We see that several positions in the result vector b are

updated when processing a single row in the matrix because of the exploitation of symmetry,

i.e., not only the current row S, but also the rows which correspond to the column index of the

entries 1, 2 and 3. However, the region with modified rows in b is limited by the leftmost entry

in the current row and the entry on the diagonal.

In principle, the calculation for the highlighted row requires two different kinds of operations.

The first one is to multiply and accumulate the yellow contributions in the corresponding entry

of b. The second is to update b at all cyan positions.

To realize an efficient multiplication, several temporary vectors are allocated for each thread.

All of these vectors have 20∗3 entries and thus directly result from the non-zero structure of K5.

Their contribution to the overall memory consumption of the framework can be neglected due

to their small size. Two vectors bn and bn_T are created for the intermediate results. Additionally,

the solver allocates four vectors xn_0, xn_1, xn_2 and xn_T that temporally store small parts of the

input vector x. All vectors are aligned to enable a vectorized computation. Prior to the start of

the actual calculation for a reference node, data is copied from the outside into the four different

x-vectors. Assume an input vector x = {x1_x, x1_y, x1_z, ..., x4_x, x4_y, x4_z, ..., x11_x, x11_y, x11_z

, ...} and that we want to execute the calculation corresponding to the reference node with

global index 11 that has the nodes 1 and 4 in its neighborhood. Hence, only the entries in x

corresponding to the nodes 1, 4 and 11 are of interest. In that case, the temporary vectors look

like:

5 K, b and r are highlighted as code, since we are dealing with the implementation in this chapter and the
corresponding variables in the implementation have the same name as in the mathematical notation

116

1
2
3
S1 2 3

1
2
3

1
2
3
S

X =

K x b
Figure 8.4.: Read and write access in the required data structures during SpMV in caching solver.

• xn_0 = {x1_x, x1_x, x1_x, x4_x, x4_x, x4_x, x11_x, x11_x, x11_x}

• xn_1 = {x1_y, x1_y, x1_y, x4_y, x4_y, x4_y, x11_y, x11_y, x11_y}

• xn_2 = {x1_z, x1_z, x1_z, x4_z, x4_z, x4_z, x11_z, x11_z, x11_z}

• xn_T = {x11_x, x11_y, x11_z, x11_x, x11_y, x11_z, x11_x, x11_y, x11_z}

So, xn_0, xn_1, xn_2 and also xn_T contain some redundant data. Data within these vectors is

updated for each reference node.

Now, we consider both temporary b-vectors. On the one hand, bn keeps all the entries for the

result vector that are directly calculated from values of the lower triangular matrix per node.

Although only three entries of b are influenced by one contribution line, each entry of bn holds

the results of the multiplication of a single matrix entry of K with the respective entry of x.

Afterward, the single entries are reduced to the entries in b. This procedure allows to realize

the vectorized multiplication of four double entries and to perform a packed write of the results

to the appropriately aligned memory location bn. On the other hand, bn_T contains the results

of the multiplication of the corresponding symmetric parts, so in terms of Figure 8.4 the cyan

blocks. The respective multiplications and summations are performed with the same values of

K as they are required for bn exploiting the temporal locality of the matrix data.

The number of synchronization points between the different threads can be reduced by em-

ploying intermediate vectors for the result vectors. The synchronization overhead in OpenMP

or in general parallel programming is substantial and gets worse as soon as the degree of par-

allelism increases (see e.g. [115], [116] for OpenMP). Hence, the caching solver integrates

another method to reduce it. To that end, for each thread a span is defined within the result

117

vector b. We know from the previous section that each thread is assigned a consecutive number

of global indices. The span starts at the entry with the lowest global index in the result vector

that is modified by a distinct thread and ends at the highest one, as depicted in Figure 8.5 in

an example scenario with four threads. Colors indicate the region in the vector corresponding

to the respective thread. The whole region consisting of a full colored block and a pale part

is the span of thread. Please note that within this region, not all entries are accessed by the

corresponding thread. The full colored part directly corresponds to rows of K that are assigned

to a thread via the global index while the pale remainder are those entries that are modified due

to the exploitation of the symmetric matrix. Also reconsider Figure 8.4 which demonstrates that

a thread does not modify entries with a global index higher than the end of its span and that

there is also a lower bound for the entries modified by one thread. These regions may overlap

and within these areas threads need to synchronize when modifying entries. If a thread writes

an entry within a non-overlapping area it does not influence other threads and can execute a

direct access. The advantage in the case of SCNT simulations is that these spans per thread can

easily be determined when preparing the data for the caching solver. The upper bound for a

span is always the highest global index, i.e., the last row of K which is assigned to a thread. The

lower bound is the lowest index that occurs in all neighborhoods of the nodes that are assigned

to the thread. It is sufficient to check only the first half of entries in the neighborhood to identify

this node since the neighborhoods are sorted in an ascending order.

span thread 1

span thread 2

span thread 3

span thread 4

Figure 8.5.: Each thread is assigned a bunch of rows of the stiffness matrix, determining the entries that
it needs to modify within the result vector. These regions may overlap.

A second and more heuristic procedure was implemented to demonstrate and estimate the

effect of OpenMP synchronization. During the data preparation, the neighborhood with the

maximum distance of global indices among its nodes is searched and stored. The distance

between the start nodes of adjacent threads is determined when beginning the SpMV and the

predetermined maximum distance between indices within all neighborhoods is added to the

lower and subtracted from the higher threads’ start indices, plus a buffer value. If the difference

is high enough, the first thread will already have finished modifying the overlapping entries

in the result vector, before the other thread arrives at them. It must also be assumed that the

threads proceed through the result vector with about the same speed for this scheme. In that

118

case, it is possible to always execute an unsynchronized write. However, this leads to data races

for several runs probably since the chosen buffer was too small. Consequently, the first thread-

safe approach is employed for the performance comparisons, but the alternative approach can

serve as an indicator which shows to which extent the runtime of the caching solver is limited

by the need to synchronize.

8.5 The case of small deformations

In Section 3.3 structural is defined. This section discusses the special case of the so-called value-

symmetry which is only present in the small deformation case where the simulation is based on

the linear theory of elasticity. Here, the static equilibrium of order 0 SCNTs can be used as an

estimate for the solution. In those cases, potentials acting on structural symmetric nodes can

be deduced from those acting on respective base-symmetry nodes. Put differently, there are the

same or very similar contributions to the stiffness matrix for different nodes. We consider small

deformations governed by a linearly elastic response to the load conditions. Thus, symmetric

boundary conditions result in a symmetric response of the structure. This symmetry can be

exploited by the methods presented in this section. Then, it is possible to store all information

of the stiffness matrix within only a few megabytes of RAM. These ideas were already presented

in [21] and they are extended within this section while new results are also presented. Principles

described here are implemented within the value-symmetric solver. They are only applicable

to order 0 tubes. One main difference to the value-symmetric solver version in [21] is that all

required stiffness contributions are always stored since this section demonstrates that memory

is not a limiting factor.

Information about value symmetry is encoded in the tuple system in the same way as struc-

tural symmetry. Hence, translational and rotational symmetry can be resolved in a similar way

as it is realized for the Compressed Symmetric Graphs by determining offsets for jumps in trans-

lational and rotational direction. The rotational offset is always 4 since only order 0 tubes are

employed. The algorithm is aware of the fact that all non-symmetric nodes lie in the 0-, 1-,

(l − 1)- and l-leading rings due to its knowledge of order 0 SCNTs. This approach is different

to the one employed in [21], where parsing of tuples and time-consuming search operations

for nodes were required to resolve symmetry. The advantage of faster symmetry identification

comes with a small memory overhead since, in that case, the 2-leading ring also needs to be

stored completely, because of irregular neighborhoods of some of the 1-leading nodes.

Translational and rotational symmetry are successively discussed in the following, starting

with translational symmetry. Here, it is important to know that forces acting on nodes that pos-

sess structural translational symmetry are identical, which means that the resulting contribution

to K can be reused directly. The most important question is to which extent the value-symmetry

can help to reduce the number of calculations and the required amount of memory. It is pos-

119

sible to estimate the number of stiffness contributions which need to be stored to represent

the whole stiffness matrix. The number of base-symmetry nodes for translation, non-symmetric

nodes, and symmetric nodes is given by cbase, cnonsym and csym while ctotal denotes the overall

number of nodes in the model that can be calculated by l0 ∗ d0 ∗ 2 for order 0 SCNTs. cbase

can easily be determined by d0 ∗ 4 since it is always the number of nodes in the 2-leading ring

which consists of d0 MZSs. cnonsym consists of two contributions. First, we have the 0-leading

ring at the left end and second, the l-leading ring at the right end of the tube. Both consist of

incomplete MZSs. Unifying both boundary rings results in one complete ring with again d0 ∗ 4

nodes. Additionally, we have to add the 1- and (l−1)-leading ring resulting in cnonsym = 3∗4∗d0.

Obviously, all remaining nodes are symmetric. Consequently, we have to take the whole number

of rings given by l0
2 + 1 into account and to subtract the five rings already covered to calculate

csym, resulting in csym = (
l0
2 − 4) ∗ 4 ∗ d0. Now, we are able to estimate the number of stiffness

contributions which results from the three different types of nodes:

1. cbase: All nodes have complete neighborhoods generating (4 ∗ d0 ∗ 19) contributions to K.

2. cnonsym: The nodes in the incomplete rings have on average 14.2 neighbors6, while those

in the 1- and (l − 1)-leading rings have complete neighborhoods with 19 different nodes.

This results in (4 ∗ d0 ∗ 14.2) + (2 ∗ 4 ∗ d0 ∗ 19) stiffness contributions.

3. csym: The remaining (l0
2 − 4) ∗ 4 ∗ d0 nodes also generate 19 contributions each.

The reduction factor can now be estimated by dividing the overall number of potentials in

the tube by the number of potentials that need to be stored in the case of value symmetry.

The overall number is equal to the sum of the number of potentials of all non-symmetric, base-

symmetry and symmetric nodes which is the sum of all three items in the enumeration above.

The number of potentials that needs to be stored in the case of value symmetry is the sum of

the potentials of non-symmetric and base-symmetry nodes, hence, the first two items in the

enumeration. After calculation and rounding, one arrives at 38
284 ∗ l0 − 0.0068, which we round

to 0.135 ∗ l0. To determine the quality of the estimation, Table 8.3 compares the calculated and

measured reduction factors for several tubes.

Table 8.3.: Summary of the reduction in the number of stiffness contributions that is achievable by
exploiting translational value-symmetry.

CNT configuration
(64,
64)

(128,
128)

(256,
256)

(256,
512)

(512,
512)

(1024,
1024)

(4096,
4096)

factor (estimated) 9 17 35 69 69 138 553
factor (observed) 8 17 35 70 70 140 563

We see that both factors are in very good agreement and that the reduction grows with the

length of the tube, while the diameter has no influence on it. We note that the attained reduc-
6 This value was empirically determined.

120

tion in Table 8.3 is smaller than in [21] as a result of the changed procedure in defining and

determining symmetric nodes. Nevertheless, the reduction can be very substantial. This always

leads to the situation that a computer system which is capable of constructing a specific tube can

also execute the value-symmetric solver on this configuration. The few additional megabytes for

the storage of contributions also fit in the system’s memory, if a large graph model with several

gigabytes fits into it.

All related stiffness contributions are calculated and inserted into two hash maps for all the

non-symmetric and base-symmetry nodes, one for each type of nodes. Both maps are indexed

by the corresponding global index of the nodes. The only calculation of stiffness contributions

occurs during the initialization of the stiffness data, since all contributions are always stored.

Those and some single values like the translational offset (= 4 ∗ d0), the global index of the

first node in the 2-leading ring and the global index of last node of the (l − 2)-ring plus the

graph is all information that is required. The algorithm iterates over both maps to calculate

the SpMV. Contributions are directly multiplied with the corresponding entries in the input

vector and written to the result vector for the non-symmetric nodes. Calculations for the global

index of the individual base-symmetry nodes are performed, followed by a loop that executes

translational jumps as long as the index of the target node is smaller than the start of the

(l − 1)-leading ring. Corresponding calculations for the SpMV are performed for each ring.

One optimization in contrast to the version published in [21] is that the data is managed and

read line-wise but processed contribution-wise. This exploits the spatial locality of the stiffness

contributions.

The next point to discuss is the rotational symmetry. In contrast to translational symmetry,

the stiffness contributions need to be transformed when reusing it since rotating the nodes also

influences the forces between them. The transformation depends on the angle which a node is

rotated around the x-axis of the tube. Fortunately, there is a straightforward transformation of

the stiffness contribution ke
i, j′ for three angles. If ke

i, j′ has the form:

ke
i, j′ =







x x x y xz

y x y y yz

zx z y zz







then for the angles of 90°, 180° and 270° the following matrices correspond to the contribu-

tions for the rotational symmetric nodes:

ke
i, j′(180°) =







x x −x y −xz

−y x y y yz

−zx z y zz







121

and

ke
i, j′(90°) =







x x −xz x y

−zx zz −z y

y x −yz y y






ke

i, j′(270°) =







x x xz −x y

zx zz −z y

−y x −yz y y







This means that it is sufficient to exchange values and to change the sign of several entries

for these three angles which can be realized at very low cost. For all other angles it would

be required to calculate a respective rotational matrix that needs to be applied to the stiffness

contribution, resulting in a much higher computational overhead and most notably introducing

inaccuracies. Those can imply a higher number of iterations for PCG or even a non-converging

solving process. As a consequence, the exploitation of rotational symmetry is limited to 90°,
180° and 270°. This inherently limits the reduction of the stiffness contributions that need to be

stored to a factor of 4. Furthermore, care needs to be taken when determining base-symmetry

nodes. Since translational symmetry is also resolved in terms of offset calculations and not

directly on the tuples, the zero-line in the tube causes problems if the base-symmetry nodes

or symmetric nodes are adjacent to it. Hence, rotational symmetry can only be applied if the

diameter of the tube is high enough to distribute the rotational base-symmetry node and its

corresponding three symmetric nodes in such a way that none of them is adjacent to the zero

line, i.e., d0 ≥ 12. Additionally, d0 needs to be a multiple of four because, otherwise, symmetric

nodes at exactly 90°, 180° and 270° of rotation do not exist.

One main improvement of the new value-symmetric solver compared to [21] is that it is ca-

pable of combining translational and rotational symmetry. When translational symmetric nodes

for a base-symmetry node are processed during the SpMV, the corresponding three rotational

symmetric nodes are covered successively for each of them.

However, the combination of translational and rotational symmetry leads to a noticeable de-

viation in the number of iterations to convergence for a few of the tests . Especially very small

entries in the ke
i, j′s with values < 10−10 differ between the value that results from directly cal-

culating the stiffness contribution and those resulting from the application of symmetry. These

errors seem to sum up for the larger tubes. Consequently, exploitation of rotational symmetry is

deactivated for performance measurements to ensure comparable and correct simulations.

122

9 Results and Evaluation

This thesis presented the structure-tailored graph data structure IndexGraph being employed

to assign a unique index to each tuple and to manage the graph data. It is the default data

structure for graphs in the framework. Based on a junction of level L−1 that is stored as an In-

dexGraph, the Compressed Symmetric Graphs can create a memory-saving graph representation

that is able to dynamically recompute large parts of the structural information instead of storing

it. The CSGs can replace the IndexGraphs as underlying data structure during the solution of

the equation system. The thesis also presented a novel matrix-free solver which can work in two

modes: First, it recomputes the stiffness contributions in each PCG iteration on-the-fly, reducing

memory requirements by one order of magnitude though implying a runtime overhead. Second,

it caches stiffness contributions within the memory available to decrease runtime while claim-

ing only half of the memory if all contributions are cached compared to the reference solver,

which requires a fully assembled stiffness matrix. The principles of the caching solver and CSGs

become especially important when they are combined, because the CSGs free memory which

can be employed by the solver for additional caching of contributions. This leads, in general, to

one of two situations: First, the caching solver is able to cache all stiffness contributions when

being combined with IndexGraphs and CSGs (full caching). The solution process has a lower

memory footprint when employing CSG, but it is slower. Second, the memory is insufficient

for full caching and the caching rate for CSGs is higher than for IndexGraphs. In that case,

the simulation runs with equal memory footprint for both graph structures, but, in general, the

solver combined with CSGs delivers a better performance due to the higher caching rate (case

of low memory).

These theoretic aspects are practically validated within this chapter. To that end, the chap-

ter summarizes the test setup (Section 9.1) and it briefly shows the results of the mechanical

simulations (Section 9.2). Afterward, as the main part, the performance results when using dif-

ferent solvers (Section 9.3) are presented: We first compare the performance of the three novel

solvers, namely the on-the-fly solver (Section 9.3.1), the value-symmetric solver (Section 9.3.2),

and the caching solver (Section 9.3.3) with the performance of the parallelized reference solver.

IndexGraphs are employed in all these tests. Accordingly, we evaluate the influence of the CSGs

on the performance of the caching solver in Section 9.3.4 when they replace the IndexGraphs

as the underlying graph data structure. We consider different scenarios with full caching or low

memory for order 1 tubes with available relaxed position data. Finally, in Section 9.3.5, we look

at the performance of the caching solver with order 2 tubes and with IndexGraphs and CSGs

in the cases of full caching and low memory to validate the properties of the solver for higher

123

order tubes, too. For order 2 tubes, we focus on the SpMV due to the lack of relaxed position

data.

9.1 Test setup

9.1.1 Test environment

All tests are performed on the Lichtenberg-Hochleistungsrechner (HHLR) at the Technische

Universität Darmstadt1. Two types of nodes are used for the different tests. The first ones are

called the phase one nodes. They consist of two Intel Sandy Bridge Xeon E5-2680 processors

(with 2∗8= 16 cores, Hyperthreading turned off) and 20 MB of last-level cache. Each node has

32 GB of main memory. The others are the phase two nodes that are equipped with two Intel

Haswell Xeon E5-2680v3 processors (2∗12= 24 cores, no Hyperthreading), 30 MB of last-level

cache and 64 GB RAM per node. The operating system of the HHLR is CentOS 7.

The code is compiled with the Intel C++ compiler (icpc) in version 17.0.1 and the OpenMP

implementation from Intel is employed. The optimization level is set to full optimization. All

nodes are allocated exclusively to avoid any interference from other calculations, independent

of the required number of threads per run.

9.1.2 Different load cases

Three types of load cases are tested, also with multiple steps of the Newton-Raphson method,

for tubes of order 0 and 1. Videos that visualize the results can be found online2.

The first type of load is uniaxial tension. In that case, a uniform force in positive x-direction

is applied to all nodes on the right boundary, while the nodes on the left boundary of the tube

are fixed against movements in axial direction. This is also the main test case that is used for

the performance measurements in this thesis, since it can easily be used without the dockSIM

framework and thus allows a more direct investigation of the solver routines themselves without

the overhead of dockSIM.

The second type of load cases is torsion of the SCNT. To model this load, forces are again

applied to the boundary nodes. All nodes on the left boundary are forced to uniformly move

counterclockwise on the circular path around the x-axis with the radius equal to the tube radius.

The nodes on the right boundary are moved analogously but clockwise, which is shown in Figure

9.1.

The last test case employed is bending of the tube. Here, the boundary nodes are also moved

on a circular path but this time around the z-axis. The radius of the corresponding circle is half
1 http://www.hhlr.tu-darmstadt.de/hhlr/index.de.jsp
2 https://www.youtube.com/channel/UCxKMz5tvGWFjMIYdyB0-_9Q

124

http://www.hhlr.tu-darmstadt.de/hhlr/index.de.jsp
https://www.youtube.com/channel/UCxKMz5tvGWFjMIYdyB0-_9Q

x
Figure 9.1.: Torsion on a tube. Both ends are wound in opposite direction. (Inspired by on http:

//www.ah-engr.com/som/3_stress/text_3-2.htm, access 2016-08-18)

the length of the tube. The orientation of the circular path on the one end of the tube is again

clockwise, while the orientation on the other side is counterclockwise.

9.2 Mechanical simulation results

At the moment, we are in the position to only set up consistent equation systems for order 0 and

several order 1 tubes. This is due to the absence of relaxed input data. The relaxation of larger

tubes of higher order that would allow to create a consistent stiffness matrix is the subject of

ongoing research. Consequently, the mechanical results of this thesis are limited to those which

can already be achieved with dockSIM. The resulting displacements of the presented matrix-free

solver are congruent to those of dockSIM. This validates at least the correctness of the solver and

suggests that the calculations for tubes of order 2 in Section 9.3.5 are also consistent, although

the reference solver cannot be employed in all cases to validate the results of the matrix-free

approach because of the size of the matrix.

The simulation results of dockSIM and the framework of this thesis deliver the same behavior

as those performed by other groups employing different methodologies. Figures 9.2a and 9.2b

show the reaction of one junction element in a (1,4, 8,4)1 tube if axial tensional load is applied.

The tube is stretched then, but the interesting question is where the extension derives from.

As depicted, the main reason is the change in the angle between the junction arms, while the

length of the arms nearly stays constant for the moment.

We also compared the displacement vectors attained by the dockSIM code and its imple-

mentation of the Newton-Raphson method to those calculated by the framework of this thesis

in order to verify the correctness and numerical stability of the new implementation. We can

compare the entries in the vectors pairwise since we apply the same node numbering result-

ing from the global indices. In a first test suite, we only perform one single iteration step of

the Newton-Raphson method and solve the linear equation system once. Tubes of order 0 and

1 with available relaxed position data are employed including mainly (128, 128), (256, 256),
(512, 512), (1, 4,8, 4)1, (1, 4,8, 14)1 and (1, 4,8, 355)1. The comparison demonstrates that the

125

http://www.ah-engr.com/som/3_stress/text_3-2.htm
http://www.ah-engr.com/som/3_stress/text_3-2.htm

(a) Junction in a (1,4, 8,4)1 SCNT before ap-
plying load.

(b) Junction in a (1,4, 8,4)1 SCNT after a ten-
sion in axial direction was applied.

Figure 9.2.: Effect of tension on SCNT junctions.

entries in both displacement vectors are in very good agreement. The single corresponding

entries do not differ by more than 1.0 ∗ 106 % for all tested tube configurations.

Also multi-step simulations are performed and compared to dockSIM. To that end, the code

related to the solution of the linear equation systems and the graph data structures of the new

code are integrated into dockSIM. We run tension, torsion and bending tests, including eight

load steps and a convergence criterion for the inner loop which specifies that the absolute norm

of the solution vector needs to be smaller than 1.0 ∗ 10−10. Convergence is achieved in all

cases. Afterward, the solution vectors calculated by the original dockSIM implementation are

compared to those achieved by the new code. The maximum difference of pairwise comparison

of single entries is only 1.0 ∗ 108 % in the investigated scenarios.

9.3 Performance measurements and comparison

We take the average time for one PCG iteration as unit for comparison to determine and compare

the performance of the different solvers. Although this results in only milliseconds for small

tubes, at least 5000 iterations are calculated for every run to ensure consistent and reliable

measurement values. Each test configuration, consisting of a triple or quadruple (solver, tube,

number of threads, [cachesize]) is repeated a suitable number of times. Appendix F summarizes

all measurements which are employed for the diagrams in the following sections, including the

mean values and the standard deviation. The relative comparison of two test configurations

which only differ in the solver employed is based on the cross product of runs. That means if

three values exist for the test configuration A and five values are there for test configuration B,

then 15 measurement points are created, comparing each result of A with each of B.

Except Section 9.3.5, all sections are based on those tubes for which relaxed geometric data

is available. Not all simulations are run until convergence, but they are terminated after a

threshold of up to eight hours, because of the high runtime of some test configurations. This

126

is feasible since measurements until convergence demonstrate that the runtime grows linearly

with the number of executed PCG iterations for all configurations investigated.

9.3.1 On-the-fly solver versus reference solver

Here, we compare the performance of the on-the-fly solver to the parallelized reference solver

beginning on phase one nodes. Figure 9.3a shows the relative performance of both solvers. A

complete overview of the overall measurement data is given in Appendix F.1 (Table F.1). In

contrast to the tests in [23], also some SCNTs of order 1 are employed, in addition to tubes of

order 0. Moreover, a load case that applies uniaxial tension to the right end of the tube is used,

while there was no external load in [23].

In [23] a slowdown of a factor lower than 10 is reported when employing the on-the-fly

solver running on a compute node with nearly identical configuration as the phase one nodes

employed for this thesis. However, Figure 9.3a shows considerably higher values of more than

50 for the fastest on-the-fly configuration running with 16 threads. We have a detailed look at

this divergence and explain its origin.

In principle, there are three factors that influence the slowdown. The first one is that there

are indeed some parts in the recent on-the-fly solver version which run slower than in the

previous version. The data structure for storing the neighborhoods of reference nodes was

changed. While it is reported in [26] that there are two fields of size 22 ∗ 8 bytes for storing the

neighborhood information, this scheme is replaced by one field of size 20 ∗ 8 bytes that stores a

sorted list of all distinct appearing neighbors and another field of size 22∗2 bytes that maps the

sorted list to their local index in the neighborhood. Hence, only 204 bytes per neighborhood are

required instead of 352 bytes, saving about 40 % of memory for the neighborhoods. However,

the new indirect accessing increases the runtime for calculating the stiffness contributions, since

calculating the Dreiding potential is heavily based on accessing neighboring nodes and their

spatial positions. Measurements reveal that this slows down the on-the-fly solver by up to 20%.

Hence, this is another sensible trade-off between memory usage and execution speed within the

simulation framework. However, the storage scheme for the position data is also adapted, since

the positions are no longer part of Node objects but are arranged in a vector accessed by the

global index of the node. This step is necessary to integrate the Compressed Symmetric Graphs

without additional memory overhead, but it simultaneously results in faster access to the data.

The new line-based multiplication also speeds up the calculation. This even overcompensates

the overhead of the changed neighborhood data structure. As the data in Appendix F.1 (Table

F.3) shows, the overall runtime advantage for the new on-the-fly solver is about 10 % when the

three changes are combined. The motivation for the first two change is that by reducing the

overall storage for the graph data, it is possible to cache more stiffness contribution lines. As the

remainder of the thesis demonstrates, the benefit of more cached contributions is much higher

127

800

850

900

950

Performance comparison of
on-the-fly and reference solver

on phase one nodes

1 Thread

200

210

220

230

240

Fa
ct

or
of

ru
nt

im
e

ov
er

he
ad

4 Threads

(2
56

,2
56
)

(5
12

,5
12
)

(1
,4

,8
,1

4)
1

(1
,4

,8
, 3

55
)1

(2
,6

,1
2,

11
6)
1

55

60

65

8.91
±0.04

37.38
±0.48

2.84
±0.05

74.75
±0.57

74.71
±1.03

Tube configuration

16 Threads

(a) The slowdown when employing the on-the-
fly solver for five different tube configurations
and different number of threads on phase one
nodes. The numbers near the boxes give the
mean time per iteration of the reference solver
in milliseconds that serves as baseline.

960
980

1,000
1,020
1,040

Performance comparison of
on-the-fly and reference solver

on phase two nodes

1 Thread

240

260

280

Fa
ct

or
of

ru
nt

im
e

ov
er

he
ad

4 Threads

(2
56

,2
56
)

(5
12

,5
12
)

(1
,4

,8
,1

4)
1

(1
,4

,8
,3

55
)1

(2
,6

,1
2,

11
6)
1

40
42
44
46
48
50

6.85
±0.07

26.90
±0.34

2.03
±0.01

53.30
±0.24

52.22
±0.44

Tube configuration

24 Threads

(b) The slowdown when employing the on-the-
fly solver for five different tube configurations
and different number of threads on phase two
nodes. The numbers near the boxes give the
mean time per iteration of the reference solver
in milliseconds that serves as baseline.

Figure 9.3.: Performance comparison of the on-the-fly solver and the reference solver.

than several percent justifying the decisions that save memory at the cost of several percent of

runtime.

A change in the measurement methodology is the second reason for the different slowdown.

In [23], the assembly process of the stiffness matrix is included into the average runtime of

the reference solver, since it consumes a considerable part of the total runtime. The main

goal of the initial assembly process was to avoid unnecessary additional memory usage during

the construction of the CRS matrix, but not to optimize its speed. As Section 8.2 shows, this

process can now be executed in a parallelized and optimized fashion, resulting in a much lower

construction time. Additionally, the setup of the graph-based on-the-fly solver also requires

some time, whereas the former on-the-fly solver was able to start immediately. It makes more

sense to compare both instantiation times separately independent of the actual time for solving.

This increases the value for the slowdown compared to the old methodology by a factor of 1.5.

128

As a last point, the reference solver is now also parallelized and exploits the matrix symmetry,

which has considerable effects on the single-threaded execution time and the scaling behavior

compared to the version in [23] (see below). The slower single-threaded execution combined

with the performance gain through parallel execution results in an overall speedup of 3.5. Al-

together, the product of these three contributions results in the factor 5 which is about the

difference of the old and the new on-the-fly solver version and can be observed between Figure

9.3a and the results reported in [23].

Figure 9.3a also demonstrates some jitter in the values that can be noticed for nearly all

data points. This is likely a result of the Intel Turbo Boost technology which results in varying

clock speed of the CPU depending on its temperature and thermal design power. The fact that

the single-threaded runs have higher variation supports this explanation, since in that case the

percentage by which the clock speed is reduced can nearly directly be mapped to the increase of

the program runtime. Also note that the difference in the time per iteration between the on-the-

fly solver and the reference solver is very high. As a consequence, relatively small changes in the

runtime of the reference solver have a noticeable effect on the factor for the runtime overhead.

The given standard deviation confirms that the different runs deliver a very constant average

time per iteration.

The measurements for the on-the-fly solver are repeated on phase two nodes and the results

are summarized in Figure 9.3b. The measurement data can be found in Appendix F.1 (Table

F.2). One main difference of phase two hardware is the available number of threads which can

be set up to 24. The difference for the single-threaded execution and the case of running with

four threads is larger than for the phase one nodes. This mainly results from the fact that the

reference solver is now operating with 24 threads. Therefore, it achieves a further speedup, and

is faster than the reference solver on phase one nodes running with 16 threads. So, e.g., for the

(1, 4,8, 355)1 tube, the reference solver requires on average 74.75 milliseconds per iteration on

phase one hardware, while this value for phase two decreases to 53.30 ms. When employing 24

threads, the on-the-fly solver can reduce the slowdown compared to the reference solver to a

factor of about 45 for all configurations. We observe, in general, that the on-the-fly solver runs

faster on the Haswell processors. Comparing the runs to the same number of threads between

both hardware phases reveals that the corresponding runs on phase two are always faster by at

least 10 %. At the same time, the reference solver delivers about the same performance with

only small advantages on phase two nodes.

The parallel efficiency of the different solvers on phase two has also been investigated. To

that end, the median of all times per iteration for all runs with the same number of threads is

calculated per tube configuration and solver. Then, the speedup S and the efficiency E when

running with M threads are calculated for each tube configuration by the following two formulas

(see e.g. [117]) :

129

S(M) =
T1

TM
E(M) =

S
M

Afterward, the resulting E(M)’s were averaged for the different tubes per solver. The results

are presented in Figure 9.4 which shows the efficiency for the on-the-fly solver, the reference

solver exploiting matrix symmetry, and a variation of the reference solver that ignores the sym-

metry.

1 2 4 8 16 24
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

225.76
±0.48 145.10

±0.67

108.21
±2.88

94.03
±7.86

81.85
±1.54 75.21±0.99

854.26
±0.64

437.22
±0.61 233.16

±2.14 133.17
±1.39 71.73

±0.22 53.30
±0.24

Number of threads

Pa
ra

lle
le

ffi
ci

en
cy

Parallel efficiency analysis

on-the-fly
reference, sym
reference, nonsym

Figure 9.4.: Parallel efficiency for the on-the-fly and the reference solver ignoring and exploiting matrix
symmetry on phase two nodes. The numbers give the absolute time per iteration for both
CRS based solvers on the (1, 4,8, 355)1 tube. For 1 thread the efficiency values coincide at
1.0.

The on-the-fly solver delivers very good scalability on the Haswell systems. The efficiency

never drops below 0.9 not even for 24 threads. The three biggest tubes (512,512), (1, 4,8, 355)1

and (2, 6,12, 116)1 even deliver an efficiency of 0.92 demonstrating good scaling for big problem

sizes. This suggests that there will also be an acceptable efficiency on SMP systems with a higher

number of available threads.

The reference solver version ignoring the symmetry behaves as expected. As predicted, for

example, by the roofline performance model [118] the efficiency of the reference solver drops

very quickly already for two threads because of the memory-boundedness of CRS multiplica-

tions. For 8 threads the CRS solver achieves a speedup of 2.5 compared to serial execution. This

lies in the range of measurements performed by Çatalyürek et al. in 2012 [119], who reported a

speedup of 2.5 on a dual socket Intel (Bloomfield, 4 cores per CPU) and of 2.2 on a dual socket

AMD (Shanghai, 4 cores per CPU) system. Additionally, Williams et al. [120] investigated the

scaling behavior of SpMV on several processors from 2009 and achieved comparable results.

130

The symmetry-exploiting reference solver behaves differently. Due to the higher OpenMP

overhead, its single-threaded runtime is drastically higher than that of the standard CRS mul-

tiplication. With increasing number of threads this situation changes and from 16 threads on-

wards the symmetry-exploiting solver is faster due to better scaling. The numbers under the

respective data points in Figure 9.4 show the required time per iteration for the two versions

of the reference solver exemplarily for the (1,4, 8,355)1 tube. Here, the symmetric version is

faster by a factor of 1.4 when 24 threads are employed.

This section demonstrates that the on-the-fly solver is able to reduce the memory consumption

by one order of magnitude, while it increases the runtime by up to 50 times when exploiting the

shared-memory parallelization on current multicore nodes, compared to the optimized version

of the reference solver. The difference to the previous results is mainly caused by a faster

reference solver.

9.3.2 Value-symmetric solver versus reference solver

In this section, we compare the runtime of the value-symmetric solver with that of the reference

solver on phase one nodes. As described in Section 8.5, the value-symmetric solver can only

be applied to tubes of order 0. Hence, five large tubes of order 0 are chosen for the runtime

measurements. No external load is applied to the initial CNT. Figure 9.5a summarizes the

runtime results (complete data in Appendix F.2, Table F.4).

As can be seen for all configurations, the value-symmetric solver performs worse than the

reference solver and achieves only about 75% of the peformance of , but the slowdown lies

below 1.4 for the tested configurations with model sizes between 1.3 ∗ 105 and 8.4 ∗ 106 nodes.

The main reason for the slowdown is the scaling behavior, which is caused by a straightforward

parallelization of the loop over the map that contains the base-symmetry nodes. Addition-

ally, the resolution of symmetry information requires several memory accesses in parallel which

may overcharge the memory system. In contrast, during single-threaded execution, the value-

symmetric solver is faster by a factor of 2 than the reference for some configurations. This

mainly results from the fact that the stiffness contributions for the base-symmetry nodes only

need to be fetched once and then can be reused several hundred times in the case of very long

tubes. Figure 9.5b visualizes the runtime for both solvers for the (2048, 2048) tube, which is

representative for all tested configurations.

This test also reveals a linear dependency of the runtime of the reference solver and the value-

symmetric solver on the size of the CNT. Table 9.1 shows the dependence of the reference solver,

and Figure 9.5a demonstrates that the value-symmetric solver behaves in the same way.

131

(2
56

,2
56
)

(5
12

,5
12
)

(1
02

4,
10

24
)

(1
02

4,
20

48
)

(2
04

8,
20

48
)0

0.2

0.4

0.6

0.8

1

9.30
±0.04

37.47
±0.76

157.94
±3.28

308.95
±4.01

618.22
±1.53

Tube configuration

R
el

at
iv

e
pe

rf
or

m
an

ce
of

va
lu

e-
sy

m
m

et
ri

c
so

lv
er

Performance comparison of value-symmetric
and reference solver on phase 1 nodes

Both solvers @ 16 threads.

(a) The slowdown that arises when employing the
value-symmetric solver compared to the refer-
ence solver when running with 16 threads on
different tube configurations. The numbers
near the boxes give the mean time per iter-
ation of the reference solver in milliseconds
that serves as baseline.

1 2 4 8 16
0

1

2

3

4

5

6

7

8

Number of threads

R
un

ti
m

e
in

s

Scaling behavior of symmetry
and reference solver on phase 1 nodes

Value-symmetric Reference

16
0.6

0.7

0.8

0.9

(b) The time per iteration for value-symmetric
and reference solver for varying thread num-
ber and the tube (2048, 2048).

Figure 9.5.: Performance comparison of the value-symmetric solver and the reference solver.

Table 9.1.: Scaling of the runtime of the reference solver with the model size.

Runtime reference (ms) Growth of model size Factor

9.3

37.47 4 4.029

157.94 4 4.215

308.95 2 1.956

618.22 4 2.001

So in total, the performance is again somewhat higher than the improved value-symmetric

solver presented in [27] while still requiring nearly no additional memory compared to the on-

the-fly solver. For example, the (2048, 2048) tube requires 30 MB to cache all required potential

132

data. Additionally, it provides the perspective of further increasing the speed by optimizing the

parallelization.

9.3.3 Caching solver versus reference solver

The caching solver is now compared to the reference solver. In this section, it always applies

full caching, since this is always possible if there is sufficient memory to execute the reference

solver. The fastest configuration of both solvers, that means employing all 16 available threads,

is compared in Figure 9.6a. Again, the numbers in the diagram show the absolute mean runtime

for the reference solver for the respective tube which is the baseline. Full details about the

measurement data can be found in Appendix F.3 (Table F.5).

(2
56

,2
56
)

(5
12

,5
12
)

(1
,1

4,
8,

4)
1

(2
,6

,1
2,

11
6)
1

(1
,4

,8
,3

55
)1

1

1.2

1.4

1.6

1.8

2

2.2

8.91
±0.04

37.38
±0.48 2.84

±0.05

74.75
±0.57

74.71
±1.03

Tube configuration

R
el

at
iv

e
pe

rf
or

m
an

ce
of

ca
ch

in
g

so
lv

er

Performance comparison of caching and
reference solver on phase one nodes

Both solvers @ 16 threads.

(a) The speedup which is achieved by the caching
solver compared to the reference solver when
running with 16 threads on different tube con-
figurations. The numbers near the boxes give
the mean time per iteration of the reference
solver in milliseconds that serves as baseline.

1 2 4 8 16
0

20

40

60

80

100

Number of threads

Ti
m

e
pe

r
It

er
at

io
n

in
m

s

Comparison of scaling for
caching and reference solver

caching, (256,256)
reference, (256, 256)
caching, (1,4, 8,14)1

reference, (1, 4, 8, 14)1

16
0

2

4

6

8

10

(b) The time per iteration for caching and refer-
ence solver for varying thread number on the
tubes (256, 256) and (1,4, 8,14)1.

Figure 9.6.: Performance comparison of the caching solver and the reference solver.

The caching solver is able to outperform the reference solver by at least a factor of 1.4 in

all cases, but the actual speedup varies. For the smallest tested tube (1,4, 8,14)1, the smallest

133

speedup results from the high synchronization overhead of the OpenMP threads. Due to the

low node count, the span of nearly every thread completely overlaps with others and thus a safe

write is not possible without synchronization. This can be verified by considering Figure 9.6b

that shows the development of the time per iteration for the caching and the reference solver

when varying the number of threads for two tube configurations. For single-threaded execution,

the situation is the same: The caching solver is faster by a factor of 2.5 for both tubes. However,

the situation changes with increasing number of threads. While for the larger (256,256) tube

the speedup with four threads is still 1.8 it is only 1.4 for (1, 4,8, 14)1.

The remaining tubes deliver a comparable speedup of about 1.8. Although (2, 6,12, 116)1 and

(1, 4,8, 355)1 are of nearly equal size, the caching solver runs somewhat slower on that config-

uration (43.83 vs 41.25 milliseconds) while the reference solver delivers the same performance

(74.75 vs 74.71 seconds). An analysis reveals that the scaling behavior is the main reason for

this difference, too. While for both tubes the average runtime of the solver with 1 thread only

differs by less than two percent, the difference with 16 threads increases to more than 7%.

The nodes within the (2,6, 12,116)1 tube are distributed differently since the junctions within

(2, 6,12, 116)1 contain twice as many nodes as those of (1, 4,8, 355)1. This changes the size of

the spans for the different threads and increases the number of synchronized writes, resulting

in a worse scaling behavior.

Figure 9.6b also shows that the runtime difference between the caching solver and the ref-

erence solver is the highest in the single-threaded case, indicating that the structure-related

optimizations in the SpMV have a very positive effect and that the scaling is the limiting factor.

The single-threaded runtime for the investigated tubes also grows linearly with the number of

nodes in the tube. Calculating the time to process one node during the SpMV results in 328 ns

for the (256, 256) tube which is the fastest one, and 354 ns for (1,4, 8,355)1 which is the slowest

one. To estimate the influence of synchronization in general, the alternative heuristic is applied

for test purposes. In that case, the speedup increases to a factor of 2 with 16 threads, which is

consequently some kind of upper limit.

But overall, these considerations demonstrate that the caching solver always delivers a better

performance than the reference solver, independent of the number of threads employed and the

tube configuration, while only requiring half the memory.

As a short excursion, we want also to briefly compare the runtime of the simulations with the

caching solver to the dockSIM framework which represents the state-of-the-art methodology. To

that end, a single linear equation system resulting from the tubes (1,4, 8,4)1, (256,256) and

(512, 512) is instantiated in a tension load case and solved within the new framework and dock-

SIM while employing 16 threads. We compare the time for the solution of the system, which

includes for the new framework the instantiation of the caching solver and the solution within

the PCG method while it includes assembling the stiffness matrix and employing the Pardiso

library for the solution of the assembled linear equation system. The average time required for

134

the new framework is 4.9 s for (1,4, 8,4)1, 213 s for (256,256) and 1744 s for (512, 512). The

dockSIM framework is considerably faster with 0.7 s for (1, 4,8, 4)1, 9 s for (256, 256) and 45 s

for (512,512). This results from the different approaches of a direct and an iterative solver

while the former one outperforms the latter one at the cost of much higher memory require-

ments for the direct solution (see introduction of Chapter 8). The relative difference for the

tubes (256,256) and (512, 512) is higher than for (1,4, 8,4)1 because the larger tubes also re-

quire more PCG iterations to converge. Three points should be additionally kept in mind when

considering these runtime values: First, the direct solver exceeds the memory capacity much

earlier than the caching solver (or even than the reference solver) and not be applicable for

larger models. Second, the equation system was solved to full precision. The runtime difference

becomes smaller in the case that a less accurate solution is sufficient. Third, the employed pre-

conditioners deliver a relatively high number of PCG iterations and a structure-tailored variant

may be able to considerably reduce this number which would be reflected one-to-one in the

total runtime as already discussed in Section 8.1.

9.3.4 Caching solver with IndexGraph and Compressed Symmetric Graphs

In this section, the influence on the runtime of the Compressed Symmetric Graphs is evaluated.

To that end, the caching solver is employed and combined with both the IndexGraphs (IGs) as

the default data type of the framework and combined with the CSGs, while the combination

with IndexGraphs serves as performance baseline. Two different test suites are performed. In

the first one, it is assumed that both graph types leave enough memory to enable the caching

solver to fully cache all contribution lines. This allows a direct determination of the overhead

that is generated by the CSGs. The second test suite demonstrates the main advantage of the

CSGs in case of low memory, i.e., when the caching rate of the caching solver differs when

employing IndexGraphs and CSGs. All measurements in this section are performed on phase

one nodes.

The results of the first test suite are summarized in Figure 9.7a (detailed measurement data in

Appendix F.4 Table F.6). For three different order 1 tubes, the time that is required to calculate

one PCG iteration is measured with the two different graph structures. The caching solver

always runs with 16 threads because this represents the fastest configuration.

An inspection of Figure 9.7a reveals that the runtime overhead of the CSGs is a factor of about

2 and that the overhead is somewhat higher for the two larger tubes. The slower access to the

neighborhood information compared to IndexGraphs, which is required for each reference node

when accessing the rows and columns in the cached data during the SpMV, is the main reason

for this behavior. For the single-threaded performance this results in the fact that, e.g., one

iteration of the (1,4, 8,355)1 tube with IndexGraphs requires on average 0.36 s while the solver

needs 0.62 s with CSGs. This is already a difference by a factor of 1.7. Another aspect is the

135

(1
,4

,8
,1

4)
1

(1
,4

,8
, 3

55
)1

(2
,6

,1
2,

11
6)
10

0.5

1

1.5

2

2.5

3

3.5

2.05
±0.02

41.05
±0.52

43.96
±0.50

Tube configuration

Fa
ct

or
of

ru
nt

im
e

ov
er

he
ad

Performance comparison of CSGs
and IndexGraphs

All tests @ 16 Threads.

(a) Slowdown when employing CSGs and full
caching in the caching solver compared to In-
dexGraphs. The numbers near the boxes give
the mean time per iteration of the caching
solver with IndexGraphs in milliseconds that
serves as baseline.

1 2 4 8 16
0

100

200

300

400

500

600

700

Number of threads

Ti
m

e
pe

r
It

er
at

io
n

in
m

s

Comparison of scaling for caching
solver with IGs and CSGs

CSG, (1,4, 8,355)1

IG, (1, 4,8, 355)1

CSG, (2, 6,12, 116)1

IG, (2, 6,12, 116)1

16
40
60
80

100
120

(b) The time per iteration for the caching solver
employing full caching for varying thread
number with IndexGraphs and CSGs and the
tubes (1, 4,8,355)1 and (2, 6,12,116)1.

Figure 9.7.: Comparison of caching solver with IndexGraphs and CSGs and full caching.

scaling behavior of the caching solver, which is worse when combined with the CSGs as with

IndexGraphs. The main reason for this is the unequal access time to the node information,

resulting in an uneven workload distribution for the different threads and a higher load on

the memory interface of the system, since each thread needs to locate and unfold the data

requested. Hence, while the caching solver with IndexGraphs is 9.2 times faster when running

with 16 threads instead of one the speedup is only 7.0 with CSGs, which is a difference of factor

1.3. Combining 1.3 with the factor 1.7, which was observed for the single-threaded runtime,

results in the observed factor of 2.2 for the overall slowdown.

A slightly different behavior can be noticed for the (2, 6,12, 116)1 tube, despite the fact that

both tubes have the same number of nodes. This is highlighted in Figure 9.7b. While the time

per iteration for (2,6, 12,116)1 for the single-threaded execution with CSGs is even somewhat

lower than for (1,4, 8,355)1, it is higher by several percent when running with 16 threads. This

136

seems to be an interaction of the worse scaling behavior of the (2,6, 12,116)1 tube and the

slower and varying access time to the information in CSGs.

However, the behavior with low memory, i.e., after the graph construction and solver initial-

ization there is not enough RAM to fully cache all stiffness contributions, is the more interesting

question. The performance results for tests with a predefined percentage of cached contribu-

tions are shown in Figures 9.8a and 9.8b for the two largest available tubes (see also Appendix

F.5, Table F.7). There, the CSGs have a lower memory footprint for the same caching rate as

IndexGraphs. As the diagrams reveal, the required time to calculate one PCG iteration grows lin-

early with the number of non-cached contribution lines. As can be seen on the zoomed insert in

the graph, this is also valid for the first few percent of contributions that cannot be cached. But

more important is that the zoom also demonstrates the performance difference between both

variants, when comparing the centers of the circles to those of the squares. This is also true

for all other investigated tube configurations. Both tubes have a very similar behavior, resulting

from their identical size. Figure 9.8a also shows a second graph in green that demonstrates

that the relative runtime difference between CSGs and IndexGraphs drops with a decreasing

percentage of cached contributions. For full caching the slowdown is 2.26. This value decreases

very fast to 1.17 for 80 % and stays relatively constant for the remainder only further reducing

to 1.11.

The (2,6, 12,116)1 tube behaves in the same way, with a maximum difference of 2.60 for full

and a minimum of 1.10 for no caching. This shows that the calculation speed of the caching

solver is nearly identical, independent of the employed graph data structure, if the percentage

of cached contributions is low.

As Section 7 proofs, the compression rate ρ of the CSG is related to the additional percentage

of contribution lines that can be cached µ by µ = ρ
2.5 . To demonstrate this main advantage of

the CSGs have a look at Table 9.2. We use the slope of the straight lines in Figures 9.8a and

9.8b to interpolate the expected runtime increase if the caching rate between CSGs and Index-

Graphs varies, since we regard the dependence of the runtime of the two tubes (1, 4,8, 355)1

and (2, 6,12, 116)1 from Figures 9.8a and 9.8b as representative for all higher order SCNTs

with comparable configuration. Table 9.2 shows three theoretical scenarios in the case of low

memory with different µ, depending on the assumed percentage of nodes the CSGs are able to

compress. The second column shows the assumed percentage of cached contribution lines for

the caching solver when combined with GSG. The third column shows the resulting caching rate

which the solver can achieve if it is combined with IndexGraphs, while the last column gives

the speedup for CSGs compared to the configuration with IndexGraphs and the same memory

footprint. The speedup results from the higher caching rate with CSGs. Note that within a row

the solver has the same memory footprint with both graph types.

The upper part of Table 9.2 summarizes the results for the worst case of ρ = 25 % implying

µ = 10%. Here, the CSGs have a considerable performance advantage when they are able

137

020406080100
0

1

2

3

4

Q
uo

ti
en

t
of

ru
nt

im
es

C
SG

/
IG

Slowdown

020406080100
0

1

2

3

4

5

% of cached contribution lines

Ti
m

e
pe

r
it

er
at

io
n

in
s

CSG vs IndexGraph varying cache
(1,4, 8,355)1 @ 16 threads

IG
CSG

020406080100
0

1

2

3

4

Q
uo

ti
en

t
of

ru
nt

im
es

C
SG

/
IG

Slowdown

020406080100
0

1

2

3

4

5

% of cached contribution lines

Ti
m

e
pe

r
it

er
at

io
n

in
s

CSG vs IndexGraph varying cache
(1,4, 8, 355)1 @ 16 threads

IG
CSG

(a) Time per iteration when the percentage of
cached contribution lines is decreased from
full to no caching for the (1,4, 8,355)1 tube.
Comparing the runtime with same caching
rate but lower memory footprint for CSGs.

020406080100
0

1

2

3

4

Q
uo

ti
en

t
of

ru
nt

im
es

C
SG

/
IG

Slowdown

020406080100
0

1

2

3

4

5

% of cached contribution lines

Ti
m

e
pe

r
it

er
at

io
n

in
s

CSG vs IndexGraph varying cache
(2,6, 12,116)1 @ 16 threads

IG
CSG

(b) Time per iteration when the percentage of
cached contribution lines is decreased from
full to no caching for the (2, 6,12, 116)1 tube.
Comparing the runtime with same caching
rate but lower memory footprint for CSGs.

Figure 9.8.: Performance comparison of the caching solver with different graph data structure and vary-
ing caching rate.

to cache at least 90 %, but they are faster in all cases while they have the identical memory

footprint.

In the middle part, the case of a medium compression is shown. In that case a speedup of

up to 13.7 is possible when employing CSGs. The compression rate of 60 % can be achieved for

nearly all tubes which are not the smallest possible for a given junction configuration and order.

The speed of the calculation can nearly be doubled, if the solver can cache at least 80 % when

comined with CSGs.

The lower part of Table 9.2 shows a last scenario for tubes with an l0-value greater than 22 and

at a same time a d0-value of at least 8. Then, ρ can exceed 95 % enabling a high difference in

the cachable nodes compared to IndexGraphs. Considerable performance gains can be attained,

if about 60 % of the contribution lines can be cached with CSGs.

9.3.5 Higher order tubes

Also several tests are performed to predict the performance of the simulation of higher order

tubes. The code is changed in that way that the PCG algorithm does not execute feasibility and

138

Table 9.2.: Speedup with CSGs in three scenarios. The underlying performance values are interpolated
by the mean values of the tubes (1,4, 8,355)1 (Figure 9.8a) and (2,6, 12,116)1 (Figure 9.8b).
The first column shows the compression rate assumed and the resulting additional percent-
age of contribution lines which can be cached, resulting in the values shown in columns two
and three for CSGs and IndexGraphs. Within a table row, the solver has the same memory
footprint.

Compression rate ρ Cached CSG Cached IG Speedup

25 %⇒ µ= 10 %

100 % 90 % 5.2
90 % 80 % 1.6
80 % 70 % 1.2
70 % 60 % 1.1
60 % 50 % 1.1
50 % 40 % 1.1

60 %⇒ µ= 25 %

100 % 75 % 13.7
90 % 65 % 2.2
80 % 55 % 1.7
70 % 45 % 1.2
60 % 35 % 1.1
50 % 25 % 1.1

96 %⇒ µ= 40 %

100 % 60 % 20.8
90 % 50 % 3.9
80 % 40 % 2.6
70 % 30 % 2.0
60 % 20 % 1.8
50 % 10 % 1.3

convergence checks but executes a predefined number of iterations, since there is no relaxed

position data available for larger tubes. Afterward, the mean value of time per iteration is

calculated. The chosen model tube for the first tests is (1,4, 8,20)2 since it increases the problem

size, compared to the largest two available order 1 tubes, by exactly one order of magnitude

and the reference solver is still able to cope with this problem size.

Comparing the performance of the reference solver to that of the on-the-fly solver reveals that

the difference is again one order of magnitude. While the reference solver requires 0.76 s per

iteration, the on-the-fly solver is slower by a factor of 57, which lies in the range of the results

for order 0 and 1 tubes.

When employing the caching solver with full caching, it can outperform the reference solver

by a factor of 1.4 (0.56 s versus 0.77 s). Here, the same effect is visible as for the (1, 4,8, 14)1

tube: The junction elements contain a relatively high number of nodes compared to the length

of the tube. This can be confirmed by applying the alternative synchronization heuristic. In

that case, the time per iteration is reduced to 0.39 s which increases the performance difference

139

between both solvers to a factor of 2. Hence, this tube of order 2 also confirms the previous

results about the caching solver combined with IndexGraphs and full caching.

Like for order 1 tubes, the dependence of the calculation speed on the caching rate for Index-

Graphs and CSGs is investigated and the results are shown in Figure 9.9a (see also Appendix

F.5, Table F.8). The behavior is very similar to the order 1 tests, since the runtime grows lin-

early with the number of non-cached contribution lines. We also see that the slowdown when

employing CSGs with the same caching rate, i.e., lower memory footprint, is about a factor of

2 when full caching is employed and decreases to less than factor 1.1 when the caching rate is

decreased. This is in very good agreement with the order 1 results, too.

020406080100
0

1

2

3

4

Q
uo

ti
en

t
of

ru
nt

im
es

C
SG

/
IG

Slowdown

020406080100
0

10

20

30

40

50

% of cached contribution lines

Ti
m

e
pe

r
it

er
at

io
n

in
s

CSG vs IndexGraph varying cache
(1,4, 8,20)2 @ 16 threads

IG
CSG

(a) Time per iteration when the percentage of
cached contribution lines is decreased from
full to no caching for the (1, 4,8, 20)2 tube.
Comparing runtime with the same caching
rate but lower memory footprint for CSGs.

020406080100
0

2

4

6

8

10

12

14

Q
uo

ti
en

t
of

ru
nt

im
es

IG
/

C
SG

Speedup with CSGs

020406080100
0

10

20

30

40

50

60

70

% of cached contribution lines

Ti
m

e
pe

r
it

er
at

io
n

in
s

CSG vs IndexGraph varying cache
(1, 4,16, 20)2 @ 16 threads

IG
CSG

(b) Time per iteration when the percentage of
cached contribution lines is decreased from
full to no caching for the (1, 4,16,20)2 tube.
Comparing runtime of configurations with the
same memory footprint but a difference in
caching rate of 25 %.

Figure 9.9.: Performance comparison of caching solver with IndexGraphs and CSGs on order 2 tubes.

The last tube that we consider is (1,4, 16,20)2, which again doubles the problem size and

consists of 1.98 ∗107 nodes. This tube demonstrates several of the theoretical predictions made

so far. First of all, it shows that the reference solver runs out of memory at some point, while

the caching solver is able to deal with larger problem sizes. In that case, the matrix consists of

1.67 ∗ 109 non-zero values, resulting in a memory footprint for the CRS data of nearly 25 GB.

This exceeds the capacity of 28 GB of available memory on phase one nodes together with the

140

graph data and additional variables. These values also confirm the estimation of the reference

solver’s memory consumption by Equation 8.4.

The last point is the comparison between IndexGraphs and CSGs and the attainable caching

rate, which is depicted in Figure 9.9b. The caching solver is not able to achieve full caching

for tube (1, 4,16, 20)2 when combined with IndexGraphs due to memory limitations, but full

caching is possible when running together with CSGs. Hence, the red line starts at the highest

caching rate that is possible using IndexGraphs at the value of 75%. An additional orange

line visualizes the performance differences when the solver runs with equal memory footprint

with both types of graphs. The left-most data point on the orange line represents the situation

when the maximum possible number of contribution lines is cached for both data structures,

i.e., 100 % for the CSGs and 75 % for the IndexGraphs. In this case, the simulation with

CSGs is faster by one order of magnitude (factor 9.9) while having the same memory footprint.

Therefore, this practical case with an additional caching rate of µ = 25 % confirms the results

of the second theoretical scenario in Table 9.2 which assumes µ= 25 %.

Altogether, the analysis on order 2 tubes confirms the predictions made in our earlier publi-

cations and demonstrates that the framework presented can deal with large equation systems

with an order up to 5.6 ∗ 107 and highlights the usefulness of CSGs.

141

10 Conclusion and Outlook

In this final chapter, we summarize the results of this thesis (Section 10.1) and discuss directions

for future research (Section 10.2).

10.1 Summary

This thesis was motivated by the work of Schröppel and Wackerfuß, demonstrating that the

structure of super carbon nanotubes can be modeled by a graph algebra approach in a very

elegant way. As shown in [45], the encoding of structural information within a tuple-based

node labeling approach is its main advantage. In this thesis, this description was interpreted

in a geometrically constructive fashion and the self-similarity and symmetry were highlighted

during the description of the construction process of SCNTs. We demonstrated how exploiting

these structural properties of the SCNTs enables very efficient data structures for constructing

and storing the tubes.

The issue of indexing the nodes in the graph models was solved by the structure-tailored

IndexGraphs that especially deliver fast unique indices in a moderate range. Compared to naive

indexing, the procedure in IndexGraph reduces the highest occupied index by five orders of

magnitude, thus avoiding overflows during index calculations.

As an alternative, the principles of the perfect hashing algorithm were extended to deal with

long tuples with varying range per entry, thus allowing this new generic algorithm to index

general multidimensional scientific data. For tubes of up to order 3, i.e., tuples of length 28,

we verified that the reduction of the highest occupied index lies in the same range as for the

IndexGraphs.

This thesis introduced the concept of Compressed Symmetric Graphs to reduce the neces-

sary storage dedicated to the neighborhood information in the graphs. It is possible to reduce

the amount of explicitly stored neighborhood data by up to 99 % by dynamically recalculating

neighborhood information from saved parts of the tube. Even in worst case scenarios, 25 % of

the nodes can be compressed and the required storage per node is then reduced from 336 to

40 bytes.

The structure of SCNTs was also exploited to develop a novel matrix-free solver for the equa-

tions arising during the mechanical simulations, increasing the range of feasible problem sizes.

The resulting runtime overhead from recalculating the contributions to the stiffness matrix is

managed by an intelligent caching mechanism that fully uses the resources provided by the un-

derlying hardware. Additionally, by walking the graph, it is possible to avoid the storage for

the non-zero patterns of the matrix that arises in state-of-the-art sparse matrix storage schemes.

143

Combining these algorithmic advances with an efficiently vectorized and parallelized implemen-

tation, the presented framework is able to solve the problems the reference implementation can

cope with twice as fast while requiring only half the memory. With our new approach based

on CSGs, problems become feasible that the reference solver cannot address: We can set up the

equation systems for tubes of order 2 with 20 million nodes still allowing full caching of stiffness

data, whereas the storage of the matrix would require more than 25 GB for the nearly 1.7 ∗ 109

non-zero values.

The algorithms and data structures presented in this thesis were integrated into the dockSIM

code of the MISMO group and multi-step simulations for several order 1 tubes were performed.

Hence, the work of this thesis also shows the flexibility of the dockSIM framework, since the

data structures and the algorithms we employed strongly differ from the procedures that have

been integrated into dockSIM so far.

10.2 Future Work

Although the concepts presented in this thesis can considerably reduce the memory require-

ments for modeling and simulation of SCNTs a single compute node will, at some point, not be

capable of coping with all data or will at least have to recompute a lot of stiffness contributions

in each PCG iteration, resulting in high runtimes. Hence, a promising avenue for future work are

distributed simulations. For the PCG that means that, in particular, the SpMV is a candidate for

a distribution between several compute nodes, based on the graph structure and with different

rings as base unit. Then, each process can calculate its contribution to the result vector with the

caching or the reference solver independently and only requires the rings assigned to it, plus the

information of all the nodes in the neighborhood of the assigned ones being a relatively small

number compared to the overall nodes. This partitioning and dispatching of the data needs only

to be done once at the start of PCG. In the case of the reference solver, each process can instan-

tiate its local CRS data structure with help of the graph while in the case of the caching solver,

each process evaluates for itself how many contribution lines can be cached on the compute

node it is running on. Each SpMV process needs to receive its portion of the input vector and

to send its part of the result vector to a place where it is assembled to the overall result vector.

This work distribution scheme also enables a straightforward partitioning of the Jacobi and the

block-diagonal preconditioners and allows a distributed solution of the equation system.

These ideas are subject of an ongoing Bachelor’s thesis of Taylan Oezden where preliminary

results for the reference solver and the Jacobi preconditioner suggest that the partitioning sys-

tem is working and that the boost-library1 offers an easy-to-use possibility to transfer the graph

objects between processes.

1 http://www.boost.org/

144

http://www.boost.org/

Figure 10.1.: Distributing CSGs with MPI.

The distributed calculation is another good example for the usefulness of CSGs that is illus-

trated in Figure 10.1. Instead of dispatching full rings of the tubes, it is sufficient to distribute

the respective parts of the CSG representation of the SCNT model to each process which can be

categorized in three types: the left and the right boundary of the tube that have to be treated

differently and the 1-leading ring, including the very small part of the 2-leading ring. This

information is sufficient to reconstruct all symmetric rings.

There are positive effects in two ways: First, the amount of data which needs to be sent

around before starting PCG is reduced, while second, each node saves memory for the graph

representation that can be spent to increase the caching rate of the solver and thus to speed up

the overall simulation.

An algorithmic question is if an appropriate way to propagate the boundary conditions

through the tube exists that can be combined with an adapted boundary exchange strategy,

so that different processes are able to execute several PCG iterations independently or even

solve their local system on their own, while the results are assembled and perhaps smoothed

afterward. This offers the main advantage that synchronization is only required after several

successive PCG iterations or even after all processes found their local solution to the equa-

tion system. However, this may involve several additional iterations until the solution which is

achieved in that way converges to the real solution.

In addition, we see further potential for improvement in synchronization and scalability be-

havior of the caching solver. The alternative synchronization heuristic (see Section 8.4.3) shows

that the speedup compared to the reference solver may even be higher if reducing the number

of synchronizations between the threads is possible. Here, it is required to identify the com-

promise between the pessimistic concept of non-overlapping spans and the heuristic one that

causes race conditions in some cases because its assumption is too optimistic. Additionally, an

evaluation of the synchronization criterion must be possible in an efficient way. Otherwise, the

benefit of a good criterion will be masked by the evaluation overhead.

145

The issue of preconditioning the equation system was covered in Section 8.1. Although the

presented Jacobi and block-diagonal preconditioners can be constructed and solved very fast

and possess a low memory footprint, their convergence rate is considerably lower than with an

incomplete Cholesky factorization preconditioner. Consequently, it makes sense to search for a

structure-related preconditioner that can improve the speed of convergence, while keeping the

required storage for it as small as possible.

Additionally, further improvement of the speed of fetching the information in the CSGs can be

considered. The runtime overhead of factor 1.4 in [26] in 2016 has increased to about 2 now,

since on the one hand several modifications led to a speedup for the IndexGraphs and on the

other hand the optimizations that were integrated into the caching solver cannot realize their

full effect since the CSGs are the limiting factor. Investigating and optimizing the employed data

structure may help to reduce this influence. This would further increase the advantages of CSGs

over IndexGraphs in the case of low memory.

Altogether, we feel that CSGs are a promising data structure with significant potential even

beyond SCNTs and we want to investigate other problem domains in simulation science where

CSGs may be of advantage. Other simulations on SCNTs like for electronic properties or the

analysis of heat transfer may also profit from CSGs since they also rely on a way to identify

neighborhood relations within the graph model and this can be realized in a very memory-

efficient fashion with CSGs. A main prerequisite to employ CSGs for another application domain

is of course that the underlying structure can be modeled as a graph. This is, for example,

the case for mesh models employed in general FEM simulations. Additional prerequisites are

that the modeled structure needs to contain inherent self-similarities that are reflected by the

meshing method, i.e., self-similar regions must be meshed in the same way and with a regular

mesh. Hence, the meshing method must be configured in that way that it sometimes partitions

parts of the structure into more polygons than actually required by the computation to generate

this regularity. The resulting storage overhead will be compensated by compressing the structure

within the modified CSGs.

We also see the possible applicability of the principles behind the caching solver in the generic

simulation of materials. In general, the matrix-free solution can be realized by repeating the

calculations to assemble the respective stiffness matrix each step of an iterative method. Com-

putationally this requires methods to efficiently calculate contributions to that matrix, in the

best case with independent parts. A reordering of the data improving the prefetching and cache

behavior, like it is implemented in the caching solver for this thesis, can also be realized by

investigating the underlying structure the solver should be adapted to.

146

Appendices

147

A Summary of all Tubes

Table A.1.: For each tube employed in this thesis, its configuration (dx , lx , d0, l0)L, the respective tuple
length, followed by the number of nodes and edges in the graph are shown. The next two
columns give the size of the junctions, i.e., how many elements of the previous level are
contained in them. All levels > 1 have the same number of elements.

Tube Tuple length No. of nodes No. of edges Elem. in lvl 0 junc. Elem. in lvl L junc.
(256, 256) 4 1.31E+05 3.93E+05 0 0
(512, 512) 4 5.24E+05 1.57E+06 0 0
(1024,1024) 4 2.10E+06 6.29E+06 0 0
(1024,2048) 4 4.19E+06 1.26E+07 0 0
(2048,2048) 4 8.39E+06 2.52E+07 0 0
(4096,4096) 4 3.36E+07 1.01E+08 0 0
(1,4, 8,4)1 12 1.13E+04 3.37E+04 176 0
(1,4, 8,8)1 12 2.25E+04 6.75E+04 176 0
(2,6, 4,8)1 12 2.78E+04 8.32E+04 434 0
(1,4, 8,14)1 12 3.94E+04 1.18E+05 176 0
(1,11, 10,8)1 12 8.19E+04 2.46E+05 512 0
(1,4, 16,16)1 12 9.01E+04 2.70E+05 176 0
(1,6, 12,18)1 12 1.18E+05 3.52E+05 272 0
(2,6, 12,18)1 12 1.56E+05 4.66E+05 360 0
(1,4, 8,355)1 12 1.00E+06 3.00E+06 176 0
(2, 6,12, 116)1 12 1.00E+06 3.01E+06 360 0
(1,2, 8,8)2 20 8.19E+05 2.46E+06 80 212
(1,3, 6,6)2 20 1.18E+06 3.56E+06 128 260
(1,4, 8,8)2 20 3.96E+06 1.19E+07 176 356
(2,3, 6,12)2 20 4.77E+06 1.43E+07 182 350
(1,4, 8,20)2 20 9.91E+06 2.97E+07 176 356
(1,4, 16,20)2 20 1.98E+07 5.95E+07 176 356
(2,6, 8,8)2 20 2.41E+07 7.23E+07 434 680
(1,2, 4,4)3 28 1.64E+07 4.91E+07 80 212
(2,3, 4,5)3 28 2.41E+08 7.23E+08 182 350
(2,6, 4,4)3 28 6.42E+09 1.93E+10 434 680

149

B Some Notes on Terminology of Super Carbon Nanotubes

A CNT can be thought of as a rolled up graphene sheet. This sheet can be wrapped in different

ways, e.g. from left to right or from top to down, resulting in tubes of different shape. The

way how the sheet is rolled up is called the chirality of the CNT. In principle, there are three

types of chirality for SWCNTs that are called zigzag, armchair and chiral ([121], [122]). To

determine the chirality, a local coordinate system is embedded into the graphene as shown by

the two blue vectors a1 and a2. The angle between both axes is 60°. Each atom is assigned a

2D coordinate (a1, a2) within this coordinate system. The configuration of the chirality is given

as the coordinate (m, n) that determines a line within the graphene together with (0, 0). This

determines the chirality and diameter of the tube.

(0,0)

(4,4)

(1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)

(1,1)

(3,3)

(2,2) (5,2)

(5,1)

(5,3)

a1

a2

(0,1)

(0,3)

(0,2)

(0,4)

Figure B.1.: The three different chiralities of SWCNTs: zigzag in blue, armchair in magenta and chiral
in green.

The three solid vectors indicate the different kinds of chirality. To create a tube of zigzag type,

one determines an m-value and vertically cuts the part of the sheet that contains the blue nodes

with a higher a1-value than m. Afterward, the sheet is rolled from the left to the right, leaving

zigzag lines of C-atoms on both ends. The zigzag configuration is identified by the tuple (m, 0)

The procedure to create an armchair tube is similar. Considering the nodes on the magenta

line, again, a value m has to be determined and the sheet is horizontally cut to remove the part

that contains the magenta nodes with a2-values higher than m. In that case, the sheet is rolled

from bottom to top and the resulting armchair tube is identified by (m, m), since always m= n.

The last option, chiral, is indicated in green. Here, the rolling direction varies, depending

on the chosen (m, n) values. Figure B.1 assumes (m, n) = (5, 2). The sheet is rolled along the

150

direction of the green arrow that is called the chiral vector. Cutting occurs in that case on a line

perpendicular to the chiral vector through the point (m, n).
The chirality of the tube has some effect on the mechanical behavior of the tube (for a short

summary see e.g. [123]) but especially determines if the resulting tube will be conducting or

semiconducting [122]. Additionally, the aspect ratio of a SWCNT is defined as α = l/d with l

giving the length and d the diameter, respectively.

151

C Background on the Simulation of Super Carbon Nanotubes

This section employs the common chirality-notation (m, n) and the aspect ratio α within tubes.

Both topics are summarized in Appendix C.3.1.

Most studies about SCNTs are limited to tubes of order 1. Hence, unless noted otherwise

SCNT stands for a super tube of order 1 in this overview. We start with the results obtained

by the group of Coluci in Section C.1 since they proposed SCNTs in 2006. In Section C.2,

the work of the group of Li is summarized. Section C.3 focuses on other studies that were

mainly concerned with stretching and compressing SCNTs, followed by the consideration of the

chirality dependence of the mechanical behavior in section C.3.1. Two crucial points during

modeling SCNTs are the Y-junctions and the question how SCNTs of higher order should be

treated because of their large size. Hence, section C.3.2 is dedicated to this topic.

C.1 The work of Coluci et al.

Coluci et al. [17], performed the first simulations on SCNTs with a focus on the electronic

structure and properties but the publication already contains important information about the

mechanical properties as well. In analogy to the chirality notation (m, n) of SWCNTs, they define

the configuration of an SCNT by [M , N]@(m, n) to express that the SCNT with chirality [M , N]
is formed by (m, n) SWCNTs as arm tubes. They employed the fast tight binding approach from

Porezag [124] that is especially suitable for C-C, C-H and H-H bindings. The geometric positions

of the nodes were attained by a universal force field including, among others, van der Waals

forces. One result is that the energy per atom in SCNTs is higher than in corresponding SWCNTs,

caused by the junction elements. SCNTs then should be even more stable than C60 fullerene,

which can be thought of as a sphere out of graphene. Coluci et al. expected a high flexibility

for bending and high tensile strength. For axial tension they predicted a different behavior

compared to SWCNTs since the junctions would change their angles before the included SWCNT

change their length.

Moreover, highly varying electronic properties are predicted. Depending on the parameters

the resulting SCNTs show metallic or semiconducting behavior like it is the case for the SWCNTs

that are employed as arm tubes. Both predictions were confirmed by later simulations. Finally,

the authors state that the principle of SCNTs is not limited to carbon nanotubes but also is

imaginable for other tube structures like boron nitride [32] or other connection types than

Y-junctions like X- or T-junctions [33].

In 2007 Coluci et al. [20] presented an extended study on the mechanical properties of

SCNTs. With fully atomistic simulations they derived properties as the Young’s modulus and the

152

tensile strength for some order 1 tubes. The test case consists of moving the atoms at the SCNT

ends along the axis with a speed of 10m
s . The interactions between atoms were modeled by an

empirical bond-order potential from [125] targeted on hydrocarbon systems and thus applicable

to graphite. Coluci et al. detected a fishing net like behavior of the SCNTs where, for tensile

deformation, the stress is mainly concentrated on the junctions and the angles between the

SWCNTs changes. Ruptures normally occur near the ends of junction arms before the SWCNTs

are considerably stretched. Coluci et al. also state that the flexibility of the SCNTs can be

increased with longer SWCNTs while a higher number of junctions increases the stiffness.

The authors conclude that SCNTs are good candidates for new flexible, high-tensile materials

and tough, stiff super-composites.

C.2 The work of Li et al.

In 2008, Li et al. ([18], [30]) published two further studies about the mechanical behavior

of SCNT and adapted the [M , N]@(m, n) notation of [17] to denote their configuration. They

define the aspect ratio of SCNTs as α̃ = L/D where L and D denote length and diameter of

the SCNT and α the aspect ratio of the arm tubes. They generate their models of SCNTs in

MATLAB and execute the actual simulation in the ANSYS1 software. In contrast to Coluci et al.,

they do not employ molecular dynamics for their simulations but use the molecular structure

mechanics method for carbon nanotubes proposed in [126]. The main results of Li et al. are

that the in-plane stiffness of the tubes is almost the same as for the unrolled super graphene

and that it decreases if α is decreased. In addition, it also only depends on the aspect ratio

α. In contrast, Poisson’s ratio, which describes the change in the diameter of the tube when it

is stretched, is dependent on the value of α and, to some extent, on the chirality. In general,

armchair SCNTs have higher Poisson’s ratio values than zigzag SCNTs. The higher Poisson’s ratio

of SCNTs demonstrates their high flexibility and means that SCNTs can be further stretched and

compressed than SWCNTs. Finally, the bending rigidity in the tested SCNTs is up to 20 times

higher than those of SWCNTs. The authors conclude that the deformation of SCNTs results from

a combination of stretching and bending the arm tubes while the Y-junctions coupling stretching

and bending. The authors also highlight that SCNTs have a very low mass density, which is only

1 % of graphite and 0.3 % of steel [18]).

C.3 General super carbon nanotube simulations

The conclusions about the behavior of Y-junctions from Coluci and Li are confirmed by three

other studies. Wang et al. [28] conducted an analysis based on the finite element method and

the thin-shell model. They summarize the behavior of SCNTs under tensional load as follows:
1 http://www.ansys.com/

153

http://www.ansys.com/

At the beginning the stiffness is low because only the angles in the Y-junctions change. With

increasing load, the arms begin to stretch, resulting in high stiffness. Wang et al. [28] also

emphasize that the SCNTs might overcome a large drawback of SWCNTs: The hierarchical

construction process results in structures of the macro scale and are not limited to nanoscale,

facilitating their usage in material design.

Qin et al. [29] simulated SCNTs under uniaxial tension with the left boundary being fixed

against movements in the axial direction and the force being applied to the right boundary.

They identify three stages in the deformation process: First, the arm-tubes align themselves into

the direction of the tension. Second, the SWCNTs rotate around the centers of the junctions to

be parallel to the axial direction, reducing the circumference of the tube. Last, the arm-tubes

get stretched resulting in the fact that different forces are required to achieve a deformation

(see also [28]). This is the reason for the high flexibility of SCNTs and their different behavior

compared to the SWCNTs. In particular, the rupture point stays constant even under 1200

K, while, in that case, SWCNTs rupture earlier. In general, the properties of SCNT that were

investigated by Qin et al. [29] are insensitive to the temperature.

Chen et al. [31] presented a study about the nonlinear deformation processes of armchair

SCNTs. Their modeling approach employed has the most commonalities in its methodology

with the work in this thesis. First of all, for modeling SCNTs they do not distinguish Y-junction

and arm tube objects, but only employ Y-junctions whose arm length is half the length of fictive

arm tubes. This is also the underlying SCNT construction in this thesis, but here it is extended

to higher orders. Another commonality is that they employ the AFEM method of [35] and

not molecular dynamics or molecular mechanics for the simulation. The tests reveal that there

are, in principle, two different deformation processes for uniaxial tension whose occurrence

is strongly dependent on the aspect ratio of the arm tubes. For lower ratios, i.e., α < 6, the

deformation consists of two different phases (rotation & stretch as unity and rupture), while

there are three phases (separated rotations and stretch, rupture) for aspect ratio for α≥ 6.

C.3.1 Dependence on chirality

The chirality dependence of the mechanical properties has only been investigated rudimentarily.

The simulations of Li et al. [127] demonstrated that the critical compression force and the

critical bending force are independent of the chirality of the SCNT. Additionally, the results [18]

showed that the in-plane stiffness is independent of the chirality of the arm tubes and of the

SCNT, but that in contrast the Poisson’s ratio is slightly dependent on the chirality. Qin et al [29]

only noticed a weak dependence of the choice of the (M , N , m, n) parameters and the behavior

under uniaxial tension.

In general, the situation is similar to the SWCNTs where the chirality has some influence on

some parameters, but that the electronic behavior is much more dominated by the chirality. This

154

conclusion is supported by studies of Romo-Herrera et al. [128] who investigated four 2D/3D

networks of SWCNT networks: super square, super graphene (both 2D), and super cubic, super

diamond (both 3D). Their summary is that the mechanical behavior of the networks is not

dependent on the chirality of the employed SWCNTs but only on the type of network. Following

Wang et al. [28], it is possible to predict the behavior of SCNTs with super graphene, like it is

possible in the order 0 case with graphene and SWCNTs. After their literature review Yin et al.

also state that »the effect of chirality on the physical and mechanical properties of STs [SCNTs] can

be neglected «[42, p. 1328].

C.3.2 Modeling of Y-junctions and scaling laws

Beside the actual simulation there was some theoretical work on SCNTs and their geometry,

which is especially important for the creation reliable models.

Lászlò [129] presented a way to create junctions to connect tubes of arbitrary chirality based

on Euler’s theorem that relates the number of faces, edges and vertices in a polyhedron. They

are able to derive the ideal number of defects in the grid (e.g. heptagons, octagons) if only one

type of defect is allowed for the junctions.

Yin et al. [51] developed geometric conservation laws for Y-junctions. Those are perfect,

meaning that there are no defects (dislocations, misconnected bonds). The junctions are in

equilibrium state, have minimal energy (locally and globally), and are symmetric if the angle

between arms is 120° as well as all arms have the same radius. The authors state that spon-

taneous branched tubes are symmetric but not controllable, while forced, templated branching

is controllable but not symmetric. They propose a periodic nanochannel template of hexagonal

cells for the growth of super sheets. To overcome the issues of rolling up the planar super sheet

and to connect it to a seamless cylinder, they propose the idea of a circular cylindrical template.

In later work, Yin et al. ([41], Yin2010) investigated geometric conditions for designing

fractal SCNTs with armchair chirality and containing armchair junctions on the one side and

zigzag SCNTs with zigzag junctions on the other. They identify two types of self-similarity:

Structural and geometric. Structural self-similarity means that the shapes of the different levels

are equal. This property is naturally given, since each level has the shape of the tube. Geometric

self-similarity means that the geometric size of neighboring levels need to be identical and this

is the prerequisite to construct a fractal. The authors identify three conditions for the presence

of geometric self-similarity: The number of Y-junctions along the circumference and along the

axial direction of each level need to be the same. Additionally, the tube of level i needs to be

as long as one side of a hexagon in a tube of level i + 1. Yin et al. are not sure whether it will

to possible to really construct fractal SCNTs in the future but they highlight the knowledge that

can be gained from their theory.

155

Exploiting the fractal properties of SCNTs, Pugno [40] presented scaling laws in 2006 to esti-

mate the mechanical parameters for larger SCNTs of higher order. In this way, Pugno estimated

the behavior of SCNTs up to order 20 with a radius of more than 1 cm and found that the max-

imum for simultaneously optimizing strength, stiffness, and toughness is reached for order 2

tubes.

156

D Performance Comparison of Different Container Structures

In Section 6.1.3, the issue of employing vectors data types as keys for map structures arose.

Here, we report on studies with different map types, compilers and varying the data types

which serve as key to the maps between vectors and scalars.

To evaluate the data structures we developed, several experiments on basic containers were

performed to test their suitability for the different scenarios. The main question was how to

choose the data type for the key in the maps appropriately. The implementation of [62] suggests

to use the tuples, i.e., vector datatypes, as keys for the offset table and the hash table. Thus, for

one half of the test maps with std :: vectors as keys are used (vector maps), while the other maps

employ integers as keys which are calculated from the tuples-vectors before access (vector-integer

maps).

The tested containers are the (ordered) map and the unordered_map, one time from the std

library and a second time from the boost library.

The tests were performed on two different test systems, the Linux-based Lichtenberg Rechner

(see 9.1.1) and a Windows 10 based desktop system with a Xeon 1230v2 (Ivybridge) CPU. For

Linux the g++ compiler (version 4.8.1) and the Intel compiler [ICC] (version 17) were tested,

while for Windows the Microsoft MSVC [VCC] (version 14.0) and again the Intel icpc compiler

(version 17) were used.

A small test program was employed to measure the speed for insertion and of access to ele-

ments in the maps. The test program always compares a pair of maps considering their access

time. Pair means, keeping the primitive map-type constant and using a vector as key for one

instance, while using an integer for the other. The four compared pairs of maps:

1. std ::map<int, int> and std ::map<std::vector<short>, int>

2. std ::unordered_map<int, int> and std ::unordered_map<std::vector<short>, int>

3. boost::containers ::map<int, int> and boost::containers ::map<std::vector<short>, int>

4. boost::unordered_map<int, int> and boost::unordered_map<std::vector<short>, int>

Afterward, both maps are filled with nodes. To that end, the test code receives the length of

the tuples that should be used and their extent. It iterates over all possible tuples and decides

for every tuple if it should be part of the node set. The algorithm is configured to always create

a tuple set of about 10 million entries, independent of the chosen dimension. By adaption of the

extent, the program achieves sparsely occupied maps as they result from the SCNT construction

process.

157

After the data is initialized, two random query vectors are created that determine the order of

the map accesses. To that end, a predefined number of accesses is generated and inserted into

a std :: vector<vector<short>> which is consecutively processed later. To guarantee comparable

access schemes for both maps to test, the corresponding serial index for each entry of the query

vector is calculated and inserted into a std :: vector<int> in the same order. Hence, the distance

between the elements to access for both maps is equal.

Finally, for both maps and their corresponding vectors, the time to access all the elements

consecutively is measured by iterating of the vectors. The results are shown in Table D.1 where

106 tuples of length 28 were searched with an extent of 428.

Several things can be observed: On the Windows machine, independent of the employed con-

tainer structure and compiler, the vector-integer map is considerably faster than the vector map

although the serializing time of the vector is included in the measurements. Another point is

that the unordered maps enable a much faster access than their ordered pendants. The compiler

seems not to create significant differences. Consequently, for Windows the combination of the

vector integer based unordered map is clearly the best choice.

On Linux the situation is different. Although the hardware employed is even faster than

on the Windows computer, the performance of ordered and unordered vector-integer maps is

drastically lower and in some cases even lower than corresponding vector maps. This behavior

could also be replicated on another Linux computer with comparable hardware to the Windows

machine. Hence, the reason for the slow vector-integer maps seem to lie in their implementation

in the std library which is also used by boost in most parts. But on Linux also the unordered

maps are considerably faster than the ordered ones. That is why they should be preferred for

this kind of application.

158

Table D.1.: 106 random entries were searched in different map structures. The upper half of the table
shows the overall search-times on the Windows system with compilers Visual Studio C++
(VCC) and IntelC++ (ICC), the lower part those of the Linux system with compilers g++ and
and again Intel C++. The runtimes are given in seconds.

VCC_STD_ORDERED_28 VCC_STD_UNORDERED_28
vecMap: 4.759 4.764 3.672 0.504 0.496 0.503

vecintMap: 2.635 2.890 1.720 0.339 0.333 0.339
Quotient: 1.81 1.65 2.13 1.49 1.49 1.49

VCC_BOOST_ORDERED_28 VCC_BOOST_UNORDERED_28
vecMap: 3.528 3.784 3.535 0.472 0.470 3.784

vecintMap: 1.256 1.247 1.184 0.320 0.320 1.247
Quotient: 2.81 3.04 2.99 1.47 1.47 3.04

ICC_STD_ORDERED_28 ICC_STD_UNORDERED_28
vecMap: 4.033 4.201 3.934 0.483 0.514 0.506

vecintMap: 2.333 2.172 1.966 0.331 0.336 0.331
Quotient: 1.73 1.93 2.00 1.46 1.53 1.53

ICC_BOOST_ORDERED_28 _ICC_BOOST_UNORDERED_28
vecMap: 3.724 3.523 3.929 0.461 0.465 0.458

vecintMap: 1.343 1.192 1.261 0.321 0.316 0.316
Quotient: 2.77 2.96 3.12 1.43 1.47 1.45

g++_STD_ORDERED_28 g++_STD_UNORDERED_28
vecMap: 3.489 3.403 3.539 0.535 0.539 0.575

vecintMap: 2.418 2.300 2.822 0.484 0.483 0.512
Quotient: 1.44 1.48 1.25 1.11 1.12 1.12

g++_BOOST_ORDERED_28 g++_BOOST_UNORDERED_28
vecMap: 3.843 3.684 3.637 0.624 0.592 0.622

vecintMap: 4.312 3.779 3.850 0.500 0.483 0.493
Quotient: 0.89 0.98 0.94 1.25 1.22 1.26

ICC_STD_ORDERED_28 ICC_STD_UNORDERED_28
vecMap: 3.367 3.561 3.501 0.586 0.545 0.595

vecintMap: 2.501 2.667 2.587 0.512 0.487 0.533
Quotient: 1.35 1.34 1.35 1.14 1.12 1.12

ICC_BOOST_ORDERED_28 ICC_BOOST_UNORDERED_28
vecMap: 3.658 3.818 3.947 0.601 0.590 0.596

vecintMap: 4.156 3.694 3.646 0.478 0.468 0.472
Quotient: 0.88 1.03 1.08 1.26 1.26 1.26

159

E Heap Consumption of the new EdgeMap

This appendix provides more details about the comparison of the old bimap based EdgeMap and

the structure-related EdgeMap based on EdgeEntries that was presented in section 6.1.4. The first

part is the investigation of the memory demand during the actual graph construction process.

The example is done with the (1, 4,8, 8)2 tube, like in section 6.1.4. In Figure E.1 we see a

screenshot of the massif-visualizer 1 tool that automatically creates plots analyzing the total

heap-memory consumption of the graph construction process on the base of massif profile files.

The y-axis gives the heap consumption of the total program in kilobytes and the areas under

the differently colored lines visualize the contributions of different data structures. Please note,

that due to a problem of the massif-visualizer the lines for memory consumption are drawn

with somewhat higher y-values as they as they are reported in profile file. The values used

in the following text are taken from the massif output file and the textual output of massif-

visualizer. The x-axis depicts the time steps from program start to the finishing of the graph

construction phase, thus the right side shows the memory that is required to keep the final

tube which are about 1.6 gigabytes in this case. The large red part of the area marked reflects

the memory for the edge map itself and the underlying boost::bimap. With over 1 gigabytes it

consumes nearly two third of the overall space.

Figure E.1.: Edited screenshot from the heap analysis with the tool massif for the construction of the
(1, 4,8, 8)2 tube and the old edge map.

1 http://milianw.de/tag/massif-visualizer

160

http://milianw.de/tag/massif-visualizer

Also two other things can be noticed in this plot. The first thing is that the peak memory

consumption occurs during the construction process at the point marked by the purple *. There,

the uncut graph is constructed that contains several nodes that will later be removed. In that

case, the EdgeMap requires more than 1.2 GB. The decrease of the curve marks the begin of the

cutting operation which particularly reduces the memory for the edges from 1.2 to 1.0 GB, i.e.,

down to 83 % of the peak value. The yellow and dark green areas depict the memory for the

tuple- and index-information. Together they are reduced to 80 % of the peak value (492 to

393 MB) during the cutting, which corresponds nearly exactly to the reduction of nodes in the

model (from 4956160 to 3964928, i.e., 80 %). The two lines in light green and purple at the

top of the diagram correspond to the position data of the point. The geometry construction

starts after the end of the cutting process (marked by an !) and is done in the last part of

the construction. The second thing to note is the additional memory demand caused by the

composition graph algebra operation which only is required during the construction of the uncut

tube. It is the cyan line in the diagram.

Figure E.2 shows the heap consumption of the new edge storing scheme for comparison. On

the right side the overall allocated memory is below 800 megabytes and hence only half of the

old scheme. The colors of the lines now belong in some cases to different data structures. The

red and dark orange (number 1 and 2) this time represent space for the node storage which is,

like for the measurement with the old EdgeMap, 393 MB. The contribution of the EdgeMap itself

is split in that case in the light yellow (3), dark yellow (4), green (5) and blue (6) lines which

together consume 190 MB of the heap. The main part of these contributions are required by the

EdgeEntry objects which are 136 MB (numbers 3 and 4), followed by the structural information

of the internal hash map (33 MB, number 5) and the additional space for reallocating additional

edge pointers in the case that an EdgeEntry has more than two of those (18 MB, number 6). The

light orange (7) and cyan (8) curves belong two the position data.

In contrast to the bimap approach, the memory consumption for the uncut tube without

geometry (*) is about the same as for the final tube with calculated positions. The difference is

caused by the new EdgeEntry. Not only its total size is smaller but also the slope of the curve is

lower. This results from two facts: The overhead for the structure itself is lower, especially for a

large number of edges, and the exploitation of the fact that each edge has an opposite edge in

the final graph comes into play.

After the analysis of the memory behavior, Table E.1 opposes the runtime of the construction

for both EdgeMap types for various tubes. In most cases, for order 2 and 3 the speedup is about

a factor of 1.9. For the lower order tubes, the speedup with the new map is even higher. The

reason is that in those cases only junctions of level 0 need to be constructed which is a very

time-consuming operation for higher levels. Hence, the main part of the runtime is spent on

insert operations of edges during the final tube construction. The performance of insertions

161

Figure E.2.: Edited screenshot from the heap analysis with the tool massif for the construction of the
(1, 4,8, 8)2 tube and the new edge map.

in the new EdgeMap is superior to that of the old version, resulting in the significant overall

speedup.

Table E.1.: Comparison of the runtime for the construction of various tubes for both EdgeMap variants.
The first two columns show the tube configuration, the next two the runtime in seconds, and
the last row the fraction of the runtime for the old and new EdgeMap.

Tube config No. of nodes Time in s (old) Time in s (new) Factor
(6, 10,64, 64)1 1.3 ∗ 107 190 47 4.0
(4, 8,128, 128)1 3.2 ∗ 107 404 105 3.8
(1, 2,4, 4)2 3.0 ∗ 105 2.2 1.4 1.6
(1, 4,8, 8)2 4.0 ∗ 106) 48 26 1.9
(2, 4,8, 8)2 9.0 ∗ 106) 120 61 2.0
(4, 8,8, 16)2 2.4 ∗ 108) 4404 2187 2.0
(1, 2,4, 4)3 2.5 ∗ 107 321 174 1.8
(1, 4,4, 4)3 1.7 ∗ 108 4447 2373 1.9
(1, 4,4, 6)3 2.6 ∗ 108 6344 2995 2.1
(1, 4,6, 6)3 3.9 ∗ 108 9209 4917 1.9

162

F Performance Results

F.1 On-the-fly versus reference solver

Table F.1.: Comparison of the on-the-fly and reference solver on phase one nodes, grouped by the tube configuration. Samples are grouped by the no. of threads
per row. Runtime in ms. µ and σ give median and standard deviation for samples with same solver, tube configuration and no. of threads.

On-the-fly Solver Reference Solver

No of Sample 1 2 3 µ σ 1 2 3 4 5 6 7 8 9 µ σ

1T 8176.06 8179.14 8176.30 8177.17 1.40 109.24 109.43 109.77 109.35 109.39 109.46 109.39 109.29 109.49 109.42 0.14

2T 4086.03 4097.17 4096.49 4093.23 5.10 55.51 56.09 56.03 55.59 56.27 55.47 56.06 55.48 56.07 55.84 0.30

4T 2102.54 2087.74 2062.58 2084.29 16.50 29.42 29.61 29.42 29.41 29.45 29.46 30.00 29.64 29.21 29.51 0.21

8T 1071.10 1089.90 1054.36 563.07 0.08 15.76 16.20 15.71 15.80 16.56 15.71 15.77 15.82 16.51 15.98 0.33

(256, 256)

16T 563.03 563.18 562.99 1071.79 14.52 8.90 8.94 8.90 8.95 8.84 8.96 8.89 8.95 8.87 8.91 0.04

1T 35528.60 33453.10 33462.30 34148.00 976.24 439.02 438.95 439.13 439.20 439.16 438.98 439.22 439.01 439.14 439.09 0.10

2T 16570.80 16567.30 16599.50 16579.20 14.43 225.28 224.09 224.10 223.69 223.67 224.11 223.75 224.19 223.15 224.00 0.55

4T 8319.72 8515.64 8525.84 8453.73 94.85 117.01 121.21 121.41 117.10 117.29 121.24 120.06 119.46 117.61 119.15 1.80

8T 4351.29 4417.03 4328.06 4365.46 37.68 65.15 63.30 65.38 67.35 65.38 63.30 66.87 62.74 64.07 64.84 1.52

(512, 512)

16T 2264.28 2265.07 2264.92 2264.76 0.34 36.83 37.31 37.15 37.24 36.95 38.45 37.47 37.88 37.14 37.38 0.48

1T 2452.14 2452.68 2454.75 2453.19 1.12 34.06 34.07 34.09 34.05 34.06 34.08 35.05 35.08 35.14 34.41 0.48

2T 1231.66 1234.06 1234.78 1233.50 1.33 17.58 17.55 17.53 17.54 17.54 17.53 17.55 17.35 17.54 17.52 0.06

4T 618.02 635.01 633.19 628.74 7.62 9.19 9.16 9.13 9.14 9.12 9.15 9.12 9.14 9.27 9.16 0.05

8T 319.53 327.60 337.37 328.16 7.29 5.08 4.91 4.92 4.95 5.06 5.11 4.91 5.15 4.89 5.00 0.10

(1,4, 8,14)

16T 171.32 172.23 171.26 171.60 0.44 2.79 2.81 2.82 2.87 2.81 2.84 2.98 2.83 2.83 2.84 0.05

1T 64801.20 64815.10 64695.90 64770.73 53.22 883.19 882.42 882.43 882.89 882.74 882.43 882.61 883.08 882.19 882.66 0.32

2T 32180.60 32104.70 32201.60 32162.30 41.62 448.59 449.51 448.94 454.48 449.37 451.58 450.90 450.71 451.21 450.59 1.70

4T 16202.40 15929.30 16020.20 16050.63 113.55 241.08 241.55 237.37 236.74 241.25 241.20 242.16 235.12 237.50 239.33 2.47

8T 8405.89 8324.38 8349.08 8359.78 34.13 139.72 136.32 132.06 131.19 131.11 127.34 136.94 132.13 133.70 133.39 3.52

(1,4,8, 355)

16T 4353.95 4354.89 4355.41 4354.75 0.60 74.86 75.09 75.04 75.04 73.83 74.53 75.64 73.79 74.92 74.75 0.57

1T 64955.60 65037.70 65058.00 65017.10 44.27 883.02 882.72 883.20 882.93 883.54 883.52 882.73 883.26 884.40 883.26 0.49

2T 32154.00 32302.30 32223.50 32226.60 60.58 451.85 450.93 449.17 449.45 450.16 449.27 450.63 449.63 450.73 450.20 0.85

4T 16384.50 16383.60 16391.00 16386.37 3.30 241.89 237.50 244.30 242.38 241.76 242.70 234.32 235.77 233.41 239.34 3.86

8T 8196.26 8407.21 8629.47 8410.98 176.88 130.71 135.88 131.95 131.47 131.04 130.36 128.24 131.58 129.61 131.20 1.97

(2,6,12,116)

16T 4367.19 4367.19 4368.23 4367.54 0.49 74.27 76.30 76.14 74.03 75.64 73.58 73.61 73.80 75.05 74.71 1.03

163

Table F.2.: Comparison of the on-the-fly and reference solver on phase two hardware, grouped by the tube configuration. The runtime of samples is given in
milliseconds. They are grouped by the number of employed threads for the runs per row. µ and σ give median and standard deviation for all samples
with same solver, tube configuration and number of threads.

On-the-fly Solver Reference Solver

No of Sample 1 2 3 µ σ 1 2 3 µ σ

1T 6679.72 6681.57 6687.09 6682.79 3.13 105.59 106.10 106.09 105.93 0.24

2T 3353.23 3351.39 3356.90 3353.84 2.29 54.09 53.83 54.34 54.08 0.20

4T 1758.63 1726.95 1759.84 1748.47 15.23 30.05 30.32 30.18 30.18 0.11

8T 926.59 910.18 925.34 920.70 7.46 16.65 16.63 16.71 16.66 0.03

16T 464.94 465.60 464.72 465.08 0.37 9.26 9.21 9.30 9.26 0.04

(256,256)

24T 310.92 311.05 310.84 310.94 0.09 6.94 6.77 6.84 6.85 0.07

1T 27177.30 27196.80 27199.00 27191.03 9.75 424.82 426.20 425.54 425.52 0.56

2T 13559.00 13575.80 13659.60 13598.13 44.00 217.23 217.80 217.65 217.56 0.24

4T 7037.22 6947.96 7179.09 7054.76 95.17 123.53 119.04 121.17 121.25 1.84

8T 3682.08 3705.94 3695.10 3694.37 9.75 68.67 66.66 68.68 68.00 0.95

16T 1869.92 1868.83 1870.50 1869.75 0.69 36.58 37.68 36.44 36.90 0.56

(512,512)

24T 1248.87 1248.62 1248.37 1248.62 0.20 26.44 27.24 27.04 26.90 0.34

1T 1981.61 1984.18 1985.99 1983.93 1.80 32.94 32.98 32.91 32.94 0.03

2T 997.70 995.33 995.53 996.18 1.07 16.81 16.98 17.05 16.95 0.10

4T 521.91 531.49 532.49 528.63 4.77 9.31 9.44 9.37 9.37 0.05

8T 271.60 271.60 271.60 271.60 0.00 5.19 5.19 5.26 5.21 0.03

16T 140.27 140.09 140.15 140.17 0.07 2.82 2.80 2.79 2.80 0.01

(1,4,8,14)

24T 95.76 94.13 95.89 95.26 0.80 2.04 2.04 2.02 2.03 0.01

1T 52478.00 52392.10 52409.70 52426.60 37.05 855.17 853.84 853.78 854.26 0.64

2T 25846.70 25965.30 25987.50 25933.17 61.81 436.53 438.02 437.11 437.22 0.61

4T 13123.80 13066.20 13193.70 13127.90 52.13 230.15 234.32 235.00 233.16 2.14

8T 7024.52 7080.62 7030.21 7045.12 25.21 135.08 132.61 131.81 133.17 1.39

16T 3560.49 3565.13 3569.48 3565.03 3.67 71.52 72.04 71.63 71.73 0.22

(1,4,8,355)

24T 2379.06 2380.13 2379.35 2379.51 0.45 53.38 53.54 52.97 53.30 0.24

1T 52587.50 52610.80 52640.00 52612.77 21.48 855.17 853.84 853.78 854.26 0.64

2T 25987.50 25977.60 26042.30 26002.47 28.45 431.84 437.95 436.43 435.41 2.60

4T 13121.20 14154.40 13030.40 13435.33 509.81 240.35 239.54 264.30 248.06 11.49

8T 7034.59 7056.89 7060.43 7050.64 11.44 132.17 131.99 132.43 132.20 0.18

16T 3574.43 3575.09 3579.39 3576.30 2.20 71.17 72.15 71.80 71.71 0.40

(2,6,12,116)

24T 2388.26 2387.49 2387.48 2387.74 0.37 51.61 52.45 52.61 52.22 0.44

164

Table F.3.: Comparison of the runtimes of the old solver version presented in [23] with the recent version. The performance values for the old version are taken
from the database of [23], while the values for the new solvers result from the average values for the respective columns from Appendix F.1. The
total factor for the runtime difference in the last column is the product of the relative performance difference of the old and new on-the-fly (Diff.
Matrix-free Old/New) solver, that of the old and new reference-solver (Diff. Reference Old/New), and the performance increase of the reference
solver when employing 16 instead of 1 thread (Scaling Reference). The slowdown particularly results from the improvements of the new reference
solver.

(64,64) Old Version New Version Diff. Matrix-free Old/New Diff. Reference Old/New Scaling Reference Total Difference

Matrix free Reference Matrix free Reference

Per Step (ms) Per Step (ms) Per Step (ms) Per Step (ms)

1T 2.89 430.86 6.34
0.92 0.46 7.23 3.0

16T 33.37 30.71 0.88

(128, 128) Old Version New Version Diff. Matrix-free Old/New Diff. Reference Old/New Scaling Reference Total Difference

Matrix free Reference Matrix free Reference

Per Step (ms) Per Step (ms) Per Step (ms) Per Step (ms)

1T 12.86 1702.90 25.46
0.91 0.50 10.69 4.9

16T 133.40 121.15 2.38

(256, 256) Old Version New Version Diff. Matrix-free Old/New Diff. Reference Old/New Scaling Reference Total Difference

Matrix free Reference Matrix free Reference

Per Step (ms) Per Step (ms) Per Step (ms) Per Step (ms)

1T 51.84 6842.92 107.91
0.92 0.48 10.50 4.7

16T 533.80 492.92 10.28

(256, 512) Old Version New Version Diff. Matrix-free Old/New Diff. Reference Old/New Scaling Reference Total Difference

Matrix free Reference Matrix free Reference

Per Step (ms) Per Step (ms) Per Step (ms) Per Step (ms)

1T 105.23 13832.40 215.04
0.90 0.49 10.62 4.7

16T 1087.32 979.74 20.25

165

F.2 Symmetry solver versus reference solver

Table F.4.: Comparison of the value-symmetric and reference solver on phase one hardware, grouped by the tube configuration. The runtime of samples is given
in ms. They are grouped by the number of threads employed for the runs per row. µ and σ give median and standard deviation for all samples with
same solver, tube configuration and number of threads.

Value-symmetric Solver Reference Solver

No of Sample 1 2 3 4 5 6 7 8 9 µ σ 1 2 3 4 5 6 7 8 9 µ σ

1T 184.47 184.89 183.84 190.12 192.62 184.94 191.05 185.95 192.00 187.76 3.39 438.98 439.00 438.97 439.10 438.84 439.06 438.96 439.29 439.32 439.06 0.15

2T 130.39 147.08 106.48 137.76 141.35 141.73 110.23 111.52 112.38 126.55 15.30 223.92 222.99 224.24 223.08 223.39 223.59 223.70 223.76 224.14 223.65 0.41

4T 80.85 83.03 82.25 69.40 85.20 81.18 64.25 82.45 81.14 78.86 6.66 121.23 118.84 118.60 120.73 120.36 120.82 121.04 120.70 120.49 120.31 0.89

8T 58.05 59.17 57.21 56.62 59.51 58.38 58.04 58.50 58.20 58.19 0.84 66.93 69.71 65.29 65.54 65.66 63.83 65.46 65.13 64.22 65.75 1.63

(512, 512)

16T 48.95 50.71 54.51 49.58 52.80 51.22 50.46 54.75 53.15 51.79 1.98 38.58 37.23 37.90 37.42 38.09 36.40 38.22 37.21 36.21 37.47 0.76

1T 836.76 820.43 814.39 816.07 841.83 827.59 829.57 828.21 777.03 823.86 17.80 1751.03 1760.56 1772.58 1753.12 1750.57 1754.04 1753.23 1751.43 1750.84 1761.39 6.77

2T 473.26 459.21 470.08 451.73 564.91 474.26 509.04 493.39 485.84 486.86 32.06 898.15 897.99 899.68 896.77 899.68 895.90 901.39 897.90 897.06 898.28 1.61

4T 270.46 317.68 294.00 344.60 264.08 318.06 353.43 358.51 276.68 310.83 34.31 489.88 480.18 485.42 488.49 487.64 488.94 479.55 479.59 488.28 485.33 4.09

8T 209.82 249.05 252.92 259.77 255.83 250.25 251.90 246.24 249.78 247.28 13.76 261.68 269.14 289.26 288.05 265.25 269.19 269.36 260.48 274.97 271.93 9.84

(1024, 1024)

16T 214.17 212.76 209.08 219.97 215.35 220.38 214.92 212.20 217.66 215.16 3.48 160.07 165.21 160.25 154.94 158.08 155.01 157.29 154.30 156.33 157.94 3.28

1T 2291.51 2294.33 2268.60 2278.98 2281.95 2267.24 2282.19 2277.65 2278.09 2280.06 8.49 3595.75 3593.33 3482.57 3482.22 3481.22 3516.03 3479.71 3486.76 3518.61 3515.13 44.70

2T 1145.34 1223.70 1149.66 1153.10 1193.10 1141.04 1206.12 1148.13 1141.70 1166.88 29.92 1773.79 1801.13 1783.93 1776.16 1788.19 1782.04 1785.28 1792.13 1781.00 1784.85 7.82

4T 657.67 623.65 659.95 828.06 675.31 650.92 837.52 701.77 809.86 716.08 79.79 972.94 969.79 970.38 950.01 955.45 963.75 963.70 948.72 962.96 961.96 8.30

8T 430.02 516.16 556.50 530.99 384.21 545.44 421.41 532.64 544.26 495.74 61.30 544.84 522.68 539.00 549.39 568.83 528.95 528.40 532.07 544.74 539.88 13.27

(1024, 2048)

16T 438.52 434.11 434.27 436.00 447.26 434.47 440.88 441.05 435.78 438.04 4.14 316.45 316.20 306.12 306.31 307.02 306.86 308.67 307.13 305.82 308.95 4.01

1T 4730.38 4712.60 4670.67 4690.30 4706.51 4719.96 4658.29 4688.34 4677.27 4694.92 22.70 6980.50 7112.03 7034.84 7068.06 7135.98 6971.04 7222.66 7055.07 7052.61 7070.31 73.78

2T 2352.18 2349.80 2388.33 2349.19 2361.28 2347.83 2360.87 2341.47 2348.90 2355.54 13.01 3570.04 3589.23 3554.24 3726.73 3556.85 3659.21 3567.72 3560.31 3752.28 3615.18 73.23

4T 1414.31 1321.24 1368.40 1299.83 1251.40 1354.58 1321.45 1323.82 1374.78 1336.65 44.81 1975.02 1973.11 1924.34 1906.88 1953.59 1970.60 1983.52 1936.83 1878.28 1944.69 33.83

8T 1163.29 1148.62 1156.58 1093.97 1175.98 1013.35 888.99 1145.44 1086.99 1097.02 87.92 1152.66 1044.70 1092.49 1049.74 1037.04 1069.28 1091.23 1145.73 1073.69 1084.06 39.29

(2048, 2048)

16T 874.75 871.09 885.35 871.48 873.59 887.80 891.00 879.50 863.99 877.62 8.41 619.60 617.65 617.16 621.50 617.21 618.96 618.31 615.98 617.61 618.22 1.53

1T 45.42 44.50 44.82 44.85 44.54 44.79 44.82 0.30 112.60 112.53 112.60 112.60 112.56 112.67 112.59 0.04
(256, 256)

16T 13.14 13.14 13.22 13.63 12.77 12.95 13.14 0.26 9.31 9.33 9.34 9.22 9.29 9.29 9.30 0.04

166

F.3 Caching solver versus reference solver

Table F.5.: Comparison of the caching and reference solver on phase one hardware, grouped by the tube configuration. The runtime of samples is given in ms.
They are grouped by the number of threads employed for the runs per row. µ and σ give median and standard deviation for all samples with same
solver, tube configuration and number of threads.

Caching Solver Reference Solver

No of Sample 1 2 3 4 5 6 7 8 9 µ σ 1 2 3 4 5 6 7 8 9 µ σ

1T 42.90 42.3508 44.5601 42.4328 42.2957 42.2102 43.238 42.618 44.4851 43.01 0.86 109.24 109.427 109.77 109.349 109.391 109.458 109.391 109.286 109.487 109.42 0.14

2T 23.37 23.1012 23.1893 23.1156 24.1559 23.3054 23.3826 23.2244 24.076 23.44 0.38 55.51 56.0874 56.0346 55.5923 56.267 55.4706 56.0577 55.4805 56.0655 55.84 0.30

4T 12.62 12.6678 12.6823 12.6045 12.5788 12.8657 12.8041 12.7662 12.4803 12.67 0.11 29.42 29.61 29.4184 29.4124 29.4472 29.4564 30.0036 29.6379 29.2082 29.51 0.21

8T 7.44 7.51832 7.43409 7.41573 7.75338 7.55134 7.57891 7.54115 7.53096 7.53 0.10 15.76 16.2016 15.7141 15.7954 16.5554 15.7123 15.7703 15.8161 16.5141 15.98 0.33

(256, 256)

16T 4.87 4.9068 4.86793 4.93471 5.08875 5.13779 4.80412 4.8512 4.87334 4.93 0.11 8.90 8.93794 8.90454 8.95119 8.83715 8.95973 8.88764 8.94908 8.86905 8.91 0.04

1T 182.00 178.966 176.974 195.633 177.329 176.734 176.909 176.586 184.053 180.58 5.88 439.02 438.945 439.132 439.201 439.161 438.982 439.22 439.006 439.141 439.09 0.10

2T 98.27 99.4159 93.685 99.0492 96.0553 94.5152 94.6945 93.681 97.547 96.32 2.17 225.28 224.094 224.101 223.692 223.672 224.112 223.749 224.19 223.147 224.00 0.55

4T 52.86 52.6976 53.6903 53.2608 55.0552 53.4004 55.097 52.6099 56.3504 53.89 1.23 117.01 121.209 121.406 117.102 117.287 121.238 120.055 119.46 117.612 119.15 1.80

8T 31.48 30.9976 30.8613 29.492 29.2982 30.9832 32.1954 29.9114 30.9678 30.69 0.89 65.15 63.3045 65.3751 67.3485 65.3794 63.3039 66.868 62.741 64.0658 64.84 1.52

(512, 512)

16T 19.88 19.9908 20.0353 20.1602 19.9808 21.4847 20.2189 20.9945 20.2862 20.34 0.51 36.83 37.3125 37.1507 37.2402 36.9451 38.4538 37.4747 37.8834 37.1439 37.38 0.48

1T 13.75 13.983 13.7487 13.4361 13.6113 13.191 13.3553 13.1714 13.1776 13.49 0.28 34.06 34.0674 34.0939 34.0501 34.0605 34.0792 35.0543 35.0773 35.1446 34.41 0.48

2T 8.49 8.79347 8.36036 8.45026 8.37136 8.45957 8.41539 8.48524 8.40652 8.47 0.12 17.58 17.5457 17.5327 17.5403 17.5448 17.5259 17.5522 17.3454 17.536 17.52 0.06

4T 5.62 5.55272 5.53921 5.57441 5.6272 5.64156 5.8661 5.5647 5.5317 5.61 0.10 9.19 9.16068 9.13281 9.13639 9.12171 9.14676 9.11929 9.1432 9.27297 9.16 0.05

8T 3.61 3.57664 3.55846 3.6176 3.58996 3.49149 3.55791 3.60691 3.55946 3.57 0.04 5.08 4.9072 4.9199 4.94921 5.05722 5.11177 4.90904 5.15462 4.89363 5.00 0.10

(1,4,8,14)

16T 2.07 2.04334 2.03835 2.19517 2.05424 2.15135 2.09897 2.12995 2.08395 2.10 0.05 2.79 2.80698 2.816 2.87482 2.80692 2.8429 2.97714 2.83352 2.82814 2.84 0.05

1T 349.13 351.898 350.044 353.675 359.221 359.046 350.112 350.421 356.82 353.37 3.79 883.19 882.423 882.431 882.885 882.739 882.429 882.612 883.08 882.192 882.66 0.32

2T 188.80 191.15 196.999 188.062 191.06 197.822 196.982 191.228 188.578 192.30 3.69 448.59 449.51 448.942 454.484 449.372 451.575 450.904 450.706 451.208 450.59 1.70

4T 104.58 109.243 104.398 108.208 107.681 104.709 103.398 104.202 106.537 105.88 1.96 241.08 241.547 237.366 236.739 241.245 241.198 242.159 235.115 237.504 239.33 2.47

8T 61.77 63.9636 65.6373 69.5257 66.7223 63.0329 69.8826 64.3552 61.3722 65.14 2.92 139.72 136.318 132.063 131.194 131.11 127.338 136.938 132.131 133.704 133.39 3.52

(1,4,8,355)

16T 42.00 41.8632 41.506 41.0653 40.4931 41.3858 40.4095 41.2451 41.3024 41.25 0.51 74.86 75.093 75.0429 75.0391 73.8296 74.5321 75.6397 73.7942 74.9226 74.75 0.57

1T 350.37 350.834 371.981 348.691 351.502 355.655 349.016 349.359 355.65 353.67 6.93 883.02 882.724 883.202 882.931 883.54 883.519 882.734 883.263 884.402 883.26 0.49

2T 194.28 191.182 193.046 190.86 196.845 190.675 193.59 190.928 188.898 192.26 2.27 451.85 450.929 449.167 449.454 450.164 449.27 450.628 449.627 450.725 450.20 0.85

4T 111.75 112.368 110.955 114.55 111.023 112.57 112.031 112.315 112.198 112.20 0.99 241.89 237.497 244.303 242.38 241.756 242.703 234.322 235.766 233.411 239.34 3.86

8T 66.94 64.9906 72.7936 67.8109 65.381 67.2841 65.3419 65.5038 68.3009 67.15 2.30 130.71 135.878 131.949 131.467 131.042 130.355 128.243 131.578 129.613 131.20 1.97

(2,6,12,116)

16T 42.90 45.0925 43.9505 43.5263 42.939 42.8954 45.338 44.2235 43.6077 43.83 0.86 74.27 76.3025 76.1378 74.0261 75.6378 73.5789 73.6081 73.7984 75.0465 74.71 1.03

167

F.4 Caching solver with CSGs and IndexGraphs

Table F.6.: Comparison of caching solver with two different graph types, grouped by tube configuration. Samples are grouped by the no. of threads employed
per row pair. Runtime of in ms. µ and σ give median and standard deviation for samples with same graph, tube and no. of threads.

Caching Solver with CSGs Caching Solver with IGs
No of Sample 1 / 6 2 / 7 3 / 8 4 / 9 5 µ σ 1 / 6 2 / 7 3 / 8 4 / 9 5 µ σ

1T 21.03 20.97 21.18 21.21 20.99 13.21 13.82 13.53 13.13 13.12
21.10 21.14 20.96 21.20 21.09 0.09 13.25 13.31 13.77 13.29 13.38 0.25

2T 16.55 16.42 13.37 16.58 16.43 8.48 8.58 8.35 8.24 8.45
16.45 16.52 13.66 16.39 15.82 1.24 8.38 8.38 8.29 8.59 8.42 0.11

4T 9.23 9.90 9.85 9.90 9.42 5.63 5.64 5.63 5.55 5.56
9.72 8.76 9.38 10.19 9.59 0.41 5.64 5.62 5.54 5.63 5.60 0.04

8T 6.99 6.78 7.42 7.34 7.36 3.59 3.57 3.59 3.61 3.59
7.08 7.44 8.01 6.87 7.26 0.35 3.55 3.52 3.56 3.66 3.58 0.04

16T 4.04 4.00 3.95 3.88 4.03 2.06 2.03 2.05 2.07 2.05

(1, 4, 8, 14)1

3.95 3.59 4.00 3.82 3.92 0.13 2.02 2.05 2.06 2.04 2.05 0.02
1T 645.55 649.77 648.67 651.97 657.38 349.55 373.61 360.18 349.98 348.99

647.61 647.28 646.91 644.88 648.89 3.62 357.30 349.20 354.14 350.21 354.80 7.65
2T 466.80 430.62 395.92 462.97 423.66 192.40 191.21 192.65 194.84 187.87

473.60 474.58 404.37 392.91 436.16 32.01 191.27 191.16 191.09 191.43 191.55 1.73
4T 269.75 260.06 269.61 265.80 278.97 103.01 106.52 104.45 104.31 107.52

243.17 236.14 221.12 265.50 256.68 17.88 110.20 108.30 108.77 104.59 106.41 2.31
8T 170.32 177.78 167.98 165.06 162.80 63.52 64.13 64.22 62.67 63.53

164.15 172.64 166.10 172.91 168.86 4.64 64.88 69.58 63.21 61.31 64.12 2.16
16T 87.02 86.61 96.50 86.11 87.26 41.21 40.40 40.82 41.87 40.27

(1, 4, 8, 355)

95.06 86.88 87.02 85.91 88.71 3.82 41.68 40.68 41.37 41.18 41.05 0.52
1T 621.74 621.66 625.45 647.81 622.79 348.91 351.94 373.66 349.20 360.49

618.87 617.64 618.01 621.69 623.96 8.75 381.00 356.39 373.63 356.38 361.29 11.20
2T 452.54 371.08 449.70 384.60 401.56 202.84 190.11 193.74 190.96 192.06

374.88 384.31 454.48 423.28 410.71 32.76 193.65 190.61 198.12 191.53 193.73 3.95
4T 214.31 268.65 268.16 213.36 252.38 110.61 109.30 113.55 112.12 109.44

271.39 260.00 252.69 204.52 245.05 25.19 112.28 110.29 108.98 112.40 111.00 1.54
8T 188.26 172.49 168.30 169.03 163.01 67.71 72.67 68.63 68.82 74.13

179.13 171.35 165.14 172.44 172.13 7.20 65.13 66.50 65.74 72.38 69.08 3.07
16T 109.29 106.02 109.65 97.83 110.13 44.00 44.62 44.30 44.77 43.27

(2, 6, 12, 116)

109.48 109.23 110.99 107.53 107.79 3.78 43.38 43.99 43.75 43.54 43.96 0.50

168

F.5 Caching solver with CSGs and IndexGraphs and varying cache

Table F.7.: Comparison of caching running with two different graph type and varying amount of caching, grouped by the tube configuration of order 1. The
runtime of samples is given in milliseconds. They are grouped by the number of threads employed and the caching rate. µ and σ give median and
standard deviation for all samples with same graph, tube configuration and number of threads.

Caching Solver with CSGs Caching Solver with IGs

% Sample µ σ % Sample µ σ % Sample µ σ % Sample µ σ

1 2 3 1 2 3 1 2 3 1 2 3

100 92.20 87.53 87.37 89.03 2.24 99 144.26 141.78 134.62 140.22 4.09 100 41.50 40.71 40.99 41.07 0.33 99 86.61 86.10 83.87 85.53 1.19

98 183.56 184.39 183.44 183.80 0.42 97 232.72 232.05 240.55 235.11 3.86 98 128.61 127.61 127.31 127.84 0.55 97 170.69 171.92 171.51 171.37 0.51

96 288.53 283.31 290.97 287.60 3.20 95 336.17 341.02 337.62 338.27 2.03 96 215.76 214.46 214.22 214.81 0.68 95 257.09 257.13 257.27 257.16 0.08

90 579.79 583.23 582.02 581.68 1.43 85 827.18 831.08 827.70 828.66 1.73 90 470.64 472.28 472.36 471.76 0.79 85 687.25 686.52 686.59 686.79 0.33

80 1072.11 902.35 1062.72 1012.39 77.91 75 1305.54 1314.31 1304.76 1308.20 4.33 80 902.35 1850.42 902.38 1218.38 446.92 75 1116.11 1116.74 1115.87 1116.24 0.37

70 1558.64 1556.62 1548.39 1554.55 4.43 65 1793.16 1791.08 1796.67 1793.64 2.31 70 1331.36 1331.98 1331.35 1331.56 0.29 65 1544.88 1544.96 1544.61 1544.82 0.15

60 2038.26 2041.03 2041.54 2040.28 1.44 55 2238.71 2242.56 2240.64 1.92 60 1759.27 1760.27 1761.17 1760.24 0.78 55 1970.25 1972.25 1973.49 1972.00 1.33

50 2487.75 2486.43 2487.09 0.66 45 2721.43 2726.43 2723.93 2.50 50 2188.83 2189.73 2189.97 2189.51 0.49 45 2408.36 2408.31 2408.90 2408.52 0.27

40 2961.08 2965.57 2963.33 2.25 35 3197.69 3201.67 3199.68 1.99 40 2618.85 2621.38 2622.92 2621.05 1.68 35 2837.06 2837.97 2838.69 2837.91 0.67

30 3434.62 3428.64 3431.63 2.99 25 3675.92 3678.14 3677.03 1.11 30 3051.05 3051.05 3051.82 3051.31 0.36 25 3269.59 3269.95 3269.86 3269.80 0.15

20 3909.31 3911.76 3910.54 1.23 15 4141.03 4152.54 4146.79 5.76 20 3485.73 3487.26 3487.88 3486.96 0.90 15 3700.49 3700.78 3701.37 3700.88 0.37

10 4386.00 4383.01 4384.51 1.50 5 4605.61 4612.59 4609.10 3.49 10 3919.28 3919.67 3919.51 3919.49 0.16 5 4133.73 4133.14 4132.11 4132.99 0.67

(1,4,8,

355)

0 4844.94 4844.34 4844.64 0.30 0 4349.40 4350.71 4351.39 4350.50 0.83

100 97.83 107.53 106.02 103.78 0.42 99 134.56 135.04 134.51 134.70 0.24 100 39.29 39.94 38.76 39.33 0.48 99 82.57 83.32 83.56 83.15 0.42

98 179.67 184.67 183.44 182.59 2.13 97 232.03 230.88 233.86 232.26 1.23 98 123.20 122.49 125.66 123.78 1.36 97 171.18 170.90 173.32 171.80 1.08

96 271.83 262.31 271.27 268.47 4.36 95 322.86 323.69 323.21 323.26 0.34 96 207.25 207.66 207.74 207.55 0.21 95 257.15 254.42 254.07 255.21 1.38

90 557.85 561.07 559.65 559.52 1.32 85 795.15 797.20 795.18 795.84 0.96 90 469.95 470.87 471.13 470.65 0.51 85 685.78 685.82 686.20 685.93 0.19

80 1040.01 1037.71 1038.06 1038.59 1.01 75 1277.84 1275.20 1275.94 1276.33 1.11 80 910.25 909.80 909.98 910.01 0.18 75 1125.52 1127.43 1124.27 1125.74 1.30

70 1506.31 1513.23 1510.97 1510.17 2.88 65 1748.79 1748.07 1746.62 1747.83 0.90 70 1340.93 1340.48 1343.09 1341.50 1.14 65 1556.37 1559.32 1556.81 1557.50 1.30

60 1983.51 1983.87 1982.39 1983.26 0.63 55 2221.36 2219.70 2222.71 2221.26 1.23 60 1776.22 1777.67 1773.38 1775.76 1.78 55 1991.46 1992.19 1989.63 1991.09 1.08

50 2456.33 2456.66 2454.76 2455.92 0.83 45 2734.64 2705.97 2703.36 2714.66 14.17 50 2209.76 2208.05 2209.88 2209.23 0.84 45 2432.41 2433.98 2431.94 2432.78 0.87

40 2940.56 2940.15 2938.78 2939.83 0.76 35 3197.09 3180.64 3173.48 3183.74 9.88 40 2653.52 2655.56 2656.39 2655.16 1.21 35 2870.19 2870.04 2871.07 2870.43 0.45

30 3418.66 3419.33 3419.09 3419.03 0.28 25 3663.24 3688.85 3659.32 3670.47 13.09 30 3089.81 3089.86 3087.82 3089.16 0.95 25 3305.37 3306.67 3308.66 3306.90 1.35

20 3905.26 3897.63 3897.13 3900.01 3.72 15 4137.02 4137.26 4153.95 4142.74 7.92 20 3538.90 3536.35 3536.33 3537.19 1.21 15 3758.41 3757.87 3758.85 3758.38 0.40

10 4371.04 4371.84 4371.25 4371.38 0.34 5 4611.76 4607.46 4608.63 4609.28 1.82 10 3976.31 3978.49 3973.12 3975.97 2.21 5 4191.46 4191.63 4191.68 4191.59 0.09

(2,6,12,

116)

0 4836.33 4834.06 4830.62 4833.67 2.35 0 4406.91 4408.80 4406.86 4407.52 0.90

169

Table F.8.: Comparison of caching running with two different graph type and varying amount of caching, grouped by the tube configuration of order 2. The
runtime of samples is given in milliseconds. They are grouped by the number of threads employed and the caching rate. µ and σ give median and
standard deviation for all samples with same graph, tube configuration and number of threads.

Caching Solver with CSGs Caching Solver with IGs

% Sample µ σ % Sample µ σ % Sample µ σ % Sample µ σ

1 2 3 1 2 3 1 2 3 1 2 3

100 1.20 1.07 1.20 1.15 0.0606 99 1.64 1.62 1.52 1.59 0.0506 100 0.62 0.58 0.58 0.59 0.0199 99 1.00 1.00 1.00 1.00 0.0009

98 2.09 2.01 1.97 2.02 0.0486 97 2.42 2.47 2.54 2.48 0.0499 98 1.42 1.42 1.43 1.42 0.0022 97 1.85 1.85 1.87 1.86 0.0115

96 2.87 2.90 2.89 2.89 0.0143 95 3.48 3.35 3.33 3.39 0.0653 96 2.27 2.27 2.27 2.27 0.0013 95 2.70 2.70 2.71 2.70 0.0066

90 5.67 5.77 5.70 5.71 0.0419 85 8.00 8.09 8.01 8.03 0.0425 90 4.83 4.83 4.83 4.83 0.0020 85 6.95 6.95 6.98 6.96 0.0117

80 10.36 10.34 10.35 10.35 0.0071 75 12.68 12.67 12.72 12.69 0.0240 80 9.09 9.09 9.09 9.09 0.0030 75 11.22 11.21 11.21 11.21 0.0016

70 15.09 15.02 15.01 15.04 0.0350 65 17.54 17.51 17.45 17.50 0.0379 70 13.36 13.35 13.35 13.35 0.0045 65 15.49 15.50 15.50 15.49 0.0045

60 19.85 19.89 19.83 19.86 0.0253 55 22.15 22.06 22.04 22.08 0.0475 60 17.62 17.64 17.63 17.63 0.0064 55 19.77 19.76 19.77 19.77 0.0021

50 24.44 24.43 24.46 24.44 0.0105 45 26.74 26.76 26.73 26.74 0.0149 50 21.93 21.91 21.91 21.92 0.0079 45 24.05 24.05 24.06 24.05 0.0030

40 29.09 29.07 29.08 29.08 0.0099 35 31.46 31.45 31.45 31.45 0.0045 40 26.19 26.18 26.18 26.18 0.0026 35 28.35 28.33 28.34 28.34 0.0072

30 33.97 33.97 34.00 33.98 0.0148 25 36.18 36.15 36.13 36.15 0.0207 30 30.46 30.48 30.46 30.47 0.0080 25 32.63 32.62 32.61 32.62 0.0073

20 38.68 38.73 38.73 38.71 0.0244 15 40.78 40.78 40.77 40.77 0.0055 20 34.76 34.76 34.78 34.77 0.0119 15 36.93 36.94 36.93 36.93 0.0042

10 43.04 43.06 43.06 43.05 0.0112 5 45.41 45.37 45.35 45.38 0.0241 10 39.07 39.06 39.07 39.07 0.0024 5 41.22 41.21 41.19 41.21 0.0120

(1,4,

8,20)

0 47.65 47.63 47.61 47.63 0.0133 0 43.40 43.39 43.38 43.39 0.0113

100 2.49 2.50 2.42 2.47 0.0349 99 3.34 3.13 3.04 3.17 0.1262 100 99

98 4.25 3.95 4.16 4.12 0.1284 97 4.96 5.14 4.99 5.03 0.0775 98 97

96 6.09 5.83 5.94 5.95 0.1065 95 6.73 6.99 6.89 6.87 0.1093 96 95

90 11.48 11.45 11.46 11.46 0.0139 85 16.39 16.26 16.33 0.0683 90 85

80 21.08 21.06 21.07 0.0081 75 25.77 25.60 25.69 0.0827 80 75

70 30.50 30.46 30.58 30.51 0.0518 65 35.48 35.33 35.65 35.49 0.1281 70 26.79 26.77 26.76 26.77 0.0094 65 31.07 31.08 31.06 31.07 0.0094

60 40.37 40.48 40.43 0.0593 55 44.92 44.82 44.87 0.0509 60 35.37 35.14 35.47 35.33 0.1413 55 39.66 39.64 39.63 39.64 0.0138

50 49.66 49.61 49.64 0.0207 45 54.32 54.27 54.29 0.0227 50 43.99 43.95 43.96 43.97 0.0150 45 48.32 48.31 48.30 48.31 0.0091

40 59.09 59.09 59.13 59.10 0.0186 35 63.84 63.80 63.82 0.0198 40 52.57 52.50 52.56 52.54 0.0288 35 57.07 57.10 0.00 38.06 26.9100

30 68.82 68.82 68.82 0.0002 25 73.37 73.24 73.31 0.0650 30 61.47 61.39 0.00 40.95 28.9594 25 65.71 65.65 0.00 43.78 30.9598

20 78.53 78.36 78.44 0.0891 15 83.09 82.73 82.91 0.1772 20 69.98 70.07 0.00 46.68 33.0110 15 74.46 74.46 0.00 49.64 35.1018

10 87.21 87.52 87.37 0.1516 5 92.06 91.66 91.86 0.1982 10 78.71 78.80 0.00 52.50 37.1252 5 83.01 83.01 0.00 55.34 39.1325

(1,4,16,

20)

0 96.68 96.58 96.63 0.0516 0 87.29 87.29 0.00 58.19 41.1480

170

020406080100
0

1

2

3

4

Q
uo

ti
en

t
of

ru
nt

im
es

C
SG

/
IG

Slowdown

020406080100
0

10

20

30

40

50

60

70

% of cached contribution lines

Ti
m

e
pe

r
it

er
at

io
n

in
s

CSG vs IndexGraph varying cache
(1,4, 12,20)2 @16 threads

IG
CSG

(a) Time per iteration when the percentage of
cached contribution lines is decreased from
full to no caching for the (1 − 4 − 12 − 20)2

tube.

020406080100
0

2

4

6

8

10

12

14

Q
uo

ti
en

t
of

ru
nt

im
es

IG
/

C
SG

Speedup with CSGs

020406080100
0

10

20

30

40

50

60

70

% of cached contribution lines
Ti

m
e

pe
r

it
er

at
io

n
in

s

CSG vs IndexGraph varying
cache (1,4, 15,20)2 @16 threads

IG
CSG

(b) Time per iteration when the percentage of
cached contribution lines is decreased from
full to no caching for the (1 − 4 − 15 − 20)2

tube.

Figure F.1.: Performance comparison of caching solver with IndexGraphs and CSGs on two order 2 tubes.

171

List of Figures

1.1. Heuristical construction of SCNTs . 2

3.1. Four examples of categorical product and graph composition. 17

3.2. Mirroring graph G with the concept of transfer graphs. 20

3.3. Junctions as basic elements of abstraction. 21

3.4. The first stages steps S1 - S3 for constructing a sheet of order 0. 23

3.5. Stage S4 during construction of an order 0 sheet. 25

3.6. A base element of order zero. 26

3.7. A half and a complete junction arm of level 0. 28

3.8. Details about level 0 junctions. 29

3.9. Distance between two junctions. 30

3.10.Gconnect within the first step of construction S t
1. 31

3.11.First three steps for the construction of an order 1 sheet. 32

3.12.Sheet of order 1. 33

3.13.The four basic geometric transformations to roll up a sheet around the x-axis. . . . 34

3.14.Wrapping a line around a point on a circular path. 35

3.15.Rings in an order 1 tube. 38

3.16.Orientation of hexagons. 38

3.17.Translational symmetry for order 0 and 1 tubes. 39

3.18.Rotational symmetry for order 0 and 1 tubes. 40

3.19.Different levels of hierarchy in an order 2 tube. 43

4.1. Comparison of two different renderer quality levels. 47

5.1. Correct applications of bearings to immobilize a plane against rigid body move-

ments. 53

5.2. Appropriately mounted SCNT with six bearings to prevent rigid body movements. 54

5.3. Details of the Dreiding potential. 56

5.4. Multiple local indices . 58

5.5. Sparsitiy pattern of the stiffness matrix for tubes of orders 0 - 3. 59

6.1. Implicit tree to index nodes. 63

6.2. Principle of IndexGraphs. 66

6.3. Fetching data in PSH. 70

6.4. Reduction factor for the different indexing schemes. 77

172

7.1. Details for general Mirrored Z-like Structures. 85

7.2. Resolving combined symmetry with jumps in translational and rotational direc-

tion. Connection of top and bottom of the former graphene in blue. 86

7.3. Elements a CSG needs to store explicitly . 88

7.4. Adjacent MZSs in tubes of order 0 and 1. 89

7.5. Zero line within a (16,16) tube shown in blue with the bottom of the graphene

in magenta. 90

7.6. Schematic of the procedure to unfold tuples. 97

8.1. Convergence behavior of the three implemented solvers. 107

8.2. Memory consumption during simulation . 113

8.3. Memory layout for stiffness contributions within the caching solver. 115

8.4. Read and write access in the required data structures during SpMV in caching

solver. 117

8.5. Spans of different threads in the result vector . 118

9.1. Torsion on a tube. 125

9.2. Effect of tension on SCNT junctions. 126

9.3. Performance comparison of the on-the-fly solver and the reference solver. 128

9.4. Parallel efficiency for two solvers. 130

9.5. Performance comparison of the value-symmetric solver and the reference solver. . 132

9.6. Performance comparison of the caching solver and the reference solver. 133

9.7. Scaling IndexGraphs versus CSGs and full caching . 136

9.8. Performance comparison of the caching solver with different graph data structure

and varying caching rate. 138

9.9. Performance IndexGraphs versus CSGs . 140

10.1.Distributing CSGs with MPI. 145

B.1. The three different chiralities of SWCNTs. 150

E.1. Edited screenshot from the heap analysis with the tool massif for the construction

of the (1, 4,8, 8)2 tube and the old edge map. 160

E.2. Edited screenshot from the heap analysis with the tool massif for the construction

of the (1, 4,8, 8)2 tube and the new edge map. 162

F.1. Performance IndexGraphs versus CSGs Order 2 Part II 171

173

Bibliography

[1] Sumio Iijima. Helical microtubules of graphitic carbon. Nature, 354(6348):56, 1991.

[2] L.V. Radushkevich and V.M. Lukyanovich. About the structure of carbon formed by ther-

mal decomposition of carbon monoxide on iron substrate. Journal of Physical Chemistry

(Moscow), 26:88–95, 1952. In Russian.

[3] M. Endo. Grow carbon fibers in the vapor phase. Chemtech, pages 568–576, 1988.

[4] A. Oberlin, M. Endo, and T. Koyama. Filamentous growth of carbon through benzene

decomposition. Journal of Crystal Growth, 32(3):335–349, 1976.

[5] S. Iijima and T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature,

363(6430):603–605, Jun 1993.

[6] R. S. Ruoff and D. C. Lorents. Mechanical and thermal properties of carbon nanotubes.

Carbon, 33(7):925–930, 1995.

[7] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer. Carbon nanotubes–the route toward

applications. Science, 297(5582):787–792, 2002.

[8] D. Qian, G. J. Wagner, W. K. Liu, M.-F. Yu, and R. S. Ruoff. Mechanics of carbon nanotubes.

Applied Mechanics Reviews, 55(6):495–533, Oct 2002.

[9] A. E. Aliev and R. H. Baughman. Carbon nanotubes: An explosive thrust for nanotubes.

Nature Materials, 9(5):385–386, 2010.

[10] H. Park, A. Afzali, S.-J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon, and

W. Haensch. High-density integration of carbon nanotubes via chemical self-assembly.

Nature Nanotechnology, 7(12):787–791, Dec 2012.

[11] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen. Pure carbon nanoscale

devices: Nanotube heterojunctions. Physical Review Letters, 76:971–974, Feb 1996.

[12] P. Nagy, R. Ehlich, L.P. Biró, and J. Gyulai. Y-branching of single walled carbon nanotubes.

Applied Physics A, 70(4):481–483, 2000.

[13] W. Z. Li, J. G. Wen, and Z. F. Ren. Straight carbon nanotube Y junctions. Applied Physics

Letters, 79(12):1879–1881, 2001.

[14] Y. C. Choi and W. Choi. Synthesis of Y-junction single-wall carbon nanotubes. Carbon,

43(13):2737–2741, 2005.

174

[15] L. P. Biró, R. Ehlich, Z. Osváth, A. Koós, Z. E. Horváth, J. Gyulai, and J. B. Nagy. From

straight carbon nanotubes to Y-branched and coiled carbon nanotubes. Diamond and

Related Materials, 11(3-6):1081–1085, 2002.

[16] G. E. Scuseria. Negative curvature and hyperfullerenes. Chemical Physics Letters, 195(5-

6):534–536, 1992.

[17] V. R. Coluci, D. S. Galvão, and A. Jorio. Geometric and electronic structure of carbon

nanotube networks: ’super’-carbon nanotubes. Nanotechnology, 17(3):617, 2006.

[18] Y. Li, X. Qiu, F. Yang, X.-S. Wang, Y. Yin, Q. Fan, and X. Qiu. A comprehensive study on the

mechanical properties of super carbon nanotubes. Journal of Physics D: Applied Physics,

41(15):155423, 2008.

[19] X. Liu, Q.-S. Yang, X.-Q. He, and Y.-W. Mai. Molecular mechanics modeling of deformation

and failure of super carbon nanotube networks. Nanotechnology, 22(47):475701, 2011.

[20] V. R. Coluci, N. M. Pugno, S. O. Dantas, D. S. Galvão, and A. Jorio. Atomistic sim-

ulations of the mechanical properties of ’super’ carbon nanotubes. Nanotechnology,

18(33):335702, 2007.

[21] M. Burger, C. Bischof, C. Schröppel, and J. Wackerfuß. Exploiting structural properties

during carbon nanotube simulation. In O. Gervasi, B. Murgante, S. Misra, M. L. Gavrilova,

A. M. Rocha, C. Torre, D. Taniar, and B. O. Apduhan, editors, Computational Science and

Its Applications – ICCSA 2015, volume 9156 of Lecture Notes in Computer Science, pages

339–354. Springer International Publishing, 2015.

[22] M. Burger and C. Bischof. Using instancing to efficiently render carbon nanotubes. In

M. Mehl, editor, Proc. 3rd International Workshop on Computational Engineering, vol-

ume 3, pages 206–210, Stuttgart, Germany, Oct 2014.

[23] M. Burger, C. Bischof, C. Schröppel, and J. Wackerfuß. A unified and memory efficient

framework for simulating mechanical behavior of carbon nanotubes. Procedia Computer

Science, 51:413–422, 2015.

[24] M. Burger, C. Bischof, C. Schröppel, and J. Wackerfuß. Methods to model and simulate

super carbon nanotubes of higher order. Concurrency and Computation: Practice and

Experience, page cpe3872, 2016.

[25] M. Burger, G. N. Nguyen, and C. Bischof. Extending perfect spatial hashing to index tuple-

based graphs representing super carbon nanotubes. Procedia Computer Science, 2017. In

print.

175

[26] M. Burger, C. Bischof, and J.Wackerfuß. Compressed symmetric graphs for the simula-

tion of super carbon nanotubes. In 2016 International Conference on High Performance

Computing Simulation (HPCS), pages 286–293, Jul 2016.

[27] M. Burger, C. Bischof, C. Schröppel, and J. Wackerfuß. An improved algorithm for sim-

ulating the mechanical behavior of super carbon nanotubes. In IEEE 18th International

Conference on Computational Science and Engineering (CSE), pages 286–293, Oct 2015.

[28] M. Wang, X. Qiu, and X. Zhang. Mechanical properties of super honeycomb structures

based on carbon nanotubes. Nanotechnology, 18(7):075711, 2007.

[29] Z. Qin, X.-Q. Feng, J. Zou, Y. Yin, and S.-W. Yu. Superior flexibility of super carbon nan-

otubes: Molecular dynamics simulations. Applied Physics Letters, 91(4):043108, 2007.

[30] Y. Li, X. Qiu, F. Yang, X.-S. Wang, and Y. Yin. The effective modulus of super carbon

nanotubes predicted by molecular structure mechanics. Nanotechnology, 19(22):225701,

2008.

[31] Y.-L. Chen, B. Liu, Y. Yin, Y.-G. Huang, and K.-C. Hwuang. Nonlinear deformation pro-

cesses and damage modes of super carbon nanotubes with armchair-armchair topology.

Chinese Physics Letters, 25(7):2577, 2008.

[32] N. G. Chopra, R.J. Luyken, K. Cherrey, V. H. Crespi, et al. Boron nitride nanotubes.

Science, 269(5226):966, 1995.

[33] D. Zhou and S. Seraphin. Complex branching phenomena in the growth of carbon nan-

otubes. Chemical Physics Letters, 238(4-6):286–289, 1995.

[34] J. Wackerfuß. Molecular mechanics in the context of the finite element method. Interna-

tional Journal for Numerical Methods in Engineering, 77(7):969–997, 2009.

[35] B. Liu, H. Jiang, Y. Huang, S. Qu, M.-F. Yu, and K. C. Hwang. Atomic-scale finite element

method in multiscale computation with applications to carbon nanotubes. Physical Review

B, 72:035435, Jul 2005.

[36] B. J. Alder and T. E. Wainwright. Studies in Molecular Dynamics. I. General Method. The

Journal of Chemical Physics, 31(2):459–466, 1959.

[37] D. W. Brenner. Empirical potential for hydrocarbons for use in simulating the chemical

vapor deposition of diamond films. Physical Review B, 42:9458–9471, Nov 1990.

[38] S. L. Mayo, B. D. Olafson, and W. A. Goddard. DREIDING: A generic force field for

molecular simulations. Journal of Physical Chemistry, 94:8897–8909, 1990.

176

[39] M. Malakouti and A. Montazeri. Nanomechanics analysis of perfect and defected

graphene sheets via a novel atomic-scale finite element method. Superlattices and Mi-

crostructures, 94:1–12, 2016.

[40] N. M. Pugno. Mimicking nacre with super-nanotubes for producing optimized super-

composites. Nanotechnology, 17(21):5480–5484, 2006.

[41] Y. Yin, T. Zhang, F. Yang, and X. Qiu. Geometric conditions for fractal super carbon

nanotubes with strict self-similarities. Chaos, Solitons & Fractals, 37(5):1257–1266, 2008.

[42] Y. J. Yin, Q. S. Fan, F. Yang, and Y. Li. Super carbon nanotubes, fractal super tubes and

fractal super fibres. Materials Science and Technology, 26(11):1327–1331, 2010.

[43] R. D. Kangwai, S. D. Guest, and S. Pellegrino. An introduction to the analysis of symmetric

structures. Computers & Structures, 71(6):671–688, 1999.

[44] K. Koohestani. Exploitation of symmetry in graphs with applications to finite and

boundary elements analysis. International Journal for Numerical Methods in Engineer-

ing, 90(2):152–176, 2012.

[45] C. Schröppel and J. Wackerfuß. Meshing highly regular structures: The case of super

carbon nanotubes of arbitrary order. Journal of Nanomaterials, (Article ID 736943), 2015.

[46] Jonas Marczona. Erweiterung des Forschungscodes MISMO hinsichtlich einer neuar-

tigen Benutzerschnittstelle zur Implementierung beliebiger numerischer Methoden im

Kontext allgemeiner Diskretisierungsverfahren. Master’s thesis, Technische Universität

Darmstadt, 2015.

[47] J. Marczona. Konzept für eine flexible und parallelisierte Programmplattform zum Lösen

von Randwert- und Anfangswertproblemen. Bachelor’s thesis, Technische Universität

Darmstadt, Germany, 2013.

[48] J. Marczona. Optimierung des FEM Berechnungsprogrammes von MISMO in Hinblick

auf eine Portierung auf den XeonPhi Coprozessor. Studienarbeit, Technische Universität

Darmstadt, Germany, 2013.

[49] J. A. Bondy. Graph Theory With Applications. Elsevier Science Ltd, 1976.

[50] R. Diestel. Graphentheorie. Springer-Lehrbuch. Springer, 1996.

[51] Y. Yin, Y. Chen, J. Yin, and K. Huang. Geometric conservation laws for perfect Y-branched

carbon nanotubes. Nanotechnology, 17(19):4941, 2006.

[52] C. Schröppel and J. Wackerfuß. Algebraic graph theory and its applications for mesh

generation. PAMM, 12(1):663–664, 2012.

177

[53] L. Pauling. The nature of the chemical bond and the structure of molecules and crystals: An

introduction to modern structural chemistry, volume 18. Cornell University Press, 1960.

[54] T. L. Brown, H. R. Lemay, B. E. Burstein, C. J. Murphy, P. M Woodward, and Stoltzfus M.

W. Chemistry: The Central Science. Pearson Prentice Hall, 1997.

[55] E. Clementi, D. L. Raimondi, and W. P. Reinhardt. Atomic Screening Constants from

SCF Functions. II. Atoms with 37 to 86 Electrons. The Journal of Chemical Physics,

47(4):1300–1307, 1967.

[56] J. C. Slater. Atomic radii in crystals. The Journal of Chemical Physics, 41(10):3199–3204,

1964.

[57] D. Shreiner, G. Sellers, John M. Kessenich, and B. M. Licea-Kane. OpenGL Programming

Guide: The Official Guide to Learning OpenGL, Version 4.3. Addison-Wesley Professional,

8th edition, 2013.

[58] R. J. Rost, B. Licea-Kane, D. Ginsburg, J. Kessenich, B. Lichtenbelt, H. Malan, and

M. Weiblen. OpenGL Shading Language. Pearson Education, 2009.

[59] B.-T. Phong. Illumination for Computer Generated Pictures. Communications of the ACM,

18(6):311–317, 1975.

[60] D. Gross, W. Hauger, J. Schröder, and W. A. Wall. Technische Mechanik: Band 1: Statik.

Springer-Verlag, Berlin Heidelberg, 2009.

[61] W.-K. Ng and C. V. Ravishankar. Block-oriented compression techniques for large statisti-

cal databases. IEEE Transactions on Knowledge and Data Engineering, 9(2):314–328, Mar

1997.

[62] S. Lefebvre and H. Hoppe. Perfect spatial hashing. In J. Finnegan and J. Dorsey, editors,

ACM SIGGRAPH 2006 Papers, pages 579–588, 2006.

[63] G. N. Nguyen. Efficient indexing method for tuple-based graphs. Bachelor’s thesis, Tech-

nische Universität Darmstadt, Germany, Mar 2016.

[64] I. García, S. Lefebvre, S. Hornus, and A. Lasram. Coherent parallel hashing. In Proceedings

of the 2011 SIGGRAPH Asia Conference, SA ’11, pages 161:1–161:8, New York, NY, USA,

2011.

[65] C. T. Pozzer, C. A. de Lara Pahins, and I. Heldal. A hash table construction algorithm

for spatial hashing based on linear memory. In Proceedings of the 11th Conference on

Advances in Computer Entertainment Technology, ACE ’14, pages 35:1–35:4, New York,

NY, USA, 2014.

178

[66] M. Buckland. Programming Game AI by Example. Wordware Pub Co, first edition, Oct

2004.

[67] E. J. Hastings, J. Mesit, and R. K. Guha. Optimization of large-scale, real-time simulations

by spatial hashing. In Proc. 2005 Summer Computer Simulation Conference, volume 37,

pages 9–17, 2005.

[68] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens,

and N. Amenta. Real-time parallel hashing on the GPU. In ACM SIGGRAPH Asia 2009

Papers, SIGGRAPH Asia ’09, pages 154:1–154:9, New York, NY, USA, 2009.

[69] B. Schling. The Boost C++ Libraries. XML Press, 2011.

[70] T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algo-

rithms. Journal of Computer and System Sciences, 51(2):261–272, 1995.

[71] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, Jun

1962.

[72] S. Chen and J.H. Reif. Efficient lossless compression of trees and graphs. In Data Com-

pression Conference, 1996. DCC ’96. Proceedings, pages 428–437, Mar 1996.

[73] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans-

actions on Information Theory, 23(3):337–343, May 1977.

[74] P. Weiner. Linear pattern matching algorithms. In Proceedings of the 14th Annual Sympo-

sium on Switching and Automata Theory (Swat 1973), SWAT ’73, pages 1–11, Washington,

DC, USA, 1973.

[75] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the

ACM, 23(2):262–272, Apr 1976.

[76] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded error.

In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’08, pages 419–432, New York, NY, USA, 2008.

[77] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[78] A. C. Gilbert and K. Levchenko. Compressing network graphs. In Proceedings of the

LinkKDD workshop at the 10th ACM Conference on KDD, volume 124, 2004.

[79] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan.

On compressing social networks. In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’09, pages 219–228, New York,

NY, USA, 2009.

179

[80] P. Boldi and S. Vigna. The Webgraph Framework I: Compression Techniques. In Proceed-

ings of the 13th International Conference on World Wide Web, WWW ’04, pages 595–602,

New York, NY, USA, 2004.

[81] I. Dhillon, Y. Guan, and B. Kulis. A fast kernel-based multilevel algorithm for graph clus-

tering. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge

Discovery in Data Mining, KDD ’05, pages 629–634, New York, NY, USA, 2005.

[82] J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution

of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2000.

[83] O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with

PARDISO. Future Generation Computer Systems, 20(3):475–487, 2004.

[84] O. Schenk, M. Bollhöfer, and R. A. Römer. On large-scale diagonalization techniques for

the Anderson Model of localization. SIAM Journal on Scientific Computing, 28(3):963–

983, 2006.

[85] A. Kuzmin, M. Luisier, and O. Schenk. Fast Methods for Computing Selected Elements of the

Green’s Function in Massively Parallel Nanoelectronic Device Simulations, pages 533–544.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[86] X. S. Li and J. W. Demmel. SuperLU_DIST: A Scalable Distributed-memory Sparse Direct

Solver for Unsymmetric Linear Systems. ACM Transactions on Mathematical Software,

29(2):110–140, Jun 2003.

[87] O. Schenk, K. Gärtner, and W. Fichtner. Efficient Sparse LU Factorization with Left-

Right Looking Strategy on Shared Memory Multiprocessors. BIT Numerical Mathematics,

40(1):158–176, 2000.

[88] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Sys-

tems. Journal of Research of the National Bureau of Standards, 49(6):409–436, Dec 1952.

[89] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems

of which the coefficient matrix is a symmetric M -matrix. Mathematics of Computation,

31(137):148, 1977.

[90] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing

pain. Technical report, Pittsburgh, PA, USA, 1994.

[91] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins University

Press, Baltimore, MD, USA, 1996.

180

[92] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[93] M. Benzi. Preconditioning techniques for large linear systems: A survey. Journal of

Computational Physics, 182(2):418–477, 2002.

[94] O. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned conjugate

gradient method. Numerische Mathematik, 48(5):499–523, 1986.

[95] G. Meurant. The block preconditioned conjugate gradient method on vector computers.

BIT Numerical Mathematics, 24(4):623–633, 1984.

[96] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G.W. Stewart. LINPACK Users’ Guide. 1979.

[97] C. Lomont. Introduction to Intel Advanced Vector Extensions. Intel White Paper, 2011.

[98] D. S. Kershaw. The incomplete Cholesky-conjugate gradient method for the iterative

solution of systems of linear equations. Journal of Computational Physics, 26(1):43–65,

1978.

[99] C.-J. Lin and J. J. Moré. Incomplete Cholesky Factorizations with Limited Memory. SIAM

Journal on Scientific Computing, 21(1):24–45, 1999.

[100] M. T. Jones and P. E. Plassmann. An Improved Incomplete Cholesky Factorization. ACM

Transactions on Mathematical Software, 21(1):5–17, Mar 1995.

[101] M. Benzi, C. D. Meyer, and M. Tůma. A sparse approximate inverse preconditioner for

the conjugate gradient method. SIAM Journal on Scientific Computing, 17(5):1135–1149,

1996.

[102] R. H. Chan and M. K. Ng. Conjugate Gradient Methods for Toeplitz Systems. SIAM Review,

38(3):427–482, 1996.

[103] J. A. Fessler and S. D. Booth. Conjugate-gradient preconditioning methods for shift-

variant pet image reconstruction. IEEE Transactions on Image Processing, 8(5):688–699,

May 1999.

[104] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient al-

gorithm for groundwater flow simulations. Nuclear Science and Engineering, 124(1):145–

159, 1996.

[105] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills. Vectorized Sparse Matrix Multiply for Com-

pressed Row Storage Format, pages 99–106. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2005.

181

[106] J. L. Greathouse and M. Daga. Efficient Sparse Matrix-Vector Multiplication on GPUs

Using the CSR Storage Format. In SC14: International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 769–780, Nov 2014.

[107] J. Sun, G. Peterson, and O. Storaasli. Sparse Matrix-Vector Multiplication Design on FP-

GAs. In 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM 2007), pages 349–352, Apr 2007.

[108] T. Wirth. Optimized Multiplication of Vectors and Sparse Matrices of certain structure on

Multicore-CPUs and GPUs. Bachelor’s thesis, Technische Universität Darmstadt, Germany,

Jun 2017.

[109] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop. A Unified Sparse Matrix

Data Format for Efficient General Sparse Matrix-Vector Multiplication on Modern Proces-

sors with Wide SIMD Units. SIAM Journal on Scientific Computing, 36(5):C401–C423,

2014.

[110] M. V. Wilkes. The memory gap and the future of high performance memories. ACM

SIGARCH Computer Architecture News, 29(1):2–7, Mar 2001.

[111] N. Firasta, P. Buxton, M.and Jinbo, K. Nasri, and S. Kuo. Intel AVX: New frontiers in

performance improvements and energy efficiency. Intel white paper, 2008.

[112] A. Tanikawa, K. Yoshikawa, T. Okamoto, and K. Nitadori. N-body simulation for self-

gravitating collisional systems with a new SIMD instruction set extension to the x86

architecture, Advanced Vector eXtensions. New Astronomy, 17(2):82–92, 2012.

[113] S. Fialko. Application of AVX (Advanced Vector Extensions) for improved performance

of the PARFES - finite element Parallel Direct Solver. In 2013 Federated Conference on

Computer Science and Information Systems, pages 447–454, Sept 2013.

[114] J.-I. Agulleiro and J.J. Fernandez. Tomo3D 2.0 - Exploitation of Advanced Vector eX-

tensions (AVX) for 3D reconstruction. Journal of Structural Biology, 189(2):147–152,

2015.

[115] J. M. Bull. Measuring Synchronisation and Scheduling Overheads in OpenMP. In Pro-

ceedings of First European Workshop on OpenMP, pages 99–105, 1999.

[116] J. M. Bull and D. O’Neill. A microbenchmark suite for OpenMP 2.0. SIGARCH Comput.

Archit. News, 29(5):41–48, Dec 2001.

[117] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus efficiency in parallel sys-

tems. IEEE Transactions on Computers, 38(3):408–423, Mar 1989.

182

[118] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual Performance

Model for Multicore Architectures. Communications of the ACM, 52(4):65–76, Apr 2009.

[119] Ü. V. Çatalyürek, K. Kaya, and B. Uçar. On shared-memory parallelization of a sparse

matrix scaling algorithm. In 2012 41st International Conference on Parallel Processing,

pages 68–77. IEEE, 2012.

[120] S. Williams, L. Oliker, R.Vuduc, J. Shalf, K.Yelick, and J. Demmel. Optimization of

sparse matrix-vector multiplication on emerging multicore platforms. Parallel Comput-

ing, 35(3):178–194, 2009.

[121] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Electronic structure of chiral

graphene tubules. Applied Physics Letters, 60(18):2204–2206, 1992.

[122] M.S. Dresselhaus, G. Dresselhaus, and R. Saito. Physics of carbon nanotubes. Carbon,

33(7):883–891, 1995.

[123] M. Meo and M. Rossi. Prediction of young’s modulus of single wall carbon nanotubes by

molecular-mechanics based finite element modeling. Composites Science and Technology,

66(11-12):1597–1605, 2006.

[124] D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner. Construction of tight-

binding-like potentials on the basis of density-functional theory: Application to carbon.

Physical Review B, 51:12947–12957, May 1995.

[125] S. J. Stuart, A. B. Tutein, and J. A. Harrison. A reactive potential for hydrocarbons with

intermolecular interactions. The Journal of Chemical Physics, 112(14):6472–6486, 2000.

[126] C. Li and T.-W. Chou. A structural mechanics approach for the analysis of carbon nan-

otubes. International Journal of Solids and Structures, 40(10):2487–2499, 2003.

[127] Y. Li, X. Qiu, F. Yang, X.-S. Wang, Y. Yin, and Q. Fan. Chirality independence in critical

buckling forces of super carbon nanotubes. Solid State Communications, 148(1-2):63–68,

2008.

[128] J. M. Romo-Herrera, M. Terrones, H. Terrones, S. Dag, and V. Meunier. Covalent 2D and

3D networks from 1D nanostructures: Designing new materials. Nano letters, 7(3):570–

576, 2007.

[129] I. László. Topological description and construction of single wall carbon nanotube junc-

tions. Croatica chemica acta, 78(2):217–221, 2005.

183

Academic Curriculum Vitae

Michael Burger studied computer science at

Technische Universität Darmstadt. He got a

bachelor’s degree in 2007 and graduated in

2011 with a master’s degree in computer sci-

ence.

During his studies, he focused on computer

graphics, programming of different platforms

(GPUs, FPGAs, microprocessors) and soft-

ware engineering. In 2012, he started work-

ing as a scientific assistant at the Scientific

Computing group at TU Darmstadt. Addi-

tionally, he was a full scholarship holder of

the Graduate School of Computational Engineering in Darmstadt from 2013-2016.

In 2017, he was awarded with a doctoral degree in natural sciences from Technische Univer-

sität Darmstadt.

His research interests include parallel programming and high performance computing tech-

niques with a focus on the efficient simulation of super carbon nanotubes by exploiting their

inherent structural properties.

184

	Vorwort
	Acknowledgments
	Zusammenfassung
	Abstract
	Introduction and Motivation
	Background
	Important properties of super carbon nanotubes
	Simulation methods for super carbon nanotubes and single-walled carbon nanotubes
	Molecular dynamics, molecular mechanics and the atomic-scale finite element method
	Model sizes of the employed super carbon nanotubes
	Exploiting symmetric structures

	Research of the MISMO group

	Graph Algebra Modeling of Super Carbon Nanotubes
	Important graph algebra operations and their geometrical meaning
	Basic operations
	Combined operations

	A general algorithm for constructing super carbon nanotubes of arbitrary order
	Construction of high level junctions
	Building tubes
	Correlation of the construction process and the tuples
	Terminology of super carbon nanotube models

	Identifying symmetry and hierarchy

	Visualizing Super Carbon Nanotubes and the Result of Simulations
	Principles of instanced rendering
	Features of the visualizer
	Rendering performance

	Atomic-Scale Finite Element Method
	The flow of the algorithm
	Governing equations and linearization
	Implementation in the context of the finite element method

	Graph Data Structures
	Different approaches to map tuples
	Tree-based flattening (TreeGraph class)
	IndexGraphs
	Perfect spatial hashing
	Comparison of different graph types

	Space-saving approach to store the edges

	Compressed Symmetric Graphs
	General graph compression schemes
	Principles behind Compressed Symmetric Graphs
	Realization of Compressed Symmetric Graphs
	Nodes on the boundaries of the tube
	Nodes near the zero line
	Two implementations of the retrieval procedure

	Implementation and optimizations
	Construction
	Avoiding the storage of tuples

	Achieving high compression rates

	Solving for Displacements with an Iterative Approach
	Preconditioning of the equation system
	Parallelized reference solver
	On-the-fly calculation of intermediate results
	Memory savings
	Performance optimizations

	Software-controlled caching of intermediate results
	Combination with Compressed Symmetric Graphs
	Parallel preparing the cached data
	Cached sparse matrix-vector multiplication

	The case of small deformations

	Results and Evaluation
	Test setup
	Test environment
	Different load cases

	Mechanical simulation results
	Performance measurements and comparison
	On-the-fly solver versus reference solver
	Value-symmetric solver versus reference solver
	Caching solver versus reference solver
	Caching solver with IndexGraph and Compressed Symmetric Graphs
	Higher order tubes

	Conclusion and Outlook
	Summary
	Future Work

	Appendices
	Summary of all Tubes
	Some Notes on Terminology of Super Carbon Nanotubes
	Background on the Simulation of Super Carbon Nanotubes
	The work of Coluci et al.
	The work of Li et al.
	General super carbon nanotube simulations
	Dependence on chirality
	Modeling of Y-junctions and scaling laws

	Performance Comparison of Different Container Structures
	Heap Consumption of the new EdgeMap
	Performance Results
	On-the-fly versus reference solver
	Symmetry solver versus reference solver
	Caching solver versus reference solver
	Caching solver with CSGs and IndexGraphs
	Caching solver with CSGs and IndexGraphs and varying cache

	List of Figures
	Bibliography
	Academic Curriculum Vitae

