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ABSTRACT

Graph transformation with its formal foundations and its broad range of theoret-
ical results, on the one hand, and competitive tool support, on the other hand,
constitutes an effective framework for model-driven software development. Within
the last decade, the theory of algebraic graph transformations has been developed
towards a comprehensive formal framework including several sophisticated results
on modeling, analysing, and verifying graph transformation systems. Prominent
theoretical results are the static verification of consistency constraints as well as
static conflict detection and conflict resolution techniques. Consistency constraints
provide means to declaratively define global assertions that must remain true.
Conflict detection and resolution techniques provide means to statically discover
potential unintended interactions of graph transformations.
Based on the framework for algebraic graph transformations several model trans-

formation tools were developed over the last years. However, in order to become
suitable for the practical needs in every-day software engineering, these tool ori-
entedgraph transformation approaches integrate language concepts that gobeyond
the simple manipulation of plain graphs. An important concept is the treatment of
data values such as integers, booleans, and strings. The integration of primitive data
attributes within the graph structure is indispensable to model almost all realistic
systems, since they combine the structural aspects of a system with data aspects
such as computations of values. While in the last years, many advanced language
concepts were adapted from the tool oriented approaches and integrated within
the theory of algebraic graph transformations, there is currently no theoretical ap-
proach that appropriately reflects the de-facto data attribute handling approach
of practical implementations. Thus, the main body of theoretical results does not
immediately apply to those implemented approaches. As a result, current tool sup-
port for analysis and verification techniques of attributed graph transformation
systems is rather limited.
This thesis attempts to close this gap. To this end, a framework for attributed

graph transformation systems is proposed. In contrast to existing approaches, the
proposed framework reflects more closely the attribute handling of current state
of the art graph transformation implementations. We show that our proposed ap-
proach preserves the fundamental theoretical results of the algebraic approach for
graph transformations. Additionally, we verify the well-known results for the static
verification of consistency constraints, conflict detection, and conflict resolution by
confluence analysis within our framework. Finally, a prototypical implementation
is provided to show that the theoretical concepts can be realized. Moreover, to as-
sess its potential for analyzing real world applications, the prototype is applied to
analyze a case study from the enterprise modeling domain.





ZUSAMMENFASSUNG

AufgrundderVielzahl an formal fundierten theoretischenResultaten bezüglich der
Analyse und Verifikation von Softwaresystemen sowie der ausgereiftenWerkzeug-
unterstützung, bieten Graphtransformationen ein effektives Werkzeug zur modell-
getriebenenEntwicklung von Software. Innerhalb der letzten Jahre hat sich der alge-
braische Ansatz zur Formalisierung von Graphtransformationssystemen zu einem
umfassenden Rahmenwerk zurModellierung, Analyse undVerifikation entwickelt.
Prominente Beispiele dafür sind die statische Verifikation von Konsistenzbedin-
gungen sowie Techniken zur Konfliktdetektion und zur automatischen Konflikt-
auflösung. Konsistenzbedingungen sind ein Mittel zur deklarativen Beschreibung
von Bedingungen, welche immer erfüllt sein müssen. Techniken für die Konflikt-
detektion und Konfliktauflösung ermöglichen es, statisch die Interaktionen von
einzelnenGraphtransformationsschritten zu analysierenumunbeabsichtigteWech-
selbeziehungen aufzuspüren.
Darüber hinaus hat sich auf dieser Grundlage eine vielseitige Landschaft aus-

gereifter Graphtransformationswerkzeuge etabliert. Um jedoch den Anforderun-
gen, welche sich bei der modellbasierten Entwicklung realer Systeme ergeben,
gerecht zu werden, bieten alle modernen Graphtransformationswerkzeuge Sprach-
konzepte, die über die reine Manipulation einfacher Graphstrukturen hinausge-
hen. In dieser Hinsicht ist die Einbettung von Datenattributen in Form von Zahlen
oder Zeichenketten in die Graphstruktur sowie deren Manipulation in Form von
Berechnungen eine der grundlegenden Erweiterungen für die Modellierung realer
Softwaresysteme.Während es in den letzten Jahren gelang, viele dieser innovativen
Sprachkonzepte aus der Welt der Graphtransformationswerkzeuge in das theoreti-
sche Rahmenwerk der algebraischen Graphtransformationen zu überführen, bildet
die EinbettungvonDatenattributenhier eineAusnahme. So ist es bisher nicht gelun-
gen, eine formale Repräsentation zu entwickeln, welche die praktische Behandlung
vonDatenattributen hinreichendwiderspiegelt, um die theoretischen Resultate auf
die Werkzeuge zu übertragen. Somit stellt diese Lücke zwischen den theoretischen
Konzepten und der praktischen Umsetzung eine der Hauptursachen dar für die
bis dato eingeschränkte Werkzeugunterstützung für die Analyse und Verifikation
attributierter Graphtransformationssysteme. Im Rahmen dieser Dissertation soll
diese Lücke geschlossen werden. Dazu wird ein Rahmenwerk zur Transformation
attributierter Graphen beschrieben. ImGegensatz zu existierendenAnsätzen bildet
die vorgestellte Lösung die Bedingungen, wie sie für reale Implementierungen gel-
ten, wesentlich genauer ab. Es wird gezeigt, dass die grundlegenden theoretischen
Resultate des algebraischen Ansatzes auch in dem neuen Rahmenwerk gültig sind.
Des Weiteren wird die Gültigkeit der bekannten Resultate zur Konsistenzverifika-
tion sowie zur Konfliktdetektion und Konfluenz-Analyse in diesem Rahmenwerk
gezeigt. Zum Schluss wird eine prototypische Implementierung vorgestellt und
anhand einer Fallstudie gezeigt, dass die praktische Umsetzung der gezeigten the-
oretischen Resultate sich für die Analyse und Verifikation realer Systeme eignet.





CONTENTS

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Hints for Reading This Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Motivation and Contributions 7
2.1 A Graph Transformation Based Data-Centric Workflow Model . . . . . . 7

2.1.1 Modeling the Domain for Artifacts . . . . . . . . . . . . . . . . 8
2.1.2 The Life-Cycle of Artifacts . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Modeling Tasks by Graph Transformations . . . . . . . . . . . . 12

2.2 Static Analysis and Verification by Graph Transformation . . . . . . . . . 14
2.2.1 Constraint Enforcement . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Conflict Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Fundamentals Of Symbolic Graphs and Graph Transformations 23
3.1 Introduction to Category Theory and Transformation Systems . . . . . . 23

3.1.1 Introduction to Category Theory . . . . . . . . . . . . . . . . . 23
3.1.2 (M,N)-Adhesive Categories and Transformation Systems . . . . 31
3.1.3 Negative Constraints and Negative Application Conditions . . . 36

3.2 Introduction to First-Order Logic Languages . . . . . . . . . . . . . . . . 38
3.2.1 Syntax of First-Order Logic . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Semantics of First-Order Logic . . . . . . . . . . . . . . . . . . . 40

3.3 Symbolic Graphs ans Symbolic Graph Transformation . . . . . . . . . . . 45
3.3.1 The Category of Symbolic Graphs . . . . . . . . . . . . . . . . . 45
3.3.2 Typed Symbolic Graph Transformation Systems . . . . . . . . . 50

3.4 Model Transformation by Symbolic Graph Transformation . . . . . . . . 52
3.5 Open Issues of Symbolic Graph Transformations . . . . . . . . . . . . . . 57

4 Projective Graph Transformations 61
4.1 Projection Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Projective Graph Transformation Systems . . . . . . . . . . . . . . . . . 64
4.3 Model Transformation by Projective Graph Transformation . . . . . . . . 66

5 (L , R ,N )-Adhesive Categories and Transformation Systems 73
5.1 (L,R,N)-Adhesive Categories and Transformation Systems . . . . . . . . 73
5.2 HLR+Properties for (L,R,N)-Adhesive Categories . . . . . . . . . . . . 80
5.3 Constraints and Application Conditions . . . . . . . . . . . . . . . . . . 87

5.3.1 Construction of Equivalent Negative Application Conditions . . . 87
5.3.2 Construction of Equivalent Left NACs from Right NACs . . . . . 89

5.4 Local Church–Rosser, Embedding, and Critical Pairs . . . . . . . . . . . . 91
5.4.1 Parallel Independence and Local Church–Rosser . . . . . . . . . 92
5.4.2 Embedding and Extension . . . . . . . . . . . . . . . . . . . . . 94



viii

5.4.3 Critical pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Projective Graph Transformation Systems are (L , R ,N )-Adhesive 101
6.1 HLR Properties for Projective Graph Transformation Systems . . . . . . . 101
6.2 HLR+Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Verification of Symbolic Consistency Constraints 119
7.1 Construction Equivalent NACs From Negative Constraints . . . . . . . . 119
7.2 Construction of Equivalent Left From right NACs . . . . . . . . . . . . . 124
7.3 Minimization of Symbolic Negative Application Conditions . . . . . . . . 125

7.3.1 Consistency Preserving Minimization of left NACs . . . . . . . . 127
7.3.2 Minimization of Subsumed left NACs . . . . . . . . . . . . . . . 129

8 Conflict Detection and Resolution 131
8.1 Conflicts and Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . 131

8.1.1 Independence, Local Confluence and Subcommutativity . . . . . 132
8.1.2 Local Confluence Modulo Normal Form Equivalence . . . . . . . 138

8.2 Conflict Detection by Critical Pair Analysis . . . . . . . . . . . . . . . . . 140
8.2.1 Embedding and Extension . . . . . . . . . . . . . . . . . . . . . 140
8.2.2 Critical Pairs and Completeness . . . . . . . . . . . . . . . . . . 143

8.3 Conflict Resolution by Critical Pair Analysis . . . . . . . . . . . . . . . . 146

9 Tool Support and Evaluation 159
9.1 The Symbolic Graph Analysis and Verification Framework . . . . . . . . 159
9.2 Support for Enforcing Symbolic Graph Constraints . . . . . . . . . . . . 161

9.2.1 Support for Enforcing Symbolic Graph Constraints in SyGrAV . . 161
9.2.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 162
9.2.3 Soundness of the Conflict Enforcement Procedure . . . . . . . . 164

9.3 Support for Conflict Analysis . . . . . . . . . . . . . . . . . . . . . . . . 165
9.3.1 Conflict Detection and Resolution with SyGrAV . . . . . . . . . 165
9.3.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 169
9.3.3 Soundness of the Conflict Analysis Procedure . . . . . . . . . . . 172

9.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10 Related Work 177
10.1 Transformation of Attributed Graph Structures . . . . . . . . . . . . . . . 177
10.2 Verification of consistency constraints . . . . . . . . . . . . . . . . . . . 179
10.3 Conflict Detection and Resolution for Attributed Graph Transformations . 180

11 Conclusions 183
11.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.2 Practical Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
11.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B IBL IOGRAPHY 187

Curriculum Vitae 195

Appendix A All Productions of the CMS Case Study 197



ix

A.1 Production bookRoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.2 Production uploadRes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
A.3 Production setDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
A.4 Production updateDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.5 Production transResPas . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.6 Production transResFail . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.7 Production closeExam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.8 Production regExam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
A.9 Production regCMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.10 Production unregExam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.11 Production regTMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
A.12 Production regThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.13 Production obtDeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.14 Production setLecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
A.15 Production updateLect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
A.16 Production setExam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.17 Production updateEx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.18 Production resetCMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Appendix B User Defined Negative Constraints 209



ACRONYMS

API Application programming interface
ATS Adhesive transformation system
CMS Campus management system
FOL First order logic
GTS Graph transformation system
HLR High-level replacement
LHS Left-hand side
MDE Model-driven engineering
NC Negative constraint
OCL Object Constraint Language
PB Pullback
PO Pushout
RHS Right-hand side
SMT Satisfiablity modulo theories
TPGTS Typed projective graph transformation system
TSGTS Typed symbolic graph transformation system
UML Unified Modeling Language
VK-square Van Kampen square

x



1
INTRODUCT ION

Software influences nowadays nearly every aspect of our daily life, as an integral
part of almost every modern electronic device. Moreover, also our economy is mas-
sively influenced by software. While in the early days, computers were brought
into service in order to deal with relatively simple data management tasks, such
as managing inventories, payrolls, etc.; nowadays enterprise applications are com-
plex systems able to manage almost every business function. These functionalities
include, for example, order processing, procurement, production scheduling, cus-
tomer information management, energy management, and accounting. To cope
with the increasing complexity of software systems, the design, development, and
maintenance of software is more andmore considered as an engineering discipline
on its own. Model-driven engineering (MDE) is a branch of software engineering
that considers models as central artifacts in a semi-automated software production
process [BCW12].
In the context of enterprise application engineering model-driven techniques

have been successfully applied, recently [Día13]. The aim of enterprise modelling
is to support and improve the design, documentation, analysis and administration
of business objects and operations using modelling languages [FG98]. Enterprise
models provide representations of processes, resources, structures, goals, and con-
straints relevant for the modeled enterprise. If equipped with precise execution
semantics, these models can serve as a basis for automating the coordination of
work. Moreover, to determine in advance whether a model exhibits no undesirable
behaviour static analysis and verification of these models can be performed, which
can greatly improve the reliability of such systems [WVvdA+09].

Graph transformation systems provide a rule-based declarative approach to spec-
ify the manipulation of graph-like models. Basically, a graph transformation rule
consists of a precondition and a postcondition that describes the effect of apply-
ing a rule. Graph transformation has shown its value for enterprise and business
process modeling, e. g., in [EGSW07], where graph transformation rules are used
to abstractly specify business tasks. Furthermore, graph transformation is a formal
technique with a rich body of theoretical results. Prominent examples are the static
verification of consistency constraints as well as conflict detection and resolution.

Verification of consistency constraints. Basically, consistency constraints pro-
vide means to declaratively define global assertions that must remain true. In the
context of business process modeling constraints usually reflect certain business
concerns. These concerns may range from external regulations such as legal re-
quirements and standards up to internal directives on the procedures to guarantee
seamless business operation.Moreover, the consistency of a system can be enforced
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constructively by translating the constraints to application conditions for rules. In
this way graph transformation rules can only be applied if this does not lead to the
violation of a constraint.

Conflict analysis Conflict analysis techniques provide means to statically dis-
cover potential unintended interactions of graph transformation rules. For example,
in the context of business process modeling we may assume that dozens of tasks
(represented as graph transformation rules) operate concurrently on the same data.
By conflict detection and analysis techniques we can statically identify and anal-
yse problematic interactions that arise if two tasks modify concurrently the same
datum, leading to inconsistencies.
An important aspect in order to be able to handle real world problems is the

integration of primitive data attributes (e. g., integers, booleans, strings, etc.) within
the structural (i. e. graph-like) part of a model. For pure transformation approaches
it is usually assumed that the attributes have concrete values; however, this assump-
tion does not apply for the verification of graph transformation systems, in general.
More specifically, to verify graph transformation systems, we have to consider the
rules themselves, which usually contain constraints and arithmetic expressions
over attribute variables. Hence, in order to capture the behaviour of rules for all
possible attribute values (especially for unbounded attribute domains) we have to
symbolically reason about unevaluated expressions on attribute values.
Fromapractical point of view, various graph transformation tools exist to actually

execute graph transformation rules (including attributes). However, the majority
of graph transformation tools aims at transforming large graphs [ABJ+10, BDH+15,
GBG+06, LAS14]; there are presently only three tools supporting static verifica-
tion of consistency constraints and conflict analysis for model transformations
[RET11, ABJ+10, AHPZ07]. The situation becomes even worse when considering
the verification of attributed graph transformation systems. Tool support for con-
flict resolution (by confluence analysis) of attributed graph transformation systems
is still an open issue.

From a theoretical point of view several approaches exist, to formalize attributed
graphs and their transformation. The most prominent approach combines graphs
with algebras to specify computations on attribute values [HKT02]. To this end,
graphs are extended by an extra kind of nodes reserved for carrying attributes
values. Although this representation is theoretically satisfactory, problems arise if
the attribute domains are unbounded (e. g., for integer numbers). In this case, in-
cluding the algebra in the graph structure leads to infinite graphs. This assumption
is especially problematic with respect to an implementation, as on a real system the
underlying data structures need to be finite. Hence, to provide an implementation
these infinite graph data structures have to be projected to appropriate finite data
structures. However, in this case the theoretical results need not apply to the im-
plementation anymore, as they are obtained with the assumption of infinite graph
data structures. Hence, one has to show that the theoretical results remain valid
although the implementation does not comply with all assumption. However, if
such a proof for the equivalence of a graph transformation theory operating on in-
finite graphs and a graph transformation implementation operating on finite data
structures exists, it seems more reasonable to directly formalize attributed graphs
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and transformations without the need for infinite graph data structures. These
considerations lead us to the following research questions:

1. Is it possible to formalize attributed graphs and transformations without the need for

infinite graph data structures?

2. Do the theoretical results for consistency constraint verification and conflict analysis

remain valid in such a formalism?

3. To which extent can real world applications benefit from these static verification

techniques?

While thefirst two items relate to theoretical considerations, the last item requires an
implementation to actually perform experiments in order to evaluate the practical
impact of the theoretical results.

1.1 Objectives

The objective of this thesis is to develop a theoretical framework to support the
static verification of attributed graph transformation systems, with the aim to pro-
vide an implementation that is capable to extend current state of the art graph
transformation tools by static verification techniques.
The proposed approach is based on symbolic graphs originally introduced by

Orejas and Lambers in [OL10b]. Symbolic graphs combine graphs with the expres-
siveness of first-order logic to define data aspects without the need for infinite
(graph) data structures. Orejas and Lambers propose two possible approaches
to transform symbolic graphs, namely symbolic and lazy graph transformation
[OL10b, OL12]. While for applying a symbolic graph transformation rule, all at-
tribute expressions have to be evaluated when matching the precondition, for ap-
plying a lazy graph transformation the evaluation of attribute expressions may
postponed after transforming the graph structure. In [KDL+15] we have shown
that symbolic graph transformation is too pessimistic for conflict analysis as it
produces many false positives (i. e., recognized conflicts which can never occur);
in [DKL+16] we have shown that lazy graph transformation is too expressive for
conflict detection, i. e., the approach allows for specifying transformations to which
the results required to perform constraint verification and conflict analysis do not
apply.
In order to overcome these limitations, I propose projective graph transformation in

this thesis as a new approach for transforming symbolic graphs. Projective graph
transformation can be considered as a reasonable compromise between symbolic
and lazy graph transformations. In order to transfer the theoretical results for
constraint verification and conflict analysis to projective graph transformations, we
introduce the new concept of (L,R,N)-adhesive categories. Finally, a prototypical
implementation is provided to show that the theoretical concepts can be realized.
Moreover,we show that the implementation is sound, althoughwepermit symbolic
graphs to carry formulas over undecidable fragments of first-order logic. Towards
showing that real world applications can benefit from the proposed techniques,
we use the implementation to analyze a case study from the enterprise modeling
domain.
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1.2 Outline

Chapter 2. An informal introduction to graph transformation, constraint verifica-
tion and conflict analysis is given. All concepts are motivated by a case study of a
campus management system (CMS) that serves as running example throughout this
thesis. A campus management system is a software system that facilitates various
kinds of administrative processes of universities, which may range from student af-
fairs, over course and programportfolio administration, up to facilitymanagement.

Chapter 3.An introduction to the formal foundations of modeling and transform-
ing attributed graphs by symbolic graphs and symbolic graph transformation is
given. To this end, the basic concepts of category theory required for the alge-
braic graph transformation approach are recapitulated, and a short introduction
to first-order logic languages is given. Thereupon, both results are combined lead-
ing to the notion of symbolic graphs and symbolic graph transformation systems,
whose application for model transformation is illustrated by means of the running
example. The chapter concludes by showing that symbolic graph transformations
are insufficient for our purposes.

Chapter 4. This section introduces the new concept of projective graph transforma-
tion. The main focus is to show that projective graph transformation is suitable to
overcome the difficulties of symbolic graph transformations. To this end the appli-
cation of projective graph transformations for model transformations is discussed
by means of several examples. Moreover we discuss several technical aspects of
projective graph transformations and compare this concept with symbolic graph
transformations.

Chapter 5. In this chapter the new concept of (L,R,N)-adhesive transformation
systems is introduced, which provides the categorical foundation for the remain-
der of this thesis. Basically, (L,R,N)-adhesive transformation systems allow for
formalizing transformation systems that require distinguished classes for left and
right production morphisms as well as for match morphisms. The main contribu-
tion of this chapter is to show that the fundamental results of the double pushout
approach remain valid for (L,R,N)-adhesive transformation systems, including
the results required for consistency constraint verification and conflict analysis.

Chapter 6. To show that the theoretical results from Chapter 5 apply for projective
graph transformation systems, we show in this chapter that projective graph trans-
formation systems are (L,R,N)-adhesive.

Chapter 7.Themain contribution of this chapter is the extension of thewell known
results for consistency constraint verification to projective graph transformation. To
this end, the corresponding proofs of Chapter 5 are instantiated for projective graph
transformation systems. Moreover, several technical aspects regarding the practical
applicability of these techniques are discussed.



1.3 Hints for Reading This Thesis 5

Chapter 8. The main contribution of this chapter is the extension of the results
for conflict detection and resolution to projective graph transformation systems. To
this end, the constructions and corresponding proofs are provided to show that the
theoretical results for conflict detection and resolution remain valid in projective
graph transformation.

Chapter 9. In this chapter presents the Symbolic Graph Analysis and Verifica-
tion (SyGrAV) tool prototype, which encompasses implementations for all tech-
niques presented in Chapter 7 and Chapter 8. We give an overview on our efforts
and insights gathered during implementing the SyGrAV tool prototype and when
analysing the campus management system case study. Additionally, we provide
means for the soundness of the current implementation. The chapter concludes
with discussing the measurement results.

Chapter 10. This chapter provides an overview on the relevant related work.

Chapter 11. The thesis concludes with a summary of the key contributions, the
observations and lessons learned during the elaboration of the approaches, as well
a survey on directions for future work.

1.3 Hints for Reading This Thesis

For those readers who are interested mainly in the concepts and results for at-
tributed graph transformation systems, but not so much in the general theory and
in the proofs, we advise to skip Chapter 5 and Chapter 6.





2
MOTIVAT ION AND CONTR IBUT IONS

In this section we introduce a case study of a campus management system. A
campus management system (CMS) is a software for organizing the daily busi-
ness operations of universities. Following [AA10], a CMS typically includes the
following components:

1. Student administrations, including the administration of student related data
such as enrollments, academic progress, transcripts and degrees.

2. Program portfolio administration, including the maintenance of degree pro-
grams, modules and catalogues, as well as the organization of program spe-
cific curricula.

3. Examination and lecture administration, including the scheduling of dates and
the allocation of rooms for examination and lectures, the processing of regis-
trations for courses and exams, and the documentation of examination results.

The CMS case study serves as a running example throughout this thesis.
In the following, we show how such a system can be modeled by using graph

transformations. To this end, we informally introduce in Section 2.1 the concepts
of metamodels, models, and graph transformation by means of the case study.
Finally, in Section 2.2 we provide a first overview on the techniques for static
verification of consistency constraints and conflict detection for typed attributed
graph transformations.

2.1 A Graph Transformation Based Data-Centric Workflow Model

A campus management system (CMS) is an enterprise application software tai-
lored to organize the daily business of universities. According to Martin Fowler,
“Enterprise applications are about the display, manipulation, and storage of large
amounts of often complexdata and the support or automation of business processes
with that data” [Fow02]. In the following, we focus on modeling the business pro-
cesses. Usually, a business process is not monolithic, in fact a business process is
usually composed from smaller activities called tasks. For example, the process of
conducting an examination from its creation to its completion (from an organisa-
tional perspective) comprises tasks such as reserving a room, determining a date
for the examination, and documenting the results. To realize such a process, tasks
have to be usually applied in a specific order. For example, a date has to be fixed
for an examination before a room can be reserved for that date. Hence, a process
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description includes in addition (to the involved tasks) a workflow that prescribes
in which sequence and under which conditions tasks have to be conducted.

We use a data-centric approach for workflow modeling. The data-centric ap-
proach was first proposed in [NC03] and formed the basis of a substantial effort
at IBM Research in the field of business process modeling. The key idea of data-
centric workflow modeling is to shift the focus from the actions taken, to the data
that are acted upon [NC03]. Hence, the key entities of the data-centric approach
are data records called artifacts. A useful metaphor to think of an artifact, is a piece
of paper (or a file containing a collection of papers). For example, an examination
artifact can be considered as a paper form containing fields for exam related data
such as the date and the reserved room, as well as the number of students currently
registered for that exam. However, not every data record is an artifact. In addition
to the (business) relevant data, an artifact stores information about its macro-level
life cycle; that is, information about its key processing stages and their sequencing.

We follow closely the artifact centric workflow model presented in [BGH+07].
Accordingly, artifacts are classified according to their stored data and characteristic
processing stages. The processing stages of an artifact are determined by a set of
states. Artifacts are processed by tasks; that is, tasks interact with the artifacts by
(a) instantiating new artifacts, (b) updating the contents of artifacts, and (c) by
triggering state transitions.
In the following, we introduce a graph transformation based artifact-centric

workflow model for a campus management system. To this end, we present in
Section 2.1.1 a metamodel of the campus management system to characterize the
data domain for the artifacts. The artifacts life-cycle is presented in Section 2.1.2.
Finally, in Section 2.1.3 the tasks are modeled by graph transformations.

2.1.1 Modeling the Domain for Artifacts

A metamodel defines the core concepts of a domain. Basically, a metamodel consists
of classes to specify the entities of a domain and associations to define their relations.
Figure 2.1 shows the metamodel of our campus management system. The meta-
model is denoted using the UML class diagram notation; that is, a metamodel is
depicted as a graph whose nodes correspond to classes and edges to associations.
According to the classification given in the beginning of this chapter, we partitioned
the CMS metamodel into the components student administration, program portfo-
lio administration as well as examination and lecture administration. Additionally, the
metamodel contains a component facility management encapsulating information
on rooms and their reservations. In the following, we describe the CMSmetamodel
from the bottom to the top, beginning with the facility management component.
The facility management component consists of the classes Room and Booking. A

Room has an attribute cap of domain int representing its capacity (i. e., the number
of available seats in the room). As for examinations, usually only a fraction of
seats is used (to prevent cheating), the class Room has an additional attribute
capEx, characterizing its examination capacity. To reserve a room, a Booking can
be assigned to a Room via the bookings association. A Booking has a start and an
end attribute, each defined by a value of domain long. The start and end times of
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Enrollment
- studId : int
- cp : int
- regCp : int
- enrolled : bool

ThesisRecord
- grade : int
- tries : int

CourseRecord
- grade : int
- tries : int

Degree
- obtDeg : DEGTYPE

CoModOffer
- cp : int

CourseModule

ThModOffer
- cp : int

Thesis
- grade : int

ThesisModule

Program
- degree : DEGTYPE
- reqCp : int

�enumeration�

DEGTYPE
- B SC
- M SC

Exam
- regSt : int

Semester
- current : bool

Lecture
- regSt : int

GradeList

Entry
- studId : int
- grade : int

Date
- begin : long
- duration : long

Booking
- start : long
- end : long

Room
- cap : int
- capExam : int

examination and lecture administration

student administration

program portfolio administration

facility management

theses

0..*

thesis0..1offer 0..1

program 0..1

tModule0..1cModules0..*

tRecord0..1cRecords 0..*

allOffers
0..*

current
0..1

offer0..1

offer 0..1regExam 0..1

lecture

0..1

exam 0..1

degree

0..1

exams
0..*

lectures 0..*

date 0..1

dates0..*

location
0..1

bookings 0..*

gradeList 0..1

entries 0..*

next
0..1

Figure 2.1: The metamodel for the campus management system

a reservation are given by means of the difference (measured in milliseconds) of
the desired date with respect to midnight, January 1, 1970. A Booking belongs to at
most one Room (indicated by containment symbol, i. e., the diamond at the source
of the association). The label 0..* at the target side of association indicates that a
Room may refer to at least no (indicated by 0) and at most an arbitrary number of
Bookings (indicated by *).

The examination and lecture administration component contains the class Semester
that serves as a container of all examinations (Exam) and Lectures offered in the
corresponding semester. A Semester has an attribute current of domain bool to
mark the current semester. The classes Exam and Lecture both have an attribute
regSt of domain int to record the number of registered students. To store dates
for examinations and lectures, the classes Exam and Lecture have an association
to the class Date, respectively. The class Date provides long values to determine its
begin and its duration. While examinations have at most one date, lectures may have
several dates (during a semester). Additionally, the classDate has an association to a
Booking that specifies the location for the date. To enter the results of an examination
a GradeList can be uploaded. The grade list contains a collection of entries (Entry)
to store for each student (i. e., studentId) the corresponding grade.

The program portfolio administration component contains the class Program. A Pro-
gram refers to the modules (i. e., a collection of CourseModules and a ThesisModule)
that may be absolved to collect the required credit points (reqCp : int) in order to
obtain the degree defined by the degree attribute. In the current version of our
CMS, only programs are supported that result in degree of type (DEGTYPE) Bach-
elor (B_SC) or Master of Science (M_SC). Note that the Program class does not own
the course modules as two distinct programs may offer the same course module.
A CourseModule contains a collection of course module offers (CourseModOffer). A
course module offer has an attribute cp of domain int that determines the credit
points that can be acquired by absolving the corresponding Lecture and passing the
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Exam assigned to the course module offer. It is distinguished betweenmodules and
module offers to allow for changing of the credit points for a module, by simply
adding a new course module offer with an adapted value for the credit points. In
this way it is ensured that once a student has registered for a module (i. e., to a
module offer) it will always acquire the same amount of credit points granted for
the module offer at the time of registration. The class CourseModule has an associ-
ation current that points to the most current course module offer. The structure of
a ThesisModule is similar to that of a CourseModule, except that a Program has only
one ThesisModule; instead of an Exam, a thesis module offer (ThesModOffer) has a
Thesis.

The student administration component contains the class Enrollment to record the
academic progress of a student registered for a specific Program. The student is
assigned to an Enrollment by its unique student identifier (studId). Additionally, an
Enrollment has an attribute enrolled of type bool that tracks the current enrollment
status of a student. An Enrollment may own several CourseRecords and a Thesis-
Record storing the actual achievements. The overall achievements are stored in the
attributes regCp and cp. While, regCp stores the sum of all registered modules, the
attribute cp stores the sum of credit points of all completed modules. A registration
for a module is given by a course record that is assigned via an offer association
to the corresponding module offer. A registration for an Exam (Thesis) is indicated
by an exam (thesis) association from the record to the corresponding Exam (Thesis).
The status of a course or thesis is stored by the attributes grade and tries, both of
domain int. For simplicity we assume the following meaning of grade values: the
best grade is 1 the worst is 5 indicating failed; a value equal to 6 is used as initial
value.

Note that not every class represents an artifact; that is, some classes do not have
their own life cycle; in fact, they rather belong to other artifacts. Thus, the classes that
where identified to represent available artifacts are filled gray. Formore information
on the methodology to identify artifacts we refer to [NC03].
Concrete artifacts are represented by instance models. An instance model consists

of objects (instances of classes), links (instances of associations), attribute slots (in-
stances of attributes), and attribute values (concrete values of the domain given by
the corresponding attribute domain).
Figure 2.2 shows an instancemodel of theCMSmetamodel.Note that the instance

model displays only a small section of a CMS system,which is assumed to comprise
hundreds of rooms and exams and modules, and thousands of enrollments. The
instance model contains an object en1 of type Enrollment. The Enrollment en1 is
for a student with studId 1234567, and has a registration for the course module
offer cmo1). The course module offer cmo1 is for the Exam algebra1 (exAlg1). The
Exam exAlg1 has a Date daAlg1. To improve readability, we denote long values that
represent dates in the DD.MM.YYYY;hh:mm format, where DD ∈ {1, . . . , 31} denotes
the day, MM ∈ {1, . . . , 12} denotes the month, and YYYY denotes the year of a date;
The time of a date is given in the 24 h clock format hh:mm; Accordingly, the Exam
exAlg1 (will) take place at November 26 in the year 2042 at 1 pm and is expected to
take 2 hours.
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cmo1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=1

en1 : Enrollment
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- regSt=72

daAlg1 : Date
- begin=26.11.2042;13:00
- duration=02:00

bo1 : Booking
- begin=26.11.2042;14:00
- end=26.11.2042;16:00

bo2 : Booking
- begin=26.11.2042;13:00
- end=26.11.2042;15:00

ro1 : Room
- cap=479
- capExam=72

date

bookings

exam

offer

cRecords

Figure 2.2: An instance model of the CMS metamodel

Enrollment
- state : EN ST
- studId : int
- cp : int
- regCp : int
- enrolled : bool

Exam
- state : EX ST
- regSt : int

Thesis
- state : TH ST
- grade : int

Lecture
- state : LE ST
- regSt : int

CoModOffer
- state : CMO ST
- cp : int

�enumeration�

EN ST
- CREATED
- STUDY
- WRITE THESIS
- CLOSED

�enumeration�

EX ST
- CREATED
- PLAN
- READY
- FINALIZING
- CLOSED

�enumeration�

TH ST
- CREATED
- FINALIZING
- CLOSED

�enumeration�

LECT ST
- CREATED
- PLAN
- READY
- CLOSED

�enumeration�

CMO ST
- CREATED
- LECT SET
- READY
- RESET
- LECT UPDATED
- CLOSED

Figure 2.3: The artifact classes with corresponding state attributes

2.1.2 The Life-Cycle of Artifacts

To define the macro life cycle of artifacts, we assume that each class that represents
an artifact has a state attribute that defines its current state. Figure 2.3 shows the
artifact classes with their corresponding state attributes. For example, the class
Exam is augmented by a state attribute of domain EX_ST which is an enumeration
of the relevant stages in the life cycle of an examination artifact (i. e., an object of
type Exam). In the following, we assume that CREATED and CLOSED denominate
the initial and final states of any artifact, respectively.

CREATED PLAN READY FINALIZING CLOSED

setDate bookRoom uploadRes

updateDate transResFail

transResPas

closeExam

Figure 2.4: The life-cycle of an examination artifact

Figure 2.4 shows the intended live cycle of an examination artifact. The states
denote the processing stages and the transitions are labeled with the tasks. More
specifically, after the creation of an examination artifact (i. e., an examination artifact
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currently in the CREATED state) the setDate task can be performed in order to set
the date of the corresponding examination. After setting the date once, it can be
updated (updateDate), until a room is booked for the examination (bookRoom). After
booking a room, the examination is READY to take place from an organizational
perspective. Note that conducting the actual examination (in the real world) is not
part of the examination artifact life cycle, as it does not immediately affect its data.
However, after conducting the examination and correcting the exams, the resulting
grades have to be uploaded (uploadRes). Subsequently, each grade is transferred to
the records by the tasks transResPas (for passed examinations) and transResFail (for
failed examinations). Finally, (i. e., after all grades are transferred) the examination
artifact is closed (closeExam).

STUDY WRITE THESIS CLOSED

regCMO

unregExamregExam

regCMO
regThesis

unregExam regExam

regTMO obtDeg

Figure 2.5: The life-cycle of an enrollment artifact

Analogously, the life cycle of an enrollment artifact is depicted in Figure 2.4.
After the creation of an enrollment artifact the tasks regExam or regCMO can be
invoked to register for an exam or course module offer. Task unregExam can be
performed to unregister from an examination. After collecting a certain amount of
credit points the task regTMO can be performed to register for the thesis module
offer. Now, (i. e., in theWRITE_THESIS state) additionally, the regThesis task can be
performed to register for a certain thesis. An enrollment finishes with obtaining a
degree (obtDegree).

Note that the artifact life cycles shown in Figures 2.4 and 2.5 are only informal;
that is, the notation is intended to give an overview of the desired life cycles. As
tasks may invoke different artifacts at the same time, there may also be interactions
between the life cycles of different artifacts. This kind of interaction is studied later
by means of conflict analysis techniques in Section 2.2.1 and Chapter 8. However,
to be able to study these interactions, we first have to assign a precise meaning to
tasks.

2.1.3 Modeling Tasks by Graph Transformations

In the context of workflow (business process) modeling, tasks are usually specified
abstractly by a contract that defines the precondition under which a task may be
invoked and the postcondition, i. e., the effect of executing a task. In the following,
we us graph transformation to define these contracts.

Graph transformation (GT) [EEPT06] provides a declarative formally founded
language for specifying the manipulation of graph based models (such as instance
models presented before). The manipulation of graph based models is specified
by graph productions. A graph production consists of a left-hand side (LHS), which
specifies its precondition, and a right-hand side (RHS), which specifies its postcon-
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⇒

LHS RHS

bookRoom(ex : Exam, ro : Room)

ex : Exam
- state=EX ST.PLAN
- regSt

da : Date
- begin
- duration

ro : Room
- capExam ≥ ex.regSt

date

ex : Exam
- state’=EX ST.READY
- regSt

da : Date
- begin
- duration

bo : Booking
- begin’=da.begin
- end’=da.begin+da.duration

ro : Room
- capExam ≤ ex.regSt

date

bookings

location

(a) Graph production bookRoom(ex : Exam, ro : Room)

cmo1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=1

en1 : Enrollment
- state=EN ST.STUDY
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- state=EX ST.PLAN
- regSt=72

daAlg1 : Date
- begin=26.11.2042;13:00
- duration=02:00

ro1 : Room
- cap=479
- capExam=72

bo1 : Booking
- begin=26.11.2042;14:00
- end=26.11.2042;16:00

bo2 : Booking
- begin=26.11.2042;13:00
- end=26.11.2042;15:00

date

bookings

exam

offer

cRecords

(b) Instance model before applying
production bookRoom

cmo1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=1

en1 : Enrollment
- state=EN ST.STUDY
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- state=EX ST.READY
- regSt=72

da1 : Date
- begin=26.11.2042;13:00
- duration=02:00

ro1 : Room
- cap=479
- capExam=72

bo1 : Booking
- begin=26.11.2042;14:00
- end=26.11.2042;16:00

bo : Booking
- begin=26.11.2042;13:00
- end=26.11.2042;15:00

date

bookings

exam

offer

cRecords

bookings

location

(c) Instance model after applying production
bookRoom

Figure 2.6: The application of production bookRoom

dition. A graph production is applied to an instancemodel by (a) searching for such
parts of the model that matches the LHS, and (b) updating the model by replacing
the matched part by the RHS by first deleting those elements that are matched by
the LHS but do not appear in the RHS; then creating those elements that are only
in the RHS.
Figure 2.6 shows the application of the graph production that defines the task

bookRoom (shown in Figure 2.6a) to an instance model (shown in Figure 2.6b). The
production takes as input an Exam ex and a Room ro. The precondition (given by
the LHS) is fulfilled if Exam ex is in the PLAN state, has a Date assigned, and the
exam capacity of the given Room ro is larger or equal to the number of students
registered for the Exam ex; This is denoted by the expression (capExam≥ex.regSt).
The effect of the production is is given by the difference of the LHS and RHS;
that is, the production is applied by creating a new Booking bo and assigning it
to the Room ro. The begin value of the new Booking bo is set equal to the value of
da.begin (i. e., the begin value of Date da). The end value of bo is set equal to the
sum of da.begin and da.duration. This is defined by the expressions begin’=da.begin
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and end’=da.begin+da.duration, where primed variables refer to attribute values on
RHS and nonprimed variables refer to attribute values on the LHS. For example,
the expression i++ that increments i by one is denoted according to this convention
as i’=i+1. Note that according to this scheme, attribute expressions can be defined
unambiguously without the need to assigning them to a specific side (i. e., LHR
or RHS) and object. As we will see later, attribute expression may be written as
a conjunction below the production. However, to increase readability, we assign,
whenever possible, attribute expression to the corresponding objects.

The production bookRoom is applied to the instance model shown in Figure 2.6b
by first finding a match of the LHS. The current matched parts are drawn bold. As
the Exam exAlg1 is in the PLANNING state and ro1.capExam is equal to exAlg.regSt,
the production can be applied. As a result (shown in Figure 2.6c) a new Booking
bo is created, whose begin is equal to da1.begin, and end is equal to the sum of
daAlg1.begin and daAlg1.duration.

Figure 2.7a shows the graph production for the task regExam. The production
takes as input an Enrollment en and an Exam ex. The precondition ensures that the
production can only be applied if for the Enrollment en, there exists a registration
for the corresponding course module offer; that is, there exists a CourseRecord
cr assigned to the given Enrollment en and the course module offer cmo for the
corresponding Exam ex. Moreover, it is only possible to register for an exam if the
number of tries is smaller than three (i. e., at most three tries for an exam) the grade
is larger than four (i. e., the examwas not passed before), and the student is enrolled
(enrolled=true). Moreover, the attribute expression((en.state=EN_STATE.STUDY) ∨ (en.state=EN_STATE.WRITE_THESIS)

)
ensures that the production can only be applied if the Enrollment en is either in the
STUDY or theWRITE_THESIS state. In this case the attribute expression is denoted
below the production.
The production is applied by creating a new link of type regExam from the

CourseRecord cr to the Exam ex. Additionally, the number of registered students for
the Exam ex and the number of tries stored in theCourseRecord cr is incremented by
one. The result of applying production regExam to an instance model (Figure 2.7b)
is shown in Figure 2.7c.
In the following, we call the application of a production to an instance model at

a specific match a transformation. Note that a transformation of an instance model
is uniquely defined by a production together with a match.

2.2 Static Analysis and Verification by Graph Transformation

Static analysis and verification is concernedwith determining, in advance, whether
a process model exhibits certain desirable behaviours. Hence, careful analysis of
process models at design time can greatly improve the reliability of such systems
[WVvdA+09].

The examples presented in Figure 2.6 and Figure 2.7 uncover basically two prob-
lems of the current CMS specification. The first problem addresses the integrity of
the data stored in our CMS system. More specifically, as shown in Figure 2.6, after
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⇒

LHS RHS

regExam(en : Enrollment, ex : Exam)

(
(en.state=EN ST.STUDY) ∨ (en.state=EN ST.THESIS)

)

cmo : CoModOfferex : Exam
- regSt=regSt+1

cr : CourseRecord
- tries < 3
- grade > 4

en : Enrollment
- state
- enrolled=true

cRecords

offer

exam cmo : CoModOfferex : Exam
- regSt’=regSt+1

cr : CourseRecord
- tries’ = tries + 1
- grade

en : Enrollment
- state
- enrolled

cRecords

offer

exam

regExam

(a) Graph production regExam(en : Enrollment, ex : Exam)

cmo1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=1

en1 : Enrollment
- state=EN ST.STUDY
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- state=EX ST.PLAN
- regSt=72

daAlg1 : Date
- begin=26.11.2042;13:00
- duration=02:00

ro1 : Room
- cap=479
- capExam=72

bo1 : Booking
- begin=26.11.2042;14:00
- end=26.11.2042;16:00

bo2 : Booking
- begin=26.11.2042;13:00
- end=26.11.2042;15:00

date

bookings

exam

offer

cRecords

(b) Instance model before applying
production regExam

cmo1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=2

en1 : Enrollment
- state=EN ST.STUDY
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- state=EX ST.PLAN
- regSt=73

daAlg1 : Date
- begin=26.11.2042;13:00
- duration=02:00

ro1 : Room
- cap=479
- capExam=72

bo1 : Booking
- begin=26.11.2042;14:00
- end=26.11.2015;16:00

date

bookings

exam

offer

cRecords

regExam

(c) Instance model after applying production
regExam

Figure 2.7: The application of production regForExam

applying production bookRoom there are two bookings for the same room with
mutually overlapping time slots. As it is highly problematic to conduct, lets say,
two exams at the same time in the same room, such a situation must be prevented
in any case. In Section 2.2.1 we provide a first impression on how this problem
can be solved by graph constraints. Later in Chapter 7 we provide the detailed
constructions and proofs for these techniques in the context of attributed graph
structures.
The second problem addresses the interaction of tasks. Up until nowwe only con-

sidered the effects of applying a production in isolation. However, in a real system
several tasks may operate concurrently on the same set of artifacts. For example,
regarding the CMS case study, we expect that dozens of tasks are invoked simul-
taneously on thousands of artifacts, which potentially leads to unintended effects.
In Section 2.2.1 we provide a first impression on how conflict analysis techniques
can help to detect potentially problematic interactions. Detailed constructions and
proofs for conflict analysis for attributed graph structures are presented in Chap-
ter 8.
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NoCompetingBookings

(boA.end ≥ boB.begin) ∧
(boB.end ≥ boA.begin)

ro : Room

boA : Booking
- begin
- end

boB : Booking
- begin
- end

bookings

bookings

(a) Negative constraint
NoCompetingBookings

2 (boA end≥boB begin)∧(boB end≥b0A begin)

boA begin boA end

boB begin boB end

� (boA end≥boB begin)∧(boB end≥b0A begin)

boA begin boA end

boB begin boB end

� (boA end≥boB begin)∧(boB end≥b0A begin)

boA begin boA end

boB begin boB end

� (boA end≥boB begin)∧(boB end≥b0A begin)

boA begin boA end

boB begin boB end

2 (boA end≥boB begin)∧(boB end≥b0A begin)

boA begin boA end

boB begin boB end

(b) Time line to illustrate NoOverlapInBookings

Figure 2.8: Negative graph constraint NoCompetingBookings, to forbid the existence of com-
peting bookings

2.2.1 Constraint Enforcement

In the context of business process modeling constraints usually reflect certain busi-
ness concerns. These concerns may range from external regulations such as legal
requirements and standards up to internal directives on the procedures to guaran-
tee seamless operation.
Graph constraints provide declarative means to place global constraints on

the inner structure of a system. Moreover, by constraint enforcement techniques
graph constraints can automatically be translated to preconditions over produc-
tions, which ensure that a production can only be applied if the resulting graph is
consistent with respect to all graph constraints. In the following, we focus mainly
on negative graph constraints and negative application conditions.
A negative graph constraint specifies forbidden system states. More specifically,

a system state (i. e., an instance model) is consistent with respect to a negative
graph constraint if there is no match of the constraint in the instance model. For
example, Figure 2.8a shows the negative graph constraint NoCompetingBookings,
which forbids the existence of a pair of bookings boA and boB for the same room
with mutually overlapping time slots. The meaning of the formula is illustrated by
the time lines depicted in Figure 2.8b, which lists all possible combinations of the
begin and end dates of boA and boB, respectively. Notice that NoCompetingBookings
is a negative constraint; that is, a pair of bookings is only consistent if it invalidates
the formula, i. e., there are no bookings boA and boB whose time intervals overlap.
Hence, the model shown in Figure 2.6c is inconsistent as the time intervals of
bookings bo and bo1 overlap.

In Chapter 7 we show how attributed graph constraints can be enforced by
automatically translating them to precondition application conditions. The result
is a set of extended productionswith application conditions that guarantee that each
production may only be applied if the result is consistent with respect to the
constraints. The result of translating the constraint NoCompetingBookings to an
application condition for production bookRoom is the extended production shown
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⇒

LHS RHS

bookRoom(ex : Exam, ro : Room)

NAC

instanceModel

ex : Exam
- state=EX ST.PLAN
- regSt

da : Date
- begin
- duration

ro : Room
- capExam ≥ ex.regSt

date

ex : Exam
- state’=EX ST.READY
- regSt

da : Date
- begin
- duration

bo : Booking
- begin’=da.begin
- end’=da.begin+da.duration

ro : Room
- capExam ≤ ex.regSt

date

bookings

location

ex : Exam
- state’=EX ST.READY
- regSt

da : Date
- begin
- duration

boB : Booking
- begin
- end

ro : Room
- capExam ≤ ex.regSt

date

bookings

(da.begin+da.duration ≥ boB.begin) ∧
(boB.end ≥ da.begin)

alg1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=2

en1 : Enrollment
- state=EN ST.STUDY
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- state=EX ST.PLAN
- regSt=73

daAlg1 : Date
- begin=26.11.2042;13:00
- duration=02:00

ro1 : Room
- cap=479
- capExam=72

bo1 : Booking
- begin=26.11.2042;14:00
- end=26.11.2042;16:00

date

bookings

exam

offer

cRecords

regExam

Figure 2.9: Extended production bookRoom

in Figure 2.9. The extended production can only be applied if the match of the LHS
in a model cannot be extended to the negative application condition (NAC). More
specifically, the production can only be applied if no Booking boB exists for the
Room ro such that the time slots of boB overlap with the to be created Booking bo;
that is, no Booking boB exists such that (da.begin + da.duration), which is the new
value for bo.end’, is smaller or equal to boB.begin, and the value of da.begin, which
is the new value for bo.begin’, is smaller or equal to boB.end.

2.2.2 Conflict Analysis

Asmentioned before, for our campusmanagement systemwe expect that dozens of
tasks simultaneously operate on thousands of artifacts. In the following, we show
how conflict analysis techniques can help to detect potentially problematic inter-
actions of tasks given as graph productions. Basically, two transformations have a
parallel conflict if one transformation modifies an element that is part of the match
of the other. For example, consider the productions regExam and unregExam shown
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⇒

LHS RHS

unregExam(en : Enrollment, ex : Exam)

(
(en.state=EN ST.STUDY) ∨ (en.state=EN ST.THESIS)

)

cmo : CoModOfferex : Exam
- regSt=regSt – 1

cr : CourseRecord
- tries

en : Enrollment
- state

cRecords

offer

exam

regExam

cmo : CoModOfferex : Exam
- regSt’=regSt – 1

cr : CourseRecord
- tries’ = tries – 1

en : Enrollment
- state

cRecords

offer

exam

Figure 2.10: Graph production unregExam(en : Enrollment, ex : Exam)

in Figure 2.7a and Figure 2.10, respectively. Production regExam was presented in
Section 2.1.3. The production unregExam is basically the inverse of regExam. More
specifically, unregExam takes as input an Enrollment en and an Exam ex. By apply-
ing the production, the link regExam from cr : CourseRecord to ex : Ex is removed,
as well as the number of tries (cr.tries) and the number of registrations (ex.regSt)
are decremented by one. The productions have a parallel conflict, as both produc-
tions read and modify the regSt attribute of an Exam and the tries attribute of a
CourseRecord.

However, in many scenarios one is interested whether the result of two conflict-
ing transformations can be joined again, which leads us to the notion of conflict
resolution. A parallel conflict of two transformations can be resolved if the output of the
first productions can be transformed to the same result. For example, consider the
parallel conflict shown on top of Figure 2.11 that arises if productions unregExam
and regExam are applied to different enrollments but to the same exam. More
specifically, production unregExam(en2, exAlg1) is applied to unregister Enrollment
en2 from Exam exAlg1; production regExam(en1, exAlg1) is applied register Enroll-
ment en2 for Exam exAlg1. The transformations have a parallel conflict as applying
unregExam and regExam in parallel to the same Exam ex incorporate the paral-
lel modification of attribute ex.regSt (i. e. unregExam decrements and production
regExam increments the value of ex.regSt by one. The transformation can be joined
by applying the production unregExam and regExam in opposite order to the result
of the first productions. Note that, although these transformations are obtained
by applying the same productions in opposite order to the results of the first pair
of transformation, they constitutes different transformations as the matches were
sightly changed in order to match the new attribute values. We shall study this de-
tail at length in Chapter 8. Moreover, we are not forced to use the same productions
to join such a pair of diverging transformations; that is, we may all productions
that are part of the system specification in order to resolve a parallel conflict.
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⇐ ⇒

⇒

bookRoom(exAlg1, ro1) regForExam(en1, exAlg1)

regForExam(en1, exAlg1)

alg1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=1

en1 : Enrollment
- state=EN ST.STUDY
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- state=EX ST.PLAN
- regSt=72

daAlg1 : Date
- begin=26.11.2042;13:00
- duration=02:00

ro1 : Room
- cap=479
- capExam=72

bo : Booking
- begin=26.11.2042;13:00
- end=26.11.2042;15:00

date

exam

offer

cRecords

alg1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=1

en1 : Enrollment
- state=EN ST.STUDY
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- state=EX ST.READY
- regSt=72

da1 : Date
- begin=26.11.2042;13:00
- duration=02:00

ro1 : Room
- cap=479
- capExam=72

bo : Booking
- begin=26.11.2042;13:00
- end=26.11.2042;15:00

date

exam

offer

cRecords

bookings

location

alg1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=2

en1 : Enrollment
- state=EN ST.STUDY
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- state=EX ST.PLAN
- regSt=73

daAlg1 : Date
- begin=26.11.2042;13:00
- duration=02:00

ro1 : Room
- cap=479
- capExam=72

date

exam

offer

cRecords

regExam

alg1: CoModOffer
- cp=6

cr1 : CourseRecord
- grade=5
- tries=2

en1 : Enrollment
- state=EN ST.STUDY
- studId=1234567
- cp=57
- regCp=96
- enrolled=true

exAlg1 : Exam
- state=EX ST.READY
- regSt=73

da1 : Date
- begin=26.11.2042;13:00
- duration=02:00

ro1 : Room
- cap=479
- capExam=72

bo : Booking
- begin=26.11.2042;13:00
- end=26.11.2042;15:00

date

exam

offer

cRecords

bookings

location

regExam

Figure 2.12: An example for a conflict of production bookRoom and regForExam that cannot
be resolved.

An example for a parallel conflict that cannot be resolved is shown in Figure 2.12.
More specifically, the productions bookRoom regExam have a conflict that cannot
be resolved. The problem is that after registering for an exam the production
bookRoom cannot be applied for the corresponding Room ro1 as the number of
registered students exceeds the exam capacity of Room ro1. However, if we apply
the production the other way around it is still possible to register Enrollment en1 for
Exam ex, although this exceeds the exam capacity of the booked Room ro.
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As we shall see later in Chapter 8 the concept of conflict resolution is closely
related to the concept of local confluence known from term rewriting systems; that
is, if any parallel conflict can be resolved the system is locally confluent. However,
conflict detection and resolution techniques are not only interesting for confluent
systems. In several applications conflicts may intended to model nondeterministic
behavior of a system, for example, to model different options during a business
process. As we shall see in Chapter 9, conflict detection and resolution techniques
can also be used to statically analyse potential interactions. If these interaction
lead to unintended effects, the system specification has to be adapted accordingly.
These adaption can incorporate changing the productions, adding new consistency
constraints to exclude conflicts from the consistent system behaviour, or adding
new productions to the specification to resolve unintended parallel conflicts.





3
FUNDAMENTALS OF SYMBOL IC GRAPHS AND GRAPH
TRANSFORMAT IONS

This chapter provides the fundamental concepts for modeling and transforming
attributed structures by symbolic graphs and symbolic graph transformations. By
combining graphs with first-order formulas, symbolic graphs provide a powerful
concept for defining transformations of attributed graph structures.
We start with a brief introduction to category theory in Section 3.1, to subse-

quently establish the concept of (M,N)-adhesive transformation systems, which
serves us as a framework for the definition of transformations. In Section 3.2, we
define the syntax and semantics of first-order formulas that, combinedwith graphs,
leads us to the concept of symbolic graphs, presented in Section 3.3. The applica-
tion of symbolic graph transformations for model transformations is illustrated in
Section 3.4 by means of the campus management case study. Based on this illustra-
tion, we discuss in Section 3.5 those aspects of symbolic graph transformations that
actually prevent its application to achieve all objectives of this thesis. Based on this
overview we motivate and detail the key contributions presented in the remainder
of this thesis.

3.1 Introduction to Category Theory and Transformation Systems

This section provides a brief introduction to category theory and the categorical
framework for high level transformation systems. This section is manly based on
the notions provided in [EEPT06]. Hence, we only provide a reference if the content
originates from an other source.

3.1.1 Introduction to Category Theory

A category can be taught as a system of functions among objects.

Definition 3.1 (Category).
A category C � (ObC, MorC, ◦, id) is given by:

• a class ObC of objects

• a class MorC of morphisms given by the morphism sets MorC(A, B) for
each pair of objects A, B ∈ ObC
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• for all objects A, B, C ∈ ObC, a composition operation ◦, defined as

◦ : MorC(B, C) ×MorC(A, B) →MorC(A, C)

• an identity morphism idA ∈ MorC(A, A) for each object A ∈ ObC

such that the following conditions hold:

• Composition is associative: For all objects A, B, C, D ∈ ObC and morphisms
f : A→ B, g : B → C and h : C → D we have (h ◦ g) ◦ f � h ◦ (g ◦ f ).

• Identity morphisms act as identities w. r. t. composition: For all objects A, B ∈
ObC and morphisms f : A→ B, we have f ◦ idA � f and idB ◦ f � f .

Notice that h : A → B denotes the shorthand notation for h ∈ MorC(A, B); in the
following we sometimes write A h→ B for h : A→ B.
For amorphism h : A→ B the objects A and B are called the domain and codomain

of h, respectively.
In general, a category is anything that satisfies the preceding definition; however,

for this thesis it is sufficient to consider objects as structured sets, i. e., tuples of sets
(called components), endowed with some structure. Morphisms are then structure
preserving mappings.

Example 3.2 (The Categories of Sets Set and graphs G).
The basic example for a category is the category of sets Set, with the class of
all sets as objects and with all total functions as morphisms. The composite
(g ◦ f )(x) of two morphisms f : A → B and g : B → C is defined as g( f (x))
for all x ∈ A. The identity idA : A→ A is given by idA(x) � x for all x ∈ A.
An example for a category of a structured set, is the category G of graphs. A

graph G � (VG, EG, sG, tG) consists of a set VG of graph nodes, a set EG of graph
edges, and the source and target functions sG, tG : EG → VG mapping the edges
to the source and target nodes. A graph morphism is a structure preserving
mapping that preserves the source and target functions. More specifically, a
graph morphism f : G → H that maps a graph G � (VG, EG, sG, tG) to a graph
H � (VH , EH , sH , tH ) is a tuple of total functions f � ( fV , fE), fV : VG → VH , fE :
EG → EH that commuteswith source and target functions, i. e., fV ◦ sG � sH ◦ fE

and fV ◦ tG � tH ◦ fE. The identitymorphism and composition operation can be
defined componentwise in Set; that is, the identitymorphism idG � (idVG , idEG )
for a graph G is given for each component separately as the identity in Set. The
composition operation for graph morphisms f : G → D and g : D → H, is
defined componentwise by:

g ◦ f � (gV ◦ fV , gE ◦ fE).

As f and g are graph morphisms we have

fV ◦ sG � sD ◦ fE, fV ◦ tG � tD ◦ fE, gV ◦ sD � sH ◦ gE, gV ◦ tD � tH ◦ gE.
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Hence, we can conclude that g ◦ f is also a graph morphism as

gV ◦ fV ◦ sG � gV ◦ sD ◦ fE � sH ◦ gE ◦ fE

gV ◦ fV ◦ tG � gV ◦ tD ◦ fE � tH ◦ gE ◦ fE.

Remark 3.3 (Componentwise construction).
In the previous examplewehave seen that the composition of graphmorphisms can
be constructed componentwise in the category of sets Set. This principle of divide
and conquer is very common in category theory as many categorical constructions
can be broken down to componentwise constructions in some base category. In the
following, we shall see various examples for this principle.

Nowwe take a closer look on how to classify morphisms of a category according to
certain properties. This leads us to the following concept of a morphism class.

Definition 3.4 (Morphism class).
Given a category C and a property P, a class of morphisms is formed from the
sets

X(A, B) �
{
x ∈ MorC(A, B) | P(x)

}
for all pairs of objects A, B ∈ ObC.

In category theory, a property P is usually given as an abstract characterization,
which defines the role of a morphism in terms of its relations to adjacent objects
and morphisms, rather than by internal properties of the morphism itself. In the
following, we give an abstract characterization for the classes of monomorphisms,
epimorphisms, and isomorphisms.

Definition 3.5 (Monomorphism, epimorphism, and isomorphism).
Given a category C, the class of all monomorphisms consists of all morphisms
m : B → C, m ∈ MorC that satisfy the following property:
For all morphisms f , g : A → B; f , g ∈ MorC, it holds that m ◦ f � m ◦ g
implies f � g.

B CA
g

f
m

The class of all epimorphisms consists of all morphisms e : A → B, e ∈ MorC

that satisfy the following property:
For all morphisms f , g : B → C; f , g ∈ MorC, it holds that f ◦ e � g ◦ e implies
f � g.

B CA
g

f
e

The class of all isomorphisms consists of all morphisms i : A → B, i ∈ MorC

that satisfy the following property:
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There is a morphism i−1 : B → A, i−1
∈ MorC, such that i ◦ i−1 � idB and

i−1
◦ i � idA.

BA
i−1

i

Two objects A and B in C are isomorphic (denoted as A ' B) iff there exists an
isomorphism i : A→ B, i ∈ MorC.

Example 3.6 (Mono- epi- and isomorphisms in categories Set and G).
Monomorphisms, epimorphisms, and isomorphisms correspond to injective,
surjective and bĳective functions in the category Set, respectively.

In the category G, a morphisms f � ( fV , fE) is a monomorphism, epimor-
phism, or isomorphism if and only if f is componentwise injective, surjective,
or bĳective, respectively.

We have seen how to use properties to abstractly characterize differentmorphism
classes. In the following, we shall see how to characterize more complex categorical
concepts in a similar way.
We begin with the definition of pushouts, which can be considered as the gener-

alisation of the set theoretic union.

Definition 3.7 (Pushout (PO)).
Given morphisms f : A → B and g : A → C in a category C, the triple
( f ′, g′, D) consisting of:

• a pushout object D

• morphisms f ′ : C → D and g′ : B → D such that f ′ ◦ g � g′ ◦ f

is a pushout over f and g in category C iff the following universal property
holds: For all objects X and morphisms h : B → X and k : C → X with
k ◦ g � h ◦ f , there is a unique morphism x : D → X such that x ◦ g′ � h and
x ◦ f ′ � k.

A B

C D

X

=
=

=

f

g

f ′

g′ h

k

x
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Example 3.8 (Pushout in Set and G).
In Set the pushout ( f ′ : C → D, g′ : B → D, D) over the morphisms f : A→ B
and g : A→ C can be constructed as follows:
The pushout object D is given as the quotient B ∪̇ C |≡, where ∪̇ denotes the

disjoint union, and ≡ the smallest equivalence relation generated from the rela-
tion ∼, where ∼ is given by f (a) ∼ g(a) for all a ∈ A. Here, smallest equivalence

relation generated from ∼means the reflexive, symmetric, and transitive closure
of ∼. Let [x] �

{
y ∈ B ∪̇ C | x ≡ y

}
, then the morphisms f ′ and g′ are given as

f ′(c) � [c] and g′(b) � [b] for all c ∈ C and b ∈ B.
The pushout in the category of graphs G is defined componentwise by the

pushouts on node and edge components in the category Set, respectively. The
source and target functions are uniquely determined by the universal property
of the pushout for the edge component. For example, the diagram below shows
the construction of the source function sD for the pushout object D. As shown
the source function sD : ED → VD is uniquely given by the universal property
of the pushout for the edge component POE, with morphisms gV ◦ sB and
fV ◦ sC, where sB : EB → VB and sC : EC → VC are the source functions of
graph B and C, respectively.

VB VA

VD VC

EBEA

EDEC (POV)

(POE) fV

gV

fV

g′V

fE

gE

f ′E

g′E

fV ◦ sC

sD

gV ◦ sB

The target function tD : ED → VD can be constructed similarly.

In the categories Set and G, the construction of pushout objects can be simplified if
one of the morphisms is a monomorphism.

Fact 3.9 (Pushouts in Set and G along monomorphisms).
Let ( f ′, g′, D) be the pushout over morphisms f : A → B and g : A → C in
category Set. If f is a monomorphism, then the following properties hold:

a) Morphism f ′ is a monomorphism, too.

b) The pushout object D is isomorphic to D′ � C ∪̇
(
B\ f (A)

)
, where the

disjoint union ∪̇ is used to ensure that the elements of
(
B\ f (A)

)
are added

as new elements to D′.

The properties (a) and (b) hold componentwise in G.
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The pushout complement, defined next, is a generalization of the set theoretic
difference operation.

Definition 3.10 (Pushout complement).
Let f : A → B and g : B → D be morphisms in a category C, the triple
( f ′, g′, C), consisting of morphisms f ′ : C → D, g′ : A → C and object C, is a
pushout complement in C if and only if (1) is a pushout in C.

A B

C D

(1)

f

g′

f ′

g

The pullback is the categorical dual of the pushout. Hence, it is a generalization
of the set theoretic intersection.

Definition 3.11 (Pullback (PB) [EEHP06]).
Given morphisms f : C → D and g : B → D in a category C, the triple
( f ′, g′, A) consisting of:

• a pullback object A

• morphisms f ′ : A→ B and g′ : A→ C such that g ◦ f ′ � f ◦ g′

is a pullback over f and g in category C, if and only if the following universal
property holds: For all objects X and morphisms h : X → B and k : X → C
with f ◦ k � g ◦ h, there is a unique morphism x : X → A such that f ′ ◦ x � h
and g′ ◦ x � k.

A B

C D

X

=
=

=

f ′

g′

f

g

h

k

x

Example 3.12 (Pullback in Set and G).
In Set, the pullback ( f ′, g′, A) over morphisms f : C → D and g : B → D can
be constructed as

A �

⋃
d∈D

f −1(d) × g−1(d) �
{
(c, b) | f (c) � g(b)

}
⊆ C × B

with f ′ : A→ B and g′ : A→ C given by f ′(c, b) � b and g(c, b) � c.
The pullback in the category of graphs G can be constructed componentwise

for node and edge components in Set. The source and target functions are
uniquely determined by the universal property of the pullback for the node
components.



3.1 Introduction to Category Theory and Transformation Systems 29

In the categories Set and G we have the following property for pullbacks along
monomorphisms.

Fact 3.13 (Pullbacks in Set and G along monomorphisms).
Let ( f ′, g′, A) be the pullback over morphisms f : C → D and g : B → D in
category Set then the following properties hold:

a) If f is a monomorphism, then also f ′.

b) If f and g aremonomorphisms then A can be constructed as the intersection
of B and C, i. e., A � B ∩ C.

The properties (a) and (b) hold componentwise in G.

The following properties are valid in any category that has pushouts and pull-
backs.

Fact 3.14 (PO and PB properties).
For any category C that has pushouts and pullbacks the following properties
hold:

a) The pushout and pullback objects are unique up to isomorphism.

b) The composition and decomposition of pushouts (pullbacks) results again
in a pushout (pullback):

composition:

• If (1) and (2) are pushouts, then (1) + (2) is a pushout.

• If (1) and (2) are pullbacks, then (1) + (2) is a pullback.

decomposition:

• If (1) and (1) + (2) are pushouts , then (2) is a pushout.

• If (2) and (1) + (2) are pullbacks, then (1) is a pullback.

BA

C D

E

F

(1) (2)

f

g

f ′

g′

e

e′

g′′

c) For any morphism f : A → B, the diagram (3) below is a pushout and a
pullback; for any monomorphism m : A→ B diagram (4) is a pullback.

BA

A B

(3)

f

idA

f

idB

A A

A B

(4)

idA

idA

m

m
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The following concept of jointly epimorphic pairs of morphisms is the generalization
of epimorphisms from single morphisms to pairs of morphism.

Definition 3.15 (Jointly epimorphic).
A morphism pair (e1, e2) of morphisms e1 : A1 → B and e2 : A2 → B with
the same codomain is jointly epimorphic if for all g, h : B → C such that
g ◦ ei � h ◦ ei , for i � 1, 2, we have g � h.

B

A1

A2

Cg
he1

e2

In the following, we consider the slice construction for categories. The slice con-
struction can be used to obtain categories for typed structures from an (untyped)
base category. This is particularly interesting, as the slice construction preserves
many properties of the base category (e. g., pushouts, pullbacks, and binary co-
products). Hence, in order to show that a category, obtained by slice construction
from a base category, has a property of interest it is sufficient to show that the base
category has this property.

Definition 3.16 (Slice category).
Let C be a category and X any object of C, the slice category C\X is defined as
follows:

• An object of C\X is a morphism ( f : A → X) from an object A ∈ ObC to
X.

• A morphism m : ( f : A → X) → (g : B → X) ∈ MorC\X from an
object ( f : A → X) to an object (g : B → X), is given by morphism
m : A→ B ∈ MorC such that f � g ◦m.

• The composition of morphisms m : ( f : A → X) → (g : B → X) ∈
MorC\X and n : (g : B → X) → (h : C → X) ∈ MorC\X is given by
n ◦m ∈ MorC.

The following fact lists properties that are preserved by slice construction.

Fact 3.17 (Slice category properties).
The following properties hold for every slice category:

a) If the category C has pushouts, the pushouts in the slice category C\X can
be constructed over the pushouts in C.

b) If the category C has pullbacks, the pullbacks in the slice category C\X can
be constructed over the pullbacks in C.

c) If the category C has binary coproducts, the binary coproducts in the slice
category C\X can be constructed over the binary coproducts in C.
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3.1.2 (M,N)-Adhesive Categories and Transformation Systems

This section introduces the basics for transformations based on the double pushout
approach. The double pushout approach was originally defined for directed la-
beled graphs [EPS73] and later generalized to other high-level structures, such as
Petri nets or algebraic specifications, by introducing the categorical framework of
high level replacement system (HLR systems) [EHKP90]. Basically, a HLR system
is a category with a distinguished classM of morphisms that fulfils certain prop-
erties (called HLR properties). The HLR properties were originally provided as a
list, consisting of all properties that were used to prove the fundamental results
for the double pushout approach. In [LS04], it was shown that most of the HLR
properties are consequences of a more general principle, leading to the notion of
adhesive categories. An adhesive category is any category that provides a certain
compatibility of pushouts and pullbacks, known as the van Kampen property. Over
the years, it was shown that various weaker versions of the van Kampen property
are still sufficient to provide the HLR properties, resulting in the notions of weak
adhesive and M-adhesive categories [EHPP04, EGH10]. A detailed overview on
the various versions of the van Kampen property and their relations can be found
in [EGH10]. In this thesis we use (M,N)-adhesive categories introduced by Habel
and Plump in [HP12a].

Definition 3.18 ((M,N)-adhesive category [HP12a]).
A category C with morphism classesM and N is an (M,N)-adhesive category

(C,M,N ) if the following properties hold:

a) M andN contain all isomorphisms:

• f being an isomorphism implies f ∈ M and f ∈ N

M and N are closed under composition and decomposition: given mor-
phisms f : A→ B and g : B → C in C then

• f , g ∈ X implies g ◦ f ∈ X, for any X ∈
{
M,N

}
• g ◦ f ∈ X and g ∈ X implies f ∈ X, for any X ∈

{
M,N

}
N is closed under M-decomposition: given morphisms f : A → B and
g : B → C in C then

• g ◦ f ∈ N and g ∈ M implies f ∈ N

b) C has pushouts along (M,N)-morphisms and pullbacks along M-mor-
phisms:

• Apushout along (M,N)-morphisms, or (M,N)-pushout, is a pushout
where one of the given morphisms is inM and the other morphism is
inN .

• Apullback along anM-morphism, orM-pullback, is a pullbackwhere
at least one of the given morphisms is inM.

M andN are closed under pushouts and pullbacks:



32 3 Fundamentals Of Symbolic Graphs and Graph Transformations

• Given pushout (1), then f ∈ X implies g ∈ X, for any X ∈
{
M,N

}
.

• Given pullback (1), then g ∈ X implies f ∈ X, for any X ∈
{
M,N

}
.

c) Pushouts in C along (M,N)-morphisms are (M,N)-VK squares. A pushout
(1) with m ∈ M and f ∈ N is a (M,N)-VK square if for any commutative
cube (2) with pushout (1) in the bottom, with pullbacks as back faces, and
b, c, d ∈ M, the following statement holds: the top face is a pushout if and
only if the front faces are pullbacks.

A B

C D

(1)

m

f g

n
(2)

A′

B′

A
B

C′

C

D′

D

m′
f ′

n′ g′

mf

n g

a
b

c
d

Remark 3.19 (Hierarchy of adhesive categories).
Asmentioned in the introduction of this section, there are various versions of adhe-
sive categories. Hence, many results where obtained for adhesive categories other
than (M,N)-adhesive categories. In order to transfer these results to (M,N)-ad-
hesive categories, it is important to know their relations. To this end, we briefly
review M-adhesive and adhesive HLR categories and show how they relate to
(M,N)-adhesive categories.

In contrast to (M,N)-adhesive categories,M-adhesive categories presume only
a single morphism class M. An M-adhesive category (C,M) can be defined in
terms of an (M,N)-adhesive category (C,M,N ) by choosing N � MorC, i. e. N
comprises all morphisms in C. Adhesive HLR categories are similar toM-adhesive
categories with the difference that the VK square property must hold for m ∈ M
only, instead of (m, b, c, d ∈ M). Consequently any adhesive HLR category is also
anM-adhesive category.

To obtain an (M,N)-adhesive category from an adhesive HLR category (or
M-adhesive category), for choices other than N � MorC, it must be shown that
narrowing the class N does not destroy the closure properties. Hence, instead of
verifying all properties stated in Definition 3.18, it is sufficient to show that:

a) N contains all isomorphisms.

b) N is closed under composition and decomposition.

c) N is closed underM-decomposition.

d) N is closed under pushouts and pullbacks alongM-morphisms.

Moreover, given anM-adhesive category (C,M) the previous properties are triv-
ially fulfilled for category (C,M,N ) withN �M.



3.1 Introduction to Category Theory and Transformation Systems 33

An (M,N)-adhesive category provides the following HLR properties.

Fact 3.20 (HLR properties of (M,N)-adhesive categories [HP12a]).
For any (M,N)-adhesive category (C,M,N ) the following properties hold:

a) Pushouts along (M,N)-morphisms are pullbacks: Given the (M,N)-pushout
(1), then (1) is also a pullback.

b) TheM–M-pushout–pullback decomposition: If (1)+(2) is an (M,N)-pushout
with l ∈ M and r ◦ k ∈ N , and (2) a pullback with w ∈ M, then (1) and (2)
are pushouts as well as pullbacks.

c) The cube (M,N)-pushout–pullback decomposition:Given the commutative cube
(3), where all morphisms in the top square and bottom square are inM, all
verticalmorphisms are inN , the top face is a pullback and the front faces are
pushouts, then the following statement holds: the bottom face is a pullback
if and only if the back faces are pushouts.

d) Pushout complements along (M,N)-morphisms are unique: Given morphisms
l : A → B and u : C → D, where l ∈ M and u ∈ N , then there is at most
one B (up to isomorphism) and morphisms k : A→ B and s : B → D, such
that (1) is a pushout.

(3)

A′

B′

A
B

C′

C

D′

D

m′
f ′

n′ g′

mf

n g

a
b

c
d

A C

B

E

D

F

(1)

(2)

k

l

u

s

r w

v

Note that theM–M-pushout–pullback decomposition was originally refereed to
as the theM–N-pushout–pullback decomposition property in [HP12a].

Another important result shows that (M,N)-adhesive categories are stable under
slice constructions. As mentioned in the previous section the slice construction can
be used to construct categories for typed structures from an untyped base category.
Hence, to show that a category obtainedby slice construction fromabase category is
(M,N)-adhesive, it is sufficient to show that the base category is (M,N)-adhesive.

Fact 3.21 (Slice construction of (M,N)-adhesive categories [PH15]).
If (C,M,N ) is an (M,N)-adhesive category, then for every object X in C

the slice category (C\X,M ∩MorC\X ,N ∩MorC\X) is also (M,N)-adhesive
adhesive.
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Now we define productions and transformations.

Definition 3.22 (Production).
Given an (M,N)-adhesive category (C,M,N ), a production p � (L ← K → R)
consists of the objects L, K, and R (called the left-hand side, the interface, and
the right-hand side, respectively) as well as left productionmorphism l : K → L,
l ∈ M and right productionmorphism r : K → R, r ∈ M.

Definition 3.23 (Transformation).
Given an (M,N)-adhesive category (C,M,N ), a direct transformationG p@m

������⇒ H
via a production p � (L ← K → R) and a match m : L → G, m ∈ N is given by
the following double pushout diagram, where (1) and (2) are pushouts:

KL R

G D H

(1) (2)

l r

g h

m k n

The morphism n : R → H is called comatch.

In the following, we call the classM production morphisms and the class N match

morphisms.
Finally we define (M,N)-adhesive transformation systems.

Definition 3.24 ((M,N)-adhesive transformation systems).
An (M,N)-adhesive transformation system ((C,M,N ), P) is composed of an
(M,N)-adhesive category (C,M,N ) and a set of productions P.

Let ((C,M,N ), P) be an (M,N)-adhesive transformation system. Given ob-
jects G and H in C, such that there is a direct transformation G p@m

������⇒ H via
p ∈ P we write G ���⇒ H. A transformation from G to H is a sequence of direct
transformations G ' G0 ���⇒ . . . ���⇒ Gn ' H for some n ≥ 0, and is denoted as
G ∗

���⇒ H. For n � 0 we have the identical transformations G id
���⇒ H and G ' H.

For n ∈ {0, 1} we write G 0..1
���⇒ H.

Remark 3.25 (Applicability of productions and construction of transformations).
Let ((C,M,N ), P) be an (M,N)-adhesive transformation systemwith a production
p � (L l← K r

→ R). Given a match m : L → G, m ∈ N , then production p is applicable

via match m if pushout (1) can be constructed as pushout complement of m and l.
If p is applicable to G via match m, then p is applied to G at match m by first

constructing D as the pushout complement of l and m and H by the pushout of k
and r leading to the direct transformation G p@m

������⇒ H via p and m.
Notice that the context object D is unique (up to isomorphism) if it exists, as

pushouts complements are unique in (M,N)-adhesive categories.
In the following, we say that a production p is applicable to an object G if there exists

a match such that p is applicable to G via match m.
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Now, we show a criterion to decide whether a production is applicable or not,
i. e., a criterion for the existence of pushout complements. To this end we need to
define the concept of initial pushouts.

Definition 3.26 ((M,N)-initial pushout).
Let (C,M,N ) be an (M,N)-adhesive category and given an N-morphism
f : A→ F. An (M,N)-pushout (1) with b ∈ M is an (M,N)-initial pushout over

f if for every (M,N)-pushout (2) with b′ ∈ M there exist unique morphisms
b∗ : B → D and c∗ : C → E with b∗, c∗ ∈ M such that b′ ◦ b∗ � b, c′ ◦ c∗ � c and
(3) is a pushout. Morphisms b and c are called the boundary and context with

respect to f .

b∗

c∗

(3)
(2)(1)

D

E

B

C

b

c

b′

c′

A

F

f

By means of initial pushouts we can define the following condition, which is
sufficient and necessary for the existence of a pushout complement.

Fact 3.27 (Gluing condition).
Let ((C,M,N ), P) be an (M,N)-adhesive transformation system and p � (L l←

K r
→ R) a production in P, given a match m : L → G, m ∈ N , then production p

is applicable to G via match m (i. e., the pushout complement of m and l exists) if
and only if there is amorphism b∗ : B → K such that l ◦ b∗ � b for (M,N)-initial
pushout (1).

KL RB

GC

(1)

l r

m

b

c

b∗

In addition to the gluing condition initial pushouts have further properties, which
are required to prove the Local Confluence Theorem in Chapter 8.

Fact 3.28 (Closure property of (M,N)-initial pushouts).
Given an (M,N)-adhesive category (C,M,N ) with (M,N)-initial pushouts,
then (M,N)-initial pushouts are closed under double pushouts alongM-mor-
phisms; that is, given an (M,N)-initial pushout (1) over f0 ∈ N and double
pushout diagram (2) with pushout (2a) and (2b) and b′0, b′1 ∈ M, the following
holds:
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a) The composition of (1) with (2a) (i. e., pushout (3)) is again an initial
pushout over d, where pushout (3) is derived from (1) and (2a) using
the initial pushout property of (1) (see Definition 3.26).

b) The composition of initial pushout (3) with pushout (2b), leading to push-
out (4), is an initial pushout over f1.

B

C

A0

F0

(1)

b

c

f0

A0

F0

D

E

A1

F1

(2a) (2b) (2)

b′0

c′0

f0 d

b′1

c′1

f1

B

C

D

E

(3)

b∗

c∗

d

B

C

A1

F1

(4)

b′1 ◦ b∗

c′1 ◦ c∗

f1

3.1.3 Negative Constraints and Negative Application Conditions

In this section we extend the expressiveness of transformation systems by intro-
ducing negative constraints and negative application conditions. Constraints and
application conditions were first introduced in [EH86] for graphs, and later lifted
to adhesive transformation systems [EEHP06]. In this thesis we stick to negative
constraints and negative application conditions. Moreover, for the rest of this sec-
tion, we assume that we have fixed an (M,N)-adhesive category (C,M,N ) with
distinguished classesM andN for production andmatchmorphisms, respectively.
We begin with introducing the notion of constraints. Constraints define global condi-

tions on the inner structure of objects. An object that satisfies these conditions is
called consistent. A negative constraint defines a forbidden structure that must not
appear in any consistent object.

Definition 3.29 (Negative constraint).
A simple negative constraint nc(N) is defined by an object N . An object G is

consistent with respect to a simple negative constraint nc(N), denoted as G 
 nc(N),
if there does not exist anN-morphism c : N → G.

A negative constraint NC is a set consisting of simple negative constraints. An
object G is consistent w. r. t. to a negative constraint NC, denoted as G 
 NC, if G
is consistent with respect to each simple negative constraint nc(N) in NC.

Note that every object is consistent with respect to the empty negative constraint
NC � ∅. In the following, we write G 1 NC to express that G 
 NC does not hold.
While negative constraints impose global restrictions on the inner structure of

objects, negative application conditions place local restrictions on the context of a
match.
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Definition 3.30 (Negative application condition (NAC)).
A simple negative application condition nac(L x

→ X) over an object L is defined by
anN-morphism x : L → X.

An N-morphism m : L → G satisfies a simple negative application condi-

tion nac(L x
→ X), denoted as m 
 nac(L x

→ X), if there does not exist an
N-morphism p : X → G such that p ◦ x � m.
A negative application condition NACL over L is a set consisting of simple

negative application conditions over L.
An N-morphism m : L → G satisfies a negative application condition NACL,

denoted as m 
 NACL, if morphism m satisfies all simple NACs nac(L x
→ X) in

NACL.

Similarly to the negative constraints, every N-morphism satisfies the empty nega-
tive application condition NACL � ∅; we write m 1 NACL for not m 
 NACL.
By adding negative application conditions to the left-hand sides (or right-hand

sides) of productions, we gain additional means to control their applicability.

Definition 3.31 (Extended production).
Let ((C,M,N ), P) be an (M,N)-adhesive transformation system with a pro-
duction p � (L ← K → R) ∈ P, an extended production

% � (p, NACL, NACR)

consists of a production p, a precondition negative application condition NACL over
L, and a postcondition negative application condition NACR over R.
A direct transformation G

%@m
������⇒ H via extended production % is a direct trans-

formation G
p@m

������⇒ H via (nonextended) production p such that the match m
satisfies NACL and comatch n satisfies NACR.

Up until now, we considered constraints and application conditions separately;
however, both concepts can be related via the notion of consistency preserving
productions. Basically, a production is consistency preserving with respect to a negative
constraint NC if for any object G that is consistent with respect to NC, any result of
applying the production to G is also consistent with respect to NC.

Definition 3.32 (Consistency guaranteeing and preserving production).
Given negative constraint NC and extended production % � (p, NACL, NACR),
the extended production % is consistency guaranteeingwith respect to a negative
constraint NC if for all direct transformation G

%@m
������⇒ H, we have that

G 
 NC if and only if H 
 NC.

The extended production % is consistency preserving with respect to NC if for
all direct transformation G

%@m
������⇒ H, we have that

G 
 NC implies H 
 NC.
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3.2 Introduction to First-Order Logic Languages

In this section, we give a brief introduction to many sorted first-order logic. More
specifically, we provide the syntax and semantics of the first-order logic language,
which is used in the next section to define symbolic graphs. This section is based
on the books [Gal85, EFT94].

3.2.1 Syntax of First-Order Logic

Basically, the syntax of a first-order language is composed of two parts, the logical

part consisting of logical connectives andvariables, and thenonlogical part consisting
of constant, function, and predicate symbols. While the logical part is fixed, the
nonlogical part depends on the intended application of the language and is given
by a signature.
We begin with the nonlogical part, but first we recall the concept of aword. Given

an alphabet A (i. e., in the general case an infinite, but countable set of elements
called symbols), the set of all words over alphabet A is denoted by A∗. The set of all
words of length n over alphabet A is denoted as An , where n ∈ N0. The set A0 � {ε}
contains the empty word ε only. The length of a word ω is denoted as |ω | ∈ N0. A
word ω of length n is also written as u1 . . . un .

The syntax for the nonlogical part is provided by a signature, which consists of
the symbols for naming available sorts, constants, functions, and predicates.

Definition 3.33 (Signature).
A signatureΣ � (S, O) consists of a sort symbol alphabet S, an operation symbol
alphabet O, and a function a : O → S∗ × S1

∪ {ε} assigning an arity (ω, s) to
each operation symbol o ∈ O. An operation symbol o with arity (ω, s) is

• a constant symbol if ω � ε and s , ε

• a function symbol if ω , ε and s , ε

• a predicate symbol if ω , ε and s � ε

Instead of denoting the arity of a constant symbol c ∈ O as (ε, s), we say c is of
sort s. The arity of a function symbol f ∈ O is denoted as s1 . . . sn → s; for the arity
of a predicate symbol p ∈ O we write s1 . . . sn .

Given a signature and a set of variable symbols, terms are built by composing the
variable symbols with the function and constant symbols in the followingway:

Definition 3.34 (Variables and terms).
Let Σ � (S, O) be a signature and X � (Xs )s∈S an S-indexed family of sets,
where each Xs contains the variables of sort s. We assume that the sets of
variablesXs are pairwisedisjoint, anddisjointwith the set of operation symbols.
The S-indexed family of Σ-terms T (X) � (Ts (X))s∈S is defined for each sort
s ∈ S by the smallest set Ts (X) such that

• x ∈ Ts (X), for all variables x ∈ Xs
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• c ∈ Ts (X), for all constant symbols c ∈ O of sort s

• f (t1, . . . , tn) ∈ Ts (X), for all function symbols f ∈O with arity s1 . . . sn→ s
and all terms ti ∈ Tsi (X) for i ∈ {1, . . . , n}

The syntax of a first-order logic language over a given signature is given by the
set F (X) consisting of all first-orderΣ-formulas obtained from composingΣ-terms
with predicate symbols and the logical symbols as defined next.

Definition 3.35 (First-order Σ-formula).
Let Σ be a signature and X � (Xs )s∈S an S-indexed family of variable sets,
the set of first-order Σ-formulas (or short Σ-formulas) over X is defined as the
smallest set F (X) such that:

• p(t1, . . . , tn) ∈ F (X), for each predicate symbol p : s1 . . . sn ∈ O and
terms ti ∈ Tsi (X), with i ∈ {1, . . . , n}

• t1
s
� t2 ∈ F (X), for terms t1, t2 ∈ Ts (X)

• > ∈ F (X) and ⊥ ∈ F (X)

• ¬Φ ∈ F (X), for each Φ ∈ F (X)

• Φ ∧Ψ, Φ ∨Ψ, Φ ⇒ Ψ, and Φ ⇔ Ψ are in F (X), for each Φ and Ψ in
F (X)

• ∃x.Φ ∈ F (X) and ∀x.Φ ∈ F (X), for each Φ ∈ F (X) and x ∈ X

The logical connectives ¬, ∧, ∨, ⇒, and ⇔ denote negation, and, or, implication,
and equivalence, respectively; the logical symbols > and ⊥ denote true and false,
respectively.Although, not explicitlymentionedwe also use parentheseswithusual
meaning in first-order Σ-formulas.
In first-order logic, variables may occur free or bound by a quantifier in aΣ-formula.

The set consisting of all variables that occur free in a given Σ-formula is obtained
as follows:

Definition 3.36 (Free variables).
Let Σ � (S, O) be a signature and X � (Xs )s∈S be an S-indexed family of
variable sets, the S-indexed family of sets of variables var(t) � (vars (t))s∈S ⊆ X
of a term t ∈ T (X) is defined for each sort s ∈ S by the set vars (t):

• vars (x) �



{x} if x ∈ Xs ,

∅ otherwise
, for a variable x

• vars (c) � ∅, for a constant c

• vars ( f (t1, . . . , tn)) � vars (t1) ∪ . . . ∪ vars (tn), for a function symbol f of
arity s1 . . . sn → s
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The S-indexed family of sets FV(Φ) � (FVs (Φ))s∈S ⊆ X, containing the free
variables of a Σ-formula Φ ∈ F (X), is defined for each sort s ∈ S by the set
FVs (Φ):

• FVs (p(t1, . . . , tn) � vars (t1) ∪ . . . ∪ vars (tn), for a predicate symbol p of
arity s1 . . . sn

• FVs (t1
s
� t2) � vars (t1) ∪ vars (t2), for terms t1 and t2

• FVs (¬Φ) � FVs (Φ)

• FVs (Φ ∗Ψ) � FVs (Φ) ∪ FVs (Ψ), for ∗ ∈ {∧,∨,⇒,⇔}

• FVs (Qx.Φ) �



FVs (Φ)\{x} if x ∈ Xs ,

FVs (Φ) otherwise
, for Q ∈ {∃,∀}

Example 3.37 (Syntax of linear integer arithmetic).
The signature ΣLIA � ({int}, {+,−, 0, 1,<,≤}) for linear integer arithmetic con-
sists of a single sort symbol int, and the

function symbols:

• + with arity int int→ int

• −with arity int int→ int

constant symbols:

• 0 and 1 both of sort int

predicate symbol:

• < with arity int int

Given a set of variables Xint � {x, z} we can construct a ΣLIA-formula

∃z.(z + z int
� x),

where x is the only variable that occurs free in the formula.

Note, as we have not defined any semantics for Σ-formulas, the formula shown in
the previous example is up until now just a sequence of symbols.

3.2.2 Semantics of First-Order Logic

Basically, the semantics of a Σ-formula is obtained by assigning values to the free
variables and by interpreting logical and nonlogical symbols. While the meaning
of logical symbols is fixed, the meaning of the nonlogical symbols is given by a
Σ-structure.
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Definition 3.38 (Many-sorted Σ-structure).
Given a signature Σ, a many-sorted Σ-structure D � (|D|,I) is a pair consisting
of a S-indexed family of nonempty sets |D| � (|D|s )s∈S, each called the domain
for sort s, and an interpretation function I defined as follows:

• Each constant symbol c ∈ O of sort s is interpreted as an element
I(c) � cD , where cD ∈ |D|s .

• Each function symbol f ∈ O of arity s1 . . . sn → s is interpreted as a
function I( f ) � f D , where f D : |D|s1 × . . . × |D|sn → |D|s .

• Each predicate symbol p ∈ O of arity s1 . . . sn ∈ O is interpreted as a
relation I(p) � pD , where pD ⊆ |D|s1 × . . . × |D|sn .

While aΣ-structure assignsmeaning to constant, function, andpredicate symbols,
it does not assign anymeaning to variables. Variables receivemeaning by assigning
values to them.

Definition 3.39 (Variable assignment).
Given aΣ-structureD, a variable assignment is any S-indexed family of functions
ζ : X → |D| � (ζs : Xs → |D|s )s∈S mapping the variables in Xs to elements of
the domains |D|s , respectively.

In the following, we write ζ[x 7→ a] : X → |D| for the new variable assignment
that coincides with ζ except that it assigns to variable x of sort s the element a of
the domain |D|s , i. e.,

ζ[x 7→ a] �



ζ(y) if x , y;

a otherwise.

Given a variable assignment, a term is evaluated in a Σ-structure as follows:

Definition 3.40 (Term evaluation).
The evaluation of Σ-terms with respect to a variable assignment ζ, is given by the
S-indexed family of functions

~·�Dζ : T (X) → |D| � (~·�Dζ,s : Ts (X) → |D|s )s∈S

defined as follows:

• ~x�Dζ,s � ζs (x), for a variable x of sort s

• ~c�Dζ,s � I(c), for a constant symbol c of sort s

• ~ f (t1, . . . , tn)�Dζ,s � I( f )(~t1�
D

ζ,s1
, . . . , ~tn�

D

ζ,sn
), for a function symbol f

with arity s1, . . . , sn → s and terms ti ∈ Tsi (X), i ∈ {1, . . . , n}
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The semantics of Σ-formulas is given by the relation � defined next.

Definition 3.41 (Semantics of Σ-formulas).
Let Φ,Ψ ∈ F (X) be Σ-formulas over the variables X and ζ : X → |D| a
variable assignment. The relation � is defined in the following where 2 is given
by (D, ζ) 2 Φ iff not (D, ζ) � Φ.

(D, ζ) � p(t1, . . . , tn) iff (~t1�
D

ζ , . . . , ~tn�
D

ζ ) ∈ I(p)

(D, ζ) � (t1
s
� t2) iff ~t1�

D

ζ � ~t2�
D

ζ

(D, ζ) � >
(D, ζ) 2 ⊥
(D, ζ) � ¬Φ iff (D, ζ) 2 Φ;
(D, ζ) � Φ∧Ψ iff (D, ζ) � Φ and (D, ζ) � Ψ
(D, ζ) � Φ∨Ψ iff (D, ζ) � Φ or (D, ζ) � Ψ
(D, ζ) � Φ⇒ Ψ iff (D, ζ) 2 Φ or (D, ζ) � Ψ
(D, ζ) � Φ⇔ Ψ iff (D, ζ) � Φ iff (D, ζ) � Ψ
(D, ζ) � ∀x.Φ iff (D, ζ[x 7→ a]) � Φ for all a ∈ |D|s , s ∈ S, x ∈ Xs

(D, ζ) � ∃x.Φ iff (D, ζ[x 7→ a]) � Φ for some a ∈ |D|s , s ∈ S, x ∈ Xs

We now define the notion of satisfaction and validity.

Definition 3.42 (Satisfaction and validity).
A Σ-formula Φ is satisfiable inD, iff

(D, ζ) � Φ for some assignment ζ.

In this case, we say that ζ is a solution of Φ inD.

A Σ-formula Φ is valid inD iff

(D, ζ) � Φ for every assignment ζ.

In this case we writeD � Φ.

The following fact states that the truth value of any Σ-formula Φ depends on the
assignment of the free variables only.

Fact 3.43 (Free variables).
LetD be aΣ-structure andΦ aΣ-formulawith an S-indexed set of free variables
FV(Φ) � (FVs (Φ))s∈S. For any two assignments ζ1 � (ζ1s )s∈S and ζ2 � (ζ2s )s∈S,
such that for all s ∈ S and xi(s) ∈ FVs (Φ) it holds that ζ1s (xi(s)) � ζ2s (xi(s)), we
have

(D, ζ1) � Φ iff (D, ζ2) � Φ.
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In the following, we assume that for every Σ-structure D, the corresponding
signature contains constant symbols for naming all elements in |D|, so that these
elements can be treated as constants in formulas.

Fact 3.44 (Solution).
LetΦ aΣ-formula and ζ a solution ofΦ inD, the solution ζ can be represented
as a conjunction of equality predicates such that

(D, ζ) �
∧
s∈S

*.
,

∧
xi(s)∈FVs (Φ)

(xi(s)
s
� ci(s))

+/
-
,

where ci(s) are constants in |D|s .
Moreover, letΦ be a conjunction of equality predicates as defined above, i. e.,

we have (D, ζ) � Φ, then the statements

(D, ζ) � Φ andD � Φ⇒ Φ.

are equivalent.

Proof. This fact is a direct consequence of Fact 3.43. �

Example 3.45 (Semantics of ΣLIA-formulas).
Given the signatureΣLIA provided in Example 3.37. LetDLIA be theΣLIA-struc-
ture consisting of the domain of the integer numbers Z. The function symbols
+D and −D are interpreted as addition and subtraction on Z. The constants
symbols 0D and 1D are interpreted as the numbers zero and one, whereas <D
denotes the the usual ordering on Z.

Now we can interpret the formula Φ given by ∃z.(z + z � x) as x is even.

Hence a possible solution is the assignment ζ1 with ζ1(x) � 4 as we have 2 ∈ Z

such that (DLIA, ζ1[z 7→ 2]) � ∃z.(z + z � x).
According to Fact 3.44we can represent the solution as the equality predicate

(x int
� 1 + 1 + 1 + 1) that can be rewritten to (x int

� 4) if we assume that we have
an constant symbol for every value in the domain Z. Moreover we may obtain
a valid formulaDLIA � (x int

� 4) ⇒ ∃z.(z + z � x).

Finally, we define substitution. To this end, we introduce substitution maps.

Definition 3.46 (Substitution map).
Let Σ be a signature and X � (Xs )s∈S an S-indexed family of variable sets,
then a substitution map for finite subsets Y � (Ys )s∈S of (Xs )s∈S is a family of
S-indexed functions σ̂ : Y → T (X)s � (σ̂ : Ys → T (X)s )s∈S.

In the following, we write

σ̂ : Y → T (X) :
σ̂(y1) . . . σ̂(yn)

y1 . . . yn
�

t1 . . . tn

y1 . . . yn
,
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to denote the substitution map σ̂ : Y → T (X) that sends the variables yi ∈ Y to
terms ti ∈ T (X). A substitution map of the form

σ̂ :
z1 . . . zn

y1 . . . yn
,

where z1, . . . , zn are variables is called variable map in the following.
In general, substitution has to be performed carefully on Σ-formulas containing

quantifiers, to not unintentionally alter their meaning. More specifically, given a
Σ-formula Φwe have to ensure that a free variable x in Φ, is not replaced by a term
containing a variable z, when z does not occur free at the position of x in Φ. For
example consider the ΣLIA-formula ∃z.(z + z � x) which expresses that x is even
(as given in Example 3.45). If we now replace variable x by variable z, we obtain
formula ∃z.(z + z � z) that is always valid as 0 + 0 � 0.

The standard solution for this problem is to replace the quantified variables by
fresh variables, before performing a substitution in the scope of a quantifier.

Definition 3.47 (Substitution [EFT94]).
Let Σ be a signature with S-indexed family with variable set X and let Φ be a
Σ-formula. Given a substitution map

σ̂ : Y → T (X) :
t1 . . . tn

y1 . . . yn
,

the Σ-formula Φ[σ̂], obtained from substituting Φ along σ̂ is given as follows:

• x[σ̂] �



x if x < dom(σ̂),

σ̂(x) otherwise,
for a variable x

• c[σ̂] � c, for a constant c

• f (t1, . . . , tn)[σ̂] � f (t1[σ̂], . . . , tn[σ̂]), for a function symbol f of arity
s1 . . . sn → s

• >[σ̂] � > and ⊥[σ̂] � ⊥

• p(t1, . . . , tn)[σ̂] � p(t1[σ̂], . . . , tn[σ̂]), for a predicate symbol p of arity
s1 . . . sn

• (t1
s
� t2)[σ̂] � (t1[σ̂]

s
� t2[σ̂]), for terms t1 and t2

• (Φ ∗Ψ)[σ̂] � (Φ[σ̂] ∗Ψ[σ̂]), for Σ-formulas Φ,Ψ, and ∗ ∈ {∧,∨,⇒,⇔}

• (¬Φ)[σ̂] � ¬(Φ[σ̂]), for a Σ-formula Φ

• Suppose yi1 , . . . , yir (i1 < . . . < ir) are exactly the variables yi ∈ Ys(i)
among y1, . . . , yn such that

yi ∈ FVs(i)
(
Qx.Φ

)
and yi , ti , where Q ∈ {∃,∀}.
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Then set
(Qx.Φ)

[
t1 . . . tn

y1 . . . yn

]
�Qu.

(
Φ

[
ti0 . . . tir u
yi0 . . . yir x

])
where u � x if x does not occur in ti0 . . . tir ; otherwise choose u such that
u is a variable in Xs(i) that does not occur anywhere in Φ or ti0 . . . tir .

3.3 Symbolic Graphs ans Symbolic Graph Transformation

In this section we introduce symbolic graphs and symbolic graph transformation
based on the DPO approach. Symbolic graphswere originally introduced byOrejas
et al. in [OL10b], as an attribution concept for graphs. A symbolic graph consists of
an E-graph and a Σ-formula, where an E-graph is a graph with an additional kind
of label nodes, used as placeholder for attribute values. Instead of assigning concrete
values directly to the label nodes, symbolic graphs provide a more expressive kind
of attribution by considering the label nodes as variables and constraining their
values by a Σ-formula.

3.3.1 The Category of Symbolic Graphs

Beforewedefine symbolic graphswe have to establish the category of E-graphs.

Definition 3.48 (E-graph and E-graph morphism).
An E-graph is a tuple G � (VG, XG, EV

G , EX
G , sV

G , sX
G , tV

G , tX
G ) consisting of:

• VG and XG the sets of graph and label nodes, respectively

• EV
G and EX

G the sets of graph and label edges, respectively

and the source and target functions:

• sV
G : EV

G → VG and tV
G : EV

G → VG relating two graph nodes

• sX
G : EX

G → VG and tX
G : EX

G → XG assigning a label node to a graph node

An E-graph morphism h : G → H from E-graph G to E-graph H is a tuple of
total functions

h � (hV : VG → VH , hX : XG → XH , hEV : EV
G → EV

H , hEX : EX
G → EX

H ),

such that h commutes with source and target functions, i.e., hV ◦ sV
G � sV

H ◦ hEV ,
hV ◦ tV

G � tV
H ◦ hEV , hV ◦ sX

G � sX
H ◦ hEX , hX ◦ tX

G � tX
H ◦ hEX .

Fact 3.49 (The category EG).
E-graphs together with their morphisms form the category EG of E-graphs.

Note that in contrast to the definition above, E-graphs are usually defined with an
additional kind of edge label nodes and corresponding edge label edges. However,
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as attribution of edges is not supported of the most practical approaches we leave
this out in order to improve readability.

Analogously to graphs, E-graphs can be extended by a type concept, leading to
typed E-graphs and typed E-graph morphisms.

Definition 3.50 (Typed E-graph and E-graph morphism).
A E-type graph is a distinguished E-graph

TG � (VTG, XTG, EV
TG, EX

TG, sV
TG, sX

TG, tV
TG, tX

TG),

where VTG , XTG, EV
TG, and EX

TG define the graph node, label node, graph edge
and label edge type alphabet, respectively.
A typed E-graph is a tuple (G, type) consisting of an E-graph G and an E-graph

morphism type : G → TG.
A typed E-graph morphism h : (G, type1) → (H, type2) is an E-graph morphism

h : G → H such that type2 ◦ h � type1.
Typed E-graphs over an E-type graph TG together with typed E-graph mor-

phisms constitute the category TEGTG.

Fact 3.51 (The category TEGTG).
Typed E-graphs over an E-type graph TG together with typed E-graph mor-
phisms constitute the category TEGTG.

Note that given an E-type graph TG, the category TEGTG of typed E-graphs over
TG is isomorphic to the slice category EG\TG.
As we shall use various different kind of morphisms classes in this thesis, we

introduce a self describing naming scheme for morphism classes, to improve the
readability of this thesis. Since the mapping mode for label nodes often differs
from the mapping mode for the other components, we apply the following naming
scheme. A class of E-graph morphisms is denoted as Xy , where X ∈

{
M,I,E

}
specifies the mode for mapping graph nodes, graph edges, and label edges; the
superscript y ∈

{
inj, bij, surj, ∗

}
specifies mode for mapping the label nodes. More

specifically,Mmeans injective,Imeans bĳective, and Emeans surjective for graph
nodes an all kind of edges, respectively. The superscript inj denotes an injective,
bij a bĳective, surj a surjective, and ∗ an arbitrary mapping for label nodes. Typed
E-graphs are denoted as Xy

TG. According to this scheme the classes Ibĳ andMinj

correspond to isomorphisms and monomorphisms in category EG; similarly, Ibĳ

TG

andMinj

TG correspond to isomorphisms and monomorphisms in category TEGTG.

Fact 3.52 (Properties of the category TEGTG and EG [EEPT06]).
The following properties hold in the category TEGTG over a type graph TG:

a) TEGTG has pushouts and pullbacks along arbitrary morphisms in TEGTG

b) TEGTG has binary coproducts
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c) TEGTG has an E–M factorization for E � E
surj

TG the class of all typed epimor-
phisms andM �M

inj

TG the class of all typed monomorphisms.

Moreover, the category TEGTG with the class Minj

TG of typed E-graph mono-
morphism isM-adhesive. Hence, the category TEGTG withM � N �M

inj

TG is
(M,N)-adhesive (see Remark 3.19).

Note that the previous properties hold also for the category EG of (untyped)
E-graphs with (untyped) mono and epimorphismMinj and Esurj.

Symbolic graphs can be defined by combining E-graphs with Σ-formulas as
follows:

Definition 3.53 (Symbolic graphs [OL10b]).
Given a Σ-structure D and a set of variables X � (Xs )s∈S, a symbolic graph

GΦ � 〈G,ΦG〉 consists of an E-graph G and a Σ-formula ΦG ∈ F (X), such that⋃̇
s∈SFV(ΦG) ⊆ XG, where

⋃̇
denotes the disjoint union.

In the following, we sometimes write GΦ as a shorthand notation for a symbolic
graph 〈G,ΦG〉. As defined above, label nodes serve as variables for formulas. Usu-
ally, we use the term label nodes to refer to the corresponding nodes in the graph
component, and the term variables to refer to the corresponding elements in the
Σ-formula. However, we sometimes refer to the label nodes as variables, too.

Symbolic graph morphisms are defined as follows:

Definition 3.54 (Symbolic graph morphisms [OL10b]).
Given a Σ-structure D, a symbolic graph morphism h : GΦ → HΦ from symbolic
graph GΦ � 〈G,ΦG〉 to symbolic graph HΦ � 〈H,ΦH〉 is a pair (h, ĥ) consisting
of an E-graph morphism h : G → H and a variable map

ĥ : FV(ΦG) → FV(ΦH ) �
(
ĥs : FVs (ΦG) → FVs (ΦH )

)
s∈S

such that (1) commutes and D |� ΦH ⇒ ΦG[ĥ], where the vertical morphisms
in (1) are inclusions.

FVs(ΦG) FVs(ΦH)

XG XH

(1)

ĥs

hG,X

Fact 3.55 (The category SGD).
Symbolic graphs over a Σ-structure D together with symbolic graph mor-
phisms form the category SGD .
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Fact 3.56 (SGD has pushouts [OL10b]).
Given a Σ-structure D, the category SGD has pushouts along arbitrary mor-
phisms in SGD .

Remark 3.57 (Construction of pushouts in SGD).
Diagram (1) is a pushout in SGD iff diagram (2) is a pushout in EG and

D |� ΦD ⇔
(
ΦB[ĥ′]∧ΦC[ ĝ′]

)
.

〈A, ΦA〉 〈B, ΦB〉

〈C, ΦC〉 〈D, ΦD〉

(1)

f

g

f ′

g′

A B

C D

(2)

f

g

f ′

g′

Note that, the Σ-formula component of the pushout object can be constructed
purely syntactically.

Fact 3.58 (SGD has pullbacks [OL10b]).
Given a Σ-structure D, the category SGD has pullbacks along arbitrary mor-
phisms in SGD .

Although, SGD has pullbacks along arbitrary morphisms in SGD [OL10b], for
this thesis it is sufficient to consider the construction of pullbacks for the case that
both morphisms are injective.

Remark 3.59 (Construction of pullbacks in SGD). Diagram (1) with f , g ∈ Minj

⇒ is
a pullback in SGD iff, (2) is a pullback in EG and

D |� ΦA ⇔
(
∃b1 . . .∃bn .ΦB

)
∨

(
∃c1 . . .∃cn .ΦC

)
,

where {b1, . . . , bn } � XB\ f ′X (XA) and {c1, . . . , cn } � XC\g′X (XA) are the label nodes
of B and C that have no preimage in A, respectively.

〈A, ΦA〉 〈B, ΦB〉

〈C, ΦC〉 〈D, ΦD〉

(1)

f ′

g′

f

g

A B

C D

(2)

f ′

g′

f

g

Analogously to E-graphs, symbolic graphs can be extended by a type concept. To
this endwe define a symbolic type graph TGΦ � 〈TG,⊥〉 as an E-type graph TG and
formula ⊥, which ensures that if there exists an E-graph morphism type : G → TG
from an symbolic graph 〈G,ΦG〉 to the symbolic type graph 〈TG,⊥〉 then type is
also a symbolic morphism asD � ⊥ ⇒ ΦG[ ˆtype] in any Σ-structureD.
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Definition 3.60 (Typed symbolic graphs and morphisms [OL10b]).
Let D be any Σ-structure and S the sort alphabet of Σ, a symbolic type graph
is a distinguished symbolic graph TGΦ � 〈TG,⊥〉, with E-type graph

TG � (VTG, XTG, EV
TG, EX

TG, sV
TG, sX

TG, tV
TG, tX

TG),

such that XTG contains exactly one variable xs for each sort symbol s ∈ S, i. e.,
XTG �

⋃̇
s∈Sxs .

A typed symbolic graph is a tuple (GΦ, type) consisting of a symbolic graph GΦ

and a symbolic graph morphism type : GΦ → TGΦ.
A typed symbolic graph morphism h : (GΦ, type1) → (HΦ, type2) is a symbolic

graph morphism h : GΦ → HΦ such that type2 ◦ h � type1.

Fact 3.61 (The category TSGD,TG).
Typed symbolic graphs over an symbolic type graph TGΦ together with typed
symbolic graph morphisms form the category TSGD,TG.

In order to denote classes of symbolic graph morphisms, the naming scheme for
E-graph morphism classes is extended by adding to each E-graph morphism class
symbol a subscript that specifies the operator for relating the formula components
of the codomain an domain. Hence, a class of (typed) symbolic graph morphisms
is denoted as Xy

z (Xy
z,TG).

According tho this scheme we can define the classes Ibĳ

⇔ and Ibĳ

⇔,TG, which are
indeed isomorphisms in SGD and TSGD,TG, respectively.

Fact 3.62 (Isomorphisms in SGD and TSGD,TG).
Let SGD be the category of symbolic graphs over a Σ-structure D. Given a
morphism h : 〈G,ΦG〉 → 〈H,ΦH〉 in SGD , then h ∈ Ibĳ

⇔ if h is bĳective for all
kinds of node and edges, andD � ΦH ⇔ ΦG[ĥ]. Moreover, if h ∈ Ibĳ

⇔ , then h is
an isomorphism in SGD .

The class of all typed symbolic graph isomorphisms Ibĳ

⇔,TG is given by

I
bĳ

⇔,TG � I
bĳ

⇔ ∩MorSGD\TGΦ .

Proof. Given a morphism h : 〈G,ΦG〉 → 〈H,ΦH〉 in I
bĳ

⇔ , to show that h is an
isomorphisms we have to verify that there exists a symbolic graph morphism
h−1 : 〈H,ΦH〉 → 〈G,ΦG〉 such that h ◦ h−1 � idH and h−1

◦ h � idG. As h is an
isomorphism in EG we know that there is an E-graph morphisms h−1 : H → G
such that h ◦ h−1 � idH and h−1

◦ h � idG. Hence h−1 is obviously also a symbolic
graph morphisms as h ∈ Ibĳ

⇔ implies thatD � ΦH ⇔ ΦG[ĥ], soD � ΦG ⇒ ΦH [ĥ−1].
Given a symbolic graph isomorphism h : 〈G,ΦG〉 → 〈H,ΦH〉, there is an sym-

bolic graph morphism h−1 : 〈H,ΦH〉 → 〈G,ΦG〉 such that h ◦ h−1 � idH and
h−1
◦ h � idG.

From symbolic graph morphism h we obtain

D � ΦH ⇒ ΦG[ĥ]. (3.1)
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From symbolic graph morphism h−1 we obtain

D � ΦG ⇒ ΦH [ĥ−1],

which can be rewritten as

D �
(
ΦG ⇒ ΦH [ĥ−1]

)
[ĥ]⇔

(
ΦG[ĥ]⇒ ΦH [ĥ ◦ ĥ−1]

)
,

leading to
D � ΦG[ĥ]⇒ ΦH , (3.2)

as h ◦ h−1 � idH .
From expressions 3.1 and 3.2 follows

D � ΦH ⇔ ΦG[ĥ];

hence, h ∈ Ibĳ

⇔ .
Showing that Ibĳ

⇔,TG is the class of all typed symbolic graph isomorphisms is
similar. �

3.3.2 Typed Symbolic Graph Transformation Systems

Based on the results originally presented in [OL10b], we define (M,N)-adhesive
transformation systems for the category of typed symbolic graphs.
Hence, we have to fix the classes M and N such that (TSGD,TG,M,N ) is

an (M,N)-adhesive category. One may wonder whether typed symbolic graphs
with the class M consisting of all typed symbolic graph monomorphisms is an
(M,N)-adhesive category; unfortunately, as shown in [OL10b], the answer is no.

However, the category TSGD,TG becomes an (M,N)-adhesive category by choos-
ing M � M

bĳ

⇔,TG and N � M∗

⇒,TG. The classes Mbĳ

⇔,TG and M∗

⇒,TG are given as
follows:

Definition 3.63 (Mbĳ

⇔,TG, andM
∗

⇒,TG-morphisms).
Let SGD be the category of typed symbolic graphs over a Σ-structureD, given
a morphisms h : 〈G,ΦG〉 → 〈H,ΦH〉 in SGD then:

• h ∈ Mbĳ

⇔ if h is injective for graph nodes and all kinds of edges, bĳective
for label nodes, andD � ΦH ⇔ ΦG[ĥ].

• h ∈ M∗
⇒ if h is injective for graph nodes and all kinds of edges, arbitrary

for label nodes, andD � ΦH ⇒ ΦG[ĥ].

Let TSGD,TG be the category of typed symbolic graphs over a Σ-structureD
and a symbolic type graph TGΦ, the classesM∗

⇒,TG andMbĳ

⇔,TG are given as

M
∗

⇒,TG �M
∗
⇒ ∩MorSGD\TGΦ andM

bĳ

⇔,TG �M
bĳ

⇔ ∩MorSGD\TGΦ ,

respectively.
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Note that in [OL10b] it was shown that the category of symbolic graphs with
M

bĳ

⇔-morphisms is an M-adhesive HLR category (therefore, also TSGD,TG with
M

bĳ

⇔,TG-morphisms). Hence, to define transformations we may choose the class for
match morphisms as the class of all symbolic graph morphisms. However, more
advanced concepts, e. g., the construction of precondition application conditions
from constraints, are not applicable to arbitrary match morphisms. In [DV14] we
have shown that the construction of precondition application conditions from con-
straints is possible for the choicesM �M

bĳ

⇔,TG and forN �M∗

⇒,TG.

Theorem3.64 (TSGD,TG withM �M
bĳ

⇔,TG andN �M∗

⇒,TG is (M,N)-adhesive).

Let TSGD,TG be the category of typed symbolic graphs over a givenΣ-structure
D and symbolic type graph TGΦ, then the category TSGD,TG with morphism
classesM �M

bĳ

⇔,TG andN �M∗

⇒,TG is (M,N)-adhesive.

Proof. In [OL10b], it was shown that SGD withM �M
bĳ

⇔ isM-adhesive. Accord-
ing to Remark 3.19, to show that TSGD,TG with M �M

bĳ

⇔,TG and N � M∗

⇒,TG
is (M,N)-adhesive, we have to ensure that (a) M∗

⇒ contains all isomorphisms,
(b)M∗

⇒ is closed under composition and decomposition, (c)M∗
⇒ is closed under

M
bĳ

⇔ decomposition, and (d)M∗
⇒ is closed under pushouts and pullbacks along

M
bĳ

⇔-morphisms:

a) It is obvious that Ibĳ

⇔ is a subclass ofM∗
⇒.

b) M∗
⇒ is closed under composition and decomposition, as injectivity is preserved

componentwiseunder composition anddecomposition, andany symbolic graph
morphism that is injective for graph nodes and all kind of edges is inM∗

⇒.

c) As Mbĳ

⇔ is a subclass of M∗
⇒, it follows from (ii) that M∗

⇒ is closed under
M

bĳ

⇔-decomposition.

d) M∗
⇒ is closed under pushouts and pullbacks alongMbĳ

⇔-morphisms, as injec-
tivity is preserved componentwise by pushouts and pullbacks along arbitrary
morphisms (Fact 3.9 and Fact 3.13), and any symbolic graph morphism that is
injective for graph nodes and all kind of edges is inM∗

⇒.

As a direct consequence of Fact 3.21, we have that TSGD,TG withM �M
bĳ

⇔,TG and
N �M∗

⇒,TG is (M,N)-adhesive, as it is isomorphic to the slice category SGD\TGΦ

withM � (Mbĳ

⇔ ∩MorSGD\TG) andN � (M∗
⇒ ∩MorSGD\TG). �

Based on the category TSGD,TG with Mbĳ

⇔,TG-morphisms we can define typed
symbolic productions and transformation systems.

Definition 3.65 (Typed symbolic productions and typed symbolic transforma-
tion systems [OL10b]).

A typed symbolic production p � (〈L,ΦL〉
l
← 〈K,ΦK〉

r
→ 〈R,ΦR〉) consists of a
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left production morphism l : 〈L,ΦL〉 → 〈K,ΦK〉 and a right production morphism

r : 〈R,ΦR〉 → 〈K,ΦK〉, which are both of classMbĳ

⇔,TG.
A typed symbolic graph transformation system TSGTS, is given by a finite set of

typed symbolic productions P and a the class ofM∗

⇒,TG of match morphisms.

Note, that l, r ∈ Mbĳ

⇔,TG implies that ΦL, ΦK , and ΦR are equivalent, often they are
the same formula.

Corollary 3.66 (TSGTS are (M,N)-adhesive).
Any typed symbolic graph transformation systemTSGTS constitutes an (M,N)-
adhesive transformation system in the sense of Definition 3.24.

Proof. This is a direct consequence of the fact that the category TSGD,TG with
morphism classesM �M

bĳ

⇔,TG andN �M∗

⇒,TG is (M,N)-adhesive. �

3.4 Model Transformation by Symbolic Graph Transformation

Up until now, we introduced the concepts of symbolic graphs and symbolic graph
transformation on a very abstract level. In the following, we present how the con-
cepts introduced for the campusmanagement system (introduced in Chapter 2) are
represented by symbolic graphs and symbolic graph transformations.
Similar to the case of nonattributed graphs, metamodels correspond to a type

graph, except that a symbolic type graph contains edges and nodes for representing
attributes and attribute types. This is shown in the following example.

Example 3.67 (Symbolic type graph for the CMS metamodel).
Figure 3.1 shows the symbolic typegraph for the facility management component
of CMSmetamodel originally presented in Figure 2.1. It contains a graph node
(solid box) for the classes Room and Booking, a graph edge (solid line) for the
association bookings, a label node (rounded box) for the attribute types int and
long, as well as a label edge (dashed line) for each attribute; that is, a label edge
for the attributes cap, capExam, start, and end, respectively.

An instance model is represented as a symbolic graph, where objects correspond
to graph nodes, links to graph edges, attribute slots to label edges, and attribute

facility management

ROOM

BOOKING

int

long

bookings

cap

capExam

start

end

Figure 3.1: The type graph for the CMS metamodel
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values to label nodes. However not every symbolic graph is an instance model.
Recall, that an instance model represents a snapshot of a system at a specific time
(see Section 2.1.1). Hence, every attribute slot of an object has to point to a concrete
value, which leads us to the notion of grounded symbolic graphs.

Basically, a grounded symbolic graph over a Σ-structure with domain |D| may
be considered as a symbolic graph containing a variable xv for representing every
value v ∈ |D|.

Definition 3.68 (Typed grounded symbolic graphs [OL10b]).
Given the category TSGD,TG over a Σ-structure D and symbolic type graph
TGΦ, a typed symbolic graph GΦ � 〈G,Φ〉 is grounded iff

• XG includes a variable xv for each value v ∈ |D|

• for every assignment ζ such that (D, ζ) � Φ, we have ζ(xv) � v, for each
variable xv ∈ XG

G

ro1 : Room

ro1.cap ro1.capExam

en1 : Enrollment

en1.stateen1.studId

en1.enrolled

en1.regCp en1.cp

cr1 : CourseRecord

cr1.grade cr1.tries

cmo1 : CoModOffer

cmo1.cp

exAlg1 : Exam

exAlg1.state exAlg1.regSt

daAlg1 : Date

daAlg1.begin daAlg1.duration

bo1 : Booking

bo1.begin bo1.end

bookings

cRecords

offer
exam

date

. . . ∧ (ro1.cap=479) ∧ (ro1.capExam=72) ∧ (en1.enrolled=true) ∧ (en1.studId=1234567) ∧
(en1.state=EN ST.STUDY) ∧ (en1.regCp=96) ∧ (en1.cp=57) ∧ (cr1.grade=5) ∧ (cr1.tries=1) ∧ (cmo1.cp=6) ∧

(exAlg1.state=EX ST.PLAN) ∧ (exAlg1.regSt=72) ∧ (daAlg1.begin=26.11.2042; 13:00) ∧ (daAlg1.duration=02:00)
∧ (bo1.begin=26.11.2042; 14:00) ∧ (bo1.end=26.11.2042; 16:00) ∧ . . .

ΦG

Figure 3.2: A typed grounded symbolic graph representing a model of the CMS

Next, we present an example of a typed grounded symbolic graph.

Example 3.69 (Grounded symbolic graphs as a models).
Figure 3.2 depicts a grounded symbolic graph, typed by the CMS type graph.
Note that Figure 3.2 displays only a section of the CMS system, which is as-
sumed to comprise hundreds of rooms and exams, and thousands of enroll-
ments. The graph nodes are depicted by solid boxes labeled with an node
identifier followed by a colon and the type identifier (i. e., the identifier of the
corresponding element in the CMS type graph). The graph edges are denoted
by solid arrows. Graph edges are tagged with the identifier of the correspond-
ing type identifier in the CMS type graph. Label edges are denoted by dashed
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arrows. The rounded boxes represent label nodes. To improve readability, label
nodes are tagged by the identifier of the corresponding object and the attribute
identifier (i. e., the type identifier of the label edge) separated by a period.
However, note that in general, these labels can be chosen arbitrarily. We do not
explicitly denote the type of the label nodes as it is uniquely determined by the
type of the attribute. The corresponding Σ-formula is shown on the bottom of
Figure 3.2. As stated in Definition 3.68, a grounded symbolic graph has a label
node for each value in the domain. As it is impossible to display all of them, we
depict only those label nodes and only the formula parts which are of interest.
Similar to the previous chapter we denote dates in the DD.MM.YYYY; hh:mm
and times the 24 h clock format hh:mm;

One may assume that is sufficient to include label nodes for only a subset of |D|.
However, this is not the case. The problem is, that by definition, symbolic direct

transformations cannot add label nodes; thus, all required values have to be present in
a symbolic graph before applying a symbolic production.

Definition 3.70 (Construction of typed symbolic direct transformations).

Given a typed symbolic production p � (〈L,ΦL〉
l
← 〈K,ΦK〉

r
→ 〈R,ΦR〉) and a

match m : 〈L,ΦL〉 → 〈G,ΦG〉. Production p is applied to 〈G,ΦG〉 at match m
as follows:

• Construct D as the pushout complement of l and m: Delete those nodes and
edges in G that are in the match (i. e., m(L)) but keep the image of K (i. e.,
m(l(K))); that is, D � (G\m(L) ∪ m(l(K))). The pushout complement
exists if D does not contain dangling edges, i. e., edges whose source or
target node was deleted.

• Construct H as the pushout of r and k:Add to D those nodes and edges that
are in R but not in L; that is, H � D ∪̇

(
R\r(K)

)
.

〈K, ΦL〉〈L, ΦK〉 〈R, ΦR〉

〈G, ΦG〉 〈D, ΦD〉 〈H, ΦH〉

(1) (2)

l r

g h

m k n

As l and r are Mbĳ

⇔,TG-morphisms and Mbĳ

⇔,TG-morphisms are closed under
pushouts we know that also g, h ∈ Mbĳ

⇔,TG. Hence,D � ΦG[ ĝ]⇔ ΦD ⇔ ΦH [ĥ].
Moreover, as g and h are bĳective for label nodes and we may assume that
EX

D � EX
G � EX

H as well as ΦD � ΦG and ΦH � ΦG (and consequently ΦD � ΦH).
As a direct consequence, if ΦG is grounded then also ΦD and ΦC.

Example 3.71 (Direct transformation via a symbolic production).
Figure 3.3 shows an example for a direct transformation. The symbolic version
symbBookRoom of production bookRoom originally presented in Chapter 2
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is shown on top of Figure 3.3. To improve readability, we use the same la-
beling scheme for variables (label nodes) as introduced in Chapter 2; that is,
nonprimed variables denote the attribute values before and primed variables
represent the newattribute values after applying the production, although they
appear on the left and right-hand side in case of symbolic productions. The
production is applied to an excerpt of the grounded symbolic graph 〈G,ΦG〉

(shown Figure 3.2). To improve readability we have left out the parts irrelevant
for applying production symbBookRoom The production is applied by first
finding a match m for the left hand side 〈L,ΦL〉 in 〈G,ΦG〉. The actual match
for the E-graph component L in G is drawn bold; that is, m maps graph nodes
ro to ro1, da to daAlg1, and ex to exAlg1. Themapping of the label nodes is given
by the variable map m̂:

ro1.capExam bo.begin’ bo.end’ daAlg1.begin daAlg1.duration
ro.capExam bo.begin’ bo.end’ da.begin da.duration

. . .

. . . exAlg1.state exAlg1.regSt exAlg1.state’
ex.state ex.regSt ex.state’

Note, as 〈G,ΦG〉 is a grounded symbolic graph, we can assume that 〈G,ΦG〉

contains label nodes bo.begin’ and bo.end’, and exAlg1.state’ with the corre-
sponding equality predicates (as shown in Figure 3.3).
To verify that m is a symbolic graph morphism we have to show that

D � ΦG ⇒ ΦL[m̂].

To this end, we rewrite ΦG and ΦL[m̂] as shown in the following table:

ΦG ΦL[m̂]

. . . ∧

⇒

(ro1.capExam=72) ∧
(daAlg1.begin=26.11.2015; 13:00) ∧ (ro1.capExam≤ exAlg1.regSt)

(daAlg1.duration=02:00) ∧ (exAlg1.state=EX_ST.PLAN)
(exAlg1.state=EX_ST.PLAN) ∧ (exAlg1.state’=EX_ST.READY) ∧
(exAlg1.state’=EX_ST.READY) ∧ (bo.begin’=daAlg1.begin) ∧

(exAlg1.regSt=72) ∧ (bo.end’=daAlg1.begin+daAlg1.duration) ∧
(bo.begin’=26.11.2015; 13:00) ∧
(bo.end’=26.11.2015;15:00) ∧

. . .

As:

(ro1.capExam=72) ∧
⇒ (ro1.capExam≤exAlg1.regSt),

(exAlg1.regSt=72)

(exAlg1.state=EX_ST.PLAN) ∧
⇒

(exAlg1.state=EX_ST.PLAN) ∧
(exAlg1.state’=EX_ST.READY) (exAlg1.state’=EX_ST.READY),



3.5 Open Issues of Symbolic Graph Transformations 57

(bo.begin’=26.11.2015; 13:00) ∧
⇒ (bo.begin’=daAlg1.begin), and

(daAlg1.begin=26.11.2015; 13:00)

(bo.end’=26.11.2015;15:00) ∧
⇒ (bo.end’=daAlg1.begin+daAlg1.duration),(daAlg1.begin=26.11.2015; 13:00) ∧

(daAlg1.duration=02:00)

the implicationD � ΦG ⇒ ΦL[m̂] is valid. Recall that although dates and times
are denoted in the DD.MM.YYYY;hh:mm and hh:mm format, they are internally
represented as values of type long. Hence, arithmetic on dates and times is, in
fact, arithmetic on long values.
The production is applied by first constructing 〈D,ΦD〉 as the pushout com-

plement of m and l, and afterwards constructing 〈H,ΦH〉 as the pushout of
r and k. Note, as l and r are bĳections on label, also f and g are bĳection on
label nodes (Definition 3.20). Moreover, we have D � ΦG ⇔ ΦD ⇔ ΦH . Conse-
quently, the fact that 〈G,ΦG〉 is a grounded symbolic graph, implies that also
〈D,ΦD〉 and 〈H,ΦH〉 are grounded symbolic graphs.
The resulting grounded symbolic graph 〈H,ΦH〉 contains a new booking bo

for room ro1, for the date daAlg1 of exam exAlg1.

3.5 Open Issues of Symbolic Graph Transformations

Based on the previous overview, we evaluate symbolic graph transformations with
respect to their applicability to fulfill the objectives presented in the introduction
of this thesis. Accordingly, we discuss the application of symbolic graph transfor-
mations regarding (i) their feasibility to finitely represent attributed graphs and
transformations, as well as (ii) their ability to be used for consistency constraint
verification and conflict analysis. Moreover, based on this overview we further
motivate and detail the key contributions presented in the remainder of this thesis.
We begin with discussing the notion of grounded symbolic graphs for represent-

ing models. Recall that a grounded symbolic graph contains a label node for each
data value in the domain. Hence, in case of unbounded domains this leads to infi-
nite graphs, although the corresponding instance model might be finite. Another
aspect is the coding of attribute values as conjunctions of equality predicates that
leads to infinite formulas in case of unbounded domains, which are not permitted
by the definition of Σ-formulas. Although, the problem might be solved by coding
attribute values as sets of Σ-formulas, the conceptual difference between grounded
symbolic graphs and the notion of instance models (see Section 2.1.1) still remains.
Now we consider the application of symbolic productions to nongrounded sym-

bolic graphs. As symbolic graph transformation systems are (M,N)-adhesive, it
seems reasonable to expect that symbolic productions may also be applied to arbi-
trary (i. e., nongrounded) symbolic graphs. While from a theoretical point of view
this is possible, in practice, the application of symbolic production to nongrounded
symbolic graphs does not always behave as expected, which is demonstrated by
the following example.
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L K R

G H

l r

ro : Room ro.capExam

da : Dateda.duration da.begin

bo.end’ bo.begin’

ex : Examex.state ex.regSt

ex.state’

date

...
ro : Room ro.capExam

bo : Booking

da : Dateda.duration da.begin

bo.end’ bo.begin’

ex : Examex.state ex.regSt

ex.state’

date

bookings

location

(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧ (bo.end’=da.begin+da.duration)

ΦL ⇔ ΦK ⇔ ΦR

ro1 : Room ro1.capExam

daAlg1 : DatedaAlg1.duration daAlg1.begin

bo.end’ bo.begin’

exAlg1 : ExamexAlg1.state exAlg1.regSt

exAlg1.state’

date

(ro1.capExam=72) ∧ (exAlg1.state=EX ST.PLAN) ∧
(daAlg1.begin=26.11.2042;13:00) ∧ (daAlg1.duration=02:00) ∧

(exAlg1.regSt=72)

ΦG

ro1 : Room ro1.capExam

bo : Booking

da : DatedaAlg1.duration daAlg1.begin

bo.end’ bo.begin’

exAlg1 : ExamexAlg1.state exAlg1.regSt

exAlg1.state’

date

bookings

location

(ro1.capExam=72) ∧ (exAlg1.state=EX ST.PLAN) ∧
(daAlg1.begin=26.11.2042;13:00) ∧ (daAlg1.duration=02:00) ∧

(exAlg1.regSt=72) ∧
(exAlg1.state’=EX ST.READY) ∧ (bo.begin’=26.11.2042; 13:00) ∧

(bo.end’=26.11.2042; 15:00) ∧

ΦH

Figure 3.4: Limitations of symbolic productions

Example 3.72 (Limitations of symbolic productions).
Wemight expect that it should be possible to apply production symbBookRoom
to typed symbolic graph 〈G,ΦG〉 (depicted on the bottom left in Figure 3.4)
resulting in the typed symbolic graph 〈H,ΦH〉 (depicted below right in Fig-
ure 3.4); However, this is not possible. Lets assume first that the dashed label
nodes bo.begin’, bo.end’, and exAlg1.state’ do not exists in 〈G,ΦG〉. Hence, we
cannot find a match for the left-hand side graph L in graph G. Notice that,
although, the match need not to be injective for label nodes, we may not map
label nodes bo.begin’ and bo.end’ (from L) to any other label node in G as
ΦG ⇒ ΦL[m̂] would not be valid.
Now, assume that G is supplied with an unlimited number of label nodes;

hence, we may assume that G includes label nodes bo.begin’, bo.end’, and
exAlg1.state’. However, we still cannot apply the production symbbookRoom to
〈G,ΦG〉, because ΦG ⇒ ΦL[m̂] is not valid.
To solve this problem we have to assume that 〈G,ΦG〉 contains a label node

for each value inD with corresponding equality predicate inΦG, whichmeans
that 〈G,ΦG〉 is a grounded symbolic graph.

As shown in the previous example, to apply a symbolic production, the match has
to include also a mapping of the primed label nodes (which represent the new
attribute values). Grounded symbolic graphs guarantee the existence of such an
appropriate mapping by including a certain label node for each value of a domain.
However, in general (i. e., for arbitrary symbolic graphs) this is not the case. Hence,
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the application of symbolic productions to arbitrary symbolic graphs does not lead
to the expected results, i. e., they are just not applicable in most cases. Nevertheless,
especially to apply conflict analysis techniques to symbolic graphs (see Chapter 8),
it is necessary to apply productions also to nongrounded symbolic graphs.
Orejas et al. approached this issue by introducing lazy graph transformations in

[OL10a]. The basic idea of lazy graph transformations is to permit productions to
create label nodes and constraints. Consequently, the required label nodes need not
to be provisioned beforehand. To this end, lazy graph transformations are based on
productions with different classes for left and right production morphisms. Simi-
lar to symbolic productions, the left production morphisms are restricted to class
M

bĳ

⇔,TG. The right productionmorphismshas to be only a symbolic graphmonomor-
phism (instead of in classMbĳ

⇔,TG as for symbolic productions). However, by permit-
ting symbolic graph monomorphisms for the right production morphisms, a lazy
transformation may affect the values of label nodes that are not part of its match.
This problem is illustrated in the following example.

Example 3.73 (Nonlocal effects of lazy graph transformations).
The lazy production shown on top of Figure 3.5 further restricts the value of
existing label node x by adding constraint (x = 5). The direct transformation
derived by applying this production to a symbolic graph 〈G,ΦG〉 is shown
on the bottom of Figure 3.5. In addition to a label node x the graph G con-
tains an other label node y, whose value is given by (x = y). Applying the pro-
duction to symbolic graph 〈G,ΦG〉 results in symbolic graph 〈H,ΦH〉 with
ΦH ⇔ (x � y) ∧ (x � 5). Hence, in addition to setting te value of x equal to 5,
the application implicitly sets also the value of y equal to 5, although label node
y was not in the match. In this way, lazy transformations violate the locality
property.

L K R

G D H

l r

g h

m k n

x

>ΦL

x

>ΦK

x

(x= 5)
ΦR

x y

(x= y)
ΦG

x y

(x= y)
ΦD

x y

(x= y) ∧ (x= 5)
ΦH

Figure 3.5: Example of a transformation via a lazy production which has nonlocal effects.

The locality property allows for inferring global properties of productions (i. e.,
they are valid for all graphs) by only considering a finite subset of graphs. In
this way, the locality property forms the basis of almost all analysis techniques for
transformation systems, including the results for constraint verification and conflict
analysis techniques. As a consequence, constraint verification and conflict analysis
techniques cannot be applied to lazy transformations.
To sum up, in order to use symbolic graphs as a basis to achieve our objectives,

we need a transformation approach that (i) shows the desired behaviour when
applied to nongrounded graphs and (ii) provides the properties required for the
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constraint verification and conflict analysis techniques at the same time. To this end
we propose projective graph transformations in the next chapter. Basically, projective
graph transformations can be considered as a compromise between the nice formal
properties of symbolic graph transformations and the expressive power of lazy
transformations. Projective graph transformations follow the idea of lazy graph
transformations; that is, projective productions have different classes for left and
right production morphism. However, to ensure that projective transformations
have only local effects, we require the right production morphisms to be in the
class of projection morphisms. The class of projection morphisms and the con-
cept of projective graph transformations is introduced in Chapter 4. Moreover, we
show that projective graph transformations provide the desired behaviour when
applied to nongrounded graphs. In order to show that projective graph transforma-
tions provide the required formal properties, we first introduce (L,R,N)-adhesive
transformation systems in Chapter 5. Basically, (L,R,N)-adhesive transformation
systems are a generalization of (M,N)-adhesive transformation systems in order
to cope with productions that require different classes for left and right production
morphisms. In Chapter 6, we show that projective graph transformation systems
fit into the framework of (L,R,N)-adhesive transformation systems. Subsequently,
we show inChapter 7 andChapter 8 that constraint verification and conflict analysis
techniques lead to the expected results when applied to projective graph transfor-
mation systems.



4
PRO JECT IVE GRAPH TRANSFORMAT IONS

In this chapter we present projective graph transformation systems as an extension
of symbolic graph transformations. In contrast to symbolic productions, projective
productions can create label nodes and constraints. Hence, projective productions
are appropriate to transform also nongrounded symbolic graphs, as the required
label nodes can be created on the fly.
We begin with introducing the class of projection morphisms in Section 4.1.

Based on thismorphism classwe define in Section 4.2 the notion of projective graph
transformation systems. In Section 4.3wediscuss the applicationof projective graph
transformations in the context of model transformations and show that projective
graph transformations solves the shortcomings of symbolic graph transformations
in this context.
In the following, we present all constructions directly for typed symbolic graphs.

To this end, we assume for the rest of this chapter that category TSGD,TG is given
by a symbolic type graph TGΦ and a Σ-structureD.

4.1 Projection Morphisms

In this section we introduce the new classMinj

Proj,TG, of typed projection morphisms.
A projection morphism a : 〈A,ΦA〉 → 〈B,ΦB〉 is a symbolic graph monomorphism
such that ΦA is a projection of ΦB. Intuitively, ΦA is a projection of ΦB, if ΦA is
equivalent to ∃x1 . . .∃xn .ΦB, where {x1, . . . , xn } � XB\aX (XA) is the set consisting
of all variables that are in XB but not in XA. In such a way any solution for ΦA can
be extended to a solution of ΦB.
In the following, we give a more general definition of projection morphisms,

whereasMinj

⇒,TG is the class of typed symbolic monomorphisms.

Definition 4.1 (Typed projection morphism).
AnMinj

⇒,TG-morphism a : 〈A,ΦA〉 → 〈B,ΦB〉 is a typed projection morphism, i. e.,
a ∈ Minj

Proj,TG, if and only if for any typed symbolic graph 〈Z,ΦZ〉 with typed
E-graphmorphisms z : Z → B and z′ : Z → A such that z � a ◦ z′, the following
statement is true:

D � ΦB ⇒ ΦZ[ẑ] iffD � ΦA ⇒ ΦZ[ẑ′].
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〈Z, ΦZ〉

〈A, ΦA〉 〈B, ΦB〉a

z′ z

In other words, z is a typed symbolic graph morphism if and only if z′ is a
typed symbolic graph morphism.

We refer to this property in the following as the projection property. Moreover, we
shall see in the next sections that projection property is very useful to derive further
facts for projective graph transformations.
Up until now, we provided only an intuition for the construction of projection

morphisms by existential quantification. In the following, we show that the projec-
tion of a symbolic graph 〈B,ΦB〉 to a given subgraph A of B can be constructed as
a pullback.

Definition 4.2 (Construction of projections).
Given a typed symbolic graph 〈B,ΦB〉 and a typed E-graph A, both typed
over the same type graph TG. For an E-graph monomorphism a′ : A→ B, the
projection morphism a : 〈A,ΦA〉 → 〈B,ΦB〉 is constructed as the projection

Proj(〈B,ΦB〉, a′) of 〈B,ΦB〉 toA via a′,which is definedas follows: First construct
symbolic graph 〈B,⊥〉 with typed symbolic graph morphism i : 〈B,ΦB〉 →

〈B,⊥〉 given by i � idB, where idB is the identitymorphisms of B in the category
TEGTG. In a second step, symbolic graph 〈A,⊥〉 is obtained from typedE-graph
A and ⊥. Note that morphism i : 〈B,ΦB〉 → 〈B,⊥〉 and a′ : 〈A,⊥〉 → 〈B,⊥〉 are
symbolic, asD � ⊥ ⇒ ΦB andD � ⊥ ⇒ ⊥[â′] hold in any Σ-structureD.

〈B,⊥〉〈A,⊥〉

〈B, ΦB〉〈A, ΦA〉

(1) i

a

a′

i′

Finally, the projection morphism a : 〈A,ΦA〉 → 〈B,ΦB〉 is obtained by the
pullback (1) of a′ and i.

Remark 4.3 (Properties of projection construction via pullbacks).
Note that pullback (1) in the previous definition is also a pushout in TEGTG, as
morphisms i � idB and i′ � idA are given by the identities in TEGTG, and every
commuting square along identities is a pushout (Fact 3.14.c). Moreover, pullback
(1) is also a pushout in TSGD,TG, as D � ⊥ ⇔

(
⊥∧ΦB

)
is valid in any Σ-structure

D; hence, the Σ-formula ⊥ of the pushout object 〈B,⊥〉 is always equivalent to the
conjunction of the Σ-formulas of 〈A,⊥〉 and 〈B,ΦB〉.

Note, as (1) is a pullback and a′ as well as i are monomorphisms, ΦA is equiva-
lent to ∃b1 . . .∃bn .ΦB ∨⊥, which simplifies to ∃b1 . . .∃bn .ΦB, where {b1, . . . , bn } �

XB\aX (XA).
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L′ L

L′ L

a′

i′ i

a

ro : Room ro.capExam

da : Dateda.duration da.begin

bo.end’ bo.begin’

ex : Examex.state ex.regSt

ex.state’

date

⊥

ro : Room ro.capExam

da : Dateda.duration da.begin

bo.end’ bo.begin’

ex : Examex.state ex.regSt

ex.state’

date

(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧

(bo.end’=da.begin+da.duration)

ro : Room ro.capExam

da : Dateda.duration da.begin

ex : Examex.state ex.regSt

date

⊥

ro : Room ro.capExam

da : Dateda.duration da.begin

ex : Examex.state ex.regSt

date

∃(ex.state’).∃(bo.begin’).∃(bo.end’).
(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧

(bo.end’=da.begin+da.duration)

Figure 4.1: Construction of Projections

Example 4.4 (Construction of projections).
Figure 4.1 shows the construction of a projection morphism according to Defi-
nition 4.2, where 〈L,ΦL〉 corresponds to the left-hand side of production symb-
BookRoompresented in Example 3.71. The idea is to use projection to remove all
label nodes that are not assigned to a graph node. To this end,we derive L′ from
L by removing all label nodes not assigned to a graph node. Hence, there is an
E-graph monomorphism a′ : L′ → L which is given by the inclusion of L′ in L.
Thenwe construct the graphs 〈L,⊥〉 and 〈L′,⊥〉with symbolic graphmorphism
i. Finally, we obtain projectionmorphism a : 〈A,ΦA〉 → 〈B,ΦB〉 by the pullback
of a′ and i. Note, as both a′ and i are injective, we can construct L′ according to
Remark 3.59. Hence, Φ′L is equivalent to ∃(ex.state′).∃(bo.begin′).∃(bo.end′).ΦL.

In the following lemma we show that any morphism obtained according to Defini-
tion 4.2 is a projection morphism, and every projection morphism can be obtained
according to Definition 4.2.

Lemma 4.5 (Construction of projection morphisms).
Let TSGD,TG be the category of typed symbolic graphs, every morphism
a : 〈A′,Φ′A〉 → 〈A,ΦA〉 is inM

inj

Proj,TG if and only if it is constructed according to
Definition 4.2.

Proof.

If. Given projection morphism a : 〈A,ΦA〉 → 〈B,ΦB〉, we have to show that the
commuting diagram (1) (shown below) is a pullback in TSGD,TG. This is shown
by verifying the universal pullback property of (1); that is, for any typed symbolic
graph 〈Z,ΦZ〉 and typed symbolic graph morphisms z : 〈Z,ΦZ〉 → 〈B,ΦB〉 and
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z′′ : 〈Z,ΦZ〉 → 〈A,⊥〉 with i ◦ z � a′ ◦ z′′, there is a unique typed symbolic graph
morphism z′ : 〈Z,ΦZ〉 → 〈A,ΦA〉 with z′′ � i′ ◦ z′ and z � a ◦ z′.

As i′ is given uniquely by i′ � idA in TEGTG, we may obtain a unique typed
E-graph morphism z′ : Z → A as z′ � z′′. Thus we have z′′ � i′ ◦ z′. As the E-graph
components of a′ and a are the same, we also have z � a ◦ z′. By assumption, z
is a typed symbolic graph morphism and a a typed projection morphism; hence,
we can conclude from the projection property of a that z′ is also a typed symbolic
graph morphism. As z′ is unique in TEGTG it is also unique in TSGD,TG (up to
isomorphism).

〈B,⊥〉〈A,⊥〉

〈B, ΦB〉〈A, ΦA〉

(1)

〈Z, ΦZ〉

i

a

a′

i′

z′

z′′

z

Only if. Given pullback (1) constructed according to Definition 4.2, we have
to verify the projection property of a : 〈A,ΦA〉 → 〈B,ΦB〉; that is, for any typed
E-graph morphisms z : Z → B and z′ : Z → A with z � a ◦ z′, we have to show
that (i) if z′ is a typed symbolic graph morphism, then also z; and (ii) if z is a typed
symbolic graph morphism, then also z′.

(i). As z′ and a are typed symbolic graph morphisms, then also its composition
z � a ◦ z′.
(ii). First we construct typed E-graph morphism z′′ : Z → A as z′′ � i′ ◦ z′. Mor-

phism z′′ is also a typed symbolic graph morphisms as D � ⊥ ⇒ ΦZ[ẑ′′] holds in
any Σ-structure D. From the commutativity of (1) we know a′ ◦ i′ � i ◦ a. Hence,
from z′′ � i′ ◦ z′ and z � a ◦ z′ we obtain

a′ ◦ z′′ � a′ ◦ i′ ◦ z′ � i ◦ a ◦ z′ � i ◦ z.

Consequently, we may use the universal property of pullback (1) with typed sym-
bolic graph morphisms z′′ and z to construct unique x : 〈Z,ΦZ〉 → 〈A,ΦA〉. To
show that z′ is a typed symbolic graph morphism, we have to show that x � z′.
From the universal property of pullback (1) we know that z � a ◦ x and z′′ � i′ ◦ x.
By construction we know that z � a ◦ z′ and z′′ � i′ ◦ z′. As x is unique it must hold
that x � z′. Consequently, z′ is a typed symbolic graph morphism. �

4.2 Projective Graph Transformation Systems

Based on the class of projection morphism we define projective productions and
projective graph transformation systems in the following.
One may wonder whether TSGD,TG with morphism classesM �M

inj

Proj,TG and

N �M
inj

⇒,TG is (M,N)-adhesive, which would imply that it is sufficient to choose
M

inj

Proj,TG for the left and right production morphisms. Unfortunately, this is not the
case as shown by the following example.
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∃a.∃b.∃c.
(
(a = b) ∧ (b = c)

)Φ′
A

∃a.∃b.
(
(a = b) ∧ (b = c)

)Φ′
B

∃b.∃c.
(
(a = b) ∧ (b = c)

)Φ′
C

∃b.
(
(a = b) ∧ (b = c)

)Φ′
D

>
ΦA

(b = c)
ΦB

(a = b)
ΦC

(a = b) ∧ (b = c)
ΦD

A′

A

B′

B

C′

C

D′

D

b

b c

c

a b

a

a b c

a c

m′f ′

mf

n′

n

g′

g

bc

a

d

Figure 4.2: Category TSGD,TG withM �M
inj

Proj,TG andN �M
inj

⇒,TG is not (M,N)-adhesive

Example 4.6 (The category TSGD,TG with morphism classesM �M
inj

Proj,TG and

N �M
inj

⇒,TG is not (M,N)-adhesive).
Consider the commutative cube shown in Figure 4.2. It can be checked that the
bottom face is a pushout with m ∈ M, the front and back faces are pullbacks in
TSGD,TG, and c, d, b ∈ Minj

Proj,TG, f ∈ Minj

⇒,TG. Unfortunately, the commutative
cube is not a VK-square, as the top face is not a pushout. The problem is that
the formula

∃a.∃b.ΦB ∧∃b.∃c.ΦC,

obtained by first projecting 〈B,ΦB〉 to B′ as well as 〈C,ΦC〉 to C′ and then
constructing the pushout of 〈B′,Φ′B〉 and 〈C

′,Φ′C〉, is not equivalent to the
formula

∃b.(ΦB ∧ΦC),

obtained by first constructing 〈D,ΦD〉 as the pushout of 〈B,ΦB〉 and 〈C,ΦC〉

and then projecting 〈D,ΦD〉 to D′.

The problem shown in the previous example arises from the fact that D′ possibly
does not contain the label nodes of D to which B and C are glued together. The
problem can be avoided by requiring that morphism a (in the previous example) is
a bĳection on label nodes (i. e., a ∈ Mbĳ

⇔,TG), which enforces that B′ and C′ are glued
along the same label nodes as B and C. This observation gives rise to the definition of

typed projective productions and transformation systems with a certain class for left and

right production morphisms, respectively. Moreover, we shall see in the next chapter that
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transformation systems with a certain class for left, right, and match morphisms can be

generalized to the concept of (L,R,N)-adhesive transformation systems.

Definition 4.7 (Typed projective productions and typed projective graph trans-
formation systems (TPGTS)).

A typed projective production p � (〈L,ΦL〉
l
← 〈K,ΦK〉

r
→ 〈R,ΦR〉) consists of a left

production morphism l : 〈L,ΦL〉 → 〈K,ΦK〉 of classM
bĳ

⇔,TG and a right production

morphism r : 〈R,ΦR〉 → 〈K,ΦK〉 of classM
inj

Proj,TG.
A typed projective graph transformation system TPGTS, is given by a finite set

of typed projective productions P and a the classMinj

⇒,TG for match morphisms.

Note that the choice r ∈ Minj

Proj,TG is still sufficient to create label nodes on the fly.
Hence, it is possible to apply projective productions also to nongrounded graphs.
Moreover, the choice r ∈ Minj

Proj,TG guarantees that a projective production may only
put additional constraints on the values of created label nodes. For this reason,
projective graph transformations may not change the values of label nodes that are
not part of the match. Consequently, projective graph transformations have only
local effects, which is one of the fundamental requirements to prove the results
required for constraint verification and conflict analysis techniques.
Before we actually show that these fundamental properties indeed apply for pro-

jective graph transformations, we first show that projective graph transformations
address the main deficiencies of symbolic graph transformation systems.

4.3 Model Transformation by Projective Graph Transformation

Similar as done for symbolic graph transformations we show how the concepts of
instance models and transformations can be represented in the context of projec-
tive graph transformations. Moreover, we show that the shortcomings of symbolic
graph transformations (explained in Section 3.5) can be avoided by projective graph
transformations.
We beginwith an alternative notion for instancemodels. Asmentioned before, by

projective graph transformations it is possible to create label nodes and constraints
on the fly. Hence, it is possible to define useful productions for the transformation
of symbolic graphs that do not include label nodes for all domain values. This leads
us to the notion of definite symbolic graphs to represent instance models. The idea
of definite symbolic graphs is similar to that of grounded symbolic graph (that
is, we assign to each variable a definite value); however, in contrast to grounded
symbolic graphs, we do not have to include a label node for each domain value.

Definition 4.8 (Typed definite symbolic graphs).
Given the category TSGD,TG over a Σ-structure D and symbolic type graph
TGΦ, a typed symbolic graph GΦ � 〈G,Φ〉 is a definite symbolic graph iff:

• For all assignments ζ1 and ζ2 such that (D, ζ1) � Φ and (D, ζ2) � Φ, we
have ζ1(x) � ζ2(x) for each label node x ∈ XG.
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• G is linear; that is, for each label node x ∈ XG, there is at most one label
edge e such that x � tX

G (e).

Notice that we require G to be linear, in order to compensate that matchmorphisms
have to be injective for label nodes for projective transformations. However, this is
not really a restriction as every symbolic graph 〈G,ΦG〉 can be transformed to a
linear symbolic graph. This is achieved by repeatedly creating for each pair of label
edges e1 and e2 with same the target node x (i. e., tX

G (e1) � x � tX
G (e2)) a new label

node y as well as conjuncting ΦG with (x � y), and redirecting e2 to y (i. e., set
tX

G (e2) � y).
The idea of definite symbolic graphs is similar to that of a solution forΣ-formulas.

According to Fact 3.44, any solution ζ of a Σ-formula Φ in a Σ-structure D (i. e.,
(D, ζ) � Φ) can be represented as a (finite) conjunction of equality predicates Φ
such that (D, ζ) � Φ. Hence, given a symbolic graph 〈G,ΦG〉 with a finite set of
label nodes and a solution ζ of ΦG, we can construct a definite symbolic graph,
just by replacing ΦG with ΦG. Moreover, there exists a symbolic graph morphism
s : 〈G,ΦG〉 → 〈G,ΦG〉 (given as idG in E-graphs), as D � ΦG ⇒ ΦG (according
to Fact 3.44). Consequently, any finite instance model can be represented by a
finite definite symbolic graph also for unbounded domains. This representation
of instance model works perfectly for projective transformations as, in contrast to
symbolic transformations, projective transformations can create the required label
nodes on the fly, including the corresponding constraints for representing new
attribute values.

Example 4.9 (Definite symbolic graphs as models).
Figure 4.3 depicts the definite symbolic graph for the instance model model
originally presented in Figure 2.2. At a first glance, the definite symbolic graph
looks similar to the grounded symbolic graph shown in Figure 3.2. The differ-
ence is that the definite symbolic graph does not contain any label node and
equality predicate in addition to those depicted in Figure 4.3, in contrast to
the grounded symbolic graph of Figure 3.2, which was assumed to contain an
infinite number of label nodes.

In order to compare projective graph transformations with symbolic graph trans-
formations, recall that every Mbĳ

⇔,TG-morphisms is also an Minj

Proj,TG-morphism.
Hence, every symbolic production is also a projective production. This means, on
the one hand, that projective graph transformation systems can be considered as
a generalization of symbolic graph transformation systems. However, on the other
hand, we might run into the same problems as we have with symbolic graph trans-
formations. As discussed in Section 3.5 one of the limitations of symbolic graph
transformation is caused by the fact that matches for the left-hand sides have to be
defined also for those label nodes that are not assigned to a graph node. Hence,
from a practical point of view it seems reasonable to consider only projective pro-
ductionswhose left-hand sides contain no unassigned label nodes, which are called
auxiliary variables in the following.
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G

ro1 : Room

ro1.cap ro1.capExam

en1 : Enrollment

en1.stateen1.studId

en1.enrolled

en1.regCp en1.cp

cr1 : CourseRecord

cr1.grade cr1.tries

cmo1 : CoModOffer

cmo1.cp

exAlg1 : Exam

exAlg1.state exAlg1.regSt

daAlg1 : Date

daAlg1.begin daAlg1.duration

bo1 : Booking

bo1.begin bo1.end

bookings

cRecords

offer
exam

date

(ro1.cap=479) ∧ (ro1.capExam=72) ∧ (en1.enrolled=true) ∧ (en1.studId=1234567) ∧
(en1.state=EN ST.STUDY) ∧ (en1.regCp=96) ∧ (en1.cp=57) ∧ (cr1.grade=5) ∧ (cr1.tries=1) ∧ (cmo1.cp=6) ∧

(exAlg1.state=EX ST.PLAN) ∧ (exAlg1.regSt=72) ∧ (daAlg1.begin=26.11.2042; 13:00) ∧ (daAlg1.duration=02:00)
∧ (bo1.begin=26.11.2042; 14:00) ∧ (bo1.end=26.11.2042; 16:00)

ΦG

Figure 4.3: The typed definite symbolic graph for the instance model originally shown in
Figure 2.2

Definition 4.10 (Auxiliary variables and normal form).
Given a (typed) symbolic graph 〈L,ΦL〉, the set of auxiliary variables is defined
as the set

aux(L) �
{
x ∈ XL | not exists e ∈ EX

L s. t. x � tX
L (e)

}
A symbolic graph 〈L,ΦL〉 is in normal form if aux(L) � ∅

Now we show a construction to transform any (typed) symbolic graph 〈G,ΦG〉

to normal form by projecting it to (typed) E-graph G′ that is obtained by removing
all auxiliary variables from G. Later,in Section 8.3 we show that this construction
indeed leads to symbolic graphs in normal form.

Definition 4.11 (Construction of symbolic graphs in normal form).
For any (typed) symbolic graph 〈G,ΦG〉 with aux(G) , ∅ we can construct
a (typed) symbolic graph in normal form nor(〈G,ΦG〉) � 〈G′,Φ′G〉, given by
the projection Proj(〈G,ΦG〉, a′) of 〈G,ΦG〉 to G′ via a′ : G′ → G, where G′ is
obtained by removing all auxiliary variables from G and a′ is the inclusion of
G′ in G. Moreover, this construction induces the (typed) projection morphisms
a : 〈L′,Φ′L〉 → 〈L,ΦL〉.

Example 4.12 (Direct transformation via a projective production).
Figure 4.4 shows the application of projective production projBookRoom to an
cutout of the definite symbolic graph presented in Example 4.9. On top of Fig-
ure 4.4 the projective production is depicted. The production projBookRoom
is linear and in normal form. In the following we show how projective pro-
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duction projBookRoom can be obtained from symbolic production symbBook-
Room shown in Figure 3.3. To this end, assume that production projBookRoom

is given by p′ � (〈L′,Φ′L〉
l′
← 〈K′,Φ′K〉

r′
→ 〈R′,Φ′R〉) and production symbBook-

Room is given by p � (〈L,ΦL〉
l
← 〈K,ΦK〉

r
→ 〈R,ΦR〉). Basically, the E-graph

components L′, K′, are constructed by removing all primed label nodes from
the graph part and existentially quantify the corresponding variables in the
formula. More specifically:

• L′ is obtained from L by removing all auxiliary variables from L, i. e., L′

is identical to L except that X′L � XL\aux(L)
• K′ is obtained from K by removing all variables from K whose image

under l is an auxiliary variable in L, i. e.,

X′K � XK\
{
xK ∈ XK | lX (xK) ∈ aux(L)

}
.

The symbolic graphs 〈L′,Φ′L〉 and 〈K
′,Φ′K〉 are obtained as Proj(〈L,ΦL〉, a′L) and

Proj(〈K,ΦK〉, a′K), where morphisms a′L : L′ → L and a′K : K′ → K are the
inclusions of L′ in L and K′ in K, respectively. The symbolic graph 〈R′,Φ′R〉 is
identical to 〈R,ΦR〉. Note thatD � ΦK ⇔ ΦL.

The production is applied to definite symbolic graph 〈G′,Φ′G〉 via match
m′, by first deriving 〈D′,Φ′D〉 as the pushout complement of m′ and l′, and
afterwards constructing 〈H′,Φ′H〉 as the pushout of r′ and k′.

The resulting symbolic graph 〈H′,Φ′H〉 contains a new booking bo for room
ro1 and the created label nodes exAlg1.state’, bo.begin’, and bo.end’; as well as
the created predicates

(bo.begin’=daAlg1.begin), (bo.end’=daAlg1.begin+daAlg1.duration),

and
(exAlg1.state’=EX_ST.READY).

Note that 〈H′,Φ′H〉 is definite.

One may wonder whether any projective direct transformation of a definite
symbolic graph results again in a definite symbolic graph. The answer is no,
as the application of a projective production may create label nodes without as-
signing definite values to them. However, a pushout along anMinj

Proj,TG-morphism
f : 〈A,ΦA〉 → 〈B,ΦB〉 preserves definiteness if the values of the created variables
(i. e., the variables b∗ ∈ XB\ fX (XA)) are functionally determined by means of the
variables b ∈ fX (XA), which leads us to the notion of functional projective symbolic

graph morphisms.

Definition 4.13 (The classMinj

Func,TG of typed functional projective morphisms).

Given the category TSGD,TG over a Σ-structure D and symbolic type graph
TGΦ. A typed symbolic graphmorphism f : 〈A,ΦA〉 → 〈B,ΦB〉 is inM

inj

Func,TG if
f is inMinj

Proj,TG, and additionally for any variable b∗i ∈ {b
∗

1, . . . , b∗n } � XB\aX (XA)
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of sort s(i) (i. e., b∗i ∈ Xs(i)), there is a term ti ∈ Ts(i) with var(ti) ⊆ fX (XA) such
that

D � ΦB ⇔
(
ΦA[ f̂ ]∧ (b∗1

s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn)

)
.

Basically, typed functional projective productions can be defined by replacing the class
M

inj

Proj,TG in Definition 4.7 byMinj

Func,TG leading to the following definition.

Definition 4.14 (Typed functional projective productions).

A typed functional projective production p � (〈L,ΦL〉
l
← 〈K,ΦK〉

r
→ 〈R,ΦR〉)

consists of a left production morphism l : 〈L,ΦL〉 → 〈K,ΦK〉 of classM
bĳ

⇔,TG and
a right production morphism r : 〈R,ΦR〉 → 〈K,ΦK〉 of classM

inj

Func,TG.

Note thatMinj

Func,TG is a subclass ofMinj

Proj,TG. Consequently, every typed functional
projective production is also a typed projective production; thus, functional projec-
tive productions enjoy the properties of projective productions. Additionally, direct
transformations along functional projective productions preserve definiteness; that
is, the result of applying a functional projective production to a definite symbolic
graph is again a definite symbolic graph. In order to proof this, we first show that
pushouts along functional projective morphisms preserve definiteness.

Lemma 4.15 (Pushouts alongMinj

Func,TG-morphisms preserve definiteness).
Let TSGD,TG be the category of typed symbolic graphs over a Σ-structure D
and symbolic type graph TGΦ, then for any pushout (1) with f ∈ Minj

Func,TG and
g ∈ Minj

⇒,TG we have that if 〈C,ΦC〉 is definite, then 〈D,ΦD〉 is definite.

〈A, ΦA〉 〈B, ΦB〉

〈C, ΦC〉 〈D, ΦD〉

(1)

f

g g′

f ′

Proof. We have to show that if 〈C,ΦC〉 is definite , then 〈D,ΦD〉 is definite. As f and
g are E-graph monomorphisms and (1) is a pushout in TEGTG, we may assume
without loss of generality (see Fact 3.9) that XB � XA ∪X∗B and XC � XA ∪X∗C with
fX (a) � a and gX (a) � a for all a ∈ XA; as well as XD � XA ∪ X∗C ∪ X∗B with
f ′X (c) � c for all c ∈ XC and g′X (b) � b for all b ∈ XB. Moreover, we may assume
that XA, X∗B, and X∗C are pairwise disjoint. Hence, showing that 〈D,ΦD〉 is definite
if 〈C,ΦC〉 is definite becomes equivalent to show that for any two assignments ζ1

and ζ2 such that ζ1(c) � ζ2(c) for each label node c ∈ XC ⊆ XD , we have that
(D, ζ1) � ΦD and (D, ζ2) � ΦD implies ζ1(d) � ζ2(d) for each d ∈ XD .
As (1) is a pushout in TSGD,TG we know that

D � ΦD ⇔
(
ΦC ∧ΦB

)
. (4.1)

From f ∈ Minj

Func,TG we obtain

D � ΦB ⇔
(
ΦA ∧ (b∗1

s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn)

)
, (4.2)
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with {b∗1, . . . , b∗n } � X∗B. By combining Statements 4.1 and 4.2 we obtain

D � ΦD ⇔
(
ΦC ∧ΦA ∧ (b∗1

s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn)

)
.

As by assumption 〈C,ΦC〉 is definite, we have for all assignments ζ1 and ζ2 such
that (D, ζ1) � ΦD and (D, ζ2) � ΦD , that ζ1(c) � ζ2(c) for each label node c ∈
XC ⊆ XD . From (D, ζ1) � (b∗i

s(i)
� ti) we obtain ~b∗i �

D

ζ1
� ζ1(b∗1) � ~ti�

D

ζ1
; from

(D, ζ2) � (b∗i
s(i)
� ti) we obtain ~b∗i �

D

ζ2
� ζ2(b∗i ) � ~ti�

D

ζ2
for all i ∈ {1, . . . , n}. As

var(ti) ⊆ XA ⊆ XC and ζ1(c) � ζ2(c) for each label node c ∈ XC, so ~ti�
D

ζ1
� ~ti�

D

ζ2

for all i ∈ {1, . . . , n}; hence, ~b∗i �
D

ζ1
� ~b∗i �

D

ζ2
for all i ∈ {1, . . . , n}. �

Now, we can show that direct transformations along functional projective pro-
ductions preserve definiteness .

Lemma 4.16 (Functional direct transformations preserve definiteness).
Given direct transformation 〈G,ΦG〉

p@m
������⇒ 〈H,ΦG〉 via an functional projective

production p � (〈L,ΦL〉
l
← 〈K,ΦK〉

r
→ 〈R,ΦR〉) and match m : L → G, m ∈

M
inj

⇒,TG, then 〈H,ΦH〉 is definite if 〈G,ΦG〉 is definite.

Proof. First we show that if 〈G,ΦG〉 is definite then also 〈D,ΦD〉. As l ∈ Mbĳ

⇔,TG and
m ∈ Minj

⇒,TG, pushout (1) implies g ∈ Mbĳ

⇔,TG (Lemma 6.1). Accordingly, D � ΦG ⇔

ΦD[ ĝ]. Hence, if 〈G,ΦG〉 is definite then also 〈D,ΦD〉. It remains to show that if
〈D,ΦD〉 is definite then also 〈H,ΦH〉, which is a direct consequence of Lemma 4.15,
as (2) is a pushout alongMinj

Func,TG-morphism r.

〈K, ΦL〉〈L, ΦL〉 〈R, ΦR〉

〈G, ΦG〉 〈D, ΦD〉 〈H, ΦH〉

(1) (2)

l r

g h

m n

�

Note that all productions used in this thesis (also those presented later) are func-
tional projective productions, as it is quite natural to define the values of the created
variables in terms of the preserved variables.



5
(L , R , N ) -ADHES IVE CATEGOR IES AND TRANSFORMAT ION
SYSTEMS

In this chapter we generalize the concept of (M,N)-adhesive transformation sys-
tems to (L,R,N)-adhesive transformation systems. The concept of (L,R,N)-ad-
hesive transformation systems provides the categorical foundations for projective
graph transformation systems, i. e., for transformation systems that distinguish
between left and right production morphisms. Intuitively, an (L,R,N)-adhesive
transformation system can be considered as an (M,N)-adhesive transformation
system where the classM of production morphism is split up into the classes L
and R of left and right production morphisms.
The main contribution of this chapter is to show that the fundamental results of the double

pushout approach remain valid for (L,R,N)-adhesive transformation systems.

To this end, we define the concept of (L,R,N)-adhesive categories and trans-
formation systems in Section 5.1, including an adapted notion and proofs for the
HLR properties. In order to prove the results for consistency constraints verifica-
tion as well as for conflict detection, we require in addition to the HLR properties
additional properties that cannot be derived from the axioms of (L,R,N)-adhesive
categories. These additional properties are usually referred to as HLR+properties
[HP12a, GBEG14] and are introduced in Section 5.2. Subsequently we show that
properties of (L,R,N)-adhesive categories together with the HLR and HLR+pro-
perties are sufficient to prove the basic results required for constraint verification
and conflict detection. More specifically, in Section 5.3 we verify the results for
constructing application conditions from consistency constraints. In Section 5.4, we
provide proofs for the Local Church–Rosser, Embedding, and Extension Theorems
as well as for Critical Pair Lemma in the context of (L,R,N)-adhesive transforma-
tion systems.

5.1 (L , R ,N )-Adhesive Categories and Transformation Systems

In this section we introduce the notion of (L,R,N)-adhesive categories and trans-
formation systems, and show that HLR-properties [HP12a] (see Section 3.1.2) of
(M,N)-adhesive categories can be lifted to (L,R,N)-adhesive categories.

Recall that for (M,N)-adhesive categories we distinguished between the classM
of productionmorphisms and the classN ofmatchmorphisms. For (L,R,N)-adhe-
sive categories we further split the class of production morphisms into the classes
L and R to distinguish between left-hand and right-hand production morphisms, re-
spectively. This leads us to following notion of (L,R,N)-adhesive categories.
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Definition 5.1 ((L,R,N)-adhesive category).
A category C with morphism classes L, R, and N is an (L,R,N)-adhesive

category (C,L,R,N ) if the following requirements are satisfied:
1) Closure Properties:

a) L, R and N contain all isomorphisms. f being an isomorphism implies
f ∈ L, f ∈ R and f ∈ N .

b) L, R andN are closed under composition. Let f : A → B and g : B → C be
morphisms in C, then f , g ∈ X implies (g ◦ f ) ∈ X, whereX ∈ {L,R,N}.

c) L, R and N are closed under decomposition. Let f : A → B and g : B → C
be morphisms in C, then (g ◦ f ) ∈ X and g ∈ X implies f ∈ X where
X ∈ {L,R,N}.

d) L is a subclass of R.

e) N is closed under R-composition. Let f : A → B and g : B → C be
morphisms in C, then f ∈ N and g ∈ R implies (g ◦ f ) ∈ N .

f) N is closed under R-decomposition. Let f : A → B and g : B → C be
morphisms in C, then (g ◦ f ) ∈ N and g ∈ R implies f ∈ N .

2) Pushouts and Pullbacks:

a) C has (R,N)-pushouts.

b) C has R-pullbacks.

c) L, R, and N are closed under pushouts. Given pushout (1), then f ∈ X
implies g ∈ X, for any X ∈

{
L,R,N

}
.

d) L, R, and N are closed under pullbacks. Given pullback (1), then g ∈ X
implies f ∈ X, for any X ∈

{
L,R,N

}
.

3) Pushouts along (R,N)-morphisms are (L,R,N)-VK squares.Apushout (1)with
m ∈ R and f ∈ N is an (L,R,N)-VK square if for any commutative cube (2)
with (1) in the bottom, where the back faces are pullbacks and b, c, d ∈ R,
a ∈ L,the following statement holds: the top face is a pushout if and only if
the front faces are pullbacks.

4) Pushouts along (L,N)-morphisms are (L,N)-VK squares. A pushout (1) with
m ∈ L and f ∈ N is an (L,N)-VK square if for any commutative cube (2)
with (1) in the bottom, where the back faces are pullbacks and b, c, d ∈ R,
the following statement holds: the top face is a pushout if and only if the
front faces are pullbacks.

A B

C D

(1)

m

f g

n
(2)

A′

B′

A
B

C′

C

D′

D

m′
f ′

n′ g′

mf

n g

a
b

c
d
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An (R,N)-pushout is a pushout where one of the given morphisms is in R and the
other morphism is inN ; an R-pullback is a pullback where at least one of the given
morphisms is in R.
An (L,R,N)-adhesive category provides the following HLR properties.

Theorem 5.2 (HLR properties of (L,R,N)-adhesive categories).
For any (L,R,N)-adhesive category (C,L,R,N ), the following properties
hold:

1) Pushouts along (R,N)-morphisms are pullbacks.Given (R,N)-pushout (1), then
(1) is also a pullback.

2) The R–R-pushout–pullback decomposition. If (1)+(2) is an (R,N)-pushout with
l ∈ R and r ◦ k ∈ N , and (2) a pullback with w ∈ R, then (1) and (2) are
pushouts as well as pullbacks.

3) The (L,R,N)-cube pushout–pullback decomposition. Given the commutative
cube (3) where all morphisms in the top square and bottom square are in
R and additionally n′ ∈ L, all vertical morphisms are in N , the top face is
a pullback and the front faces are pushouts, then the following statement
holds: the bottom face is a pullback if and only if the back faces are pushouts.

4) Pushout complements along (R,N)-morphisms are unique. Given morphisms
l : A → C and u : C → D, where l ∈ R and u ∈ N , there is at most one B
(up to isomorphism) and morphisms k : A → B and s : B → D, such that
(1) is a pushout.

(3)

A′

B′

A
B

C′

C

D′

D

m′
f ′

n′ g′

mf

n g

a
b

c
d

A C

B

E

D

F

(1)

(2)

k

l

u

s

r w

v

Proof. The following proofs are extended versions of the corresponding proofs
given in [EEPT06].

1) Consider the following commutative cube (4) with (R,N)-pushout (1) in both
the bottom and the front left face. We have to show that (1) is also a pullback.

(4)

A

A

A

B

C

C

C

D

idA
l

idCl

k l

us

idA

k
idC

u

A C

B D

(1)k

l

u

s
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The bottom face is the (R,N)-pushout (1) along l ∈ R and k ∈ N ; thus, an
(L,R,N)-VK square. Moreover, we have:

• idA ∈ L and idC ∈ N , as identity morphisms are isomorphisms and L as
well asN contain all isomorphisms

• u ∈ N , as (1) is a pushout, k ∈ N andN is closed under pushouts
From Fact 3.14.c we know that:

• the back left face is a pullback
• the back right face is a pullback
• the top is a pushout

From the VK square property, we conclude that the front faces are pullbacks.
Hence, (1) is a pullback.

2) Consider the following commutative cube (5)with pushout (1)+(2) in the bottom.

(5)

A

A

B

B

C

C

D

D

B

E

D

F

u

u

s

s

idB idC

k l

k l

r

idA

idD

idB

w

idDs

r

w

v

We have the following properties:
• The bottom (1)+(2) is a pushout along the R-morphism l andN-morphism

r ◦ k; thus, an (L,R,N)-VK square.
• The back right face is a pullback (Fact 3.14.c).
• Theback left face is apullback, as it is composedof twopullbacks (Fact 3.14.b

and 3.14.c).
• The front right face is a pullback, as it is composed of two pullbacks

(Fact 3.14.b and 3.14.c).
• The front left face is a pullback by assumption.

Hence, we have r ∈ R, as w ∈ R and R is closed under pullbacks. Moreover, we
have idC ∈ R and idA ∈ L, as identities are isomorphism and R as well as L
contain all isomorphisms. From the VK square property we can conclude that
the top face, which corresponds to square (1), is a pushout. As the left back face
is a pullback along N-morphisms r ◦ k, we have idB ◦ k ∈ N . As idB ∈ N and
N-morphisms are closed under decomposition, we have k ∈ N . Consequently,
(1) is an (R,N)-pushout, and therefore also a pullback. By pushout decomposi-
tion we can conclude that also (2) is a pushout.

3) If. Assume, the bottom of the original cube (3) is a pullback, we have to show
that the back faces are pushouts. Consider the turned cube (6).
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A′

B′

A
B

C′

C

D′

D
(3)

m′
f ′

n′ g′

mf

n g

a

b
c

d

A′

A

B′

B

C′

D′

C

D
(6)

a f ′

cf

b g′

dg

m′

m
n′

n

The following properties then apply to (6):

• The bottom face is a pushout along the R-morphism g′ and N-morphism
b; thus, an (L,R,N)-VK square.

• The front left face is a pullback (by assumption).

• The front right face is a pushout along n′ ∈ R (as L is a subclass of R) and
c ∈ N , and therefore also a pullback.

• The back right face is a pullback (by definition).

• The back left face is a pullback (by pullback composition and decomposi-
tion).

• We have m, n, n′, g′ ∈ R and b ∈ N (by definition).

• The morphism m′ is in L, as n′ ∈ L, the back right face is a pullback, and
L is closed under pullbacks.

From the (L,R,N)-VK property follows that the top face is a pushout; hence,
the back left face in the original cube (3) is a pushout.

By turning the cube once more we obtain cube (7).

A′

B′

A
B

C′

C

D′

D
(3)

m′
f ′

n′ g′

mf

n g

a

b
c

d

A′

B′

C′

D′

A

C

B

D
(7)

m′
a

m b

n′
c

n d

f ′

g′
f

g

The following properties then apply to (7):

• The bottom face is a pushout along the L-morphism n′ and N-morphism
c; thus, an (L,N)-VK square.

• The front left face is a pullback (by assumption).

• The front right face is a pushout along g′ ∈ R and b ∈ N ; thus, also a
pullback (by Theorem 5.2.1).

• The back right face is a pullback (by definition).

• The back left face is a pushout along f ′ ∈ R and a ∈ N ; thus, also a pullback
(by Theorem 5.2.1).
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• We have f , g, g′ ∈ R, c ∈ N , and n′ ∈ L.

From the (L,N)-VK property follows that the top face is a pushout, which
corresponds to (3) in the original cube.

Only if. Assume, the back faces of the original cube (3) are pushouts, we have
to show that the bottom face is a pullback. Considering again the turned cube
(7), we have the following properties:

• The bottom face is a pushout along the L-morphism n′ and N-morphism
c; thus, a (L,N)-VK square.

• The top face is a pushout (by assumption).

• The back left face is a is a pushout along f ′ ∈ R and a ∈ N , and therefore
a pullback (by Theorem 5.2.1).

• The back right face is a pullback (by definition).

• We have f , g, g′ ∈ R, c ∈ N , and n′ ∈ L (by definition).

From the (L,N)-VK property follows that the front faces are pullbacks. Hence,
the bottom face of the original cube is a pullback.

4) Suppose that commutative squares (8) and (9) below are pushouts with k ∈ R
and l, l′ ∈ N . To show that pushout complements are unique we have to show
that C and C′ are isomorphic. As R is closed under pushouts we have u, u′ ∈ R.
Consider the following cube (10), where (8) is in the bottom and (9) is the front
right face.

(10)

A

U

A

C

A

B

C′

D

h idA

l′x

l k

su

idA

y k

u′

A B

C D

(8)l

k

s

u

A B

C′ D

(9)l′

k

s

u′

The front left face with C
y
← U

x
→ C′ is constructed as the pullback over C

u
→

D
u′
← C′. Morphisms x, y are in R, as u, u′ ∈ R and R is closed under pullbacks.

The morphism h : A → U is obtained from the universal property of pullback
C

y
← U

x
→ C′withmorphism l and l′. Hence, it holds that x ◦ h � l′ and y ◦ h � l.

Moreover, the following properties apply to cube (10):

• The bottom face (8) is a pushout along theR-morphism k andN-morphism
l; thus, a (L,R,N)-VK square.

• The back right face is a pullback (Fact 3.14.c).

• The front right face is a pushout along k ∈ R and l′ ∈ N , and therefore also
a pullback (by Theorem 5.2.1).

• The front left face is a pullback by construction.
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• The back left face is a pullback (by pullback composition and decomposi-
tion).

• We have k, u′, y ∈ R, l ∈ N , and idA ∈ L .

From the (L,R,N)-VK property follows that the top face is a pushout. As idA

is an isomorphism and pushouts preserve isomorphisms, x is also an isomor-
phism. By exchanging C and C′, we can conclude that y is also an isomorphism.
Consequently C and C′ are isomorphic. �

Corollary 5.3 (Induced HLR properties of (L,R,N)-adhesive categories).
Note that according to Definition 5.1 L is a subclass of R. Consequently, any
(L,R,N)-adhesive category has also (L,N)-pushouts, L-pullbacks, as well
as N is closed under L-composition and L-decomposition. Moreover, in any
(L,R,N)-adhesive category (L,N)-pushouts are pullbacks and it has also the
L–L-pushout–pullback decomposition property.

Remark 5.4 (Correspondence of (L,R,N) and (M,N)-adhesive categories).
Note that according to Definition 5.1 L is a subclass of R. This implies that all
HLR properties given in Theorem 5.2 are also valid if we set R � L. Conse-
quently, every (L,R,N)-adhesive category (C,L,R,N ) with R � L is also an
(M,N)-adhesive category (C,M,N ).Onemightwonderwhether (M,N)-adhesive
category (C,M,N ) is equivalent to (L,R,N)-adhesive category (C,L,R,N ) with
L � R. However, this is not the case as there is no correspondence for the closure
ofN under R-composition in (M,N)-adhesive categories.

Similar to (M,N)-adhesive categories, also (L,R,N)-adhesive categories are stable
under slice construction, which means: if we can show that a base category is
(L,R,N)-adhesive, then any category that is derived by slice construction from
this base category is also (L,R,N)-adhesive. Recall that the slice construction can
be used to extend a base category by a typing concept.

Theorem 5.5 (Slice construction of (L,R,N)-adhesive categories).
Given (L,R,N)-adhesive category (C,L,R,N ), then for every object X in C

the slice category (C\X,L′,R′,N′) is also (L,R,N)-adhesive, where L′ �

L ∩MorC\X , R′ � R ∩MorC\X , andN′ � N ∩MorC\X .

Proof. Morphisms, pullbacks and pushouts can be constructed componentwise for
slice categories. This componentwise construction ensures that also L′, R′, andN′
are closed under composition, decomposition, pushouts and pullbacks. �

Finally, we define (L,R)-productions and (L,R,N)-transformations, which to-
gether lead to (L,R,N)-adhesive transformation systems.

Definition 5.6 ((L,R)-production).
Given an (L,R,N)-adhesive category (C,L,R,N ), an (L,R)-production p �

(L ← K → R) consists of the objects L, K, and R as well as left morphism
l : K → L, l ∈ L and right morphism r : K → R, r ∈ R.
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Definition 5.7 ((L,R,N)-adhesive transformation systems).
An (L,R,N)-adhesive transformation system ((C,L,R,N ), P) is given by an
(L,R,N)-adhesive category (C,L,R,N ) together with a finite set P consisting
of (L,R)-productions.

5.2 HLR+Properties for (L , R ,N )-Adhesive Categories

In order to prove the results for consistency constraints verification aswell as for con-
flict detection, we require in addition to the HLR properties additional properties,
which cannot be concluded from the axioms of (L,R,N)-adhesive categories. These
additional properties are usually referred to as HLR+properties [HP12a, GBEG14].
In contrast to classicalHLR systems,wehave to dealwith productionswhere the left
and right morphisms might belong to different classes. Accordingly, we identified
the following HLR+properties for (L,R,N)-adhesive transformation systems:

• Binary coproducts

• E–N factorization

• The L–N-PO–PB decomposition property

• The R–N-PO–PB decomposition property

• (L,N)-initial pushouts

Moreover, we introduce the notion of quasi (L,N)-initial pushout, in order to deal
with (L,R)-productions.

We start with the well-known concept of binary coproducts. Binary coproducts
can be considered as a generalization of the concept of disjoint union.

Definition 5.8 (Binary Coproduct).
Let A and B objects of a category C, the triple (A+B, i1, i2) consisting of:

• a coproduct object A+B

• a pair of morphisms i1 : A → A+B and i2 : B → A+B called coproduct

injections

is a binary coproduct in C, if and only if the following universal property holds:
For all objects C with morphisms f1 : A → C and f2 : A → C there is a
morphism c : A+B → C such that the following diagram commutes, i. e.,
c ◦ i1 � f1 and c ◦ i2 � f2.

A + BA B

C

==

i1 i2

c
f1 f2

The following concept of anE–N factorization is a generalizationof the fact, known
from set theory, which states that every function can be uniquely decomposed in
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a surjective and an injective component. In the general setting, we just require a
category with an additional morphism class E, such that every morphism can be
decomposed in an E-morphism and anN-morphism.

Definition 5.9 (E–N factorization).
An (L,R,N)-adhesive category (C,L,R,N ) has an E–N factorization for a
given morphism class E if for each morphism f : A → B in C, there exists
a unique (up to isomorphism) decomposition e : A → C, m : C → B with
m ◦ e � f such that e ∈ E and m ∈ N .

A B

C

=

f

e m

The concept of E′–N pair factorizations, defined next, is the generalisation of
E–N factorizations to pairs of morphisms with the same codomain.

Definition 5.10 (E′–N pair factorization).
Given a class E′ ofmorphismpairswith same codomain, an (L,R,N)-adhesive
category (C,L,R,N ) has an E′ −N pair factorization if for each pair of mor-
phisms f1 : A1 → C and f2 : A2 → C, there exists an object K with a morphism
pair e1 : A1 → K, e2 : A2 → K, (e1, e2) ∈ E′ and an N-morphism m : K → C
such that the following diagram commutes, i. e., m ◦ e1 � f1 and m ◦ e2 � f2.

〈K, ΦK〉

〈A1, Φ1〉

〈A2, Φ2〉

〈C, ΦC〉m
e1

e2

f1

f2

The following lemma shows that any category with binary coproducts and E–N
factorization has also an E′–N pair factorization. Moreover, we shall see that the
class E′ consists of jointly epimorphic morphism pairs.

Lemma 5.11 (E′–N pair factorization).
For any (L,R,N)-adhesive category (C,L,R,N ) with binary coproducts and
E–N factorization, there exists a class E′ of morphism pairs with an E′–N
pair factorization. Moreover, for any E′–N pair factorization of morphisms
f1 : A1 → C and f2 : A2 → C, the following properties hold:

i) If f1, f2 ∈ N , then e1, e2 ∈ N .

ii) Any pair (e1, e2) ∈ E′ is jointly epimorphic.

Proof. Given morphisms f1 : A1 → C and f2 : A2 → C. First, we construct the bi-
nary coproduct (A1 + A2, i1, i2) of A1 and A2, as shown in the following diagram.
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The coproduct together with morphisms f1 : A1 → C and f2 : A2 → C induces the
unique morphism c : A1 + A2 → C. Now we take the E–N factorization c � m ◦ e
of the morphism c and define e1 � e ◦ i1 and e2 � e ◦ i2, whereas morphisms
i1 : A1 → A1 + A2 and i1 : A1 → A1 + A2 are the coproduct injections.

A1 A2A1 + A2

K

C

i1 i2

c

e

m

e1 e2

f1 f2

As m ◦ e is the E–N factorization of c, we may conclude that m ∈ N . Moreover,
m ◦ e1 � f1 and m ◦ e2 � f2. From the construction above, we know that e1 � e ◦ i1

and e2 � e ◦ i2. The coproduct gives us f1 � c ◦ i1 and f2 � c ◦ i2. Hence, m ◦ e1 �

m ◦ e ◦ i1 � c ◦ i1 � f1 and m ◦ e2 � m ◦ e ◦ i2 � c ◦ i2 � f2. Consequently, the pair
(e1, e2) together with morphism m is an E′–N pair factorization of f1 and f2.
It it remains to show that:
(i) If f1, f2 ∈ N , then also e1, e2 ∈ N . This is a direct consequence of the closure

ofN under decomposition and m, f1, f2 ∈ N .
(ii) Any pair (e1, e2) ∈ E′ is jointly epimorphic. Consider the diagram below with

morphisms as constructed above. We have to show for any morphism pair
g, h : K → D, that if g ◦ ei � h ◦ ei , with i � 1, 2 then g � h.

A1 A2A1 + A2

K

D

i1 i2

e

g h

f1 f2

As we know from the coproduct that e1 � e ◦ i1 and e2 � e ◦ i2, this is equivalent
to show that g ◦ e ◦ ii � h ◦ e ◦ ii , with i � 1, 2 implies g � h, which is a direct
consequence of the fact that e is an epimorphism. �

The R–N-pushout–pullback and theL–N-pushout–pullback decomposition prop-
erty defined in the following are generalizations of the R–R-pushout–pullback
decomposition property stated in Theorem 5.2.

Definition 5.12 (The R–N-PO–PB decomposition property).
Given the following commutative diagram with l ∈ R, (r ◦ k) ∈ N , and w ∈ N ,
an (L,R,N)-adhesive category (C,L,R,N ) has R–N-pushout–pullback decom-

position property if the following property holds: if (1)+(2) is a pushout and (2)
a pullback, then (1) and (2) are pushouts as well as pullbacks.
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BA

C D

E

F

(1) (2)

k

l

u

s

r

w

v

Definition 5.13 (The L–N-PO–PB decomposition property).
Given the following commutative diagramwith l ∈ L, (r ◦ k) ∈ N , and w ∈ N ,
an (L,R,N)-adhesive category (C,L,R,N ) has R–N-pushout–pullback decom-

position property if the following property holds: if (1)+(2) is a pushout and (2)
a pullback, then (1) and (2) are pushouts as well as pullbacks.

BA

C D

E

F

(1) (2)

k

l

u

s

r

w

v

Corollary 5.14 (The L–N-PO–PB decomposition property).
Any (L,R,N)-adhesive category (C,L,R,N ) which provides theR–N-PO–PB
decomposition property has also the L–N-PO–PB decomposition property.

Proof. This is a direct consequence of the fact that by definition of (L,R,N)-adhe-
sive categories L is a subclass of R (Definition 5.1). �

Remark 5.15 (The L–N-PO–PB decomposition property).
One might wonder why the L–N-PO–PB decomposition property is also part of
the HLR+properties, although the R–N-PO–PB decomposition property implies
theL–N-PO–PB decomposition property. However, the opposite is not true. As we
shall see later, for some results the L–N-PO–PB decomposition property suffices
(e. g., for proof the Completeness of Critical Pairs Lemma in Section 5.4).

The following definition of (L,N)-initial pushouts is the adaption of (M,N)-initial
pushouts stated in Definition 3.26.

Definition 5.16 ((L,N)-initial pushout).
Let (C,L,R,N ) be an (L,R,N)-adhesive category, given an N-morphism
f : A→ F, then (L,N)-pushout (1) with b ∈ L is an (L,N)-initial pushout over

f if for every (L,N)-pushout (2) with b′ ∈ L, there are unique L-morphisms
b∗ : B → D and c∗ : C → E such that b′ ◦ b∗ � b, c′ ◦ c∗ � c and (3) is a pushout.

b∗

c∗

(3)
(2)(1)

D

E

B

C

b

c

b′

c′

A

F

f

The morphisms b and c are called the boundary and context with respect to f .
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Note that (L,N)-initial pushouts are initial pushouts in the sense of Definition 3.26.
As for (L,R)-productions the left-hand and right-hand morphisms are not in
the same morphism class, we have to give an alternative definition of initial
pushouts in order to retain the closure properties. This leads us to the notion
of quasi (L,N)-initial pushouts. Basically, a quasi (L,N)-initial pushout is an
(R,N)-pushout that is initial for (L,N)-pushouts in the following sense:

Definition 5.17 (Quasi (L,N)-initial pushout).
Let (C,L,R,N ) be an (L,R,N)-adhesive category, given an N-morphism
m : L → G, then (R,N)-pushout (1) with b′ ∈ R is a quasi (L,N)-initial pushout

overm if for every (L,N)-pushout (2)with l ∈ L, there areuniqueR-morphisms
b∗ : B′→ K and c∗ : C′→ D such that l ◦ b∗ � b′, g ◦ c∗ � c′ and (3) is a pushout.

b∗

c∗

(3)
(2)(1)

K

D

B′

C ′

b′

c′

l

g

ke
L

G

m

Note that b∗ ∈ R and c∗ ∈ R is a direct consequence of b′ ∈ R and l ∈ L as
well as c′ ∈ R and g ∈ L and the closure of R under decomposition (note that
any L-morphism is also an R-morphism). We call this concept quasi (L,N)-initial
pushout, as although morphisms b′, c′ ∈ R as well as b∗, c∗ ∈ R we require for
any pushout (3) and L-morphism l that (2) is an (L,N)-pushout. Moreover, every
(L,N)-initial pushout is also a quasi (L,N)-initial pushout as by definition L is a
subclass of R.
The following lemma states that any (L,R,N)-adhesive categorywith (L,N)-ini-

tial pushouts has also quasi (L,N)-initial pushouts.

Lemma 5.18 (Quasi (L,N)-initial pushouts in (L,R,N)-adhesive categories).
Let (C,L,R,N ) be an (L,R,N)-adhesive category and (1) an (L,N)-initial
pushout over N-morphism m : L → G, then (1�)+(1) is a quasi (L,N)-initial
pushout over m if and only if (1�) is an (R,N)-pushout with b� ∈ R.

B

C

L

G

(1)

b

c

m

B′

C′

b�

c�

(1�)

b′

c′

Proof.

If. We have to show that if (1�) is an (R,N)-pushout with b� ∈ R, then (1�)+(1) is a
quasi (L,N)-initial pushout over m. Assume given (L,N)-initial pushout (1) over
m ∈ N and (R,N)-pushout (1�), then for any (L,N)-pushout (2) there exist unique
morphisms b∗, c∗ ∈ L such that (3) is a pushout. Hence, by composing pushouts
(1�) and (3), we obtain pushout (1�)+(3) and unique morphisms b∗ ◦ b� and c∗ ◦ c�

such that l ◦ b∗ ◦ b� � b ◦ b� and g ◦ c∗ ◦ c� � c ◦ c�. Consequently, (1�)+(1) is a quasi
(L,N)-initial pushout.
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b∗

c∗

(3)
(2)(1)

(1�)

K

D

B

C

b

c

l

g

ke

b∗ ◦ b�

c∗ ◦ c�

L

G

B′

C ′

b�

c�

e′

m

Only if. We have to show that if (1′) is a quasi (L,N)-initial pushout over m,
then there exists an (R,N)-pushout (1�). Assume given (L,N)-initial pushout (1)
and quasi (L,N)-initial pushout (1’), both overN-morphism m. From pushout (1),
b, c ∈ L, and the initiality of (1’) follows that there are unique R-morphisms b� and
c� such that (1�) is an (R,N)-pushout and (1′)=(1�)+(1).

(1)(1�)
(1′)

b

c

e

B

C

L

G

B′

C ′

b�

c�
e′ m

b′

c′ �

It remains to show that quasi (L,N)-initial pushouts are closed under transfor-
mations along (L,R)-productions.

Lemma 5.19 (Closure property of quasi (L,N)-initial pushouts).
Quasi (L,N)-initial pushouts are closed under transformations along (L,R)-
productions; that is, given a quasi (L,N)-initial pushout (1′) over m ∈ N and
the double pushout diagram (2) with pushouts (2a) and (2b) and l ∈ L, r ∈ R,
then the following holds:

a) The composition of (1′) with (2a), leading to pushout (3), is again a quasi
(L,N)-initial pushout over k, where pushout (3) is derived from (1) and
(2a) using the initiality property of (1) (see Definition 5.17).

b) The composition of quasi (L,N)-initial pushout (3) with (R,N)-pushout
(2b), leading to pushout (4), is a quasi (L,N)-initial pushout over n.

B′

C′

L

G

(1′)

b′

c′

m
L

G

K

D

R

H

(2a) (2b) (2)

l

g

m k

r

h

n

B′

C′

K

D

(3)

b∗

c∗

k

B′

C′

R

H

(4)

r ◦ b∗

h ◦ c∗

n

Proof. Item a). Quasi (L,N)-initial pushouts are closed under (L,N)-pushouts in
the opposite direction; that is, given quasi (L,N)-initial pushout (1’) over mor-
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phism m ∈ N and pushout (2a) with l ∈ L, then there is a quasi (L,N)-initial
pushout (3) over k ∈ N with l ◦ b∗ � b′ and g ◦ c∗ � c′.

(6)

b�

c�

(2a) (5)

L

G

B

C

K

D

l

g

b

c

k

(1′
)

B′

C ′

b′

c′

e′

m

(3)

b∗

c∗ (2a)

L

G

B

C

K

D

l

g

k

(1′
)

B′

C ′

b′

c′

e′

m

Assume (5) is the (L,N)-initial pushout over k ∈ N . As (2a) and (5) are (L,N)-push-
outs, so their composition (2a)+(5). From the initiality of (1), we obtain unique
morphisms b� : B′ → B and c� : C′ → C such that (6) is an (R,N)-pushout. Hence,
according to Lemma 5.18, the composition of (6)+(5), leading to (3), is a quasi
(L,N)-initial pushout over k.

Item b). Quasi (L,N)-initial pushouts are closed under (R,N)-pushouts in the
same direction; that is, given quasi (L,N)-initial pushout (3) over morphism k ∈ N
and pushout (2b) with r ∈ R then the composition of pushouts (3) and (2b), leading
to pushout (4), is a quasi (L,N)-initial pushout over n ∈ N .

(4)

r ◦ b∗

h ◦ c∗
(2b)

K

D

R

H

r

h

n

(3
)

B′

C ′

b∗

c∗

e′

k

Assume (7) (in the diagram next) is the (L,N)-initial pushout over morphism
n ∈ N . First we construct the pullback along the morphisms r : K → R and
b : B → R as well as the pullback along morphisms h : D → H and c : C → H,
leading to the top and bottom squares of the cube shown next. As L as well as
R-morphisms are closed under pullbacks, h, r ∈ R and c, b ∈ L imply c�b , b�b ∈ R
and v, w ∈ L. Morphism x : V → W is obtained from the universal property of
the bottom pullback and morphisms k ◦ v and e ◦ b�. From the closure ofN under
R-composition,we obtain from e ∈ N and b� ∈ R that (e ◦ b�) ∈ N . From the closure
of N under R-decomposition we obtain from (e ◦ b�) ∈ N and c�b ∈ R that x ∈ N .
Hence, all vertical morphisms are inN and all horizontal morphisms are inR (note
that anyL-morphism is also anR-morphisms). Moreover, the bottom and top faces
are pullbacks, the front faces (i. e., (2b) and (7)) are pushouts. As b is in L we may
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apply the (L,R,N)-cube pushout–pullback decomposition property. Accordingly,
(8) and (9) arepushouts.As (8) is an (L,N)-pushout alongL-morphism v,weobtain
from the quasi initiality of (3) the unique morphisms b�a : B′→ V and c�a : C′→W
such that (10) is a pushout. Consequently, the composition of (R,N)-pushouts (10)
and (9) is again an (R,N)-pushout. As (7) is the (L,N)-initial pushout over n, it
follows from Lemma 5.18 that the composition (10)+(9)+(7), which corresponds to
(4) in the previous diagram, is a quasi (L,N)-initial pushout over n.

(10)

b�a

c�a (8)
(9)

V

W

v

w

x

c�b

(2b) (7)

K

D

B

C

R

H

b�b

r

h

b

c

e

n

(3)

B′

C ′

b∗

c∗ k

�

5.3 Constraints and Application Conditions

The construction of application conditions from constraints was first introduced in
[HW95] for plain graphs.Accordingly, a constraint is first transformed into an equiv-
alent right application condition. Subsequently, the right application condition is
transformed into an equivalent left application condition. In this section we show
that the HLR+properties for (L,R,N)-adhesive categories are sufficient to prove
these techniques for (L,R,N)-adhesive transformation systems. In the following
we focus on negative constraints and negative application condition. However, the
corresponding constructions andproofs canbe easily extended tonested constraints
and application conditions (see for example [HP12a, EEPT06, EGH+12]). Table 5.1
summarizes which of the HLR+properties are required for the translation of con-
sistency constraints to application conditions and for the translation of right NACs
to left NACs, respectively.
Note that in this section the corresponding techniques are shown in the abstract

setting of (L,R,N)-adhesive transformation systems. For detailed examples, we
refer to Chapter 7, where these techniques are instantiated for functional projective
graph transformation systems.

5.3.1 Construction of Equivalent Negative Application Conditions

Basically, for a simple negative constraint nc(N), an equivalent NAC over R is
constructed from all gluings of N and R. A gluing Y of two objects N and R is
defined as the morphism pair (R y

→ Y, N c
→ Y) such that (y, c) ∈ E′, i. e., the pair

(y, c) is jointly epimorphic (see Definition 3.15 and Lemma 5.11). By constructing
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Table 5.1: Overview for the required HLR+properties.

Negative constraints
to

NACs

Right NACs
to

left NACs

H
L
R

+
P
ro
p
er
ti
es

C has binary coproducts x

C has E–N factorization x

R–N -PO–PB decomposition x

L–N -PO–PB decomposition x

(L,N )-initial pushouts

all gluings, we can capture all potential interactions of N and R. Thus, adding all
these gluings as simple negative application conditions to NACR ensures that for
any object H that is inconsistent with respect to negative constraint nc(N), there
either does not exist a match of R in H, or all matches do not satisfy NACR, as H
must contain one of the gluings of N and R.

Definition 5.20 (Construction of negative application conditions from negative
constraints for (L,R,N)-adhesive categories).
Given an (L,R,N)-adhesive category (C,L,R,N ). The construction of a neg-
ative application condition over an object R from a simple negative constraint
nc(N) is defined as

AccR (nc(N)) �
⋃
i∈I

{
nacR (R yi

→ Yi)
}
,

where I ranges over all triples (Yi , yi , ci) with morphisms yi : R → Yi and
ci : N → Yi such that the pair (yi , ci) is in E′.

R

Yi N

yi

ci

For a negative constraint NC, the construction is given by

AccR (NC) �
⋃

AccR (nc(N)) for all nc(N) ∈ NC.

It remains to show that the construction given in Definition 5.20 indeed leads to
equivalent negative application conditions in the following sense:

Theorem 5.21 (Construction of equivalent NACs from negative constrains).
Consider an (L,R,N)-adhesive category (C,L,R,N ) with binary coproducts
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and E-N factorizations, then for any negative constraint NC and every object
R in C withN-morphism n : R → H, we have

n 
 AccR (NC) iff H 
 NC.

Proof. Instead of proving

n 
 AccR (NC) iff H 
 NC,

we equivalently show that

n 1 AccR (NC) iff H 1 NC.

If. Let n 1 AccR (NC), we have to show that H 1 NC; that is, for all triples
(Yi , yi , ci) derived according to Definition 5.20, and every object H in C and
N-morphisms n : R → H, n′ : Yi → H such that n′i ◦ yi � n, there has to be
anN-morphism c′ : N → H.

R

Yi

H

N

yi

ci

n′

n

c′

For any triple (Yi , yi , ci) and morphism n′ in N as above, we define c′ � n′ ◦ ci .
Then c′ ∈ N asN is closed under composition.

Only if. Let H 1 NC, we have to show that n 1 AccR (NC); that is, for any simple
negative constraint nc(N) ∈ NC and N-morphisms c′ : N → H and n : R → H,
there is a triple (Yi , yi , ci) with morphisms yi : R → Yi and ci : N → Yi such
that the pair (yi , ci) is in E′; and there is an N-morphism n′ : Yi → H such that
n′ ◦ yi � n.
As any (L,R,N)-adhesive category with binary coproducts and E-N factoriza-

tions has E′–N pair factorizations (see Lemma 5.11), we may construct the triple
(Yi , yi , ci) and morphisms n′ : Yi → H as the E′–N pair factorization of n and c′.
Consequently, the pair (yi , ci) is in E′. As n, c′ ∈ N , so n′ ∈ N and n′ ◦ yi � n. �

5.3.2 Construction of Equivalent Left NACs from Right NACs

In the following, we present the construction of equivalent left NACs from right
NACs for (L,R,N)-adhesive transformation systems and prove that this construc-
tion indeed leads to equivalent application conditions.

Definition 5.22 (Construction of left from right NACs for (L,R)-productions).

Let % be an extended production over (L,R)-production p � (L ← K → R)
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and right negative application condition NACR. For a simple right negative
application condition nacR (R y

→ Y) ∈ NACR, let

shift% (nacR ((R y
→ Y)) � {nacL (L x

→ X)}

be the singleton set constructed from nacR (R y
→ Y) as follows:

KL R

X Z Y

(2) (1)

l r

l′ r′

x z y

If the pair r : K → R and y : R → Y has a pushout complement, choose
shift% (nacR (R y

→ Y)) � {nacL (L x
→ X)}, where x is defined by the pushouts (1)

and (2); otherwise shift% (nacR (R y
→ Y)) � ∅.

A left NAC is obtained as follows:

shift% (NACR) �
⋃

shift% (nacR (R yi
→ Yi)) for all nacR (R yi

→ Yi) ∈ NACR.

Theorem 5.23 (Construction of equivalent left NACs from right NACs for
(L,R)-productions).
Consider an (L,R,N)-adhesive category (C,L,R,N ) with theR–N-PO–PBde-
composition property. Given extended production % � (p, shift% (NACR), NACR)
over (L,R)-production p with left NAC shift% (NACR) derived according to Def-
inition 5.22, then for any direct transformation G

%@m
������⇒ H via % with match m

and comatch n inN we have

m 
 shiftp (NACR) iff n 
 NACR.

Proof. Instead of proving

m 
 shiftp (NACR) iff n 
 NACR,

we equivalently show that

m 1 shiftp (NACR) iff n 1 NACR.

We start with simple negative application conditions; that is, given an (L,R)-pro-
duction p � (L ← K → R) anda simplenegative application condition nacR (R y

→ Y)
over R, we have to show that

m 1 shiftp (nacR (R y
→ Y)) iff n 1 nacR (R y

→ Y).

If. We have tho show that if

n 1 nacR (R y
→ Y), then also m 1 shiftp (nacR (R y

→ Y)).
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Given a direct transformation G
p@m

������⇒ H. As n 1 nacR (R y
→ Y), there must be a

morphism n′ : Y → H such that n′ ◦ y � n (as shown in the diagram next). Since
h : D → H is an R-morphism, we can construct (3) as the R-pullback of h and
n′. The closure of N and R under pullbacks leads to k′ ∈ N and r′ ∈ R. From
the universal pullback property of (3), we obtain unique morphism z : K → Z.
As r ∈ R, k ∈ N , and n′ ∈ N , we can apply the R–N-PO–PB decomposition
property to pushout (1)+(3) and pullback (3). Accordingly (1) and (3) are pushouts
as well as pullbacks. Since N is closed under decomposition k, k′ ∈ N implies
z ∈ N . Now we construct object X as the (L,N)-pushout of L l← K z

→ Z, leading
to pushout (2) with N-morphism x : L → X and L-morphism l′ : Z → X. By the
universal property of pushout (2), we obtain unique morphism m′ : X → G. The
decomposition of pushout (2)+(4) with pushout (2), implies that (4) is a pushout.
From the closure of N under pushouts, we know from k′ ∈ N that also m′ ∈ N .
Moreover, as diagrams (2) and (4) commute, wemay assume that m′ ◦ x � m; hence,
m 1 nacL (L x

→ X). As pushouts complements are unique in (L,R,N)-adhesive
categories, the pushouts (1) and (2) are identical to the shift construction. Thus,
the simple NAC nacL (L x

→ X) is identical to the simple NAC shift% (nacR (R y
→ Y))

(obtained according to Definition 5.22).

KL R

X Z Y

G D H

(2) (1)

(4) (3)

l r

l′ r′

x z y

g h

m′ k′ n′

m
k

n

Only if. The proof of the “only if” direction can be obtained similarly by, starting
with constructing diagram (4).

Consequently, the statement

m 1 shiftp (nacR (R y
→ Y)) iff n 1 nacR (R y

→ Y).

holds for any simple NAC nacR (R y
→ Y).

As shift% (NACR) is derived as the union of shift% (nacR (R yi
→ Yi)) for each simple

NAC nacR (R yi
→ Yi) ∈ NACR, we may conclude that statement

m 1 shiftp (NACR) iff n 1 NACR

is also valid. �

5.4 Local Church–Rosser, Embedding, and Critical Pairs

In this section we show that the classic results of HLR systems can be lifted to
(L,R,N)-adhesive transformation systems. More specifically, we focus on those
results that are mandatory for conflict detection and resolution, namely the par-
allel part of the Local Church–Rosser Theorem, the Embedding and Extension
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Theorems, as well as the Completeness of Critical Pairs Lemma. This does not
mean that the other results such as the sequential part of the Local Church–Rosser
Theorem, the Parallelism Theorem and the Concurrency Theorem do not hold for
(L,R,N)-adhesive transformation systems. In fact, after inspecting the correspond-
ingproofs,weare convinced that these results canalsobe lifted to (L,R,N)-adhesive
transformation systems. However, as these results are not required for conflict de-
tection and resolution, we leave them for future work.
Table 5.1 summarizes which of the HLR+properties are required in the proofs of

the corresponding results.

Table 5.2: Overview for the required HLR+properties.

Parallel Local
Church–Rosser

Theorem
Embedding
Theorem

Extension
Theorem

Completeness
of Critical

Pairs Lemma

H
L
R

+
P
ro
p
er
ti
es

C has binary coproducts x

C has E–N factorization x

R–N -PO–PB decomposition

L–N -PO–PB decomposition x

(L,N )-initial pushouts x x

Note that in this section these techniques are shown in the abstract setting of
(L,R,N)-adhesive transformation systems. For more detailed explanations and
motivating examples, we refer to Chapter 8, which discusses the application of
these techniques for projective graph transformation systems.

5.4.1 Parallel Independence and Local Church–Rosser

We begin with introducing the concept of parallel independence for (L,R)-produc-
tions, leading to the Parallel Local Church–Rosser Theorem for (L,R,N)-adhesive
transformation systems. Intuitively, two direct transformations of the same object
are parallel independent if none of the involved transformations deletes an element
that is in the match of the other.

Definition 5.24 (Parallel independence).
Let ((C,L,R,N ), P) be an (L,R,N)-adhesive transformation system, then two
direct transformations

H1
p1@m1
⇐������ G

p2@m2
������⇒ H2 with p1, p2 ∈ P

are parallel independent if there existN-morphisms

i : L1 → D2 and j : L2 → D1

such that g2 ◦ i � m1 and g1 ◦ j � m2.
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L1K1R1

GD1H1

l1r1

h1 g1

m1k1n1

L2 K2 R2

D2 H2

l2 r2

h2g2

m2 k2 n2j i

Given two parallel independent transformations of the same object, then the
result of executing them in parallel is the same as executing them sequentially. This
leads us to the Parallel Local Church–Rosser Theorem.

Theorem 5.25 (Parallel Local Church–Rosser Theorem for (L,R,N)-adhesive
transformation systems).
Let ((C,L,R,N ), P) be an (L,R,N)-adhesive transformation system and let

H1
p1@m1
⇐������ G

p2@m2
������⇒ H2 with p1, p2 ∈ P

be two parallel independent direct transformations, then there is an object H3

and direct transformations

H1
p2@m′2������⇒ H3

p1@m′1⇐������ H2.

Proof. Theproof is anadaptedversionof the correspondingproof shown in [HP12b].
Let H1

p1@m1
⇐������ G

p2@m2
������⇒ H2 be parallel independent. Then there are N-morphisms

i : L1 → D2 and j : L2 → D1 such that g2 ◦ i � m1 and g1 ◦ j � m2 (see the figure
below).

L1K1R1

GD1H1

l1r1

h1 g1

m1k1n1

L2 K2 R2

D2 H2

l2 r2

h2g2

m2 k2 n2j i

Since C is (L,R,N)-adhesive, it has L-pullbacks (see Corollary 5.3). Hence, D0

can be constructed as pullback object of D1
g1
→ G g2

← D2 (as shown in the figure
next). Since L is closed under pullbacks the morphisms D0 → Di (for i � 1, 2) are
in L. By the universal pullback property, there are unique morphisms Ki → D0

(for i � 1, 2) such that (11) and (31) and the corresponding triangles commute,
respectively. By the R–R-PO–PB decomposition property (note that we actually
use the L–L-PO–PB decomposition property, see Corollary 5.3), diagrams (11),
(12), (31), and (32) are pushouts as well as pullbacks (note that (12) and (32) are
identical). Since N is closed under pullbacks, the morphisms Ki → D0 (i � 1, 2)
are in N . Since C has (R,N)-pushouts, D′i (i � 1, 2) can be constructed as the
pushouts over Ki → Ri in R and Ki → D0 inN . From the closure of R andN under
pushouts, we obtain that morphisms R1 → D′2 and R2 → D′1 are inN as well as that
morphisms D0 → D′2 and D0 → D′1 are in R. By the universal pushout property,
we can construct morphisms g′2 : D′2 → H1 and g′1 : D′1 → H2 such that (22) and
(42) commute. By pushout decomposition, we can conclude that (22) and (42) are
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pushouts. The closure of L under pushouts implies that morphisms g′1 and g′2 are
in L. Now all squares in the following figure are pushouts.

L1K1R1

D0D′
2 D2

D1H1 G

(21) (11)

(22) (12)

r1 l1

h1 g1

g′2

i

g2

m1

k1n1

L2 K2 R2

D0D1 D′
1

D2 H2

(31) (41)

(32) (42)

l2 r2

g2 h2

j

g1 g′1

m2

k2 n2

The pushouts can be rearranged as shown in the figures below. By definition
j, i ∈ N and h1, h2 ∈ R. AsN is closed underR composition thematches m′2 � h1 ◦ j
and m′1 � h2 ◦ i are in N . As (31), (22), (11), and (42) are pushouts, so (31)+(22)
and (11)+(42). The closure of N under pushouts implies k′1, k′2 ∈ N . Finally, we
obtain H3 as the pushout object of D′1 ← D0 → D′2. As (21), (41) and (5) are
pushouts, so (21)+(5) and (41)+(5). The closure ofN under pushouts together with
k′1, k′2 ∈ N implies n′1, n′2 inN . Hence there is a object H3 and direct transformations
H1

p2@m′2������⇒ H3
p1@m′1⇐������ H2.

R1K1L1

D0D2 D′
2

D1G H1

(11) (21)

(12) (22)

l1 r1

g1 h1

i

g2 g′2

n1

k1m1

L2 K2 R2

D0D1 D′
1

D′
2 H3

(31) (41)

(22) (5)

l2 r2

g′2 h′2

j

h1

m′
2

k′2 n′
2

R2K2L2

D0D1 D′
1

D2G H2

(31) (41)

(12) (42)

l2 r2

g2 h2

j

g1 g′1

n2

k2m2

L1 K1 R1

D0D2 D′
2

D′
1 H3

(11) (21)

(42) (5)

l1 r1

g′1 h′1

i

h2

m′
1

k′1 n′
1

�

5.4.2 Embedding and Extension

The Embedding and Extension Theorems states under what conditions a transfor-
mation sequence can be extended to a larger context. The extension of a transfor-
mation t : G0

∗
���⇒ Gn to a transformation t′ : G′0

∗
���⇒ G′n via an extension morphism

k0 : G0 → G′0, k0 ∈ N is given by an extension diagram.
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Definition 5.26 (Extension diagram).
Let ((C,L,R,N ), P) be an (L,R,N)-adhesive transformation system, then dia-
gram (1) is an extension diagram over transformation t : G0

∗
���⇒ Gn and extension

morphism k0 : G0 → G′0, k0 ∈ N , where t and t′ are transformations via the
same sequence of productions p0, . . . , pn ∈ P with matches (m0, . . . , mn−1) and
(k0 ◦m0, . . . , kn−1 ◦mn−1), respectively, given by the double pushout diagrams
on the right.

GnG0

G′nG′0

t

t′

k0 kn(1)

∗

∗

KiLi Ri

DiGi Gi+1

D′iG′i G′i+1

(PO) (PO)

(PO) (PO)

li ri

gi hi

g′i h′i

mi

ki

si

di

ni

ki+1

The following definition of a derived span describes how to combine the changes
of a transformation t : G0

∗
���⇒ Gn (i. e., a sequence of direct transformations) into a

direct transformation t : G0 ���⇒ Gn . In this way, any transformation sequence can
be treated like a single transformation step.

Definition 5.27 (Derived span).
Let ((C,L,R,N ), P) be an (L,R,N)-adhesive transformation system, the de-
rived span of a direct transformation G p@m

���⇒ H with p ∈ P, is given by

der
(
G p@m

���⇒ H
)
� G ← D → H.

Given a transformation sequence

t : G0
∗

���⇒ Gn−1 ���⇒ Gn ,

via productions in P, and with derived spans

s1�der
(
G0

∗
���⇒Gn−1

)
�

(
G0 ←D′→ Gn−1

)
s2�der

(
Gn−1 ���⇒Gn

)
�

(
Gn−1 ←D′′→ Gn

)
as shown in the following diagram:

D

Gn−1D′ D′′G0 Gn

(1)v w

g0 gn−1 fn−1 fn

d0 dn

The derived span
der(t) � G0

d0
← D dn

→ Gn ,
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of transformation sequence t is given by the composition of derived spans s1

and s2 via pullback (1), where d0 � g0 ◦ v and dn � fn ◦ w.

Remark 5.28 (Derived Span).
The derived span is unique up to isomorphism and does not depend on the or-
der of the pullback constructions [EEPT06]. Moreover, given the derived span
der(t) � G0

d0
← D dn

→ Gn , then morphism d0 is in L and morphism dn is in R. This
can be easily shown by induction, as we may obtain in each step from fn−1 ∈ L

and gn−1 ∈ R, that v ∈ L and w ∈ R (closure of L and R under pullbacks); from
g0 ∈ L and fn ∈ R we obtain d0 ∈ L and dn ∈ R (closure under composition).

Based on the notion of initial pushouts we now define consistency and show that
consistency is sufficient (Theorem 5.30) and necessary (Theorem 5.31) to guarantee
the existence of an extension diagram.

Definition 5.29 (Consistency).
Let ((C,L,R,N ), P) be an (L,R,N)-adhesive transformation system and let
t : G0

∗
���⇒ Gn be a transformation sequence via productions in P with derived

span der(t) � (G0 ← D → Gn).

DG0 Gn

G′
0

B

C

(1)

d0 dnb0

b

k0

A morphism k0 : G0 → G′0, k0 ∈ N is consistent with respect to transformation t if
there exists a quasi (L,N)-initial pushout (1) over k0 and a morphism b ∈ R
with d0 ◦ b � b0.

Theorem 5.30 (Embedding Theorem).
Let ((C,L,R,N ), P) be an (L,R,N)-adhesive transformation system, where C

has (L,N)-initial pushouts. Given transformation t : G0
∗

���⇒ Gn via productions
in P and anN-morphisms k0 : G0 → G′0 such that k0 is consistent with respect
to transformation t, then there is an extension diagram over t and k0.

Proof. If C has (L,N)-initial pushouts, it has also quasi (L,N)-initial pushouts (see
Lemma 5.18). The proof is similar to the proof of Theorem 6.14 in [EEPT06]. More
specifically, the proof can be obtained from the proof in [EEPT06] by using quasi
(L,N)-initial pushouts instead of initial pushouts. �

Theorem 5.31 (Extension Theorem).
Let ((C,L,R,N ), P) be an (L,R,N)-adhesive transformation system with
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(L,N)-initial pushouts, given a transformation t : G0
∗

���⇒ Gn via productions
in P with derived span

der(t) � (G0
d0← D dn→ Gn)

and extension diagram (1)

GnG0

G′nG′0

t

t′

k0 kn(1)

∗

∗

B

C

(2)

b0

with (L,N)-initial pushout (2), then we have the following:

a) Morphism k0 is consistent with respect to transformation t.

b) There is a direct transformation G′0
der(t)@k0
������⇒ G′n given by the following double

pushout diagram.

DG0 Gn

D′G′
0 G′

n

(3) (4)

d0 dn

hk0 kn

c) There are quasi (L,N)-initial pushouts (5) and (6).

D

D′

B

C

b

h(5)

Gn

G′n

B

C

(6)

dn ◦ b

kn

Proof. If C has (L,N)-initial pushouts, it has also quasi (L,N)-initial pushouts (see
Lemma 5.18). The proof is similar to the proof of Theorem 6.16 in [EEPT06]. More
specifically, the proof can be obtained from the proof in [EEPT06] by using quasi
(L,N)-initial pushouts instead of initial pushouts. �

5.4.3 Critical pairs

Now we define symbolic critical pairs and show that symbolic critical pairs are
complete; that is, for any pair of parallel dependent transformations, there exists a
critical pair that can be extended to the corresponding pair of parallel dependent
transformations.
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Definition 5.32 (Critical pair).
Let ((C,L,R,N ), P) be an (L,R,N)-adhesive transformation system, a critical
pair is a pair of parallel depended direct transformations

P1
p1@o1
⇐������ K

p2@o2
������⇒ P2

with p1, p2 ∈ P such that the morphism pair (o1, o2) is in E′.

Lemma 5.33 (Completeness of critical pairs).
Let ((C,L,R,N ), P) be an (L,R,N)-adhesive transformation system with an
E–N factorizations, binary coproducts, andL–N-pushout–pullback decompo-
sition. The critical pairs are then complete. This means that for each pair of
parallel dependent direct transformations

H1
p1@m1
⇐������ G

p2@m2
������⇒ H2,

with p1, p2 ∈ P, there exists a symbolic critical pair

P1
p1@o1
⇐������ K

p2@o2
������⇒ P2

with the following extension diagrams (1) and (2) over extension morphism m.

KP1 P2

GH1 H2

(1) (2)m

Proof. The following proof is an extended version of Lemma 6.22 in [EEPT06].
As C has E–N factorization and binary coproducts, it has also an E′–N pair

factorization (see Lemma 5.11). From the E′–N pair factorization for m1 and m2,
we obtain object K and morphisms o1 : L1 → K, o2 : L2 → K with (o1, o2) ∈ E′, and
m : K → G such that m1 � m ◦ o1 and m2 � m ◦ o2. As m1, m2 ∈ N , so m, o1, o2 ∈ N

(see Lemma 5.11).

L1K1R1

N1P1 K

D1H1 G

r1 l1

h1 g1

o1

m

m1k1n1

L2 K2 R2

N2 P2

D2 H2

l2 r2

g2 h2

o2

m2 k2 n2

To construct the required extension diagram we first construct the pullback (3)
over g1 and m and derive the induced morphism t1. By applying the L–N-PO–PB
decomposition property,we find that both squares (3) and (4) are pushouts, because
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l1 ∈ L and m ∈ N . The closure of N under pushouts implies that t1 and s1 are in
N , because o1, m ∈ N .

L1K1R1

N1P1 K

D1H1 G

(4)

(3)

r1 l1

v1

h1 g1

t1

s1

o1

m
m1k1

n1

L2 K2 R2

N2 P2

D2 H2

l2 r2

v2

g2 h2

o2 t2

s2

m2 k2

n2

Now we construct pushout (5) as the (R,N)-pushout over r1 ∈ R and t1 ∈ N

and derive the induced morphism z1. By pushout decomposition, the square (6)
is a pushout. We apply the same construction to the second transformations. This
results in the following extension diagrams, where the lower part corresponds to
the required extension diagrams (1) and (2) with m ∈ N (given in the definition of
Lemma 5.33).

L1K1R1

N1P1 K

D1H1 G

(5)

(6)

r1 l1

w1 v1

h1 g1

u1

z1

t1

s1

o1

m
m1k1

n1

L2 K2 R2

N2 P2

D2 H2

l2 r2

v2 w2

g2 h2

o2 t2

s2

u2

z2

m2 k2

n2

Finally, we show that P1 ⇐��� K ���⇒ P2 is a critical pair. We know from construction
that (o1, o2) ∈ E′. It remains to show that the pair P1

p1@o1
⇐������ K

p2@o2
������⇒ P2 is parallel

dependent. Assume there are morphisms i : L1 → N2 and j : L2 → N1 with
v2 ◦ i � o1 and v1 ◦ j � o2. Then g2 ◦ s2 ◦ i � m ◦ v2 ◦ i � m ◦ o1 � m1 and
g1 ◦ s1 ◦ j � m ◦ v1 ◦ j � m ◦ o2 � m2, which means that H1

p1@m1
⇐������ G

p2@m2
������⇒ H2 are

parallel independent, which is a contradiction. Consequently, P1 ⇐��� K ���⇒ P2 is a
critical pair. �





6
PRO JECT IVE GRAPH TRANSFORMAT ION SYSTEMS ARE
(L , R , N ) -ADHES IVE

In this chapter we prove that the theoretical results shown for (L,R,N)-adhesive
transformation systems apply also for typed projective graph transformation sys-
tems. To this end,weprove in Section 6.1 that typedprojective graph transformation
systems are (L,R,N)-adhesive. Subsequently, we show in Section 6.2 that typed
projective graph transformation systems provide the defined HLR+properties.

6.1 HLR Properties for Projective Graph Transformation Systems

We begin with proving the required properties for untyped projective graph trans-
formation systems. Subsequently, we use the closure of (L,R,N)-adhesive cate-
gories (see Theorem 5.5) to lift the results to typed projective graph transforma-
tion systems. In order to show that projective graph transformation systems are
(L,R,N)-adhesive we need to show that the category of symbolic graphs with
morphism classes L � M

bĳ

⇔, R � M
inj

Proj, and N � M
inj

⇒ is (L,R,N)-adhesive,
where:

• Mbĳ

⇔, is the class of all symbolic graph morphisms l : 〈G,ΦG〉 → 〈H,ΦH〉 that
are injective for graph nodes and all kind of edges, bĳective for label nodes,
andD � ΦH ⇔ ΦG[l̂].

• Minj

Proj, is the class of projection morphisms (see Definition 4.1).

• Minj

⇒ is the class of all symbolic graph morphisms m : 〈G,ΦG〉 → 〈H,ΦH〉

that are injective for all kind of nodes and edges, such thatD � ΦH ⇒ ΦG[m̂].

To actually show that category SGD is (L,R,N)-adhesive, we have to verify that
the properties given in Definition 5.1 are valid for this choice of morphism classes.
For technical reasons, we begin with proving that SGD has (R,N )-pushouts and
R-pullbacks as well as that morphism classesMbĳ

⇔,Minj

Proj,M
inj

⇒ are closed under
pushouts and pullbacks. According to Facts 3.56 and 3.58, the category SGD has
pushouts and pullbacks along arbitrary symbolic graph monomorphisms. Conse-
quently, it remains to verify the closure properties for pushouts and pullbacks.

Lemma 6.1 (Closure properties for pushouts).
The morphism classesMbĳ

⇔,Minj

Proj, andM
inj

⇒ are closed under pushouts.
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Proof. As the category SGD with M �M
bĳ

⇔ and N � M∗
⇒ is (M,N)-adhesive

(Fact 3.64), we know thatMbĳ

⇔ is closed under pushouts (Definition 3.18). The clo-
sure of Minj

⇒ under pushouts is a direct consequence of the closure of E-graph
monomorphisms under pushouts and the fact that any symbolic graph monomor-
phism is inMinj

⇒ , as classMinj

⇒ do not claim stronger restrictions on the involved
Σ-formulas than symbolic graph morphisms. Hence, it remains to show thatMinj

Proj
is closed under pushouts.
Given pushout (1) with f ∈ Minj

Proj and g ∈ Minj

⇒ , we show that f ′ ∈ Minj

Proj,
by verifying that D � ΦC ⇔ ∃d1 . . .∃dn .ΦD where {d1 . . . dn } � XD\ f ′X (XC) (see
Remark 4.3).

〈A, ΦA〉 〈B, ΦB〉

〈C, ΦC〉 〈D, ΦD〉

(1)

f

g g′

f ′

As f and g are E-graph monomorphisms, the mappings for the label nodes
fX : XA → XB and gX : XA → XC are injective. Hence, we may assume without
loss of generality that XA ⊆ XB and XA ⊆ XC; so, fX (a) � a and gX (a) � a for all
a ∈ XA. Moreover, we may assume that XB � XA ∪X∗B and XC � XA ∪X∗C, where
X∗B � XB\ fX (XA) � XB\XA and X∗C � XC\gX (XA) � XC\XA, such that X∗B ∩X∗C � ∅.
As (1) is a pushout in EG, and pushouts in EG are defined componentwise in Set,

we may assume by the injectivity of fX that XD � XC ∪̇
(
XB\ fX (XA)

)
(Fact 3.9.b),

which is equivalent to XD � XA ∪X∗C ∪X∗B (as X∗B ∩X∗C � ∅).
According to Fact 3.9.a, monomorphisms are closed under pushouts in EG; thus,

also f ′X and g′X are injective and we may assume without loss of generality that
f ′X (c) � c for all c ∈ XC as well as g′X (b) � b for all b ∈ XB. Hence, we have

XD\ f ′X (XC) �
(
XA ∪X∗C ∪X∗B

)
\
(
XA ∪X∗C

)
� X∗B.

Thus, proving

D � ΦC ⇔ ∃d1 . . .∃dn .ΦD where {d1 . . . dn } � XD\ f ′X (XC)

becomes equivalent to show

D � ΦC ⇔ ∃b∗1 . . .∃b∗n .ΦD , where {b∗1 . . . b
∗
n } � X∗B. (6.1)

From pushout (1) we obtain

D � ΦD ⇔
(
ΦC[ f̂ ′]∧ΦB[ ĝ′]

)
,

which is equivalent to
D � ΦD ⇔

(
ΦC ∧ΦB

)
, (6.2)

because f ′X (c) � c for all c ∈ XC as well as g′X (b) � b for all b ∈ XB.
By combining Statements (6.1) and (6.2) we obtain

D � ΦC ⇔ ∃b∗1 . . .∃b∗n .
(
ΦC ∧ΦB

)
, where {b∗1 . . . b

∗
n } � X∗B.
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As ΦC does not have free variables in X∗B, this is equivalent to

D � ΦC ⇔ ΦC ∧∃b∗1 . . .∃b∗n .ΦB, where {b∗1 . . . b
∗
n } � X∗B. (6.3)

The “(⇐)” direction of Statement (6.3) trivially holds; the “(⇒)” direction of State-
ment (6.3) is equivalent to show that

D � ΦC ⇒ ∃b∗1 . . .∃b∗n .ΦB, where {b∗1 . . . b
∗
n } � X∗B. (6.4)

Due to the fact that g is a symbolic graph morphism and f a projection morphism,
we know that

D � ΦC ⇒ ΦA (6.5)

and
D � ΦA ⇔ ∃b∗1 . . .∃b∗n .ΦB, where {b∗1 . . . b

∗
n } � X∗B. (6.6)

By inserting (6.6) in (6.5) we obtain

D � ΦC ⇒ ∃b∗1 . . .∃b∗n .ΦB, where {b∗1 . . . b
∗
n } � X∗B,

which is equivalent to Statement (6.4); thus, f ′ is inMinj

Proj. �

Now we prove thatMinj

Proj is closed under pullbacks.

Lemma 6.2 (Closure properties for pullbacks).
M

bĳ

⇔,Minj

Proj, andM
inj

⇒ are closed under pullbacks.

Proof. As the category SGD with M �M
bĳ

⇔ and N � M∗
⇒ is (M,N)-adhesive

(Fact 3.64), we know thatMbĳ

⇔ is closed under pullbacks. The closure ofMinj

⇒ under
pullbacks is a direct consequence of the closure of E-graphmonomorphisms under
pullbacks, asMinj

⇒ -morphisms do not claim stronger restrictions on the involved
Σ-formulas than symbolic graph morphisms. Hence, it remains to show thatMinj

Proj
is closed under pullbacks.
Let (1) be a pullback in SGD with f ∈ Minj

Proj (given in the diagram shown next),

we show that f ′ ∈ Minj

Proj by verifying the projection property of f ′; that is, for any
symbolic graph 〈Z,ΦZ〉 with E-graph morphisms z : Z → B and z′ : Z → A such
that z � f ′ ◦ z′, we have to show that z is a symbolic graph morphism if and only
if z′ is a symbolic graph morphism.

〈Z, ΦZ〉

〈A, ΦA〉 〈B, ΦB〉

〈C, ΦC〉 〈D, ΦD〉

(1)

f ′

g′ g

f

zz′

v′

v
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If. We have to show for any symbolic graph 〈Z,ΦZ〉 with E-graph morphisms z
and z′ such that z � f ′ ◦ z′, that if z′ is a symbolic graph morphism, then also z.
This, trivially holds as z � f ′ ◦ z′ and f ′ and z′ are symbolic graph morphisms.

Only if. Given a symbolic graph 〈Z,ΦZ〉 with symbolic graph morphism z and
E-graph morphism z′ such that z � f ′ ◦ z′ (in EG), we have to show that z′ is a
symbolic graphmorphism. First, we derive E-graphmorphism v′ as v′ � g′ ◦ z′ and
symbolic graph morphism v as v � g ◦ z. As (1) is a pullback, we have f ◦ v′ � v.
Hence, we can use the projection property of f with symbolic graph morphism v
to conclude that E-graph morphism v′ is also a symbolic graph morphism. By the
universal pullback property of (1) we obtain from symbolic graphmorphism v′ and
z the unique symbolic graph morphism x : 〈Z,ΦZ〉 → 〈A,ΦA〉 such that x � f ′ ◦ z′

and x � g′ ◦ z′. As also z � f ′ ◦ z′ and z � g′ ◦ v′ we obtain from the uniqueness of
x that z′ � x. Hence z′ is a symbolic graph morphism. �

Nowwe show the closure properties for morphism classesMbĳ

⇔,Minj

Proj, andM
inj

⇒

(i. e., Properties 1a–1f of Definition 5.1).

Lemma 6.3 (Closure under composition and decomposition).
Given the category SGD with morphism classes Mbĳ

⇔, Minj

Proj, and M
inj

⇒ , the
following properties hold:

1a) Mbĳ

⇔,Minj

Proj andM
inj

⇒ contain all isomorphisms.

1b) Mbĳ

⇔,Minj

Proj andM
inj

⇒ are closed under composition.

1c) Mbĳ

⇔,Minj

Proj andM
inj

⇒ are closed under decomposition.

1d) Mbĳ

⇔ is a subclass ofMinj

Proj.

1e) Minj

⇒ is closed underMinj

Proj-composition.

1f) Minj

⇒ is closed underMinj

Proj-decomposition.

Proof. Properties 1a and 1d are straightforward to prove. Properties 1b and 1c for
M

bĳ

⇔-morphisms are direct consequences of the (M,N)-adhesivity of SGD with
M �M

bĳ

⇔ andN �M∗
⇒) (see Fact 3.64); Properties 1b and 1c forMinj

⇒ -morphisms
follow from the closure of E-graph monomorphisms under composition and de-
composition and the fact that any symbolic graph monomorphism is inMinj

⇒ . Prop-
erties 1e and 1f follow directly from the closure of Minj

⇒ under composition and
decomposition as anyMinj

Proj-morphism is also anMinj

⇒ -morphism. Hence, also their
composition.
It remains to verify Propertiy 1b and 1c forMinj

Proj-morphisms; that is, for any pair
of symbolic graph morphisms

f : 〈A,ΦA〉 → 〈B,ΦB〉, g : 〈B,ΦB〉 → 〈C,ΦC〉

we have to show:
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Closed under composition (Property 1b):Given morphisms f , g ∈ Minj

Proj, we show that

also (g ◦ f ) ∈ Minj

Proj, by verifying the projection property of (g ◦ f ); that is, given
symbolic graph 〈Z,ΦZ〉 with E-graph morphisms z : Z → C and z′ : Z → A such
that z � g ◦ f ◦ z′, we have to show that z is a symbolic graph morphism if and
only if z′ is a symbolic graph morphism.
If.Wemay define z as z � g ◦ f ◦ z′. Hence z is a symbolic graph morphism as z

and g ◦ f are symbolic graph morphisms.

〈A, ΦA〉 〈C, ΦC〉

〈B, ΦB〉

g ◦ f

f g

〈Z, ΦZ〉
z′ z

z′′

Only if. Given symbolic graph morphism z and E-graph morphism z′ such that
z � g ◦ f ◦ z′ in EG. First we derive E-graph morphism z′′ as z′′ � f ◦ z′. As z is a
symbolic graph morphism and g ◦ z′′ � z, we know by the projection property of g
that z′′ is a symbolic graph morphism. Analogously, from the projection property
of f we can conclude that z′ is a symbolic graph morphism, as z′′ is a symbolic
graph morphism.

Closed under decomposition (Property 1c): Given symbolic graph morphisms g and f
such that (g ◦ f ) ∈ Minj

Proj and g ∈ Minj

Proj, we have to show that f ∈ Minj

Proj. In fact,

this is a consequence of the closure ofMinj

Proj under pullbacks. Given commuting
diagrams (1) and (2) below, according to Fact 3.14.c the diagrams (1) and (2) are
pullbacks in SGD , respectively. By pullback composition (1)+(2) is a pullback. As
(g ◦ f ) ∈ Minj

Proj, andM
inj

Proj is closed under pullbacks we have f � (idB ◦ f ) ∈ Minj

Proj.

〈A, ΦA〉 〈B, ΦC〉

〈B, ΦB〉

g ◦ f

f g

〈A, ΦA〉 〈B, ΦB〉

〈A, ΦA〉 〈B, ΦB〉

〈B, ΦB〉

〈C, ΦC〉

(1) (2)

f

idA idB

f g

g

idB

�

To verify Property 3 of Definition 5.1, we have to show that (R,N)-pushouts with
R �M

inj

Proj andN �M
inj

⇒ are (L,R,N )-VK squares.

Lemma 6.4 ((R,N)-pushouts are (L,R,N )-VK squares).
In SGD with L � M

bĳ

⇔, R � M
inj

Proj and N � M
inj

⇒ , (R,N)-pushouts are
(L,R,N)-VK squares.
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Proof. If. Consider the commutative cube (5) shown next, where the back and
front faces are pullbacks in SGD , the bottom face is a pushout in SGD along
M

inj

Proj-morphism m andMinj

⇒ -morphism f , and we have c, d, b ∈ Minj

Proj, f ∈ Minj

⇒ ,

as well as a ∈ Mbĳ

⇔. We have to show that the top face is a pushout in SGD .

(5)

〈A′,Φ′
A〉

〈A,ΦA〉

〈B′,Φ′
B〉

〈B,ΦB〉

〈C ′,Φ′
C〉

〈C,ΦC〉

〈D′,Φ′
D〉

〈D,ΦD〉

m′f ′

mf

n′

n

g′

g

bc

a

d

As c, d, b ∈ Minj

Proj and f ∈ Minj

⇒ , they can be considered as monomorphisms in
EG. Consequently, we may assume that the top face is a pushout in EG. Hence,
according to Fact 3.56 it is sufficient to verify

D � Φ′D ⇔
(
Φ′C[n̂

′]∧Φ′B[ ĝ
′]
)
, (6.7)

in order to show that the top face is also a pushout in SGD .
We have the following properties for the cube (6):

• g, f ′, g′ ∈ Minj

⇒ , as f ∈ Minj

⇒ andMinj

⇒ is closed under pushouts and pullbacks.

• m′, n, n′ ∈ Minj

Proj, as m ∈ M
inj

Proj and Minj

Proj is closed under pushouts and
pullbacks.

Note that all morphisms are injective for the label node components; aX is in
addition bĳective for label nodes. Hence, without loss of generality, we may define
the label node sets and mappings as follows:

• XA′ � XA, aX (a′) � a′ for all a′ ∈ XA′ � XA

• XB′ � XA ∪X�B′ where m′X (a′) � a′ for all a′ ∈ XA′ and X�B′ � XB′\m′(XA)

• XC′ � XA ∪X�C′ where f ′X (a′) � a′ for all a′ ∈ XA′ and X�C � XC′\ f ′(XA)

• XD′ � XA ∪ X�B′ ∪ X�C′ where n′X (c′) � c′ for all c′ ∈ XC′, g′X (b′) � b′ for all
b′ ∈ XB′

• XB � XB′ ∪ X∗B � XA ∪ X�B′ ∪ X∗B where mX (a) � a for all a ∈ XA, bX (b′) � b′

for all b′ ∈ XB′, and X∗B � XB\XB′

• XC � XC′ ∪ X∗C � XA ∪ X�C′ ∪ X∗C where fX (a) � a for all a ∈ XA, cX (c′) � c′

for all c′ ∈ XC′, and X∗C � XC\XC′

• XD � XA ∪X�B′ ∪X∗B ∪X�C′ ∪X∗C where nX (c) � c for all c ∈ XC, gX (b) � b for
all b′ ∈ XB′, dX (d′) � d′ for all d′ ∈ XD′
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Hence the Statement (6.7) becomes equivalent to

D � Φ′D ⇔
(
Φ′C ∧Φ

′

B
)
. (6.8)

From d ∈ Minj

Proj we obtain

D � Φ′D ⇔ ∃c∗1 . . .∃c∗n .∃b∗1 . . .∃b∗n .ΦD , (6.9)

where
{
c∗1, . . . , c∗n

}
∈ X∗C and

{
b∗1, . . . , b∗n

}
∈ X∗B.

As the bottom face is a pushout in SGD we obtain

D � ΦD ⇔
(
ΦC ∧ΦB

)
. (6.10)

By inserting Statement (6.10) in (6.9), and the result in (6.8) we obtain

D � ∃c∗1 . . .∃c∗n .∃b∗1 . . .∃b∗n .
(
ΦC ∧ΦB

)
⇔

(
Φ′C ∧Φ

′

B
)
, (6.11)

where
{
c∗1, . . . , c∗n

}
∈ X∗C and

{
b∗1, . . . , b∗n

}
∈ X∗B.

As c, b ∈ Minj

Proj we have

D � Φ′C ⇔ ∃c∗1 . . .∃c∗n .ΦC, where
{
c∗1, . . . , c∗n

}
∈ X∗C (6.12)

and
D � Φ′B ⇔ ∃b∗1 . . .∃b∗n .ΦB, where

{
b∗1, . . . , b∗n

}
∈ X∗B. (6.13)

By combining Statement (6.11) with (6.12) and (6.13) we obtain

D � ∃c∗1 . . .∃c∗n .∃b∗1 . . .∃b∗n .
(
ΦC ∧ΦB

)
⇔

(
∃c∗1 . . .∃c∗n .Φ′C ∧∃b∗1 . . .∃b∗n .ΦB

)
,

with
{
c∗1, . . . , c∗n

}
∈ X∗C and

{
b1∗, . . . , bn ∗

}
∈ X∗B, which is valid as X∗B and X∗C are

disjoint.
Only if. Given the following commutative cube (6) (i. e., the backmost cube).

Assume the top face is a pushout in SGD , we have to show that the front faces (3)
and (3’) are pullbacks in SGD .
By assumption, the morphisms b, c, d, m ∈ Minj

Proj andmorphism f ∈ Minj

⇒ ; hence,
they are monomorphisms in EG. According to Fact 3.52, the category EG with
M � N � Minj is (M,N)-adhesive. By using the (M,N)-VK property we can
conclude that the front faces (3) and (3’) are pullbacks in EG.
It remains to show that (3) and (3’) are also pullbacks in category SGD . From

c, d ∈ Minj

Proj and Lemma 4.5 we obtain pullbacks (1) and (4) in SGD . As (3) is a
pullback in EG, we know that also (2) is a pullback in EG. Moreover, it can be easily
checked that (2) is also a pullback in SGD . By pullback composition we have that
(1)+(2) (i. e., the diagonal square) is a pullback. Finally, by pullback decomposition
we know that (3) is a pullback in SGD as (3)+(4)=(1)+(2) and (4) are pullbacks in
SGD .
The proof for the right front face (i. e., commuting square (3′)) can be obtained

analogously, as also b, d ∈ Minj

Proj.
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(6)〈A′,Φ′
A〉

〈A,ΦA〉

m′f ′

mf
(3

′)(3)(1) (1′)

〈B′,Φ′
B〉

〈B,ΦB〉

〈C ′,Φ′
C〉

〈C,ΦC〉

n′

n

g′

g

bc

idC

idC′

(2) (4) (4′) (2
′)

〈D′,Φ′
D〉

〈D,ΦD〉

a

d

〈C,⊥〉

〈C ′,⊥〉

〈D′,⊥〉

〈D,⊥〉
idD

idD′n′

n

〈B′,⊥〉

〈B,⊥〉

〈D′,⊥〉

〈D,⊥〉

�

To verify Property 4 of Definition 5.1, we have to show that (L,N)-pushouts are
(L,N)-VK squares for L �M

bĳ

⇔ andN �M
inj

⇒ .

Lemma 6.5 ((L,N)-pushouts are (L,N)-VK squares).
In SGD with L �M

bĳ

⇔ andN �M
inj

⇒ , (L,N)-pushouts are (L,N)-VK squares.

Proof. If. Consider the commutative cube (1). Assume, the back and front faces
are pullbacks in SGD , the bottom face is a pushout in SGD along m ∈ Mbĳ

⇔ and
f ∈ Minj

⇒ ; the morphisms c, d, b are inMinj

Proj. We have to show that the top face is a
pushout in SGD .

(1)

〈A′,Φ′
A〉

〈A,ΦA〉

〈B′,Φ′
B〉

〈B,ΦB〉

〈C ′,Φ′
C〉

〈C,ΦC〉

〈D′,Φ′
D〉

〈D,ΦD〉

m′f ′

mf

n′

n

g′

g

bc

a

d

Similar to the proof of Lemma 6.4, we may assume that the cube (1) is a VK-square
in EG. Consequently, the top face is a pushout in EG. From m ∈ Mbĳ

⇔ follows that
also m′ and n are inMbĳ

⇔, as the bottom face is a pushout and the back right face an
pullback, andMbĳ

⇔ is closed under pushouts and pullbacks. As m′ ∈ Mbĳ

⇔, the top
face has to be a pushout along m′ ∈ Mbĳ

⇔. Since,Mbĳ

⇔ is closed under pushouts, it is
sufficient to verify that n′ ∈ Mbĳ

⇔. As the left front face is a pullback and n ∈ Mbĳ

⇔,
we can conclude that n′ ∈ Mbĳ

⇔, asMbĳ

⇔ is closed under pullbacks.
Only if. Given the commutative cube (1). Assume, the top face is a pushout

in SGD , we have to show that the front faces are pullbacks in SGD . As b, c, d ∈
M

inj

Proj, f ∈ Minj

⇒ , and m ∈ M
bĳ

⇔, we have that b, c, d, f , m are monomorphisms
in the category EG. Hence, the proof is the same as for the Only If direction of
Lemma 6.4. �
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Note that the Lemma 6.5 can also be derived as a consequence of the fact that the
category of symbolic graphs with Mbĳ

⇔-morphisms is an adhesive HLR category
[OL10b].
Now we can show that the category of symbolic graphs SGD is (L,R,N)-adhe-

sive.

Theorem 6.6 (SGD with L �M
bĳ

⇔, R �M
inj

Proj,N �M
inj

⇒ is (L,R,N)-adhesive).

The category SGD with morphism classes L �M
bĳ

⇔, R �M
inj

Proj, andN �M
inj

⇒

is (L,R,N)-adhesive.

Proof. This is a consequence of Definition 5.1 and Lemmas 6.1–6.5. �

Up until now, we have shown that the category of symbolic graphs with our
corresponding choice of morphisms classes is (L,R,N)-adhesive. It remains to
show that also the category of typed symbolic graphs is (L,R,N)-adhesive.

Corollary 6.7 (TSGD,TG with L � M
bĳ

⇔,TG, R � M
inj

Proj,TG, N � M
inj

⇒,TG is
(L,R,N)-adhesive).
The categoryTSGD,TG of typed symbolic graphs over type graphTGΦwithmor-
phism classesL �M

bĳ

⇔,TG,R �M
inj

Proj,TG, andN �M
inj

⇒,TG is (L,R,N)-adhesive,
where:

• TSGD,TG � SGD\TGΦ

• Mbĳ

⇔,TG �M
bĳ

⇔ ∩MorSGD\TGΦ

• Minj

Proj,TG �M
inj

Proj ∩MorSGD\TGΦ

• Minj

⇒,TG �M
inj

⇒ ∩MorSGD\TGΦ

Proof. This is a direct consequence of Theorem 5.5 and Theorem 6.6. �

It remains to show that typedprojective graph transformation systems, as defined
in Section 4.2, are (L,R,N)-adhesive.

Corollary 6.8 (Typed projective graph transformation systems are (L,R,N)-ad-
hesive transformation systems).
Any typed projective graph transformation system TPGTS in the sense of
Definition 4.7, is an (L,R,N)-adhesive transformation system.

Proof. According to Corollary 6.7 the category TSGD,TG with L � M
bĳ

⇔,TG, R �

M
inj

Proj,TG, andN �M
inj

⇒,TG is (L,R,N)-adhesive. Hence any typed projective graph
transformation system in the sense of Definition 4.7 is an (L,R,N)-adhesive trans-
formation system. �
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6.2 HLR+Properties

In this section we prove the HLR+properties for typed projective graph trans-
formation systems. Unfortunately, it turned out that the category TSGD,TG with
morphism classes L � M

bĳ

⇔, R � M
inj

Proj, and N � M
inj

⇒ does not provide the
R–N-pushout–pullback decomposition property, which is required to transform
right application condition to left application conditions. Nevertheless, by choos-
ing typed functional projective morphisms for right production morphisms (i. e.,
R �M

inj

Func,TG), we can show the category TSGD,TG of typed symbolic graphs pro-
vides this property. Note thatMinj

Func,TG is a subclass ofMinj

Proj,TG. Consequently, every
typed functional projective production is also a typed projective production; thus,
typed functional projective productions enjoy the same properties as typed pro-
jective productions. Table 6.1 lists the HLR+properties with respect to the actual
choice for R.

Table 6.1: Overview of the HLR+properties

TSGD,TG with

L = Mbij
⇔,TG, N = Minj

⇒,TG B
in
ar
y
C
op

ro
d
u
ct
s

E–
N

F
ac
to
ri
za
ti
on

R
–N

-P
O
–P

B
D
ec
om

p
.

L–
N
-P

O
–P

B
D
ec
om

p
.

(L
,N

)-
In
it
ia
l
P
O

R = Minj
Proj ,TG 3 3 3 3

R = Minj
Func,TG 3 3 3 3 3

We start with showing that TSGD,TG has binary coproducts for arbitrary mor-
phisms in TSGD,TG.

Proposition 6.9 (TSGD,TG has binary coproducts).
For any two graphs GΦ1 � 〈G1,Φ1〉 and GΦ2 � 〈G2,Φ2〉 in TSGD,TG, there exists
a binary coproduct (〈G1+2,Φ1+2〉, i1, i2).

Construction. The triple (〈G1+2,Φ1+2〉, i1, i2) is a binary coproduct in TSGD,TG

if (G1+2, i1, i2) is a binary coproduct in TEGTG and

D � Φ1+2 ⇔
(
Φ1[ î1]∧Φ2[î2]

)
.

Proof. According to Fact 3.52.b, the category TEGTG has binary coproducts. Conse-
quently given typed symbolic graphs 〈G1,Φ1〉 and 〈G2,Φ2〉 we can construct typed
E-graph G1+2 with typed E-graph morphisms i1 : G1 → G1+2 and i2 : G2 → G1+2

such that (G1+2, i1, i2) is a binary coproduct in TEGTG. Moreover, given typed
symbolic graph morphisms

f1 : 〈G1,Φ1〉 → 〈G0,Φ0〉 and f2 : 〈G2,Φ2〉 → 〈G0,Φ0〉,
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we can obtain unique morphism c : G1+2 → G0 in TEGTG such that diagram (2)
commutes, i. e., c ◦ i1 � f1 and c ◦ i2 � f2.

〈G1+2, Φ1+2〉〈G1, Φ1〉 〈G2, Φ2〉

〈G0, Φ0〉

(1)

i1 i2

cf1 f2

G1+2G1 G2

G0

(2)

i1 i2

cf1 f2

To show that diagram (1) is a coproduct in TSGD,TG, we have to verify that mor-
phisms i1, i2, and c are typed symbolic graph morphisms.

The morphisms i1 and i2 are typed symbolic graph morphisms since

D �
(
Φ1[î1]∧Φ2[î2]

)
⇒ Φ1[î1] andD �

(
Φ1[î1]∧Φ2[î2]

)
⇒ Φ2[ î2].

To show that c : 〈G1+2,Φ1+2〉 → 〈G0,Φ0〉 is a typed symbolic graph morphism, we
have to verify that

D � Φ0 ⇒
(
Φ1[î1]∧Φ2[ î2]

)
[ĉ].

According to the definition of substitution (Definition 3.47), this is equivalent to

D � Φ0 ⇒
(
Φ1[î1][ĉ]∧Φ2[ î2][ĉ]

)
.

From f1 � c ◦ i1 and f2 � c ◦ i2, we obtain

Φ0 ⇒
(
Φ1[ f̂1]∧Φ2[ f̂2]

)
,

which is valid because

D � Φ0 ⇒ Φ1[ f̂1] andD � Φ0 ⇒ Φ2[ f̂2],

as morphisms f1 and f2 are typed symbolic graph morphisms (by definition). �

In order to define E–N factorizationwe have to assign a concrete morphism class
to E. It turned out that the choice E � E

surj

⇔,TG satisfies the requirements, whereas
E
surj

⇔,TG is defined as follows:

Definition 6.10 (The class Esurj

⇔,TG).
The class Esurj

⇔,TG consists of all morphisms e : 〈G,ΦG〉 → 〈H,ΦH〉 in TSGD,TG

that are surjective for all kinds of nodes and edges andD � ΦH ⇔ ΦG[ê].

Lemma 6.11 (TSGD,TG has an E–N factorization for E � E
surj

⇔,TG,N �M
inj

⇒,TG).
Given any morphism f : 〈A,ΦA〉 → 〈B,ΦB〉 in TSGD,TG, then there ex-
ists a unique decomposition into morphisms e : 〈A,ΦA〉 → 〈C,ΦC〉 and
m : 〈C,ΦC〉 → 〈D,ΦD〉, with e ∈ Esurj

⇔,TG and m ∈ Minj

⇒,TG, such that f � m ◦ e.

Construction. Given a morphism f : 〈A,ΦA〉 → 〈B,ΦB〉 in TSGD,TG, then mor-
phisms e, m, andE-graphC are constructed as theE–M factorization inTEGTG,
where E � E

surj

TG and M � M
inj

TG are the classes of typed E-graph epimor-
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phisms andmonomorphisms, respectively. TheΣ-formulaΦC is chosen so that
D � ΦC ⇔ ΦA[ê].

Proof. According to Fact 3.52.c the category TEGTG has such a factorization for
the classes of typed E-graph epimorphisms and monomorphisms. Hence, we can
assume that given morphism f : 〈A,ΦA〉 → 〈B,ΦB〉 in TSGD,TG, there exists a
uniquedecomposition intoE-graphmorphisms e : A→ C, e ∈ Esurj

TG and m : C → D,
m ∈ Minj

TG such that f � m ◦ e.

〈A, ΦA〉 〈B, ΦB〉

〈C, ΦC〉

=

f

e m

LetD � ΦC ⇔ ΦA[ê], it remains to show that e ∈ Esurj

⇔,TG and m ∈ Minj

⇒,TG. Morphism
e is in Esurj

⇔,TG asD � ΦC ⇔ ΦA[ê] (see Definition 6.10). Morphism m is inMinj

⇒,TG, as
D � ΦB ⇒ ΦA[ f̂ ] and f � m ◦ e implies D � ΦB ⇒ ΦA[ê][m̂], which is equivalent
toD � ΦB ⇒ ΦC[m̂] asD � ΦC ⇔ ΦA[ê]. �

Before we show the R–N-PO–PB decomposition property, we first show an other
nice property ofMinj

Func,TG-morphisms, which basically states that a pushout com-
plement along an Minj

Func,TG-morphism exists if the pushout complement for the
E-graph component exists.

Lemma 6.12 (Pushout complements alongMinj

Func,TG andMinj

⇒,TG-morphisms).
Given symbolic graph morphisms f : 〈A,ΦA〉 → 〈B,ΦB〉, f ∈ Minj

Func,TG and
g′ : 〈B,ΦB〉 → 〈D,ΦD〉, g′ ∈ Minj

⇒,TG, then the following holds: If there exists
a (unique) E-graph C such that (2) is a pushout in TEGTG then there exists a
unique ΦC such that (1) is a pushout in TSGD,TG.

〈A, ΦA〉 〈B, ΦB〉

〈C, ΦC〉 〈D, ΦD〉

(1)

f

g

f ′

g′

A B

C D

(2)

f

g

f ′

g′

Construction. As f and g′ are E-graph monomorphisms and (2) is a pushout
in TEGTG, we may assume without loss of generality (similar to the proof
of Lemma 6.1) that XB � XA ∪X∗B and XC � XA ∪X∗C with fX (a) � a and
gX (a) � a for all a ∈ XA; as well as XD � XA ∪ X∗C ∪ X∗B with f ′X (c) � c for
all c ∈ XC and g′X (b) � b for all b ∈ XB. Moreover we may assume that XA,
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X∗B, and X∗C are pairwise disjoint. As f ∈ Minj

Func,TG we know that there is a
decomposition of ΦB such that

D � ΦB ⇔
(
ΦA ∧ (b∗1

s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn)

)
,

where b∗i ∈ {b
∗

1, . . . , b∗n } � X∗B and terms ti ∈ Ts(i) of corresponding sorts with
var(ti) ⊆ XA. Now we define ΦC such that

D � ΦC ⇔ ΦD

[
t1 . . . tn

b∗1 . . . b∗n

]
.

Proof. Given diagram (1) above with f ∈ Minj

Func,TG and g′ ∈ Minj

⇒,TG such that (2) is
a pushout in TEGTG and assume ΦC is constructed as defined above.
First we show that f ′ : 〈C,ΦC〉 → 〈D,ΦD〉 is a symbolic graph morphism, which is
equivalent to show

D � ΦD ⇒ ΦD

[
t1 . . . tn

b∗1 . . . b∗n

]
. (6.14)

As g′ : 〈B,ΦB〉 → 〈D,ΦD〉 is a symbolic graph morphism, we have

D � ΦD ⇒ ΦA ∧ (b∗1
s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn). (6.15)

Hence, for any assignment ζ such that (D, ζ) � ΦD , we know that

(D, ζ) � (b∗1
s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn)

is valid; thus, also ζ(b∗i ) � ~ti�
D

ζ for all i ∈ {1, . . . , n}, as var(ti) ⊆ XA. Thus,
Statement (6.14) is valid, as (D, ζ) � ΦD implies (D, ζ) � ΦC for any assignment ζ.
According to Remark 3.57, to show that (1) is a pushout in TSGD,TG it is sufficient

to verify that
D � ΦD ⇔

(
ΦB ∧ΦC

)
. (6.16)

The “(⇒)” direction is a direct consequence of the fact that f ′ and g′ are symbolic
graph morphisms, soD � ΦD ⇒ ΦC andD � ΦD ⇒ ΦB.
The “(⇐)” direction is equivalent to show

D �
(
ΦA ∧ (b∗1

s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn) ∧ΦD

[
t1 . . . tn

b∗1 . . . b∗n

] )
⇒ ΦD , (6.17)

which is valid if

D �
(
(b∗1

s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn) ∧ΦD

[
t1 . . . tn

b∗1 . . . b∗n

] )
⇒ ΦD . (6.18)

Now assume any assignment ζ such that

(D, ζ) � (b∗1
s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn) ∧ΦD

[
t1 . . . tn

b∗1 . . . b∗n

]
. (6.19)
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According to Definition 3.41, assignment ζ is as solution of Statement (6.19) iff

(D, ζ) � (b∗i
s(i)
� ti) for all i ∈ {1, . . . , n} (6.20)

and
(D, ζ) � ΦD

[
t1 . . . tn

b∗1 . . . b∗n

]
. (6.21)

From Statement (6.20) we obtain that

~b∗i �
D

ζ � ζ(b∗i ) � ~ti�
D

ζ for all i ∈ {1, . . . , n} (6.22)

Hence, b∗i and ti evaluate to the same values in D under any assignment ζ. Conse-
quently, if

(D, ζ) � (b∗1
s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn) ∧ΦD

[
t1 . . . tn

b∗1 . . . b∗n

]
, then (D, ζ) � ΦD .

then also
(D, ζ) � ΦD (6.23)

for any assignment ζ. Thus, Statement (6.18) and, consequently, Statement (6.17)
are valid.

Finally,wehave to showthat g : 〈A,ΦA〉 → 〈C,Φc〉 is a symbolic graphmorphism.
From symbolic graph morphism g′ : 〈B,ΦB〉 → 〈D,ΦD〉 we obtain

D � ΦD ⇒
(
ΦA ∧ (b∗1

s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn)

)
. (6.24)

Substituting ti for b∗i for all i ∈ {1, . . . , n} in Statement (6.24) results in

D �
(
ΦD ⇒

(
ΦA ∧ (b∗1

s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn)

)) [ t1 . . . tn

b∗1 . . . b∗n

]
, (6.25)

which is equivalent to

D � ΦD

[
t1 . . . tn

b∗1 . . . b∗n

]
⇒ ΦA, (6.26)

because
D � ΦA

[
t1 . . . tn

b∗1 . . . b∗n

]
⇔ ΦA

as ΦA has no free variables in X∗B, and(
(b∗1

s(1)
� t1) ∧ . . . ∧ (b∗n

s(n)
� tn)

) [ t1 . . . tn

b∗1 . . . b∗n

]
⇔ >

is trivially valid. Hence, from Statement (6.26) follows that g : 〈A,ΦA〉 → 〈C,Φc〉 is
a symbolic graph morphism, as by definition

D � ΦC ⇔ ΦD

[
t1 . . . tn

b∗1 . . . b∗n

]
.

The uniqueness of ΦC is a direct consequence of the uniqueness of pushout com-
plements along Minj

Proj,TG-morphisms and the fact that Minj

Func,TG is a subclass of

M
inj

Proj,TG. �
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Remark 6.13 (Pushout complements alongMinj

Func,TG andMinj

⇒,TG-morphisms).
As shown within Lemma 6.12, it is possible to construct the formula component
of symbolic graph 〈C,ΦC〉 by syntactical means (note that substitution is an oper-
ation at the syntactical level of Σ-formulas). Moreover, as a direct consequence
of Lemma 6.12, we can formulate a syntactical criterion to decide whether a
pushout complement along an Minj

Func,TG-morphisms exists. More specifically, to
decide whether the pushout complement for morphisms f : 〈A,ΦA〉 → 〈B,ΦB〉,
f ∈ Minj

Func,TG and g′ : 〈B,ΦB〉 → 〈D,ΦD〉, g′ ∈ Minj

⇒,TG exists in TSGD,TG, it is
sufficient (and neccesary) to check the existence of the pushout complement for
morphisms f : A → B and g′ : B → D in TEGTG. Thus, no semantic reasoning
over the Σ-formulas of the involved symbolic graphs is required. This property
is important to guarantee the soundness of our implementation for transforming
right to left application conditions, as shown later in Chapter 9.

Now, we can show that TSGD,TG has the R–N-PO–PB decomposition property
for R �M

inj

Func,TG andN �M
inj

⇒,TG.

Lemma 6.14 (R–N-PO–PB decomposition for R �M
inj

Func,TG andN �M
inj

⇒,TG).
The category TSGD,TG has R–N-PO–PB decomposition for R �M

inj

Func,TG and
N �M

inj

⇒,TG; that is, given the following commuting diagram:

〈B,ΦB〉〈A,ΦA〉

〈C,ΦC〉 〈D,ΦD〉

〈E,ΦE〉

〈F,ΦF 〉

(1) (2)

k

l

u

s

r

w

v

if (1)+(2) is a pushout with l ∈ Minj

Func,TG and (r ◦ k) ∈ Minj

⇒,TG and (2) a pullback
with w ∈ Minj

⇒,TG, then (1) and (2) are pushouts and pullbacks in TSGD,TG.

Proof. Recall that category TEGTG with the class L � N � M
inj

TG of typed E--
graph monomorphisms is (M,N)-adhesive (see Fact 3.52). Hence, typed E-graphs
have theM–N-pushout–pullback decomposition property (see Fact 3.52). As l ∈
M

inj

Func,TG and w ∈ Minj

⇒,TG, l and w are typed E-graph monomorphisms, we may
assume that (1) and (2) are pushouts as well as pullbacks in TEGTG.

Now consider the following diagram, where (1′) is the pushout constructed
according to Lemma 6.12 from pushout (1) leading to a unique Φ′B; (2) is the
pullback of w and v in TSGD,TG.
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〈B, Φ′B〉 〈B, ΦB〉〈A, ΦA〉

〈C, ΦC〉 〈D, ΦD〉

〈E, ΦE〉

〈F, ΦF〉

(1′) (2)

k

l

u

s′ s

r

w

v
b

b−1
k ◦ r

u ◦ w

As 〈B,Φ′B〉 and 〈B,ΦB〉 have isomorphic E-graph components, there is a typed
E-graph isomorphism b : B′→ B with inverse b−1 : B → B′. It remains to show that
b is an isomorphism in TSGD,TG, which is equivalent to verify that b and b−1 are
typed symbolic graph morphisms. We obtain from l ∈ Minj

Func,TG that l ∈ Minj

Proj,TG,

asMinj

Func,TG is a subclass ofMinj

Proj,TG. Recall that morphisms inMinj

Proj,TG are closed

under pushouts and pullbacks. Thus, l ∈ Minj

Proj,TG and pushout (1)+(2) implies

v ∈ Minj

Proj,TG. From pushout (1′) and l ∈ Minj

Proj,TG we obtain s′ ∈ Minj

Proj,TG; pullback

(2′) and v ∈ Minj

Proj,TG implies s ∈ Minj

Proj,TG. Using the projection properties of s
and s′ we can conclude that b and b−1 are symbolic graph morphisms, respectively.
Hence, b : B′ → B is also an isomorphism in TSGD,TG. Consequently, pushout (1’)
is isomorphic to (1).
From pushout decomposition of pushouts (1) and (1)+(2) in TSGD,TG, follows

that also (2) is a pushout in TSGD,TG. The closure ofMinj

⇒,TG under pullbacks and
w ∈ Minj

⇒,TG implies r ∈ Minj

⇒,TG. The closure ofMinj

⇒,TG under decomposition and
r, (k ◦ r) ∈ Minj

⇒,TG implies k ∈ Minj

⇒,TG. Hence (1) is a pushout and a pullback. �

Remark 6.15 (L–N-PO–PB decomposition for L �M
bĳ

⇔,TG and N �M
inj

⇒,TG). The
category TSGD,TG has also the L–N-PO–PB decomposition for L � M

bĳ

⇔,TG and

N �M
inj

⇒,TG. This is a direct consequence of Corollary 5.14 and Lemma 6.14. Note
that this property is independent from the actual choice ofR, althoughwe deduced
it from Lemma 6.14 with R �M

inj

Proj,TG.

It remains to show that TSGD,TG has (L,N )-initial pushouts.

Definition 6.16 (Construction of (L,N )-initial pushouts for L � M
bĳ

⇔,TG and
N �M

inj

⇒,TG).
Given a typed symbolic graph morphisms m : 〈L,ΦL〉 → 〈G,ΦG〉,

〈B, ΦB〉 〈L, ΦL〉

〈C, ΦC〉 〈G, ΦG〉

(1)

b

c

e m
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the symbolic boundary graph 〈B,ΦB〉 with morphism b : 〈B,ΦB〉 → 〈L,ΦL〉,
b ∈ Mbĳ

⇔,TG is constructed as follows:

• The set of graph nodes VB of B consists of all graph nodes n ∈ VL such
that mV (n) is adjacent to an graph or label edge in G\m(L).

• The set of label nodes XB is given by XB � XL.

Morphism b : 〈B,ΦB〉 → 〈L,ΦL〉 is the inclusion of B in L. The formula ΦB is
set such thatD � ΦB[b̂]⇔ ΦL. Hence, b ∈ Mbĳ

⇔,TG.
The context graph 〈C,ΦC〉withmorphism c : 〈C,ΦC〉 → 〈G,ΦG〉, c ∈ Mbĳ

⇔,TG
is given as C �

(
G\m(L)

)
∪ m(b(B)). Morphisms c : 〈C,ΦC〉 → 〈G,ΦG〉 and

e : 〈B,ΦB〉 → 〈C,ΦC〉 are given by the inclusion of C in G and B in C, respec-
tively. The formula ΦC is set such that D � ΦC[ĉ] ⇔ ΦC. As XB � XL we have
XC �

(
XG\mX (XL)

)
∪ mX (bX (XB)) �

(
XG\mX (XL)

)
∪ mX (XL) � XG. Hence,

morphism c is isomorphic for label nodes, so c ∈ Mbĳ

⇔,TG.

Basically the boundary object contains all nodes of L that are adjacent to an edge
in G\m(L), which are exactly those nodes that have to preserved by a production
when applied to to G via match m in order to prevent dangling edges.

Lemma 6.17 ((L,N )-initial pushouts for L �M
bĳ

⇔,TG andN �M
inj

⇒,TG).
Every pushout constructed according to Definition 6.16 is an (L,N)-initial
pushout in TSGD,TG in the sense of Definition 3.26.

Proof. Consider the diagram shown next. Given initial pushout (1) in TSGD,TG

constructed according to Definition 6.16, we show that for every pushout (2)
with m, g ∈ Mbĳ

⇔,TG and m, k ∈ Mbĳ

⇔,TG there exist unique Mbĳ

⇔,TG-morphisms
b∗ : 〈B,ΦB〉 → 〈K,ΦK〉 and c∗ : 〈C,ΦC〉 → 〈D,ΦD〉, such that l ◦ b∗ � b, g ◦ c∗ � c,
and (3) is a pushout TSGD,TG.

b∗

c∗

(3)
(2)(1)

〈K,ΦK〉

〈D,ΦD〉

〈B,ΦB〉

〈C,ΦC〉

b

c

l

g

ke
〈L,ΦL〉

〈G,ΦG〉

m

As the construction, given inDefinition6.16, is similar as the constructionof initial
pushouts for typed graphs in [EEPT06] and we do not delete label nodes, we may
assume that there exists pushout (3) in TEGTG such that l ◦ b∗ � b and g ◦ c∗ � c.
As morphisms b, c, l, g, b∗, c∗ ∈ Mbĳ

⇔,TG we may assume that XB � XL � XK and
XC � XG � XD as well as bX (b) � b∗X (b) � l(b) � c for all b ∈ XB � XL � XK and
cX (c) � c∗X (c) � l(c) � c for all c ∈ XC � XG � XD . Thus, from the commutativity
of (1), (2) and (3) we obtain that e (b) � m(b) � g(b) � b for all b ∈ XB � XL � XK .
From pushout (1) we obtain

D � ΦG ⇔ ΦL[m̂]∧ΦC[ĉ],
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which is equivalent to
D � ΦG ⇔ ΦL[m̂]∧ΦC,

as cX (c) � c. From b, c, l, g, b∗, c∗ ∈ Mbĳ

⇔,TG we obtain

D � ΦB ⇔ ΦL ⇔ ΦK

and
D � ΦC ⇔ ΦG ⇔ ΦD

thus,
D � ΦD ⇔ ΦK[ ĝ]∧ΦC,

which means that (3) is a pushout in TSGD,TG. �

Note that according to Lemma 5.18 category TSGD,TG has quasi (L,N)-pushouts.
The following remark states that gluing condition (see Fact 3.27) for a typed pro-

jective production can be reduced to the gluing condition in typed E-graphs.

Remark 6.18 (Pushout complements alongMbĳ

⇔,TG andMinj

⇒,TG-morphism pairs).
To ensure the existence of a pushout complement (see Fact 3.27) for a projective

production p � (〈L,ΦL〉
l
← 〈K,ΦK〉

r
→ 〈R,ΦR〉) with match m : 〈L,ΦL〉 → 〈G,ΦG〉,

m ∈ Minj

⇒,TG as shown below (assuming (D � ΦL ⇔ ΦK[ l̂])),

〈K, ΦK〉〈L, ΦL〉 〈R, ΦR〉〈B, ΦB〉

〈G, ΦG〉〈C, ΦC〉

(1)

l r

m

b

c

b∗

it is sufficient to ensure the existence of E-graph Mbĳ

TG-morphism b∗ : B → K

as D � ΦK ⇒ ΦB[b̂∗] is trivially valid if b, l ∈ Mbĳ

⇔,TG. Hence, to decide whether
pushout complement (1) exists, no reasoning on the formula component is needed.
Accordingly, the construction of direct transformation 〈G,ΦG〉

p@m
������⇒ 〈H,ΦH〉 can

be performed purely syntactically. This property is important to guarantee the
soundness of our implementation, as shown later in Chapter 9.
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The construction of application conditions from constraints was first introduced in
[HW95] for plain graphs. Accordingly, a constraint is first transformed into a set of
equivalent right application conditions. Subsequently, the right application condi-
tions are transformed into equivalent left application conditions. In [EEHP06] itwas
shown that this approach can be generalized toM-adhesive categories if the under-
lying category has some extra properties, which are referred to as HLR+properties.
Although the category of symbolic graphs is anM-adhesive category, it was un-
clear whether it provides these extra properties. In [DV14] we have shown that the
category of symbolic graphs withMbĳ

⇔-morphisms indeed provides the required
HLR+properties. The main contribution of this chapter is to extend these results to typed

projective graph transformations. Unfortunately, it turned out that the construction
of left application conditions from right application conditions is not possible for
arbitrary projective productions. Nevertheless, we show that this construction is
valid for functional projective productions.

In the following, we present all constructions directly for typed symbolic graphs.
To this end, we assume for the rest of this chapter that category TSGD,TG is given
by a symbolic type graph TGΦ and a Σ-structureD.

7.1 Construction Equivalent NACs From Negative Constraints

Towards the construction of consistency preserving typed functional projective
productions, we shall see in this section that for every typed negative symbolic
constraint NC and typed symbolic graph RΦ, we can construct an equivalent ap-
plication condition; that is, a typed negative application condition NACR such that
any match of RΦ in a typed symbolic graph HΦ satisfies NACR if and only if HΦ

is consistent with respect to NC. If we consider RΦ as the right-hand side of a
typed functional projective production p, we can construct the extended produc-
tion % � (p, ∅, NACR) with equivalent right negative application condition NACR,
so that comatch n satisfies NACR if and only if HΦ 
 NC.
For a simple negative constraint nc(NΦ) in TSGD,TG, an equivalent NAC over

RΦ is constructed from all gluings of NΦ and RΦ along any common subgraph
(including the empty graph). These gluings represent all possible combinations of
NΦ and RΦ that may occur in a graph. Adding these gluings as simple negative
application conditions to NACR ensures that for any typed symbolic graph HΦ that
is inconsistent with respect to nc(NΦ), there either does not exists a match of RΦ in
HΦ, or all matches do not satisfy NACR, as HΦ must contain one of the gluings.
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To precisely define this construction, we first have to formalize the notion of a
gluing of two typed symbolic graphs. Basically, a gluing YΦ of two typed symbolic
graphs NΦ and RΦ can be defined as a pair (RΦ y

→ YΦ, NΦ c
→ YΦ) of jointly

epimorphic morphisms (see Definition 3.15). Consequently, whenever we can find
a match n′ : YΦ → HΦ of YΦ to a typed symbolic graph HΦ then we have also
matches n and c′ given by n � n′ ◦ y and c′ � n′ ◦ c, respectively.

〈R, ΦR〉

〈Y, ΦY〉

〈H, ΦH〉

〈N, ΦN〉

y

c

n′

n

c′

The concept of jointly epimorphic morphism pairs is captured by the class E
′
surj

⇔,TG
given as follows:

Definition 7.1 (The class E
′
surj

⇔,TG).
The class E

′
surj

⇔,TG is given by all pairs (e1, e2) of typed symbolic graphmorphisms
e1 : 〈A1,Φ1〉 → 〈K,ΦK〉 and e1 : 〈A2,Φ2〉 → 〈K,ΦK〉 with the same codomain,
such that there exists an Esurj

⇔,TG-morphism e : 〈A1+2,Φ1+2〉 → 〈K,ΦK〉 induced
by the coproduct (〈A1+2,Φ1+2〉, i1, i2).

〈A1, Φ1〉 〈A2, Φ2〉〈A1+2, Φ1+2〉

〈K, ΦK〉

i1 i2

ee1 e2

Remark 7.2 (Construction of jointly epimorphic gluings).
As e is in Esurj

⇔,TG, Σ-formula ΦK is equivalent to Φ1[ê1] ∧ Φ2[ê2]. This observa-
tion is especially important for an implementation, as it allows for constructing
the formula component of the gluings at the syntactical level. More specifically,
given two symbolic graphs 〈A1,Φ1〉 and 〈A2,Φ2〉, we construct symbolic graph
〈K,ΦK〉 with morphisms e1 : 〈A1,Φ1〉 → 〈K,ΦK〉 and e2 : 〈A2,Φ2〉 → 〈K,ΦK〉 such
that (e1, e2) ∈ E

′
surj

⇔,TG byfirst constructingE-graphK with jointly epimorphicE-graph
morphisms e1 and e2. Subsequently we set ΦK equal to Φ1[ê1] ∧Φ2[ê2] leading to
(e1, e2) ∈ E

′
surj

⇔,TG.

Now we show that any pair (e1, e2) ∈ E
′
surj

⇔,TG is indeed jointly epimorphic.

Lemma 7.3 (Any pair (e1, e2) ∈ E
′
surj

⇔,TG is jointly epimorphic).
Any morphism pair (e1, e2) ∈ E

′
surj

⇔,TG is jointly epimorphic.
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Proof. Given a pair e1 : 〈A1,Φ1〉 → 〈K,ΦK〉 and e2 : 〈A2,Φ2〉 → 〈K,ΦK〉 of typed
symbolic graph morphisms with coproduct (〈A1+2,Φ1+2〉, i1, i2) and induced mor-
phism e ∈ Esurj

⇔,TG, obtained according to Definition 7.1. For any morphism pair
g, h : 〈K,ΦK〉 → 〈C,ΦC〉 in TSGD,TG, we have to show that if g ◦ ei � h ◦ ei , with
i � 1, 2 then g � h.

〈A1, Φ1〉 〈A2, Φ2〉〈A1+2, Φ1+2〉

〈K, ΦK〉

〈C, ΦC〉

i1 i2
e

g h

e1 e2

As we know from the coproduct that e1 � e ◦ i1 and e2 � e ◦ i2, this is equivalent
to show that g ◦ e ◦ ii � h ◦ e ◦ ii , with i � 1, 2 implies g � h, which is a direct
consequence of the fact that e is an epimorphism. �

The following construction for equivalent NACs from negative symbolic consis-
tency constraints is the instantiation of Definition 5.20 for symbolic graphs. The
construction is based on the fact that given a finite symbolic graph RΦ and simple
negative constraint nc(NΦ) with an finite graph NΦ, the set of jointly epimor-
phic morphism pairs (RΦ yi

→ YΦi , NΦ ci
→ YΦi ) is also finite. Thus, we can add for

each pair of jointly epimorphic morphisms (RΦ yi
→ YΦi , NΦ ci

→ YΦi ) a simple NAC
nacR (RΦ yi

→ YΦi ) to NACR. Equivalent NACs for arbitrary negative symbolic con-
straints NC are derived by constructing the simple NACs for each simple negative
symbolic constraint nc(NΦ) in NC.

Definition 7.4 (Construction of NACs from negative constraints in TSGD,TG).
The construction of a NAC over typed symbolic graph RΦ from a simple nega-
tive symbolic constraint nc(NΦ) in TSGD,TG is defined as

AccR (nc(NΦ)) �
⋃
i∈I

{
nacR (RΦ yi

→ YΦi )
}
,

where I ranges over all triples (YΦi , yi , ci) with morphisms yi : RΦ → YΦi and
ci : NΦ → YΦi such that the pair (yi , ci) ∈ E

′
surj

⇔,TG.

〈R, ΦR〉

〈Yi, ΦYi〉 〈N, ΦN〉

yi

ci

For a negative symbolic constraint NC, the construction is given by

AccR (NC) �
⋃

AccR (nc(NΦ)) for all nc(NΦ) ∈ NC.
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According to Definition 7.4, we can construct the extended symbolic produc-
tion % � (p, ∅, AccR (NC)) from a production p � (LΦ ← KΦ → RΦ) and a negative
symbolic constraint NC. This construction is shown by the following example.

R

Y1 N

(boA.end ≥ boB.begin) ∧ (boB.end ≥ boA.begin)
ΦN

(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧ (bo.end’=da.begin+da.duration)

ΦR

(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧ (bo.end’=da.begin+da.duration)

(bo.end ≥ boB.begin) ∧ (boB.end ≥ bo.begin)

ΦY

y1

c1

ro2: Room

boA : BookingboA.end boA.begin

boB : BookingboB.end boB.begin

bookings

bookings

ro : Room ro.capExam

bo : Booking

da : Dateda.duration da.begin

bo.end’ bo.begin’

ex : Examex.state ex.regSt

ex.state’

date

bookings

location

ro : Room ro.capExam

bo : Booking

da : Dateda.duration da.begin

bo.end’ bo.begin’

ex : Examex.state ex.regSt

ex.state’

boB : BookingboB.end boB.begin

date

bookings

location

bookings

Figure 7.1: Simple right NAC nacR (RΦ y1
→ YΦ1 ) for production projBookRoom and negative

constraint NoCompetingBookings

Example 7.5 (Construction of right NACs).
This example presents the construction of the right NAC for production pro-
jBookRoom and symbolic negative constraint NoCompetingBookings originally
presented in Figure 2.8.
Figure 7.1 shows the construction for one of the gluings in detail. More

specifically, Figure 7.1 depicts the jointly epimorphic pair (RΦ y1
→ YΦ1 , NΦ c1

→

YΦ1 ), where the elements of R and N that are glued together are drawn bold
in Y1. Hence, the morphism y1 is given by the correspondence of the node
identifiers; morphism c1 : N → Y1 is given by mapping ro2 to ro, boA to bo,
and boB to boB. Themapping of the label nodes is determined by the following
variable map

ĉ1 : bo.begin’ bo.end’ boB.begin boB.end
boA.begin boB.end boB.begin boB.end

.

TheΣ-formulaΦY1 is defined by the conjunctionΦR[ ŷ1]∧ΦN [ĉ1]. The result-
ing simple rightNAC nacR (RΦ y1

→ YΦ1 ) invalidates the application of production
projBookRoom if the result contains another booking for Room ro1 with a time
slot that overlaps with the time slot of the created Booking bo.
Figure 7.2 shows further gluings. The simple right NAC shown in Figure 7.2a

is obtained by gluing R and N along the empty graph; simple rightNAC shown
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Y2

(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧ (ex.state’=EX ST.READY) ∧
(bo.begin’=da.begin) ∧ (bo.end’=da.begin+da.duration) ∧ (ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧

(boA.end ≥ boB.begin) ∧ (boB.end ≥ boA.begin)

ΦY2

ro : Room ro.capExam

bo : Booking

da : Dateda.duration da.begin

bo.end’ bo.begin’

ex : Examex.state ex.regSt

ex.state’

date

bookings

location

ro2 : Room

boA : BookingboA.end boA.begin

boB : BookingboB.end boB.begin

bookings

bookings

(a) Simple right NAC nacR (RΦ y2
→ YΦ2 )

Y3

(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧

(bo.end’=da.begin+da.duration) ∧
(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(boA.end ≥ boB.begin) ∧ (boB.end ≥ boA.begin)

ΦY3

ro : Room ro.capExam

bo : Booking

da : Dateda.duration da.begin

bo.end’ bo.begin’

ex : Examex.state ex.regSt

ex.state’

date

bookings

location

boA : BookingboA.end

boA.begin

boB : Booking boB.end

boB.begin

bookings bookings

(b) Simple right NAC nacR (RΦ y3
→ YΦ3 )

Y4

(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧

(bo.end’=da.begin+da.duration)
(bo.end ≥ boA.begin) ∧ (boA.end ≥ bo.begin)

ΦY4

ro : Room ro.capExam

bo : Booking

da : Dateda.duration da.begin

bo.end’ bo.begin’

ex : Examex.state ex.regSt

ex.state’

boA : BookingboA.end boA.begin

date

bookings

location

bookings

(c) Simple right NAC nacR (RΦ y4
→ YΦ4 )

Figure 7.2: Construction of simple right NACs for production projBookRoom and negative
constraint NoCompetingBookings

in Figure 7.2b is obtained by gluing R and N along ro. The simple right NAC
in Figure 7.2c is obtained similar to nacR (RΦ y1

→ YΦ1 ), but gluing boB to bo
instead of gluing boA to bo. Note that there are many more gluings. However,
we can dramatically reduce their number if we assume that all graphs are
linear. This assumption is valid, as projective productions are assumed to be
linear (i. e. they consist of linear graphs only); hence, the result of applying a
linear production to a linear graph, is again a linear graph. Moreover, we may
assume that a booking belongs to at most one room (containment association,
see Figure 2.1).

Based on these results of Section 5.3, we can show that Definition 7.4 indeed
leads to an equivalent negative application condition in the category TSGD,TG in
the following sense:

Theorem 7.6 (Construction of equivalent NACs in TSGD,TG).
For any negative constraint NC and every graph RΦ � 〈R,ΦR〉 in TSGD,TG

withMinj

⇒,TG-morphism n : RΦ → HΦ, we have

n 
 AccR (NC) iff HΦ 
 NC.
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Proof. This is a direct consequence of Theorem 5.21 and the fact that category
TSGD,TG is (L,R,N)-adhesive (for L � M

bĳ

⇔,TG, R � M
inj

Proj,TG, N � M
inj

⇒,TG), has

binary coproducts as well as an E–N-factorization for E � E
surj

⇔,TG. �

7.2 Construction of Equivalent Left From right NACs

As shown in the previous section, given a production p � (LΦ ← KΦ → RΦ), we
are able to construct an extended production % � (p, ∅, AccR (NC)) with equiva-
lent right NAC for any negative constraint NC. This construction guarantees that
there is no direct transformation GΦ %@m

≡≡≡≡≡≡≡≡≡V HΦ that leads to an inconsistent result.
However, in practice one has perform the transformation first, to decide afterwards
whether the result satisfies the right NAC. Especially for security or safety critical
applications it is inevitable to identify actions that lead to a constraint violation
before actually executing them. In the following, we present the construction of
equivalent symbolic left NACs from symbolic right NACs. As shown in Section 6.2,
only functional projective productions provide the R–N-PO–PB decomposition
property, which is required for this construction. For this reason, we require in the
following that all productions are typed functional projective.
Basically, an equivalent left NAC is derived from a rightNACby applying the pro-

duction in reverse direction to each simple rightNAC. The following construction is
an instantiation of Definition 5.22 for typed functional projective productions.

Definition 7.7 (Construction of equivalent left NACs).
Given an extended production % over typed functional projective production
p � (LΦ ← KΦ → RΦ) with right negative application condition NACR. For a
simple right NAC nacR (RΦ y

→ YΦ) ∈ NACR, let

shift% (nacR ((RΦ y
→ YΦ)) � {nacL (LΦ x

→ XΦ)}

be the singleton set constructed from nacR (RΦ y
→ YΦ) as follows:

〈K, ΦL〉〈L, ΦL〉 〈R, ΦR〉

〈X, ΦX〉 〈Z, ΦZ〉 〈Y, ΦY〉

(2) (1)

l r

l′ r′

x y

If the pair r : 〈K,ΦL〉 → 〈R,ΦR〉 and y : 〈R,ΦR〉 → 〈Y,ΦY〉 has a pushout
complement in TSGD,TG, choose shift% (nacR (RΦ y

→ YΦ)) � {nacL (LΦ x
→ XΦ)},

where x is given by the POs (1) and (2); otherwise shift% (nacR (RΦ y
→ YΦ)) � ∅.

A left NAC from a right negative application condition NACR is obtained as
follows:

shift% (NACR) �
⋃

shift% (nacR (RΦ yi
→ YΦi )) for all nacR (RΦ yi

→ YΦi ) ∈ NACR.
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By Definition 7.7, we can derive extended production %′ � (p, shift% (NACR), ∅) from
any extended functional projective production % � (p, ∅, NACR) by simply shifting
the right NACs to the left, as shown in the next example.

Example 7.8 (Construction of left from right NACs).
Figure 7.3 shows the derivation of the simple left negative application con-
dition nacL (LΦ x1

→ XΦ1 ) from the simple right negative application condition
nacR (RΦ y1

→ YΦ1 ), which was originally presented in Example 7.5. Note that
production projBookRoom is functional projective . The resulting left negative
application condition nacL (LΦ x1

→ XΦ1 ) prevents the production projBookRoom
to be applied to a symbolic graph that still contains a booking, whose date is
in conflict with the exam date.
The simple left NACs nacL (LΦ x2

→ XΦ2 ), nacL (LΦ x3
→ XΦ3 ), and nacL (LΦ x4

→ XΦ4 )
(shown in Figures 7.4a–7.4c) are derived in a similar manner from simple right
NACs nacR (RΦ y2

→ YΦ2 ), nacR (RΦ y3
→ YΦ3 ), and nacR (RΦ y4

→ YΦ4 ) (shown in
Figures 7.2a–7.2c), respectively.
The extended functional projective production %′ is then defined as:

%′ � (p′, NAC′L, ∅), where NAC′L �

⋃
i∈{1,2,3,4}

{nacL (LΦ xi
→ XΦi )}.

Based on the results presented in Section 5.3, we are now able to show that the
derived left NACs and rightNACs are indeed equivalent in the following sense:

Theorem 7.9 (Equivalent left NACs for functional projective productions).
Given an extended production % � (p, shift% (NACR), NACR) over functional pro-
jective production p and left NAC shift% (NACR) derived from NACR according
to Definition 7.7, then for all direct transformations GΦ

%@m
������⇒ HΦ via % with

match m ∈ Minj

⇒,TG and comatch n ∈ Minj

⇒,TG

m 
 shiftp (NACR) iff n 
 NACR.

Proof. The proof follows directly from Theorem 5.23 and the fact that category
TSGD,TG is (L,R,N)-adhesive (for L � M

bĳ

⇔,TG, R � M
inj

Proj,TG, N � M
inj

⇒,TG),

M
inj

Func,TG is a subclass of Minj

Proj,TG, as well as the fact that category TSGD,TG has

the R–N-PO–PB decomposition property for R �M
inj

Func,TG. �

Note that the equivalence of NACR and shiftp (NACR) implies the equivalence of
productions % � (p, ∅, NACR) and %′ � (p, shift% (NACR), ∅); that is GΦ %@m

������⇒ HΦ is a
direct transformation if and only if GΦ %′@m

������⇒ HΦ is a direct transformation.

7.3 Minimization of Symbolic Negative Application Conditions

Using the results of Theorem 7.6 and Theorem 7.9, we are able to construct an
extended production %′ � (p, shift% (AccR (NC)), ∅) from any functional projective
production p and negative constraint NC in the category TSGD,TG such that for
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X2

∃(ex.state’).∃(bo.begin’).∃(bo.end’).
(
(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧

(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧ (bo.end’=da.begin+da.duration) ∧
(boA.end ≥ boB.begin) ∧ (boB.end ≥ boA.begin)

)

ΦX2

ro : Room ro.capExam

da : Dateda.duration da.begin

ex : Examex.state ex.regSt
date

ro2 : Room

boA : BookingboA.end boA.begin

boB : BookingboB.end boB.begin

bookings

bookings

(a) Simple left NAC nacL (LΦ x2
→ XΦ2 ), derived from nacR (RΦ y2

→ YΦ2 )

X3

∃(ex.state’).∃(bo.begin’).∃(bo.end’).(
(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧

(bo.end’=da.begin+da.duration) ∧
(boA.end ≥ boB.begin) ∧ (boB.end ≥ boA.begin)

)

ΦX3

ro : Room ro.capExam

da : Dateda.duration da.begin

ex : Examex.state ex.regSt

date

boA : BookingboA.end

boA.begin

boB : Booking boB.end

boB.begin

bookings bookings

(b) Simple left NAC nacL (LΦ x3
→ XΦ3 ), derived

from nacR (RΦ y3
→ YΦ3 )

X4

∃(ex.state’).∃(bo.begin’).∃(bo.end’).(
(ro.capExam≤ex.regSt) ∧ (ex.state=EX ST.PLAN) ∧
(ex.state’=EX ST.READY) ∧ (bo.begin’=da.begin) ∧

(bo.end’=da.begin+da.duration) ∧
(bo.end’ ≥ boA.begin) ∧ (boA.end ≥ bo.begin’)

)

ΦX4

ro : Room ro.capExam

da : Dateda.duration da.begin

ex : Examex.state ex.regSt

boA : BookingboA.end boA.begin

date

bookings

(c) Simple left NAC nacL (LΦ x4
→ XΦ4 ), derived

from nacR (RΦ y4
→ YΦ4 )

Figure 7.4: Derived simple left NACs for production projBookRoom.

all direct transformations GΦ %′@m
������⇒ HΦ, the derived typed symbolic graph HΦ is

consistent with respect to NC. However, not all generated left NACs are required
to ensure that extended production %′ is consistency preserving. In the following,
we shall see how to reduce the number of generated application conditions. This is
especially interesting from a practical point of view, as each application condition
creates overhead when checking the applicability of a production.

Note that although we can construct equivalent left NACs from right NACs
for functional projective transformations only, the results for minimizing NACs
presented in the following also apply for projective productions, as it is irrelevant
how the left NACs are obtained.

7.3.1 Consistency Preserving Minimization of left NACs

Recall, that consistency preservation (Definition 3.32) just requires the result of a
direct transformation to be consistent if the symbolic graph was consistent before
the transformation. Especially if we assume that the initial graph is consistent, it
is sufficient to require that each production preserves consistency to ensure that
inconsistent graphs are unreachable.
The following theorem shows that consistency preservation of an extended pro-

jective production % with respect to a negative constraint NC is retained if we
remove simple left NACs that are inconsistent with respect to NC.



128 7 Verification of Symbolic Consistency Constraints

Theorem 7.10 (Consistency preserving minimization of left NACs).
Given an extended production % � (p, NACL, ∅) that is consistency preserving
with respect to a negative constraint NC, then any extended production %′ �
(p, NAC′L, ∅) with left NAC

NAC′L � NACL\
{
nacL (LΦ xi

→ XΦi )
}
for a nacL (LΦ xi

→ XΦi ) ∈ NACL

is consistency preserving with respect to NC if XΦi 1 NC.

Proof. Given extended productions % � (p, NACL, ∅) and %′ � (p, NAC′L, ∅) with
typed projective production p � 〈ΦL, L ← K → R,ΦR〉, where negative application
condition NAC′L is defined as NAC′L � NACL\

{
nacL (LΦ xi

→ XΦi )
}
such that XΦi 1 NC.

We prove this theorem by contradiction. To that end, suppose that extended
production % is consistency preserving with respect to NC, but %′ is not. Then
there must exist a typed symbolic graph GΦ and match m : LΦ → GΦ leading to
direct transformation GΦ %′@m

������⇒ HΦ via %′ such that GΦ 
 NC and HΦ 1 NC. By
assumption, the extendedproduction % is consistencypreserving; hence, theremust
be a simple negative application condition in NACL that prevents the application
of % at match m.

〈L, ΦL〉〈Xi, ΦXi〉

〈G, ΦG〉

〈N, ΦN〉

m

xi

m′

c

As NAC′L � NACL\
{
nacL (LΦ xi

→ XΦi )
}
, it must be the case that % cannot be applied

at match m because of m 1 nacL (LΦ xi
→ XΦi ), which implies the existence of a

morphism m′ : XΦi → GΦ such that m � m′ ◦ xi . By assumption XΦi 1 NC, thus there
is a simple negative constraint nc(NΦ) ∈ NC with morphism c : NΦ → XΦi . This
means we can construct morphisms (m′ ◦ c) : NΦ → GΦ, which is a contradiction
as it implies that GΦ is inconsistent with respect to NC. �

Example 7.11 (Consistency preserving minimization of left NACs).
Consider the left NAC with simple left NACs nacL (LΦ xi

→ XΦi ) for i ∈ {1, 2, 3, 4}
derived in Example 7.8 (see Figure 7.3 and Figure 7.4). If we take a closer look at
the simple left NAC nacL (LΦ x2

→ XΦ2 ) we can see that it prevents the application
of production projBookRoom if there is another room ro2with a pair of bookings
that have mutually overlapping time slots. This means, if nacL (LΦ x2

→ XΦ2 )
prevents the application of rule projBookRoom to a graph GΦ, then GΦ is already
inconsistentwith respect tonegative constraintNoCompetingBookings. Similarly
nacL (LΦ x3

→ XΦ3 ) prevents production projBookRoom to be applied to a room
ro that already has a pair of bookings with mutually overlapping time slots.
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According to Theorem 7.10 we may remove simple left NACs nacL (LΦ x2
→ XΦ2 )

and nacL (LΦ x3
→ XΦ3 ) such that the resulting extended production

%′′ � (p′, NAC′′L , ∅), with NAC′′L �
{
nacL (LΦ x1

→ XΦ1 ), nacL (LΦ x4
→ XΦ4 )

}
remains consistency preserving.

7.3.2 Minimization of Subsumed left NACs

Hence after removing those NACs that are not required for preserving consistency,
there might be NACs that are subsumed by other NACs and, thus, may be removed
without altering the semantics of aproduction. Basically, a subsumedNACis a simple
negative application condition for which there exists an other simple application
condition that is a subgraph of the corresponding NAC.

Definition 7.12 (Subsumed NACs).
Given a negative application condition NACL over symbolic graph 〈L,ΦL〉 then
a simple negative application condition nacL (LΦ xi

→ XΦi ) ∈ NACL is subsumed by
an other application condition nacL (LΦ x j

→ XΦj ) ∈ NACL with Xi , X j if there

exists anMinj

⇒,TG-morphism s : 〈X j ,ΦX j〉 → 〈Xi ,ΦXi〉 such that s ◦ x j � xi .

Removing subsumed simple negative application conditions from a NAC does
not alter its semantics:

Proposition 7.13 (Subsumed NACs).
Given a negative application condition NACL over the symbolic graph 〈L,ΦL〉

with simplenegative application conditions nacL (LΦ xi
→ XΦi ), nacL (LΦ x j

→ XΦj ) ∈
NACL such that nacL (LΦ xi

→ XΦi ) is subsumed by nacL (LΦ x j
→ XΦj ). Then for any

M
inj

⇒,TG-morphism m : 〈L,ΦL〉 → 〈G,ΦG〉, we have m 
 NACL if and only if
m 
 NAC′L, where

NAC′L � NACL\
{
nacL (LΦ xi

→ XΦi )
}
.

Proof. Without loss of generality we may assume that

NACL �
{
nacL (LΦ xi

→ XΦi ), nacL (LΦ x j
→ XΦj )

}
and NAC′L �

{
nacL (LΦ x j

→ XΦj )
}
.

Now assume that nacL (LΦ x j
→ XΦj ) subsumes nacL (LΦ xi

→ XΦi ); that is, there exists a
morphism s : 〈X j ,ΦX j〉 → 〈Xi ,ΦXi〉. We proof the theorem by contradiction.

Case 1. Given anMinj

⇒,TG-morphism m : 〈L,ΦL〉 → 〈G,ΦG〉 such that m 
 NACL

and m 1 NAC′L. Thus, there must be anMinj

⇒,TG-morphism p j : 〈X j ,ΦX j〉 → 〈G,ΦG〉,
such that p j ◦ x j � m. As nacL (LΦ x j

→ XΦj ) is also in NACL, we have m 1 NACL which
is a contradiction.
Case 2. Given anyMinj

⇒,TG-morphism m : 〈L,ΦL〉 → 〈G,ΦG〉 such that m 1 NACL

and m 
 NAC′L. Hence, we have the following cases:

a) There exists anMinj

⇒,TG-morphism p j : 〈X j ,ΦX j〉 → 〈G,ΦG〉 such that p j ◦ x j �

m. Thus m 1 NAC′L, which is a contradiction.
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b) There exists anMinj

⇒,TG-morphism pi : 〈Xi ,Φi〉 → 〈G,ΦG〉 such that pi ◦ xi �

m; hence, there is a morphism (pi ◦ s) : 〈X j ,ΦX j〉 → 〈G,ΦG〉 with pi ◦ s ◦ x j �

m. Thus m 1 NAC′L, which is a contradiction.

〈L, ΦL〉〈Xi, ΦXi〉 〈Xj, ΦXj〉

〈G, ΦG〉

s

m

xi xj

pi

�

In the following, we define essential NACs, which are basically those NACs that
remain after removing consistency guaranteeing and subsumed NACs:

Definition 7.14 (Essential NAC).
Given a set of negative constraints NC and an application condition NACL over
a symbolic graph 〈L,ΦL〉, NACL is essential if all simple negative application
condition in NACL are consistency preserving but not consistency guaranteeing
with respect to NC and there does not exist a simple negative application
condition in NACL that is subsumed by an other application condition in NACL.

Example 7.15 (Subsumed and essential NACs).
Consider the extended production

%′′ � (p′, NAC′′L , ∅), with NAC′′L �
{
nacL (LΦ x1

→ XΦ1 ), nacL (LΦ x4
→ XΦ4 )

}
after the minimization performed in Example 7.11. It can be seen that symbolic
graphs 〈X1,ΦX1〉 and 〈X4,ΦX4〉 are isomorphic; consequently, there exists an
symbolic graph isomorphism s : 〈X1,ΦX1〉 → 〈X4,ΦX4〉. Moreover, we have
that s ◦ x1 � x4 and s−1

◦ x4 � x1. Hence, according to Proposition 7.13, we
may remove either nacL (LΦ x1

→ XΦ1 ) or nacL (LΦ x4
→ XΦ4 ) from NAC′′L , and in both

cases, the resulting negative application conditions

NAC∗L �
{
nacL (LΦ x1

→ XΦ1 )
}
and NAC�L �

{
nacL (LΦ x4

→ XΦ4 )
}

are essential.
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CONFL ICT DETECT ION AND RESOLUT ION

In this chapter we present our results on conflict detection and resolution for
attributed graph transformation systems. Intuitively, two transformations of the
same graph have no conflict if the result of executing them in parallel is the same
as executing them serially. Accordingly, two transformation are in conflict if the
results of executing them in parallel differs from the result of a serialized execution.
A conflict of two transformation for the same graph can be resolved if the outputs of
first transformations can be joined again, i. e., there are transformations that lead
to the same result.
The main contributions of this chapter is the extension of our results presented in

[KDL
+
15] to local confluence for projective graph transformation on arbitrary symbolic

graphs. Moreover, we propose local confluence modulo normal form equivalence to increase

the precision of the confluence analysis.

We begin with introducing the different properties for characterizing conflicts
and their resolution, and discuss their application to conflict analysis in Section 8.1.
In Section 8.2 we present the notions required to lift conflict analysis from the
transformation level to the production level. In Section 8.3, we present our main
contribution, namely the Local Confluence Theorem for projective graph transfor-
mation systems. For the rest of this chapter we assume that the category TSGD,TG

is defined by a symbolic type graph TGΦ and a Σ-structureD.

8.1 Conflicts and Conflict Resolution

As mentioned before, two transformations of the same graph are not in conflict if
the result of executing them in parallel is the same as executing them serially. This
property is captured by the concept of parallel independence. The idea of parallel
independence is shown in Figure 8.1a; that is, two parallel independent transfor-
mations of the same graph can be executed in parallel, and the result is the same as
executing the transformations arbitrarily serialized. For two direct transformations
without negative application conditions, this is the case if none of the involved
transformations deletes an element that is in the match of the other.
However, in many cases it is sufficient that a pair of parallel dependent (i. e.,

not parallel independent) transformation can be joined again; that is, there exist
other transformations leading from results of the diverging transformations to the
same result. This brings us to the concept of conflict resolution. Conflict resolution
is usually captured by the concept of confluence. Figures 8.1b–8.1d show different
forms of confluence that can be used to characterize different strategies for conflict
resolution.
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Figure 8.1: Commutativity Properties

In the context of typed projective graph transformation systems, confluencemeans
if whenever typed symbolic graph GΦ can be transformed into typed symbolic
graphs HΦ1 and HΦ2 , there are transformations leading to the graph HΦ3 , as shown
in Figure 8.1b. Note that HΦ1

∗
���⇒ HΦ3

∗
⇐��� HΦ2 means that there exist the following

sequences of direct transformations

HΦ1 Φ ' AΦ0 ���⇒ . . . ���⇒ AΦn ' HΦ3 ' BΦm ⇐��� . . . ⇐��� BΦ0 ' HΦ2

for some n ≥ 0 and m ≥ 0 (see Definition 3.24). Hence, ∗
���⇒ is a relation on isomor-

phisms classes of (typed) symbolic graphs.
A weaker form of confluence is local confluence, shown in Figure 8.1c. In case of

local confluence we require that HΦ1 and HΦ2 can be transformed to HΦ3 when HΦ1
and HΦ2 are obtained by a direct transformation from GΦ. As shown by Newmann,
local confluence implies (global) confluence if the given transformation system
is terminating [New42]. Moreover, if a graph transformation system is (locally)
confluent and terminating it is functional; that is, given a set of productions and
a start graph, then applying the productions as long as possible leads always to
the same result, independently from the actual sequence in which the productions
are applied. Functional behaviour is an important property in the context of model
transformations, where we often expect that the result of transforming a model is
the same for each run.
However, for analysing reactive systems (e. g. our running example) local con-

fluence seems inadequate as those systems are nonterminating by design. Nev-
ertheless, conflict resolution for nonterminating systems can be performed by re-
quiring subcommutativity, shown in Figure 8.1d, as subcommutativity implies
confluence without requiring termination [EEKR99]. Basically, two direct trans-
formation HΦ1 ⇐��� GΦ ���⇒ HΦ2 are subcommutative if there are transformations
HΦ1

0..1
���⇒ HΦ3

0..1
⇐��� HΦ2 , whereas HΦ1

0..1
���⇒ HΦ3 means that either HΦ1 is isomorphic to

HΦ3 (i. e. HΦ1 ' HΦ3 ) or there is a direct transformation HΦ1 ���⇒ HΦ3 .

8.1.1 Independence, Local Confluence and Subcommutativity

In the following, we give formal definitions for parallel independence, local conflu-
ence, and subcommutativity for typed projective graph transformation systems.
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Basically, two direct transformations of the same graph are parallel dependent if
one transformation deletes an element that is in the match of the other.

Definition 8.1 (Parallel independence for TPGTS).
Let TPGTS be a typed projective graph transformation system, then two direct
transformations

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉, p1, p2 ∈ P

are parallel independent if there existMinj

⇒,TG-morphisms

i : 〈L1,ΦL1〉 → 〈D2,ΦD2〉 and j : 〈L2,ΦL2〉 → 〈D1,ΦD1〉

such that g2 ◦ i � m1 and g1 ◦ j � m2.

〈L1, ΦL1〉〈K1, ΦK1〉〈R1, ΦR1〉

〈G, ΦG〉〈D1, ΦD1〉〈H1, ΦH1〉

l1r1

h1 g1

m1k1n1

〈L2, ΦL2〉 〈K2, ΦK2〉 〈R2, ΦR2〉

〈D2, ΦD2〉 〈H2, ΦH2〉

l2 r2

h2g2

m2 k2 n2j i

The existence ofmorphisms i : 〈L1,ΦL1〉 → 〈D2,ΦD2〉 and j : 〈L2,ΦL2〉 → 〈D1,ΦD1〉

and g2 ◦ i � m1 and g1 ◦ j � m2 ensures that all elements in the matches m1 and m2

are not deleted by the other production, respectively.
The next theorem states that any parallel independent pair of direct transfor-

mations is subcommutative and, therefore, confluent. This property is interesting,
as checking parallel independence is computationally less complex than checking
subcommutativity or local confluence. Hence, aswe shall see later, parallel indepen-
dence serves as a first filter criterion for subsequent confluence analysis steps.

Theorem 8.2 (Parallel Local Church–Rosser Theorem for TPGTS).
Let TPGTS be a typed projective graph transformation system and let

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉, p1, p2 ∈ P,

be two parallel independent direct transformations then there is a typed sym-
bolic graph 〈H3,ΦH3〉 and direct transformations

〈H1,ΦH1〉
p2@m′2������⇒ 〈H3,ΦH3〉

p1@m′1⇐������ 〈H2,ΦH2〉.

Proof. This is adirect consequence of Theorem5.25 and the fact that typedprojective
graph transformation systems are (L,R,N)-adhesive (Corollary 6.8). �

Example 8.3 (Parallel dependent pair of direct transformations).
Figure 8.2 shows an example for a pair of parallel dependent direct transfor-
mation via productions unregExam (left) and regExam (right), originally intro-
duced inChapter 2.However, to be able to print the critical pair on a single page,
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we had to simplify the productions. More specifically, we removed all variables
and corresponding expressions, except those related to the ex.regSt attribute.
Moreover, we abbreviated Enrollment by Enroll, CourseRecord by CRecord, and
CoModOffer by CMO.
Production unregExam is given by 〈L1,ΦL1〉 ← 〈K1ΦK1〉 → 〈R1,ΦR1〉. The

production takes an enrollment (en : Enroll) and an examination (ex : Exam) as
input. To unregister from an exam the link regExam is deleted and the number
of registrations (ex.regSt) is decremented by one.

Production regExam is given by the span 〈L2,ΦL2〉 ← 〈K2ΦK2〉 → 〈R2,ΦR2〉.
The production takes also an enrollment (en : Enroll) and an examination (ex :
Exam) as input. The registration is performed by creating the link regExam and
incrementing the number of registrations (ex.regSt) by one.
Both productions are typed projective productions as

∃(ex.regSt′).
(
ex.regSt′ � ex.regSt− 1

)
⇔ >

and
∃(ex.regSt′′).

(
ex.regSt′′ � ex.regSt+ 1

)
⇔ >,

assuming the Σ-structure of natural numbers with addition and subtraction, defined

as usual. In Figure 8.2 both productions are applied to symbolic graph 〈G,ΦG〉.
More specifically, production unregExam is applied to enrollment en1 and ex-
amination ex; production regExam is applied to enrollment en2 an examination
ex. Symbolic graph 〈G,ΦG〉 contains an additional enrollment en3 that exem-
plarily represent all elements of 〈G,ΦG〉 that are not required for applying
the productions (note that 〈G,ΦG〉 usually comprises hundreds of exams, and
thousands of enrollments).
As both direct transformations changes the value of ex.regSt, they are in con-

flict. More specifically, both direct transformations are parallel dependent, as
there does not exists morphisms i : 〈L1,ΦL1〉 → 〈D2,ΦD2〉 and j : 〈L2,ΦL2〉 →

〈D1,ΦD1〉, because both direct transformations delete the label edge between
ex : Exam and ex.regSt.

Remark 8.4 (Checking parallel independence).
Note that it is sufficient (and necessary) to ensure only the presence of a E-
graph Minj-morphisms i : L1 → D2 and j : L2 → D1, in order to show par-
allel independence. Recall that morphisms g1 : 〈D1,ΦD1〉 → 〈G,ΦG〉 and g2 :
〈D2,ΦD2〉 → 〈G,ΦG〉 in the definition of parallel independence (see Definition 8.1)
are inMbĳ

⇔,TG (closure ofMbĳ

⇔,TG under pushouts); hence,ΦD1[ ĝ1]⇔ ΦG ⇔ ΦD2[ ĝ2]

is valid.Consequently, asΦG ⇒ ΦL1[m̂1] andΦG ⇒ ΦL2[m̂2], alsoΦD2 ⇒ ΦL1[î] and
ΦD1 ⇒ ΦL2[ ĵ] for all typed E-graphMinj

TG-morphisms i : L1 → D2 and j : L2 → D1,
such that g2 ◦ i � m1 and g1 ◦ j � m2. This property is especially relevant regarding
an implementation. In Chapter 9 we use this property to guarantee the soundness
of our implementation.

In order to show that the conflict shown in the previous example can be resolved,
we need to give a formal definition for local confluence and subcommutativity for
typed projective graph transformation systems.
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Definition 8.5 (Local confluence and subcommutativity for TPGTS).
Let TPGTS be a typed projective graph transformation system, a pair of direct
transformations

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉, p1, p2 ∈ P

is locally confluent if there are transformations

〈H1,ΦH1〉
∗

���⇒ 〈H3,ΦH3〉
∗
⇐��� 〈H2,ΦH2〉

via productions in P.
A pair of direct transformations

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉, p1, p2 ∈ P

is subcommutative if there are transformations

〈H1,ΦH1〉
0..1
���⇒ 〈H3,ΦH3〉

0..1
⇐��� 〈H2,ΦH2〉

via productions in P.
A typed projective graph transformation system TPGTS is locally confluent (sub-

commutative) if each pair of direct transformations via productions inP is locally
confluent (subcommutative).

One might expect that the two parallel direct transformations of the previous
example are subcommutative. Unfortunately, this is not the case as illustrated by
the next example.

Example 8.6 (Subcommutativity).
The upper part of Figure 8.3 shows the application of the productions un-
regExam (i. e., production p1) and regExam (i. e., production p2) to symbolic
graph 〈G,ΦG〉 via matches m1 and m2, as shown in Example 8.3. The result
are the symbolic graphs 〈H1,ΦH1〉 and 〈H2,ΦH2〉, respectively. The lower part
of Figure 8.3 shows the application of productions regExam (i. e., production
p2) to symbolic graphs 〈H1,ΦH1〉 and unregExam (i. e., production p1) to sym-
bolic graph and 〈H2,ΦH2〉. The matches m′2 and m′1 are indicated by the bold
elements in 〈H1,ΦH1〉 and 〈H2,ΦH2〉, respectively. The results are the graphs
〈H3,ΦH3〉 and 〈H4,ΦH4〉. Although 〈H3,ΦH3〉 and 〈H4,ΦH4〉 look very sim-
ilar (i. e., for graph nodes, graph edges and label edges and the value of the
ex.regSt∗ attribute), they are not isomorphic, because of the label nodes ex.regSt′
and ex_regSt′′ represent different values (i. e. ex.regSt′=69 and ex.regSt′′=71).
Hence, the diagram shown in Figure 8.3 is not subcommutative.

The problem illustrated by Example 8.6 is that from a practical point of view, we
are often interested only in the values of the variables that are assigned to a graph
node when comparing two graphs. However, if we check whether the results are
isomorphic, we also take the values of the auxiliary variables (i. e., the variables
not assigned to a graph node; see Definition 4.10) into account. These auxiliary
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Figure 8.3: Example for nonsubcommutative direct transformations
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variables may differ, although the values of the nonauxiliary variables are the same
as shown in the previous example.

8.1.2 Local Confluence Modulo Normal Form Equivalence

To overcome this problem, we propose normal form equivalence to compare two
symbolic graphs. Basically, two symbolic graphs are normal form equivalent if their
normal forms (see Definition 4.10) are isomorphic.

Definition 8.7 (Normal form equivalence of symbolic graphs (≡)).
Two symbolic graphs 〈G1,ΦG1〉, 〈G2,ΦG2〉 inTSGD,TG are normal form equivalent

(denoted as 〈G1,ΦG1〉≡〈G2,ΦG2〉) if their normal forms are isomorphic, i. e.,
nor(〈G1,ΦG1〉) ' nor(〈G2,ΦG2〉).

Note that ≡ is an equivalence relation on symbolic graphs.
Based on the notion of normal form equivalence, we can reformulate Defini-

tion 8.5 leading to the notions of local confluence and subcommutativity modulo
normal form equivalence. Basically a pair of direct transformation is locally confluent

(or subcommutative) modulo normal form equivalence, if there are transformations such
that the resulting graphs are normal form equivalent.

Definition 8.8 (Local confluence and subcommutativity modulo ≡).
Let TPGTS be a typed projective graph transformation system. A pair of direct
transformations

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉, p1, p2 ∈ P

is local confluent modulo ≡ if there are transformations

〈H1,ΦH1〉
∗

���⇒ 〈H3,ΦH3〉 and 〈H2,ΦH2〉
∗

���⇒ 〈H4,ΦH4〉

via productions in P, such that 〈H3,ΦH3〉≡〈H4,ΦH4〉.
A pair of direct transformations

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉, p1, p2 ∈ P

is subcommutative modulo ≡ if there are transformations

〈H1,ΦH1〉
0..1
���⇒ 〈H3,ΦH3〉≡〈H4,ΦH4〉

0..1
⇐��� 〈H2,ΦH2〉

via productions in P.

In the following example, we show that subcommutativity modulo normal form
equivalence leads to the expected result.

Example 8.9 (Subcommutativity modulo normal form equivalence).
Figure 8.4 shows the direct transformations as presented in Example 8.6, but
instead of requiring 〈H3,ΦH3〉 and 〈H4,ΦH4〉 to be isomorphic (as in Exam-
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ple 8.6), we require that 〈H3,ΦH3〉 and 〈H4,ΦH4〉 are normal form equiva-
lent. To this end we, derive the normal forms 〈Z1,ΦZ1〉 � nor(〈H3,ΦH3〉) and
〈Z2,ΦZ2〉 � nor(〈H4,ΦH4〉) with induced morphisms z1 and z2 as shown in
Figure 8.4. The normal forms 〈Z1,ΦZ1〉 and 〈Z2,ΦZ2〉 are isomorphic; hence,
〈H3,ΦH3〉 and 〈H4,ΦH4〉 are normal form equivalent. Consequently, the pair
of transformations 〈H1,ΦH1〉

p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉 is subcommutative

modulo ≡.

8.2 Conflict Detection by Critical Pair Analysis

Up until now we discussed conflicts and confluence on the transformation level. In
this section we generalize this analysis to productions using critical pair analysis.
The basic idea of critical pairs is very similar to the construction of application con-
ditions from constraints. Instead of verifying local confluence (subcommutativity)
for all possible transformation, it is sufficient to ensure local confluence (subcom-
mutativity) for only some minimal contexts that are built by all jointly surjective
gluings of the left-hand sides of the involved productions. If the pair of direct
transformation that results from applying the pair to a minimal context is parallel
dependent it is a critical pair.
Before we define critical pairs we first introduce other results that allow for ex-

tending transformations to larger contexts. The definitions and theorems in this
section are instantiations of the results in Chapter 5 to projective graph transforma-
tion systems.

8.2.1 Embedding and Extension

We begin with the definition of extension diagrams for typed projective transfor-
mations. Basically, an extension diagram describes how to extend a transformation
t : 〈G0,ΦG0〉

∗
���⇒ 〈Gn ,ΦGn 〉 to a transformation t′ : 〈G′0,Φ′G0

〉
∗

���⇒ 〈G′n ,Φ′Gn
〉 via an ex-

tension morphisms k0 : 〈G0,ΦG0〉 → 〈G
′

0,Φ′G0
〉, where t′ and t are transformations

via the same sequence of productions

Definition 8.10 (Extension diagram for TPGTS).
Let TPGTS be a typed projective graph transformation system, then diagram
(1) is an extension diagram over transformation t : 〈G0,ΦG0〉

∗
���⇒ 〈Gn ,ΦGn 〉 and

extension morphism k0 : 〈G0,ΦG0〉 → 〈G
′

0,Φ′G0
〉, k0 ∈ M

inj

⇒,TG, where t and t′

are transformations via the same sequence of productions p0, . . . , pn ∈ P with
matches (m0, . . . , mn−1) and (k0 ◦ m0, . . . , kn−1 ◦ mn−1), respectively, given by
the double pushout diagrams on the right.
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〈Gn, ΦGn〉〈G0, ΦG0〉

〈G′n, Φ′Gn
〉〈G′0, Φ′G0

〉

t

t′

k0 kn(1)

∗

∗

〈Ki, ΦKi 〉〈Li, ΦLi 〉 〈Ri, ΦRi 〉

〈Di, ΦDi 〉〈Gi, ΦGi 〉 〈Gi+1, ΦGi+1〉

〈D′i , Φ′Di
〉〈G′i , Φ′Gi

〉 〈G′i+1, Φ′Gi+1
〉

(PO) (PO)

(PO) (PO)

li ri

gi hi

g′i h′i

mi

ki

si

di

ni

ki+1

The following definition of a derived span describes how to combine the changes
of a transformation t : 〈G0,ΦG0〉

∗
���⇒ 〈Gn ,ΦGn 〉 (i. e., a sequence of direct transfor-

mations) into a a single transformation step t : 〈G0,ΦG0〉 ���⇒ 〈Gn ,ΦGn 〉. In this way
any transformation can be treated as a direct transformation.

Definition 8.11 (Derived span for typed projective transformations).
Let TPGTS be a typed projective graph transformation system, the derived
span of a direct projective transformation 〈G,ΦG〉

p@m
���⇒ 〈H,ΦH〉 with p ∈ P, is

given by

der
(
〈G,ΦG〉

p@m
���⇒ 〈H,ΦH〉

)
�

(
〈G,ΦG〉 ← 〈D,ΦD〉 → 〈H,ΦH〉

)
.

Given a transformation sequence

t : 〈G0,ΦG0〉
∗

���⇒ 〈Gn−1,ΦGn−1〉 ���⇒ 〈Gn ,ΦGn 〉,

via productions in P, and with derived spans

s1�der
(
〈G0,ΦG0〉

∗
���⇒ 〈Gn−1,ΦGn−1〉

)
�

(
〈G0,ΦG0〉 ←〈D

′,Φ′D〉→ 〈Gn−1,ΦGn−1〉
)

s2�der
(
〈Gn−1,ΦGn−1〉 ���⇒ 〈Gn ,ΦGn 〉

)
�

(
〈Gn−1,ΦGn−1〉 ←〈D

′′,Φ′′D〉→ 〈Gn ,ΦGn 〉
)

as shown in the following diagram:

〈D, ΦD〉

〈Gn−1, ΦGn−1〉〈D′, Φ′D〉 〈D′′, Φ′′D〉〈G0, ΦG0〉 〈Gn, ΦGn〉

(1)v w

g0 gn−1 fn−1 fn

d0 dn

The derived span

der(t) � 〈G0,ΦG0〉
d0
← 〈D,ΦD〉

dn
→ 〈Gn ,ΦGn 〉,

of transformation sequence t is given by the composition of derived spans s1

and s2 via pullback (1), where d0 � g0 ◦ v and dn � fn ◦ w.

Note that a derived span is unique up to isomorphism and does not depend on the
order of the pullback constructions. For more details see Remark 5.28.
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Based on the notion of initial pushouts we can now define consistency, and
show that consistency is sufficient (Theorem 8.13) and necessary (Theorem 8.14) to
guarantee the existence of an extension diagram.

Definition 8.12 (Consistency for TPGTS).
Let TPGTS be a typed projective graph transformation system. Given a trans-
formation t : 〈G0,ΦG0〉

∗
���⇒ 〈Gn ,ΦGn 〉 via productions in P, where der(t) �

(〈G0,ΦG0〉 ← 〈D,ΦD〉 → 〈Gn ,ΦGn 〉).

〈D, ΦD〉〈G0, ΦG0〉 〈Gn, ΦGn〉

〈G′
0, Φ′

G0
〉

〈B, ΦB〉

〈C, ΦC〉

(1)

d0 dnb0

b

k0

A morphism k0 : 〈G0,ΦG0〉 → 〈G
′

0,Φ′G0
〉, k0 ∈ M

inj

⇒,TG is consistent with respect
to transformation t if there exists an quasi (L,N)-initial pushout (1) over k0

and a morphism b ∈ Minj

Proj,TG with d0 ◦ b � b0.

Theorem 8.13 (Embedding Theorem for TPGTS).
Let TPGTS be a typed projective graph transformation system. Given trans-
formation t : 〈G0,ΦG0〉

∗
���⇒ 〈Gn ,ΦGn 〉 via productions in P and anMinj

⇒,TG-mor-
phism k0 : 〈G0,ΦG0〉 → 〈G

′

0,Φ′G0
〉 such that k0 is consistent with respect to

transformation t, then there is an extension diagram over t and k0.

Proof. This is a direct consequence of Theorem 5.30 and the fact that category
TSGD,TG is (L,R,N)-adhesive and has (L,N)-initial pushouts (for L � M

bĳ

⇔,TG,
R �M

inj

Proj,TG,N �M
inj

⇒,TG). �
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Theorem 8.14 (Extension Theorem for TPGTS).
Let TPGTS be a typed projective graph transformation system, given a trans-
formation t : 〈G0,ΦG0〉

∗
���⇒ 〈Gn ,ΦGn 〉 via productions in P, with derived span

der(t) � (〈G0,ΦG0〉
d0← 〈D,ΦD〉

dn→ 〈Gn ,ΦGn 〉)

and extension diagram (1)

〈Gn, ΦGn〉〈G0, ΦG0〉

〈G′n, Φ′Gn
〉〈G′0, Φ′G0

〉

t

t′

k0 kn(1)

∗

∗

〈B, ΦB〉

〈C, ΦC〉

(2)

b0

with (L,N)-initial pushout (2), then we have the following:

a) k0 is consistent with respect to transformation t.

b) There is a direct transformation 〈G′0,Φ′G0
〉

der(t)@k0
������⇒ 〈G′n ,Φ′Gn

〉 given by the
following double pushout diagram.

〈D, ΦD〉〈G0, ΦG0〉 〈Gn, ΦGn〉

〈D′, Φ′
D〉〈G′

0, Φ′
G0
〉 〈G′

n, Φ′
Gn
〉

(3) (4)

d0 dn

hk0 kn

c) There are quasi (L,N)-initial pushouts (5) and (6).

〈D, ΦD〉

〈D′, Φ′D〉

〈B, ΦB〉

〈C, ΦC〉

b

h(5)

〈Gn, ΦGn〉

〈G′n, Φ′Gn
〉

〈B, ΦB〉

〈C, ΦC〉

(6)

dn ◦ b

kn

Proof. This is a direct consequence of Theorem 5.31 and the fact that category
TSGD,TG is (L,R,N)-adhesive and has (L,N)-initial pushouts (for L � M

bĳ

⇔,TG,
R �M

inj

Proj,TG,N �M
inj

⇒,TG). �

8.2.2 Critical Pairs and Completeness

Now we define symbolic critical pairs and show that symbolic critical pairs are
complete; that is, for any pair of parallel dependent transformations, there exists
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a critical pair that can be extended to the pair of parallel dependent transforma-
tions.

Definition 8.15 (Symbolic critical pairs for TPGTS).
Let TPGTS be a typed projective graph transformation system, then a critical

pair of TPGTS is defined as a pair of parallel depended direct transformations

〈P1,ΦP1〉
p1@o1
⇐������ 〈K,ΦK〉

p2@o2
������⇒ 〈P2,ΦP2〉

with p1, p2 ∈ P such that the morphism pair (o1, o2) is in E
′
surj

⇔,TG.

Lemma 8.16 (Completeness of symbolic critical pairs for TPGTS).
Let TPGTS be a typed projective graph transformation system, then the sym-
bolic critical pairs of TPGTS are complete. This means that for each pair of
parallel dependent direct transformations

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉,

with p1, p2 ∈ P, there exists a symbolic critical pair

〈P1,ΦP1〉
p1@o1
⇐������ 〈K,ΦK〉

p2@o2
������⇒ 〈P2,ΦP2〉

with the following extension diagrams (1) and (2) over extension morphism m.

〈K, ΦK〉〈P1, ΦP1〉 〈P2, ΦP2〉

〈G, ΦG〉〈H1, ΦH1〉 〈H2, ΦH2〉

(1) (2)m

Proof. This is a direct consequence of Lemma 5.33 and the fact that category
TSGD,TG is (L,R,N)-adhesive, has binary coproducts, E–N factorization and the
L–N-pushout–pullback decomposition property for L � M

bĳ

⇔,TG, R � M
inj

Proj,TG,

N �M
inj

⇒,TG, andM
bĳ

TG. �

Example 8.17 (Extension diagram for symbolic critical pairs).
Figure 8.6 shows the extension diagram for a critical pair derived for pro-
ductions unregExam and regExam and the parallel dependent direct transfor-
mations presented in Example 8.3. The minimal context 〈K,ΦK〉 is obtained
by gluing 〈L1,ΦL1〉 and 〈L2,ΦL2〉 together, whereas the glued elements are
drawn bold. The formula componentΦK is the conjunction ofΦL1 andΦL2 (see
Definition 7.1); hence, the morphisms pair (o1, o2) is jointly epimorphic (see
Lemma 7.3).
The critical pair 〈P1,ΦP1〉

p1@o1
⇐������ 〈K,ΦK〉

p2@o2
������⇒ 〈P2,ΦP2〉 is obtained by ap-

plying the productions unregExam (i. e., p1 � 〈ΦL1, L1 ← K1 → R1,ΦR1〉) and
regExam (i. e., p2 � 〈ΦL2, L2 ← K2 → R2,ΦR2〉) to the minimal context 〈K,ΦK〉.
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On the bottom of Figure 8.6 the parallel dependent pair of direct transforma-
tions 〈H1,ΦH1〉

p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉 is depicted,whichwas originally

introduced in Example 8.3. The thematches m1 and m2 are given by m1 � m ◦ o1

and m1 � m ◦ o2. Hence, the diagram shown in Figure 8.6 is an example for an
extension diagram in the sense of Lemma 8.16 as all rectangles are pushouts.

8.3 Conflict Resolution by Critical Pair Analysis

In this sectionwe present themain result of this chapter, namely the Local Confluence
Theorem Modulo Normal Form Equivalence for typed projective transformations systems.

On may expect that local confluence (subcommutativity) of all critical pairs en-
sures local confluence of the graph transformation system.Unfortunately, this is not
the case as shown in [Plu93]. Nevertheless, a slightlymore restricted version of local
confluence, called strict confluence, is sufficient to ensure local confluence [Plu93].
Intuitively, a critical pair 〈P1,ΦP1〉

p1@o1
⇐������ 〈K,ΦK〉

p2@o2
������⇒ 〈P2,ΦP2〉 is strict local conflu-

ent if it is local confluent, i. e., there are transformations t3 : 〈P1,ΦP1〉
∗

���⇒ 〈P3,ΦP3〉,
t4 : 〈P2,ΦP2〉

∗
���⇒ 〈P3,ΦP3〉, and all elements of 〈K,ΦK〉 that are not deleted are

mapped to the same elements in 〈P3,ΦP3〉. In this way it is ensured that transforma-
tions 〈P1,ΦP1〉

p2@o′1������⇒ 〈P3,ΦP3〉
p1@o′1⇐������ 〈P2,ΦP2〉 can be extended to transformations

〈H1,ΦH1〉
p2@m′1������⇒ 〈H3,ΦH3〉

p1@m′1⇐������ 〈P2,ΦP2〉.
In order to define strict local confluence modulo normal form equivalencewe first have

to define the class of normal form preserving morphisms I
inj

Proj,TG.

Definition 8.18 (The class Iinj

Proj,TG-morphisms).

The classIinj

Proj,TG is given as the subclass ofMinj

Proj,TG-morphisms that are bĳective
for graph nodes and all kind of edges, and injective for label nodes.

The class Iinj

Proj,TG is called the class of normal form preserving morphisms as for any

morphisms f : 〈A,ΦA〉 → 〈B,ΦB〉 in I
inj

Proj,TG we have that 〈A,ΦA〉 and 〈B,ΦB〉 have
isomorphic normal forms.
In the following, we only define strict local confluence modulo normal form equiva-

lence. We do not give an explicit definition of strict subcommutativity modulo normal

form equivalence as the corresponding definition (and later the corresponding proof)
can be obtained as a special case of strict local confluence modulo normal form
equivalence.
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Definition 8.19 (Strict local confluence modulo ≡).
Let TPGTS be a typed projective graph transformation system, a critical pair

t1 : 〈K,ΦK〉
p1@o1
������⇒ 〈P1,ΦP1〉, t2 : 〈K,ΦK〉

p2@o2
������⇒ 〈P2,ΦP2〉, p1, p2 ∈ P

of TPGTS with derived spans der(t1) �
(
〈K,ΦK〉

v1
← 〈E1,ΦE1〉

w1
→ 〈P1,ΦP1〉

)
and der(t2) �

(
〈K,ΦK〉

v2
← 〈E2,ΦE2〉

w2
→ 〈P2,ΦP2〉

)
is strict local confluent modulo

≡, if the following holds:

a) Modulo confluence.The critical pair is local confluentmodulo≡, i. e., there are
transformations t3 : 〈P1,ΦP1〉

∗
���⇒ 〈P3,ΦP3〉 and t4 : 〈P2,ΦP2〉

∗
���⇒ 〈P4,ΦP4〉,

via productions in P, such that 〈P3,ΦP3〉≡〈P4,ΦP4〉.

b) Strictness. Let der(t3) �
(
〈P1,ΦP1〉

v3
← 〈E3,ΦE3〉

w3
→ 〈P3,ΦP3〉

)
, and der(t4) �(

〈P2,ΦP2〉
v4
← 〈E4,ΦE4〉

w4
→ 〈P4,ΦP4〉

)
be the derived spans of transforma-

tions t3 and t4; let 〈N ,ΦN〉 be the pullback object of pullback (1). Then,
there exists a 〈Z,ΦZ〉 with morphisms z1, z2 ∈ I

inj

Proj,TG and morphisms

y3, y4, y5 ∈ M
inj

Proj,TG such that (2), (3), (4), and (5) commute.

〈K, ΦK〉

〈E1, ΦE1〉 〈E2, ΦE2〉

〈P1, ΦP1〉 〈P2, ΦP2〉

〈E4, ΦE4〉〈E3, ΦE3〉

〈P3, ΦP3〉 〈P4, ΦP4〉

〈N, ΦN〉

〈Z, ΦZ〉

(1)

(2) (3)

(4) (5)

v1 v2

w1 w2

v4v3

w3 w4

y1 y2

y3 y4

y5

z1 z2

Example 8.20.
Figure 8.6 shows that the critical pair 〈P1,ΦP1〉

p1@o1
⇐������ 〈K,ΦK〉

p2@o2
������⇒ 〈P2,ΦP2〉

(originally presented in Example 8.17) is subcommutativemodulo normal form
equivalence. To actually show that 〈P1,ΦP1〉

p1@o1
⇐������ 〈K,ΦK〉

p2@o2
������⇒ 〈P2,ΦP2〉 is

subcommutative, we have to find transformations t3 : 〈P1,ΦP1〉
0..1
���⇒ 〈P3,ΦP3〉,

t4 : 〈P2,ΦP2〉
0..1
���⇒ 〈P4,ΦP4〉 and a symbolic graph 〈Z,ΦZ〉 with Iinj

Proj,TG-mor-
phisms z1 : 〈Z,ΦZ〉 → 〈P3,ΦP3〉 and z2 : 〈Z,ΦZ〉 → 〈P4,ΦP4〉 such that (2), (3),
(4), and (5) commutes. As shown in Figure 8.6 there is indeed such a pair of
transformations and symbolic graph 〈Z,ΦZ〉. Note that 〈Z,ΦZ〉 is isomorphic
to the projection of 〈P3,ΦP3〉 to Z′ (or 〈P4,ΦP4〉 to Z′), where Z′ is the subgraph
of P3 (P4) obtained by removing all auxiliary variables from P3 (P4) that have
no preimage in N via w3 ◦ y3 (w4 ◦ y4).
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At the end of this chapter, we shall see amethod for constructing themost general
〈Z,ΦZ〉, whereas most general means that if the method fails to construct a 〈Z,ΦZ〉,
then there does not exists any symbolic graph 〈Z,ΦZ〉 with Iinj

Proj,TG-morphisms z1 :
〈Z,ΦZ〉 → 〈P3,ΦP3〉 and z2 : 〈Z,ΦZ〉 → 〈P4,ΦP4〉 such that (4), and (5) commutes.
To this end, we need to give an alternative definition for the construction of normal
forms from arbitrary symbolic graphs in terms of the smallest Iinj

Proj,TG-subgraph.
While the notion of normal forms given in Definition 4.11 is of more constructive
nature, the following definition in terms of smallest Iinj

Proj,TG-subgraph has a more
declarative character.However,we shall see that both definitions are equivalent.

Definition 8.21 (Smallest Iinj

Proj,TG-subgraph).

Let 〈B,ΦB〉 be a typed symbolic graph in TSGD,TG. An Iinj

Proj,TG-subgraph of
〈B,ΦB〉 is any typed symbolic graph 〈A,ΦA〉 in TSGD,TG for which there exists
an Iinj

Proj,TG-morphisms f : 〈A,ΦA〉 → 〈B,ΦB〉.

AnIinj

Proj,TG-subgraph 〈A,ΦA〉 is the smallestIinj

Proj,TG-subgraph of 〈B,ΦB〉 if for

any Iinj

Proj,TG-subgraph 〈C,ΦC〉 of 〈B,ΦB〉 with Iinj

Proj,TG-morphism h : 〈C,ΦC〉 →

〈B,ΦB〉, there exists an Iinj

Proj,TG-morphism g : 〈A,ΦA〉 → 〈C,ΦC〉 such that
h ◦ g � f .

〈A, ΦA) 〈B, ΦB〉

〈C, ΦC〉

(1)

f

g h

To actually prove that the smallest Iinj

Proj,TG-subgraph of a graph 〈B,ΦB〉 is indeed

isomorphic to the normal form of 〈B,ΦB〉, we first need to show that Iinj

Proj,TG-mor-
phisms are closed under composition and decomposition.

Lemma 8.22 (Iinj

Proj,TG is closed under composition and decomposition).

I
inj

Proj,TG is closed under composition and decomposition.

Proof. For untyped E-graphs, this is a consequence of the fact that E-graph mor-
phisms can be composed (decomposed) componentwise in Set, and isomorphisms
and monomorphisms are closed under composition and decomposition in Set. For
typed E-graphs this follows from Definition 3.16. The composition and decomposi-
tion property for the formula component is a direct consequence of the fact that the
formula component for Iinj

Proj,TG-morphisms is the same as forMinj

Proj,TG-morphisms

andMinj

Proj,TG is closed under composition and decomposition. �
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Lemma 8.23 (Smallest Iinj

Proj,TG-subgraph and normal form).
Let 〈B,ΦB〉 be a typed symbolic graph in TSGD,TG, then a typed symbolic
graph 〈A,ΦA〉 in TSGD,TG is the normal form of 〈B,ΦB〉 if and only if 〈A,ΦA〉

is the smallest Iinj

Proj,TG-subgraph of 〈B,ΦB〉.

Proof. For technical reasons we begin with the only if direction.
Only if. Given typed symbolic graph 〈A,ΦA〉 ' nor(〈B,ΦB〉) with induced

morphism f : 〈A,ΦA〉 → 〈B,ΦB〉. We have to show that 〈A,ΦA〉 is the smallest
I

inj

Proj,TG-subgraph of 〈B,ΦB〉, which is equivalent to prove that f ∈ Iinj

Proj,TG and for

any Iinj

Proj,TG-subgraph 〈C,ΦC〉 of 〈B,ΦB〉 with h : 〈C,ΦC〉 → 〈B,ΦB〉, h ∈ Iinj

Proj,TG,

there exists a g : 〈A,ΦA〉 → 〈C,ΦC〉, g ∈ Iinj

Proj,TG such that h ◦ g � f .

〈A, ΦA) 〈B, ΦB〉

〈C, ΦC〉

(1)

f

g h

It is easy to see that f ∈ Iinj

Proj,TG, as it is constructed as the projection of 〈B,ΦB〉

to A, where A is obtained by just removing all auxiliary variables from B. Now, we
show that there exists a typed E-graph morphism g defined by g � h−1

◦ f , where
h−1 : B∗ → C is the inverse of h with domain B∗ � h(C). We have to verify that
g � h−1

◦ f is defined for all elements in A. As h is inIinj

Proj,TG (i. e., bĳective for graph
nodes and all kind of edges), this trivially holds for graph nodes and all kind of
edges. For the label nodes, we have to show that fX (XA) ⊆ hX (XC). By definition
fX (XA) � BX\aux(B). Moreover, h is a bĳection on label edges; Therefore, at least
the label nodes in BX\aux(B) that are assigned via a label edge must be in hX (CX).
Consequently, fX (XA) ⊆ hX (XC); so g � h−1

◦ f is a valid E-graph morphism such
that (1) commutes.
It remains to show that g ∈ Iinj

Proj,TG. By definition, h ∈ Iinj

Proj,TG; I
inj

Proj,TG is a subclass

ofMinj

Proj,TG. Hence, from the projection property of h follows that g is a symbolic

graph morphism. From f , h ∈ Iinj

Proj,TG and the closure of Iinj

Proj,TG under decomposi-

tion we obtain g ∈ Iinj

Proj,TG.
If. Let 〈B,ΦB〉 be a typed symbolic graph in TSGD,TG and 〈A,ΦA〉 the smallest
I

inj

Proj,TG-subgraph of 〈B,ΦB〉 with morphism f : 〈A,ΦA〉 → 〈B,ΦB〉, f ∈ Iinj

Proj,TG. We
have to show that 〈A,ΦA〉 is isomorphic to the normal form of 〈B,ΦB〉. Consider
the following diagram:

〈A, ΦA) 〈B, ΦB〉

〈C, ΦC〉

f

g
d h
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Suppose that 〈C,ΦC〉 is the normal form of 〈B,ΦB〉 with induced morphism h :
〈C,ΦC〉 → 〈B,ΦB〉, constructed according toDefinition 4.11. From theprevious part
of the proof, we know that h ∈ Iinj

Proj,TG. As 〈A,ΦA〉 is the smallest Iinj

Proj,TG-subgraph

of 〈B,ΦB〉 there is an I
inj

Proj,TG-morphism g : 〈A,ΦA〉 → 〈C,ΦC〉 such that

f � h ◦ g. (8.1)

From f ∈ Iinj

Proj,TG, we know from the previous part of this proof that there exists
morphisms d : 〈C,ΦC〉 → 〈A,ΦA〉 such that

h � f ◦ d. (8.2)

By inserting Equation (8.2) into Equation (8.1), we obtain f � f ◦ d ◦ g which is
equivalent to f ◦ idA � f ◦ d ◦ g, hence idA � d ◦ g. By inserting Equation (8.1) into
Equation (8.2), we obtain h � h ◦ g ◦ d which is equivalent to h ◦ idC � h ◦ g ◦ d,
hence idC � g ◦ d. Consequently, g is an isomorphism with inverse g−1 � h. So
〈A,ΦA〉 and 〈C,ΦC〉 are isomorphic. �

Asmentioned before, allmorphisms inIinj

Proj,TG are normal formpreservingwhich
we prove next.

Lemma 8.24 (Iinj

Proj,TG-morphisms preserve normal forms).

Any Iinj

Proj,TG-morphism preserves normal forms; that is, given a morphism

f : 〈A,ΦA〉 → 〈B,ΦB〉, if f ∈ Iinj

Proj,TG, then nor(〈A,ΦA〉) ' nor(〈B,ΦB〉) and
the following diagram commutes, where g and h are the morphisms induced
by constructing the normal forms of 〈A,ΦA〉 and 〈B,ΦB〉 according to Defini-
tion 4.11, respectively.

〈A, ΦA) 〈B, ΦB〉

nor(〈A, ΦA〉) ' nor(〈B, ΦB〉)
(1)

f

g h

Proof. Consider the following diagram, where 〈A′,Φ′A〉 and 〈B
′,Φ′B〉 are the nor-

mal forms of 〈A,ΦA〉 and 〈B,ΦB〉 with morphisms g : 〈A′,Φ′A〉 → 〈A,ΦA〉 and
h : 〈B′,Φ′B〉 → 〈B,ΦB〉, g, h ∈ Iinj

Proj,TG.

Given morphism f : 〈A,ΦA〉 → 〈B,ΦB〉, f ∈ Iinj

Proj,TG, we have to show that
〈A′,Φ′A〉 and 〈B

′,Φ′B〉 are isomorphic.

〈A, ΦA) 〈B, ΦB〉

〈A′, Φ′
A〉 〈B′, Φ′

B〉

f

g hr

s

t
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As 〈B′,Φ′B〉 is the smallest Iinj

Proj,TG-subgraph of 〈B,ΦB〉 (see Lemma 8.23) and mor-

phism f ∈ Iinj

Proj,TG, there exists (according to Definition 8.21) an Iinj

Proj,TG-morphism
r : 〈B′,Φ′B〉 → 〈A,ΦA〉 such that

h � f ◦ r. (8.3)

From f , g ∈ Iinj

Proj,TG and the closure ofIinj

Proj,TG under composition,weobtain ( f ◦ g) ∈

I
inj

Proj,TG. Hence, there is an Iinj

Proj,TG-morphism t : 〈B′,Φ′B〉 → 〈A
′,Φ′A〉 with

h � f ◦ g ◦ t, (8.4)

as 〈B′,Φ′B〉 is the smallest Iinj

Proj,TG-subgraph of 〈B,ΦB〉. Similarly, using the smallest

I
inj

Proj,TG-subgraph property of 〈A′,Φ′A〉with r ∈ Iinj

Proj,TG, we obtainIinj

Proj,TG-morphism
s : 〈A′,Φ′A〉 → 〈B

′,Φ′B〉 such that

g � r ◦ s. (8.5)

Combining Equations (8.3) and (8.4) leads to f ◦ r � f ◦ g ◦ t, which implies

r � g ◦ t. (8.6)

By inserting Equations (8.5) into (8.6) and (8.6) into (8.5) we obtain

r �r ◦ s ◦ t (8.7)
g �g ◦ t ◦ s. (8.8)

Rewriting Equations (8.7) and (8.8) leads to idB′ � s ◦ t and idA′ � t ◦ s. Hence,
〈A′,Φ′A〉 and 〈B

′,Φ′B〉 are isomorphic. �

As a last property, we require that Iinj

Proj,TG-morphisms are closed under pushouts

and pullbacks alongMinj

⇒,TG-morphisms, shown next.

Lemma 8.25 (Closure of Iinj

Proj,TG under pushouts and pullbacks).

I
inj

Proj,TG is closed under pushouts and pullbacks alongMinj

⇒,TG-morphisms.

Proof. For untyped E-graphs this is a direct consequence of the fact that pushouts
in EG can be constructed componentwise in Set and the fact that isomorphism
and monomorphism in Set are closed under pushouts. The closure property for
typed E-graphs follows from Fact 3.17.a. The closure property for the Σ-formula
component is a direct consequence of the fact that the formula component for
I

inj

Proj,TG-morphisms is the same as for Minj

Proj,TG-morphisms and Minj

Proj,TG is closed
under pushouts.
The proof for the closure of Iinj

Proj,TG under pullbacks along Minj

⇒,TG-morphisms
can be obtained similarly. �

Now we are able to proof the main result of this chapter, namely the Local
Confluence Theorem modulo normal form equivalence for typed projective trans-
formations systems.
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Theorem 8.26 (Local Confluence Theorem modulo normal form equivalence).

Let TPGTS � ((TSGD,TG,Mbĳ

⇔,TG,Minj

Proj,TG,Minj

⇒,TG), P) be a typed projective
graph transformation system, then TPGTS is locally confluent modulo ≡ if all
its critical pairs are strictly confluent modulo ≡.

Proof. Assume that all critical pairs of TPGTS are strictly confluent modulo ≡.
Given a pair of direct transformations

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉

via projective productions p1, p2 ∈ P, we have to show that there exist transforma-
tions

t′3 : 〈H1,ΦH1〉
∗

���⇒ 〈H3,ΦH3〉, t′4 : 〈H2,ΦH2〉
∗

���⇒ 〈H4,ΦH4〉

via productions in P such that 〈H3,ΦH3〉≡〈H4,ΦH4〉.
If the given pair is parallel independent, then, according to Theorem 8.2, there

are transformations t′3 and t′4 such that 〈H3,ΦH3〉 and 〈H4,ΦH4〉 are isomorphic
and, therefore, also normal form equivalent.
If the given pair is parallel dependent we show in part (i) that there exists trans-

formations t′3 and t′4; in part (ii) we show that the results 〈H3,ΦH3〉 and 〈H4,ΦH4〉

are normal form equivalent.
The first part of this proof is an adaption of the proof of Theorem 6.28 in [EEPT06].
i). Suppose the given pair is parallel dependent, then Lemma 8.16 implies the

existence of a critical pair 〈P1,ΦP1〉
p1@o1
⇐������ 〈K,ΦK〉

p2@o2
������⇒ 〈P2,ΦP2〉 with extension

diagrams (20) and (21):

〈K, ΦK〉

〈P1, ΦP1〉 〈P2, ΦP2〉

〈P3, ΦP3〉 〈P4, ΦP4〉≡

〈G, ΦG〉

〈H1, ΦH1〉 〈H2, ΦH2〉

p1@
o1 p2 @o2

t4∗t3 ∗

p1@
m1 p2 @m

2

m

q1 q2

(20) (21)

By assumption, this critical pair is strictly confluent modulo ≡, which leads to
transformations

t3 : 〈P1,ΦP1〉
∗

���⇒ 〈P3,ΦP3〉, t4 : 〈P2,ΦP2〉
∗

���⇒ 〈P4,ΦP4〉,

and symbolic graphs 〈N ,ΦN〉 and 〈Z,ΦZ〉withmorphisms shown below, such that
(1) is a pullback and (2), (3), (4), and (5) commute:



154 8 Conflict Detection and Resolution

〈K, ΦK〉

〈E1, ΦE1〉 〈E2, ΦE2〉

〈P1, ΦP1〉 〈P2, ΦP2〉

〈E4, ΦE4〉〈E3, ΦE3〉

〈P3, ΦP3〉 〈P4, ΦP4〉

〈N, ΦN〉

〈Z, ΦZ〉

(1)

(2) (3)

(4) (5)

v1 v2

w1 w2

v4v3

w3 w4

y1 y2

y3 y4

y5

z1 z2

〈G, ΦG〉

〈D1, ΦD1〉

〈H1, ΦH1〉

m

s1

q1

g1

h1

〈D2, ΦD2〉

〈H2, ΦH2〉

s2

q2

g2

h2

(11) (12)

(10) (13)

Morphism classMbĳ

⇔,TG is a subclass ofMinj

Proj,TG, so v1, v2, v3, v3 ∈ M
bĳ

⇔,TG implies

v1, v2, v3, v3 ∈ M
inj

Proj,TG. From v1, v2 ∈ M
inj

Proj,TG, pullback (1), and the closure of

M
inj

Proj,TG under pullbacks it follows that y1, y2 ∈ M
inj

Proj,TG. The commutativity of

(2) and (3) together with v3, w1, y1, v4, w2, y2 ∈ M
inj

Proj,TG and the closure ofMinj

Proj,TG

under composition and decomposition implies y3, y4 ∈ M
inj

Proj,TG. Similarly, the

commutativity of (4) and w3, y3, z1 ∈ M
inj

Proj,TG as well as the commutativity of (5)

and w4, y4, z2 ∈ M
inj

Proj,TG implies y5 ∈ M
inj

Proj,TG.
Nowconsider the followingdiagram inwhich (6) is a quasi (L,N)-initial pushout

over m; (10) and (11) are as in the previous diagram.

〈B, ΦB〉

〈C, ΦC〉

〈K, ΦK〉

〈G, ΦG〉

(6)

〈E1, ΦE1〉

〈D1, ΦD1〉

〈P1, ΦP1〉

〈H1, ΦH1〉

(11) (10)

v1

g1

m s1

w1

h1

q1

b

c

m′

b1

c1

The initiality of (6), applied to pushout (11), leads to unique morphisms b1, c1 ∈

M
inj

Proj,TG such that v1 ◦ b1 � b and g1 ◦ c1 � c. Moreover, Lemma 5.19 implies that
also (17) and (18) are quasi (L,N)-initial pushouts over s1 and q1, respectively.

〈B, ΦB〉

〈C, ΦC〉

〈E1, ΦE1〉

〈D1, ΦD1〉

(17)

〈P1, ΦP1〉

〈H1, ΦH1〉

(10)

w1

h1

s1 q1

b1

c1

m′

〈B, ΦB〉

〈C, ΦC〉

〈P1, ΦP1〉

〈H1, ΦH1〉

(18)m′

w1 ◦ b1

h1 ◦ c1

q1
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Analogously, we obtain morphisms b2, c2 ∈ M
inj

Proj,TG with v2 ◦ b2 � b from (12) and
(13).

〈K, ΦK〉

〈E1, ΦE1〉 〈E2, ΦE2〉

〈P1, ΦP1〉 〈P2, ΦP2〉

〈E4, ΦE4〉〈E3, ΦE3〉

〈P3, ΦP3〉 〈P4, ΦP4〉

〈N, ΦN〉

〈Z, ΦZ〉

(1)

(2) (3)

(4) (5)

v1 v2

w1 w2

v4v3

w3 w4

y1 y2

y3 y4

y5

z1 z2

〈G, ΦG〉

〈D1, ΦD1〉

〈H1, ΦH1〉

m

s1

q1

g1

h1

〈D2, ΦD2〉

〈H2, ΦH2〉

s2

q2

g2

h2

〈B, ΦB〉

〈C, ΦC〉

b

c

m′

b1 b2

b′

(11) (12)

(10) (13)

〈D3, ΦD3〉

〈H3, ΦH3〉

s3

q3

g3

h3

〈D4, ΦD4〉

〈H4, ΦH4〉

s4

q4

g4

h4

(9) (14)

(8) (15)

b3 b4

By using the universal property of pullback (1) with v1 ◦ b1 � b � v2 ◦ b2, we ob-
tain unique morphism b′ : 〈B,ΦB〉 → 〈N ,ΦN〉 with y1 ◦ b′ � b1 and y2 ◦ b′ � b2. By
b1, y1 ∈ M

inj

Proj,TG and the decomposition property ofMinj

Proj,TG, we can conclude that

also b′ ∈ Minj

Proj,TG. To show the consistency of q1 with respect to transformation t3,
with quasi (L,N)-initial pushout (18),we have to construct b3 : 〈B,ΦB〉 → 〈E3,ΦE3〉,
b3 ∈ M

inj

Proj,TG, such that v3 ◦ b3 � w1 ◦ b1. This holds for b3 � y3 ◦ b′. More-

over, as y3, b′ ∈ Minj

Proj,TG, so b3 ∈ M
inj

Proj,TG (using the composition property of

M
inj

Proj,TG-morphisms). In the same way we can show the consistency of q2 with
respect to t4. Finally, by Theorem 8.13 we get extension diagrams (22) and (23).

〈K, ΦK〉

〈P1, ΦP1〉 〈P2, ΦP2〉

〈P3, ΦP3〉 〈P4, ΦP4〉≡

〈G, ΦG〉

〈H1, ΦH1〉 〈H2, ΦH2〉

〈H3, ΦH3〉 〈H4, ΦH4〉

p1@
o1 p2 @o2

t4∗t3 ∗

p1@
m1 p2 @m

2

t′4

∗

t′3

∗

m

q1 q2

q3 q4

(20) (21)

(22) (23)
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ii). For the second part we have to show that 〈H3,ΦH3〉≡〈H4,ΦH4〉. To this end,
consider the following diagram.

〈Z, ΦZ〉

〈Z′, Φ′Z〉

〈P3, ΦP3〉 〈P4, ΦP4〉

〈H3, ΦH3〉 〈H4, ΦH4〉

〈B, ΦB〉

〈C, ΦC〉

m′
w3 ◦ b3 w4 ◦ b4

bz

c∗z

z1 z2

z′1 z′2

z3

q3 q4

h3 ◦ c4h3 ◦ c3 (16)(7)

First we choose morphism bz : 〈B,ΦB〉 → 〈Z,ΦZ〉 such that bz � y5 ◦ b′. Then,
we construct the diagonal face as the pushout of b2 and m′. By morphisms q3 ◦ z1

and c3 ◦ h3 and the universal property of the diagonal pushout we obtain unique
morphism z′1 : 〈Z′,Φ′Z〉 → 〈H3ΦH3〉. As the back left face is an pushout (i. e., a quasi
(L,N)-initial pushout; see Theorem 8.14.c), we may conclude that (7) is a pushout
by decomposing the back left pushout with the diagonal pushout. Similarly, we
may obtain pushout (16). It still remains to show that 〈H3,ΦH3〉≡〈H4,ΦH4〉, which
is equivalent to show that nor(〈H3,ΦH3〉) ' nor(〈H4,ΦH4〉). To this end, consider
the following diagram.

〈Z, ΦZ〉

〈Z′, Φ′
Z〉

〈P3, ΦP3〉 〈P4, ΦP4〉

〈H3, ΦH3〉 〈H4, ΦH4〉

〈X′, Φ′
X〉

x0

z1 z2

z′1 z′2

z′q3 q4

x1 x2

(16)(7)

From pushouts (7) and (16) and q3, q4 ∈ M
inj

⇒,TG follows z′ ∈ Minj

⇒,TG. By defini-
tion z1, z2 ∈ I

inj

Proj,TG, so z′1, z′2 ∈ I
inj

Proj,TG as Iinj

Proj,TG is closed under pushouts along

M
inj

⇒,TG-morphisms. Now we construct 〈X′,Φ′X〉 as the normal form of 〈Z′,Φ′Z〉. As
z′1, z′2 ∈ I

inj

Proj,TG we can conclude from Lemma 8.24 that 〈X′,Φ′X〉 is the normal form
of 〈H3,ΦH3〉 and 〈H4,ΦH4〉; hence, nor(〈H3,ΦH3〉) and nor(〈H4,ΦH4〉) are isomor-
phic. �

To construct the most general 〈Z,ΦZ〉we use the fact that any finite symbolic graph
has finitely many Iinj

Proj,TG-subgraphs.

Definition 8.27 (Construction of the most general 〈Z,ΦZ〉).
Given Minj

Proj,TG-morphisms y3 : 〈N ,ΦN〉 → 〈E3,ΦE3〉 and w3 : 〈E3,ΦE3〉 →

〈P3,ΦP3〉 with finite symbolic graph 〈P3,ΦP3〉 as given in Definition 8.19. Let



8.3 Conflict Resolution by Critical Pair Analysis 157

Z �
{
z′1 : 〈Z′1,Φ′Z1〉 → 〈P3ΦP3〉, . . . , z′n : 〈Z′n ,Φ′Zn〉 → 〈P3,ΦP3〉

}
be the finite

set consisting of all Iinj

Proj,TG-morphisms for all Iinj

Proj,TG-subgraphs 〈Z
′

i ,Φ
′

Zi〉 of
〈P3,ΦP3〉 such that w3 ◦ y3 � z′i ◦ y′5,i for all i ∈ {1, . . . , n}, as shown in the
diagram below.

〈N, ΦN〉

〈E3, ΦE3〉

〈P3, ΦP3〉

〈Z′
1, Φ′

Z1〉

z′1 〈Z′
2, Φ′

Z2〉z′2

〈Z′
n, Φ′

Zn〉

z′n

(4)
w3

y3 y′5,1

y′5,2

y′5,n

Symbolic graph 〈Z,ΦZ〉 is then derived by iterated pullback constructions
as shown in the diagram below, where (2′), (3′), . . . , (n′) are pullbacks. Pull-
back (1′) (not shown in the diagram below) is the trivial pullback obtained by
intersecting 〈Z′1,Φ′Z1〉 with itself, leading to 〈Z1,ΦZ1〉 ' 〈Z′1,Φ′Z1〉.

〈N, ΦN〉

〈E3, ΦE3〉

〈P3, ΦP3〉

〈Z1, ΦZ1〉

z′1 〈Z′
2, Φ′

Z2〉z′2

〈Z′
n, Φ′

Zn〉

z′n

〈Z2, ΦZ2〉a2

b2 a3

b3

〈Z, ΦZ〉
an

bn

(4)

(2′)

(3′)

(n′)

w3

y3 y5,1

y′5,2

y5,2

y′5,n

y5,n

For each pullback (i′) the morphism y5,i : 〈N ,ΦN〉 → 〈Zi ,ΦZi〉 is constructed
by applying the universal pullback property of pullback (i′) to morphisms
y5,i−1 : 〈N ,ΦN〉 → 〈Zi−1,ΦZi−1〉 and y′5,i : 〈N ,ΦN〉 → 〈Z′i ,Φ

′

Zi〉. After n pull-
backs the result is the symbolic graph 〈Z,ΦZ〉 with morphism z1 : 〈Z,ΦZ〉 →

〈P3,ΦP3〉 defined as z1 � z′n ◦ bn . As Iinj

Proj,TG is closed under pullbacks, mor-

phism ai , bi , z′i ∈ I
inj

Proj,TG for i ∈ {1, .., n} so z1 � z′n ◦ bn .

Note that for any symbolic graph 〈Z′i ,Φ
′

Zi〉 there is a symbolic Iinj

Proj,TG-morphism
z∗i : 〈Z,ΦZ〉 → 〈Z′i ,Φ

′

Zi〉.
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Lemma 8.28 (Construction of the most general 〈Z,ΦZ〉).
Let 〈Z,ΦZ〉 with Iinj

Proj,TG-morphism z1 : 〈Z,ΦZ〉 → 〈P3,ΦP3〉 be the symbolic
graph constructed according to Definition 8.27, then 〈Z,ΦZ〉 is the most gen-
eral in the following sense. If no morphism z2 : 〈Z,ΦZ〉 → 〈P4,ΦP4〉 exists
such that z2 ◦ y5 � w4 ◦ y4, then there does not exists an other 〈Z′,Φ′Z〉 with
I

inj

Proj,TG-morphisms z′1 : 〈Z′,Φ′Z〉 → 〈P3,ΦP3〉 and z′2 : 〈Z′,Φ′Z〉 → 〈P4,ΦP4〉, as

well asMinj

Proj,TG-morphism y′5 : 〈N ,ΦN〉 → 〈Z′,Φ′Z〉 such that z′1 ◦ y′5 � w3 ◦ y3

and z′2 ◦ y′5 � w4 ◦ y4.

〈N, ΦN〉

〈E4, ΦE4〉〈E3, ΦE3〉

〈P3, ΦP3〉 〈P4, ΦP4〉

〈Z, ΦZ〉
z1 z2

(4) (5)
w3 w4

y3 y4y5

Proof. We show this lemma by contradiction. To this end, consider the diagram
shown below, where 〈Z,ΦZ〉 with z1 ◦ y5 � w3 ◦ y3 is the symbolic graph con-
structed according to Definition 8.27. Let us assume that there does not exists
morphism z2 : 〈Z,ΦZ〉 → 〈P4,ΦP4〉 but there exists an other graph 〈Z′,Φ′Z〉
with Iinj

Proj,TG-morphisms z′1 : 〈Z′,Φ′Z〉 → 〈P3,ΦP3〉, z′2 : 〈Z′,Φ′Z〉 → 〈P4,ΦP4〉, and

M
inj

Proj,TG-morphism y′5 : 〈N ,ΦN〉 → 〈Z′,Φ′Z〉 such that z′1 ◦ y′5 � w3 ◦ y3 and

z′2 ◦ y′5 � w4 ◦ y4. Hence, 〈Z′,Φ′Z〉 is an Iinj

Proj,TG-subgraph of 〈P4,ΦP3〉. Conse-
quently, z′1 : 〈Z′,Φ′Z〉 → 〈P3,ΦP3〉 must be in Z and there must be a morphism
z∗ : 〈Z,ΦZ〉 → 〈Z′,Φ′Z〉 such that z′2 ◦ z∗ ◦ y5 � w4 ◦ y4 which is a contradiction.

〈N, ΦN〉

〈E4, ΦE4〉〈E3, ΦE3〉

〈P3, ΦP3〉 〈P4, ΦP4〉

〈Z, ΦZ〉
z1

〈Z′, Φ′Z〉
z′1 z′2

z∗

w3 w4

y3 y4y5

�



9
TOOL SUPPORT AND EVALUAT ION

To show that the presented theoretical result are applicable in practice, all tech-
niques presented in Chapter 7 and Chapter 8 were implemented resulting in the
Symbolic Graph Analysis and Verification (SyGrAV) tool prototype. In this chap-
ter we give an overview on our efforts and insights gained when implementing
SyGrAV and analysing the CMS case study introduced in Chapter 2. More specifi-
cally, in Section 9.1, we give an overview on the SyGrAV tool prototype. In Sections
9.2 and 9.3 we present themeasurement results and insights gainedwhen applying
the constant enforcement and conflict analysis techniques to the CMS case study.
The chapter concludes with discussing the measurement results and giving some
directions for further improvements.

9.1 The Symbolic Graph Analysis and Verification Framework

The majority of SyGrAV is realized using the model transformation and metacase
tool (i. e., a tool for building tools) eMoflon [LAS14]. Hence, almost all components
are realized in Java and conform to the Eclipse Modeling Framework (EMF).

Figure 9.1 depicts the basic structure of SyGrAV, which consists of the following
main components:

1. The Symbolic Graphs andMorphisms component provides an EclipseModeling
Framework (EMF) compliant metamodel for symbolic graph productions in
terms of symbolic graphs andmorphisms. This component facilitates interfacing
between SyGrAV and other graph transformation tools. As a proof of conceptwe
have realized a transformation to translate graph transformation specifications
from the eMoflon tool to SyGrAV. In the current version we support symbolic
graphs as presented in this thesis, i. e., node attributed symbolic graphs with
first-order formulas. Basically, arbitrary first-order formulas can be specified;
however, the actual support is constrained by the capabilities of the solver used
within the symbolic graph pattern matching component.

2. The Symbolic Graph Pattern Matching component is conceptually the most
challenging part, as it draws on solving a combination of two problems that are
themselves subject to intensive research, namely graph pattern matching (also
known as the subgraph isomorphism problem) and satisfiability checking of
first-order formulas over multiple background theories. However, by combining
specialized of the shelf solvers for each problem, respectively, we were able
to reduce the implementation efforts and increase the efficiency and reliability
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Figure 9.1: The Symbolic Graph Analysis and Verification Framework (SyGrAV)

of the implementation at the same time. For the current implementation we
combined the Democles pattern matching engine with the Z3 SMT solver.

a) Democles is a local search based pattern matching engine that is currently
developed at the Fachgebiet Echtzeitsysteme, Technische Universität Darm-
stadt, Germany [VAS12]. Note that the subgraph isomorphism problem is
NP-complete (or polynomial assuming a fixed size pattern graph). For this
reason, Democles uses heuristics and a search plan driven strategy in order
to optimize execution times of the pattern matching process.

b) Z3 is a well-established satisfiability modulo theories (SMT) solver, which
is widely used in several projects [dMB08]. Z3 is interfaced by using the
SMT-LIB1 format, which defines common input and output language for
SMT solvers. Hence, Z3 may easily be replaced with any other SMT solver
that supports the SMT-LIB format. Z3 supports first-order formulas with
equality over various background theories, including nonlinear integer and
real arithmetic.Note that satisfiability of problemsusing these FOL fragments
is undecidable in general. Nevertheless, this does not prevent Z3 fromfinding
an answer in many cases.

In combination, also symbolic graph pattern matching is undecidable. Hence, in
contrast to pure graph pattern matching, we have to handle the case that there
is an E-graph morphisms but Z3 is not able to decide whether the morphism is
a symbolic graph morphism. In such a case Z3 returns unknown. In the current
implementation those cases are basically treated as there is no morphism. As we

1 http://smtlib.cs.uiowa.edu/
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shall see later, this treatment guarantees the soundness of our implementations
for constraint enforcement and conflict analysis.

3. The Symbolic Graph Transformation component encapsulates the basic cate-
gorical constructions for symbolic graphs such as pushouts and pullbacks, but
also more complex compound functionalities such as the computation of direct
transformations via double pushouts and the construction of all possible glu-
ings of two graphs. The Symbolic Graph Transformation component relies on
the Symbolic Graphs and Morphisms and Symbolic Graph Pattern Matching
components. Note that this component is not a library for generic categorical
construction as, e. g., proposed in [MS10]; in fact, it offers specific categorical
constructions optimized for symbolic graphs.

4. The Constraint Enforcement component realizes the translation of graph con-
straints to left application conditions. The current version supports in addition
to negative constraints and application conditions (as presented in Chapter 7),
also arbitrary nested conditions as, e. g., proposed in [EGH+14].

5. The Conflict Analysis component encapsulates the critical pair and confluence
analysis techniques for symbolic graphs as presented in Chapter 8. The current
version supports construction of symbolic critical pairs and subcommutativity
analysis modulo normal form equivalence for projective graph transformation
systems. Currently, productions with application conditions are not supported.

Summing up, the SyGrAV framework is a toolbox for static analysis and verifi-
cation of attributed graph transformations. The main component to facilitate this
techniques is the Symbolic Graph Pattern Matching component, which allows for
finding symbolic graph morphisms between arbitrary symbolic graphs and not
only for finding matches of symbolic graphs in instance models (i. e., definite or
grounded symbolic graphs). As we shall see in the following sections, SyGrAV
performs quite well for symbolic graphs consisting of a couple of elements, i. e., for
symbolic graphs as they appear in productions. However, SyGrAV is not intended
as amodel transformation tool to transform largemodels (i. e., grounded or definite
symbolic graphs) consisting of thousands of elements.

9.2 Support for Enforcing Symbolic Graph Constraints

In the following, we first give an overview on the constraint enforcement capabili-
ties of SyGrAV in Section 9.2.1. Subsequently we present the measurement results
collected by actually verifying the campus management system case study in Sec-
tion 9.2.2. Finally, we argue that the current implementation is sound.

9.2.1 Support for Enforcing Symbolic Graph Constraints in SyGrAV

The current implementation of the constraint enforcement techniques is very close
to the theoretical results presented in Chapter 7. Accordingly, the overall process
from a set of constraints to a rule with only essential NACs comprises the following
steps:
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Generation of right application conditions (presented in Section 7.1).Although
we presented only the generation of negative right application condition from neg-

ative constraints in Section 7.1, the current version of SyGrAV also supports the
generation of right application conditions from arbitrary nested constraints. The
current implementation is based on the procedure proposed in [EGH+14].However,
both procedures (i. e., the one presented in Section 7.1 and the one presented in
[EGH+14]) rely on the generation of all possible gluings of two graphs. As the num-
ber of possible gluings grows exponentially with the size of the involved graphs,
this procedure itself does not scale. However, a more important aspect is to keep
the number of generated gluings as small as possible, as all succeeding steps have
to be performed on the outcomes of this step, i. e., for each gluing. During our
experiments, it turned out that the restriction to linear gluings (i. e. gluings that are
linear symbolic graphs, see Definition 4.8) dramatically reduces their number; that
is, we require that if two graph nodes are glued together all their label nodes have
to be glued together, too (if present).
right to left application conditions (presented in Section 7.2). Similar to the

previous step SyGrAV supports the transformation of arbitrarily nested right appli-
cation conditions to left application conditions. The current implementation follows
closely the procedure proposed in [EGH+14].
Minimization of left NACs (presented in Section 7.3).While the construction of

left application condition is purely syntactically (also for the formula components),
the minimization of application conditions requires semantic reasoning about arbi-
trary nested application conditions which is undecidable in general (still for pure
graphs without attribute conditions). For this reason, SyGrAV currently supports
only the minimization of negative application conditions. The minimization is per-
formed as described in Section 7.3; that is, in a first step all consistency guaranteeing

left negative application conditions are removed (see Section 7.3.1). The result is a
set rules with only consistency preserving left NACs. Subsequently, for each rule all
subsumed left NACs are removed (see Section 7.3.2). The result is a set of rules that
carry only essential left NACs.

9.2.2 Performance Evaluation

The results of running the construction of left application conditions for the cam-
pus management system are summarized in Table 9.1. The graph transformation
system comprises 18 productions, which are all listed in the Appendix A. The pro-
ductions are denoted using the compact notation originally introduced inChapter 2.
However, to establish a connection between the notation used for symbolic graphs
and productions in Chapters 3–8, all attribute expressions are given as a first-order
formula depicted below the productions. Note that primed variables appear only
in the RHS graph and are implicitly assumed to be existentially quantified in the
LHS formulas.
The campus management system example comprises 90 negative constraints,

where 7 negative constraints are user defined (see Appendix B). The remaining 83
negative constraints were automatically generated from the cardinality and con-
tainment restrictions imposed by the metamodel. For example, consider Figure 9.2
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Table 9.1: Overall measurement results
#Rules #Constraints Time NC to Pre NAC Time Minimize Time Overall

18 90 3.66 sec 6.48 sec 10.13 sec

that shows the negative constraints generated for the containment association date
of cardinality 0..1 from the class Exam to the class Date (see Figure 2.1). Negative
constraints (a) and (b) are generated from the fact that association date has cardinal-
ity 0..1; hence, there must not exist two links of type date from an Exam ex to two
different dates or to the same date. Note that constraint (b) is owed to the fact that
we support only injective symbolic morphisms. Negative constraint (c) is generated
from the fact that association date defines a containment relation; that is, an object
of type Date is contained in at most one other object. However, as according to the
CMS metamodel (see Figure 2.1) dates may also be contained in instances of class
Lecture, additionally negative constraint (c) is generated. The negative constraints
for the other association are generated similarly. Note that the generated constraints
do not impose any restriction on the attributes which is represented by a formula
component equivalent to > (i. e., true).
The overall process for generating all left application conditions from those 90

constraints for all 18 productions requires about 10 seconds, where the most time
(i. e., 6.5 sec) was spent for minimizing and 3.7 sec were spent for generating all
left NACs. The measurements were performed on a Windows machine with a
core i-7-2600-3.4GHz CPU and 8 GB memory. For the measurement the overall
procedure was run 20 times. In order to compensate the just-in-time optimization
performed by the java virtual machine, only the last 15 runs were considered to
calculate the average values shown in Table 9.1. The standard deviation of the
overall runtime with respect to the last 15 runs was below 200ms.

ex : Exam

daA : Date

daB : Date

date

date

(a)

ex : Examda : Date

date

date

(b)

exA : Exam

exB : Exam

da : Date

date

date

(c)

exA : Exam

le : Lecture

da : Date

date

date

(d)

Figure 9.2: Negative constraints generated from the containment association date of cardi-
nality 0..1 from the class Exam to the class Date.

Table 9.2 shows the measurement results for each production separately. The
first column contains the name of the productions followed by the sum of the
graph nodes and edges contained in the left-hand side of the production. As we
only consider linear gluings, we did not take the number of label nodes and edges
into account as they do not influence the number of gluings. As mentioned, all
productions can be found in the appendix. The second column contains the number
of generated right application conditions, and column3, 4, and5 contain thenumber
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of generated left application conditions before minimization, after removing the
consistency guaranteeing NACs, and after removing subsumed NACs for each
production, respectively. One interesting result is, that most of the generated left
NACs are consistency guaranteeing and thus are removed during minimization.
By also removing the subsumed NACs the number of remaining essential NACs is
quite small. More specifically, from the 2043 right application conditions generated
for all productions (see last row of Table 9.2), just 24 remain after minimization.
Although, the minimization step is not necessary form a theoretical point of view
(i. e., no constraint canbeviolatedby applying aproduction), these results show that
theminimization step is important from a practical point of view to not degrade the
performance when applying a production by hundreds of unnecessary application
condition checks.

As shown in Table 9.2 the number of right NACs and, consequently, also the
runtimes are mainly influenced by the number of contained graph elements.

Table 9.2: Detailed measurement results

Production
(#graphElements)

#NACs Time [ms]

Post NACs Pre NACs NCs to Pre NACs Minimizing

All All Preserving Essential NC to Post Post to Pre Overall Guaranteeing Subsumed Overall

transResFail (12) 212 212 0 0 178 91 269 625 0 625

transResPas (12) 212 212 0 0 176 85 261 619 0 619

updateEx (9) 191 191 2 1 165 83 248 714 8 722

regExam (7) 187 187 3 2 178 89 267 570 8 578

unregExam (8) 184 184 0 0 172 72 244 544 0 544

updateLect (9) 163 163 0 0 161 60 221 544 0 544

regCMO (6) 140 80 4 2 170 53 223 302 17 319

setExam (6) 139 139 6 3 162 50 212 746 43 789

setLecture (7) 126 126 4 2 158 44 202 579 15 594

regTMO (7) 103 76 2 1 163 35 198 162 7 169

regThesis (5) 83 59 2 1 157 27 184 144 6 150

bookRoom (4) 75 52 4 2 154 21 175 150 17 167

updateDate (3) 62 62 3 2 154 11 165 145 6 151

obtDeg (2) 49 36 2 1 154 11 165 97 6 103

setDate (4) 41 41 7 4 153 8 161 115 18 133

uploadRes (1) 38 38 6 3 152 6 158 118 29 147

closeExam (2) 19 19 0 0 152 3 155 53 0 53

resetCMO (1) 19 19 0 0 150 3 153 71 0 71

Sum (105) 2043 1896 45 24 2909 752 3661 6298 180 6478

9.2.3 Soundness of the Conflict Enforcement Procedure

Although, symbolic graph pattern matching is undecidable, the implemented con-
straint enforcement procedure is sound in the sense that after running the constraint
enforcement procedure for a set of constraints and productions, the resulting ex-
tended productions are consistency preserving. To show this, we have to argue that
for the involved steps either (i) no symbolic graph pattern matching is required,
or (ii) if symbolic graph pattern matching is required, we have to argue that not
recognizing a morphism (although there exists one) does not lead to the loss of a
left application condition.
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Construction of right application conditions. As shown in Remark 7.2 the con-
struction of the formula component for the gluings is performed on the on the
syntactical level. Hence, there is no need to invoke Z3.
Construction of left application conditions. As mentioned in Remark 6.13 to

decide whether an right application condition can be shifted along a functional
projective production, as well as the shift construction itself do not require any
reasoning on the semantics of the involved formulas.
Minimization of left NACs In order to argue that minimization procedure is

sound,we have to show that not recognizing a symbolic graphmorphism (although
there exists one) does not lead to a removal of an essential NAC. By considering
the procedures presented in Section 7.3 one can see that a NAC is only removed
if there either exists a symbolic graph morphism from a negative constraint to the
corresponding NAC or a symbolic graph morphism from an other NAC to the
corresponding NAC. Hence, in both cases not capturing a morphism does not lead
to the removal of a NAC. Consequently, the minimization procedure is sound also
for undecidable background theories. However, we cannot guarantee that the set of
application condition is minimal (also in case of negative application conditions);
that is, after minimization there might remain negative application conditions that
are not essential.
Although we could not observe such a case when analyzing the CMS case study,

it is reasonable that such case become more likely especially for difficult problems
over background theories such as nonlinear real arithmetic. However, note that all
generated left application condition are sufficient and necessary in the sense that
none of the generated application condition blocks an application of a production
that would lead to a consistent graph.

9.3 Support for Conflict Analysis

In the following, we present the capabilities fo conflict analysis of SyGrAV. In Sec-
tion 9.3.1, we report on our experiences gainedwhen analysing the CMS case study
with SyGrAV. The measurement results collected by actually analysing the CMS
case study are presented in Section 9.3.2. Finally, we show that the implemented
conflict analysis procedure is sound, also for undecidable background theories.

9.3.1 Conflict Detection and Resolution with SyGrAV

In the current version, SyGrAV supports conflict detection by critical pair analysis
and conflict resolution by subcommutativity analysis as presented in Chapter 8.
In the following, we present how the proposed techniques can be used to analyze

our CMS system to detect and correct unintended conflicts. Table 9.3 summarizes
the results of our efforts. More specifically, Table 9.3a shows the nonresolvable
conflicts (marked by an 7) of the initial campus management system specification
called CMS. Table 9.3b shows the nonresolvable conflicts of the corrected campus
management system specification called CMS’. The primed productions denote
those productions that were actually changed to mitigate a conflict. The complete
list of all productions (i. e., initial as well as the corrected ones) can be found in the
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Table 9.3: Comparison of nonresolvable conflicts (7) of the initial and the improved GTS
specifications CMS and CMS’, respectively.
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bookRoom 7

uploadRes 7

setDate
updateDate 7

transResPas
transResFail
closeExam 7 7

regExam 7 7 7

regCMO 7 7

unregExam 7 7

regTMO 7

regThesis 7 7

obtDeg 7

setLecture 7

setExam 7

resetCMO
updateLect 7

updateEx 7 7 7 7 7 7

(a) Nonresolvable conflicts of the initial GTS
specification CMS
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bookRoom’ 7

uploadRes 7

setDate
updateDate 7

transResPas’
transResFail’
closeExam 7 7

regExam’
regCMO 7 7

unregExam’
regTMO 7

regThesis 7 7

obtDeg 7

setLecture 7

setExam 7

resetCMO
updateLect 7

updateEx’ 7 7

(b) Nonresolvable conflicts of the corrected GTS
specification CMS’

appendix. We were able mitigate 9 nonresolvable conflicts; that is, from initially 25
nonresolvable conflicts for CMS to 16 for CMS’. As expected, we were not able to
mitigate all conflicts, as this would imply that the system is confluent; consequently,
every (or none) enrollment would lead to a degree regardless the actual results
achieved for the exams. However, we were able to discover and mitigate some
problematic conflicts.
Our studies with SyGrAV lead to the following workflow:

1. Running the conflict analysis. To run this step a graph transformation system
has to be provided containing the productions that have to be analyzed. During
this step the conflict analysis is performed on all pairs of productions. The result
is an analysis report for each pair. Accordingly, a pair has

• no conflict; that is, the pair is parallel independent

• a conflict that can be resolved; that is, the pair is parallel dependent but is
subcommutative.

• a conflict that can not be resolved; that is, the pair has either a real conflict
that can not be resolved or SyGrAV (i. e., more specifically the Z3 solver)
was unable decide the validity of a formula during the analysis. In order
to guarantee the soundness of our approach such a case is reported as
nonresolvable even if the involved productions actually do not constitute
a nonresolvable conflict (details follow in Section 9.3.3). For each nonre-
solvable conflict the reason is given by means of the corresponding critical
pair.

2. Manually analysing the critical pairs. As the critical pairs contain the minimal
contexts that lead to the conflict they provide useful hints how to adapt the spec-
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ification to mitigate the conflict. During our work with SyGrAV we established
the following characterization of nonresolvable conflicts.

• Intended conflict. As mentioned before the campus management system is
intentionally nonconfluent. Hence, there are intended conflicts that shall
not be resolved. However, by inspecting the minimal contexts it can be
ensured that there are no unintended reasons for a conflict. For example,
the updateDate and bookRoom task are in conflict, as according to the life
cycle of an examination artifact (Figure 2.4) the date of an exam may only
be updated as long as no room is booked. By inspecting the critical pairs
we can ensure that there is no additional reason for the conflict of these
tasks. Especially, those reasons caused by the concurrent interaction of two
or more artifacts are of interest.

• Impossible conflict. By inspecting the critical pairs we often encountered the
case, where a captured conflict relied on the existence of a minimal context
that should not occur in normal system operation. In such cases the conflict
can be mitigated by adding a negative constraint. For example, the reason
that implies the existence of two current Semesters (i. e., two semesters both
with current attribute value equal to true).

• Unintended conflict. This kind of conflict characterizes all conflicts that are
unintentionally and can only be solved by adapting the involved produc-
tions.

• Undecidable conflict. Such a conflict usually appears if during the conflict
analysis the Z3 solver was not able to decide the validity of a formula.

• Lack of expressiveness conflict. We were not able to mitigate some conflicts
due to the missing support of application conditions for conflict detection.

Aftermanually analysing the critical pairs and refining the specification, theprocess
is repeated until the desired results are obtained.

In the following, we demonstrate this process by mitigating the conflict between
bookRoom and regExam. The result of running the conflict analysis is a single critical
pair that is not subcommutative. The corresponding minimal context is shown in
Figure 9.3. By inspecting this minimal context, we can see that the left-hand sides
of the rules are glued along the Exam ex. Consequently, the reason for the conflict
is related to a conflicting manipulation of attributes located in ex : Exam. The only
attribute variable that is accessed by both productions is ex.regSt. Consequently, it
is sufficient to consider only the part of the formulas that are related to the variables
ex.regSt or ex.regSt’. Accordingly, the problematic parts are (ro.capExam ≤ ex.regSt)
of bookRoom and (ex.regSt′ � ex.regSt+ 1) of regExam. More specifically, to apply
the production bookRoom the number of registrations for the exam (i. e., the value
of ex.regSt) must not exceed the exam capacity of the room (i. e., the value of
ro.capExam). However, the application of production regExam increments the value
of ex.regSt by one. Hence, if the exam capacity of the room and the number of
registered students are equal (i. e., ex.regSt � ro.capExam) the production bookRoom
cannot be applied to the same room after applying regExam. Consequently, first
applying bookRoom and then regExam leads to a different result than applying
the production the other way around. Note that Z3 provides an counterexample if
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bookRoom(ex : Exam, ro : Room)

LHS

regExam(en : Enrollment, ex : Exam)

LHS

K

ex : Exam
- state
- regSt

da : Date
- begin
- duration

ro : Room
- capExam

date

(ex.state=EX ST.PLAN) ∧ (ro.capExam ≤ex.regSt) ∧
(bo.end’=da.begin+da.duration) ∧ (bo.begin’=da.begin) ∧

(ex.state’=EX ST.READY)

cmo : CoModOfferex : Exam
- regSt

cr : CourseRecord
- tries
- grade

en : Enrollment
- state

cRecords

offer

exam

(
(en.state=EN ST.STUDY) ∨ (en.state=EN ST.THESIS)

)
∧

(cr.tries<3) ∧ (cr.grade>4) ∧ (en.enrolled=true) ∧
(cr.tries’=cr.tries+1) ∧ (ex.regSt’=ex.regSt+1)

cmo : CoModOffer

cr : CourseRecord
- grade
- tries

en : Enrollment
- state

ex : Exam
- state
- regSt

da : Date
- begin
- duration

ro : Room
- capExam

date

exam

offer

cRecords

(ex.state=EX ST.PLAN)∧(ro.capExam ≤ex.regSt)∧(bo.end’=da.begin+da.duration)∧(bo.begin’=da.begin)∧(ex.state’=EX ST.READY)∧(
(en.state=EN ST.STUDY)∨(en.state=EN ST.THESIS)

)
∧ (cr.tries<3)∧(cr.grade>4)∧(en.enrolled=true)∧

(cr.tries’=cr.tries+1)∧(ex.regSt’=ex.regSt+1)

Figure 9.3: The minimal context of bookRoom and regExam that leads to a conflict that is
not subcommutative.

two formulas are note equivalent. Basically, these counterexample might be used
to assist with finding the reason for the conflict. However, this is currently not
implemented.
According to the aforementioned characterization, this conflict is an unintended

conflict. Hence, we have to adapt the involved productions. There are several possi-
bilities to synchronize the involved productions. We decided us to assign a global
schedule to each semester to ensure that productions bookRoom and regExam can-
not be applied at the same time. To this end, we augmented the class Semesterwith
the attributes semBegin, semEnd, regBegin, and regEnd determining the begin and
end of the semester as well as the begin and end of the corresponding examination
registration period, respectively. The intended schedule of the tasks bookRoom and
regExam is illustrated in Figure 9.4; that is, registrations for an examination should
only be possible during the registration period of the semester, whereas a room
may only be booked for an examination after the registration period. In this way,
bookRoom and regExam cannot be applied at the same time. Moreover, scheduling
the task bookRoom after the registration period also ensures that the booked room
provides sufficient capacity (i. e., seats) to conduct the examination.

In order to realize this scheduling we need access to the current time. To this end,
we introduce the class System that has an attribute currentTime carrying the actual
time. The refined productions bookRoom’ and regExam’ are shown in Figure 9.5a
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semBegin regBegin regEnd semEnd

regExam’(en:Enrollment, ex:Exam) bookRoom’(ex:Exam, ro:Room)

Figure 9.4: Schedule for the bookRoom’ and regExam’ tasks.

and Figure 9.5b, respectively. Both refined productions now look up the current
semester (sem : Semester) and the system timer (sys : System). By adding the
corresponding predicates to the formula (the middle line), production bookRoom’
is only applicable if the current time is larger than the value for the semester begin
the (sys.currentTime > sem.regEnd), whereas (sys.currentTime > sem.regBegin) ∧
(sys.currentTime < sem.regEnd) ensures that production regExam’ is only applicable
during the registration period of the current semester.
Finally, to get thingsworking,wehave to tell the analysis framework thatSystem is

a singleton class, otherwisewemayhave a gluingwith twoSystemswith potentially
different values for the currentTime attribute. This is achievedby adding the negative
constraint shown in Figure 9.6 to the specification.
The other production is refined in the same manner according to the schedule

shown in Figure 9.7. The complete list of productions (i. e., the initial and corrected
versions) and negative constraints can be found in the appendix.

Table 9.4 shows the remaining nonresolvable conflicts characterized according to
the aforementioned characterization. It can be seen that most conflicts are intended
conflicts (I). However, there are two lack of expressiveness conflicts (LE) and one
undecidable conflict (U). The lack of expressiveness conflict between the produc-
tion closeExam and the productions transResPas’ and transResFail’ can be resolved
with a NAC that requires that all results have been transferred before the exam
can be closed. However, application conditions are not supported by the current
implementation ot the conflict analysis process.

9.3.2 Performance Evaluation

In the following, we give an overview on the runtime results for performing conflict
analysis with the SyGrAV framework for the campusmanagement system example,
whereas themeasurement setup is the sameas for constraint enforcement. Table 9.5a
compares the overall measurement results of the conflict analysis for initial version
(CMS) and improved version (CMS’) of the campus management system.

The results are interpreted as follows:
Generation of all minimal contexts. The minimal contexts are generated by all

possible gluings of the left hand sides of the productions. For this step, the same
procedure as for the generation of right application conditions is used; that is,
only linear gluings are considered (i. e. gluings that are linear symbolic graphs, see
Definition 4.8). The number and the time for generating all minimal contexts for
all pairs of productions for CMS and CMS’ are shown in the corresponding row. It
can be seen that modifications to correct the specification increase the number of
minimal contexts by a factor of approximately 3, which is a result of increasing the
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⇒

LHS RHS

bookRoom’(ex : Exam, ro : Room)

(ex.state=EX ST.PLAN) ∧ (ro.capExam ≤ex.regSt) ∧
(sem.current=true) ∧ (sys.currentTime>sem.regEnd) ∧ (sys.currentTime<sem.semEnd) ∧
(bo.end’=da.begin+da.duration) ∧ (bo.begin’=da.begin) ∧ (ex.state’=EX ST.READY)

ex : Exam
- state
- regSt

da : Date
- begin
- duration

ro : Room
- capExam

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

date

exams

ex : Exam
- state’
- regSt

da : Date
- begin
- duration

bo : Booking
- begin’
- end’

ro : Room
- capExam

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

date

bookings

location

exams

(a) Refined graph production bookRoom’(ex : Exam, ro : Room)

⇒

LHS RHS

regExam’(en : Enrollment, ex : Exam)

(
(en.state=EN ST.STUDY) ∨ (en.state=EN ST.THESIS)

)
∧ (cr.tries<3) ∧ (cr.grade>4) ∧ (en.enrolled=true) ∧ (en.cp<en.regCp) ∧

(sem.current=true) ∧ (sys.currentTime>sem.regBegin) ∧ (sys.currentTime<sem.regEnd) ∧
(cr.tries’=cr.tries+1) ∧ (ex.regSt’=ex.regSt+1)

cmo : CoModOfferex : Exam
- regSt

cr : CourseRecord
- tries
- grade

en : Enrollment
- state
- enrolled
- cp
- regCp

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

cRecords

offer

exam

exams
cmo : CoModOfferex : Exam

- regSt’

cr : CourseRecord
- tries’

en : Enrollment
- state’
- enrolled
- cp
- regCp

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

cRecords

offer

exam

regExam

exams

(b) Refined graph production regExam’(en : Enrollment, ex : Exam)

Figure 9.5: Refined graph productions bookRoom’ and regExam’

number of elements in left-hand sides of some productions. A more remarkable
fact is that although the number of minimal contexts increased by a factor of 3 the
calculation time increased by a factor of nearly 9. Hence, (at least in the specific
case) it seems that the runtime of the implemented procedure is quadratic in the
number of generated gluings.
Calculating consistent minimal contexts. In order to reduce the number of

minimal contexts, in this step those minimal contexts that are inconsistent with
respect to a negative constraint are removed. The result is a set of consistent minimal

contexts. Surprisingly, although 3 times more minimal contexts were constructed
for CMS’ (compared to the number constructed for CMS) the amount of consistent
minimal contexts is only slightly larger.
As shown in Table 9.5a, by this step the number of minimal contexts that have to

be considered for conflict analysis can be dramatically reduced. More specifically,
in case of CMS by 92% and in case of CMS’ by 97%. Hence, filtering inconsistent



9.3 Support for Conflict Analysis 171

SingeltonSystem

sys1 : System sys2 : System

Figure 9.6: Negative constraints to forbid the existence of two instances of class System.

semBegin regBegin regEnd semEnd

setLect’(cmo:CoModOffer, le:Lecture) updateEx’(cmo:CoModOffer, ex:Exam)

setDate’(ex:Exam, da:Date)

updateDate’(ex:Exam, da:Date)

setExam’(cmo:CoModOffer, ex:Exam)

regExam’(en:Enrollment, ex:Exam)

unregExam’(en:Enrollment, ex:Exam) transResPas’(ex:Exam)

transResFail’(ex:Exam)

uploadRes’(ex:Exam, rl:resultList)

bookRoom’(ex:Exam, ro:Room)

Figure 9.7: Overall schedule for the tasks CMS’

minimal contexts can be considered as the key measure to reduce the runtime of
the overall conflict analysis procedure.
Critical pair analysis. In this step all critical pairs are built as explained in

Section 8.2. The result is a set of pairs of parallel dependent direct transformations.
As expected, improving the specification leads to fewer conflicts (i. e., critical pairs).

Subcommutativity analysis. In this step subcommutativitymodulo normal form
equivalence is checked for each critical pair. As the number of critical pairs for
CMS’ is smaller than for CMS, the time for subcommutativity analysis, as well as
the number of nonsubcommutative critical pairs for CMS’ is smaller than for CMS.
Table 9.5b shows the relative amount of time spent for symbolic graph pattern

matching, which is the sum of the time spent for pure graph pattern matching and
the amount of time required for solving the involved first-order formulas. In both cases
(i. e. for CMS and CMS’) more than 80% of the runtime is spent for symbolic graph
pattern matching. However, while for analysing CMSmost of the time (i. e., 59%) is
spent for first-order logic solving, the situation is turned for analysing CMS’; that is,
most of time (i. e., 50%) is spent for graph pattern matching. This can be explained
with the huge difference in the number of generatedminimal contexts for CMS and
CMS’, and the efforts required to filter them. Recall, to check whether a symbolic
graph 〈K,ΦK〉 is inconsistent with respect to a negative constraint nc(〈N ,ΦN〉), we
have to find a symbolic graphmorphisms c : 〈N ,ΦN〉 → 〈K,ΦK〉; that is, an E-graph
morphisms c : N → K such that such that (ΦK ⇒ ΦN [ĉ]) is valid. As mentioned in
Section 9.2 the majority of negative constraints are generated from the metamodel,
which means they are of the form nc(〈N ,>〉) (recall,>means true). Hence, finding
a symbolic graph morphism c : 〈N ,>〉 → 〈K,ΦK〉 reduces to pure graph pattern
matching as (ΦK ⇒ >) is trivially valid. Hence, regarding our example, filtering
inconsistent minimal contexts requires manly pure graph pattern matching.
Table 9.6 shows the overall runtime results for conflict analysis for each pair of

productions measured in milliseconds. Additionally, we denoted after each pro-
duction the number of graph elements (i. e., the sum of graph nodes and edges)
contained in the left-hand side. It can be seen that the overall time required for con-
flict analysis is influenced by (i) the similarity of the involved productions, (ii) the
the number of graph elements, and (iii) the complexity of the involved formulas.
The correlation between the runtime and similarity of the involved productions is
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Table 9.4: Corrected version CMS’ with nonresolvable conflicts where I denotes an in-
tended conflict, LE a lack of expressiveness conflict, and U an undecidable con-
flict.
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bookRoom’ I
uploadRes I

setDate
updateDate I

transResPas’
transResFail’

closeExam LE LE
regExam’
regCMO I I

unregExam’
regTMO I
regThesis U I
obtDeg I

setLecture I
setExam I

resetCMO
updateLect I
updateEx’ I I

the most significant. It can be seen that in almost all cases analysing the production
with itself requires the most time, which is not surprising as two similar graphs
have potentiallymore overlappings as less similar graphs.Also the relation between
runtime and size of the involved productions is reflected by themeasurements. The
relation between the complexity of the involved formulas and the runtime is quite
more harder to grasp. However, during our experiments it has become apparent
that Z3 has problems with if then else expressions (see for example production
transResFail in Appendix A).

9.3.3 Soundness of the Conflict Analysis Procedure

Similar to the constraint enforcement procedure, we can guarantee the soundness
of our conflict analysis procedure.
We begin with arguing that the critical pair analysis procedure is sound; that is,

if according to the procedure two productions p1 and p2 are nonconflicting, then
for all symbolic graph 〈G,ΦG〉 any pair of direct transformations

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉,

via productions p1 and p2 andmatches m1 and m2 is parallel independent. To show
this, we have to argue that for the involved steps either(i) no symbolic graph pattern
matching is required, or (ii) if symbolic graph patternmatching is required,we have
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Table 9.5: Overviewof themeasurement results of the conflict analysis for the initial version
(CMS) and corrected version (CMS’) of the campus management system.

CMS CMS’

Quantity Time Quantity Time

Minimal Contexts 2794 4.1 s 9441 34.2 s

Consistent Minimal Contexts 209 14.4 s 211 23.8 s

Critical Pairs 144 2.2 s 110 2.7 s

Nonsubcommutative Critical Pairs 36 21.8 s 24 15.3 s

Sum 42.6 s 76 s

(a)

CMS CMS’

Graph
Pattern Matching

27% 50%

First Order Logic
Solving

59% 33%

Symbolic Graph
Pattern Matching

86% 83%

(b)

Table 9.6: Pairwise runtime required for overall conflict analysis in milliseconds
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bookRoom’ (7) 517
uploadRes (2) 22 191

setDate (2) 65 11 220
updateDate (2) 301 11 49 220

transResPas’ (15) 126 218 12 12 3918
transResFail’ (15) 121 208 12 12 3822 3926

closeExam (1) 22 50 11 11 1143 1138 85
regExam’ (10) 96 135 147 147 1578 1581 143 995
regCMO (7) 10 0 0 0 1985 1550 0 594 1033

unregExam’ (11) 96 130 141 141 1649 1651 140 1017 520 1066
regTMO (7) 10 0 0 0 1322 1295 0 217 194 257 181

regThesis (5) 10 0 0 0 1330 1285 0 98 156 145 73 122
obtDeg (3) 10 0 0 0 1288 1118 0 78 67 125 62 15 115

setLecture (6) 73 0 0 0 1441 1425 0 341 145 379 5 1 2 979
setExam (6) 98 129 141 141 1556 1538 138 431 143 465 5 1 1 602 963

resetCMO (1) 10 0 0 0 1270 1263 0 175 108 216 5 1 1 45 48 62
updateLect (9) 74 0 0 0 1457 1442 0 353 152 389 5 1 1 1450 601 16 3148
updateEx’ (10) 452 329 386 387 1504 1493 332 351 175 398 5 1 1 575 928 17 878 1906

to argue that not recognizing a morphism (although there exists one) does not lead
to the loss of a critical pair.
Construction of all minimal contexts. As shown in Remark 7.2 the construction

of the formula component for the gluings is performed on the on the syntactical
level. Hence, there is no need to invoke Z3.
Filtering minimal contexts. It is easy to see that missing a morphism from a

negative constraint to a minimal context during the filtering process does not lead
to the removal of a consistent minimal context.
Constructing direct derivations (for minimal contexts). As mentioned in Re-

mark 6.18, the construction of a direct transformation for a projective production
with a given match can be performed purely syntactically also for the formula
component. Hence, there is no need to invoke Z3 for constructing direct derivation
(provided that a match of the left-hand side is given).

Checking parallel independence (dependence). As mentioned in Remark 8.4,
only pure E-graphmatching is required to decidewhether a pair of transformations
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is parallel independent or not. Consequently, the critical pair analysis procedure is
sound.

In order to argue that our conflict resolution procedure based on subcommu-
tativity analysis (see Definition 8.19) is sound, we basically have to consider two
situation where symbolic graph pattern matching is required. Assume, given a
critical pair

〈H1,ΦH1〉
p1@m1
⇐������ 〈G,ΦG〉

p2@m2
������⇒ 〈H2,ΦH2〉,

to show (or refute) subcommutativity of the critical pair the procedure has to con-
struct direct transformations t3 : 〈P1,ΦP1〉

p3@m3������⇒ 〈P3,ΦP3〉 and t4 : 〈P2,ΦP2〉
p4@m4������⇒

〈P4,ΦP4〉. To this end, the matches m3 and m4 have to be looked up, which requires
symbolic graph patternmatching. However, if the recognition of one of thematches
fails (i. e., it is falsely not recognized as a symbolic graphmorphism), we potentially
miss a direct transformation that potentially would resolve the conflict, but does
not lead to a conflict that is falsely resolved.
The second situation where we need symbolic graph pattern matching is to

decide whether the results of the transformation t3 : 〈P1,ΦP1〉
p3@m3������⇒ 〈P3,ΦP3〉 and

t4 : 〈P2,ΦP2〉
p4@m4������⇒ 〈P4,ΦP4〉 are equivalent modulo normal form. To this end the

procedure constructs the most general symbolic graph 〈Z,ΦZ〉 with morphism
z1 : 〈Z,ΦZ〉 → 〈P3,ΦP3〉 from 〈P3,ΦP3〉. In order to show that (4) and (5) commutes
(see Definition 8.19), we have to find symbolic Iinj

Proj,TG-morphism z2 and symbolic

M
inj

Proj,TG morphism y5. However, if the recognition of one of the morphisms fails
(i. e., it is falsely not recognized as a symbolic graph morphism), the procedure
potentially misses a 〈Z,ΦZ〉 that possibly would resolve the conflict, but does not
lead to a conflict that is falsely resolved.

9.4 Threats to Validity

By providing the SyGrAV prototype we have shown that the theoretical results
obtained in Chapters 4–8 can be implemented.
We conducted experiments on a case study from the enterprisemodeling domain,

including 18 productions that were inspired by the real workflows of the campus
management system actually used at Technische Universität Darmstadt. During
our experiments it turned out that the minimizing and filtering steps are the key
measures to apply the proposed constraint enforcement and conflict analysis tech-
niques to reasonably realistic problems. Regarding the scalability of the approach,
the complexity of the underlying analysis problem is mainly caused by the size and
number of the productions (and graph constraints) under consideration. While we
expect that the number of productions is much larger in an industrial size sce-
narios, the number of elements per production in our running example is quite
representative for medium size productions (according to our experiences with
model transformation). However, to finally assess the significance of the measure-
ments with respect to larger scenarios, further experiments have to be conducted.
Nevertheless, by taking into account that for industrial size verification problems,
runtimes of several days on large multiprocessor computers are acceptable, it seem
reasonable that the proposed techniques are also applicable to those problems.
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By introducing (functional) projective graph transformation and thereby omit-
ting the need for an infinite number of label nodes to represent attribute values,
we were able to provide an implementation that is very close to our theoretical
construction, that were shown to be correct. We have shown that the implemented
procedures are sound, also if the used fragment of first-order logic is undecidable.
All results that were obtained for the CMS case study were manually revised and
checked for plausibility. Additionally, we have a test suite with several (smaller)
examples whose validity were checked manually. However, SyGrAV is still a proto-
type and we cannot exclude the presence of bugs.
Threats to external validity may arise from the usage of off-the-shelf SMT solver

and pattern matching capabilities. However, Z3 is a well-established SMT solver
which is widely used in many projects and known for producing reliable results.
Democles is actually (since mid of 2015) the main pattern matching engine used in
the eMoflon tool and has reached during this time an adequate degree of reliability.





10
RELATED WORK

In the following, we compare the new concepts presented in this thesis with other
existing approaches.

10.1 Transformation of Attributed Graph Structures

We begin with comparing projective graph transformation with other existing con-
cepts for the transformation of attributed graph structures. As there are various
attribution concepts for graph transformation we focus on those approaches that
have a formal foundation, which are mainly those that are based on the algebraic
double pushout approach.
Symbolic and lazy graph transformations. Symbolic graphs were first intro-

duced in [Ore08] to define attributed graph constraints. Subsequently these results
were extended to symbolic graph transformation in [OL10b]. As mentioned in
Chapter 3, transformations via symbolic productions enjoy the properties of adhe-
sive transformation systems. However, as discussed in Section 3.5 transformations
via symbolic productions are improper for transforming nongrounded symbolic
graphs. In [OL12] lazy graph transformation is proposed to overcome these lim-
itations. Similar, to projective productions the left-hand side morphism of a lazy
production has to be inMbĳ

⇔, whereas the right-hand morphism of a lazy produc-
tion is only required to be inMinj

⇒ (note, we require the right-hand side morphism
to be inMinj

Proj in case of projective productions, and r ∈ Minj

Func in case of functional
projective productions). Hence, lazy graph productions provide more expressive
power than projective and functional projective productions; that is, a transforma-
tion via a lazy graph production may further constrain the values of existing label
nodes, whereas in case of projective and functional projective graph transforma-
tions only the values of created label nodes may be constrained. Unfortunately, this
gain of expressiveness leads to the loss of theHLRproperties for lazy graph produc-
tions, which build the basis for proving the correctness for consistency enforcement
and conflict analysis techniques. Accordingly, projective and functional projective
transformation systems can be considered as a compromise between symbolic and
lazy graph transformation; that is, (functional) projective graph productions are not
only restricted to transformations of grounded symbolic graphs (such as symbolic
graph productions), but still retain the properties required to apply the existing
results for constraint enforcement and conflict analysis techniques.
Transformation approaches based on algebra attributed graphs. Basically, we

can distinguish between two algebra based approaches for graph attribution. In
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[LKW93] both the graph structure and the attributes are coded as an algebra. In
[HKT02] the algebra is embedded into the graph. More specifically, an algebra at-
tributed graph is seen as a pair formed by an E-graph and an algebra, to define
values for the label nodes. In [Ehr03] it is shown that both approaches are equivalent,
up to a certain point. In [EPT04] it was shown that algebra attributed graphs fit into
the framework of adhesive high-level replacement (HLR) systems; thus providing a
formal foundation for graph transformation including all its basic results. However,
although this representation is theoretically satisfactory, including the algebra in
the graph structure leads to potentially infinite graphs. This is especially problem-
atic with respect to an implementation, as the theoretical results can not be directly
transferred to an implementation, as real systems rely on finite data structures in
general. In [OL10b] it is shown that every algebra attributed graph can be coded as
a symbolic graph, whereas the converse is not true. Hence, symbolic graph trans-
formations and, consequently, also (functional) projective graph transformations,
are expressively more powerful than algebra attributed graph transformations.
Transformation approaches based on partially labeled Graphs. Basically, a

partially labeled graph is a graph together with a partial label function to assign
labels from a label alphabet to the graph nodes (and edges). In contrast to algebra
and symbolic attributed graphs the labels are not coded in the graph structure,
which eliminates the need for infinite graphs.Moreover, attributed graphs based on
partially labeled graphs circumvent some inconveniences of algebra and symbolic
attributed graphs. For example, every node has by definition at most one value for
each attribute. In case of algebra and symbolic attributed graphs this can only be
achieved by additional negative constraints. Also the typing concept of attributed
graphs based on partially labeled graphs is more elegant compared with algebra
and symbolic attributed graphs. For algebra and symbolic attributed graphs label
nodes are typed twice, i. e., by the type graph and the signature of the algebra. In
case of partially labeled graphs the typing can de done at either level; for example,
untyped graphs with typed attributes may be defined [PH15].
In [HP12a] a category for attributed graphs based on partially labeled graphs

is proposed; it is shown that the category is (M,N)-adhesive. Thus, all results
obtained for (M,N)-adhesive transformations systems directly apply to this ap-
proach. However, although this approach enjoys the aforementioned advantages
of partially labeled graph, it is currently limited to simple replacement of attribute
values and does not support computations on attribute values [PH15].

In [Gol12] a general attribution concept forM-adhesive transformation systems
is presented. In [PH15] it was shown that this concept is related to (M,N)-adhesive
transformation systems. Similar to the approach presented in [HP12a, PH15] only
the replacement of attribute values is currently supported.
In [Plu09] graph programs are proposed, which provide an other attribution con-

cept based on partially labeled graphs. In contrast to the approach presented in
[PH15], graph programs allow for computations on attribute values. The main
drawback of this approach is that it does not fit into the framework of adhesive
transformation systems. Hence, all results that are direct consequences from the
HLR-properties, need to be verified separately.
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10.2 Verification of consistency constraints

In the following, we relate our results with respect to other existing approaches for
verifying consistency constraints.

The construction of application conditions from constraints was initially intro-
duced for plain graphs in [HW95]. Subsequently the approach was generalized to
high-level structures within the framework ofM-adhesive categories in [EEHP06].
To this end, the underlying category has to provide (in addition to the HLR prop-
erties) some extra properties referred to as HLR+properties.
In [DV14] we have shown that the symbolic graph transformation systems (orig-

inally introduced in [OL10b]) provide these HLR+properties; thus, the results for
constructing equivalent precondition application conditions fromgraph constraints
obtained in the context of high-level transformation system [EEHP06] also apply
for symbolic graph constraints and transformations via symbolic graph produc-
tions. Compared with the notion of functional projective productions presented
in this thesis, symbolic graph productions are expressively less powerful, as every
symbolic production is also a functional projective production, but not vice versa.
However, from a practical point of view, this increase in expressive power is very
small. Nevertheless, in contrast to symbolic graph productions, functional projec-
tive productions are suitable for transforming nongrounded symbolic graphs; thus
the underlying computational model is more close to real implementations.
Asmentioned in the previous section transformations via lazy graphproductions

provide more expressive power than transformation via projective and functional
projective productions. However, as shown in Chapter 7, projective productions
fail to provide the required properties to transform post- into equivalent precondi-
tion application conditions. As a direct consequence, also lazy productions fail to
provide these properties.
In [EEPT06] it was shown that algebra attributed graph transformation systems

provide the HLR+properties required for transforming constraints to equivalent
application conditions. As mentioned in the previous section the approach comes
with some technical difficulties that arise from the conceptual complexity of combin-
ing graphs with algebras. As shown in [Ore08] algebra attributed graph constraints
provide less expressive power than symbolic graph constraints.

The construction of precondition application conditions from graph constraints
in the framework of partially labeled graphs and graph transformation systems
was shown [HP12a].

For graphprograms the construction of precondition application conditions from
graph constraints was proven in [PP12]. In [PP14] graph constraints are extended
to make them equivalently expressive to monadic second-order logic on graphs; a
construction for preconditions for these assertions is provided, too. As mentioned
in the previous chapter, graph programs do not fit into the framework of adhesive
transformation systems. Hence, all constructions were verified separately. More-
over, other results obtained in the framework high-level transformations systems
(e. g., for conflict analysis) cannot directly be transferred to graph programs.

An approach that also considers constraints with an expressive power equivalent
to second ordermonadic logic is presented in [HR10]. In contrast to graphprograms
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this approach is defined for adhesive transformation systems; thus, these results
may be transferred to (functional) projective graph transformation systems with
reasonable efforts.
In [AHRT14] and [RAB+15] the transformation of OCL constraints into graph

constraints is considered. As these results are defined for adhesive transformation
systems, they likely apply also to functional projective transformations system;

10.3 Conflict Detection and Resolution for Attributed Graph Trans-
formations

The only related approaches that provenly provide the properties to perform con-
flict analysis are symbolic graph transformation systems and algebra attributed
graph transformation system.
From a theoretical perspective, all results presented in Chapter 8 are also valid

for symbolic graph productions, as every symbolic graph production is also a
projective production. However, from a practical point of view, performing con-
fluence analysis with symbolic productions does not lead to satisfactory results.
Recall that symbolic productions are in general not useful when applied to non-
grounded symbolic graphs. However, for confluence analysis we have to transform
minimal contexts, which are generally nongrounded. Lazy symbolic graph pro-
ductions [OL12] circumvent these shortcomings by allowing the creation of label
nodes. Moreover, transformation via lazy productions may further constrain the
values of existing label nodes. Unfortunately, this gain in expressive power leads to
the loss of the locality property; that is, further constraining the values of existing
label nodes potentially affects the values of label nodes that are not in the match
of the production. This problem is illustrated in Figure 10.1. The lazy production
shown on top of Figure 10.1 further restricts the value of existing label node x by
adding constraint (x = 5). Thus, the production is not a projective production. The
direct transformation derived by applying this production to a symbolic graph
〈G,ΦG〉 is shown on the bottom of Figure 10.1. In addition to a label node x the
graph G contains an other label node y, whose value is given by (x = y). Applying
the production to symbolic graph 〈G,ΦG〉 results in symbolic graph 〈H,ΦH〉 with
ΦH ⇔ (x � y) ∧ (x � 5). Hence, in addition to setting te value of x equal to 5, the
application implicitly sets also the value of y equal to 5, although label node y was
not in the match. Without this locality property, the Embedding and Extension
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Figure 10.1: Example of a transformation via a lazy production which has nonlocal effects.

Theorems (Theorem 8.13 and Theorem 8.14) as well as the completeness lemma for
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symbolic critical pairs (Lemma 8.16) are not valid anymore, as they are based on
the assumption that transformations have only local effects.
The results for conflict detection and resolution are also valid for algebra at-

tributed graphs [EEPT06]. However, the results for conflict detection do not apply
for arbitrary algebra attributed graph productions; that is, only productions, where
the left-hand sides are attributed by merely variables are permitted. However, this
further restricts the expressive power of algebra attributed graph productions.
Local confluence for productions with negative application conditions in the

context of adhesive transformation systems is studied in [LEO06, LEPO08]. The
results were generalized to nested application conditions in [EGH+12]. As these
results are formalized within the framework of adhesive transformation systems,
we are optimistic that it is possible to provide similar proofs for functional projective
transformation systems.
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CONCLUS IONS

Graph transformationwith its formal foundations and its broad range of theoretical
results constitutes an effective framework for the specification, analysis, and ver-
ification of software systems. Nevertheless, almost all realistic systems for which
graph-based modeling is appropriate incorporate primitive data in terms of at-
tributes. Although there exists a broad spectrum of theoretical results for consis-
tency enforcement and conflict analysis techniques, there is currently rather limited
tool support for these techniques with respect to attributed graph structures. Ac-
cordingly, the main objective of this thesis was to close this gap by developing
a formal framework for the static verification of attributed graph transformation
systems, with the aim to deliver an implementation. We identified the need for po-
tentially infinite graphs as the main obstacle that prevents an implementation. As
for an implementation the underlying data structures need to be finite, it is rather
difficult to argue that an implementation of the developed verification techniques
preserves the properties of the related theory. More concretely, it is by no means
trivial to show that an implementation with finite representations of infinite graph
structures preserves the correctness and completeness proofs of its underlying
graph transformation theory.
Accordingly, The main contributions of this thesis are (i) the development of a formal

framework for attributed graph transformations that does not rely on infinite graphs, (ii) the

proofs of the results for consistency enforcement and conflict analysis in this framework, and

(iii) the realization of the developed theoretical concepts leading to the Symbolic Graph

Analysis and Verification (SyGrAV) tool prototype. Moreover, we assessed the
practical applicability of the theoretical results by evaluating the tool prototype by
means of a case study.
In the following, we first summarize the contributions of this thesis in detail in

Section 11.1. Subsequently, we discuss in Section 11.2 the practical relevance of our
findings. This chapter concludeswithprovidingdirections for future improvements
and research (Section 11.3).

11.1 Contributions

The basis for all contributions provided in this thesis, was to identify the classes of
projection and functional projection morphisms. These morphism classes provide
the basis to formalize attributed graph transformation systems without the need
for potentially infinite graph data structures. At the same time, these morphisms
classes retain the characteristics required for consistency enforcement and conflict
analysis techniques.
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Basedon thesemorphismclasseswedevelopeda formal framework for attributed
graph transformation systems including the following contributions:
(L,R,N)-adhesive categories and transformation systems. To prove the funda-

mental results of the double pushout approach for projective graph transforma-
tion systems we introduced the new concept of (L,R,N)-adhesive categories and
transformation systems in Chapter 5. Moreover, we have shown that basic results
obtained for HLR-categories are also valid for (L,R,N)-adhesive categories.

Enforcing Symbolic Graph Constraints. Chapter 7 provides the proofs of the
additional properties required to construct equivalent application conditions from
symbolic graph constraints. Moreover, we have shown that the construction of
equivalent precondition application conditions is valid for functional projective
transformation rules. Finally, we provided minimization procedures to reduce the
number of generated negative application conditions. Our experiments have shown
that most of the generated application condition are not necessary to preserve
consistency.Accordingly, they are removed by theminimization procedures.Hence,
the minimization procedures are important from a practical point of view to not
degrade the performance of applying a production by hundreds of unnecessary
application condition checks.
Conflict Detection and Resolution. Chapter 8 provides the proofs required

to transfer the well-known results for conflict detection (by parallel dependence
analysis) and conflict resolution (by local confluence analysis) to projective graph
transformation systems. It turned out that the standard local confluence analysis
approach, which performs well for graph transformation without attributes, does
not lead to the desired results when applied to projective graph transformation sys-
tems. This problem was solved by introducing local confluence modulo normal form

equivalence. Additionally, we have shown tat the results of the Local Confluence
Theorem remain valid for local confluence modulo normal form equivalence.

Tool support and evaluationWe implemented all theoretical results obtained in
this thesis leading to the Symbolic Graph Analysis and Verification framework. In
Chapter 9 we used SyGrAV to conduct experiments on a case study from the enter-
prise modeling domain. The measured run times obtained during our experiments
are quite promising.However, to finally assess the significance of themeasurements
with respect to larger scenarios, further experiments have to be conducted.

11.2 Practical Relevance

An other important metric regarding the practical applicability of our approach is
its expressive power. In general, there is always a trade-off between the expressive
power of a language and the properties that can be verified. Accordingly, it was
necessary to impose certain restrictions on the allowed attribute expression in order
enable consistency enforcement and conflict analysis techniques. These restrictions
led to the notions of projective and functional projective graph transformations. In
the following, we discuss the implications of these restrictions concerning the real-
ization of static verification support for current state of the art graph transformation
tools. To this end, we analyzed the permissible attribute conditions in the graph
transformation tools Henshin [ABJ+10], Viatra2 [BDH+15], GrGen.net [GBG+06],
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and eMoflon [LAS14]. It turned out that all tools permit attribute expression com-
parable to the expressive power of first-order logic without quantifiers. Moreover,
all tools require new attribute values to be defined in terms of functions by the
existing attribute values, which matches exactly the restriction imposed by func-
tional projective transformation rules. Consequently, the SyGrAV tool prototype
can be considered as a major step towards extending current state of the art graph
transformation tools with static verification capabilities. The term “major step” is
owed to the fact that the considered graph transformation tools provide further lan-
guage features such as inheritance and amalgamation, which are in fact orthogonal
to attribution but currently not supported by SyGrAV. This leads us to possible
direction for future work.

11.3 Future Directions

Asmentioned the SyGrAV tool prototype can be considered as amajor step towards
offering support for static verification for current state of the art graph transfor-
mation tools. Nevertheless, additional language features need to be integrated to
achieve a comprehensive support.
An important language extension are application conditions. Local confluence

analysis for graph transformation systemswith negative application conditionswas
first presented in [LEO06, LEPO08] in the context of adhesive transformation sys-
tems. The results were generalized to nested application conditions in [EGH+12].
Hence, to establish support for conflict analysis with application conditions the
formal requirements to apply these techniques need to be verified. Towards an im-
plementation of these techniques the main challenge is to establish capabilities for
reasoning over application conditions. This problem is undecidable for arbitrary
nested application conditions, but decidable for a certain subset including proposi-
tional expressions over negative andpositive application conditions [Pen08].Hence,
it should be possible (with reasonable efforts) to provide an implementation for con-
flict analysis with negative and positive application conditions.
Another concept is type inheritance, which is especially important for the objec-

t-oriented approach to metamodeling. We are optimistic that the results for consis-
tency enforcement presented in [TR05] as well as the results for conflict analysis
presented in [GLEO12] for algebra attributed graphs with type inheritance can be
transferred to functional projective graph transformation systems.
Another popular language extension are amalgamated graph transformations,

which allows for the definition of transformations whose size is determined at
transformation time by means of the actual model characteristics. In this way it
is possible to express for each loops by graph transformation rules. Recently an ap-
proach for conflict analysis and an algorithm for conflict detection for amalgamated
graph transformations was proposed [TG15, BT16]. A next step might be to study
if (or to which extent) our results can be combined with the results for conflict
resolution of amalgamated transformations.
Other future directions aim at improving current tool support with respect to

expressive power and performance. Concerning the expressive power of SyGrAV,
weplan to integrate support for sequence baseddatatypes such as strings. Currently
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only integer and real numbers aswell as bitvectors (for finite domain datatypes) and
enumerations are supported. Z3 supports sequences since version 4.4.2, including
operations for concatenation, comparison as well as predicates on the length of
strings.However, inversion4.4.2 theZ3 JavaAPIhas somemajor bugs.Nevertheless,
if these problems are fixed it should be possible (with negligible efforts), to provide
support for strings, too.
As mentioned before SyGrAV is currently in the prototype stage. Accordingly,

we expect that the performance of SyGrAV can be considerably increased by fine
tuning several components. Despite this, there are still proposals for optimizing
the conflict resolution procedure itself (e. g., [LEO08]). However, it is still an open
question whether these optimizations indeed lead to an considerable performance
boost when implemented.
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A
ALL PRODUCT IONS OF THE CMS CASE STUDY

a.1 Production bookRoom

⇒

LHS RHS

bookRoom’(ex : Exam, ro : Room)

(ex.state=EX ST.PLAN) ∧ (ro.capExam ≥ex.regSt) ∧
(bo.end’=da.begin+da.duration) ∧ (bo.begin’=da.begin) ∧ (ex.state’=EX ST.READY)

ex : Exam
- state
- regSt

da : Date
- begin
- duration

ro : Room
- capExam

date

ex : Exam
- state’
- regSt

da : Date
- begin
- duration

bo : Booking
- begin’
- end’

ro : Room
- capExam

date

bookings

location

Figure A.1: Production bookRoom(ex : Exam, ro : Room) takes an Exam ex and a Room ro. It
is applicable if Exam ex is in the PLAN state, has a Date assigned, and the exam capacity of
Room ro is smaller or equal to the number of registered students. The production is applied
by creating a Booking bo and assigning it to Room ro. The value of bo.begin is set equal to
da.begin. The value of bo.end is set equal to da.begin+da.duration.
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⇒

LHS RHS

bookRoom’(ex : Exam, ro : Room)

(ex.state=EX ST.PLAN) ∧ (ro.capExam ≥ex.regSt) ∧
(sem.current=true) ∧ (sys.currentTime>sem.regEnd) ∧ (sys.currentTime<sem.semEnd) ∧
(bo.end’=da.begin+da.duration) ∧ (bo.begin’=da.begin) ∧ (ex.state’=EX ST.READY)

ex : Exam
- state
- regSt

da : Date
- begin
- duration

ro : Room
- capExam

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

date

exams

ex : Exam
- state’
- regSt

da : Date
- begin
- duration

bo : Booking
- begin’
- end’

ro : Room
- capExam

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

date

bookings

location

exams

Figure A.2: In contrast to bookRoom, the production bookRoom’(ex : Exam, ro : Room)
is only applicable after the registration period of the current Semester sem has ended
(sys.currntTime > sem.regEnd), but before sem has ended (sys.currentTime < sem.semEnd).

a.2 Production uploadRes

⇒
LHS RHS

setDate(ex : Exam, da : Date)

(ex.state=EX ST.READY) ∧ (ex.state’=EX ST.FINALIZING)

ex : Exam
- state

gl : GradeList ex : Exam
- state’

gl : GradeList gradeList

Figure A.3: The Production uploadRes(ex . Exam, da : Date) adds a given grade list to the
Exam ex containing the results for the examiniation. The production is applicable if Exam ex
is in the READY state. By applying production uploadRes ex.state is changed to FINALIZING

a.3 Production setDate

⇒
LHS RHS

setDate(ex : Exam, da : Date)

(ex.state=EX ST.PLAN)

ex : Exam
- state

da : Date ex : Exam
- state

da : Date date

Figure A.4: Production setDate(ex : Exam, da : Date) assigns a Date da to Exam ex.
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a.4 Production updateDate

⇒
LHS RHS

updateDate(ex : Exam, newDa : Date)

(ex.state=EX ST.PLAN)

ex : Exam
- state

newDa : Date

oldDa : Date date

ex : Exam
- state

newDa : Date date

Figure A.5: Production updateDate(ex Exam, newDa : Date) updates the date of an Exam ex.

a.5 Production transResPas

⇒

LHS RHS

transResPas(ex : Exam)

(et.grade ≤ 4) ∧ (ex.state=EX ST.FINALIZING) ∧ (en.studId=et.studId) ∧ (cmo.cp≥0) ∧
(cr.grade’=et.grade) ∧ (en.cp’=en.cp+cmo.cp)

cmo : CoModOffer
- cp

ex : Exam
- state

cr : CourseRecord
- grade

en : Enrollment
- studId
- cp

gl : GradeList
- nrOfEntries

et : Entry
- studId
- grade

cRecords

offer

exam

regExam

gradeList

entries

cmo : CoModOffer
- cp

ex : Exam
- state

cr : CourseRecord
- grade’

en : Enrollment
- studId
- cp’

gl : GradeList
- nrOfEntries’

et : Entry
- studtId
- grade

cRecords

offer

exam

gradeList

Figure A.6: Production transResPas(ex : Exam) is intended to transfer a result for an exam
stored in Entry et to the corresponding CourseRecord cr. The production transfers only re-
sultswhose grades (et.grade) are smaller or equal 4 (i. e., passed). To this end the production
looks up the corresponding Enrollment en such that en.studId=et.studId. The production can
only be applied if the Exam ex is in the FIALIZING state. The condition cmo.cp≥0 ensures
that the credit point that can be obtained for the course are not negative. The condition is
required to guide the solver ensuring that that en.cp’geqen.cp. By applying the production
the corresponding the grade stored in the entry is written to the corresponding Cours-
eRecord cr (i. e. cr.grade’=et.grade), and the obtained credit points are incremented by the
number of credit points granted for the course (i. e.. en.cp’=en.cp+cmp.cp). Additionally, the
link entires is deleted.
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⇒

LHS RHS

transResPas’(ex : Exam)

(et.grade ≤ 4) ∧ (ex.state=EX ST.FINALIZING) ∧ (en.studId=et.studId) ∧ (cmo.cp≥0) ∧
(sem.current=true) ∧ (sys.currentTime>sem.regEnd) ∧

(cr.grade’=et.grade) ∧ (en.cp’=en.cp+cmo.cp)

cmo : CoModOffer
- cp

ex : Exam
- state

cr : CourseRecord
- grade

en : Enrollment
- studId
- cp

sem : Semester
- current
- regEnd

sys : System
- currentTime

gl : GradeList
- nrOfEntries

et : Entry
- studId
- grade

cRecords

offer

exam

regExam

exams

gradeList

entries

cmo : CoModOffer
- cp

ex : Exam
- state

cr : CourseRecord
- grade’

en : Enrollment
- studId
- cp’

sem : Semester
- current
- regEnd

sys : System
- currentTime

gl : GradeList
- nrOfEntries’

et : Entry
- studtId
- grade

cRecords

offer

exam

exams

gradeList

Figure A.7: Production transResPas’(ex : Exam) is similar to production transResPas(ex :
Exam) but can only be applied after the registration period of the current semester has
ended (i. e., sys.currentTime>sem.regEnd).

a.6 Production transResFail

⇒

LHS RHS

transResFail(ex : Exam)

(et.grade = 5) ∧ (ex.state=EX ST.FINALIZING) ∧ (en.studId=et.studId) ∧
(cr.grade’=et.grade) ∧

(
if (cr.tries = 3) then (en.enrolled’=false) else (en.enrolled’=en.enrolled)

)

cmo : CoModOfferex : Exam
- state

cr : CourseRecord
- grade
- tries

en : Enrollment
- studId
- enrolled

gl : GradeList
et : Entry
- studentId
- grade

cRecords

offer

exam

regExam

gradeList

entries

cmo : CoModOfferex : Exam
- state

cr : CourseRecord
- grade’
- tries

en : Enrollment
- studId
- enrolled’

gl : GradeList
et : Entry
- studentId
- grade

cRecords

offer

exam

gradeList

Figure A.8: Production transResFail(ex :Exam) is similar to production transResPas, but
in contrast to transResPas only entries with a grade equal to 5 (i. e., the exam was failed)
are transferred. Hence if the number of tries (cr.tries) is equal to 3, the Enrollment en is
exmatriculated (i. e., en.enrolled is set to false).



bibliography 201

⇒

LHS RHS

transResFail’(ex : Exam)

(et.grade = 5) ∧ (ex.state=EX ST.FINALIZING) ∧ (en.studId=et.studId) ∧
(sem.current=true) ∧ (sys.currentTime>sem.regEnd) ∧

(cr.grade’=et.grade) ∧
(
if (cr.tries = 3) then (en.enrolled’=false) else (en.enrolled’=en.enrolled)

)

cmo : CoModOfferex : Exam
- state

cr : CourseRecord
- grade
- tries

en : Enrollment
- studId
- enrolled

sem : Semester
- current
- regEnd

sys : System
- currentTime

gl : GradeList
et : Entry
- studentId
- grade

cRecords

offer

exam

regExam

exams

gradeList

entries

cmo : CoModOfferex : Exam
- state

cr : CourseRecord
- grade’
- tries

en : Enrollment
- studId
- enrolled’

sem : Semester
- current
- regEnd

sys : System
- currentTime

gl : GradeList
et : Entry
- studentId
- grade

cRecords

offer

exam

exams

gradeList

Figure A.9: Production transResFail’(ex : Exam) is similar to production transResFail(ex :
Exam) but can only be applied after the registration period of the current semester has
ended (i. e., sys.currentTime>sem.regEnd).

a.7 Production closeExam

⇒
LHS RHS

closeExam(ex : Exam)

(ex.state=EX ST.FINALIZING) ∧ (ex.state’=EX ST.CLOSED)

ex : Exam
- state

ex : Exam
- state’

Figure A.10: Production closeExam(ex : Exam) closes an by changing ex.state from FINAL-
IZING to CLOSED.
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a.8 Production regExam

⇒

LHS RHS

regExam(en : Enrollment, ex : Exam)

(
(en.state=EN ST.STUDY) ∨ (en.state=EN ST.WRITE THESIS)

)
∧ (cr.tries<3) ∧ (cr.grade>4) ∧ (en.enrolled=true) ∧

(cr.tries’=cr.tries+1) ∧ (ex.regSt’=ex.regSt+1) ∧ (en.cp<en.regCp)

cmo : CoModOfferex : Exam
- regSt

cr : CourseRecord
- tries
- grade

en : Enrollment
- state
- enrolled
- cp
- regCp

cRecords

offer

exam cmo : CoModOfferex : Exam
- regSt’

cr : CourseRecord
- tries’
- grade

en : Enrollment
- state
- enrolled
- cp
- regCp

cRecords

offer

exam

regExam

Figure A.11: Production regExam(en : Enrollment, ex : Exam) registers a given Enrollment
en to an Exam ex, by creating link regExam from the CourseRecord cr to the examination
ex. Note that the production can only be applied if a RourseRecord for the corresponding
course module offer (cmo : CoModOffer) exists. Moreover, Enrollment en as to be in the the
STUDY orWRITE_THESIS state, the number of tries (cr.tries) has to be lower than 3, and the
Exam ex must not be passed before (i. e., cr.grade>4). Additionally the Enrollment en must
be enrolled (i. e. en.enrolled=true). By applying the production the number of tries recorded
in the course record cr and the number of registered students ex.regSt are incremented by
one.

⇒

LHS RHS

regExam’(en : Enrollment, ex : Exam)

(
(en.state=EN ST.STUDY) ∨ (en.state=EN ST.WRITE THESIS)

)
∧ (cr.tries<3) ∧ (cr.grade>4) ∧ (en.enrolled=true) ∧ (en.cp<en.regCp) ∧

(sem.current=true) ∧ (sys.currentTime>sem.regBegin) ∧ (sys.currentTime<sem.regEnd) ∧
(cr.tries’=cr.tries+1) ∧ (ex.regSt’=ex.regSt+1)

cmo : CoModOfferex : Exam
- regSt

cr : CourseRecord
- tries
- grade

en : Enrollment
- state
- enrolled
- cp
- regCp

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

cRecords

offer

exam

exams
cmo : CoModOfferex : Exam

- regSt’

cr : CourseRecord
- tries’

en : Enrollment
- state’
- enrolled
- cp
- regCp

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

cRecords

offer

exam

regExam

exams

Figure A.12: Production regExam’(en : Enrollment, ex : Exam) requires in addition to pro-
duction regExam(en : Enrollment, ex : Exam) that the currentTime is between the begin
(sem.regBegin) and end (sem.regEnd) of the registration period of the current Semester
sem.
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a.9 Production regCMO

⇒

LHS RHS

regCMO(en : Enrollment, cmo : CoModOffer)

(
(en.state=EN ST.STUDY) ∨ (en.state=EN ST.WRITE THESIS)

)
∧ (en.regCp<pr.reqCp) ∧ (en.enrolled=true) ∧ (cmo.cp≥0) ∧

(cr.tries’=0) ∧(cr.grade’=6) ∧ (en.regCP’=en.regCP+cmo.cp)

en : Enrollment
- state
- enrolled
- regCp

- tries
grade

cmo : CoModOffer
- cp

mo : Module pr : Program
- reqCp

program

cModules

current

en : Enrollment
- state
- enrolled
- regCp’

cr : CourseRecord
- tries’
- grade’

cmo : CoModOffer
- cp

mo : Module pr : Program
- reqCp

program

cRecords

offer

cModules

current

Figure A.13: Production regCMO(en : Enrollment, cmo : CoModOffer) registers Enrollment en
to a given coursemodule offer cmo of the Program pr. To this end aCourseRecord cr is crated
and assigned by link offer to course module offer cmo. The production is only applicable if
the Enrollment en is in the STUDY or WRITE_THESIS state; en.enrolled=true.

a.10 Production unregExam

⇒

LHS RHS

unregExam(en : Enrollment, ex : Exam)

(
(en.state=EN ST.STUDY) ∨ (en.state=EN ST.THESIS)

)
∧

(cr.tries’=cr.tries-1) ∧ (ex.regSt’=ex.regSt-1) ∧ (en.cp<en.regCp)

cmo : CoModOfferex : Exam
- regSt

cr : CourseRecord
- tries

en : Enrollment
- state
- cp
- regCp

cRecords

offer

exam

regExam

cmo : CoModOfferex : Exam
- regSt’

cr : CourseRecord
- tries’

en : Enrollment
- state
- cp
- regCp

cRecords

offer

exam

Figure A.14: Production unregExam(en : Enrollment, ex : Exam) takes as input an Enrollment
en and an Exam ex. By applying the production, the link regExam from cr : CourseRecord to
ex : Ex is removed, as well as the number of tries (cr.tries) and the number of registrations
(ex.regSt) are decremented by one.
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⇒

LHS RHS

unregExam’(en : Enrollment, ex : Exam)

(
(en.state=EN ST.STUDY) ∨ (en.state=EN ST.THESIS)

)
∧

(sem.current=true) ∧ (sys.currentTime>sem.regBegin) ∧ (sys.currentTime<sem.regEnd) ∧
(cr.tries’=cr.tries-1) ∧ (ex.regSt’=ex.regSt-1) ∧ (en.cp<en.regCp)

cmo : CoModOfferex : Exam
- regSt

cr : CourseRecord
- tries

en : Enrollment
- state
- cp
- regCp

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

cRecords

offer

exam

regExam

exams
cmo : CoModOfferex : Exam

- regSt

cr : CourseRecord
- tries’

en : Enrollment
- state
- cp
- regCp

sem : Semester
- current
- regBegin
- regEnd

sys : System
- currentTime

cRecords

offer

exam

exams

Figure A.15: Production unregExam’(en : Enrollment, ex : Exam) is the corrected version of
unregExam Production unregExam’ requires in addition to production unregExam that the
currentTime is between the begin (sem.regBegin) and end (sem.regEnd) of the registration
period of the current Semester sem.

a.11 Production regTMO

⇒

LHS RHS

regTMO(en : Enrollment, tmo : ThModOffer)

(en.state=EN ST.STUDY) ∧ (en.cp≥130) ∧ (en.enrolled=true) ∧
(tr.tries’=0) ∧(tr.grade’=6) ∧ (en.regCP’=en.regCP+tmo.cp) ∧ (en.state’=EN ST.WRITE THESIS)

en : Enrollment
- state
- enrolled
- regCp

- tries
grade

tmo : ThModOffer
- cp

tm : ThesisModule pr : Program

program

tModule

offer

en : Enrollment
- state
- enrolled
- regCp’

tr : ThesisRecord
- tries’
- grade’

tmo : ThModOffer
- cp

tm : ThesisModule pr : Program

program

tModule

current

offer

tRecord

Figure A.16: The production regTMO(en : Enrollment, tmo : ThModOffer) registers an student
represented by its enrollment for a thesis module offer (ThModOffer). To this end, the
corresponding thesis module offer tmo has to be part of the thesisModule tm of the enrolled
Program pr. Moreover, the Enrollment en has to be in the STUDY; the number of archived
credit points en.cp must be larger or equal to 130. By registering for a thesis module offer
a ThesisRecord tr is created and assigned to Enrollment en and thesis module offer tm. The
values for number of tries tr.tries is initialized with value 0; the value for the grade tr.grade
is initialized value 6. The number of registered cp en.regCP stored in the Enrollment en is
incremented by the value of tmo.cp; that is, the number of credit points that can be obtained
for a thesis. After applying the production, the Enrollment en is in theWRITE_THESIS state.
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a.12 Production regThesis

⇒

LHS RHS

regThesis(en : Enrollment)

(en.state=EN ST.WRITE THESIS) ∧ (tr.grade≥4) ∧ (tr.tries<2) ∧ (en.enrolled=true) ∧
∧ (tr.tries’=tr.tries+1)

en : Enrollment
- state
- enrolled

tr : ThesisRecord
- tries
- grade

tmo : ThModOffer

tRecord

offer

en : Enrollment
- state
- enrolled

tr : ThesisRecord
- tries’
- grade’

tmo : ThModOfferth : Thesis

tRecord

offerthesis

theses

Figure A.17: An Enrollment en can be registered for a Thesis th if it has assigned a Thesis-
Record, no already passed thesis exists (tr.grade≥4), the number of tries (tr.tries) must be
smaller than two, and the corresponding student is enrolled (en.enrolled=true). By register-
ing for a thesis the number fo tries is incremented by one.

a.13 Production obtDeg

⇒

LHS RHS

obtDeg(en : Enrollment)

(en.cp≥en.regCp) ∧(en.cp≥pr.reqCp) ∧ (en.enrolled=true) ∧ (en.state=EN ST.WRITE THESIS) ∧
(en.state’=EN ST.CLOSED) ∧ (de.obtDegree’=pr.degree)

en : Enrollment
- state
- cp
- regCp
- enrolled

pr : Program
- reqCp
- degree

program

en : Enrollment
- state’
- cp
- regCp
- enrolled

pr : Program
- reqCp
- degree

de : Degree
- obtDegree’

program

degree

Figure A.18: The production obtDeg assigns a Degree de to and Enrollment en. A degree can
only be obtained if number of obtained credit points en.cp are larger or equal to the number
of registered credit points en.regCp and the number of registered credit points en.regCp
must be larger or equal to the number of credit points pr.reqCp required for the registered
Program pr. The enrollmentmust be valid,i. e., en.enrolled=true and in theWRITE_THESIS
state.
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a.14 Production setLecture

⇒

LHS RHS

setLecture(cmo : CoModOffer, le : Lecture)

(cmo.state=CMO ST.CREATED) ∧ (currSem.current=true) ∧ (cmo.state’=CMO ST.LECT SET)

cmo : CoModOffer
- state

le : Lecture

nextSem : Semester currSem : Semester
- current

next

lectures

cmo : CoModOffer
- state’

le : Lecture

nextSem : Semester currSem : Semester
- current

next

lectures

lecture

Figure A.19: The production setLecture sets the lecture for a course module offer cmo the
first time, i. e., the course module offer was newly CREATED. To this end, a new link lecture
is created to the given lecture le.

a.15 Production updateLect

⇒

LHS RHS

updateLect(cmo : CoModOffer, newLe : Lecture)

(cmo.state=CMO ST.CREATED) ∧ (currSem.current=true) ∧ (cmo.state’=CMO ST.LECT SET)

cmo : CoModOffer
- state

newLe : Lecture

oldLe : Lecture

nextSem : Semester

currSem : Semester
- current

lecture

lectures

lectures

next

cmo : CoModOffer
- state’

newLe : Lecture

oldLe : Lecture

nextSem : Semester

currSem : Semester
- current

lecture

lectures

lectures

next

Figure A.20: The production updateLect is intended to update the lecture for an already
existing course module offer. To this end, the link lecture is redirected from the old lecture
oldLe to a given new lecture newLe that has to be contained in the next semester nextSem.
The production is applicable only if the the course module offer is in RESET state. After
updating the lecture the course module offer is in the state LECT_UPDATED.
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a.16 Production setExam

⇒

LHS RHS

setExam(cmo : CoModOffer, ex : Exam)

(cmo.state=CMO ST.LECT SET) ∧ (currSem.current=true) ∧ (cmo.state’=CMO ST.READY)

cmo : CoModOffer
- state

ex : Exam

nextSem : Semester currSem : Semester
- current

next

exam

cmo : CoModOffer
- state’

ex : Exam

nextSem : Semester currSem : Semester
- current

next

exams

exam

FigureA.21:The production setExam sets a given examination ex for a given coursemodule
offer cmo. The production can only be applied if examination ex is in the next semester
nextSem and cmo is in state LECT_SET. By applying the production the state of the course
module offer is change to READY.

a.17 Production updateEx

⇒

LHS RHS

updateEx(cmo : CoModOffer, newEx : Exam)

(
(cmo.state=CMO ST.RESET) ∨ (cmo.state=CMO ST.LECT UPDATED)

)
∧ (currSem.current=true) ∧

(cmo.state’=CMO ST.READY)

cmo : CoModOffer
- state

newEx : Exam

oldEx : ExamprevSem : Semester

currSem : Semester
- current

exam

exams

exams

next

cmo : CoModOffer
- state’

newEx : Exam

oldEx : ExamprevSem : Semester

currSem : Semester
- current

exam

exams

exams

next

Figure A.22: The production updateEx(cmo : CoModOffer, newEx : Exam) is applied to an
course module offer (cmo : CoModOffer) to set a new exam (newEx : Exam). To this end, the
link exam is redirected from the old examination (oldEx : Exam) to the new examination
(newEx : Exam)is removed and a new link of type exam. The new examination newEX has
to be contained in the current semester (as (currSem.current=true)), whereas the old exam is
assumed to be in the previous semester prevSem. The production can only be applied if the
course module offer cmo is in the RESET or LECT_UPDATED state, whereas the new state
(i. e., cmo.state’) is set to READY.
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⇒

LHS RHS

updateEx’(cmo : CoModOffer, newEx : Exam)

(
(cmo.state=CMO ST.RESET) ∨ (cmo.state=CMO ST.LECT UPDATED)

)
∧ (currSem.current=true) ∧

(currSem.current=true) ∧ (sys.currentTime>currSem.semBegin) ∧(sys.currentTime<currSem.regBegin) ∧
(cmo.state’=CMO ST.READY)

cmo : CoModOffer
- state

sys : System
- currentTime

newEx : Exam

oldEx : ExamprevSem : Semester

currSem : Semester
- current
- semBegin
- regBegin

exam

exams

exams

next

cmo : CoModOffer
- state’

sys : System
- currentTime

newEx : Exam

oldEx : ExamprevSem : Semester

currSem : Semester
- current
- semBegin
- regBegin exam

exams

exams

next

Figure A.23: The production updateEx’(cmo : CoModOffer, newEx : Exam) is similar to pro-
duction updateEx(cmo : CoModOffer, newEx : Exam) except that production updateEx’ can
only be applied after the begin of the current semester and before the begin of the current
registration period.

a.18 Production resetCMO

⇒
LHS RHS

resetCMO(cmo : CoModOffer)

(cmo.state=CMO ST.READY) ∧ (cmo.state’=CMO ST.RESET)

cmo : CoModOffer
- state

cmo : CoModOffer
- state’

Figure A.24: The production resetCMO resets a course module offer by changing the state
from READY to RESET.
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USER DEF INED NEGAT IVE CONSTRA INTS

SingeltonSystem

sys1 : System sys2 : System

FigureB.1:Thenegative constraintSingeltonSystem ensured that consistent instancemodels
only contain one instance of class System. This is required to ensure that there is only one
currentTime value. Alternatively we might define a constraint that requires that there do
not exists a pair of Systems with different values for currentTime.

SingeltonCurrentSemester

(sem1.currrent=true) ∧ (sem2.current=true)

sem1 : Semester
- current

sem2 : Semester
- current

Figure B.2: Negative constraint SigeltonCurrentSemester declares that any instance model
that contains two semesters whose current attribute is set to true (i. e. (sem1.currrent=true)
and (sem2.current=true)) is inconsistent.

OnyOneRecordPerExamAndEnrollment

en : Enrollment

crA : CourseRecord crB : CourseRecord

ex : Exam

entriesentries

exam exam

Figure B.3: Negative constraint OnyOneRecordPerExamAndEnrollment ensures that any En-
rollment has at most one CourseRecord for an Exam.
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OnlyOneRecordPerCMOAndEnrollment

en : Enrollment

crA : CourseRecord crB : CourseRecord

cmo : CoModOffer

entriesentries

offer offer

Figure B.4: Negative constraint OnlyOneRecordPerCMOAndEnrollment ensures that any En-
rollment has at most one CourseRecord for an course module offer (CoModOffer).

NoTwoEntriesWithSameIdInGradeList

(etA.studId=etB.studId)

gl : GradeList

etA : Entry
- studId

etB : Entry
- studId

entriesentries

Figure B.5: Negative constratin NoTwoEntriesWithSameIdInGradeList ensures that there are
two Entries for the same student (i. e. studId) in a GradeList.

NoTwoEnrollmentsWithSameId

(enA.studId=enB.studId)

enA : Enrollment
- studId

enB : Enrollment
- studId

Figure B.6: Negative constraint NoTwoEnrollmentsWithSameId ensures that no two Enroll-
ments with same studId exist.

NoCompetingBookings

(boA.end ≥ boB.begin) ∧
(boB.end ≥ boA.begin)

ro : Room

boA : Booking
- begin
- end

boB : Booking
- begin
- end

bookings

bookings

Figure B.7: Negative constraint NoCompetingBookings ensures that a Room does not have
two Bookings with overlapping time slots.
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