TECHNISCHE
UNIVERSITAT
DARMSTADT

Static Verification Techniques for
Attributed Graph Transformations

DEM FACHBEREICH ELEKTROTECHNIK UND INFORMATIONSTECHNIK
DER TECHNISCHEN UNIVERSITAT DARMSTADT
ZUR ERLANGUNG DES AKADEMISCHEN GRADES
EINES DOKTOR-INGENIEURS (DR.-ING.)
GENEHMIGTE DISSERTATION

VON

DIPL.-ING. FREDERIK DECKWERTH

GEBOREN AM

10. MARZ 1982 IN KRONBERG IM TAUNUS

REFERENT: PROF. DR. ANDREAS SCHURR
KORREFERENT: PROF. DR. ANNEGRET HABEL

TAG DER EINREICHUNG: 07.07.2016

TAG DER DISPUTATION: 02.11.2016

D17
DARMSTADT 2017

ABSTRACT

Graph transformation with its formal foundations and its broad range of theoret-
ical results, on the one hand, and competitive tool support, on the other hand,
constitutes an effective framework for model-driven software development. Within
the last decade, the theory of algebraic graph transformations has been developed
towards a comprehensive formal framework including several sophisticated results
on modeling, analysing, and verifying graph transformation systems. Prominent
theoretical results are the static verification of consistency constraints as well as
static conflict detection and conflict resolution techniques. Consistency constraints
provide means to declaratively define global assertions that must remain true.
Conflict detection and resolution techniques provide means to statically discover
potential unintended interactions of graph transformations.

Based on the framework for algebraic graph transformations several model trans-
formation tools were developed over the last years. However, in order to become
suitable for the practical needs in every-day software engineering, these tool ori-
ented graph transformation approaches integrate language concepts that go beyond
the simple manipulation of plain graphs. An important concept is the treatment of
data values such as integers, booleans, and strings. The integration of primitive data
attributes within the graph structure is indispensable to model almost all realistic
systems, since they combine the structural aspects of a system with data aspects
such as computations of values. While in the last years, many advanced language
concepts were adapted from the tool oriented approaches and integrated within
the theory of algebraic graph transformations, there is currently no theoretical ap-
proach that appropriately reflects the de-facto data attribute handling approach
of practical implementations. Thus, the main body of theoretical results does not
immediately apply to those implemented approaches. As a result, current tool sup-
port for analysis and verification techniques of attributed graph transformation
systems is rather limited.

This thesis attempts to close this gap. To this end, a framework for attributed
graph transformation systems is proposed. In contrast to existing approaches, the
proposed framework reflects more closely the attribute handling of current state
of the art graph transformation implementations. We show that our proposed ap-
proach preserves the fundamental theoretical results of the algebraic approach for
graph transformations. Additionally, we verify the well-known results for the static
verification of consistency constraints, conflict detection, and conflict resolution by
confluence analysis within our framework. Finally, a prototypical implementation
is provided to show that the theoretical concepts can be realized. Moreover, to as-
sess its potential for analyzing real world applications, the prototype is applied to
analyze a case study from the enterprise modeling domain.

ZUSAMMENFASSUNG

Aufgrund der Vielzahl an formal fundierten theoretischen Resultaten beziiglich der
Analyse und Verifikation von Softwaresystemen sowie der ausgereiften Werkzeug-
unterstiitzung, bieten Graphtransformationen ein effektives Werkzeug zur modell-
getriebenen Entwicklung von Software. Innerhalb der letzten Jahre hat sich der alge-
braische Ansatz zur Formalisierung von Graphtransformationssystemen zu einem
umfassenden Rahmenwerk zur Modellierung, Analyse und Verifikation entwickelt.
Prominente Beispiele dafiir sind die statische Verifikation von Konsistenzbedin-
gungen sowie Techniken zur Konfliktdetektion und zur automatischen Konflikt-
auflosung. Konsistenzbedingungen sind ein Mittel zur deklarativen Beschreibung
von Bedingungen, welche immer erfiillt sein miissen. Techniken fiir die Konflikt-
detektion und Konfliktauflosung ermoglichen es, statisch die Interaktionen von
einzelnen Graphtransformationsschritten zu analysieren um unbeabsichtigte Wech-
selbeziehungen aufzuspiiren.

Dartiber hinaus hat sich auf dieser Grundlage eine vielseitige Landschaft aus-
gereifter Graphtransformationswerkzeuge etabliert. Um jedoch den Anforderun-
gen, welche sich bei der modellbasierten Entwicklung realer Systeme ergeben,
gerecht zu werden, bieten alle modernen Graphtransformationswerkzeuge Sprach-
konzepte, die tiber die reine Manipulation einfacher Graphstrukturen hinausge-
hen. In dieser Hinsicht ist die Einbettung von Datenattributen in Form von Zahlen
oder Zeichenketten in die Graphstruktur sowie deren Manipulation in Form von
Berechnungen eine der grundlegenden Erweiterungen fiir die Modellierung realer
Softwaresysteme. Wahrend es in den letzten Jahren gelang, viele dieser innovativen
Sprachkonzepte aus der Welt der Graphtransformationswerkzeuge in das theoreti-
sche Rahmenwerk der algebraischen Graphtransformationen zu iiberfiihren, bildet
die Einbettung von Datenattributen hier eine Ausnahme. So ist es bisher nicht gelun-
gen, eine formale Représentation zu entwickeln, welche die praktische Behandlung
von Datenattributen hinreichend widerspiegelt, um die theoretischen Resultate auf
die Werkzeuge zu {ibertragen. Somit stellt diese Liicke zwischen den theoretischen
Konzepten und der praktischen Umsetzung eine der Hauptursachen dar fiir die
bis dato eingeschrankte Werkzeugunterstiitzung fiir die Analyse und Verifikation
attributierter Graphtransformationssysteme. Im Rahmen dieser Dissertation soll
diese Liicke geschlossen werden. Dazu wird ein Rahmenwerk zur Transformation
attributierter Graphen beschrieben. Im Gegensatz zu existierenden Ansitzen bildet
die vorgestellte Losung die Bedingungen, wie sie fiir reale Implementierungen gel-
ten, wesentlich genauer ab. Es wird gezeigt, dass die grundlegenden theoretischen
Resultate des algebraischen Ansatzes auch in dem neuen Rahmenwerk giiltig sind.
Des Weiteren wird die Giiltigkeit der bekannten Resultate zur Konsistenzverifika-
tion sowie zur Konfliktdetektion und Konfluenz-Analyse in diesem Rahmenwerk
gezeigt. Zum Schluss wird eine prototypische Implementierung vorgestellt und
anhand einer Fallstudie gezeigt, dass die praktische Umsetzung der gezeigten the-
oretischen Resultate sich fiir die Analyse und Verifikation realer Systeme eignet.

CONTENTS

1 INTRODUCTION 1
11 Objectives 3

12 Outline o 4

1.3 Hints for Reading ThisThesis 5

2 MortivatioN AND CONTRIBUTIONS 7
21 A Graph Transformation Based Data-Centric Workflow Model 7
211 Modeling the Domain for Artifacts 8

212 Thelife-Cycle of Artifacts 11

213 Modeling Tasks by Graph Transformations 12

2.2 Static Analysis and Verification by Graph Transformation 14
221 Constraint Enforcement 16

222 ConflictAnalysis 17

3 FunpaMeNTaLs OF SymBorLiCc GRAPHS AND GRAPH TRANSFORMATIONS 23
3.1 Introduction to Category Theory and Transformation Systems 23
3.1.1 Introduction to Category Theory 23

312 (M, N)-Adhesive Categories and Transformation Systems 31

3.1.3 Negative Constraints and Negative Application Conditions . . . 36

3.2 Introduction to First-Order Logic Languages 38
321 Syntaxof First-Order Logic 38

3.22 Semantics of First-Order Logic 40

3.3 Symbolic Graphs ans Symbolic Graph Transformation 45
3.3.1 The Category of Symbolic Graphs 45

3.3.2 Typed Symbolic Graph Transformation Systems 50

3.4 Model Transformation by Symbolic Graph Transformation 52

3.5 Open Issues of Symbolic Graph Transformations 57

4 ProjectivE GRAPH TRANSFORMATIONS 61
41 Projection Morphisms 61

42 Projective Graph Transformation Systems 64

4.3 Model Transformation by Projective Graph Transformation 66

5 (£L,R,N)-ApHEesivE CATEGORIES AND TRANSFORMATION SYSTEMS 73
51 (L,R, N)-Adhesive Categories and Transformation Systems 73

5.2 HLR'Properties for (£, R, N)-Adhesive Categories 80

5.3 Constraints and Application Conditions 87
5.3.1 Construction of Equivalent Negative Application Conditions . . . 87

532 Construction of Equivalent Left NACs from Right NACs 89

54 Local Church-Rosser, Embedding, and Critical Pairs 91
54.1 Parallel Independence and Local Church-Rosser 92

542 Embedding and Extension 94

viii

543 Critical pairs o

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE
6.1 HLR Properties for Projective Graph Transformation Systems
6.2 HLR'Propertieso ii i
7 VERIFICATION OF SYMBOLIC CONSISTENCY CONSTRAINTS
7.1 Construction Equivalent NACs From Negative Constraints
7.2 Construction of Equivalent Left From right NACs
7.3 Minimization of Symbolic Negative Application Conditions
731 Consistency Preserving Minimization of left NACs
732 Minimization of Subsumed left NACs
8 Conrrict DETECTION AND RESOLUTION
8.1 Conflicts and Conflict Resolution
8.1.1 Independence, Local Confluence and Subcommutativity
8.1.2 Local Confluence Modulo Normal Form Equivalence
8.2 Conlflict Detection by Critical Pair Analysis
821 Embedding and Extension
8.2.2 Critical Pairs and Completeness
8.3 Conlflict Resolution by Critical Pair Analysis
9 Toor SurrorT AND EvaLUATION
9.1 The Symbolic Graph Analysis and Verification Framework
9.2 Support for Enforcing Symbolic Graph Constraints
9.21 Support for Enforcing Symbolic Graph Constraints in SYGRAV .
922 Performance Evaluation
9.23 Soundness of the Conflict Enforcement Procedure
9.3 Support for Conflict Analysis,
9.3.1 Conlflict Detection and Resolution with SYGRAV
932 Performance Evaluation
9.3.3 Soundness of the Conflict Analysis Procedure.
94 Threatsto Validity0 L.
10 ReraTteEp WoORK
10.1 Transformation of Attributed Graph Structures
10.2 Verification of consistency constraints
10.3 Conflict Detection and Resolution for Attributed Graph Transformations
11 ConcLusioNs
111 Contributions L o o
112 Practical Relevance
11.3 Future Directions o o
BIBLIOGRAPHY

Curriculum Vitae

Appendix A ALL Propuctions oF THE CMS Cask Stupy

101
101
110

119
119
124
125
127
129

131
131
132
138
140
140
143
146

159
159
161

. 161

162
164
165
165
169
172
174

177
177
179

. 180

183
183
184
185

187

195

197

Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
All
A2
A13
Al4
A15
Al6
A7
A8

Production bookRoom Lo o 197
ProductionuploadRes 198
ProductionsetDate 198
ProductionupdateDate e 199
ProductiontransResPas o .. 199
ProductiontransResFail 200
ProductioncloseExam L e 201
ProductionregExam L 202
ProductionregCMO e 203
ProductionunregExam 203
ProductionregTMO e e 204
ProductionregThesis e 205
ProductionobtDeg e e 205
Production setlecture L Lo 206
ProductionupdateLecto Lo 206
ProductionsetExam L e 207
ProductionupdateEx 207
ProductionresetCMO 208

Appendix B User DErINED NEGATIVE CONSTRAINTS 209

ix

ACRONYMS

API
ATS
CMS
FOL
GTS
HLR
LHS
MDE
NC
OCL
PB

PO
RHS
SMT
TPGTS
TSGTS
UML
VK-square

Application programming interface
Adhesive transformation system

Campus management system

First order logic

Graph transformation system

High-level replacement

Left-hand side

Model-driven engineering

Negative constraint

Object Constraint Language

Pullback

Pushout

Right-hand side

Satisfiablity modulo theories

Typed projective graph transformation system
Typed symbolic graph transformation system
Unified Modeling Language

Van Kampen square

INTRODUCTION

Software influences nowadays nearly every aspect of our daily life, as an integral
part of almost every modern electronic device. Moreover, also our economy is mas-
sively influenced by software. While in the early days, computers were brought
into service in order to deal with relatively simple data management tasks, such
as managing inventories, payrolls, etc.; nowadays enterprise applications are com-
plex systems able to manage almost every business function. These functionalities
include, for example, order processing, procurement, production scheduling, cus-
tomer information management, energy management, and accounting. To cope
with the increasing complexity of software systems, the design, development, and
maintenance of software is more and more considered as an engineering discipline
on its own. Model-driven engineering (MDE) is a branch of software engineering
that considers models as central artifacts in a semi-automated software production
process [BCW12].

In the context of enterprise application engineering model-driven techniques
have been successfully applied, recently [Dial3]. The aim of enterprise modelling
is to support and improve the design, documentation, analysis and administration
of business objects and operations using modelling languages [FG98]. Enterprise
models provide representations of processes, resources, structures, goals, and con-
straints relevant for the modeled enterprise. If equipped with precise execution
semantics, these models can serve as a basis for automating the coordination of
work. Moreover, to determine in advance whether a model exhibits no undesirable
behaviour static analysis and verification of these models can be performed, which
can greatly improve the reliability of such systems [WVvdA*09].

Graph transformation systems provide a rule-based declarative approach to spec-
ify the manipulation of graph-like models. Basically, a graph transformation rule
consists of a precondition and a postcondition that describes the effect of apply-
ing a rule. Graph transformation has shown its value for enterprise and business
process modeling, e. g., in [EGSW07], where graph transformation rules are used
to abstractly specify business tasks. Furthermore, graph transformation is a formal
technique with a rich body of theoretical results. Prominent examples are the static
verification of consistency constraints as well as conflict detection and resolution.

Verification of consistency constraints. Basically, consistency constraints pro-
vide means to declaratively define global assertions that must remain true. In the
context of business process modeling constraints usually reflect certain business
concerns. These concerns may range from external regulations such as legal re-
quirements and standards up to internal directives on the procedures to guarantee
seamless business operation. Moreover, the consistency of a system can be enforced

1 INTRODUCTION

constructively by translating the constraints to application conditions for rules. In
this way graph transformation rules can only be applied if this does not lead to the
violation of a constraint.

Conflict analysis Conflict analysis techniques provide means to statically dis-
cover potential unintended interactions of graph transformation rules. For example,
in the context of business process modeling we may assume that dozens of tasks
(represented as graph transformation rules) operate concurrently on the same data.
By conflict detection and analysis techniques we can statically identify and anal-
yse problematic interactions that arise if two tasks modify concurrently the same
datum, leading to inconsistencies.

An important aspect in order to be able to handle real world problems is the
integration of primitive data attributes (e. g., integers, booleans, strings, etc.) within
the structural (i. e. graph-like) part of a model. For pure transformation approaches
itis usually assumed that the attributes have concrete values; however, this assump-
tion does not apply for the verification of graph transformation systems, in general.
More specifically, to verify graph transformation systems, we have to consider the
rules themselves, which usually contain constraints and arithmetic expressions
over attribute variables. Hence, in order to capture the behaviour of rules for all
possible attribute values (especially for unbounded attribute domains) we have to
symbolically reason about unevaluated expressions on attribute values.

From a practical point of view, various graph transformation tools exist to actually
execute graph transformation rules (including attributes). However, the majority
of graph transformation tools aims at transforming large graphs [AB]*10, BDH*15,
GBG*06, LAS14]; there are presently only three tools supporting static verifica-
tion of consistency constraints and conflict analysis for model transformations
[RET11, ABJ*10, AHPZ07]. The situation becomes even worse when considering
the verification of attributed graph transformation systems. Tool support for con-
flict resolution (by confluence analysis) of attributed graph transformation systems
is still an open issue.

From a theoretical point of view several approaches exist, to formalize attributed
graphs and their transformation. The most prominent approach combines graphs
with algebras to specify computations on attribute values [HKTO02]. To this end,
graphs are extended by an extra kind of nodes reserved for carrying attributes
values. Although this representation is theoretically satisfactory, problems arise if
the attribute domains are unbounded (e. g., for integer numbers). In this case, in-
cluding the algebra in the graph structure leads to infinite graphs. This assumption
is especially problematic with respect to an implementation, as on a real system the
underlying data structures need to be finite. Hence, to provide an implementation
these infinite graph data structures have to be projected to appropriate finite data
structures. However, in this case the theoretical results need not apply to the im-
plementation anymore, as they are obtained with the assumption of infinite graph
data structures. Hence, one has to show that the theoretical results remain valid
although the implementation does not comply with all assumption. However, if
such a proof for the equivalence of a graph transformation theory operating on in-
finite graphs and a graph transformation implementation operating on finite data
structures exists, it seems more reasonable to directly formalize attributed graphs

1.1 Objectives

and transformations without the need for infinite graph data structures. These
considerations lead us to the following research questions:

1. Is it possible to formalize attributed graphs and transformations without the need for
infinite graph data structures?

2. Do the theoretical results for consistency constraint verification and conflict analysis
remain valid in such a formalism?

3. To which extent can real world applications benefit from these static verification
techniques?

While the first two items relate to theoretical considerations, the last item requires an
implementation to actually perform experiments in order to evaluate the practical
impact of the theoretical results.

1.1 OBjJECTIVES

The objective of this thesis is to develop a theoretical framework to support the
static verification of attributed graph transformation systems, with the aim to pro-
vide an implementation that is capable to extend current state of the art graph
transformation tools by static verification techniques.

The proposed approach is based on symbolic graphs originally introduced by
Orejas and Lambers in [OL10b]. Symbolic graphs combine graphs with the expres-
siveness of first-order logic to define data aspects without the need for infinite
(graph) data structures. Orejas and Lambers propose two possible approaches
to transform symbolic graphs, namely symbolic and lazy graph transformation
[OL10b, OL12]. While for applying a symbolic graph transformation rule, all at-
tribute expressions have to be evaluated when matching the precondition, for ap-
plying a lazy graph transformation the evaluation of attribute expressions may
postponed after transforming the graph structure. In [KDL*15] we have shown
that symbolic graph transformation is too pessimistic for conflict analysis as it
produces many false positives (i. e., recognized conflicts which can never occur);
in [DKL"16] we have shown that lazy graph transformation is too expressive for
conflict detection, i. e., the approach allows for specifying transformations to which
the results required to perform constraint verification and conflict analysis do not
apply.

In order to overcome these limitations, I propose projective graph transformation in
this thesis as a new approach for transforming symbolic graphs. Projective graph
transformation can be considered as a reasonable compromise between symbolic
and lazy graph transformations. In order to transfer the theoretical results for
constraint verification and conflict analysis to projective graph transformations, we
introduce the new concept of (L, R, N)-adhesive categories. Finally, a prototypical
implementation is provided to show that the theoretical concepts can be realized.
Moreover, we show that the implementation is sound, although we permit symbolic
graphs to carry formulas over undecidable fragments of first-order logic. Towards
showing that real world applications can benefit from the proposed techniques,
we use the implementation to analyze a case study from the enterprise modeling
domain.

1 INTRODUCTION

1.2 OUuUTLINE

Chapter 2. An informal introduction to graph transformation, constraint verifica-
tion and conflict analysis is given. All concepts are motivated by a case study of a
campus management system (CMS) that serves as running example throughout this
thesis. A campus management system is a software system that facilitates various
kinds of administrative processes of universities, which may range from student af-
fairs, over course and program portfolio administration, up to facility management.

Chapter 3. An introduction to the formal foundations of modeling and transform-
ing attributed graphs by symbolic graphs and symbolic graph transformation is
given. To this end, the basic concepts of category theory required for the alge-
braic graph transformation approach are recapitulated, and a short introduction
to first-order logic languages is given. Thereupon, both results are combined lead-
ing to the notion of symbolic graphs and symbolic graph transformation systems,
whose application for model transformation is illustrated by means of the running
example. The chapter concludes by showing that symbolic graph transformations
are insufficient for our purposes.

Chapter 4. This section introduces the new concept of projective graph transforma-
tion. The main focus is to show that projective graph transformation is suitable to
overcome the difficulties of symbolic graph transformations. To this end the appli-
cation of projective graph transformations for model transformations is discussed
by means of several examples. Moreover we discuss several technical aspects of
projective graph transformations and compare this concept with symbolic graph
transformations.

Chapter 5. In this chapter the new concept of (£, R, N)-adhesive transformation
systems is introduced, which provides the categorical foundation for the remain-
der of this thesis. Basically, (L, R, N)-adhesive transformation systems allow for
formalizing transformation systems that require distinguished classes for left and
right production morphisms as well as for match morphisms. The main contribu-
tion of this chapter is to show that the fundamental results of the double pushout
approach remain valid for (£, R, N)-adhesive transformation systems, including
the results required for consistency constraint verification and conflict analysis.

Chapter 6. To show that the theoretical results from Chapter 5 apply for projective
graph transformation systems, we show in this chapter that projective graph trans-
formation systems are (L, R, N)-adhesive.

Chapter 7. The main contribution of this chapter is the extension of the well known
results for consistency constraint verification to projective graph transformation. To
this end, the corresponding proofs of Chapter 5 are instantiated for projective graph
transformation systems. Moreover, several technical aspects regarding the practical
applicability of these techniques are discussed.

1.3 Hints for Reading This Thesis

Chapter 8. The main contribution of this chapter is the extension of the results
for conflict detection and resolution to projective graph transformation systems. To
this end, the constructions and corresponding proofs are provided to show that the
theoretical results for conflict detection and resolution remain valid in projective
graph transformation.

Chapter 9. In this chapter presents the Symoric GRAPH ANALYSIS AND VERIFICA-
TIoN (SYGRAV) tool prototype, which encompasses implementations for all tech-
niques presented in Chapter 7 and Chapter 8. We give an overview on our efforts
and insights gathered during implementing the SYGRAV tool prototype and when
analysing the campus management system case study. Additionally, we provide
means for the soundness of the current implementation. The chapter concludes
with discussing the measurement results.

Chapter 10. This chapter provides an overview on the relevant related work.
Chapter 11. The thesis concludes with a summary of the key contributions, the

observations and lessons learned during the elaboration of the approaches, as well
a survey on directions for future work.

1.3 HinTs ForR REaDING THis THESIS

For those readers who are interested mainly in the concepts and results for at-
tributed graph transformation systems, but not so much in the general theory and
in the proofs, we advise to skip Chapter 5 and Chapter 6.

MOTIVATION AND CONTRIBUTIONS

In this section we introduce a case study of a campus management system. A
campus management system (CMS) is a software for organizing the daily busi-
ness operations of universities. Following [AA10], a CMS typically includes the
following components:

1. Student administrations, including the administration of student related data
such as enrollments, academic progress, transcripts and degrees.

2. Program portfolio administration, including the maintenance of degree pro-
grams, modules and catalogues, as well as the organization of program spe-
cific curricula.

3. Examination and lecture administration, including the scheduling of dates and
the allocation of rooms for examination and lectures, the processing of regis-
trations for courses and exams, and the documentation of examination results.

The CMS case study serves as a running example throughout this thesis.

In the following, we show how such a system can be modeled by using graph
transformations. To this end, we informally introduce in Section 2.1 the concepts
of metamodels, models, and graph transformation by means of the case study.
Finally, in Section 2.2 we provide a first overview on the techniques for static
verification of consistency constraints and conflict detection for typed attributed
graph transformations.

2.1 A GrarPH TRANSFORMATION Basep Data-CeNTRIC WORKFLOW MODEL

A campus management system (CMS) is an enterprise application software tai-
lored to organize the daily business of universities. According to Martin Fowler,
“Enterprise applications are about the display, manipulation, and storage of large
amounts of often complex data and the support or automation of business processes
with that data” [Fow02]. In the following, we focus on modeling the business pro-
cesses. Usually, a business process is not monolithic, in fact a business process is
usually composed from smaller activities called tasks. For example, the process of
conducting an examination from its creation to its completion (from an organisa-
tional perspective) comprises tasks such as reserving a room, determining a date
for the examination, and documenting the results. To realize such a process, tasks
have to be usually applied in a specific order. For example, a date has to be fixed
for an examination before a room can be reserved for that date. Hence, a process

2 MoTivaTiION AND CONTRIBUTIONS

description includes in addition (to the involved tasks) a workflow that prescribes
in which sequence and under which conditions tasks have to be conducted.

We use a data-centric approach for workflow modeling. The data-centric ap-
proach was first proposed in [NCO03] and formed the basis of a substantial effort
at IBM Research in the field of business process modeling. The key idea of data-
centric workflow modeling is to shift the focus from the actions taken, to the data
that are acted upon [NCO03]. Hence, the key entities of the data-centric approach
are data records called artifacts. A useful metaphor to think of an artifact, is a piece
of paper (or a file containing a collection of papers). For example, an examination
artifact can be considered as a paper form containing fields for exam related data
such as the date and the reserved room, as well as the number of students currently
registered for that exam. However, not every data record is an artifact. In addition
to the (business) relevant data, an artifact stores information about its macro-level
life cycle; that is, information about its key processing stages and their sequencing.

We follow closely the artifact centric workflow model presented in [BGH*07].
Accordingly, artifacts are classified according to their stored data and characteristic
processing stages. The processing stages of an artifact are determined by a set of
states. Artifacts are processed by tasks; that is, tasks interact with the artifacts by
(a) instantiating new artifacts, (b) updating the contents of artifacts, and (c) by
triggering state transitions.

In the following, we introduce a graph transformation based artifact-centric
workflow model for a campus management system. To this end, we present in
Section 2.1.1 a metamodel of the campus management system to characterize the
data domain for the artifacts. The artifacts life-cycle is presented in Section 2.1.2.
Finally, in Section 2.1.3 the tasks are modeled by graph transformations.

2.1.1 Modeling the Domain for Artifacts

A metamodel defines the core concepts of a domain. Basically, a metamodel consists
of classes to specify the entities of a domain and associations to define their relations.
Figure 2.1 shows the metamodel of our campus management system. The meta-
model is denoted using the UML class diagram notation; that is, a metamodel is
depicted as a graph whose nodes correspond to classes and edges to associations.
According to the classification given in the beginning of this chapter, we partitioned
the CMS metamodel into the components student administration, program portfo-
lio administration as well as examination and lecture administration. Additionally, the
metamodel contains a component facility management encapsulating information
on rooms and their reservations. In the following, we describe the CMS metamodel
from the bottom to the top, beginning with the facility management component.
The facility management component consists of the classes Room and Booking. A
Room has an attribute cap of domain int representing its capacity (i. e., the number
of available seats in the room). As for examinations, usually only a fraction of
seats is used (to prevent cheating), the class Room has an additional attribute
capEx, characterizing its examination capacity. To reserve a room, a Booking can
be assigned to a Room via the bookings association. A Booking has a start and an
end attribute, each defined by a value of domain long. The start and end times of

2.1 A Graph Transformation Based Data-Centric Workflow Model

facility management student administration
B— i S ¢ ‘ Enrollment
- studld : int degree Degree
Room -cp:int e &
i L 0..1" | - obtDeg : DEGTYPE
- cap :int & - regCp : int P
- capExam : int - enrolled : bool
cRecords,0..* 0..1J tRecord
. CourseRecord ThesisRecord
bookings } 0. - grade : int - grade : int
Booking - tries @ int - tries : int
- start : long
- end : long regExam{0..1 offery.0..1 offery,0..1 0..14 thesis
location Exam) CoModOffer ThModOffer | _ theses| Thesis
X . >
0. date 0..1 @] - regSt : int — - cp:int -cp:int 0..% | - grade : int
Date gradeList | 0..1 exams Sllg)ffers Surlrent 0..17 offer
- begin : long - next 0..
; GradeList 0.1
- duration : long -
Semester | CourseModule | | ThesisModule |
0..* | dates entriesIo * | | | |
. - t : bool
T 0..*7T'cModules 0..17TtModule
Entry ¢ -
tudld : int program},0..1 <enumeration>
- stu o
- grade : int lectures | 0..* Program DEGTYPE
. - BSC
Lecture lecture - degree : DEGTYPE v.SC
& N - reqCp : int -
- regSt : int 0..1
examination and lecture administration ‘ program portfolio administration

Figure 2.1: The metamodel for the campus management system

a reservation are given by means of the difference (measured in milliseconds) of
the desired date with respect to midnight, January 1, 1970. A Booking belongs to at
most one Room (indicated by containment symbol, i. e., the diamond at the source
of the association). The label 0..* at the target side of association indicates that a
Room may refer to at least no (indicated by 0) and at most an arbitrary number of
Bookings (indicated by *).

The examination and lecture administration component contains the class Semester
that serves as a container of all examinations (Exam) and Lectures offered in the
corresponding semester. A Semester has an attribute current of domain bool to
mark the current semester. The classes Exam and Lecture both have an attribute
regSt of domain int to record the number of registered students. To store dates
for examinations and lectures, the classes Exam and Lecture have an association
to the class Date, respectively. The class Date provides long values to determine its
begin and its duration. While examinations have at most one date, lectures may have
several dates (during a semester). Additionally, the class Date has an association to a
Booking that specifies the location for the date. To enter the results of an examination
a GradeList can be uploaded. The grade list contains a collection of entries (Entry)
to store for each student (i. e., studentld) the corresponding grade.

The program portfolio administration component contains the class Program. A Pro-
gram refers to the modules (i. e., a collection of CourseModules and a ThesisModule)
that may be absolved to collect the required credit points (reqCp : int) in order to
obtain the degree defined by the degree attribute. In the current version of our
CMS, only programs are supported that result in degree of type (DEGTYPE) Bach-
elor (B_SC) or Master of Science (M_SC). Note that the Program class does not own
the course modules as two distinct programs may offer the same course module.
A CourseModule contains a collection of course module offers (CourseModOffer). A
course module offer has an attribute cp of domain int that determines the credit
points that can be acquired by absolving the corresponding Lecture and passing the

9

10

2 MoTivaTiION AND CONTRIBUTIONS

Exam assigned to the course module offer. It is distinguished between modules and
module offers to allow for changing of the credit points for a module, by simply
adding a new course module offer with an adapted value for the credit points. In
this way it is ensured that once a student has registered for a module (i.e., to a
module offer) it will always acquire the same amount of credit points granted for
the module offer at the time of registration. The class CourseModule has an associ-
ation current that points to the most current course module offer. The structure of
a ThesisModule is similar to that of a CourseModule, except that a Program has only
one ThesisModule; instead of an Exam, a thesis module offer (ThesModOffer) has a
Thesis.

The student administration component contains the class Enroliment to record the
academic progress of a student registered for a specific Program. The student is
assigned to an Enrollment by its unique student identifier (studld). Additionally, an
Enroliment has an attribute enrolled of type bool that tracks the current enrollment
status of a student. An Enroliment may own several CourseRecords and a Thesis-
Record storing the actual achievements. The overall achievements are stored in the
attributes regCp and cp. While, regCp stores the sum of all registered modules, the
attribute cp stores the sum of credit points of all completed modules. A registration
for a module is given by a course record that is assigned via an offer association
to the corresponding module offer. A registration for an Exam (Thesis) is indicated
by an exam (thesis) association from the record to the corresponding Exam (Thesis).
The status of a course or thesis is stored by the attributes grade and tries, both of
domain int. For simplicity we assume the following meaning of grade values: the
best grade is 1 the worst is 5 indicating failed; a value equal to 6 is used as initial
value.

Note that not every class represents an artifact; that is, some classes do not have
their own life cycle; in fact, they rather belong to other artifacts. Thus, the classes that
where identified to represent available artifacts are filled gray. For more information
on the methodology to identify artifacts we refer to [NCO3].

Concrete artifacts are represented by instance models. An instance model consists
of objects (instances of classes), links (instances of associations), attribute slots (in-
stances of attributes), and attribute values (concrete values of the domain given by
the corresponding attribute domain).

Figure 2.2 shows an instance model of the CMS metamodel. Note that the instance
model displays only a small section of a CMS system, which is assumed to comprise
hundreds of rooms and exams and modules, and thousands of enrollments. The
instance model contains an object en1 of type Enroliment. The Enrollment ent is
for a student with studld 1234567, and has a registration for the course module
offer cmo1). The course module offer cmo1 is for the Exam algebral (exAlg1). The
Exam exAlg1 has a Date daAlg1. To improve readability, we denote long values that
represent dates in the DD.MM.YYYY;hh:mm format, where DD € {1, ..., 31} denotes
the day, MM € {1, ..., 12} denotes the month, and YYYY denotes the year of a date;
The time of a date is given in the 24 h clock format hh:mm; Accordingly, the Exam
exAlg1 (will) take place at November 26 in the year 2042 at 1 pm and is expected to
take 2 hours.

2.1 A Graph Transformation Based Data-Centric Workflow Model

rol : Room enl : Enrollment
- cap=479 - studld=1234567
- capExam=72 - cp=57
- regCp=96
bookings - enrolled=true
bol : Booking

lcRecords

crl : CourseRecord

- begin=26.11.2042;14:00
- end=26.11.2042;16:00

- grade=5
- tries=1

offer

exAlgl : Exam | exam cmol: CoModOffer
- regSt=72 - cp=6

date

daAlgl : Date

- begin=26.11.2042;13:00
- duration=02:00

Figure 2.2: An instance model of the CMS metamodel

Enrollment Exam Thesis Lecture CoModOffer
- state : EN_ST - state : EX_.ST - state : TH.ST - state : LE.ST - state : CMO_ST
- studld : int - regSt : int - grade : int - regSt : int -cp:int
-cp:int
- regCp : int

- enrolled : bool

<enumeration> <enumeration> <enumeration> <enumeration> <enumeration>

EN.ST EX.ST TH.ST LECT.ST CMO._ST
- CREATED - CREATED - CREATED - CREATED - CREATED
- STUDY - PLAN - FINALIZING - PLAN - LECT SET
- WRITE_THESIS - READY - CLOSED - READY - READY
- CLOSED - FINALIZING - CLOSED - RESET
- CLOSED - LECT_UPDATED
- CLOSED

Figure 2.3: The artifact classes with corresponding state attributes

2.1.2 The Life-Cycle of Artifacts

To define the macro life cycle of artifacts, we assume that each class that represents
an artifact has a state attribute that defines its current state. Figure 2.3 shows the
artifact classes with their corresponding state attributes. For example, the class
Exam is augmented by a state attribute of domain EX_ST which is an enumeration
of the relevant stages in the life cycle of an examination artifact (i. e., an object of
type Exam). In the following, we assume that CREATED and CLOSED denominate
the initial and final states of any artifact, respectively.

updateDate

transResFail

uploadRes

closeExam

setDate bookRoom

CREATED

FINALIZING

transResPas

Figure 2.4: The life-cycle of an examination artifact

Figure 2.4 shows the intended live cycle of an examination artifact. The states
denote the processing stages and the transitions are labeled with the tasks. More
specifically, after the creation of an examination artifact (i. e., an examination artifact

11

12

2 MoTivaTiION AND CONTRIBUTIONS

currently in the CREATED state) the setDate task can be performed in order to set
the date of the corresponding examination. After setting the date once, it can be
updated (updateDate), until a room is booked for the examination (bookRoom). After
booking a room, the examination is READY to take place from an organizational
perspective. Note that conducting the actual examination (in the real world) is not
part of the examination artifact life cycle, as it does not immediately affect its data.
However, after conducting the examination and correcting the exams, the resulting
grades have to be uploaded (uploadRes). Subsequently, each grade is transferred to
the records by the tasks transResPas (for passed examinations) and transResFail (for
failed examinations). Finally, (i. e., after all grades are transferred) the examination
artifact is closed (closeExam).

unregExam unre
regTMO

am regExam
STUDY

gEx
[WRITE_THESIS }/_\ CLOSED
regCl\%\—j U

regThesis

Figure 2.5: The life-cycle of an enrollment artifact

Analogously, the life cycle of an enrollment artifact is depicted in Figure 2.4.
After the creation of an enrollment artifact the tasks regExam or regCMO can be
invoked to register for an exam or course module offer. Task unregExam can be
performed to unregister from an examination. After collecting a certain amount of
credit points the task regTMO can be performed to register for the thesis module
offer. Now, (i. e., in the WRITE_THESIS state) additionally, the regThesis task can be
performed to register for a certain thesis. An enrollment finishes with obtaining a
degree (obtDegree).

Note that the artifact life cycles shown in Figures 2.4 and 2.5 are only informal;
that is, the notation is intended to give an overview of the desired life cycles. As
tasks may invoke different artifacts at the same time, there may also be interactions
between the life cycles of different artifacts. This kind of interaction is studied later
by means of conflict analysis techniques in Section 2.2.1 and Chapter 8. However,
to be able to study these interactions, we first have to assign a precise meaning to
tasks.

2.1.3 Modeling Tasks by Graph Transformations

In the context of workflow (business process) modeling, tasks are usually specified
abstractly by a contract that defines the precondition under which a task may be
invoked and the postcondition, i. e., the effect of executing a task. In the following,
we us graph transformation to define these contracts.

Graph transformation (GT) [EEPT06] provides a declarative formally founded
language for specifying the manipulation of graph based models (such as instance
models presented before). The manipulation of graph based models is specified
by graph productions. A graph production consists of a left-hand side (LHS), which
specifies its precondition, and a right-hand side (RHS), which specifies its postcon-

2.1 A Graph Transformation Based Data-Centric Workflow Model

bookRoom(ex : Exam, ro : Room)

LHS RHS
ro : Room ro : Room
- capExam > ex.regSt - capExam
lbookings
bo : Booking
- begin'=da.begin
- end'=da.begin+da.duration
IocationT
da : Date da : Date
- begin - begin
- duration - duration
dateT dateT
ex : Exam ex : Exam
- state=EX_ST.PLAN - state’=EX_ST.READY
- regSt - regSt
(a) Graph production bookRoom(ex : Exam, ro : Room)
rol : Room enl : Enrollment rol : Room enl : Enrollment
- cap=479 - state=EN_ST.STUDY| - cap=479 - state=EN_ST.STUDY
- capExam=72 - studld=1234567 - capExam=72 - studld=1234567
. - cp=57 : . - cp=57
\Lbooklngs) rengp:% bookings \Lbooklngs B rgng:%
bol : Booking - enrolled=true bol : Booking - enrolled=true
- begin=26.11.2042;14:00 \L Record - begin=26.11.2042;14:00 l Record
- end=26.11.2042;16:00 checords - end=26.11.2042;16:00 checords
crl : CourseRecord - crl : CourseRecord
- grade=5 bo : Booking - grade=5
- tries=1 - begin=26.11.2042;13:00 - tries=1
- end=26.11.2042;15:00
Iocation'r
daAlgl : Date dal : Date
- begin=26.11.2042;13:00]| - begin=26.11.2042;13:00
- duration=02:00 - duration=02:00
date date
offer offer
exAlgl : Exam I . ool CoModOffer exAlgl : Exam gxam| cmol: CoModOffer
- state=EX_ST.PLAN 6 - state=EX_ST.READY =6
- regSt=72 P= - regSt=72 P=

(b) Instance model before applying
production bookRoom

(c) Instance model after applying production
bookRoom

Figure 2.6: The application of production bookRoom

dition. A graph production is applied to an instance model by (a) searching for such
parts of the model that matches the LHS, and (b) updating the model by replacing
the matched part by the RHS by first deleting those elements that are matched by
the LHS but do not appear in the RHS; then creating those elements that are only
in the RHS.

Figure 2.6 shows the application of the graph production that defines the task
bookRoom (shown in Figure 2.6a) to an instance model (shown in Figure 2.6b). The
production takes as input an Exam ex and a Room ro. The precondition (given by
the LHS) is fulfilled if Exam ex is in the PLAN state, has a Date assigned, and the
exam capacity of the given Room ro is larger or equal to the number of students
registered for the Exam ex; This is denoted by the expression (capExam>ex.regSt).
The effect of the production is is given by the difference of the LHS and RHS;
that is, the production is applied by creating a new Booking bo and assigning it
to the Room ro. The begin value of the new Booking bo is set equal to the value of
da.begin (i. e., the begin value of Date da). The end value of bo is set equal to the
sum of da.begin and da.duration. This is defined by the expressions begin’=da.begin

14

2 MoTivaTiION AND CONTRIBUTIONS

and end’=da.begin+da.duration, where primed variables refer to attribute values on
RHS and nonprimed variables refer to attribute values on the LHS. For example,
the expression i++ that increments i by one is denoted according to this convention
as i’=i+1. Note that according to this scheme, attribute expressions can be defined
unambiguously without the need to assigning them to a specific side (i.e., LHR
or RHS) and object. As we will see later, attribute expression may be written as
a conjunction below the production. However, to increase readability, we assign,
whenever possible, attribute expression to the corresponding objects.

The production bookRoom is applied to the instance model shown in Figure 2.6b
by first finding a match of the LHS. The current matched parts are drawn bold. As
the Exam exAlg1 is in the PLANNING state and ro1.capExam is equal to exAlg.regSt,
the production can be applied. As a result (shown in Figure 2.6c) a new Booking
bo is created, whose begin is equal to dal.begin, and end is equal to the sum of
daAlg1.begin and daAlg1.duration.

Figure 2.7a shows the graph production for the task regExam. The production
takes as input an Enroliment en and an Exam ex. The precondition ensures that the
production can only be applied if for the Enrollment en, there exists a registration
for the corresponding course module offer; that is, there exists a CourseRecord
cr assigned to the given Enroliment en and the course module offer cmo for the
corresponding Exam ex. Moreover, it is only possible to register for an exam if the
number of tries is smaller than three (i. e., at most three tries for an exam) the grade
is larger than four (i. e., the exam was not passed before), and the student is enrolled
(enrolled=true). Moreover, the attribute expression

((en.state=EN_STATE.STUDY) V (en.state=EN_STATE.WRITE_THESIS))

ensures that the production can only be applied if the Enrollment en is either in the
STUDY or the WRITE_THESIS state. In this case the attribute expression is denoted
below the production.

The production is applied by creating a new link of type regExam from the
CourseRecord cr to the Exam ex. Additionally, the number of registered students for
the Exam ex and the number of tries stored in the CourseRecord cr is incremented by
one. The result of applying production regExam to an instance model (Figure 2.7b)
is shown in Figure 2.7c.

In the following, we call the application of a production to an instance model at
a specific match a transformation. Note that a transformation of an instance model
is uniquely defined by a production together with a match.

2.2 StATIC ANALYSIS AND VERIFICATION BY GRAPH TRANSFORMATION

Static analysis and verification is concerned with determining, in advance, whether
a process model exhibits certain desirable behaviours. Hence, careful analysis of
process models at design time can greatly improve the reliability of such systems
[WVvdA™09].

The examples presented in Figure 2.6 and Figure 2.7 uncover basically two prob-
lems of the current CMS specification. The first problem addresses the integrity of
the data stored in our CMS system. More specifically, as shown in Figure 2.6, after

2.2 Static Analysis and Verification by Graph Transformation 15

regExam(en : Enrollment, ex : Exam)
LHS [RHS
en : Enrollment en : Enrollment
- state - state
- enrolled=true - enrolled
\l,cRecords \l,cRecords
cr : CourseRecord i cr : CourseRecord
- tries < 3 - tries’ = tries + 1
- grade > 4 - grade
offer regExam offer
ex : Exam gxam cmo : CoModOffer ex : Exam gxam cmo : CoModOffer
- regSt - regSt'=regSt+1
[((en.state:EN,ST.STUDY) V (en.state=EN_ST.THESIS)) J

(a) Graph production regExam(en : Enroliment, ex : Exam)

rol : Room enl : Enrollment rol : Room enl : Enrollment
- cap=479 - state=EN_ST.STUDY| - cap=479 - state=EN_ST.STUDY/|
- capExam=72 - studld=1234567 - capExam=72 - studld=1234567
- - cp=57 ‘l' - - cp=57
\l,booklngs regCp=96 bookings - regCp=06
bol : Booking - enrolled=true bol : Booking - enrolled=true

- begin=26.11.2042;14:00
- end=26.11.2042;16:00

- begin=26.11.2042;14:00
- end=26.11.2015;16:00

¢cRecords

crl : CourseRecord

- grade=5
- tries=2

¢cRecords

crl : CourseRecord

- grade=5
- tries=1

daAlgl : Date

- begin=26.11.2042;13:00
- duration=02:00

date
exAlgl : Exam

- state=EX_ST.PLAN
- regSt=72

daAlgl : Date

- begin=26.11.2042;13:00
- duration=02:00

date regExam
exAlgl : Exam exam

- state=EX_ST.PLAN
- regSt=73

offer

cmol: CoModOffer
- cp=6

offer

cmol: CoModOffer
- cp=6

_exam

(c) Instance model after applying production
regExam

(b) Instance model before applying
production regExam

Figure 2.7: The application of production regForExam

applying production bookRoom there are two bookings for the same room with
mutually overlapping time slots. As it is highly problematic to conduct, lets say,
two exams at the same time in the same room, such a situation must be prevented
in any case. In Section 2.2.1 we provide a first impression on how this problem
can be solved by graph constraints. Later in Chapter 7 we provide the detailed
constructions and proofs for these techniques in the context of attributed graph
structures.

The second problem addresses the interaction of tasks. Up until now we only con-
sidered the effects of applying a production in isolation. However, in a real system
several tasks may operate concurrently on the same set of artifacts. For example,
regarding the CMS case study, we expect that dozens of tasks are invoked simul-
taneously on thousands of artifacts, which potentially leads to unintended effects.
In Section 2.2.1 we provide a first impression on how conflict analysis techniques
can help to detect potentially problematic interactions. Detailed constructions and
proofs for conflict analysis for attributed graph structures are presented in Chap-
ter 8.

16

2 MoTivaTiION AND CONTRIBUTIONS

boB_begin boB_end

NoCompetingBookings 1 i i [¥ (boA_end>boB_begin)A(boB_end>b0A_begin)
boB,‘begin boBrend
bookings ‘ []‘ = (boA_end>boB_begin)A(boB_end>b0A _begin)
- boA _begin boA_end
boA : Booking | | = - -"- i e
~ begin boB,‘begln boBrend
- end 1 [| 1 = (boA_end>boB_begin)A(boB_end>b0A _begin)
) boA_begin boA _end
bookings | T
- - boB_begin boB_end
boB : Booking i T i I = (boA_end>boB_begin)A(boB_end>b0A _begin)
- begin A \b X T
send | boAbegin__ boAend .
boB_begin boB_end

[(boA.end > boB.begin) A] i . I J (boA_end>boB_begin)A(boB_end>b0A _begin)

N T T
(boB.end > boA.begin) boA_begin boA_end

(a) Negative constraint (b) Time line to illustrate NoOverlaplnBookings
NoCompetingBookings

Figure 2.8: Negative graph constraint NoCompetingBookings, to forbid the existence of com-
peting bookings

2.2.1 Constraint Enforcement

In the context of business process modeling constraints usually reflect certain busi-
ness concerns. These concerns may range from external regulations such as legal
requirements and standards up to internal directives on the procedures to guaran-
tee seamless operation.

Graph constraints provide declarative means to place global constraints on
the inner structure of a system. Moreover, by constraint enforcement techniques
graph constraints can automatically be translated to preconditions over produc-
tions, which ensure that a production can only be applied if the resulting graph is
consistent with respect to all graph constraints. In the following, we focus mainly
on negative graph constraints and negative application conditions.

A negative graph constraint specifies forbidden system states. More specifically,
a system state (i.e., an instance model) is consistent with respect to a negative
graph constraint if there is no match of the constraint in the instance model. For
example, Figure 2.8a shows the negative graph constraint NoCompetingBookings,
which forbids the existence of a pair of bookings boA and boB for the same room
with mutually overlapping time slots. The meaning of the formula is illustrated by
the time lines depicted in Figure 2.8b, which lists all possible combinations of the
begin and end dates of boA and boB, respectively. Notice that NoCompetingBookings
is a negative constraint; that is, a pair of bookings is only consistent if it invalidates
the formula, i. e., there are no bookings boA and boB whose time intervals overlap.
Hence, the model shown in Figure 2.6¢ is inconsistent as the time intervals of
bookings bo and bo1 overlap.

In Chapter 7 we show how attributed graph constraints can be enforced by
automatically translating them to precondition application conditions. The result
is a set of extended productions with application conditions that guarantee that each
production may only be applied if the result is consistent with respect to the
constraints. The result of translating the constraint NoCompetingBookings to an
application condition for production bookRoom is the extended production shown

2.2 Static Analysis and Verification by Graph Transformation

(da.begin+da.duration > boB.begin) A
(boB.end > da.begin) bookRoom(ex : Exam, ro : Room)
NAC LHS RHS
ro : Room ro : Room ro : Room
- capExam - capExam > ex.regSt - capExam
booki
\LOOLgS‘ bookings
boB : Booking bo : Booking
- begin - begin’=da.begin
- end - end'=da.begin+da.duration
j IocationT
da : Date da : Date da : Date
- begin - begin - begin
- duration - duration - duration
dateT dateT dateT
ex : Exam ex : Exam ex : Exam
- state’=EX_ST.READY - state=EX_ST.PLAN - state’=EX_ST.READY
- regSt - regSt - regSt
rol : Room enl : Enrollment
- cap=479 - state=EN_ST.STUDY
- capExam=72 - studld=1234567
- cp=57
‘I;bookings - regCp=96
- enrolled=true
bol : Booking l,
- begin=26.11.2042;14:00 cRecords
- end=26.11.2042;16:00 crl : CourseRecord
- grade=5
- tries=2
daAlgl : Date
- begin=26.11.2042;13:00
- duration=02:00
date regExam
offer
exAlgl : Exam | . algl: CoModOffer
- state=EX_ST.PLAN er—6
- regSt=73 P=

instanceModel

Figure 2.9: Extended production bookRoom

in Figure 2.9. The extended production can only be applied if the match of the LHS
in a model cannot be extended to the negative application condition (NAC). More
specifically, the production can only be applied if no Booking boB exists for the
Room ro such that the time slots of boB overlap with the to be created Booking bo;
that is, no Booking boB exists such that (da.begin + da.duration), which is the new
value for bo.end’, is smaller or equal to boB.begin, and the value of da.begin, which
is the new value for bo.begin’, is smaller or equal to boB.end.

2.2.2 Conflict Analysis

As mentioned before, for our campus management system we expect that dozens of
tasks simultaneously operate on thousands of artifacts. In the following, we show
how conflict analysis techniques can help to detect potentially problematic inter-
actions of tasks given as graph productions. Basically, two transformations have a
parallel conflict if one transformation modifies an element that is part of the match
of the other. For example, consider the productions regExam and unregExam shown

17

18 2 MoTivaTiION AND CONTRIBUTIONS

unregExam(en : Enrollment, ex : Exam)

LHS RHS
en : Enrollment en : Enrollment
- state - state
cRecords cRecords
cr : CourseRecord j cr : CourseRecord
- tries - tries’ = tries — 1
regExam offer offer
ex : Exam gxam cmo : CoModOffer ex : Exam £@am_ | cmo : CoModOffer
- regSt - regSt'=regSt — 1
[((en.state=EN_ST.STUDY) V (en.state=EN_ST.THESIS))]

Figure 2.10: Graph production unregExam(en : Enroliment, ex : Exam)

in Figure 2.7a and Figure 2.10, respectively. Production regExam was presented in
Section 2.1.3. The production unregExam is basically the inverse of regExam. More
specifically, unregExam takes as input an Enroliment en and an Exam ex. By apply-
ing the production, the link regExam from cr : CourseRecord to ex : Ex is removed,
as well as the number of tries (cr.tries) and the number of registrations (ex.regSt)
are decremented by one. The productions have a parallel conflict, as both produc-
tions read and modify the regSt attribute of an Exam and the tries attribute of a
CourseRecord.

However, in many scenarios one is interested whether the result of two conflict-
ing transformations can be joined again, which leads us to the notion of conflict
resolution. A parallel conflict of two transformations can be resolved if the output of the
first productions can be transformed to the same result. For example, consider the
parallel conflict shown on top of Figure 2.11 that arises if productions unregExam
and regExam are applied to different enrollments but to the same exam. More
specifically, production unregExam(en2, exAlg1) is applied to unregister Enroliment
en2 from Exam exAlg1; production regExam(en1, exAlg1) is applied register Enroll-
ment en2 for Exam exAlg1. The transformations have a parallel conflict as applying
unregExam and regExam in parallel to the same Exam ex incorporate the paral-
lel modification of attribute ex.regSt (i. e. unregExam decrements and production
regExam increments the value of ex.regSt by one. The transformation can be joined
by applying the production unregExam and regExam in opposite order to the result
of the first productions. Note that, although these transformations are obtained
by applying the same productions in opposite order to the results of the first pair
of transformation, they constitutes different transformations as the matches were
sightly changed in order to match the new attribute values. We shall study this de-
tail at length in Chapter 8. Moreover, we are not forced to use the same productions
to join such a pair of diverging transformations; that is, we may all productions
that are part of the system specification in order to resolve a parallel conflict.

19

2.2 Static Analysis and Verification by Graph Transformation

"PaAJ0SaI 3q ured jey} wex3bal pue wex3baiun uononpoid jo 1o17uod e 10§ ajdurexs uy :1°g ISy

2,=15%31 -
9=d> - | wexd NV1d LS X3==s1e3s - | Wexs J=do -
J9JJOPOINOD TOwd wex3 : 19|yxe J9JJOPOINOD gowd
J3y50 wumve 13450
wex33a4 00:z0=uoieinp -
Z=sau1 - 00:€T°TH0T TT'9g=u18q - 0=sou] -
G=opeJ3d - s1eq ﬁm_<m_u g=opeJs -
p1029ya51n07) : T4 p1023ya51n07) : ZId
%_8&% 00:GT'2¥0T TT'9Z=PUS - m_ssm%%
00:€T°Z¥0Z T '9g=u18aq -
anu1=pajjolua - Supjoog : oq anu3=pajjolus -
96=d>H3au - - 901=dD3a -
(18)yxe ‘gus)wex38aiun 1G=d> - 18=d> - (18)yxe ‘Tus)wex33au
L9SYETT=PIPMIS - z/=wex3des - L9SYETT=PIPMIS -
& AQNLS LS NI=2183s - 6Ly=de> - AQNLS LS NI=21815 - ﬁ
JusWI|oJUT TUD wooy : 1oJ jUsW|[0JUT : gud
€,=1G801 - 1,=35824 -
g=do - | wexs NV1d' LS X3=q3e3s - | Wexd)=do - g=do - | wexs NV1d LS X3=s3e1s - | Wexd J=d> -
J3JJOPONOD (Towd wex3 : [3|yxe J3JJOPOINOD :gowd J3JJOPONOD (TOoWwd wex3 : [9|yxe J3JJOPOINOD :gowd
140 Em_}v 140 140 ﬁmve B0
wex33a 00-c0—uoneinp - wex33a4 00:20—uonenp -
Z=sau - 00:€1'2r0C TT'9Z=u182q - T=sou1 - T=sou1 - 00:€1'2¥0C TT'9Z=u182q - 0=sau1 -
G=apeis - 91eq - Hm_<mﬁ 9=apeis - G=apeis - 91eq - HM_/\NU 9=speis -
p1029yasinoy) : 14D p1029yasinoy) : gid pA029yasino?) : 14D pI029y3sin0Y) : gid
mEouom%ﬁ 00:GT:2r0Z TT'9g=PUS - muhouww_u% muhouww_u% 00:GT:2k0Z TT'9=PU> - mnhouww_u%
00:€TTr0T TT'9g=u1Baq - 00:€TTr0T TT'9z=u132q -
ani3=p3|joius - Bunjoog : oq ani=p3||oius - an=p3||oius - 3upjoog : oq eni=ps|jodus -
96=dDH8ai - - 901=dD8a4 - 96=dD8ai - - 901=dD)8ai -
16=d> - 18=d> - 16=d> - 18=d> -
L9GYETT=PIPMS - z/=wex3deo - L9GYE€TT=PIPNIS - L9GYECT=PIPMS - z/=wex3des - L9GYETT=PIPMS -
AQNLS LS NI=938s - 6Lp=ded - AQNLS LS NI=23¢e3s - AQNLS LS NI=23¢e3s - 6Ly=ded - AQNLS LS 'NI=23¢e3s -
jusWIjoIuT : TUS wooy : 104 JUsW||oIUT : gud jusW|joIug : Tud wooy : 104 JusW(|oIuT : gud
TL=358a1 -
= g=do - | WeXS | NyId LS XI=d3ess - | Wexe 1=d> - =
J3JJOPOINOD TOoWDd wexq : 19|yxe 13JJOPOINOD gowd
(18)yx® 'Tus)wex3sau 1ay30 wum_}v 13440 (18)yx® 'gus)wex3zSaun
00:g0=uoneinp - wex33a4
T—setn1 - 00:€T'2v0Z TT'9z=u182q - T—soun1 -
g=apeus - 9leq - ﬁm_d\mﬁ 9=apeus -
P1029y3s4n07) : TUD p1029Y3s1N07) : gId
mn_Ouww_u\ﬁ 00:GT'TY0T TT'9C=PU® - m?.Ouww_u\ﬁ
00:€1'Z0T TT'9z=u182q -
anu}=pa|jo4ud - Sunjoog : oq ani1=pa|jo4ud -
96=dD)8ai - - 901=dD)8a1 -
1G=dd - J8=do -
L9GYETT=PIPMIS - 7.=wex3des - L9GvETT=PIPMIS -
AQNLS LS NI==1e1s - 6Ly=de> - AdQNLS LS NI==1e1s -
jusW|oJUT : TUd wooy : 104 JUsW|[0JUT : gud

20 2 MoTivaTiION AND CONTRIBUTIONS

rol : Room enl : Enrollment
- cap=479 - state=EN_ST.STUDY
- capExam=72 - studld=1234567
- cp=57
- regCp=96
bo : Booking - enrolled=true
- begin=26.11.2042;13:00
- end=26.11.2042;15:00 cRecords
crl : CourseRecord
- grade=5
daAlgl : Date - tries=1
- begin=26.11.2042;13:00
- duration=02:00
Tdate offer
bookRoom(exAlgl, rol) exAlgl : Exam algl: CoModOffer regForExam(enl, exAlgl)
- state=EX_ST.PLAN exam |- cp=6
- regSt=72
rol : Room enl : Enrollment rol : Room enl : Enrollment
- cap=479 - state=EN_ST.STUDY - cap=479 - state=EN_ST.STUDY
- capExam=72 - studld=1234567 - capExam=72 - studld=1234567
- - cp=57 - cp=57
\l,bookmgs - regCp=96 - regCp=96
bo : Booking - enrolled=true - enrolled=true
- begin=26.11.2042;13:00
- end=26.11.2042;15:00 cRecords cRecords
location crl : CourseRecord crl : CourseRecord
- grade=5 - grade=5
dal : Date - tries=1 daAlgl : Date - tries=2
- begin=26.11.2042;13:00 - begin=26.11.2042;13:00
- duration=02:00 - duration=02:00
egExam
I]\date offer I]\date offer
exAlgl : Exam algl: CoModOffer exAlgl : Exam algl: CoModOffer
_ state=EX_ST.READY | exam |- cp=6 _ state=EX_ST.PLAN | exam |- cp=6
- regSt=72 - regSt=73
ﬁ rol : Room enl : Enrollment
- cap=479 - state=EN_ST.STUDY
regForExam(enl, exAlgl) - capExam=72 - studld=1234567
R - cp=57
\l,booklngs - regCp=96
bo : Booking - enrolled=true
- begin=26.11.2042;13:00
- end=26.11.2042;15:00 cRecords
location crl : CourseRecord
- grade=5
dal : Date - tries=2
- begin=26.11.2042;13:00
- duration=02:00
regExam
Tdate offer
exAlgl : Exam algl: CoModOffer
- state=EX_ST.READY exam |- cp=6
- regSt=73

Figure 2.12: An example for a conflict of production bookRoom and regForExam that cannot
be resolved.

An example for a parallel conflict that cannot be resolved is shown in Figure 2.12.
More specifically, the productions bookRoom regExam have a conflict that cannot
be resolved. The problem is that after registering for an exam the production
bookRoom cannot be applied for the corresponding Room ro1 as the number of
registered students exceeds the exam capacity of Room ro1. However, if we apply
the production the other way around it is still possible to register Enroliment en1 for
Exam ex, although this exceeds the exam capacity of the booked Room ro.

2.2 Static Analysis and Verification by Graph Transformation

As we shall see later in Chapter 8 the concept of conflict resolution is closely
related to the concept of local confluence known from term rewriting systems; that
is, if any parallel conflict can be resolved the system is locally confluent. However,
conflict detection and resolution techniques are not only interesting for confluent
systems. In several applications conflicts may intended to model nondeterministic
behavior of a system, for example, to model different options during a business
process. As we shall see in Chapter 9, conflict detection and resolution techniques
can also be used to statically analyse potential interactions. If these interaction
lead to unintended effects, the system specification has to be adapted accordingly.
These adaption can incorporate changing the productions, adding new consistency
constraints to exclude conflicts from the consistent system behaviour, or adding
new productions to the specification to resolve unintended parallel conflicts.

21

FUNDAMENTALS OF SYMBOLIC GRAPHS AND GRAPH
TRANSFORMATIONS

This chapter provides the fundamental concepts for modeling and transforming
attributed structures by symbolic graphs and symbolic graph transformations. By
combining graphs with first-order formulas, symbolic graphs provide a powerful
concept for defining transformations of attributed graph structures.

We start with a brief introduction to category theory in Section 3.1, to subse-
quently establish the concept of (M, N)-adhesive transformation systems, which
serves us as a framework for the definition of transformations. In Section 3.2, we
define the syntax and semantics of first-order formulas that, combined with graphs,
leads us to the concept of symbolic graphs, presented in Section 3.3. The applica-
tion of symbolic graph transformations for model transformations is illustrated in
Section 3.4 by means of the campus management case study. Based on this illustra-
tion, we discuss in Section 3.5 those aspects of symbolic graph transformations that
actually prevent its application to achieve all objectives of this thesis. Based on this
overview we motivate and detail the key contributions presented in the remainder
of this thesis.

3.1 InTrRODUCTION TO CATEGORY THEORY AND TRANSFORMATION SYSTEMS

This section provides a brief introduction to category theory and the categorical
framework for high level transformation systems. This section is manly based on
the notions provided in [EEPT06]. Hence, we only provide a reference if the content
originates from an other source.

3.1.1 Introduction to Category Theory

A category can be taught as a system of functions among objects.

Definition 3.1 (Category).
A category C = (Obc, Morc, o,id) is given by:

¢ aclass Obc of objects

* a class Morc of morphisms given by the morphism sets Morc (A, B) for
each pair of objects A, B € Obc

24 3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

e for all objects A, B, C € Obc, a composition operation o, defined as

o : Morc(B,C) X Morc (A, B) — Morc(A,C)

¢ an identity morphism id4 € Morc(A, A) for each object A € Obc
such that the following conditions hold:

* Composition is associative: For all objects A, B, C, D € Obc and morphisms
f:A—>B,g:B—>Candh:C— Dwehave(hog)of=ho(gof).

o Identity morphisms act as identities w. r.t. composition: For all objects A, B €
Obc and morphisms f : A — B, we have f oidg = f and idgo f = f.

Notice that & : A — B denotes the shorthand notation for & € Morc (A, B); in the
following we sometimes write A 15 B for h : A — B.

For amorphism h : A — B the objects A and B are called the domain and codomain
of h, respectively.

In general, a category is anything that satisfies the preceding definition; however,
for this thesis it is sufficient to consider objects as structured sets, i. e., tuples of sets
(called components), endowed with some structure. Morphisms are then structure
preserving mappings.

Example 3.2 (The Categories of Sets Set and graphs G).

The basic example for a category is the category of sets Set, with the class of
all sets as objects and with all total functions as morphisms. The composite
(g o f)(x) of two morphisms f : A — Band g : B — C is defined as g(f(x))
for all x € A. The identity ids : A — Ais given by ids(x) = x for all x € A.

An example for a category of a structured set, is the category G of graphs. A
graph G = (Vg, Eg, s, tc) consists of a set V of graph nodes, a set Eg of graph
edges, and the source and target functions s, tg : Ec — Vg mapping the edges
to the source and target nodes. A graph morphism is a structure preserving
mapping that preserves the source and target functions. More specifically, a
graph morphism f : G — H that maps a graph G = (V, Eg, sg, tg) to a graph
H = (Vu, En, sH, tn) is a tuple of total functions f = (fv, fe), fv : Vo = Vu, f£ :
Ec — Ep thatcommutes with source and target functions, i.e., fy osg = sgo fg
and fy o tg = ty o fp. Theidentity morphism and composition operation can be
defined componentwise in Set; that is, the identity morphism idg = (idy,, idg;)
for a graph G is given for each component separately as the identity in Set. The
composition operation for graph morphisms f : G - D and g : D — H, is
defined componentwise by:

gof=(gvoefv.geo fe)
As f and g are graph morphisms we have

fvosg=spofg, fvotc=tpofr,gvosp =syoge, gvotp =tyogr.

3.1 Introduction to Category Theory and Transformation Systems

Hence, we can conclude that g o f is also a graph morphism as

gvofyrosg=gyospo fp=syogepof

gvofvotc=gvotpo fp=tgogeo fr.

Remark 3.3 (Componentwise construction).

In the previous example we have seen that the composition of graph morphisms can
be constructed componentwise in the category of sets Set. This principle of divide
and conquer is very common in category theory as many categorical constructions
can be broken down to componentwise constructions in some base category. In the
following, we shall see various examples for this principle.

Now we take a closer look on how to classify morphisms of a category according to
certain properties. This leads us to the following concept of a morphism class.

Definition 3.4 (Morphism class).
Given a category C and a property P, a class of morphisms is formed from the
sets

X(A,B) = {x € Morc(A,B) | P(x)}

for all pairs of objects A, B € Obc.

In category theory, a property P is usually given as an abstract characterization,
which defines the role of a morphism in terms of its relations to adjacent objects
and morphisms, rather than by internal properties of the morphism itself. In the
following, we give an abstract characterization for the classes of monomorphisms,
epimorphisms, and isomorphisms.

Definition 3.5 (Monomorphism, epimorphism, and isomorphism).

Given a category C, the class of all monomorphisms consists of all morphisms
m : B — C, m € Morc that satisfy the following property:

For all morphisms f,g : A — B; f,g € Morc, it holds that mo f = mo g

implies f = g.

The class of all epimorphisms consists of all morphisms e : A — B, e € Morc
that satisfy the following property:
For all morphisms f, g : B — C; f, g € Morg, it holds that f oe = g o e implies
f=s

A

The class of all isomorphisms consists of all morphisms i : A — B, i € Morc
that satisfy the following property:

25

26 3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

There is a morphism it:B — A, il € Morc, such that i oi™! = idg and

itoi=ids.

Two objects A and B in C are isomorphic (denoted as A ~ B) iff there exists an
isomorphism i : A — B, i € Morc.

Example 3.6 (Mono- epi- and isomorphisms in categories Set and G).
Monomorphisms, epimorphisms, and isomorphisms correspond to injective,
surjective and bijective functions in the category Set, respectively.

In the category G, a morphisms f = (fy, fg) is a monomorphism, epimor-
phism, or isomorphism if and only if f is componentwise injective, surjective,
or bijective, respectively.

We have seen how to use properties to abstractly characterize different morphism
classes. In the following, we shall see how to characterize more complex categorical
concepts in a similar way.

We begin with the definition of pushouts, which can be considered as the gener-
alisation of the set theoretic union.

Definition 3.7 (Pushout (PO)).
Given morphisms f : A —» B and ¢ : A — C in a category C, the triple
(f’, §’, D) consisting of:

¢ a pushout object D
* morphisms f': C - Dand g’ : B— Dsuchthat f'fog=g'of

is a pushout over f and g in category C iff the following universal property
holds: For all objects X and morphisms & : B — X and k : C — X with
ko g =ho f, there is a unique morphism x : D — X such that x o ¢’ = h and

xo f'=k.

3.1 Introduction to Category Theory and Transformation Systems

Example 3.8 (Pushout in Set and G).
In Set the pushout (f': C — D, g’ : B — D, D) over the morphisms f : A — B
and g : A — C can be constructed as follows:

The pushout object D is given as the quotient B U C|=, where U denotes the
disjoint union, and = the smallest equivalence relation generated from the rela-
tion ~, where ~ is given by f(a) ~ g(a) for all a € A. Here, smallest equivalence
relation generated from ~ means the reflexive, symmetric, and transitive closure
of ~. Let [x] = {y € BUC | x = y}, then the morphisms f” and g’ are given as
f'(c) =[c] and g’(b) = [b] forallc € Cand b € B.

The pushout in the category of graphs G is defined componentwise by the
pushouts on node and edge components in the category Set, respectively. The
source and target functions are uniquely determined by the universal property
of the pushout for the edge component. For example, the diagram below shows
the construction of the source function sp for the pushout object D. As shown
the source function sp : Ep — Vp is uniquely given by the universal property
of the pushout for the edge component POg, with morphisms gy o sz and
fv osc, where sp : Eg — Vg and sc : Ec — V¢ are the source functions of
graph B and C, respectively.

En—fe— Ep

| \

815 (POE) gf Qv Osp Vg ——fv—"Va
\ |

Ec —fg—Ep ___ gy (POvy) gllv

SD
frosc—— VD —fv— Ve

The target function tp : Ep — Vp can be constructed similarly.

In the categories Set and G, the construction of pushout objects can be simplified if
one of the morphisms is a monomorphism.

Fact 3.9 (Pushouts in Set and G along monomorphisms).
Let (f’,¢’, D) be the pushout over morphisms f : A - Band g : A — Cin
category Set. If f is a monomorphism, then the following properties hold:

a) Morphism f’ is a monomorphism, too.

b) The pushout object D is isomorphic to D’ = C U (B\f(A)), where the
disjoint union U is used to ensure that the elements of (B\f(A)) are added
as new elements to D’.

The properties (a) and (b) hold componentwise in G.

27

28

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

The pushout complement, defined next, is a generalization of the set theoretic

difference operation.

Definition 3.10 (Pushout complement).

Let f : A > Band g : B —» D be morphisms in a category C, the triple
(f’,g’,C), consisting of morphisms f’: C - D, ¢’ : A — C and object C, is a
pushout complement in C if and only if (1) is a pushout in C.

A——f——B
| |
NG
g |

C—f——D

The pullback is the categorical dual of the pushout. Hence, it is a generalization

of the set theoretic intersection.

Definition 3.11 (Pullback (PB) [EEHP06]).
Given morphisms f : C — D and ¢ : B — D in a category C, the triple
(f’,§',A) consisting of:

¢ a pullback object A
* morphisms f': A —- Band g’ : A - Csuchthatgo f' = fog’

is a pullback over f and g in category C, if and only if the following universal
property holds: For all objects X and morphisms i : X - Band k : X — C
with f ok = g o h, there is a unique morphism x : X — A such that f'ox =h
and g’ ox = k.

_———h
\ =
\ T A —f—B
{ -
\ C —f—D
Example 3.12 (Pullback in Set and G).
In Set, the pullback (f’, g’, A) over morphisms f : C - D and ¢ : B — D can
be constructed as

A= @ =g i@ = {(c,b)f(c) = g(b)} € CxB

deD

with f":A— Band g’ : A — C givenby f’(c,b) = b and g(c,b) = c.

The pullback in the category of graphs G can be constructed componentwise
for node and edge components in Set. The source and target functions are
uniquely determined by the universal property of the pullback for the node
components.

3.1 Introduction to Category Theory and Transformation Systems

In the categories Set and G we have the following property for pullbacks along
monomorphisms.

Fact 3.13 (Pullbacks in Set and G along monomorphisms).
Let (f’, g’,A) be the pullback over morphisms f : C > Dand g : B — D in
category Set then the following properties hold:

a) If f is a monomorphism, then also f’.

b) If f and g are monomorphisms then A can be constructed as the intersection
of Band C,i.e., A=BnNC.

The properties (a) and (b) hold componentwise in G.

The following properties are valid in any category that has pushouts and pull-
backs.

Fact 3.14 (PO and PB properties).
For any category C that has pushouts and pullbacks the following properties

hold:
a) The pushout and pullback objects are unique up to isomorphism.

b) The composition and decomposition of pushouts (pullbacks) results again
in a pushout (pullback):
composition.:
¢ If (1) and (2) are pushouts, then (1) +(2) is a pushout.
¢ If (1) and (2) are pullbacks, then (1) + (2) is a pullback.
decomposition:
e If (1) and (1) + (2) are pushouts, then (2) is a pushout.
e If (2) and (1) +(2) are pullbacks, then (1) is a pullback.

A f B ¢ E

1 o o

C D r
f/ e/

¢) For any morphism f : A — B, the diagram (3) below is a pushout and a
pullback; for any monomorphism m : A — B diagram (4) is a pullback.

A—f——B A—idp— A
ZlA (3) 1%13 I‘JA (4) ”f

29

30 3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

The following concept of jointly epimorphic pairs of morphisms is the generalization
of epimorphisms from single morphisms to pairs of morphism.

Definition 3.15 (Jointly epimorphic).

A morphism pair (e, e;) of morphisms e; : Ay — B and e; : A» — B with
the same codomain is jointly epimorphic if for all g,# : B — C such that
goe;=hoe;, fori=1,2, wehave g =h.

A
T—

81\ B/h\" c
P g

€2

A

In the following, we consider the slice construction for categories. The slice con-
struction can be used to obtain categories for typed structures from an (untyped)
base category. This is particularly interesting, as the slice construction preserves
many properties of the base category (e.g., pushouts, pullbacks, and binary co-
products). Hence, in order to show that a category, obtained by slice construction
from a base category, has a property of interest it is sufficient to show that the base
category has this property.

Definition 3.16 (Slice category).
Let C be a category and X any object of C, the slice category C\X is defined as
follows:

* An object of C\X is a morphism (f : A — X) from an object A € Obc to
X.

e A morphismm : (f : A = X) —» (¢ : B - X) € Morc\x from an
object (f : A — X) to an object (¢ : B — X), is given by morphism
m : A — B € Morc such that f = gom.

* The composition of morphisms m : (f : A - X) — (¢ : B = X) €
Morc\xx and n : (g : B - X) = (h : C —» X) € Morc\x is given by
nom € Morc.

The following fact lists properties that are preserved by slice construction.

Fact 3.17 (Slice category properties).
The following properties hold for every slice category:

a) If the category C has pushouts, the pushouts in the slice category C\X can
be constructed over the pushouts in C.

b) If the category C has pullbacks, the pullbacks in the slice category C\X can
be constructed over the pullbacks in C.

¢) If the category C has binary coproducts, the binary coproducts in the slice
category C\X can be constructed over the binary coproducts in C.

3.1 Introduction to Category Theory and Transformation Systems

3.1.2 (M, N)-Adhesive Categories and Transformation Systems

This section introduces the basics for transformations based on the double pushout
approach. The double pushout approach was originally defined for directed la-
beled graphs [EPS73] and later generalized to other high-level structures, such as
Petri nets or algebraic specifications, by introducing the categorical framework of
high level replacement system (HLR systems) [EHKP90]. Basically, a HLR system
is a category with a distinguished class M of morphisms that fulfils certain prop-
erties (called HLR properties). The HLR properties were originally provided as a
list, consisting of all properties that were used to prove the fundamental results
for the double pushout approach. In [LS04], it was shown that most of the HLR
properties are consequences of a more general principle, leading to the notion of
adhesive categories. An adhesive category is any category that provides a certain
compatibility of pushouts and pullbacks, known as the van Kampen property. Over
the years, it was shown that various weaker versions of the van Kampen property
are still sufficient to provide the HLR properties, resulting in the notions of weak
adhesive and M-adhesive categories [EHPP04, EGH10]. A detailed overview on
the various versions of the van Kampen property and their relations can be found
in [EGH10]. In this thesis we use (M, N)-adhesive categories introduced by Habel
and Plump in [HP12a].

Definition 3.18 (M, N)-adhesive category [HP12a]).
A category C with morphism classes M and N is an (M, N)-adhesive category
(C, M, N) if the following properties hold:
a) M and N contain all isomorphisms:
* f being an isomorphism implies f € M and f € N

M and N are closed under composition and decomposition: given mor-
phisms f : A - Band g : B — CinC then

e f,g e Ximplies go f € X, for any X € {M, N}
* gofeXand g€ Ximplies f € X, for any X € {M, N}

N is closed under M-decomposition: given morphisms f : A — B and
g :B — CinC then

e gofeNand g e Mimplies f e N
b) C has pushouts along (M, N)-morphisms and pullbacks along M-mor-
phisms:

* A pushout along (M, N)-morphisms, or (M, N)-pushout, is a pushout
where one of the given morphisms is in M and the other morphism is
in N.

¢ A pullback along an M-morphism, or M-pullback, is a pullback where
at least one of the given morphisms is in M.

M and N are closed under pushouts and pullbacks:

31

32

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

* Given pushout (1), then f € X implies ¢ € X, for any X € {M, N}.
* Given pullback (1), then g € X implies f € X, for any X € {M, N'}.

¢) Pushouts in C along (M, N)-morphisms are (M, N)-VK squares. A pushout
(1) withm € M and f € N is a (M, N)-VK square if for any commutative
cube (2) with pushout (1) in the bottom, with pullbacks as back faces, and
b,c,d € M, the following statement holds: the top face is a pushout if and
only if the front faces are pullbacks.

Cl/f//‘ /m/\Bl
e B A B
\ |
JAENCY ¢ A |
| f — B
C—un—p g(/f %/ m/\B (2)

Remark 3.19 (Hierarchy of adhesive categories).

As mentioned in the introduction of this section, there are various versions of adhe-
sive categories. Hence, many results where obtained for adhesive categories other
than (M, N)-adhesive categories. In order to transfer these results to (M, N)-ad-
hesive categories, it is important to know their relations. To this end, we briefly
review M-adhesive and adhesive HLR categories and show how they relate to
(M, N)-adhesive categories.

In contrast to (M, N)-adhesive categories, M-adhesive categories presume only
a single morphism class M. An M-adhesive category (C, M) can be defined in
terms of an (M, N)-adhesive category (C, M, N) by choosing N = Morc, i.e. N
comprises all morphisms in C. Adhesive HLR categories are similar to M-adhesive
categories with the difference that the VK square property must hold for m € M
only, instead of (m,b,c,d € M). Consequently any adhesive HLR category is also
an M-adhesive category.

To obtain an (M, N)-adhesive category from an adhesive HLR category (or
M-adhesive category), for choices other than N' = Morc, it must be shown that
narrowing the class N does not destroy the closure properties. Hence, instead of
verifying all properties stated in Definition 3.18, it is sufficient to show that:

a) N contains all isomorphisms.

b) N is closed under composition and decomposition.

c) N is closed under M-decomposition.

d) N is closed under pushouts and pullbacks along M-morphisms.

Moreover, given an M-adhesive category (C, M) the previous properties are triv-
ially fulfilled for category (C, M, N) with N = M.

3.1 Introduction to Category Theory and Transformation Systems

An (M, N)-adhesive category provides the following HLR properties.

Fact 3.20 (HLR properties of (M, N)-adhesive categories [HP12a]).
For any (M, N)-adhesive category (C, M, N) the following properties hold:

a) Pushouts along (M, N)-morphisms are pullbacks: Given the (M, N)-pushout
(1), then (1) is also a pullback.

b) The M—-M-pushout—pullback decomposition: If (1)+(2) is an (M, N)-pushout
with] € M and r ok € N, and (2) a pullback with w € M, then (1) and (2)
are pushouts as well as pullbacks.

c) The cube (M, N)-pushout—pullback decomposition: Given the commutative cube
(3), where all morphisms in the top square and bottom square are in M, all
vertical morphisms are in N, the top face is a pullback and the front faces are
pushouts, then the following statement holds: the bottom face is a pullback
if and only if the back faces are pushouts.

d) Pushout complements along (M, N)-morphisms are unique: Given morphisms
l[:A—>Bandu : C —» D, wherel € M and u € N, then there is at most
one B (up to isomorphism) and morphisms k : A — Band s : B — D, such
that (1) is a pushout.

A—I1— C / ,

‘ f// \m\ ,
Eow = | _g—8

l ! ‘ i — py (/l/ Jj
B s—— D

) 2) b j f/£/A\m\l
1 ! c— ' | o— "
E v—— F H\D/ (3)

Note that the M—-M-pushout-pullback decomposition was originally refereed to

as the the M-N-pushout-pullback decomposition property in [HP12a].

Another important result shows that (M, N)-adhesive categories are stable under
slice constructions. As mentioned in the previous section the slice construction can
be used to construct categories for typed structures from an untyped base category.
Hence, to show that a category obtained by slice construction from a base category is
(M, N)-adhesive, it is sufficient to show that the base category is (M, N)-adhesive.

Fact 3.21 (Slice construction of (M, N)-adhesive categories [PH15]).

If (C, M,N) is an (M, N)-adhesive category, then for every object X in C
the slice category (C\X, M N Morc\x, N N Morc\x) is also (M, N)-adhesive
adhesive.

33

34

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

Now we define productions and transformations.

Definition 3.22 (Production).

Given an (M, N)-adhesive category (C, M, N), a production p = (L < K — R)
consists of the objects L, K, and R (called the left-hand side, the interface, and
the right-hand side, respectively) as well as left production morphism [: K — L,
I € M and right production morphismr : K - R, r € M.

Definition 3.23 (Transformation).

Given an (M, N)-adhesive category (C, M, N), adirect transformation G 222 H
via a production p = (L < K — R) and a match m : L — G, m € N is given by
the following double pushout diagram, where (1) and (2) are pushouts:

€

O —x— %
©

T —a—x

O —3— =

The morphism 7 : R — H is called comatch.

In the following, we call the class M production morphisms and the class N match
morphisms.
Finally we define (M, N)-adhesive transformation systems.

Definition 3.24 (M, N)-adhesive transformation systems).
An (M, N)-adhesive transformation system ((C, M,N),P) is composed of an
(M, N)-adhesive category (C, M, N) and a set of productions P.

Let ((C, M, N),P) be an (M, N)-adhesive transformation system. Given ob-
jects G and H in C, such that there is a direct transformation G <=~ H via
p € P we write G = H. A transformation from G to H is a sequence of direct
transformations G ~ Gy = ... = G, =~ H for some n > 0, and is denoted as
G == H. For n = 0 we have the identical transformations G =% H and G ~ H.
For n € {0,1} we write G 2% H.

Remark 3.25 (Applicability of productions and construction of transformations).
Let ((C, M, N), P) bean (M, N)-adhesive transformation system with a production
p=(L < K5 R).Givenamatchm : L — G, m € N, then production p is applicable
via match m if pushout (1) can be constructed as pushout complement of m and /.

If p is applicable to G via match m, then p is applied to G at match m by first
constructing D as the pushout complement of [and m and H by the pushout of k
and r leading to the direct transformation G <22~ H via p and m.

Notice that the context object D is unique (up to isomorphism) if it exists, as
pushouts complements are unique in (M, N)-adhesive categories.

In the following, we say that a production p is applicable to an object G if there exists
a match such that p is applicable to G via match m.

3.1 Introduction to Category Theory and Transformation Systems

Now, we show a criterion to decide whether a production is applicable or not,
i.e., a criterion for the existence of pushout complements. To this end we need to
define the concept of initial pushouts.

Definition 3.26 ((M, N)-initial pushout).

Let (C, M, N) be an (M, N)-adhesive category and given an N-morphism
f:A— F.An (M, N)-pushout (1) with b € M is an (M, N)-initial pushout over
f if for every (M, N)-pushout (2) with b’ € M there exist unique morphisms
b*:B > Dandc*: C — E with b*,¢c* € M such that b’ ob* =b, ¢’ oc* = ¢ and
(3) is a pushout. Morphisms b and c are called the boundary and context with
respect to f.

B \b b* " D
(1 | ®)
) i 2)
C — l ¢’ > |

C\,»Fe/cl

By means of initial pushouts we can define the following condition, which is
sufficient and necessary for the existence of a pushout complement.

Fact 3.27 (Gluing condition).

Let ((C, M, N),P) bean (M, N)-adhesive transformation system and p = (L <~
K 5 R) a production in P, given a match m : L — G, m € N, then production p
is applicable to G via match m (i. e., the pushout complement of m and [exists) if
and only if there is a morphism b* : B — Ksuch that/ob* = b for (M, N)-initial
pushout (1).

b*
B=—p [— =g r R
|
1
| o
C c—— G

In addition to the gluing condition initial pushouts have further properties, which
are required to prove the Local Confluence Theorem in Chapter 8.

Fact 3.28 (Closure property of (M, N)-initial pushouts).

Given an (M, N)-adhesive category (C, M, N') with (M, N)-initial pushouts,
then (M, N)-initial pushouts are closed under double pushouts along M-mor-
phisms; that is, given an (M, N)-initial pushout (1) over fy € N and double
pushout diagram (2) with pushout (2a) and (2b) and bj, b; € M, the following
holds:

36 3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

a) The composition of (1) with (24) (i.e., pushout (3)) is again an initial
pushout over d, where pushout (3) is derived from (1) and (24) using
the initial pushout property of (1) (see Definition 3.26).

b) The composition of initial pushout (3) with pushout (2b), leading to push-
out (4), is an initial pushout over fi.

B —b—— Ay Ap 176 D bll Aq
| | | |

J © hHh o hH) 4 @ H @
l 1 l l
C c—— FO PO L6 E Lll 21

B—+b—— D B —b ob— A

| |

J ® 4 J @ A

l l

C c*—— E C —<joc*— F

3.1.3 Negative Constraints and Negative Application Conditions

In this section we extend the expressiveness of transformation systems by intro-
ducing negative constraints and negative application conditions. Constraints and
application conditions were first introduced in [EH86] for graphs, and later lifted
to adhesive transformation systems [EEHP06]. In this thesis we stick to negative
constraints and negative application conditions. Moreover, for the rest of this sec-
tion, we assume that we have fixed an (M, N)-adhesive category (C, M, N) with
distinguished classes M and N for production and match morphisms, respectively.

We begin with introducing the notion of constraints. Constraints define global condi-
tions on the inner structure of objects. An object that satisfies these conditions is
called consistent. A negative constraint defines a forbidden structure that must not
appear in any consistent object.

Definition 3.29 (Negative constraint).
A simple negative constraint nc(N) is defined by an object N. An object G is
consistent with respect to a simple negative constraint nc(N), denoted as G I nc(N),
if there does not exist an N-morphismc: N — G.

A negative constraint NC is a set consisting of simple negative constraints. An
object G is consistent w. r. t. to a negative constraint NC, denoted as G I+ NC, if G
is consistent with respect to each simple negative constraint nc(N) in NC.

Note that every object is consistent with respect to the empty negative constraint
NC = (. In the following, we write G ¥ NC to express that G I NC does not hold.

While negative constraints impose global restrictions on the inner structure of
objects, negative application conditions place local restrictions on the context of a
match.

3.1 Introduction to Category Theory and Transformation Systems

Definition 3.30 (Negative application condition (NAC)).
A simple negative application condition nac(L = X) over an object L is defined by
an N-morphism x : L — X.

An N-morphism m : L — G satisfies a simple negative application condi-
tion nac(L = X), denoted as m I nac(L = X), if there does not exist an
N-morphism p : X — G such thatpox = m.

A negative application condition NACy, over L is a set consisting of simple
negative application conditions over L.

An N-morphism m : L — G satisfies a negative application condition NACy,
denoted as m I- NACy, if morphism m satisfies all simple NACs nac(L 5 X)in
NAC..

Similarly to the negative constraints, every N-morphism satisfies the empty nega-
tive application condition NAC}, = 0; we write m ¥ NAC|, for not m i+ NACy.

By adding negative application conditions to the left-hand sides (or right-hand
sides) of productions, we gain additional means to control their applicability.

Definition 3.31 (Extended production).
Let ((C, M, N),P) be an (M, N)-adhesive transformation system with a pro-
duction p = (L < K — R) € P, an extended production

0 = (p, NACr, NACR)

consists of a production p, a precondition negative application condition NAC, over
L, and a postcondition negative application condition NACg over R.

A direct transformation G 2, H via extended production o is a direct trans-
formation G === H via (nonextended) production p such that the match m
satisfies NAC; and comatch » satisfies NACg.

Up until now, we considered constraints and application conditions separately;
however, both concepts can be related via the notion of consistency preserving
productions. Basically, a production is consistency preserving with respect to a negative
constraint N C if for any object G that is consistent with respect to NC, any result of
applying the production to G is also consistent with respect to NC.

Definition 3.32 (Consistency guaranteeing and preserving production).

Given negative constraint NC and extended production ¢ = (p, NACr, NACR),
the extended production g is consistency guaranteeing with respect to a negative
constraint NC if for all direct transformation G ———s H , we have that

G I NC if and only if H I+ NC.

The extended production g is consistency preserving with respect to NC if for
all direct transformation G ———s H , we have that

G I NC implies H = NC.

37

38

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

3.2 INnTrRODUCTION TO FIRST-ORDER LOGIiCc LANGUAGES

In this section, we give a brief introduction to many sorted first-order logic. More
specifically, we provide the syntax and semantics of the first-order logic language,
which is used in the next section to define symbolic graphs. This section is based
on the books [Gal85, EFT94].

3.2.1 Syntax of First-Order Logic

Basically, the syntax of a first-order language is composed of two parts, the logical
part consisting of logical connectives and variables, and the nonlogical part consisting
of constant, function, and predicate symbols. While the logical part is fixed, the
nonlogical part depends on the intended application of the language and is given
by a signature.

We begin with the nonlogical part, but first we recall the concept of a word. Given
an alphabet A (i.e., in the general case an infinite, but countable set of elements
called symbols), the set of all words over alphabet A is denoted by A*. The set of all
words of length n over alphabet A is denoted as A", where n € IN?. The set A? = {¢}
contains the empty word ¢ only. The length of a word w is denoted as |w| € N°. A
word w of length n is also written as uy . .. u,.

The syntax for the nonlogical part is provided by a signature, which consists of
the symbols for naming available sorts, constants, functions, and predicates.

Definition 3.33 (Signature).

A signature . = (S, O) consists of a sort symbol alphabet S, an operation symbol
alphabet O, and a function a : O — S* x S! U {¢} assigning an arity (w,s) to
each operation symbol 0 € O. An operation symbol 0 with arity (w, s) is

* aconstant symbolif v = ¢ and s # €
¢ a function symbol if # ¢ and s # €
¢ apredicate symbolif w # eand s = ¢

Instead of denoting the arity of a constant symbol ¢ € O as (¢,s), we say c is of
sort s. The arity of a function symbol f € O is denoted as s1 . ..s, — s; for the arity
of a predicate symbol p € O we write s ... s,.

Given a signature and a set of variable symbols, terms are built by composing the
variable symbols with the function and constant symbols in the following way:

Definition 3.34 (Variables and terms).

Let £ = (5,0) be a signature and X = (Xs)ses an S-indexed family of sets,
where each X contains the variables of sort s. We assume that the sets of
variables X are pairwise disjoint, and disjoint with the set of operation symbols.
The S-indexed family of X-terms 7 (X) = (75(X))ses is defined for each sort
s € S by the smallest set 7;(X) such that

e x € 75(X), for all variables x € X;

3.2 Introduction to First-Order Logic Languages

* ¢ € 75(X), for all constant symbols ¢ € O of sort s

* f(t1,...,tn) € 75(X), for all function symbols f € O witharitys;...s, — s
and all terms ¢; € 75,(X) fori € {1,...,n}

The syntax of a first-order logic language over a given signature is given by the
set F (X) consisting of all first-order L-formulas obtained from composing X-terms
with predicate symbols and the logical symbols as defined next.

Definition 3.35 (First-order Z-formula).

Let X be a signature and X = (X;5)ses an S-indexed family of variable sets,
the set of first-order X-formulas (or short X-formulas) over X is defined as the
smallest set ¥ (X) such that:

* p(ty,..., ty) € F(X), for each predicate symbol p : s1...5, € O and
terms t; € 75,(X), withi € {1,...,n}

o t1 =t € F(X), for terms t1, £ € T5(X)
e TeF(X)and L € ¥ (X)
e -® e ¥ (X), for each ® € F (X)

e DAY, OVVY, d = VW, and ® & VW are in ¥ (X), for each ® and ¥ in
F(X)

e dx.® e F(X)and Vx.® € F(X), foreach ® € F(X) and x € X

The logical connectives =, A, V, =, and & denote negation, and, or, implication,
and equivalence, respectively; the logical symbols T and L denote true and false,
respectively. Although, not explicitly mentioned we also use parentheses with usual
meaning in first-order X-formulas.

In first-order logic, variables may occur free or bound by a quantifier in a X-formula.
The set consisting of all variables that occur free in a given X-formula is obtained
as follows:

Definition 3.36 (Free variables).

Let X = (S,0) be a signature and X = (X;)ses be an S-indexed family of
variable sets, the S-indexed family of sets of variables var(t) = (vars(t))ses € X
of aterm t € 7 (X) is defined for each sort s € S by the set var;(t):

x} ifx e X,

® vars(x) = (x) *” for a variable x
1] otherwise

e vars(c) = 0, for a constant ¢

o vars(f(t1,...,ty)) = vars(t1) U... Uwvars(t,), for a function symbol f of
arity s1...8, — s

39

40 3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

The S-indexed family of sets FV(®) = (FV(®))ses € X, containing the free
variables of a Z-formula ® € ¥ (X), is defined for each sort s € S by the set
FV(D):

o FVi(p(t1,...,tn) = vars(t1) U...Uoars(t,), for a predicate symbol p of
arity sq...s,

e FVi(ty Z tp) = vars(t1) U vars(tp), for terms £1 and f;
* FVs(=®) = FV (D)

o [V (@*W) = FV, (D) UFV (W), for * € {A,V, =, &)

.« FV.0x) = | X eXs @y
FVs(D) otherwise

Example 3.37 (Syntax of linear integer arithmetic).
The signature Zija = ({int}, {+,—,0,1, <, <}) for linear integer arithmetic con-
sists of a single sort symbol int, and the

function symbols:

e + with arity int int — int

e — with arity int int — int

constant symbols:

e 0 and 1 both of sort int

predicate symbol:

e < with arity int int
Given a set of variables X;,;; = {x, z} we can construct a Xyja-formula
int
dz.(z+z = x),

where x is the only variable that occurs free in the formula.

Note, as we have not defined any semantics for Z-formulas, the formula shown in
the previous example is up until now just a sequence of symbols.

3.2.2 Semantics of First-Order Logic

Basically, the semantics of a X-formula is obtained by assigning values to the free
variables and by interpreting logical and nonlogical symbols. While the meaning
of logical symbols is fixed, the meaning of the nonlogical symbols is given by a
L-structure.

3.2 Introduction to First-Order Logic Languages

Definition 3.38 (Many-sorted X-structure).

Given a signature X, a many-sorted Y-structure O = (|D|,J) is a pair consisting
of a S-indexed family of nonempty sets |D| = (|D]s)ses, each called the domain
for sort s, and an interpretation function J defined as follows:

* Each constant symbol ¢ € O of sort s is interpreted as an element
3J(c) = c?, where ¢? € |DJ;.

¢ Each function symbol f € O of arity s1...s, — s is interpreted as a
function I(f) = fD, where fD HDlsy X ... X |Dls, = |Dls.

¢ Each predicate symbol p € O of arity s1...s, € O is interpreted as a
relation 3(p) = pD, where pD C D, X...x|Dls,.

While a X-structure assigns meaning to constant, function, and predicate symbols,
it does not assign any meaning to variables. Variables receive meaning by assigning
values to them.

Definition 3.39 (Variable assignment).

Given a X-structure O, a variable assignment is any S-indexed family of functions
C: X = |D] = (Cs : Xs = |Dls)ses mapping the variables in X to elements of
the domains |D|;, respectively.

In the following, we write C[x — a] : X — |D] for the new variable assignment
that coincides with C except that it assigns to variable x of sort s the element a of
the domain |D|,, i.e.,

C(y) ifx#y;
a otherwise.
Given a variable assignment, a term is evaluated in a Z-structure as follows:

Definition 3.40 (Term evaluation).
The evaluation of L-terms with respect to a variable assignment C, is given by the
S-indexed family of functions

[12: T(X) - D] = (12, : T(X) = [Dls)ses
defined as follows:
o [[x]]?s = (Cs(x), for a variable x of sort s

o [[c]]é)S = 3(c), for a constant symbol c of sort s

° [f(t,.. .,15,1)]]5S = S(f)([[tl]]gsl,. . [[tn]]?sn), for a function symbol f
with arity sq,...,s, — s and terms ¢; € 75,(X), i € {1,...,n}

41

42 3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

The semantics of X-formulas is given by the relation defined next.

Definition 3.41 (Semantics of X-formulas).

Let ®,V € F(X) be X-formulas over the variables X and C : X — |D] a
variable assignment. The relation is defined in the following where £ is given
by (D, 0) £ @ iff not (D, C) E .

(D, Q) Ep(ty,... ta) iff ([612,..., [t.12) € 3(p)
D,k =t) iff [0]P=1t]?

(D,OkT

(D, 0k L

(D,0) E D iff (D,0)r d;

(D,O)EDAVY iff (D,0)edDand (D,0) VW

D,) rdVVY iff (D,0e®dor(D,0) W

D,OED=>W iff (D,0)rdor(D,0) WV

(D,)ED oW iff (D,0)EDiff (D,0) W

(D,0) EVx.D iff (D,l[x+—a])edforallac|Dl;,se€S, xeX;
(D,0) Edx.® iff (D,C[x > a]) D forsomea €|Dl;, s €S, x e Xs

We now define the notion of satisfaction and validity.

Definition 3.42 (Satisfaction and validity).
A Y-formula @ is satisfiable in D, iff

(D, 0) E @ for some assignment C.

In this case, we say that C is a solution of @ in D.

A Y-formula @ is valid in D iff
(D, 0) E D for every assignment C.

In this case we write D E .

The following fact states that the truth value of any X-formula ® depends on the
assignment of the free variables only.

Fact 3.43 (Free variables).
Let D be a Z-structure and ® a Z-formula with an S-indexed set of free variables
FV(®) = (FVs(®))ses. For any two assignments C1 = (C15)ses and Co = (Cos)ses,
such that for all s € S and x;(5) € FV(®) it holds that Ci5(xi(s)) = Cos(Xi(s)), we
have

(D, 1) EDiff (D,) E .

3.2 Introduction to First-Order Logic Languages

In the following, we assume that for every X-structure D, the corresponding
signature contains constant symbols for naming all elements in |D]|, so that these
elements can be treated as constants in formulas.

Fact 3.44 (Solution).
Let @ a X-formula and C a solution of ® in P, the solution C can be represented
as a conjunction of equality predicates such that

D,0k /\ /\ (Xis) = cigs)) |,

5€5 \xi(s)€F Vs (D)

where c;(s) are constants in |D]s.
Moreover, let @ be a conjunction of equality predicates as defined above, i. e.,
we have (D, C) £ @, then the statements

(D,0)rDPand DD = .
are equivalent.

Proof. This fact is a direct consequence of Fact 3.43. m]

Example 3.45 (Semantics of Lyja-formulas).

Given the signature Xy provided in Example 3.37. Let Dy 1a be the Zyja-struc-
ture consisting of the domain of the integer numbers Z. The function symbols
+? and -2 are interpreted as addition and subtraction on Z. The constants
symbols 02 and 12 are interpreted as the numbers zero and one, whereas <D
denotes the the usual ordering on Z.

Now we can interpret the formula ® given by 3z.(z + z = x) as x is even.
Hence a possible solution is the assignment C; with (1(x) =4 aswehave2 € Z
such that (Dyya, C1]z - 2]) EJz.(z + 2z = x).

According to Fact 3.44 we can represent the solution as the equality predicate
(x 2t 1+1+ 1) that can be rewritten to (x ut 4) if we assume that we have
an constant symbol for every value in the domain Z. Moreover we may obtain

a valid formula Dyja E (x s 4) > dz.(z+z = x).
Finally, we define substitution. To this end, we introduce substitution maps.

Definition 3.46 (Substitution map).

Let X be a signature and X = (X;5)ses an S-indexed family of variable sets,
then a substitution map for finite subsets Y = (Y5)ses of (Xs)ses is a family of
S-indexed functions 6 : Y — 7 (X)s = (6 : Ys = T (X)s)ses.

In the following, we write

6:Y—>'r(x);0(y1)"‘0(y”) _hetn
Vi Yn V1. Yn

44

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

to denote the substitution map 6 : Y — 7 (X) that sends the variables y; € Y to
terms t; € 7 (X). A substitution map of the form
~ Z1...2p
6:—,
]/1 e]/n
where z1, ..., z, are variables is called variable map in the following.

In general, substitution has to be performed carefully on X-formulas containing
quantifiers, to not unintentionally alter their meaning. More specifically, given a
Y-formula @ we have to ensure that a free variable x in @, is not replaced by a term
containing a variable z, when z does not occur free at the position of x in ®. For
example consider the Lyja-formula 3z.(z + z = x) which expresses that x is even
(as given in Example 3.45). If we now replace variable x by variable z, we obtain
formula Jz.(z + z = z) that is always valid as 0 + 0 = 0.

The standard solution for this problem is to replace the quantified variables by
fresh variables, before performing a substitution in the scope of a quantifier.

Definition 3.47 (Substitution [EFT94]).
Let X be a signature with S-indexed family with variable set X and let ® be a
Y-formula. Given a substitution map

azy_)rr(x):ul

Yi...Yn

the L-formula ®[5], obtained from substituting ® along & is given as follows:

if x ¢ dom(5),
x[6] = * it % ¢ dom(0) for a variable x

6(x) otherwise,

* ¢[6] = ¢, for a constant ¢

° f(t1,...,tw)[6] = f(t1[6],...,ts[6]), for a function symbol f of arity
$1...54 > 8

e T[6]=Tand L[6] =L

® p(t1,...,t)[6] = p(t1[6],...,tu[6]), for a predicate symbol p of arity
S1...8p

o (= t2)[6] = (t:1[6] Zt, [6]), for terms t; and t;
o (D+W)[5] = (P[6] *W[5]), for Z-formulas @, ¥, and * € {A, V, =, &}
e (=®)[6] = =(®[5]), for a E-formula

* Suppose vi,,...,yi, (i1 < ... < i;) are exactly the variables y; € Y
among V1, ..., Y, such that

Vi € FVs(i)(Qx.®@) and y; # t;, where Q € {3,V}.

3.3 Symbolic Graphs ans Symbolic Graph Transformation

Then set

[tl...tn] ([tio...tir u])
(Qx.®) | —— = |=Qu. || >2—"T"—
yl---]/n yio...yirx

where u = x if x does not occur in t;, . . . t;,; otherwise choose u such that
u is a variable in X, ;) that does not occur anywhere in ® or t;, ... t;,.

3.3 SymBovric GrRaPHS ANS SymMBOLIC GRAPH TRANSFORMATION

In this section we introduce symbolic graphs and symbolic graph transformation
based on the DPO approach. Symbolic graphs were originally introduced by Orejas
etal. in [OL10b], as an attribution concept for graphs. A symbolic graph consists of
an E-graph and a X-formula, where an E-graph is a graph with an additional kind
of label nodes, used as placeholder for attribute values. Instead of assigning concrete
values directly to the label nodes, symbolic graphs provide a more expressive kind
of attribution by considering the label nodes as variables and constraining their
values by a X-formula.

3.3.1 The Category of Symbolic Graphs

Before we define symbolic graphs we have to establish the category of E-graphs.
Definition 3.48 (E-graph and E-graph morphism).
An E-graph is a tuple G = (V, Xg, EZ,E}G(, sg, s}G(, tg, t}G() consisting of:
* Vi and X the sets of graph and label nodes, respectively
. Eg and Eé the sets of graph and label edges, respectively
and the source and target functions:

o sL:El - Vgand tl : El — V relating two graph nodes

. S)G(: E)G(— Vg and té : Eé — X assigning a label node to a graph node

An E-graph morphism h : G — H from E-graph G to E-graph H is a tuple of
total functions

h = (hv 5 VG — VH,]’IX 5 XG _>XH;hEV 5 Eg _)EI‘-/I’hEX 5 Eé —)Eﬁ),

such that 1 commutes with source and target functions, i.e., hy o sg = sl‘g ohgy,

hvotg = thhEv,hVOSé(ZSEIOhgx,hXOté = téOhEx.
Fact 3.49 (The category EG).

E-graphs together with their morphisms form the category IEG of E-graphs.

Note that in contrast to the definition above, E-graphs are usually defined with an
additional kind of edge label nodes and corresponding edge label edges. However,

45

46

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

as attribution of edges is not supported of the most practical approaches we leave
this out in order to improve readability.

Analogously to graphs, E-graphs can be extended by a type concept, leading to
typed E-graphs and typed E-graph morphisms.

Definition 3.50 (Typed E-graph and E-graph morphism).
A E-type graph is a distinguished E-graph
G = (Vrg, X16, Etg, Eq6, S16/ 575/ Hor tro)s

where V1c , X1¢, E TG, and EX define the graph node, label node, graph edge
and label edge type alphabet respectively.

A typed E-graph is a tuple (G, type) consisting of an E-graph G and an E-graph
morphism type : G — TG.

A typed E-graph morphism h : (G, type;) — (H, type,) is an E-graph morphism
h : G — H such that type, o h = type,.

Typed E-graphs over an E-type graph TG together with typed E-graph mor-
phisms constitute the category TEGrs.

Fact 3.51 (The category TEG1G).
Typed E-graphs over an E-type graph TG together with typed E-graph mor-
phisms constitute the category TEGrs.

Note that given an E-type graph TG, the category TEG7c of typed E-graphs over
TG is isomorphic to the slice category EG\TG.

As we shall use various different kind of morphisms classes in this thesis, we
introduce a self describing naming scheme for morphism classes, to improve the
readability of this thesis. Since the mapping mode for label nodes often differs
from the mapping mode for the other components, we apply the following naming
scheme. A class of E-graph morphisms is denoted as XY, where X € {M, I, &}
specifies the mode for mapping graph nodes, graph edges, and label edges; the
superscript y € {inj, bij, surj, +} specifies mode for mapping the label nodes. More
specifically, M means injective, 7 means bijective, and & means surjective for graph
nodes an all kind of edges, respectively. The superscript inj denotes an injective,
bij a bijective, surj a surjective, and * an arbitrary mapping for label nodes. Typed
E-graphs are denoted as X;.. According to this scheme the classes 7% and M

correspond to isomorphisms and monomorphisms in category [EG; similarly, ITg

and M;lé correspond to isomorphisms and monomorphisms in category TEG1s.

Fact 3.52 (Properties of the category TEGts and EG [EEPT06]).
The following properties hold in the category TIEEGT: over a type graph TG:

a) TEGrtc has pushouts and pullbacks along arbitrary morphisms in TEEGt

b) TEGrc has binary coproducts

3.3 Symbolic Graphs ans Symbolic Graph Transformation

c) TEGts has an E-M factorization for & = SSTng the class of all typed epimor-
phisms and M = M;Z the class of all typed monomorphisms.

Moreover, the category TEGts with the class M;fg of typed E-graph mono-
morphism is M-adhesive. Hence, the category TEG7c with M = N = M?é is
(M, N)-adhesive (see Remark 3.19).

Note that the previous properties hold also for the category EG of (untyped)

E-graphs with (untyped) mono and epimorphism M™ and &7.

Symbolic graphs can be defined by combining E-graphs with X-formulas as
follows:

Definition 3.53 (Symbolic graphs [OL10b]).

Given a XZ-structure O and a set of variables X = (X;)ses, a symbolic graph
G® = (G, D) consists of an E-graph G and a X-formula ®¢ € ¥ (X), such that
UsesFV(@g) € Xg, where | denotes the disjoint union.

In the following, we sometimes write G® as a shorthand notation for a symbolic

graph (G, @¢). As defined above, label nodes serve as variables for formulas. Usu-

ally, we use the term label nodes to refer to the corresponding nodes in the graph

component, and the term variables to refer to the corresponding elements in the

Y-formula. However, we sometimes refer to the label nodes as variables, too.
Symbolic graph morphisms are defined as follows:

Definition 3.54 (Symbolic graph morphisms [OL10b]).
Given a Z-structure D, a symbolic graph morphism h : G® — H® from symbolic
graph G® = (G, ®¢) to symbolic graph H® = (H, ®y) is a pair (I, i) consisting
of an E-graph morphism / : G — H and a variable map

i i FV(®g) — FV(Dy) = (125 : FV(®g) — EV, (q)H))SES

such that (1) commutes and D = ®y = Dg [fz], where the vertical morphisms
in (1) are inclusions.

FVs(Pg) — hs — FVs(Pp)

o]

XG 7hG,X — XH

Fact 3.55 (The category SGp).
Symbolic graphs over a Y-structure O together with symbolic graph mor-
phisms form the category SGo.

47

48

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

Fact 3.56 (5Gp has pushouts [OL10b]).
Given a X-structure 9, the category SGp has pushouts along arbitrary mor-
phisms in SGp.

Remark 3.57 (Construction of pushouts in SGop).
Diagram (1) is a pushout in SG o iff diagram (2) is a pushout in EG and

D = Pp & (Pp[h'] ADc[S]).

(A, @4) — f— (B, Pp) A—f— B
\

S0 o
(C,@c) —f'— (D, ®p) C—f—D

Note that, the X-formula component of the pushout object can be constructed
purely syntactically.

Fact 3.58 (SG p has pullbacks [OL10b]).
Given a Z-structure O, the category SGp has pullbacks along arbitrary mor-
phisms in SGp.

Although, SGop has pullbacks along arbitrary morphisms in SGp [OL10b], for
this thesis it is sufficient to consider the construction of pullbacks for the case that
both morphisms are injective.

Remark 3.59 (Construction of pullbacks in SGp). Diagram (1) with f, g € M;n] is
a pullback in SGo iff, (2) is a pullback in EG and

DEdy & (Hbl .. .Elbn.q)B) \% (3C1 .. .Elcn.q)c),

where {by, ..., by} = Xp\ f3(Xa) and {c1, ..., cn} = Xc\g (Xa) are the label nodes
of B and C that have no preimage in A, respectively.

<A/(DA> 7f/*> <qu)B> A 7f/*> B
, |] |
AU P

<C/q)C> 7f4) <D,(1)D> C 7_](*} D

Analogously to E-graphs, symbolic graphs can be extended by a type concept. To
this end we define a symbolic type graph TG® = (TG, L) as an E-type graph TG and
formula L, which ensures that if there exists an E-graph morphism type : G — TG
from an symbolic graph (G, ®¢) to the symbolic type graph (TG, L) then fype is
also a symbolic morphism as D £ L = Og[type] in any Z-structure D.

3.3 Symbolic Graphs ans Symbolic Graph Transformation

Definition 3.60 (Typed symbolic graphs and morphisms [OL10b]).
Let O be any Z-structure and S the sort alphabet of X, a symbolic type graph
is a distinguished symbolic graph TG® = (TG, 1), with E-type graph

— %4 X V X 4V X
1G = (VTGI XTG/ ETG’ ETG’ STG’ STG’ tTGI tTG)’

such that X1¢ contains exactly one variable x; for each sort symbol s € S, i.e.,
X1e = Usess-

A typed symbolic graph is a tuple (G®, type) consisting of a symbolic graph G®
and a symbolic graph morphism type : G® — TG®.

A typed symbolic graph morphism h : (G, type;) — (H®, type,) is a symbolic
graph morphism 7 : G® — H® such that type, o h = type,.

Fact 3.61 (The category TSGp 16).
Typed symbolic graphs over an symbolic type graph TG® together with typed
symbolic graph morphisms form the category TSGp 1c.

In order to denote classes of symbolic graph morphisms, the naming scheme for
E-graph morphism classes is extended by adding to each E-graph morphism class
symbol a subscript that specifies the operator for relating the formula components
of the codomain an domain. Hence, a class of (typed) symbolic graph morphisms

is denoted as X (XZyTG).

According tho this scheme we can define the classes 7, cbfj and 1.7

TG which are
indeed isomorphisms in SGp and TSG o, 1¢, respectively.

Fact 3.62 (Isomorphisms in SGp and TSGp,1c).
Let SGp be the category of symbolic graphs over a Y-structure D. Given a
morphism h : (G, ®g) — (H,Pp) in SGop, then hh € Iil] if h is bijective for all
kinds of node and edges, and D £ Oy & D [fz] Moreover, if h € 1, ﬁff, then h is
an isomorphism in SGop.
The class of all typed symbolic graph isomorphisms 7, 2] 1G is given by
7 = 1% A Mor @
&,TG & SGp\TG®*
Proof. Given a morphism h : (G, ®g) — (H,®Pg) in Ig], to show that & is an
isomorphisms we have to verify that there exists a symbolic graph morphism
h=1: (H,®y) — (G, Pg) such that hoh™ = idy and h™'oh = idgc. As h is an
isomorphism in EG we know that there is an E-graph morphisms h™! : H - G
such that hoh™! = idyyand h™ o h = idg. Hence h™! is obviously also a symbolic
graph morphisms as /1 € ch;] implies that D £ Oy & O [fz], 0D ED; = Py [fl_l].
Given a symbolic graph isomorphism & : (G, ®g) — (H,Pp), there is an sym-
bolic graph morphism h=1 . (H,®y) — (G, &) such that hoh™! = idy and
hloh=idc.
From symbolic graph morphism /# we obtain

D E Oy = Og[h]. (3.1)

49

50

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

From symbolic graph morphism 1~ we obtain
Dk dg = dy[h™],
which can be rewritten as
Dk (0 = ou[h™])[A] & (Dclh] = Pulhoh™]),

leading to
D E Og[h] = Oy, (3.2)

ashoh™ =idy.
From expressions 3.1 and 3.2 follows

DeEdy & (DG[}AZ];

hence, h € T, ﬁff.
Showing that 7 il]TG is the class of all typed symbolic graph isomorphisms is

similar. m]

3.3.2 Typed Symbolic Graph Transformation Systems

Based on the results originally presented in [OL10b], we define (M, N)-adhesive
transformation systems for the category of typed symbolic graphs.

Hence, we have to fix the classes M and N such that (TSGop 16, M, N) is
an (M, N)-adhesive category. One may wonder whether typed symbolic graphs
with the class M consisting of all typed symbolic graph monomorphisms is an
(M, N)-adhesive category; unfortunately, as shown in [OL10b], the answer is no.

However, the category TSG o 1¢ becomes an (M, N)-adhesive category by choos-
ing M = M7 __and N = M

bij * .
TG ~ 1c- The classes M_ ;; and M ;; are given as
follows:

Definition 3.63 (MZZ 1 and M, . --morphisms).
Let SGp be the category of typed symbolic graphs over a X-structure D, given

a morphisms & : (G, ®g) — (H, Py) in SGop then:

* he MZZ if h is injective for graph nodes and all kinds of edges, bijective
for label nodes, and D £ Oy © D¢ [ﬁ]

* h € ML if h is injective for graph nodes and all kinds of edges, arbitrary
for label nodes, and D £ Oy = D¢ [fz]

Let TSGp, 16 be the category of typed symbolic graphs over a Z-structure D

and a symbolic type graph TG?, the classes M, 1 and M

o,TG are given as

+ _Ag* bij

_ gl
oTC = MS N MorSGD\chp,

respectively.

3.3 Symbolic Graphs ans Symbolic Graph Transformation

Note that in [OL10b] it was shown that the category of symbolic graphs with
MY o-morphisms is an M-adhesive HLR category (therefore, also TSGp 1c with
M ; TG—morphisms). Hence, to define transformations we may choose the class for
match morphisms as the class of all symbolic graph morphisms. However, more
advanced concepts, e. g., the construction of precondition application conditions
from constraints, are not applicable to arbitrary match morphisms. In [DV14] we

have shown that the construction of precondition application conditions from con-

straints is possible for the choices M = MO o1 and for N'= MZ ..

Theorem 3.64 (TSG o 1c with M = MY and N = M

o,TG =1TG is (M, N)-adhesive).

Let TSG p, ¢ be the category of typed symbolic graphs over a given X-structure
D and symbohc type graph TG®, then the category TSG p ¢ with morphism
classes M = M g rc and N = M; ¢ 18 (M, N)-adhesive.
Proof. In [OL10b], it was shown that SGp with M = Mbij is M-adhesive. Accord-
ing to Remark 3.19, to show that TSGp ¢ with M = Mbl] cand N = M; TG
is (M, N)-adhesive, we have to ensure that (a) MZ, contalns all 1somorphlsms
(b) MZ, is closed under composition and decomposition, (c) MZ, is closed under
Mbij decomposition, and (d) MZ, is closed under pushouts and pullbacks along

Mb o-morphisms:
a) Itis obvious that 7, ﬁ:j is a subclass of MZ,

b) ML, is closed under composition and decomposition, as injectivity is preserved
componentwise under composition and decomposition, and any symbolic graph
morphism that is injective for graph nodes and all kind of edges is in MZ,

c) As MZZ is a subclass of ML, it follows from (ii) that MZ, is closed under
Mg-decomposition.

d) ML is closed under pushouts and pullbacks along Mg—morphisms, as injec-
tivity is preserved componentwise by pushouts and pullbacks along arbitrary
morphisms (Fact 3.9 and Fact 3.13), and any symbolic graph morphism that is
injective for graph nodes and all kind of edges is in MZ,.

bz]

As a direct consequence of Fact 3.21, we have that TSGp,1c with M = M ;- and

N =M, 1 1s (M, N)-adhesive, as it is isomorphic to the slice category SG @\TGCD
with M = (Mg N Morsg,\1G) and N = (ML N Morsg,\16)- O

Based on the category TSGyp, g with MZZ TG-morphisms we can define typed
symbolic productions and transformation systems.

Definition 3.65 (Typed symbolic productions and typed symbolic transforma-
tion systems [OL10b]).

A typed symbolic production p = ((L,®r) <l— (K, Dk) 5 (R, ®R)) consists of a

51

52

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

left production morphism | : (L, ®r) — (K, ®k) and a right production morphism
r: (R, Dr) — (K, D), which are both of class MZZ’TG.

A typed symbolic graph transformation system TSGTS, is given by a finite set of
typed symbolic productions P and a the class of MZ, ;.- of match morphisms.
Note, that [, r € MZZ/TG implies that ®@r, @k, and Pr are equivalent, often they are
the same formula.

Corollary 3.66 (TSGTS are (M, N)-adhesive).
Any typed symbolic graph transformation system TSGTS constitutes an (M, N)-
adhesive transformation system in the sense of Definition 3.24.

Proof. This is a direct consequence of the fact that the category TSGp g with

Y and N = M*._is (M, N)-adhesive. O

morphism classes M = M_ ;. TG

34 MobpEL TRANSFORMATION BY SYMBOLIC GRAPH TRANSFORMATION

Up until now, we introduced the concepts of symbolic graphs and symbolic graph
transformation on a very abstract level. In the following, we present how the con-
cepts introduced for the campus management system (introduced in Chapter 2) are
represented by symbolic graphs and symbolic graph transformations.

Similar to the case of nonattributed graphs, metamodels correspond to a type
graph, except that a symbolic type graph contains edges and nodes for representing
attributes and attribute types. This is shown in the following example.

Example 3.67 (Symbolic type graph for the CMS metamodel).

Figure 3.1 shows the symbolic type graph for the facility management component
of CMS metamodel originally presented in Figure 2.1. It contains a graph node
(solid box) for the classes Room and Booking, a graph edge (solid line) for the
association bookings, a label node (rounded box) for the attribute types int and
long, as well as a label edge (dashed line) for each attribute; that is, a label edge
for the attributes cap, capExam, start, and end, respectively.

An instance model is represented as a symbolic graph, where objects correspond
to graph nodes, links to graph edges, attribute slots to label edges, and attribute

facility management ‘

bookings : start |

BOOKING

Figure 3.1: The type graph for the CMS metamodel

3.4 Model Transformation by Symbolic Graph Transformation

values to label nodes. However not every symbolic graph is an instance model.

Recall, that an instance model represents a snapshot of a system at a specific time
(see Section 2.1.1). Hence, every attribute slot of an object has to point to a concrete
value, which leads us to the notion of grounded symbolic graphs.

Basically, a grounded symbolic graph over a X-structure with domain |D| may
be considered as a symbolic graph containing a variable x, for representing every
value v € |D|.

Definition 3.68 (Typed grounded symbolic graphs [OL10b]).
Given the category TSGp 1c over a L-structure D and symbolic type graph
TG®, a typed symbolic graph G® = (G, ®) is grounded iff

e X includes a variable x, for each value v € | D]

¢ for every assignment C such that (D, C) £ ®, we have ((x,) = v, for each
variable x, € Xg

g enl.enrolled

[rol.cap] [rol,capExamj [enl.studldj

rol : Room enl : Enrollment
bookings
enl.regCp

bol : Booking

cRecords

crl : CourseRecord

(daAIgi.beginj [daAIgl.duration)

offer

exAlgl : Exam|&|cmol - CoModOffer|

2c
... A (rol.cap=479) A (rol.capExam=72) A (enl.enrolled=true) A (enl.studld=1234567) A
(

[exAIgI.statej [exAIg; regSt]

enl.state=EN_ST.STUDY) A (enl.regCp=96) A (enl.cp=57) A (crl.grade=5) A (crl.tries=1) A (cmol.cp=6) A
(exAlgl.state=EX_ST.PLAN) A (exAlgl.regSt=72) A (daAlgl.begin=26.11.2042; 13:00) A (daAlgl.duration=02:00)
A (bol.begin=26.11.2042; 14:00) A (bol.end=26.11.2042; 16:00) A ...

Figure 3.2: A typed grounded symbolic graph representing a model of the CMS

Next, we present an example of a typed grounded symbolic graph.

Example 3.69 (Grounded symbolic graphs as a models).

Figure 3.2 depicts a grounded symbolic graph, typed by the CMS type graph.
Note that Figure 3.2 displays only a section of the CMS system, which is as-
sumed to comprise hundreds of rooms and exams, and thousands of enroll-
ments. The graph nodes are depicted by solid boxes labeled with an node
identifier followed by a colon and the type identifier (i. e., the identifier of the
corresponding element in the CMS type graph). The graph edges are denoted
by solid arrows. Graph edges are tagged with the identifier of the correspond-
ing type identifier in the CMS type graph. Label edges are denoted by dashed

53

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

arrows. The rounded boxes represent label nodes. To improve readability, label
nodes are tagged by the identifier of the corresponding object and the attribute
identifier (i.e., the type identifier of the label edge) separated by a period.
However, note that in general, these labels can be chosen arbitrarily. We do not
explicitly denote the type of the label nodes as it is uniquely determined by the
type of the attribute. The corresponding X-formula is shown on the bottom of
Figure 3.2. As stated in Definition 3.68, a grounded symbolic graph has a label
node for each value in the domain. As it is impossible to display all of them, we
depict only those label nodes and only the formula parts which are of interest.
Similar to the previous chapter we denote dates in the DD.MM.YYYY; hh:mm
and times the 24 h clock format hh:mm;

One may assume that is sufficient to include label nodes for only a subset of |D].
However, this is not the case. The problem is, that by definition, symbolic direct
transformations cannot add label nodes; thus, all required values have to be present in
a symbolic graph before applying a symbolic production.

Definition 3.70 (Construction of typed symbolic direct transformations).

Given a typed symbolic production p = ({L, ®r) <l— (K, Dg) 5 (R,®PRr)) and a
match m : (L, ®r) — (G, Pg). Production p is applied to (G, Pg) at match m
as follows:

* Construct D as the pushout complement of | and m: Delete those nodes and
edges in G that are in the match (i. e., m(L)) but keep the image of K (i.e.,
m(l(K))); that is, D = (G\m(L) Um(I(K))). The pushout complement
exists if D does not contain dangling edges, i. e., edges whose source or
target node was deleted.

¢ Construct H as the pushout of r and k: Add to D those nodes and edges that
are in R but not in L; thatis, H = D U (R\r(K)).

<L,©K> —]— <K,CDL> —r— <R,q>R>

I SR
(G, @¢) —8— (D, ®p) —h— (H,Pp)

bij : bij :
As | and r are M .-morphisms and M .-morphisms are closed under

pushouts we know that also g, 1 € MZZZ - Hence, D k @¢ [¢] © Pp © Dy [fl]
Moreover, as g and h are bijective for label nodes and we may assume that
Eg = Eé = Eﬁ as well as ®p = Og and @y = Og (and consequently Pp = D).

As a direct consequence, if @ is grounded then also ®p and @c.

Example 3.71 (Direct transformation via a symbolic production).
Figure 3.3 shows an example for a direct transformation. The symbolic version
symbBookRoom of production bookRoom originally presented in Chapter 2

55

3.4 Model Transformation by Symbolic Graph Transformation

69°¢ ardurexg ur umoys yder3 sroquifs papunoid a3 jo nomnd ue 0} wooyyoogquiAs uononpoid orjoquuAs jo uoneoridde ayJ, :¢'¢ G

v (00:91

)

Ve

Vv (00:GT ‘zv0T 11°92=Pu20q) V (00:€T ‘cr0Z 11°9¢=.uI82q'0q) v (AQVIY LS XI=,21e15'I3|yx2)
'TP0T TT'92=Pu210q) V (00:¥T ‘T¥0Z IT°9¢=w12q°10q) V (¢,=15824 18|y*@) V (NV1d'LS
Vv (00:z0=uoneinp 13|yep) v (00:€T ‘gv0T TT°9z=u82q 18|yep) v (g,=wex3aded1o1) v (6Lp=ded> Tos

~XJ=91e35 TS| yxo)

ummﬁ.ﬁm.{xw -A.:...*mem . Hm_<xw_

pr—— TR
_ 91e315 13|yxe -

uigaq

a1ep,
181vep)¢ [STEQ - IBIVEP}w

uoneunp S|yep

:o_umuo_e

H,:

_wwn.onué::.:—.m.:_xoom B OQ_........VH,U:w.onu

_ wex3jded 104 -A wooy

7]

21835 T3 yxe

_ DR ETAS) -A.:...._mem B Hm_<xw_ _ 91e15" 13| yxd -

a1ep
i OTEQ © T8V EP s

uigaq 13|yep

uoneinp 13|yep

wex3des os fe--- wooy : ol

mewﬁxww :_Emem_ ”xw_ mwumum.xwu

mum_u,_\

m:_mg.m@ -[31eQ * ep}-- vﬁ co_um:ﬁ.mnu

91815 T3|yXxo

umeAm(xw -A.:...*mem . Hm_<xw—...:.v SRR ES)

a1ep,

139G 13|yep J¢{d18(Q * T38|V EP}repUoiRIND 13| 7P

co_#muo_,—\
m,c_mﬂﬁoaw‘:_.m.c_xoom 7oq]- vm,_u:m.oé
s3uijooq

]

HEme_mmu.Ho‘_uA:::._EOOW_ T 104

s3urjooq

)
u
|

s
HEme_amu.ﬁoLuA......._EOON_ : ._”OL_|V_M:_V_OOM_ R .HOQ_
; s3uijooq o~ W
A
A
|
mew&xww _mem H xw_ ﬁwumum.xwu
wumv/—
ﬁ_ww@.mvw -[33eQ *ep}- vﬁ:o_um‘_:w.mvu
1

wex3jded od ... _EOOW_ © 0l

vmwumym.xwu

R m_u— ““““ vﬁ :o_um_:v.mnu

1]

((uoneinprep+uigaqrep=,pua-oq) v (uiaq-ep=u32q-0q) vV (AQVIY LS XI=.23€35X3) V (NV1d LS XI=23e3s'X3) V (3582.'X0 wexgdedou)
znv =S MAV = 40

56

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

is shown on top of Figure 3.3. To improve readability, we use the same la-
beling scheme for variables (label nodes) as introduced in Chapter 2; that is,
nonprimed variables denote the attribute values before and primed variables
represent the newattribute values after applying the production, although they
appear on the left and right-hand side in case of symbolic productions. The
production is applied to an excerpt of the grounded symbolic graph (G, @)
(shown Figure 3.2). To improve readability we have left out the parts irrelevant
for applying production symbBookRoom The production is applied by first
finding a match m for the left hand side (L, ®.) in (G, @). The actual match
for the E-graph component L in G is drawn bold; that is, m maps graph nodes
ro to ro1, da to daAlg1, and ex to exAlg1. The mapping of the label nodes is given
by the variable map r:

rol.capExam bo.begin’ bo.end’ daAlgl.begin daAlg1.duration

ro.capExam bo.begin’ bo.end’ da.begin da.duration

exAlgl.state exAlgl.regSt exAlgi.state’

ex.state ex.regSt ex.state’

Note, as (G, @) is a grounded symbolic graph, we can assume that (G, ®-)
contains label nodes bo.begin’ and bo.end’, and exAlg1.state’ with the corre-
sponding equality predicates (as shown in Figure 3.3).

To verify that m is a symbolic graph morphism we have to show that

D IZQG ﬁCDL[ﬂA’l]

To this end, we rewrite @ and @[] as shown in the following table:

e @[]
A
(ro1.capExam=72) A
(daAlg1.begin=26.11.2015; 13:00) A (ro1.capExam< exAlg1.regSt)
(daAlg1.duration=02:00) A (exAlg1.state=EX_ST.PLAN)
(exAlg1.state=EX_ST.PLAN) A - (exAlg1.state’=EX_ST.READY) A
(exAlg1.state’=EX_ST.READY) A (bo.begin’=daAlg1.begin) A
(exAlg1.regSt=72) A (bo.end’=daAlg1.begin+daAlg1.duration) A

(bo.begin’=26.11.2015; 13:00) A
(bo.end’=26.11.2015;15:00) A

(ro1.capExam=72) A
(exAlg1.regSt=72)

= (rol.capExam<exAlg1.regSt),

(exAlg1.state=EX_ST.PLAN) A N (exAlg1.state=EX_ST.PLAN) A
(exAlg1.state’=EX_ST.READY) (exAlg1.state’=EX_ST.READY),

3.5 Open Issues of Symbolic Graph Transformations

(bo.begin’=26.11.2015; 13:00) A
(daAlg1.begin=26.11.2015; 13:00)

= (bo.begin’=daAlg1.begin), and

(bo.end’=26.11.2015;15:00) A
(daAlg1.begin=26.11.2015; 13:00) A = (bo.end’=daAlg1.begin+daAlg1.duration),
(daAlg1.duration=02:00)

the implication D £ @ = @[] is valid. Recall that although dates and times
are denoted in the DD.MM.YYYY;hh:mm and hh:mm format, they are internally
represented as values of type long. Hence, arithmetic on dates and times is, in
fact, arithmetic on long values.

The production is applied by first constructing (D, ®,) as the pushout com-
plement of m and [, and afterwards constructing (H, ®;,) as the pushout of
r and k. Note, as | and r are bijections on label, also f and g are bijection on
label nodes (Definition 3.20). Moreover, we have D £ &g & Op < Py. Conse-
quently, the fact that (G, ®) is a grounded symbolic graph, implies that also
(D, ®,) and (H, ®,,) are grounded symbolic graphs.

The resulting grounded symbolic graph (H, @,;) contains a new booking bo
for room ro1, for the date daAlg1 of exam exAlg1.

3.5 OpreN Issues orF SymBoLic GRAPH TRANSFORMATIONS

Based on the previous overview, we evaluate symbolic graph transformations with
respect to their applicability to fulfill the objectives presented in the introduction
of this thesis. Accordingly, we discuss the application of symbolic graph transfor-
mations regarding (i) their feasibility to finitely represent attributed graphs and
transformations, as well as (ii) their ability to be used for consistency constraint
verification and conflict analysis. Moreover, based on this overview we further
motivate and detail the key contributions presented in the remainder of this thesis.

We begin with discussing the notion of grounded symbolic graphs for represent-
ing models. Recall that a grounded symbolic graph contains a label node for each
data value in the domain. Hence, in case of unbounded domains this leads to infi-
nite graphs, although the corresponding instance model might be finite. Another
aspect is the coding of attribute values as conjunctions of equality predicates that
leads to infinite formulas in case of unbounded domains, which are not permitted
by the definition of X-formulas. Although, the problem might be solved by coding
attribute values as sets of -formulas, the conceptual difference between grounded
symbolic graphs and the notion of instance models (see Section 2.1.1) still remains.

Now we consider the application of symbolic productions to nongrounded sym-
bolic graphs. As symbolic graph transformation systems are (M, N)-adhesive, it
seems reasonable to expect that symbolic productions may also be applied to arbi-
trary (i. e, nongrounded) symbolic graphs. While from a theoretical point of view
this is possible, in practice, the application of symbolic production to nongrounded
symbolic graphs does not always behave as expected, which is demonstrated by
the following example.

57

58

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

[[[
LS O (ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A (bo.end'=da.begin+da.duration)

[ro : Room}"{ro.capExam] \L \ﬁ [ro - Room}"{ro.capExam] \i
bookings
- (st o - Boking} (smeg)
location
[da,duration}"{da : Date} """" >[da.begin] <1 T [da.duration}"{da . Date} """" >[da.begin]
date date
[exstate} """" {ex : Exam} """" >[ex.regStj [exstatej |ex : Exam} """" >[ex.regStj
[rol : Room}"{rol.capExam]\Q
o sk
location
(daAIgl.duration}"{daAlgl : Date} """" >[daAIgl.beginj [daAIgl.duration}"{da : Date} """" >[daAIgl.begin]
date date
[exAIgl.state} """" {exAIgl . Exam} """" {exAIgl,regSt] [exAlgl.state) |exA|g1 . Exam} """" {exAIgl,regSt]
g
@(rol.capExam:72) A (exAlgl.state=EX_ST.PLAN) A (rol.capExam=72) A (exAlgl.state=EX_ST.PLAN) A &2
(daAlgl.begin=26.11.2042;13:00) A (daAlgl.duration=02:00) A (daAlgl.begin=26.11.2042;13:00) A (daAlgl.duration=02:00) A
(exAlgl.regSt=72) (exAlgl.regSt=72) A

(exAlgl.state’=EX_ST.READY) A (bo.begin'=26.11.2042; 13:00) A
(bo.end’=26.11.2042; 15:00) A

Figure 3.4: Limitations of symbolic productions

Example 3.72 (Limitations of symbolic productions).

We might expect that it should be possible to apply production symbBookRoom
to typed symbolic graph (G, @) (depicted on the bottom left in Figure 3.4)
resulting in the typed symbolic graph (H, ®py) (depicted below right in Fig-
ure 3.4); However, this is not possible. Lets assume first that the dashed label
nodes bo.begin’, bo.end’, and exAlg1.state’ do not exists in (G, Ps). Hence, we
cannot find a match for the left-hand side graph L in graph G. Notice that,
although, the match need not to be injective for label nodes, we may not map
label nodes bo.begin’ and bo.end’ (from L) to any other label node in G as
®; = D [1i1] would not be valid.

Now, assume that G is supplied with an unlimited number of label nodes;
hence, we may assume that G includes label nodes bo.begin’, bo.end’, and
exAlg1.state’. However, we still cannot apply the production symbbookRoom to
(G, D), because O = Dy [171] is not valid.

To solve this problem we have to assume that (G, @) contains a label node
for each value in O with corresponding equality predicate in ®g, which means
that (G, @¢) is a grounded symbolic graph.

As shown in the previous example, to apply a symbolic production, the match has
to include also a mapping of the primed label nodes (which represent the new
attribute values). Grounded symbolic graphs guarantee the existence of such an
appropriate mapping by including a certain label node for each value of a domain.
However, in general (i. e., for arbitrary symbolic graphs) this is not the case. Hence,

3.5 Open Issues of Symbolic Graph Transformations

the application of symbolic productions to arbitrary symbolic graphs does not lead
to the expected results, i. e., they are just not applicable in most cases. Nevertheless,
especially to apply conflict analysis techniques to symbolic graphs (see Chapter 8),
it is necessary to apply productions also to nongrounded symbolic graphs.

Orejas et al. approached this issue by introducing lazy graph transformations in
[OL10a]. The basic idea of lazy graph transformations is to permit productions to
create label nodes and constraints. Consequently, the required label nodes need not
to be provisioned beforehand. To this end, lazy graph transformations are based on
productions with different classes for left and right production morphisms. Simi-
lar to symbolic productions, the left production morphisms are restricted to class
MZ],TG. The right production morphisms has to be only a symbolic graph monomor-
phism (instead of in class MZ,TG as for symbolic productions). However, by permit-
ting symbolic graph monomorphisms for the right production morphisms, a lazy
transformation may affect the values of label nodes that are not part of its match.
This problem is illustrated in the following example.

Example 3.73 (Nonlocal effects of lazy graph transformations).

The lazy production shown on top of Figure 3.5 further restricts the value of
existing label node x by adding constraint (x=5). The direct transformation
derived by applying this production to a symbolic graph (G, ®¢) is shown
on the bottom of Figure 3.5. In addition to a label node x the graph G con-
tains an other label node y, whose value is given by (x=y). Applying the pro-
duction to symbolic graph (G, ®g) results in symbolic graph (H, ®y) with
Py © (x = y) A (x = 5). Hence, in addition to setting te value of x equal to 5,
the application implicitly sets also the value of y equal to 5, although label node
y was not in the match. In this way, lazy transformations violate the locality

property.

<3 —
o~ —
2

v
G D] [H]
o, h
(x=y) (x=y) (X:Y)/\(X:5)

Figure 3.5: Example of a transformation via a lazy production which has nonlocal effects.

The locality property allows for inferring global properties of productions (i.e.,
they are valid for all graphs) by only considering a finite subset of graphs. In
this way, the locality property forms the basis of almost all analysis techniques for
transformation systems, including the results for constraint verification and conflict
analysis techniques. As a consequence, constraint verification and conflict analysis
techniques cannot be applied to lazy transformations.

To sum up, in order to use symbolic graphs as a basis to achieve our objectives,
we need a transformation approach that (i) shows the desired behaviour when
applied to nongrounded graphs and (ii) provides the properties required for the

59

60

3 FunpaMENTALS OF SymBoLiC GRAPHS AND GRAPH TRANSFORMATIONS

constraint verification and conflict analysis techniques at the same time. To this end
we propose projective graph transformations in the next chapter. Basically, projective
graph transformations can be considered as a compromise between the nice formal
properties of symbolic graph transformations and the expressive power of lazy
transformations. Projective graph transformations follow the idea of lazy graph
transformations; that is, projective productions have different classes for left and
right production morphism. However, to ensure that projective transformations
have only local effects, we require the right production morphisms to be in the
class of projection morphisms. The class of projection morphisms and the con-
cept of projective graph transformations is introduced in Chapter 4. Moreover, we
show that projective graph transformations provide the desired behaviour when
applied to nongrounded graphs. In order to show that projective graph transforma-
tions provide the required formal properties, we first introduce (£, R, N)-adhesive
transformation systems in Chapter 5. Basically, (£, R, N)-adhesive transformation
systems are a generalization of (M, N)-adhesive transformation systems in order
to cope with productions that require different classes for left and right production
morphisms. In Chapter 6, we show that projective graph transformation systems
fit into the framework of (£, R, N)-adhesive transformation systems. Subsequently,
we show in Chapter 7 and Chapter 8 that constraint verification and conflict analysis
techniques lead to the expected results when applied to projective graph transfor-
mation systems.

PROJECTIVE GRAPH TRANSFORMATIONS

In this chapter we present projective graph transformation systems as an extension
of symbolic graph transformations. In contrast to symbolic productions, projective
productions can create label nodes and constraints. Hence, projective productions
are appropriate to transform also nongrounded symbolic graphs, as the required
label nodes can be created on the fly.

We begin with introducing the class of projection morphisms in Section 4.1.
Based on this morphism class we define in Section 4.2 the notion of projective graph
transformation systems. In Section 4.3 we discuss the application of projective graph
transformations in the context of model transformations and show that projective
graph transformations solves the shortcomings of symbolic graph transformations
in this context.

In the following, we present all constructions directly for typed symbolic graphs.
To this end, we assume for the rest of this chapter that category TSGo 15 is given
by a symbolic type graph TG® and a Z-structure D.

4.1 ProjecTtioN MORPHISMS

;’rlr]oj,TG’
A projection morphism a : (A, ®4) — (B, @p) is a symbolic graph monomorphism
such that @4 is a projection of ®p. Intuitively, @4 is a projection of ®p, if ®4 is
equivalent to Jdxy ...dx,.Pp, where {x1,...,x,} = Xg\ax(Xa) is the set consisting
of all variables that are in Xp but not in X4. In such a way any solution for ®4 can
be extended to a solution of ®p.

In the following, we give a more general definition of projection morphisms,

In this section we introduce the new class M of typed projection morphisms.

whereas Mi_ij 1 18 the class of typed symbolic monomorphisms.

Definition 4.1 (Typed projection morphism).
An MZ?ITG—morphism a: (A ,®x) — (B, Dp) is a typed projection morphism, i.e.,

inj
a € Mpyirer
E-graphmorphismsz : Z — Bandz’' : Z — Asuchthatz = a oz’, the following

statement is true:

if and only if for any typed symbolic graph (Z, ®z) with typed

D E D :>q)z[2] iff DEDy :>q32[2’].

62

4 ProjecTivE GRAPH TRANSFORMATIONS

(A, @4) a (B, ®p)

In other words, z is a typed symbolic graph morphism if and only if z”" is a
typed symbolic graph morphism.

We refer to this property in the following as the projection property. Moreover, we
shall see in the next sections that projection property is very useful to derive further
facts for projective graph transformations.

Up until now, we provided only an intuition for the construction of projection
morphisms by existential quantification. In the following, we show that the projec-
tion of a symbolic graph (B, ®p) to a given subgraph A of B can be constructed as
a pullback.

Definition 4.2 (Construction of projections).

Given a typed symbolic graph (B, ®g) and a typed E-graph A, both typed
over the same type graph TG. For an E-graph monomorphism a’ : A — B, the
projection morphism a : (A,®4) — (B,®p) is constructed as the projection
Proj({(B, ®p),a") of (B, ®p) to A viaa’, which is defined as follows: First construct
symbolic graph (B, L) with typed symbolic graph morphism i : (B, ®g) —
(B, 1) givenby i = idp, where idp is the identity morphisms of B in the category
TEG7c. Inasecond step, symbolic graph (A, L) is obtained from typed E-graph
A and 1. Note that morphism i : (B,®p) — (B, L) and a’ : (A, L) — (B, L) are
symbolic,as D k L = g and D F L = L[4#’] hold in any X-structure D.

(A, Ly —ad'— (B, 1)

i" (1)

(A, ®4) —a— (B,Pp)

—
——

Finally, the projection morphism a : (A,®4) — (B, ®p) is obtained by the
pullback (1) of a” and i.

Remark 4.3 (Properties of projection construction via pullbacks).
Note that pullback (1) in the previous definition is also a pushout in TEGrg, as
morphisms i = idg and i’ = id, are given by the identities in TEGrg, and every
commuting square along identities is a pushout (Fact 3.14.c). Moreover, pullback
(1) is also a pushout in TSGp 16, as D E L & (L A ®p) is valid in any Z-structure
D; hence, the X-formula L of the pushout object (B, L) is always equivalent to the
conjunction of the X-formulas of (A, L) and (B, ®3).

Note, as (1) is a pullback and a’ as well as i are monomorphisms, ®4 is equiva-
lent to by ...3b, . ®p V L, which simplifies to by ...3db, . O, where {b1,...,b,} =
Xp\ax(Xa).

41

Projection Morphisms

(L) (L)
|ro : Room} """" >[ro.capExamj\L |ro : Room} """" >[ro.capExamj \L
[da.duration) """" {da . Date} """" >[da.begin) ——a'—> (da.duration) """" {da . Date} """" {da.beginj
date date
(ex.state} """" {ex . Exam}- >[ex.regStj (ex.state} """" {ex . Exam}- >[ex.regStj
A r
] f
|ro : Room} """" >[ro.capExamj\L |ro : Room} """" >[ro.capExamj \L
[da.duration]< """" {da : Date} """" { da.begin] a—> [da.durationj‘ """" ida : Date} """" ’[da.beginj

'Tdate

(ex.statej("""" {ex N

Exam } """" >[ex. regStj

'Tdate

(ex.statej("""" {ex N

Exam } """" >[ex. regStj

(ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A
(bo.end'=da.begin+da.duration)

J(ex.state’).3(bo.begin’).3(bo.end’).
(ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A

(bo.end'=da.begin+da.duration)

Figure 4.1: Construction of Projections

Example 4.4 (Construction of projections).

Figure 4.1 shows the construction of a projection morphism according to Defi-
nition 4.2, where (L, @1,) corresponds to the left-hand side of production symb-
BookRoom presented in Example 3.71. The idea is to use projection to remove all
label nodes that are not assigned to a graph node. To this end, we derive L” from
L by removing all label nodes not assigned to a graph node. Hence, there is an
E-graph monomorphism a’ : L’ — L which is given by the inclusion of L’ in L.
Then we construct the graphs (L, 1) and (L’, L) with symbolic graph morphism
i. Finally, we obtain projection morphisma : (A, ®4) — (B, ®p) by the pullback
of a” and i. Note, as both a” and i are injective, we can construct L” according to
Remark 3.59. Hence, @/ is equivalent to J(ex.state’).d(bo.begin’).d(bo.end").®y.

In the following lemma we show that any morphism obtained according to Defini-
tion 4.2 is a projection morphism, and every projection morphism can be obtained
according to Definition 4.2.

Lemma 4.5 (Construction of projection morphisms).
Let TSGp,1c be the category of typed symbolic graphs, every morphism

inj

a: (A, @,) > (A, Dy)isin Mpmj 1c if and only if it is constructed according to
Definition 4.2.
Proof.

If. Given projection morphism a : (A,®4) — (B, ®p), we have to show that the
commuting diagram (1) (shown below) is a pullback in TSGp 1. This is shown
by verifying the universal pullback property of (1); that is, for any typed symbolic
graph (Z,®z) and typed symbolic graph morphisms z : (Z,Pz) — (B, Pp) and

64

4 ProjecTivE GRAPH TRANSFORMATIONS

z" :(Z,Dz) = (A, L) with i oz = a’ 0 z”, there is a unique typed symbolic graph
morphism z’ : (Z,®z) — (A, Ps) withz” =i’oz’and z=ao02z’.

As i’ is given uniquely by i" = ids in TIEEGrs, we may obtain a unique typed
E-graph morphism z’ : Z — A as z’ = z”. Thus we have z” = i’ 0 z’. As the E-graph
components of a” and a are the same, we also have z = a o z’. By assumption, z
is a typed symbolic graph morphism and a a typed projection morphism; hence,
we can conclude from the projection property of a that z’ is also a typed symbolic
graph morphism. As z’ is unique in TEGrg it is also unique in TSGp 1c (up to
isomorphism).

Only if. Given pullback (1) constructed according to Definition 4.2, we have
to verify the projection property of a : (A, ®4) — (B, Pp); that is, for any typed
E-graph morphisms z : Z — B and z’ : Z — A with z = a o z’, we have to show
that (i) if z’ is a typed symbolic graph morphism, then also z; and (ii) if z is a typed
symbolic graph morphism, then also z’.

(i). As z’ and a are typed symbolic graph morphisms, then also its composition
z=aoz.

(ii). First we construct typed E-graph morphism z” : Z — A as z” = i’ o z’. Mor-
phism z” is also a typed symbolic graph morphisms as D k L = ®z[2”] holds in
any X-structure 9. From the commutativity of (1) we know a’ o i’ = i o a. Hence,
from z” =i’ 0z’ and z = a o z’ we obtain

a' oz’ =a"0i’oz =iocaoz =ioz.

Consequently, we may use the universal property of pullback (1) with typed sym-
bolic graph morphisms z” and z to construct unique x : (Z,®z) — (A, ®4). To
show that z’ is a typed symbolic graph morphism, we have to show that x = z’.
From the universal property of pullback (1) we know that z = aox and z” = i’ o x.
By construction we know that z = 2 0 z" and z” = i’ 0 z’. As x is unique it must hold
that x = z’. Consequently, z’ is a typed symbolic graph morphism. m]

4.2 ProjectivE GRAPH TRANSFORMATION SYSTEMS

Based on the class of projection morphism we define projective productions and

projective graph transformation systems in the following.

inj
Proj, TG
is (M, N)-adhesive, which would imply that it is sufficient to choose

One may wonder whether TSGyp, g with morphism classes M = M and

— MM
N _ M =,1G
Mglrjo e for the left and right production morphisms. Unfortunately, this is not the

case as shown by the following example.

4.2 Projective Graph Transformation Systems 65

@]
Jb3e.((a=b)A(b=c)) f// \m, Ja.3b.((a =b) A (b =c))
] e 7]
@
~ Fb.((a=b)A(b=c)) |
n' |_k/g
Dl
aQ
b
o
d
— \

] —

_ S — 7
©o® 9 Jo
.
(@=1b) T— Q/g (=0
OO
(a=b)A(b=c)
(@)

Figure 4.2: Category TSGp, ¢ with M = M and N = M"Y

Proj, TG - 1c is not (M, N)-adhesive

inj

Proj,7G @Nd

Example 4.6 (The category TSG p 1c with morphism classes M = M

N = MZ:?ZTG is not (M, N)-adhesive).

Consider the commutative cube shown in Figure 4.2. It can be checked that the
bottom face is a pushout with m € M, the front and back faces are pullbacks in
TSGop 16, and ¢,d,b € M;Zo].,TG, f e MZZTG. Unfortunately, the commutative
cube is not a VK-square, as the top face is not a pushout. The problem is that
the formula

Ja.3b.Pg A Ib.Fc. D,

obtained by first projecting (B, ®p) to B’ as well as (C,®c) to C’ and then
constructing the pushout of (B, ®%) and (C’, @), is not equivalent to the
formula

Ab.(Og A D),

obtained by first constructing (D, ®p) as the pushout of (B, ®g) and (C, Dc)
and then projecting (D, ®p) to D’.

The problem shown in the previous example arises from the fact that D’ possibly
does not contain the label nodes of D to which B and C are glued together. The
problem can be avoided by requiring that morphism a (in the previous example) is
a bijection on label nodes (i.e., a € MZ,TG), which enforces that B’ and C’ are glued
along the same label nodes as B and C. This observation gives rise to the definition of
typed projective productions and transformation systems with a certain class for left and

right production morphisms, respectively. Moreover, we shall see in the next chapter that

66

4 ProjecTivE GRAPH TRANSFORMATIONS

transformation systems with a certain class for left, right, and match morphisms can be
generalized to the concept of (L, R, N)-adhesive transformation systems.

Definition 4.7 (Typed projective productions and typed projective graph trans-
formation systems (TPGTS)).

A typed projective production p = ((L, Pr,) L (K, ®k) - (R, D)) consists of a left
production morphism | : (L, ®r) — (K, Dk) of class Mzm and a right production

morphism r : (R, ®g) — (K, @x) of class M) .
A typed projective graph transformation system TPGTS, is given by a finite set

of typed projective productions P and a the class Mi:n)] 1 for match morphisms.

Note that the choice r € M;frjoﬂc

Hence, it is possible to apply projective productions also to nongrounded graphs.

inj
Proj, TG

put additional constraints on the values of created label nodes. For this reason,
projective graph transformations may not change the values of label nodes that are
not part of the match. Consequently, projective graph transformations have only
local effects, which is one of the fundamental requirements to prove the results
required for constraint verification and conflict analysis techniques.

Before we actually show that these fundamental properties indeed apply for pro-
jective graph transformations, we first show that projective graph transformations
address the main deficiencies of symbolic graph transformation systems.

is still sufficient to create label nodes on the fly.

Moreover, the choice r € M guarantees that a projective production may only

43 MobpEL TRANSFORMATION BY PROJECTIVE GRAPH TRANSFORMATION

Similar as done for symbolic graph transformations we show how the concepts of
instance models and transformations can be represented in the context of projec-
tive graph transformations. Moreover, we show that the shortcomings of symbolic
graph transformations (explained in Section 3.5) can be avoided by projective graph
transformations.

We begin with an alternative notion for instance models. As mentioned before, by
projective graph transformations it is possible to create label nodes and constraints
on the fly. Hence, it is possible to define useful productions for the transformation
of symbolic graphs that do not include label nodes for all domain values. This leads
us to the notion of definite symbolic graphs to represent instance models. The idea
of definite symbolic graphs is similar to that of grounded symbolic graph (that
is, we assign to each variable a definite value); however, in contrast to grounded
symbolic graphs, we do not have to include a label node for each domain value.

Definition 4.8 (Typed definite symbolic graphs).
Given the category TSGp 1c over a L-structure D and symbolic type graph
TG®, a typed symbolic graph G® = (G, D) is a definite symbolic graph iff:

¢ For all assignments C; and C; such that (D, (1) ¥ @ and (D, (o) E D, we
have C1(x) = Co(x) for each label node x € Xg.

4.3 Model Transformation by Projective Graph Transformation

* G is linear; that is, for each label node x € Xg, there is at most one label
edge e such that x = t}G((e).

Notice that we require G to be linear, in order to compensate that match morphisms
have to be injective for label nodes for projective transformations. However, this is
not really a restriction as every symbolic graph (G, @) can be transformed to a
linear symbolic graph. This is achieved by repeatedly creating for each pair of label
edges e1 and e, with same the target node x (i.e., tX(e1) = x = t}G((ez)) a new label
node y as well as conjuncting ®¢ with (x = y), and redirecting e; to y (i.e., set
tE(e2) =).

The idea of definite symbolic graphs is similar to that of a solution for X-formulas.
According to Fact 3.44, any solution C of a X-formula @ in a X-structure D (i.e.,
(D, 0) E D) can be represented as a (finite) conjunction of equality predicates @
such that (D,) £ ©. Hence, given a symbolic graph (G, ®g) with a finite set of
label nodes and a solution C of ®g, we can construct a definite symbolic graph,
just by replacing ®c with @ .. Moreover, there exists a symbolic graph morphism
s : (G, Pg) — (G, D) (given as idg in E-graphs), as D k O, = Pg (according
to Fact 3.44). Consequently, any finite instance model can be represented by a
finite definite symbolic graph also for unbounded domains. This representation
of instance model works perfectly for projective transformations as, in contrast to
symbolic transformations, projective transformations can create the required label
nodes on the fly, including the corresponding constraints for representing new
attribute values.

Example 4.9 (Definite symbolic graphs as models).

Figure 4.3 depicts the definite symbolic graph for the instance model model
originally presented in Figure 2.2. At a first glance, the definite symbolic graph
looks similar to the grounded symbolic graph shown in Figure 3.2. The differ-
ence is that the definite symbolic graph does not contain any label node and
equality predicate in addition to those depicted in Figure 4.3, in contrast to
the grounded symbolic graph of Figure 3.2, which was assumed to contain an
infinite number of label nodes.

In order to compare projective graph transformations with symbolic graph trans-
;qr]oj,TG
Hence, every symbolic production is also a projective production. This means, on
the one hand, that projective graph transformation systems can be considered as
a generalization of symbolic graph transformation systems. However, on the other
hand, we might run into the same problems as we have with symbolic graph trans-
formations. As discussed in Section 3.5 one of the limitations of symbolic graph
transformation is caused by the fact that matches for the left-hand sides have to be
defined also for those label nodes that are not assigned to a graph node. Hence,
from a practical point of view it seems reasonable to consider only projective pro-
ductions whose left-hand sides contain no unassigned label nodes, which are called
auxiliary variables in the following.

. b . . .
formations, recall that every M ;f TG—morphlsms is also an M -morphism.

67

68

4 ProjecTivE GRAPH TRANSFORMATIONS

g enl.enrolled

(rol.capj (rol.capExamj [enl.studldj (enl.statej

rol : Room enl : Enrollment

bookings : ;

cRecords

crl : CourseRecord

[exAlgi.state) [exAIgi . regStj

Lo (rol.cap=479) A (rol.capExam=72) A (enl.enrolled=true) A (enl.studld=1234567) A
(enl.state=EN_ST.STUDY) A (enl.regCp=96) A (enl.cp=57) A (crl.grade=5) A (crl.tries=1) A (cmol.cp=6) A
(exAlgl.state=EX_ST.PLAN) A (exAlgl.regSt=72) A (daAlgl.begin=26.11.2042; 13:00) A (daAlgl.duration=02:00)
A (bol.begin=26.11.2042; 14:00) A (bol.end=26.11.2042; 16:00)

Figure 4.3: The typed definite symbolic graph for the instance model originally shown in

Figure 2.2

Definition 4.10 (Auxiliary variables and normal form).

Given a (typed) symbolic graph (L, @1, the set of auxiliary variables is defined
as the set

aux(L) = {x € X, | notexists e € Ef s.t.x = tf(e)}

A symbolic graph (L, @p) is in normal form if aux(L) = 0

Now we show a construction to transform any (typed) symbolic graph (G, ®g)

to normal form by projecting it to (typed) E-graph G’ that is obtained by removing
all auxiliary variables from G. Later,in Section 8.3 we show that this construction
indeed leads to symbolic graphs in normal form.

Definition 4.11 (Construction of symbolic graphs in normal form).

For any (typed) symbolic graph (G, ®g) with aux(G) # 0 we can construct
a (typed) symbolic graph in normal form nor({G, ®c)) = (G, ®(;), given by
the projection Proj({G, @g),a’) of (G, Dg) to G’ viaa’ : G" = G, where G’ is
obtained by removing all auxiliary variables from G and a’ is the inclusion of

G’ in G. Moreover, this construction induces the (typed) projection morphisms
a: (L, @) — (L,dp).

Example 4.12 (Direct transformation via a projective production).

Figure 4.4 shows the application of projective production projBookRoom to an
cutout of the definite symbolic graph presented in Example 4.9. On top of Fig-
ure 4.4 the projective production is depicted. The production projBookRoom
is linear and in normal form. In the following we show how projective pro-

69

4.3 Model Transformation by Projective Graph Transformation

6% opdurexy ur pajuasaid ydeid srfoquuAs ajrugep ays Jo 1nojnd ue o3 wooyyoogloid uononpoid aandsfoid jo uorresrdde ayJ 3§ 2anSrg

Vv (00:ST ‘zv0T I1°9z=,Pu"0q)
Vv (00:€T 'zv0Z TT'9g=u182q0q) v (AQVIY' LS XI= 2115 I3|yx3)
v 4@ —

He
o 21835 18| vXxe
_ DR EITAS) -A.:...*mem . Hm_<xw_ _ 91e315 13|yxe -

1ep,
u133q°13|yep J¢wn38Q TS|V EPfs:

uoneunp S|yep

(00:9T ‘zv0z T1°92=Pu2'10q) V (00:¥T ‘Tv0T T1'9¢=u!82q'10q) V (2,=15824'13|yx?) V (NV1d LS XI=01e35 13|y*2)
Vv (00:z0=uoneinp-13|yep) v (00:€T ‘T¥0T T1'9¢=u182q'13|vep) v (¢, =wex3ded101) Vv (6Ly=ded 104)

:o_umuo_e

H,:_wwn.onué....:.—.m.:_xOOm_ B OQ_........VH,U:w.onu

_ wex3jded 104 -A wooy
m

mewﬁxww :_Emem_ ”xw_ mwumum.xwu

mum_u,_\

m:_mg.m@ -[31eQ * ep}-- vﬁ co_um:ﬁ.mnu

co_#muo_,—\
m,c_mﬂﬁoaw‘:_.m.c_xoom 7oq]- vm,_u:m.oé
s3uijooq

wex3des os fe--- wooy : ol

(uonesnp-ep-+uiSaq-ep=,pus-oq)
Vv (uiBsq-ep=,u182q-0q) v (AQVIY LS XI=,21e15X3)
V (NV1d"LS X3 =91e15%3) V (35804 X0> wexgdes o)

ip

Qm = Om
_ DR ETAS) -A.:...._mem B Hm_<xw_ _ 91e15" 13| yxd - _ DR ENAS) -A.:...*mem . Hm_<xw—...:.v SRR ES)
a3ep a1ep
u139q 13|yep Jnd38(Q 1 TS|V EP}-wenp(uolIRINP 13|V EP 139G 13|yep J¢{d18(Q * T38|V EP}repUoiRIND 13| 7P
3
HEme_amu.ﬁoLuA......._EOON_ : ._”OL_|V_M:_V_OOM_ R .HOQ_ HEme_mmu.Ho‘_uA:::._EOOW_ D104 [
" s8upooq —7 T : s3upjooq — ;
))
b u
| |
mew&xww _mem H xw_ ﬁwumum.xwu vmwumym.xwu
wumn/—
ﬁ _ww@.mvw -[33eQ *ep}- vﬁ:o_um‘_:w.mvu © ep} vﬁ :o_um_:v.mnu
)
wex3jded od ... _EOOW_] wex3des os fe--- wooy : oJ

?o_ue%.%+c_mﬁ.mnu,_8m.o£ Vv (uiBaqrep=,u183q°0q) v (AQVIY LS XI=.21835%3) V (NV1d" LS XI=31e3sX3) V (35824 %9> wex3zdes o)

“(.pusroq)E-(,uiBaq-oq)E(,21e35'X2)E

70

ProjecTivE GRAPH TRANSFORMATIONS

duction projBookRoom can be obtained from symbolic production symbBook-
Room shown in Figure 3.3. To this end, assume that production projBookRoom

is given by p’ = ((L’, ®}) <l— (K, @) 5 (R, @%)) and production symbBook-

Room is given by p = ({L, ®r) <l— (K, Dg) 5 (R, ®r)). Basically, the E-graph
components L', K’, are constructed by removing all primed label nodes from
the graph part and existentially quantify the corresponding variables in the
formula. More specifically:
¢ [’ is obtained from L by removing all auxiliary variables from L, i.e., L’
is identical to L except that X] = Xy \aux(L)
¢ K’ is obtained from K by removing all variables from K whose image
under [is an auxiliary variablein L, i.e.,

X% = XK\{XK € Xk | lx(xK) € aux(L)}.

The symbolic graphs (L', @}) and (K’, @}) are obtained as Proj({L, ®r),a;) and
Proj({K,®k),a), where morphisms 4; : L’ — L and a} : K — K are the
inclusions of L” in L and K’ in K, respectively. The symbolic graph (R’, @) is
identical to (R, ®r). Note that D £ O © P;.

The production is applied to definite symbolic graph (G’,®/.) via match
m’, by first deriving (D', ®7,) as the pushout complement of m" and I, and
afterwards constructing (H’, @},) as the pushout of 7" and k’.

The resulting symbolic graph (H’, ®},) contains a new booking bo for room
rol and the created label nodes exAlg1.state’, bo.begin’, and bo.end’; as well as
the created predicates

(bo.begin’=daAlg1.begin), (bo.end’=daAlg1.begin+daAlg1.duration),

and
(exAlg1.state’=EX_ST.READY).

Note that (H’, @},) is definite.

One may wonder whether any projective direct transformation of a definite

symbolic graph results again in a definite symbolic graph. The answer is no,
as the application of a projective production may create label nodes without as-

inj

signing definite values to them. However, a pushout along an MpmleG—morphism
f (A, Pa) — (B, Dp) preserves definiteness if the values of the created variables
(i.e., the variables b* € X3\ fx(X4)) are functionally determined by means of the
variables b € fx(X4), which leads us to the notion of functional projective symbolic
graph morphisms.

Definition 4.13 (The class M?ch 16 ©f typed functional projective morphisms).

Given the category TSGp, g over a X-structure D and symbolic type graph
TG®. A typed symbolic graph morphism f : (A, ®4) — (B, Pp) isin MZFanC it

fisin Mglr]o] e and additionally for any variable b’lf € {b], ..., by} = Xp\ax(Xa)

4.3 Model Transformation by Projective Graph Transformation

of sort s(i) (i.e., b} € Xs(;)), thereis aterm t; € T5(;) with var(t;) C fx(Xa) such
that

F * 1 *
DEdp o (@A[f]AG°E) A A®; L 1)),

Basically, typed functional projective productions can be defined by replacing the class

MM in Definition 4.7 by MM

Proj, G Fune ¢ 1€ading to the following definition.

Definition 4.14 (Typed functional projective productions).
A typed functional projective production p = ((L,Pr) <l— (K, D) 4 (R, DR))
consists of a left production morphism | : (L, ®r) — (K, Pk) of class Mlg 7 and

a right production morphism r : (R, Pr) — (K, @) of class M;’ZHC/TG.

Note that M:Zn .7 1s a subclass of MZZOJ.ITG. Consequently, every typed functional
projective production is also a typed projective production; thus, functional projec-
tive productions enjoy the properties of projective productions. Additionally, direct
transformations along functional projective productions preserve definiteness; that
is, the result of applying a functional projective production to a definite symbolic
graph is again a definite symbolic graph. In order to proof this, we first show that
pushouts along functional projective morphisms preserve definiteness.

Lemma 4.15 (Pushouts along M?ch rc-morphisms preserve definiteness).
Let TSGp,1c be the category of typed symbolic graphs over a X-structure D

and symbolic type graph TG®, then for any pushout (1) with f € MZch c and

g€ MZ’ZTG we have that if (C, ®¢) is definite, then (D, ®p) is definite.

(A, @4) — f— (B, ®p)

Poog

(C,@c) —f'— (D, ®p)

Proof. We have to show that if (C, ®c) is definite , then (D, ®p) is definite. As f and
g are E-graph monomorphisms and (1) is a pushout in TEGts, we may assume
without loss of generality (see Fact 3.9) that Xp = X4 U X and X¢ = X4 U X{. with
fx(a) = a and gx(a) = a for all a € X4; as well as Xp = X4 U Xt U X with
fx(c) = cforall c € Xc and g (b) = b for all b € Xp. Moreover, we may assume
that X4, X3, and X{. are pairwise disjoint. Hence, showing that (D, ®p) is definite
if (C, ®c) is definite becomes equivalent to show that for any two assignments (;
and (; such that C1(c) = C2(c) for each label node ¢ € Xc C Xp, we have that
(D,C1) EDp and (D, () E Op implies C1(d) = C2(d) for each d € Xp.

As (1) is a pushout in TSGp ¢ we know that

DEDp © (CDC /\CDB). (4.1)

inj .
From f € M, 1, we obtain

Dedp e (Oan® " m)ya. . AWm, "L 1)), 4.2)

71

72

4 ProjecTivE GRAPH TRANSFORMATIONS

with {b], ..., by} = X}. By combining Statements 4.1 and 4.2 we obtain

DEDp & (Dc ADy A (b Dy aaw ™D).
As by assumption (C, @¢) is definite, we have for all assignments 1 and C; such
that (D, (1) E ®p and (D, () E '<DD, that C1(c) = Cu(c) for each label node ¢ €
Xc € Xp. From (D,1) £ (b7 £ 1)) we obtain [6;12 = Cu(63) = [£12; from
(D, 0) k(02) we obtain [6:]2 = Ta(b) = [H12 forall i € {1,...,n). As
var(t;) € X4 € Xc and Cq1(c) = Co(c) for each label node ¢ € X, so [[ti]]g = [[ti]]g

foralli € {1,...,n}; hence, nb;]]g = [[b;]]g forallie{l,...,n). O

Now, we can show that direct transformations along functional projective pro-
ductions preserve definiteness .

Lemma 4.16 (Functional direct transformations preserve definiteness).
Given direct transformation (G, ®¢) =% (H, @) via an functional projective

prqduction p = (KL, Pr) <l— (K, Dk) 5 (R,Dr)) and match m : L - G, m €
MZ] o, then (H, ®p) is definite if (G, Og) is definite.

Proof. First we show that if (G, @) is definite then also (D, ®Pp). As I € Mbij

o, 1G
m e /\/[Z:nj 16 pushout (1) implies g € MZ 7 (Lemma 6.1). Accordingly, D k O &

®p[g]. Hence, if (G, Dg) is definite then also (D, ®p). It remains to show that if
(D, ®p) is definite then also (H, @), which is a direct consequence of Lemma 4.15,
inj

Func, TG

and

as (2) is a pushout along M -morphism r.

(L, ®@r) «—1— (K, ®p) —r— (R, Pg)

\ \
wo J @
<G/¢G> <—g* <D,<DD> fl’l—> <H,q>H>

O

Note that all productions used in this thesis (also those presented later) are func-
tional projective productions, as it is quite natural to define the values of the created
variables in terms of the preserved variables.

(L,R,N)-ADHESIVE CATEGORIES AND TRANSFORMATION
SYSTEMS

In this chapter we generalize the concept of (M, N)-adhesive transformation sys-
tems to (L, R, N)-adhesive transformation systems. The concept of (£, R, N)-ad-
hesive transformation systems provides the categorical foundations for projective
graph transformation systems, i.e., for transformation systems that distinguish
between left and right production morphisms. Intuitively, an (£, R, N)-adhesive
transformation system can be considered as an (M, N)-adhesive transformation
system where the class M of production morphism is split up into the classes L
and R of left and right production morphisms.

The main contribution of this chapter is to show that the fundamental results of the double
pushout approach remain valid for (L, R, N)-adhesive transformation systems.

To this end, we define the concept of (L, R, N)-adhesive categories and trans-
formation systems in Section 5.1, including an adapted notion and proofs for the
HLR properties. In order to prove the results for consistency constraints verifica-
tion as well as for conflict detection, we require in addition to the HLR properties
additional properties that cannot be derived from the axioms of (£, R, N)-adhesive
categories. These additional properties are usually referred to as HLR properties
[HP12a, GBEG14] and are introduced in Section 5.2. Subsequently we show that
properties of (£, R, N)-adhesive categories together with the HLR and HLR " pro-
perties are sufficient to prove the basic results required for constraint verification
and conflict detection. More specifically, in Section 5.3 we verify the results for
constructing application conditions from consistency constraints. In Section 5.4, we
provide proofs for the Local Church—-Rosser, Embedding, and Extension Theorems
as well as for Critical Pair Lemma in the context of (£, R, N)-adhesive transforma-
tion systems.

51 (L, R, N)-ApuesivE CATEGORIES AND TRANSFORMATION SYSTEMS

In this section we introduce the notion of (£, R, N)-adhesive categories and trans-
formation systems, and show that HLR-properties [HP12a] (see Section 3.1.2) of
(M, N)-adhesive categories can be lifted to (£, R, N)-adhesive categories.

Recall that for (M, N)-adhesive categories we distinguished between the class M
of production morphisms and the class N of match morphisms. For (£, R, N)-adhe-
sive categories we further split the class of production morphisms into the classes
L and R to distinguish between left-hand and right-hand production morphisms, re-
spectively. This leads us to following notion of (£, R, N)-adhesive categories.

74

5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

Definition 5.1 ((£, R, N)-adhesive category).
A category C with morphism classes £, R, and N is an (L, R, N)-adhesive
category (C, L, R, N) if the following requirements are satisfied:

1)

2)

3)

4)

Closure Properties:

a) L, Rand N contain all isomorphisms. f being an isomorphism implies
fel feRand f eN.

b) L, R and N are closed under composition. Let f : A — Band g : B — C be
morphisms in C, then f, g € X implies (go f) € X, where X € {£L, R, N}.

c) L, Rand N are closed under decomposition. Let f : A - Band g: B — C
be morphisms in C, then (g o f) € X and g € X implies f € X where
X e{L R N}

d) L isasubclass of R.

e) N is closed under R-composition. Let f : A — Band ¢ : B — C be
morphisms in C, then f € N and g € R implies (go f) € N.

f) N is closed under R-decomposition. Let f : A — Band g : B = C be
morphisms in C, then (g o f) € N and g € R implies f € N.

Pushouts and Pullbacks:

a) C has (R, N)-pushouts.

b) C has R-pullbacks.

c) L, R, and N are closed under pushouts. Given pushout (1), then f € X
implies ¢ € X, for any X € {£L, R, N}.

d) L, R, and N are closed under pullbacks. Given pullback (1), then g € X
implies f € X, forany X € {L, R, N}.

Pushouts along (R, N')-morphisms are (L, R, N)-VK squares. A pushout (1) with

m € Rand f € Nisan (£, R, N)-VK square if for any commutative cube (2)

with (1) in the bottom, where the back faces are pullbacks and b,c,d € R,

a € L the following statement holds: the top face is a pushout if and only if

the front faces are pullbacks.

Pushouts along (L, N)-morphisms are (L, N)-VK squares. A pushout (1) with
m € L and f € N is an (£, N)-VK square if for any commutative cube (2)
with (1) in the bottom, where the back faces are pullbacks and b,c,d € R,
the following statement holds: the top face is a pushout if and only if the
front faces are pullbacks.

A/
) —m’
c'/f I
T e T
JAGY ¢ M |
I i A
C—n—sD g/f %/ m/\B (2)

5.1 (£, R, N)-Adhesive Categories and Transformation Systems

An (R, N)-pushout is a pushout where one of the given morphisms is in R and the
other morphism is in N; an R-pullback is a pullback where at least one of the given
morphisms is in R.

An (L, R, N)-adhesive category provides the following HLR properties.

Theorem 5.2 (HLR properties of (L, R, N)-adhesive categories).
For any (£, R, N)-adhesive category (C, L,R,N), the following properties
hold:

1) Pushoutsalong (R, N)-morphisms are pullbacks. Given (R, N)-pushout (1), then
(1) is also a pullback.

2) The R—R-pushout—pullback decomposition. If (1)+(2) is an (R, N)-pushout with
I e Rand rok € N, and (2) a pullback with w € R, then (1) and (2) are
pushouts as well as pullbacks.

3) The (L, R, N)-cube pushout—pullback decomposition. Given the commutative
cube (3) where all morphisms in the top square and bottom square are in
R and additionally n” € £, all vertical morphisms are in N, the top face is
a pullback and the front faces are pushouts, then the following statement
holds: the bottom face is a pullback if and only if the back faces are pushouts.

4) Pushout complements along (R, N)-morphisms are unique. Given morphisms
[:A—> Candu :C - D,where! € R and u € N, there is at most one B
(up to isomorphism) and morphisms k : A — B and s : B — D, such that
(1) is a pushout.

Ail%c A/
r_— —m
ST C/<f Jl g//\’B/
B s—— D
(o}

| | A,
' (2) w (l:\/f l g/\g
E—o— F oy, 2 ©)

Proof. The following proofs are extended versions of the corresponding proofs
given in [EEPT06].

1) Consider the following commutative cube (4) with (R, N)-pushout (1) in both
the bottom and the front left face. We have to show that (1) is also a pullback.

A—I— C 4 da_ide—
. |
Eoa J< T e
! | l k/L‘l/A\l\
B sS—— D / C
N

75

76 5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

The bottom face is the (R, N)-pushout (1) along I € R and k € N; thus, an
(£, R, N)-VK square. Moreover, we have:

¢ idy € L and idc € N, as identity morphisms are isomorphisms and £ as
well as \V contain all isomorphisms

* u € N,as (1)isapushout, k € N and N is closed under pushouts
From Fact 3.14.c we know that:
* the back left face is a pullback
¢ the back right face is a pullback
¢ the top is a pushout
From the VK square property, we conclude that the front faces are pullbacks.

Hence, (1) is a pullback.

2) Consider the following commutative cube (5) with pushout (1)+(2) in the bottom.

|
/idB/ | \S\ ida _y—" ‘
B\s idp g 2D y
— D wac
| D A
r k74 T
g c
J r—w s u—_
B] = p— ®
U\F/w

We have the following properties:

* The bottom (1)+(2) is a pushout along the R-morphism / and N-morphism
r o k; thus, an (L, R, N)-VK square.

¢ The back right face is a pullback (Fact 3.14.c).

¢ Thebackleftfaceisa pullback, asitis composed of two pullbacks (Fact3.14.b
and 3.14.¢).

* The front right face is a pullback, as it is composed of two pullbacks
(Fact 3.14.b and 3.14.c).

* The front left face is a pullback by assumption.

Hence, we have r € R, as w € R and R is closed under pullbacks. Moreover, we
have idc € R and idsy € L, as identities are isomorphism and R as well as £
contain all isomorphisms. From the VK square property we can conclude that
the top face, which corresponds to square (1), is a pushout. As the left back face
is a pullback along N-morphisms r o k, we have idg ok € N. As idg € N and
N-morphisms are closed under decomposition, we have k € N. Consequently,
(1) is an (R, N)-pushout, and therefore also a pullback. By pushout decomposi-
tion we can conclude that also (2) is a pushout.

3) If. Assume, the bottom of the original cube (3) is a pullback, we have to show
that the back faces are pushouts. Consider the turned cube (6).

5.1 (£, R, N)-Adhesive Categories and Transformation Systems

A/\ / A/\ !
‘/f//c‘l ,m/\B/ A/a/ﬂ‘l/ f/\cl
\n/\D/{g i ‘ \f\ c ‘

n/

A m B —

T8) B\g\ Lo—1"

The following properties then apply to (6):

¢ The bottom face is a pushout along the R-morphism ¢’ and N-morphism

b; thus, an (L, R, N)-VK square.
The front left face is a pullback (by assumption).

The front right face is a pushout along n” € R (as L is a subclass of R) and
¢ € N, and therefore also a pullback.

The back right face is a pullback (by definition).

The back left face is a pullback (by pullback composition and decomposi-
tion).

We have m,n,n’, ¢’ € Rand b € N (by definition).

The morphism m” is in L, as n’ € L, the back right face is a pullback, and
L is closed under pullbacks.

From the (£, R, N)-VK property follows that the top face is a pushout; hence,
the back left face in the original cube (3) is a pushout.

By turning the cube once more we obtain cube (7).

A A’
;o — — —
c’(f ‘ g’/\B/ \/a]l/ b/\B/
h T 1/ m\) ‘,
| D | B 2
j /j/A\m | l o,
C/f d TR C(/C ‘f D

The following properties then apply to (7):

The bottom face is a pushout along the £-morphism n” and N-morphism
c; thus, an (£, N)-VK square.

The front left face is a pullback (by assumption).

The front right face is a pushout along ¢’ € R and b € N; thus, also a
pullback (by Theorem 5.2.1).

The back right face is a pullback (by definition).

The back left face is a pushout along f € Rand a € N; thus, also a pullback
(by Theorem 5.2.1).

77

78

5

4)

(L,R,N)-ApHesiVE CATEGORIES AND TRANSFORMATION SYSTEMS

e Wehave f, 9,3’ €R,ce N,andn’ € L.
From the (£, N)-VK property follows that the top face is a pushout, which
corresponds to (3) in the original cube.

Only if. Assume, the back faces of the original cube (3) are pushouts, we have
to show that the bottom face is a pullback. Considering again the turned cube
(7), we have the following properties:

* The bottom face is a pushout along the £-morphism n” and N-morphism
c; thus, a (£, N)-VK square.
¢ The top face is a pushout (by assumption).

¢ The back left face is a is a pushout along f’ € R and a € N, and therefore
a pullback (by Theorem 5.2.1).

¢ The back right face is a pullback (by definition).
* Wehave f,g,¢" € R, c € N,and n’ € L (by definition).

From the (£, N)-VK property follows that the front faces are pullbacks. Hence,
the bottom face of the original cube is a pullback.

Suppose that commutative squares (8) and (9) below are pushouts with k € R
and [,I” € N. To show that pushout complements are unique we have to show
that C and C’ are isomorphic. As R is closed under pushouts we have u, u’ € R.
Consider the following cube (10), where (8) is in the bottom and (9) is the front
right face.

A
_— 1 Tid
h | A—
—*k— B A —k— B U\/x\ %ivA/l// |
| | | c’ k
LN L T S J
l l u' \k\
u—-— D c! u—— D C/ l S/B
CU— — (10)

The front left face with C & U > C’ is constructed as the pullback over C 5

D i C’. Morphisms x, y are in R, as u, u” € R and R is closed under pullbacks.
The morphism h : A — U is obtained from the universal property of pullback

c L u c with morphism [and I’. Hence, itholds that xoh = I"and y o h = [.
Moreover, the following properties apply to cube (10):

* The bottom face (8) is a pushout along the R-morphism k and N-morphism
[; thus, a (£, R, N)-VK square.

* The back right face is a pullback (Fact 3.14.c).

¢ The front right face is a pushout along k € R and I’ € N, and therefore also
a pullback (by Theorem 5.2.1).

¢ The front left face is a pullback by construction.

5.1 (£, R, N)-Adhesive Categories and Transformation Systems

¢ The back left face is a pullback (by pullback composition and decomposi-
tion).

e Wehavek,u’,yeR,1 € N,andidy € L.

From the (£, R, N)-VK property follows that the top face is a pushout. As ids
is an isomorphism and pushouts preserve isomorphisms, x is also an isomor-
phism. By exchanging C and C’, we can conclude that y is also an isomorphism.
Consequently C and C’ are isomorphic. m]

Corollary 5.3 (Induced HLR properties of (L, R, N)-adhesive categories).
Note that according to Definition 5.1 .L is a subclass of R. Consequently, any
(L, R, N)-adhesive category has also (L, N)-pushouts, L-pullbacks, as well
as N is closed under L-composition and .£-decomposition. Moreover, in any
(£, R, N)-adhesive category (L, N)-pushouts are pullbacks and it has also the
L-L-pushout-pullback decomposition property.

Remark 5.4 (Correspondence of (£, R, N) and (M, N)-adhesive categories).

Note that according to Definition 5.1 L is a subclass of R. This implies that all
HLR properties given in Theorem 5.2 are also valid if we set R = L. Conse-
quently, every (L, R, N)-adhesive category (C, £, R, N) with R = L is also an
(M, N)-adhesive category (C, M, N). One might wonder whether (M, N)-adhesive
category (C, M, N) is equivalent to (£, R, N)-adhesive category (C, L, R, N) with
L = R. However, this is not the case as there is no correspondence for the closure
of N under R-composition in (M, N)-adhesive categories.

Similar to (M, N)-adhesive categories, also (£, R, N)-adhesive categories are stable
under slice construction, which means: if we can show that a base category is
(L, R, N)-adhesive, then any category that is derived by slice construction from
this base category is also (L, R, N)-adhesive. Recall that the slice construction can
be used to extend a base category by a typing concept.

Theorem 5.5 (Slice construction of (£, R, N)-adhesive categories).

Given (L, R, N)-adhesive category (C, £, R, N), then for every object X in C
the slice category (C\X, L', R, N’) is also (£, R, N)-adhesive, where L’ =
L NMorc\x, R = RN Morc\x, and N = N N Morc\x.

Proof. Morphisms, pullbacks and pushouts can be constructed componentwise for
slice categories. This componentwise construction ensures that also £, R’, and N’
are closed under composition, decomposition, pushouts and pullbacks. m|

Finally, we define (£, R)-productions and (£, R, N)-transformations, which to-
gether lead to (£, R, N)-adhesive transformation systems.

Definition 5.6 ((£, R)-production).

Given an (L, R, N)-adhesive category (C, £, R, N), an (L, R)-production p =
(L « K — R) consists of the objects L, K, and R as well as left morphism
I:K— L, € Landright morphismr: K - R, r € R.

79

80 5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

Definition 5.7 ((£, R, N)-adhesive transformation systems).

An (£, R, N)-adhesive transformation system ((C, £, R, N), P) is given by an
(£, R, N)-adhesive category (C, L, R, N) together with a finite set P consisting
of (£, R)-productions.

52 HLR*ProrerTiES FOR (L, R, N)-ADHESIVE CATEGORIES

In order to prove the results for consistency constraints verification as well as for con-
flict detection, we require in addition to the HLR properties additional properties,
which cannot be concluded from the axioms of (£, R, N)-adhesive categories. These
additional properties are usually referred to as HLR*properties [HP12a, GBEG14].
In contrast to classical HLR systems, we have to deal with productions where the left
and right morphisms might belong to different classes. Accordingly, we identified
the following HLR "properties for (£, R, N)-adhesive transformation systems:

* Binary coproducts

¢ &-N factorization

¢ The L-N-PO-PB decomposition property
¢ The R-N-PO-PB decomposition property
* (L, N)-initial pushouts

Moreover, we introduce the notion of quasi (£, N)-initial pushout, in order to deal
with (£, R)-productions.

We start with the well-known concept of binary coproducts. Binary coproducts
can be considered as a generalization of the concept of disjoint union.

Definition 5.8 (Binary Coproduct).
Let A and B objects of a category C, the triple (A+B, i1, i) consisting of:

* a coproduct object A+B
* a pair of morphisms i1 : A = A+B and i : B — A+B called coproduct
injections

is a binary coproduct in C, if and only if the following universal property holds:
For all objects C with morphisms f; : A - Cand f, : A — C there is a
morphism ¢ : A+B — C such that the following diagram commutes, i.e.,
C0i1 :f1 andCOizzfz.

The following concept of an E-N factorization is a generalization of the fact, known
from set theory, which states that every function can be uniquely decomposed in

5.2 HLR*Properﬁes for (L, R, N)-Adhesive Categories

a surjective and an injective component. In the general setting, we just require a
category with an additional morphism class &, such that every morphism can be
decomposed in an &-morphism and an N-morphism.

Definition 5.9 (6—N factorization).

An (£, R, N)-adhesive category (C, L,R, N) has an E-N factorization for a
given morphism class & if for each morphism f : A — B in C, there exists
a unique (up to isomorphism) decompositione : A — C, m : C — B with
moe = fsuchthate e Eand m € N.

N

The concept of &'-N pair factorizations, defined next, is the generalisation of
&-N factorizations to pairs of morphisms with the same codomain.

A

Definition 5.10 (6’-N pair factorization).

Given a class & of morphism pairs with same codomain, an (£, R, N)-adhesive
category (C, £, R, N) has an & — N pair factorization if for each pair of mor-
phisms f; : Ay = Cand f, : Ay — C, there exists an object K with a morphism
pair e1 : A1 = K, ex: Ay = K, (e1,e2) € & and an N-morphism m : K — C
such that the following diagram commutes, i.e., moe; = fy and moe; = f5.

AL, d)) — f
(Aq 1>\e1 1\

7 (K, ®k) —m— (C,®c)

(A2, ®2) /\2_,f2/

The following lemma shows that any category with binary coproducts and &-N
factorization has also an &'-N pair factorization. Moreover, we shall see that the
class &' consists of jointly epimorphic morphism pairs.

Lemma 5.11 (E'-N pair factorization).

For any (£, R, N)-adhesive category (C, L, R, N) with binary coproducts and
&E-N factorization, there exists a class & of morphism pairs with an &-N
pair factorization. Moreover, for any &'-N pair factorization of morphisms
fi: A1 = Cand f, : Ay — C, the following properties hold:

i) Iff1,f2 e N, thenej,er e N.

ii) Any pair (e, e2) € &' is jointly epimorphic.

Proof. Given morphisms fi : A1 — C and f, : A — C. First, we construct the bi-
nary coproduct (A1 + Ay, i1,12) of A1 and A, as shown in the following diagram.

81

82

5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

The coproduct together with morphisms f; : A1 — C and f, : Ay — C induces the
unique morphism ¢ : A1 + A, — C. Now we take the E-N factorizationc = moe
of the morphism ¢ and define e; = e oi; and e; = e o iy, whereas morphisms
i1: A1 > A1+ Azand iy : Ay — Aq + A are the coproduct injections.

As m o e is the E-N factorization of ¢, we may conclude that m € N. Moreover,
moey = fi and m o ey = fo. From the construction above, we know that e; = e o i3
and ey = e o ip. The coproduct gives us f; = coij and f, = coip. Hence, moe; =
moeoip =coij=frandmoe; =moeoip =coip = f,. Consequently, the pair
(e1, e2) together with morphism m is an &'-N pair factorization of f; and f,.
It it remains to show that:
(i) If f1, f» € N, then also e1,e; € N. This is a direct consequence of the closure
of N under decomposition and m, f1, f» € N.
(ii) Any pair (eq,e2) € & isjointly epimorphic. Consider the diagram below with
morphisms as constructed above. We have to show for any morphism pair
g, h:K— D, thatif goe; =hoe;, withi =1,2 then g =h.

Aq i1 A1+ Ar in Ay

T4 ‘ e

i)

As we know from the coproduct that e; = e 0 i1 and e, = e o iy, this is equivalent
to show that goeoi; = hoeoi;, withi = 1,2 implies g = h, which is a direct
consequence of the fact that e is an epimorphism. o

The R-N-pushout-pullback and the £-N-pushout—pullback decomposition prop-
erty defined in the following are generalizations of the R—R-pushout—pullback
decomposition property stated in Theorem 5.2.

Definition 5.12 (The R—-N-PO-PB decomposition property).

Given the following commutative diagram with [€ R, (rok) € N,and w € N,
an (L, R, N)-adhesive category (C, L, R, N) has R-N-pushout—pullback decom-
position property if the following property holds: if (1)+(2) is a pushout and (2)
a pullback, then (1) and (2) are pushouts as well as pullbacks.

5.2 HLR*Properﬁes for (L, R, N)-Adhesive Categories

(1)

O ——~—n
J—ou—
N —QI— I

Definition 5.13 (The L-N-PO-PB decomposition property).

Given the following commutative diagram with/ € £, (rok) € N,and w € N,
an (£, R, N)-adhesive category (C, L, R, N) has R—-N-pushout—pullback decom-
position property if the following property holds: if (1)+(2) is a pushout and (2)
a pullback, then (1) and (2) are pushouts as well as pullbacks.

A k B r E
} \ |
1 2
| (1) j (2) fj
C u D w F

Corollary 5.14 (The L-N-PO-PB decomposition property).
Any (L, R, N)-adhesive category (C, £, R, N) which provides the R-N-PO-PB
decomposition property has also the £L-N-PO-PB decomposition property.

Proof. This is a direct consequence of the fact that by definition of (£, R, N)-adhe-
sive categories L is a subclass of R (Definition 5.1).]

Remark 5.15 (The L-N-PO-PB decomposition property).

One might wonder why the £-N-PO-PB decomposition property is also part of
the HLR" properties, although the R-N-PO-PB decomposition property implies
the £-N-PO-PB decomposition property. However, the opposite is not true. As we
shall see later, for some results the £L-N-PO-PB decomposition property suffices
(e.g., for proof the Completeness of Critical Pairs Lemma in Section 5.4).

The following definition of (£, N)-initial pushouts is the adaption of (M, N)-initial
pushouts stated in Definition 3.26.

Definition 5.16 ((£, N)-initial pushout).

Let (C, L,R,N) be an (L, R, N)-adhesive category, given an N-morphism
f A — F, then (£, N)-pushout (1) with b € L is an (£, N)-initial pushout over
f if for every (£, N)-pushout (2) with b’ € L, there are unique £-morphisms
b*:B—Dandc":C— Esuchthatb’ob” =b,c’oc* = cand (3) is a pushout.

B—— b* ;
R

(1) J\E ®) 2)
C pa—— l c’ ; E
\ F /c

The morphisms b and c are called the boundary and context with respect to f.

83

84

5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

Note that (£, N)-initial pushouts are initial pushouts in the sense of Definition 3.26.
As for (£, R)-productions the left-hand and right-hand morphisms are not in
the same morphism class, we have to give an alternative definition of initial
pushouts in order to retain the closure properties. This leads us to the notion
of quasi (L, N)-initial pushouts. Basically, a quasi (£, N)-initial pushout is an
(R, N)-pushout that is initial for (£, N)-pushouts in the following sense:

Definition 5.17 (Quasi (£, N)-initial pushout).

Let (C, L,R,N) be an (L, R, N)-adhesive category, given an N-morphism
m : L — G, then (R, N)-pushout (1) with b’ € R is a quasi (L, N)-initial pushout
over m if for every (L, N)-pushout (2) with | € L, there are unique R-morphisms
b*: B’ —> Kandc*: C" = D suchthatlob* = b’, goc* = ¢’ and (3) is a pushout.

B —— b K
‘ V— I 1 ‘
o [e |
c’ —, ‘l Gh — D

C\G/

Note that b* € R and c* € R is a direct consequence of b’ € R and I € L as
well as ¢’ € R and ¢ € £ and the closure of R under decomposition (note that
any L-morphism is also an R-morphism). We call this concept quasi (£, N)-initial
pushout, as although morphisms b’, ¢’ € R as well as b*,c* € R we require for
any pushout (3) and L-morphism [that (2) is an (£, N)-pushout. Moreover, every
(L, N)-initial pushout is also a quasi (£, N)-initial pushout as by definition L is a
subclass of R.

The following lemma states that any (L, R, N)-adhesive category with (L, N)-ini-
tial pushouts has also quasi (£, N)-initial pushouts.

Lemma 5.18 (Quasi (£, N)-initial pushouts in (£, R, N)-adhesive categories).
Let (C, L, R,N) be an (L, R, N)-adhesive category and (1) an (£, N)-initial
pushout over N-morphism m : L — G, then (1°)+(1) is a quasi (£, N)-initial
pushout over m if and only if (1°) is an (R, N)-pushout with b° € R.

b/
¥~ B b L
|
J 1) J @
!
c’ &Cﬁ c G

Proof.

If. We have to show that if (1°) is an (R, N)-pushout with b° € R, then (1°)+(1) is a
quasi (£, N)-initial pushout over m. Assume given (L, N)-initial pushout (1) over
m € N and (R, N)-pushout (1°), then for any (L, N)-pushout (2) there exist unique
morphisms b*, c* € L such that (3) is a pushout. Hence, by composing pushouts
(1°) and (3), we obtain pushout (1°)+(3) and unique morphisms b* o b® and c* o c°
such that/ob* o b® =bob®and goc*oc® =coc’ Consequently, (1°)+(1) is a quasi
(L, N)-initial pushout.

5.2 HLR*Properﬁes for (L, R, N)-Adhesive Categories

B —— K
| ‘ b— |
¢ (1°) e (3) k
Y S B S
\\C\M

Only if. We have to show that if (1) is a quasi (£, N)-initial pushout over m,
then there exists an (R, N)-pushout (1°). Assume given (L, N)-initial pushout (1)
and quasi (£, N)-initial pushout (1), both over N-morphism m. From pushout (1),
b, c € L, and the initiality of (1") follows that there are unique R-morphisms b° and
c® such that (1°) is an (R, N)-pushout and (1)=(1°)+(1).

e B B
B = b i L
| (1°) (1) |
¢ (’)J m
l o ¢ ¢ J
Cr == ¢ —= G O

It remains to show that quasi (£, N)-initial pushouts are closed under transfor-
mations along (£, R)-productions.

Lemma 5.19 (Closure property of quasi (L, N)-initial pushouts).
Quasi (£, N)-initial pushouts are closed under transformations along (£, R)-
productions; that is, given a quasi (£, N)-initial pushout (1’) over m € N and

the double pushout diagram (2) with pushouts (2a) and (2b)and € L, r € R,
then the following holds:

a) The composition of (1”) with (2a), leading to pushout (3), is again a quasi
(£, N)-initial pushout over k, where pushout (3) is derived from (1) and
(2a) using the initiality property of (1) (see Definition 5.17).

b) The composition of quasi (£, N)-initial pushout (3) with (R, N)-pushout
(2b), leading to pushout (4), is a quasi (£, N)-initial pushout over 7.

B/

— L

| L I K r R
/ \ \ \
J @y m moo@) k@)
/ /
c ¢ & G—8—D—h— H
B’ b*— K B —rob*— R
\ \
| o+ | ey
(e c*—— D C' —hoc*— H

Proof. Item a). Quasi (£, N)-initial pushouts are closed under (£, NV)-pushouts in
the opposite direction; that is, given quasi (£, N)-initial pushout (1") over mor-

85

86

5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

phism m € N and pushout (2a) with [€ L, then there is a quasi (£, NV)-initial
pushout (3) over k € N withlob*=b"and goc* =,

B’ B e
e’\\b\b* e’\b/ . b°® L
(,L’ (1'\L @ , > CL’ (\ (6) \\\“\\} 5

Assume (5) is the (£, N)-initial pushout over k € N. As (2a) and (5) are (L, N)-push-
outs, so their composition (2a)+(5). From the initiality of (1), we obtain unique
morphisms b° : B — B and c¢° : C" = C such that (6) is an (R, N)-pushout. Hence,
according to Lemma 5.18, the composition of (6)+(5), leading to (3), is a quasi
(L, N)-initial pushout over k.

Item b). Quasi (£, N)-initial pushouts are closed under (R, N)-pushouts in the
same direction; that is, given quasi (£, N)-initial pushout (3) over morphism k € N
and pushout (2b) with r € R then the composition of pushouts (3) and (2b), leading
to pushout (4), is a quasi (£, N)-initial pushout over n € N.

Assume (7) (in the diagram next) is the (£, N)-initial pushout over morphism
n € N. First we construct the pullback along the morphisms » : K — R and
b : B — R as well as the pullback along morphisms » : D - Handc: C — H,
leading to the top and bottom squares of the cube shown next. As L as well as
R-morphisms are closed under pullbacks, h,r € R and ¢,b € L imply CZ' bz e R
and v,w € L. Morphism x : V — W is obtained from the universal property of
the bottom pullback and morphisms k o v and e o b°. From the closure of N under
R-composition, we obtain frome € N and b° € R that (e o b°) € N.From the closure
of N under R-decomposition we obtain from (e 0 b°) € N'and ¢, € R that x € N.
Hence, all vertical morphisms are in N and all horizontal morphisms are in R (note
that any £-morphism is also an R-morphisms). Moreover, the bottom and top faces
are pullbacks, the front faces (i.e., (2b) and (7)) are pushouts. As b is in £ we may

5.3 Constraints and Application Conditions

apply the (£, R, N)-cube pushout—pullback decomposition property. Accordingly,
(8) and (9) are pushouts. As (8) isan (L, N)-pushout along L-morphism v, we obtain
from the quasi initiality of (3) the unique morphisms by : B — Vand c; : C" -» W
such that (10) is a pushout. Consequently, the composition of (R, N)-pushouts (10)
and (9) is again an (R, N)-pushout. As (7) is the (£, N)-initial pushout over n, it
follows from Lemma 5.18 that the composition (10)+(9)+(7), which corresponds to
(4) in the previous diagram, is a quasi (£, NV)-initial pushout over n.

B -
\"\‘\~\\bz\“;‘;
b* T, v
\ (10)/‘ v--TTT T by
, (3) K | ° B
(G T h——"
NG Sl B O

—
\
L~
\ DO
S
\
\
\
\
v
v
\ v
Fe--
1
1
=
=~
=
O
[Saked
1
1
1
Qo

5.3 CoONSTRAINTS AND APPLICATION CONDITIONS

The construction of application conditions from constraints was first introduced in
[HWO95] for plain graphs. Accordingly, a constraint is first transformed into an equiv-
alent right application condition. Subsequently, the right application condition is
transformed into an equivalent left application condition. In this section we show
that the HLR properties for (£, R, N)-adhesive categories are sufficient to prove
these techniques for (£, R, N)-adhesive transformation systems. In the following
we focus on negative constraints and negative application condition. However, the
corresponding constructions and proofs can be easily extended to nested constraints
and application conditions (see for example [HP12a, EEPT06, EGH"12]). Table 5.1
summarizes which of the HLR properties are required for the translation of con-
sistency constraints to application conditions and for the translation of right NACs
to left NACs, respectively.

Note that in this section the corresponding techniques are shown in the abstract
setting of (L, R, N)-adhesive transformation systems. For detailed examples, we
refer to Chapter 7, where these techniques are instantiated for functional projective
graph transformation systems.

5.3.1 Construction of Equivalent Negative Application Conditions

Basically, for a simple negative constraint nc(N), an equivalent NAC over R is
constructed from all gluings of N and R. A gluing Y of two objects N and R is
defined as the morphism pair (R %Y, N 5 Y) such that (y,c) € &, i.e, the pair
(y, ¢) is jointly epimorphic (see Definition 3.15 and Lemma 5.11). By constructing

87

88 5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

Table 5.1: Overview for the required HLR properties.

Negative constraints Right NACs
to to
NACs left NACs
” C has binary coproducts X
Q
i C has &-N factorization X
o
& R-N-PO-PB decomposition x
I
E L-N-PO-PB decomposition X
jusi
(£, N)-initial pushouts

all gluings, we can capture all potential interactions of N and R. Thus, adding all
these gluings as simple negative application conditions to NACR ensures that for
any object H that is inconsistent with respect to negative constraint nc(N), there
either does not exist a match of R in H, or all matches do not satisfy NACg, as H
must contain one of the gluings of N and R.

Definition 5.20 (Construction of negative application conditions from negative
constraints for (£, R, N)-adhesive categories).

Given an (£, R, N)-adhesive category (C, £, R, N). The construction of a neg-
ative application condition over an object R from a simple negative constraint

nc(N) is defined as

Accr(ne(N)) = | J {nacr(R % Yy},

i€l

where I ranges over all triples (Y;, y;, ¢;) with morphisms y; : R — Y; and
ci : N = Y such that the pair (y;,¢;) isin &'

For a negative constraint NC, the construction is given by
Accr(NC) = |_] Accg(nc(N)) for all ne(N) € NC.

It remains to show that the construction given in Definition 5.20 indeed leads to
equivalent negative application conditions in the following sense:

Theorem 5.21 (Construction of equivalent NACs from negative constrains).
Consider an (£, R, N)-adhesive category (C, L, R, N) with binary coproducts

5.3 Constraints and Application Conditions
and &-N factorizations, then for any negative constraint NC and every object
R in C with N-morphism #n : R — H, we have
n I Accg(NC) iff H I+ NC.
Proof. Instead of proving
n - Accg(NC) iff H I NC,
we equivalently show that
n k¥ Accg(NC) iff H ¥ NC.

If. Let n ¥ Accr(NC), we have to show that H ¥ NC; that is, for all triples
(Yi, yi,ci) derived according to Definition 5.20, and every object H in C and
N-morphisms n : R — H, n’ : Y; - H such that n}oy; = n, there has to be
an N-morphism ¢’ : N — H.

For any triple (Y;, y;, ¢;) and morphism n” in N as above, we define ¢’ = n’ o c;.
Then ¢’ € N as N is closed under composition.

Only if. Let H ¥ NC, we have to show that n ¥ Accr(NC); that is, for any simple
negative constraint nc(N) € NC and N-morphisms ¢’ : N - Handn : R — H,
there is a triple (Y;, yi, c;) with morphisms y; : R — Y; and ¢; : N — Y; such
that the pair (y;, c;) is in &’; and there is an N-morphism n’ : Y; — H such that
n’oy; =n.

As any (L, R, N)-adhesive category with binary coproducts and &-N factoriza-
tions has &'-N pair factorizations (see Lemma 5.11), we may construct the triple
(Yi, yi,c;) and morphisms n’ : Y; — H as the &'-N pair factorization of n and ¢’.
Consequently, the pair (y;,c;)isin&. Asn,c’ e N,son’€e Nandn’oy; =n. 0O

5.3.2 Construction of Equivalent Left NACs from Right NACs
In the following, we present the construction of equivalent left NACs from right

NACs for (£, R, N)-adhesive transformation systems and prove that this construc-
tion indeed leads to equivalent application conditions.

Definition 5.22 (Construction of left from right NACs for (£, R)-productions).

Let ¢ be an extended production over (L, R)-production p = (L < K — R)

89

90

5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

and right negative application condition NACg. For a simple right negative
application condition nacg (R 4 Y) € NACR, let

shift,(nacgr ((R 5 YY) = {nac (L 5 X))

be the singleton set constructed from nacg(R 24 Y) as follows:

L I K r R
| \ \
X 2 z 1

i (2) i (1) {(
X I Z v’ Y

If the pair r : K - Rand y : R — Y has a pushout complement, choose
shift,(nacg (R 5 Y)) = {nac.(L 5 X)}, where x is defined by the pushouts (1)
and (2); otherwise shift,(nacg(R LY)) =0.

A left NAC is obtained as follows:

shift,(NACR) = | | shift,(nacr (R 45 Y;)) for all nacg(R % Y;) € NACk.

Theorem 5.23 (Construction of equivalent left NACs from right NACs for
(£, R)-productions).

Consider an (£, R, N)-adhesive category (C, L, R, N) with the R-N-PO-PB de-
composition property. Given extended production ¢ = (p, shift,(NACr), NACR)
over (L, R)-production p with left NAC shift,(NACR) derived according to Def-
inition 5.22, then for any direct transformation G L BvE o with match m
and comatch n in N we have

m I+ shift,(NACR) iff n - NACR.

Proof. Instead of proving

m I+ S”llftp (NACR) iff n - NACR,

we equivalently show that

m ¥ shift,(NACR) iff n ¥ NACR.

We start with simple negative application conditions; that is, given an (£, R)-pro-
ductionp = (L « K — R)and asimple negative application condition nacg (R - Y)
over R, we have to show that

m ¥ shift,(nacg (R 5 Y)) iff n ¥ nacg(R 5 Y).

If. We have tho show that if

n ¥ nacg(R 5 Y), then also m ¥ shift,(nacg(R 5 Y)).

5.4 Local Church-Rosser, Embedding, and Critical Pairs

Given a direct transformation G ——— H. As n ¥ nacr(R LN Y), there must be a
morphism n’ : Y — H such that n’ o y = n (as shown in the diagram next). Since
h : D — H is an R-morphism, we can construct (3) as the R-pullback of & and
n’. The closure of N and R under pullbacks leads to k" € N and r’ € R. From
the universal pullback property of (3), we obtain unique morphism z : K — Z.
Asr € R, k € N, and n” € N, we can apply the R-N-PO-PB decomposition
property to pushout (1)+(3) and pullback (3). Accordingly (1) and (3) are pushouts
as well as pullbacks. Since N is closed under decomposition k,k’ € N implies
z € N. Now we construct object X as the (£, N)-pushout of L < K = Z, leading
to pushout (2) with N-morphism x : L — X and L-morphism [’ : Z — X. By the
universal property of pushout (2), we obtain unique morphism m’ : X — G. The
decomposition of pushout (2)+(4) with pushout (2), implies that (4) is a pushout.
From the closure of N under pushouts, we know from k” € N that also m” € N.
Moreover, as diagrams (2) and (4) commute, we may assume that m” o x = m; hence,
m ¥ nac.(L = X). As pushouts complements are unique in (£, R, N)-adhesive
categories, the pushouts (1) and (2) are identical to the shift construction. Thus,
the simple NAC nacy, (L 5 X) is identical to the simple NAC shift,(nacg(R 5 YY)
(obtained according to Definition 5.22).

L l K r R
/ x (2) k/ Z (1) {\
m X « g V4 r Y n

m (4 \K (3) !

G g D h Ig

Only if. The proof of the “only if” direction can be obtained similarly by, starting
with constructing diagram (4).
Consequently, the statement

m ¥ shift,(nacg(R 5 Y)) iff n ¥ nacg(R 5 Y).

holds for any simple NAC nacg(R -5 Y).
As shift,(NACR) is derived as the union of shift,(nacg (R % Y})) for each simple
NAC nacg(R % Y;) € NACg, we may conclude that statement

m ¥ shift,(NACR) iff n ¥ NACg

is also valid. O

54 LocaL CaHurcH-RosseErR, EMBEDDING, AND CriTicAL PAIRS

In this section we show that the classic results of HLR systems can be lifted to
(£, R, N)-adhesive transformation systems. More specifically, we focus on those
results that are mandatory for conflict detection and resolution, namely the par-
allel part of the Local Church-Rosser Theorem, the Embedding and Extension

91

92

5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

Theorems, as well as the Completeness of Critical Pairs Lemma. This does not
mean that the other results such as the sequential part of the Local Church-Rosser
Theorem, the Parallelism Theorem and the Concurrency Theorem do not hold for
(£, R, N)-adhesive transformation systems. In fact, after inspecting the correspond-
ing proofs, we are convinced that these results can also be lifted to (£, R, N)-adhesive
transformation systems. However, as these results are not required for conflict de-
tection and resolution, we leave them for future work.

Table 5.1 summarizes which of the HLR properties are required in the proofs of
the corresponding results.

Table 5.2: Overview for the required HLR" properties.

Parallel Local Completeness
Church—Rosser Embedding | Extension of Critical
Theorem Theorem Theorem Pairs Lemma

. C has binary coproducts X

[}

5 C has £-N factorization x

a,

S

& R-N-PO-PB decomposition

+,

e L-N-PO-PB decomposition x

=

(£, N)-initial pushouts X X

Note that in this section these techniques are shown in the abstract setting of
(£, R, N)-adhesive transformation systems. For more detailed explanations and
motivating examples, we refer to Chapter 8, which discusses the application of
these techniques for projective graph transformation systems.

5.4.1 Parallel Independence and Local Church—Rosser

We begin with introducing the concept of parallel independence for (L, R)-produc-
tions, leading to the Parallel Local Church-Rosser Theorem for (L, R, N)-adhesive
transformation systems. Intuitively, two direct transformations of the same object
are parallel independent if none of the involved transformations deletes an element
that is in the match of the other.

Definition 5.24 (Parallel independence).
Let ((C, L, R, N),P) be an (L, R, N)-adhesive transformation system, then two
direct transformations

H; & G ﬂ H; with pq,p2 € P
are parallel independent if there exist N-morphisms
i:L1—>D2andj:L2—>D1

such that go 07 = my and g1 0 j = mo.

5.4 Local Church-Rosser, Embedding, and Critical Pairs

Rq 1 Ky Iq L4 Ly Ip K>] R,

| \ \ |

ril kf] mq my 5 kf 712
N/

H, I D, — 81 G 2 T D, Iy H,

Given two parallel independent transformations of the same object, then the
result of executing them in parallel is the same as executing them sequentially. This
leads us to the Parallel Local Church-Rosser Theorem.

Theorem 5.25 (Parallel Local Church—Rosser Theorem for (£, R, N)-adhesive
transformation systems).
Let ((C, L, R, N),P) be an (L, R, N)-adhesive transformation system and let

H; p1@=ml G & H, Withpl,pz eP

be two parallel independent direct transformations, then there is an object H3
and direct transformations

Hy 225, |, 22 [,

Proof. The proofisan adapted version of the corresponding proof shown in [HP12b].

Let H; &2 G 222 H, be parallel independent. Then there are N-morphisms
i:Li = Dyand j: L, — Dj such that go o7 = my and g1 o j = my (see the figure
below).

Ry r K; I L Ly lr K> 2 R,

| \ \ \

! (R e V. e SR I
N/

H; hy D, — 81 G &2 T D, hy H,

Since C is (£, R, N)-adhesive, it has L-pullbacks (see Corollary 5.3). Hence, Dy
can be constructed as pullback object of D £, G & D, (as shown in the figure
next). Since £ is closed under pullbacks the morphisms Dy — D; (for i = 1,2) are
in L. By the universal pullback property, there are unique morphisms K; — Dy
(for i = 1,2) such that (11) and (31) and the corresponding triangles commute,
respectively. By the R—R-PO-PB decomposition property (note that we actually
use the L-L-PO-PB decomposition property, see Corollary 5.3), diagrams (11),
(12), (31), and (32) are pushouts as well as pullbacks (note that (12) and (32) are
identical). Since N is closed under pullbacks, the morphisms K; — Dy (i = 1,2)
are in N. Since C has (R, N)-pushouts, D] (i = 1,2) can be constructed as the
pushouts over K; — R; in R and K; — Dy in N. From the closure of R and N under
pushouts, we obtain that morphisms R — Dé and R, — Di arein N as well as that
morphisms Dy — D; and Dy — Di are in R. By the universal pushout property,
we can construct morphisms ¢} : D} — Hj and ¢} : D] — H; such that (22) and
(42) commute. By pushout decomposition, we can conclude that (22) and (42) are

93

94 5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

pushouts. The closure of £ under pushouts implies that morphisms g} and g are
in £. Now all squares in the following figure are pushouts.

R4 " Kq I L Ly I K; 2 Ry
/ | | \ \
21 / 11 j ' 31 41
Joe N e e,
Dé < Dy » Dy My My Dy« Dy > Di
\ /

g (22) (12) gz\ /gl (32) 42) ¢
Hy h Dy 81 G 82 D, hy H;

The pushouts can be rearranged as shown in the figures below. By definition
j,i € Nand hy, h; € R. As N is closed under R composition the matches m} = hy o j
and m} = hyoiare in N. As (31), (22), (11), and (42) are pushouts, so (31)+(22)
and (11)+(42). The closure of N under pushouts implies k},k; € N. Finally, we
obtain Hj as the pushout object of D] « Dy — Dj. As (21), (41) and (5) are
pushouts, so (21)+(5) and (41)+(5). The closure of N under pushouts together with
ki, k} € N implies ni, n} in N. Hence there is a object H3 and direct transformations

@n, an’
H; 222 H, &2 H,,

L1 I K 1 Rq .L2 I Kz 2 Rz
ml/j (11) kl/J (21) J\ ﬂ (31) J b @) J_%
D, L Dy D, m mhy Dy Do — Dj
£ \J (22) \ga&\,/h/ (22) J ®
G 81 D hy Hy g5 D) hy > Hj
Ly I K;) Ry .Ll I Ky 5} R,
l i (31) kz/J (41) J\ i (11) J Y (21) J "
D, L D, D} m m; D, Do D)
o \J @ W /h/ (42) J ®
G 82 D, hy H, $h Dj hy > Hj

5.4.2 Embedding and Extension

The Embedding and Extension Theorems states under what conditions a transfor-
mation sequence can be extended to a larger context. The extension of a transfor-
mation t : Gg = G, to a transformation ¢’ : G(’) — G, via an extension morphism
ko : Go — Gy, ko € N is given by an extension diagram.

5.4 Local Church-Rosser, Embedding, and Critical Pairs

Definition 5.26 (Extension diagram).

Let ((C, L,R,N),P) be an (£, R, N)-adhesive transformation system, then dia-
gram (1) is an extension diagram over transformation t : Go = G, and extension
morphism ko : Go — G|, ko € N, where t and t’ are transformations via the
same sequence of productions py, ..., p, € P with matches (my,...,m,-1) and
(koomy, ..., kn—1 0 my,_1), respectively, given by the double pushout diagrams
on the right.

L; I; K; rj R;
o (PO) § (PO)
Gy =——=t=='G, G; 8i D, h; Git
kf (1) kf kl (PO) ii (PO) ki‘+1
Gy = Gy G; g D; h; Gl

The following definition of a derived span describes how to combine the changes
of a transformation t : Gy = Gy, (i. e., a sequence of direct transformations) into a

direct transformation t : Go = G,,. In this way, any transformation sequence can
be treated like a single transformation step.

Definition 5.27 (Derived span).
Let ((C, L, R,N),P) be an (L, R, N)-adhesive transformation system, the de-
rived span of a direct transformation G 2% H with p € P, is given by

der(G25 H) =G « D — H.
Given a transformation sequence
t:Gyp= Gn_1 = G,
via productions in P, and with derived spans

S1 :der(Go = Gn—l) = (Go —D' - Gn—l)
sp=der(Gy-1=G,)=(Gy-1 «<D"—> Gy,)

as shown in the following diagram:

D
. / mx@
Go 80 D’ 8n—1 Gu-1 fn1\ h‘ (e

The derived span
der(t) = Go & D % G,,,

95

96

5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

of transformation sequence ¢ is given by the composition of derived spans s;
and s via pullback (1), where dp = gopov and d, = f,, ow.

Remark 5.28 (Derived Span).

The derived span is unique up to isomorphism and does not depend on the or-
der of the pullback constructions [EEPT06]. Moreover, given the derived span
der(t) = Gy b pdy Gy, then morphism dy is in £ and morphism d, is in R. This
can be easily shown by induction, as we may obtain in each step from f,_1 € L
and g,-1 € R, that v € L and w € R (closure of £ and R under pullbacks); from
g0 € Land f, € R we obtain dy € £ and d,, € R (closure under composition).

Based on the notion of initial pushouts we now define consistency and show that
consistency is sufficient (Theorem 5.30) and necessary (Theorem 5.31) to guarantee
the existence of an extension diagram.

Definition 5.29 (Consistency).
Let ((C, L,R,N),P) be an (£, R, N)-adhesive transformation system and let

t : Go = G, be a transformation sequence via productions in P with derived
spander(t) = (Go < D — Gy).

b
/ _\
B by Go do D dn Gy

A morphism ko : Go — G{, ko € N is consistent with respect to transformation t if
there exists a quasi (£, N)-initial pushout (1) over kg and a morphism b € R
with dgo b = by.

Theorem 5.30 (Embedding Theorem).

Let ((C, L,R,N),P) be an (£, R, N)-adhesive transformation system, where C
has (£, N)-initial pushouts. Given transformation t : Gy = G, via productions
in P and an N-morphisms ko : Go — G|, such that kg is consistent with respect
to transformation ¢, then there is an extension diagram over t and ko.

Proof. 1f C has (L, N)-initial pushouts, it has also quasi (£, N)-initial pushouts (see
Lemma 5.18). The proof is similar to the proof of Theorem 6.14 in [EEPT06]. More
specifically, the proof can be obtained from the proof in [EEPT06] by using quasi
(L, N)-initial pushouts instead of initial pushouts. m|

Theorem 5.31 (Extension Theorem).
Let ((C,L,R,N),P) be an (L, R, N)-adhesive transformation system with

5.4 Local Church-Rosser, Embedding, and Critical Pairs 97

(L, N)-initial pushouts, given a transformation t : Gy = G, via productions
in P with derived span

der(t) = (Go & D 4 G,,)

and extension diagram (1)

B bp—— Gy :t:‘,’;'< Gy
2 ko 1) Kk

j *1

cC——— G(/) =G,

with (£, N)-initial pushout (2), then we have the following:

a) Morphism ko is consistent with respect to transformation ¢.

b) There is a direct transformation G, L G;, given by the following double

pushout diagram.

\
k, 3 h 4 ky
i (3) i (4) i
G} D G,

c) There are quasi (L, N)-initial pushouts (5) and (6).

B—b——D B——dyob—— Gy
| \

(5) h (6) kn

|)

C D’ C Gy

Proof. 1f C has (L, N)-initial pushouts, it has also quasi (£, N)-initial pushouts (see
Lemma 5.18). The proof is similar to the proof of Theorem 6.16 in [EEPT06]. More
specifically, the proof can be obtained from the proof in [EEPT06] by using quasi
(L, N)-initial pushouts instead of initial pushouts. O

5.4.3 Critical pairs

Now we define symbolic critical pairs and show that symbolic critical pairs are
complete; that is, for any pair of parallel dependent transformations, there exists a
critical pair that can be extended to the corresponding pair of parallel dependent
transformations.

98 5 (L,R, N)-Apuesive CATEGORIES AND TRANSFORMATION SYSTEMS

Definition 5.32 (Critical pair).
Let ((C, L, R, N),P) be an (L, R, N)-adhesive transformation system, a critical
pair is a pair of parallel depended direct transformations

P, p1@o; K p2@o) P,
with p1, p2 € P such that the morphism pair (01, 02) is in &’.
Lemma 5.33 (Completeness of critical pairs).
Let ((C, L,R,N),P) be an (L, R, N)-adhesive transformation system with an
&E-N factorizations, binary coproducts, and £L-N-pushout-pullback decompo-

sition. The critical pairs are then complete. This means that for each pair of
parallel dependent direct transformations

p1@m po2@m
H1 1 1 G 2 2 HZ,
with p1, p2 € P, there exists a symbolic critical pair
@ @
Pl P1®o1 K p2€on PZ

with the following extension diagrams (1) and (2) over extension morphism .

P < K > P,
J m orQ j
Hp < G > Hp

Proof. The following proof is an extended version of Lemma 6.22 in [EEPTO06].

As C has E-N factorization and binary coproducts, it has also an &'-N pair
factorization (see Lemma 5.11). From the &'-N pair factorization for m; and my,
we obtain object K and morphisms 01 : L1 — K, 02 : L, = K with (01,02) € &, and
m: K — Gsuchthatm; =mooyand my = mooy. Asmq,mr € N,som,01,00 € N
(see Lemma 5.11).

R4 n Kq I L Ly I K5) R,
\ /
01 02
N/
K
n1 k1 my ‘ My ko ny
H1 hq Dl 81 G 82 DZ ha H2

To construct the required extension diagram we first construct the pullback (3)
over g1 and m and derive the induced morphism t;. By applying the £-N-PO-PB
decomposition property, we find that both squares (3) and (4) are pushouts, because

5.4 Local Church-Rosser, Embedding, and Critical Pairs

Iy € L and m € N. The closure of N under pushouts implies that ¢; and s; are in
N, because 01, m € N.

R4 n K I Lq Ly I K5) R,

H; hq Dy 81 G 82 D, hy Hy

Now we construct pushout (5) as the (R, N)-pushout over r; € R and t; € N
and derive the induced morphism z;. By pushout decomposition, the square (6)
is a pushout. We apply the same construction to the second transformations. This
results in the following extension diagrams, where the lower part corresponds to
the required extension diagrams (1) and (2) with m € N (given in the definition of
Lemma 5.33).

R4 1 Ky I L1 Ly 153 K5 72 R,

\ | \ / \ |
uy (5) t 0 02 ta)
! ! N/ ! 1
P w1 N- 41 K (%] N> wy P

ny ‘

\i @ 1 \1/ \] l

H; hq Dy 81 G 82 D, ha Hy

Finally, we show that P; & K = P, is a critical pair. We know from construction
that (01,02) € &'. It remains to show that the pair P; AL QRN P, is parallel
dependent. Assume there are morphisms i : L1 — N and j : L, — N; with
vpo0i = 01 and v1o0j = 02. Then grposp0i = movyoi = mooy = my and
g10810j =mouvyoj=mooy = my which means that H; Lo G rony H, are
parallel independent, which is a contradiction. Consequently, Py & K = P; is a
critical pair. m|

99

PROJECTIVE GRAPH TRANSFORMATION SYSTEMS ARE
(L,R, N)-ADHESIVE

In this chapter we prove that the theoretical results shown for (£, R, N)-adhesive
transformation systems apply also for typed projective graph transformation sys-
tems. To this end, we prove in Section 6.1 that typed projective graph transformation
systems are (L, R, N)-adhesive. Subsequently, we show in Section 6.2 that typed
projective graph transformation systems provide the defined HLR properties.

6.1 HLR ProrPerTIES FOR PROJECTIVE GRAPH TRANSFORMATION SYSTEMS

We begin with proving the required properties for untyped projective graph trans-
formation systems. Subsequently, we use the closure of (£, R, N)-adhesive cate-
gories (see Theorem 5.5) to lift the results to typed projective graph transforma-
tion systems. In order to show that projective graph transformation systems are
(L, R, N)-adhesive we need to show that the category of symbolic graphs with

morphism classes L = MZZ, R = M;fr];j, and N = Mi_lj is (£, R, N)-adhesive,

where:

o MZZ, is the class of all symbolic graph morphisms [: (G, ®g) — (H, Pg) that
are injective for graph nodes and all kind of edges, bijective for label nodes,
and D E Oy & CDG[i].

. Minj

Projr 18 the class of projection morphisms (see Definition 4.1).

. MZJ is the class of all symbolic graph morphisms m : (G, ®g) — (H, Py)
that are injective for all kind of nodes and edges, such that D £ @y = Dg[ri1].

To actually show that category SGo is (L, R, N)-adhesive, we have to verify that
the properties given in Definition 5.1 are valid for this choice of morphism classes.

For technical reasons, we begin with proving that 5Gp has (R, N)-pushouts and
R-pullbacks as well as that morphism classes ME:Z, M;fr];j,
pushouts and pullbacks. According to Facts 3.56 and 3.58, the category SGp has
pushouts and pullbacks along arbitrary symbolic graph monomorphisms. Conse-

quently, it remains to verify the closure properties for pushouts and pullbacks.

M) are closed under

Lemma 6.1 (Closure properties for pushouts).

. i
The morphism classes M./, M}’

inj
Proj7 and M_/ are closed under pushouts.

102

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE

Proof. As the category SGD with M = Mhij and N = MZ is (M, N)-adhesive
(Fact 3.64), we know that M is closed under pushouts (Definition 3.18). The clo-
sure of M. under pushouts is a direct consequence of the closure of E-graph
monomorphisms under pushouts and the fact that any symbolic graph monomor-

phism is in M., as class M. " do not claim stronger restrictions on the involved
inj

I-formulas than symbolic graph morphisms. Hence, it remains to show that M, ’

is closed under pushouts.

Given pushout (1) with f € MZZOJ and g € /\/(, we show that f’ € Mglr]o
by verifying that O £ ®¢c & 3d;...3d, . Op where {d1 = Xp\ f5(Xc) (see
Remark 4.3).

(A, ®4) — f— (B, Pp)

Lo

(C,®c) —f'— (D, ®p)

As f and g are E-graph monomorphisms, the mappings for the label nodes
fx : Xa — Xp and gx : X4 — Xc are injective. Hence, we may assume without
loss of generality that X4 C Xp and X4 C Xc; so, fx(a) = a and gx(a) = a for all
a € Xa. Moreover, we may assume that X = X4 U Xy and X¢c = X4 U Xe where
XE = XB\fX(XA) = X\ X4 and XE = Xc\gx(Xa) = Xc\ X4, such that X% QXE =0.

As (1) is a pushout in [EG, and pushouts in EG are defined componentwise in Set,
we may assume by the injectivity of fx that Xp = Xc U (Xg\fx(X4a)) (Fact 3.9.b),
which is equivalent to Xp = X4 U Xt U X, (as X}, N X7 = 0).

According to Fact 3.9.a, monomorphisms are closed under pushouts in EG; thus,
also f; and g’ are injective and we may assume without loss of generality that
fx(c) =cforall c € Xc aswell as g (b) = b for all b € Xp. Hence, we have

Xp\fx(Xc) = (XaUXEUXp\(XaUXE) =X
Thus, proving
D EDc & Idy...3d,.Pp where {d;...d,} = Xp\ f3(Xc)
becomes equivalent to show
Dk Oc & Jb; ... b, . Op, where {b] ..., } = Xj. (6.1)
From pushout (1) we obtain
DE®p & (Oc[f]ADs[E]),

which is equivalent to
DeEDp & ((DC AN CDB), (6.2)

because f}’<(c) =cforall c € Xc aswell as g% (b) = b forall b € Xp.
By combining Statements (6.1) and (6.2) we obtain

Dk Dc & by ... 3Ab,.(Pc ADp), where {b] ... by} = XF.

6.1 HLR Properties for Projective Graph Transformation Systems

As @c¢ does not have free variables in X7, this is equivalent to

D e dc & Oc ATb; ... Ab;,.Dp, where (b} ... b5} = X5, 6.3)

n

The “(«)” direction of Statement (6.3) trivially holds; the “(=)” direction of State-
ment (6.3) is equivalent to show that

Dk Oc = b} ... b, .Dp, where {b] ... b} = X. (6.4)

Due to the fact that g is a symbolic graph morphism and f a projection morphism,
we know that
DEDc = Dy (6.5)

and
Dk Oy & Ib] ... b, . Dy, where {b] ...b;} = X5. (6.6)

By inserting (6.6) in (6.5) we obtain
D £ ®c = 3b] ... b, . Op, where {b] ... b} } = X5,

which is equivalent to Statement (6.4); thus, f’ is in M?rjoj

Now we prove that M;Zy is closed under pullbacks.

Lemma 6.2 (Closure properties for pullbacks).

MZZ/ M;fr];)j' and Mff are closed under pullbacks.

Proof. As the category SGp with M = MZZ and N = MZ is (M, N)-adhesive
(Fact 3.64), we know that Mg is closed under pullbacks. The closure of M;n] under
pullbacks is a direct consequence of the closure of E-graph monomorphisms under
pullbacks, as sz -morphisms do not claim stronger restrictions on the involved
inj

Y-formulas than symbolic graph morphisms. Hence, it remains to show that M Proj

is closed under pullbacks.

Let (1) be a pullback in SGp with f € M?r]o] (given in the diagram shown next),

we show that f’ € M;Z]] by verifying the projection property of f’; that is, for any
symbolic graph (Z, ®z) with E-graph morphisms z : Z — B and z’ : Z — A such
that z = f” o z’, we have to show that z is a symbolic graph morphism if and only

if z’ is a symbolic graph morphism.

(Z,®37) ‘
\z’\z
\ =
v (A, ®4) —f — (B,Pp)

Nt

(C,&c) —f— (D, ®p)

103

104

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE

If. We have to show for any symbolic graph (Z, ®z) with E-graph morphisms z
and z’ such that z = f’ o 2/, that if z’ is a symbolic graph morphism, then also z.
This, trivially holds as z = f" oz’ and f’ and z’ are symbolic graph morphisms.

Only if. Given a symbolic graph (Z, ®z) with symbolic graph morphism z and
E-graph morphism z’ such that z = f’ oz’ (in EG), we have to show that z’ is a
symbolic graph morphism. First, we derive E-graph morphism v’ as v’ = ¢’ 0z’ and
symbolic graph morphism v as v = g o z. As (1) is a pullback, we have f o v’ = v.
Hence, we can use the projection property of f with symbolic graph morphism v
to conclude that E-graph morphism v’ is also a symbolic graph morphism. By the
universal pullback property of (1) we obtain from symbolic graph morphism v” and
z the unique symbolic graph morphism x : (Z,®z) — (A, P4) such thatx = f' oz’
and x = g’ 0z’. Asalsoz = f" oz’ and z = ¢’ o v’ we obtain from the uniqueness of
x that z’ = x. Hence z’ is a symbolic graph morphism. m|

Now we show the closure properties for morphism classes M@, M;"rjoj and M/
(i.e., Properties 1a—1f of Definition 5.1).

Lemma 6.3 (Closure under composition and decomposition).
Given the category SGp with morphism classes MZZ, M?r]oj, and Mi] , the
following properties hold:

bij § ginj inj . . .
1a) M;f, M?r]oj and M;”] contain all isomorphisms.

1b) M2, M;fr]o]. and M are closed under composition.

bij L
1c) Mclf, M;frjo ; and M are closed under decomposition.

1d) M is a subclass of MPr]o]

le) M 'is closed underM i) o COMPposition.

1f) Mi is closed under M —decomposmon

Proof. Properties 1a and 1d are straightforward to prove. Properties 1b and 1c for
M o-morphisms are direct consequences of the (M, N)- -adhesivity of 5Gp with

M = Mbl] and N = M) (see Fact 3.64); Properties 1b and 1c for M., —morph1sms
follow from the closure of E-graph monomorphisms under Composmon and de-

composition and the fact that any symbolic graph monomorphlsm is in M. Prop-
erties 1le and 1f follow dlrectly from the closure of M under composition and
decomposition as any M, P :Oj-morphlsm isalsoan M:> -morphism. Hence, also their
composition.

It remains to verify Propertiy 1b and 1c for M —rnorphlsms, that is, for any pair
of symbolic graph morphisms

f (A ,Da) = (B,Dp), g: (B, Pp) = (C,Dc)

we have to show:

6.1 HLR Properties for Projective Graph Transformation Systems

Closed under composition (Property 1b): Given morphisms f, g € MPm] we show that

also (go f) € Mij' by verifying the projection property of (g o f); that is, given
symbolic graph (Z, ®z) with E-graph morphisms z : Z — Cand z’ : Z — A such
that z = g o f o z’, we have to show that z is a symbolic graph morphism if and
only if z’ is a symbolic graph morphism.

If. We may define z as z = g o f o z’. Hence z is a symbolic graph morphism as z
and g o f are symbolic graph morphisms.

(Z,®7)
\z’\)\z\
(A, @4) ——gof——(C,Pc)
\f g/
Z// \ /
\a <qu) >

Only if. Given symbolic graph morphism z and E-graph morphism z’ such that
z = go f oz’ in EG. First we derive E-graph morphism z” as z” = foz’. Aszis a
symbolic graph morphism and g o z” = z, we know by the projection property of g
that z” is a symbolic graph morphism. Analogously, from the projection property
of f we can conclude that z’ is a symbolic graph morphism, as z” is a symbolic
graph morphism.

Closed under decomposztzon (Property 1c): Given symbolic graph morphlsms gand f
such that (go f) € M) ‘and g € M’ , we have to show that f € My’

this is a consequence of the closure of /V[Proj under pullbacks. Given commuting

In fact,

Proj Proj’ Proj*

diagrams (1) and (2) below, according to Fact 3.14.c the diagrams (1) and (2) are
pullbacks in SGop, respectlvely By pullback composition (1)+(2) is a pullback. As

(gof) e M?r]] and M, ; is closed under pullbacks we have f = (idpo f) € MZZDJ.

(A, ®4) gof—— (B, ®c) (A, ®@4) — f— (B, Pp) —idg— (B, Dp)
N N *
f\ /8 A (1) s (2) %

(B, ®3) (A, ®@4) — f— (B,Pp) —g— (C,P¢)

O

To verify Property 3 of Definition 5.1, we have to show that (R, N)-pushouts with

R = M?r]o] and N = M2 " are (L, R, N)-VK squares.

Lemma 6.4 (R, N)- pushouts are (£, R, N)-VK squares).
In SGp with £ = M M;fr]o] and N = Mz,] , (R, N)-pushouts are
(£, R, N)-VK squares.

105

106

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE

Proof. If. Consider the commutative cube (5) shown next, where the back and
front faces are pullbacks in SGp, the bottom face is a pushout in SGp along

M;frjoj—morphism m and MZ] -morphism f, and we have ¢,d, b € M;frjoj, fe MZ] ,

aswellasa € MZZ We have to show that the top face is a pushout in SGp.

Asc,d,b € M;JUJ and f € Mij , they can be considered as monomorphisms in
EG. Consequently, we may assume that the top face is a pushout in EG. Hence,

according to Fact 3.56 it is sufficient to verify
D r @), & (O[] ADy[F]), 6.7)

in order to show that the top face is also a pushout in SGop.
We have the following properties for the cube (6):

e o, f',¢' € Mij ,as f € M;”’ and M;”’ is closed under pushouts and pullbacks.

inj inj
e m',n,n € Mpr]oj' as m € Mpr]o]'

pullbacks.

and M?r]o] is closed under pushouts and

Note that all morphisms are injective for the label node components; ax is in
addition bijective for label nodes. Hence, without loss of generality, we may define
the label node sets and mappings as follows:

o Xa=Xu,ax(@)=a"foralla’ € Xar = Xp
* Xp = XaUXp, where m' (a’) = a’ forall a’ € Xp and X3, = Xp\m'(Xa)
* Xcr = XaUX(, where f{(a’) =a’ forall a’ € X4 and XE = X\ f'(Xa)

* Xp = XaUXp, UXZ, where ni(c") = ¢’ forall ¢’ € X¢r, g5 (b") = 1’ for all
b e Xp

* Xp=Xp UXy =X4UX3, UXjy where mx(a) = aforalla € X4, bx(b) =1’
forall b’ € Xp, and X}, = Xp\Xp/

* Xc=XcUX:=XaU X, U Xc where fx(a) =aforalla € X4, cx(c’) = ¢’
forall ¢’ € X¢r, and X7 = Xc\ X

* Xp=XaUXp UXy UXE, U Xe where nx(c) = cforallc € X¢, gx(b) = b for
allb’ € Xpr, dx(d’") =d’ foralld’ € Xpr

6.1 HLR Properties for Projective Graph Transformation Systems

Hence the Statement (6.7) becomes equivalent to
DE Dy & (P ADy). (6.8)
inj .
From d € Mij we obtain
D kD © 3Acy ... dc;,.3b] ... b, Dp, (6.9)

where {c],...,c;} € X;and {b],..., by} € X},
As the bottom face is a pushout in SGp we obtain

DEDp © (CDC A CDB). (6.10)
By inserting Statement (6.10) in (6.9), and the result in (6.8) we obtain
Dk dc)...dc;, b} ... by (Pc A Dp) & (D A D), (6.11)

where {c],...,c;} € Xz and {b],..., by} € X},

inj
Asc,b e /\/(ij we have

Dk DL & dcj ... dc;,.Dc, wherelc], ..., c;} € XE (6.12)

and
Dk O & b} ...b;, . Dp, where{b],..., by} € Xj. (6.13)

By combining Statement (6.11) with (6.12) and (6.13) we obtain
Dk 3cy...3Ac;, by ... by, (Pc ADp) © (Ac] ... c;, . P ATb] ... 3b;, . Dp),

with {c],...,c,} € X7 and {b1%,...,by +} € X3, which is valid as X}, and X¢ are
disjoint.

Only if. Given the following commutative cube (6) (i.e., the backmost cube).
Assume the top face is a pushout in SGp, we have to show that the front faces (3)
and (3’) are pullbacks in SGp.

By assumption, the morphisms b, c,d, m € M?r]oj and morphism f € MZ] ; hence,
they are monomorphisms in EG. According to Fact 3.52, the category EG with
M = N = M™" is (M, N)-adhesive. By using the (M, N)-VK property we can
conclude that the front faces (3) and (3) are pullbacks in EG.

It remains to show that (3) and (3’) are also pullbacks in category SGp. From
c,de Mglr]oj and Lemma 4.5 we obtain pullbacks (1) and (4) in SGp. As (3) is a
pullback in EG, we know that also (2) is a pullback in EG. Moreover, it can be easily
checked that (2) is also a pullback in SGp. By pullback composition we have that
(1)+(2) (i. e, the diagonal square) is a pullback. Finally, by pullback decomposition
we know that (3) is a pullback in SGo as (3)+(4)=(1)+(2) and (4) are pullbacks in
SGop.

The proof for the right front face (i. e., commuting square (3’)) can be obtained
inj

analogously, as also b, d € Mpmj.

107

108

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE

To verify Property 4 of Definition 5.1, we have to show that (£, N)-pushouts are
(L, N)-VK squares for L = MZZ and N = M.

Lemma 6.5 ((L, N)-pushouts are (L, N)-VK squares).
In SGp with £ = Mbl] and N = Mm] (L, N)-pushouts are (£, N)-VK squares.

Proof. If. Consider the commutative cube (1). Assume, the back and front faces
are pullbacks in SGp, the bottom face 1s a pushout in 5Gp along m € Mbl]

f € MZ; the morphisms c,d, b are in M,/ . We have to show that the top face is a

Proj*
pushout in SGop.
f,/(A'a@/) ,
m
(o) (B @)
\ - g//
(D', @)
C
| e,
(C, 0c) \/ J " (B,ap)
D,@D (1)

Similar to the proof of Lemma 6.4, we may assume that the cube (1) is a VK-square
in EG. Consequently, the top face is a pushout in EG. From m € M follows that
alsom’ and n are 1n M@, as the bottom face is a pushout and the back rlght face an
pullback, and M is closed under pushouts and pullbacks Asm’ € M , the top
face has to be a pushout along m’ € M@. Since, M:, is closed under pushouts, it is
sufficient to verify that n’ € MZZ As the left front face is a pullback and n € MZ,] ,
we can conclude that n’ € MIZZ, as MZZ is closed under pullbacks.

Only if. Given the commutative cube (1). Assume, the top face is a pushout
in SGo, we have to show that the front faces are pullbacks in SGp. As b,c,d €

;”rjoj f e ij ,and m € M , we have that b,c,d, f,m are monomorphisms
in the category EG. Hence, the proof is the same as for the Only If direction of
Lemma 6.4. |

6.1 HLR Properties for Projective Graph Transformation Systems 109

Note that the Lemma 6.5 can also be derived as a consequence of the fact that the

category of symbolic graphs with Mg-morphisms is an adhesive HLR category
[OL10b].

Now we can show that the category of symbolic graphs SGop is (£, R, N)-adhe-
sive.

Theorem 6.6 (SGp with £ = MZZ, R=MY N = M;"f is (£, R, N)-adhesive).

Proj”
The category SGp with morphism classes £ = MZZ, R = M;fr];j, and N = MY
is (£, R, N)-adhesive.
Proof. This is a consequence of Definition 5.1 and Lemmas 6.1-6.5. m|

Up until now, we have shown that the category of symbolic graphs with our
corresponding choice of morphisms classes is (L, R, N)-adhesive. It remains to
show that also the category of typed symbolic graphs is (£, R, N)-adhesive.

Corollary 6.7 (TSGp,1c with £ = MZZ/TG, R = Mg;joleG, N = Mf o i
(£, R, N)-adhesive).
The category TSG p, 16 of typed symbolic graphs over type graph TG® with mor-

phism classes £ = MZZ/TG,VQ = MglrjoleG, and N = Ml_:] 76 18 (£, R, N)-adhesive,
where:
e TSGyp,1c = SGp\TG®
o MZ{TG = MZZ N MorSGD\Tch
* M;fr];)j,TG = M?r]a] N Morgg,,\ g
* MZ];TG =M N Morgg,,\rce
Proof. This is a direct consequence of Theorem 5.5 and Theorem 6.6. m]

It remains to show that typed projective graph transformation systems, as defined
in Section 4.2, are (L, R, N)-adhesive.

Corollary 6.8 (Typed projective graph transformation systems are (£, R, N)-ad-
hesive transformation systems).

Any typed projective graph transformation system TPGTS in the sense of
Definition 4.7, is an (£, R, N)-adhesive transformation system.

Proof. According to Corollary 6.7 the category TSGp ¢ with £ = Mg o R =
M;frjoleG, and N = MZ],TG is (L, R, N)-adhesive. Hence any typed projective graph
transformation system in the sense of Definition 4.7 is an (£, R, N)-adhesive trans-
formation system.]

110

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE

6.2 HLR"PROPERTIES

In this section we prove the HLR properties for typed projective graph trans-
formation systems. Unfortunately, it turned out that the category TSGp ¢ with

morphism classes L = Mj";f, R = M;fr{)j, and N = sz does not provide the
R-N-pushout-pullback decomposition property, which is required to transform
right application condition to left application conditions. Nevertheless, by choos-
ing typed functional projective morphisms for right production morphisms (i.e.,
R = M;’Zﬂ . 1G), We can show thg gategory TSGop,r; of typed symbolic graphs pro-
vides this property. Note that M;nu]nc,TG is a subclass of M, 16+ Consequently, every
typed functional projective production is also a typed projective production; thus,
typed functional projective productions enjoy the same properties as typed pro-
jective productions. Table 6.1 lists the HLR properties with respect to the actual

choice for R.

Table 6.1: Overview of the HLR " properties

=T

£ £

2 o 2 S
g .2 @ o, o
TlElalllt
S5 8 & |
Ol 8o o | &
2l EIE A2
TSGp 7 with 2= == =2
L=MY o, N = M7, A lw |29 |3
R=Mp | v | v
R = M?‘:{nc,m VN a4 v v

We start with showing that TSG g, g has binary coproducts for arbitrary mor-
phisms in TSGop 1c.

Proposition 6.9 (TSG p 1c has binary coproducts).
For any two graphs G‘lb = (G1,P1) and G;D = (Gp, @) in TSGp 16, there exists
a binary coproduct ((G142, @142), 11, 12).

Construction. The triple ({G142, P14+2),11,12) is a binary coproduct in TSGp 1
if (G142, 11,12) is a binary coproduct in TEGr; and

DEDH & (@1[?1] A @2[?2]) 5

Proof. According to Fact 3.52.b, the category TIEEG1g has binary coproducts. Conse-
quently given typed symbolic graphs (G1, @1) and (G2, ®,) we can construct typed
E-graph G142 with typed E-graph morphisms i; : G = Gi2 and 12 : G2 — Giy2
such that (Gi42,11,12) is a binary coproduct in TEEG7s. Moreover, given typed
symbolic graph morphisms

f1:{G1,®1) — (Go, Do) and f : (G2, P2) — (Go, Do),

6.2 HLR" Properties

we can obtain unique morphism ¢ : G142 — Gp in TEG7c such that diagram (2)
commutes, i.e,coi; = fiand coip = fo.

<G1,®1> A (G1y2, P112) —— iz (Go, @2) Gy i Gi42 o Gy
(D\Yg\i o @f\ﬁ\\i////
<G0,CI)0> GO

To show that diagram (1) is a coproduct in TSGp 16, we have to verify that mor-
phisms i1, i, and ¢ are typed symbolic graph morphisms.
The morphisms i1 and i are typed symbolic graph morphisms since

D & (@1[1] AD2[12]) = 1 [H] and D & (@1[71] A Do [12]) = Do),

To show that ¢ : (G142, P142) — (Go, Do) is a typed symbolic graph morphism, we
have to verify that
D r @y = (D111] A Da[ia])[¢]-

According to the definition of substitution (Definition 3.47), this is equivalent to
D E Dy = (P1[i1][E] A D2 [12][E]).
From f; = coijand f, = c o iy, we obtain
o = (1 [Ai] AD2[f2]),
which is valid because
DED) = D [fi] and D £ Oy = Dy f2],
as morphisms fi and f, are typed symbolic graph morphisms (by definition). O

In order to define E-N factorization we have to assign a concrete morphism class

to &. It turned out that the choice & = SSW] satisfies the requirements, whereas

SZUTG is defined as follows:

Definition 6. 10 (The class SZ?G)

The class & o, TG consists of all morphisms e : (G, ®g) — (H,®p) in TSGp 16
that are surjective for all kinds of nodes and edges and D k Oy & D [€].

Lemma 6.11 (TSGyp 16 has an E-N factorization for & = Szréc, N = MZ?TG
Given any morphism f : (A, ®4) — (B,Pp) in TSGop 15, then there ex-
ists a unique decomposition into morphisms e : (A, ®4) — (C,Pc) and

m : {C,Dc) — (D, DPp), with e € SZTZFG and m € M:>]TG, such that f =moe.

Construction. Given a morphism f : (A, ®4) — (B, ®p) in TSGp 16, then mor-
phisms e, m, and E-graph C are constructed as the 5-M factorization in TEGrg,
where & = &7 and M = My are the classes of typed E-graph epimor-

111

112

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE

phisms and monomorphisms, respectively. The X-formula @ is chosen so that
DED: © Dy [é]

Proof. According to Fact 3.52.c the category TEGr: has such a factorization for
the classes of typed E-graph epimorphisms and monomorphisms. Hence, we can
assume that given morphism f : (A, ®4) — (B, ®p) in TSGyp,1;, there exists a

unique decomposition into E-graph morphismse : A — C,e € S;Igj andm :C — D,
m e M;g such that f =moe.

LetD E Oc © Dy [é], it remains to show thate € 82?6 andm € MZZTG.

eisin SZV;G as D E Oc & Dy [¢] (see Definition 6.10). Morphism m is in MZJTG, as

D £ Dp = Dy[f] and f = m o e implies D £ Py = D4[¢][171], which is equivalent
to D kO = Oc[1i] as D & De & D4[e]. O

Morphism

Before we show the R—-N-PO-PB decomposition property, we first show an other
nice property of MlFanC rc-morphisms, which basically states that a pushout com-

plement along an M:chjc-morphism exists if the pushout complement for the

E-graph component exists.

Lemma 6.12 (Pushout complements along M;Zn .1c and sz TG

Given symbolic graph morphisms f : (A, ®a) — (B,Pp), f € M

Func, TG
g (B,®p) = (D,Pp), ¢’ € MZ] e then the following holds: If there exists
a (unique) E-graph C such that (2) is a pushout in TEEG1s then there exists a

unique @c such that (1) is a pushout in TSGp 16.

-morphisms).

inj and

(A,®4) —f— (B, @) A—f— B
g W g NG
(€, Pc) —f'— (D, ®p) c—f—p

Construction. As f and ¢’ are E-graph monomorphisms and (2) is a pushout
in TEGrt;, we may assume without loss of generality (similar to the proof
of Lemma 6.1) that Xp = X4 U X}, and Xc = X4 U X¢ with fx(a) = a and
gx(a) = afor all a € Xy; as well as Xp = X4 U X[U X} with f{(c) = c for
all ¢ € Xc and g% (b) = b for all b € Xg. Moreover we may assume that X4,

6.2 HLR" Properties

inj

we know that there is a
Func, TG

X}, and X[are pairwise disjoint. As f € M
decomposition of ®p such that

s(1) s(n)

DEDp & (PaA(b] = t)A...A(by, = ty)),

where b7 € {b],...,b},} = X} and terms ¢; € T5(;) of corresponding sorts with
var(t;) € Xa. Now we define @¢ such that

Dhq)c@(DD[H].
1+ bn

Proof. Given diagram (1) above with f € M;_fgn c1c and g’ € Mz] 16 such that (2) is
a pushout in TEG1c and assume ®¢ is constructed as defined above.
First we show that f’ : (C,®c) — (D, ®p) is a symbolic graph morphism, which is
equivalent to show
DEDOp = Pp [M] . (6.14)
bj ... by,
As g’ : (B,®p) — (D, ®p) is a symbolic graph morphism, we have

DEdp = Oy A 1S)AL A0, L). (6.15)

Hence, for any assignment C such that (D, C) £ ®p, we know that

D, 0 S)AL AGLE 1)

is valid; thus, also C(b;) = [[ti]]g) forall i € {1,...,n}, as var(t;) C X4. Thus,
Statement (6.14) is valid, as (D, C) ¥ ®p implies (D, C) £ O¢ for any assignment C.
According to Remark 3.57, to show that (1) is a pushout in TSGp 1c it is sufficient

to verify that
DEDp & (P ADc). (6.16)

The “(=)” direction is a direct consequence of the fact that f” and g’ are symbolic
graph morphisms, so D £ ®p = ®c and D k Pp = Pp.
The “(«)” direction is equivalent to show

1 t1 ...t
s YA ... A (b Sy Y ADp —bi b’j
c b

Dk (Oa (b

])=op, (617

which is valid if

ooty
b ... b,

DE (07 A Al E b)) Adp

]) = @p. (6.18)

Now assume any assignment C such that

0,0k "L)AL AW, "L 1) ADp

el] . (6.19)

113

114

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE

According to Definition 3.41, assignment C is as solution of Statement (6.19) iff

s(i)

(D, 0k (b; = t;) forallie{l,...,n} (6.20)
and
tn
(D,0) Edp [—b* b] (6.21)
From Statement (6.20) we obtain that
[6;12 = C(b)) = [t:1? foralli € (1,...,n) (6.22)

Hence, b} and t; evaluate to the same values in O under any assignment . Conse-
quently, if

0,0k @)AL AW S) Adp

t ty
ﬁ] then (D C) EDp.

then also
(D,0) k Op (6.23)

for any assignment C. Thus, Statement (6.18) and, consequently, Statement (6.17)
are valid.

Finally, we have to show that g : (A, ®4) — (C, ®.) isasymbolic graph morphism.
From symbolic graph morphism g’ : (B, ®g) — (D, ®p) we obtain

s(1)

DEdp = (D AGE)AL AGE 1)), (6.24)

Substituting t; for b’i‘ foralli € {1,...,n}in Statement (6.24) results in

D (ch = @an DA A, Y tn))) [H] (6.25)
N
which is equivalent to
...
DEDp [;] = D, (6.26)
b ... by,
because
Drea, [l 6o
oy 4
as @4 has no free variables in X%, and
(b7 "2) A A0 1) [v el

is trivially valid. Hence, from Statement (6.26) follows that g : (A, ®4) — (C, D) is
a symbolic graph morphism, as by definition

t1 ...t
DEDc o dp ||,
by ... b;
The uniqueness of CDC is a direct consequence of the uniqueness of pushout com-
-morphisms and the fact that Mm]

plements along M’ is a subclass of

inj
MProj,TG'

Proj, TG 1G

O

6.2 HLR" Properties

Remark 6.13 (Pushout complements along MFWC 7c and M :Z 7g-morphisms).

As shown within Lemma 6.12, it is possible to construct the formula component
of symbolic graph (C, ®¢) by syntactical means (note that substitution is an oper-
ation at the syntactical level of X-formulas). Moreover, as a direct consequence
of Lemma 6.12, we can formulate a syntactical criterion to decide whether a
pushout complement along an MFM - morphisms exists. More specifically, to
decide whether the pushout complement for morphisms f (A ,Da) — (B, Dp),
f e MFWC 7c and g’ : (B, Pp) — (D, ®p), g’ € M: ¢ exists in TSGyp 16, it is
sufficient (and neccesary) to check the existence of the pushout complement for
morphisms f : A — B and ¢’ : B — D in TEGrs. Thus, no semantic reasoning
over the X-formulas of the involved symbolic graphs is required. This property
is important to guarantee the soundness of our implementation for transforming
right to left application conditions, as shown later in Chapter 9.

Now, we can show that TSGp 1¢ has the R-N-PO-PB decomposition property
for R = MF)ch rcand N = MijTG

Lemma 6.14 (R-N-PO-PB decomposition for R = M;Zn crcand N = MfTG

inj

The category TSGyp, 16 has R-N-PO-PB decomposition for R = M, .- and

N = MZ] ¢ that is, given the following commuting diagram:

(A,04) —F (B, og) —"— (B, ®p)

| o | o |

(qu)C>T> <D7(I)D>T> <F7(PF>

if (1)+(2) is a pushout with I € Mm] cand (rok) € Mm] and (2) a pullback

withw € M"__ then (1) and (2) are pushouts and pullbacks in TSGop 1.

=,TG’

Proof. Recall that category TEGrt; with the class £ = N = M?é of typed E--
graph monomorphisms is (M, N)-adhesive (see Fact 3.52). Hence, typed E-graphs
have the M-N-pushout-pullback decomposition property (see Fact 3.52). As | €
MZZM cand w € MZ]TG, I and w are typed E-graph monomorphisms, we may
assume that (1) and (2) are pushouts as well as pullbacks in TEGrc.

Now consider the following diagram, where (1’) is the pushout constructed
according to Lemma 6.12 from pushout (1) leading to a unique @%; (2) is the

pullback of w and v in TSGp 16.

115

116

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE

<A,CI)A> -k~ <B,q>%> o <B,CI>B>71’% <E,<I>E>
} N, P/ \
1/ ! 2
A
(C,@c) u—— (D, ®p) —w—— (F, ®F)

As (B,®%) and (B, ®p) have isomorphic E-graph components, there is a typed
E-graph isomorphism b : B’ — B with inverse b~! : B — B’. It remains to show that
b is an isomorphism in TSGp,r6, which is equivalent to verify that b and b~! are
typed symbolic graph morphisms. We obtain from [€ Mm] that le MY

Proj, TG’
as MFL{M 7c 18 a subclass of Mp] . Recall that morphisms in M are closed

Proj, TG
under pushouts and pullbacks. Thus, I € M, &

projic @nd pushout (1)+(2) implies
v e M;y] o7+ From pushout (1) and € Mm] we obtains’ € M™ __: pullback

Proj, TG Proj, TG

(2') and v € MPm] - Proj,TG* Using the projection properties of s

and s’ we can conclude that b and b™! are symbolic graph morphisms, respectively.

Hence, b : B” — B is also an isomorphism in TSGp, 1. Consequently, pushout (1)
is isomorphic to (1).

From pushout decomposition of pushouts (1) and (1)+(2) in TSGyp 1¢, follows

that also (2) is a pushout in TSGyp, 1. The closure of MY

i]]]
we MJ 1mphes r e M - The closure of M 511G

r,(kor) e M] c implies k € /V[] - Hence (1) is a pushout and a pullback. O

implies s € M

_, ¢ under pullbacks and

under decomposition and

Remark 6.15 (L-N-PO-PB decomposition for £ = MZZ rcand N = MZ] o) The
category TSGyp, ¢ has also the L-N-PO-PB decomposition for L = MZZ c and

N = Mm] . This is a direct consequence of Corollary 5.14 and Lemma 6.14. Note
that th1s property is independent from the actual choice of R, although we deduced

it from Lemma 6.14 with R = M;Z]] G

It remains to show that TSGp ¢ has (£, N)-initial pushouts.

Definition 6.16 (Construction of (L, N)-initial pushouts for £ = Mg 7 and
inj
N = M:> TG)

Given a typed symbolic graph morphisms m : (L, @) — (G, Pg),

<B/®B> —b— <L,<DL>
(C,®c) —c— (G, Pg)

6.2 HLR" Properties

the symbolic boundary graph (B, ®g) with morphism b : (B, Pg) — (L, Ppr),
b e MZZ 1c 18 constructed as follows:

* The set of graph nodes Vg of B consists of all graph nodes n € V| such
that my (n) is adjacent to an graph or label edge in G\m(L).

¢ The set of label nodes X3 is given by Xp = X;.

Morphism b : (B, ®g) — (L, ®r) is the inclusion of B in L. The formula ®p is

set such that D E @B[B] & @) . Hence, b € MZZ e
bij

The context graph (C, ®¢) with morphism ¢ : (C, ®¢c) — (G, D), c € M e
is given as C = (G\m(L)) U m(b(B)). Morphisms ¢ : (C,®c) — (G, D) and
e : (B,®p) — (C,Pc) are given by the inclusion of C in G and B in C, respec-
tively. The formula ®@¢ is set such that D £ D¢ [¢] © Pc. As Xp = X1 we have
Xc = (Xg\mx(X1)) Umx(bx(Xp)) = (XG\mX(XL);U mx(XL) = X¢. Hence,
1

morphism c is isomorphic for label nodes, so c € M TG

Basically the boundary object contains all nodes of L that are adjacent to an edge
in G\m(L), which are exactly those nodes that have to preserved by a production
when applied to to G via match m in order to prevent dangling edges.

Lemma 6.17 ((£, N)-initial pushouts for £ = Mg rcand N = MZ])

Every pushout constructed according to Definition 6.16 is an (£, N)-initial
pushout in TSGp 1¢ in the sense of Definition 3.26.

Proof. Consider the diagram shown next. Given initial pushout (1) in TSGyp, 1
constructed accordmg to Definition 6.16, we show that for every pushout (2)

w1th m,g € MY and m,k € M] there exist unique MY -morphisms

o, TG o, TG

: (B, ®p) — (K,Dk) and ¢* : (C, cDC> —> (D,®p),such thatlob* =b, goc" =,

and (3) is a pushout TSGp 16.

<L’(I)L>
3)
[o o |

(G ®e) — T c* pa— R0
TG, D)

G

)

As the construction, given in Definition 6.16, is similar as the construction of initial
pushouts for typed graphs in [EEPT06] and we do not delete label nodes, we may
assume that there exists pushout (3) in TEGtg such that /o b* = b and goc* = c.
As morphisms b,c, 1, g,b*,c* € M(:f 7c We may assume that Xp = X = Xx and
Xc = Xg = Xp aswell as bx(b) = b* (b) =1(b) =cforallb € Xg = X; = Xg and
cx(c) =cx(c) =1Il(c) =cforallc € Xc = Xg = Xp. Thus, from the commutativity
of (1), (2) and (3) we obtain that e(b) = m(b) = g(b) = b forall b € Xp = X1 = Xk.
From pushout (1) we obtain

DEeEd; & @L[m] /\q)c[@],

117

118

6 ProjecTivE GRAPH TRANSFORMATION SYSTEMS ARE (L, R, N)-ADHESIVE
which is equivalent to

DE (I)G (== (I)L[m] /\(Dc,
ascx(c) =c.Fromb,c,1,g,b",c" € MZZ c We obtain

DP@BC>(DL<:>®K

and
DEDc © O © Op
thus,
Dedp & CDK[g] ADc,
which means that (3) is a pushout in TSGp 16. |

Note that according to Lemma 5.18 category TSGp 16 has quasi (£, N)-pushouts.

The following remark states that gluing condition (see Fact 3.27) for a typed pro-
jective production can be reduced to the gluing condition in typed E-graphs.
Remark 6.18 (Pushout complements along Mlg ¢ and Mij 7c-morphism pairs).
To ensure the existence of a pushout complement (see Fact 3.27) for a projective
produc’gipnp = (L, Pr) <l— (K, D) 5 (R, ®Rr)) with match m : (L, ®;) — (G, Dg),
m e Mg 7c s shown below (assuming (D £ @1, & Pk),

/—h*

(B, ®g) —p— <L,¢W\z’7 (K, ®x) —r—> (R, ®g)
\
I

<C, q)C> —Cc— <G,¢G>

it is sufficient to ensure the existence of E-graph M?é—morphism b* : B - K

as D £ O = @B[E*] is trivially valid if b,1 € MZ{’TG. Hence, to decide whether
pushout complement (1) exists, no reasoning on the formula component is needed.
Accordingly, the construction of direct transformation (G, ®g) e, (H,®y) can
be performed purely syntactically. This property is important to guarantee the

soundness of our implementation, as shown later in Chapter 9.

VERIFICATION OF SYMBOLIC CONSISTENCY CONSTRAINTS

The construction of application conditions from constraints was first introduced in
[HWO5] for plain graphs. Accordingly, a constraint is first transformed into a set of
equivalent right application conditions. Subsequently, the right application condi-
tions are transformed into equivalent left application conditions. In [EEHP06] it was
shown that this approach can be generalized to M-adhesive categories if the under-
lying category has some extra properties, which are referred to as HLR properties.
Although the category of symbolic graphs is an M-adhesive category, it was un-
clear whether it provides these extra properties. In [DV14] we have shown that the
category of symbolic graphs with Mg—morphisms indeed provides the required
HLR"properties. The main contribution of this chapter is to extend these results to typed
projective graph transformations. Unfortunately, it turned out that the construction
of left application conditions from right application conditions is not possible for
arbitrary projective productions. Nevertheless, we show that this construction is
valid for functional projective productions.

In the following, we present all constructions directly for typed symbolic graphs.
To this end, we assume for the rest of this chapter that category TSGo 15 is given
by a symbolic type graph TG® and a Z-structure D.

7.1 ConsTtrUCTION EQUIVALENT NACs FrRoM NEGATIVE CONSTRAINTS

Towards the construction of consistency preserving typed functional projective
productions, we shall see in this section that for every typed negative symbolic
constraint NC and typed symbolic graph R®, we can construct an equivalent ap-
plication condition; that is, a typed negative application condition NACr such that
any match of R® in a typed symbolic graph H® satisfies NACy if and only if H®
is consistent with respect to NC. If we consider R? as the right-hand side of a
typed functional projective production p, we can construct the extended produc-
tion o = (p,0, NACRr) with equivalent right negative application condition NACg,
so that comatch 7 satisfies NACr if and only if H® I NC.

For a simple negative constraint nc(N ®) in TSGop,1G, an equivalent NAC over
R? is constructed from all gluings of N® and R? along any common subgraph
(including the empty graph). These gluings represent all possible combinations of
N?® and R® that may occur in a graph. Adding these gluings as simple negative
application conditions to NACRg ensures that for any typed symbolic graph H ® that
is inconsistent with respect to nc(N ®), there either does not exists a match of R? in
H?, or all matches do not satisfy NACg, as H ® must contain one of the gluings.

120

7 VERIFICATION OF SYMBOLIC CONSISTENCY CONSTRAINTS

To precisely define this construction, we first have to formalize the notion of a
gluing of two typed symbolic graphs. Basically, a gluing Y® of two typed symbolic
graphs N® and R® can be defined as a pair (R® 5 Y®, N® 5 Y®) of jointly
epimorphic morphisms (see Definition 3.15). Consequently, whenever we can find
a match n’ : Y® — H? of Y?® to a typed symbolic graph H® then we have also
matches n and ¢’ given by n = n’ o y and ¢’ = n’ o ¢, respectively.

(R,

=

(Y,

!
<H, q)H

"surj

The concept of jointly epimorphic morphism pairs is captured by the class & _

given as follows:

Definition 7. 1 (The class SISWj o)

The class & - TG is given by all pairs (e1, e2) of typed symbolic graph morphisms

e1 : (A1, @) = (K, Dk) and e; : (Az, Do) — (K, D) with the same codomain,
such that there exists an SZ’UTG—morphism e : {A112, DP142) — (K, D) induced
by the coproduct ((A1+2, P142), i1, 12).

(A1, @) | —— (A2, P142) —— 12 (A2, D7)
\ el e /
~ _—

:
!
(K, @g)

Remark 7.2 (Construction of jointly epimorphic gluings).

As e is in & TG, Y-formula @k is equivalent to @;[é1] A ®y[é]. This observa-
tion is espec1ally important for an implementation, as it allows for constructing
the formula component of the gluings at the syntactical level. More specifically,
given two symbolic graphs (Aj, ®1) and (Ay, ®,), we construct symbolic graph
(K, Dk) with morphisms e1: (A1, D) = (K, Pk) and e; : (Ay, Dy) — (K, Pk) such
that (e1,e2) € & ;TJG by first constructing E-graph K with jointly epimorphic E-graph
morphisms e; and e;. Subsequently we set @k equal to @;[é1] A P, [é;] leading to

'surj
(e1,02) € EZ.

Now we show that any pair (e, e2) € &5 s indeed jointly epimorphic.

o, TG

Lemma 7.3 (Any pair (e1, e2) € 8 is jointly epimorphic).

@ TG
Any morphism pair (e, e2) € & o TG is jointly epimorphic.

7.1 Construction Equivalent NACs From Negative Constraints

Proof. Given a pair e1 : (A1, ®1) — (K, Pk) and e; : (Az, Pr) — (K, Dk) of typed
symbolic graph morphisms with coproduct ({(A14+2, P142), i1, i2) and induced mor-
phism e € Sz’r;c, obtained according to Definition 7.1. For any morphism pair
g h (K, Dx) = (C,Dc) in TSGp, 16, we have to show that if goe; = h oe;, with
i=1,2then g =h.

(Ag, 1)

| —— (A2, P1y) 12

l?1\) /62

(A, @7)

(K, dx)
/
.

(C,@c)

As we know from the coproduct that e; = e o i1 and e, = e o iy, this is equivalent
to show that goeoi; = hoeoi;, withi = 1,2 implies ¢ = h, which is a direct
consequence of the fact that e is an epimorphism.]

The following construction for equivalent NACs from negative symbolic consis-
tency constraints is the instantiation of Definition 5.20 for symbolic graphs. The
construction is based on the fact that given a finite symbolic graph R® and simple
negative constraint nc(N®) with an finite graph N?, the set of jointly epimor-
phic morphism pairs (R® % Y, N® < YP) is also finite. Thus, we can add for
each pair of jointly epimorphic morphisms (R® % Yiq’, N® 5 Y:D) a simple NAC
nacg(R® ¥ Y;D) to NACr. Equivalent NACs for arbitrary negative symbolic con-
straints NC are derived by constructing the simple NACs for each simple negative
symbolic constraint nc(N ®y in NC.

Definition 7.4 (Construction of NACs from negative constraints in TSG p, ;).
The construction of a NAC over typed symbolic graph R® from a simple nega-
tive symbolic constraint nc(N ®) in TSGp, 16 is defined as

Accr(nc(N®)) = U {nacr(R® L Y®)},
i€l
where I ranges over all triples (Y;I’, Yi, ¢i) with morphisms y; : R® — Yl.q’ and

c;: N® > Yl.q) such that the pair (y;, c;) € aiurTjG'

(R, @)

\
Yi
l
(Y;, @yi) «—Ci— (N, D)

For a negative symbolic constraint NC, the construction is given by

Accgr(NC) = U Accr(nc(N®)) for all nc(N®) € NC.

121

122 7 VERIFICATION OF SYMBOLIC CONSISTENCY CONSTRAINTS

According to Definition 7.4, we can construct the extended symbolic produc-
tion o = (p,0, Accr(NC)) from a production p = (L® « K® — R?®) and a negative
symbolic constraint NC. This construction is shown by the following example.

Px (ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A }
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A (bo.end'=da.begin+da.duration)
[ro : Room}- {ro.capExam] m
bookings
(bo.end’ }{bo : Booking}-{bo.begin')
location
[da.duration} """" {da : Date} """" >[da.beginj
date
[ex.state) [ex : Exam} {exiegSt]
I
I PN - -
yﬁ (boA.end > boB.begin) A (boB.end > boA.begin) j
boB.end HboB . Booking}'"ﬁ boB.begin m [boB.end}'{boB : Booking‘}"{boB.begin] m
bookings’r bookings
ro : Room]|{ro.capExam
bot!wl bookings
'boend’ '< bo : Bookin >' bo.begin’ ' boA.end HboA : BookingH boA.begin
location <1
(da.duration }---{da : Date]-~~{da.begin)
Tdate
(exstate) [ex . Exam}—{exregSt)
)

[
Y (ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A (bo.end'=da.begin+da.duration)
(bo.end > boB.begin) A (boB.end > bo.begin)

Figure 7.1: Simple right NAC nacg (R® % Y}) for production projBookRoom and negative
constraint NoCompetingBookings

Example 7.5 (Construction of right NACs).

This example presents the construction of the right NAC for production pro-
jBookRoom and symbolic negative constraint NoCompetingBookings originally
presented in Figure 2.8.

Figure 7.1 shows the construction for one of the gluings in detail. More
specifically, Figure 7.1 depicts the jointly epimorphic pair (R® & Y N® %
Y??), where the elements of R and N that are glued together are drawn bold
in Y7. Hence, the morphism y; is given by the correspondence of the node
identifiers; morphism c¢; : N — Y is given by mapping ro2 to ro, boA to bo,
and boB to boB. The mapping of the label nodes is determined by the following
variable map

o bo.begin” bo.end” boB.begin boB.end
' boA.begin boB.end boB.begin boB.end

The X-formula @y is defined by the conjunction @z [§1] A ©n[¢1]. The result-
ing simple right NAC nacg (R® L Y{D) invalidates the application of production
projBookRoom if the result contains another booking for Room ro1 with a time
slot that overlaps with the time slot of the created Booking bo.

Figure 7.2 shows further gluings. The simple right NAC shown in Figure 7.2a
is obtained by gluing R and N along the empty graph; simple right NAC shown

7.1 Construction Equivalent NACs From Negative Constraints

bookings
(bo.end’ ¥-{bo : Booking}-{(bo.begin')

[ro : Room}— ’(ro.capExamj [boB.end}'{boB : Bookin_g}"{boB.beginj\ﬁ
bookings

location bookings
[da.duration} """ {da : Date}'""{da,begin] [boA.end}'{boA : Bookin_g}"{boA.beginj
date

[ex.state] |e>< : Exam} """" >[ex.regStj

,,,,,,,,,,,,,,,,,,, :

T
Pyy

(ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A (ex.state’=EX_ST.READY) A
(bo.begin’=da.begin) A (bo.end'=da.begin+da.duration) A (ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(boA.end > boB.begin) A (boB.end > boA.begin)

(a) Simple right NAC nacg (R® 83 ;)

[boA.begin]

[boB.begin] &

[boB : Bookin_g}—{boB.end]

(boA.end }-{boA - Booking]

lro : Room}—- { ro.capExamj
bookings\L
[bO-end'}'{bo : Bookin_g}'{bo.begin'j

location

date

[ex,state] |eX : Exaﬂ} —————— { eX-regStj
,,,,,,,,,,,,,,,,,,, i

)

@(ro,capExamSex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A
(bo.end’'=da.begin+da.duration) A
(ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(boA.end > boB.begin) A (boB.end > boA.begin)

(b) Simple right NAC nacg (R® 83 Y7)

bookin 57\

o Room]-{ro.capxam)
bookings

'bernd’ '< bo : Bookin >' boAbegin')

location

(boA.end) [boA - Booking] “(boAbegin) | Y4]
g

da.duration f----- da : Datef da.begin

(= }-{(da begin)
date

(ex.statej |ex : Exam} """" { ex.regStj

rrrrrrrrrrrrrrrrrrr :

Dra)

@(ro.capExamSex.regSt) A (ex.state=EX_ST.PLAN) A

(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A
(bo.end’'=da.begin+da.duration)

(bo.end > boA.begin) A (boA.end > bo.begin)

(¢) Simple right NAC nacg (R® 4 Y,?)

Figure 7.2: Construction of simple right NACs for production projBookRoom and negative
constraint NoCompetingBookings

in Figure 7.2b is obtained by gluing R and N along ro. The simple right NAC
in Figure 7.2c is obtained similar to nacg(R® 4 be), but gluing boB to bo
instead of gluing boA to bo. Note that there are many more gluings. However,
we can dramatically reduce their number if we assume that all graphs are
linear. This assumption is valid, as projective productions are assumed to be
linear (i. e. they consist of linear graphs only); hence, the result of applying a
linear production to a linear graph, is again a linear graph. Moreover, we may
assume that a booking belongs to at most one room (containment association,
see Figure 2.1).

Based on these results of Section 5.3, we can show that Definition 7.4 indeed
leads to an equivalent negative application condition in the category TSGyp,1; in
the following sense:

Theorem 7.6 (Construction of equivalent NACs in TSGp 16).
For any negative constraint NC and every graph R® = (R, ®g) in TSGp 16
with MZ] 7-morphism 7 : R® — H?®, we have

n - Accg(NC) iff H® + NC.

123

124

7 VERIFICATION OF SYMBOLIC CONSISTENCY CONSTRAINTS

Proof. This is a direct consequence of Theorem 5.21 and the fact that category

TSGo,1g is (£, R, N)-adhesive (for £ = M 10, R = Myl o, N = M), has

surj

o, TG =

binary coproducts as well as an &-N-factorization for & = &

7.2 CoNsTRUCTION OF EQUIVALENT LErT FROM RIGHT NACs

As shown in the previous section, given a production p = (L® « K® — R?), we
are able to construct an extended production ¢ = (p,0, Accr(NC)) with equiva-
lent right NAC for any negative constraint NC. This construction guarantees that
there is no direct transformation G® =2, H® that leads to an inconsistent result.
However, in practice one has perform the transformation first, to decide afterwards
whether the result satisfies the right NAC. Especially for security or safety critical
applications it is inevitable to identify actions that lead to a constraint violation
before actually executing them. In the following, we present the construction of
equivalent symbolic left NACs from symbolic right NACs. As shown in Section 6.2,
only functional projective productions provide the R-N-PO-PB decomposition
property, which is required for this construction. For this reason, we require in the
following that all productions are typed functional projective.

Basically, an equivalent left NAC is derived from a right NAC by applying the pro-
duction in reverse direction to each simple right NAC. The following construction is
an instantiation of Definition 5.22 for typed functional projective productions.

Definition 7.7 (Construction of equivalent left NACs).

Given an extended production g over typed functional projective production
p = (L® « K® - R?) with right negative application condition NACg. For a
simple right NAC nacg (R® 5 Y®) € NACg, let

shift,(nacg (R® % Y®)) = {nac, (L® 5 X®)}

be the singleton set constructed from nacg (R? 5 Y?) as follows:

(L, @) L (K, ®1) —— (R, @)

e | o

(X, ®x) «——— (Z,Pz) —— (Y, Py)
l r

If the pair 7 : (K,®r) = (R, Pg) and vy : (R, ®Pr) — (Y, Dy) has a pushout
complement in TSG o 16, choose shift,(nacg (R® 5 Y®)) = {nac (L® 5 XP)},
where x is given by the POs (1) and (2); otherwise shift,(nacg (R® 5 Y?®)) = 0.

A left NAC from a right negative application condition NACg is obtained as
follows:

shift,(NACg) = | | shift,(nacg (R® &5 Y)) for all nacg (R® % Y{) € NACk.

7.3 Minimization of Symbolic Negative Application Conditions

By Definition 7.7, we can derive extended production ¢’ = (p, shift,(NACR),) from
any extended functional projective production ¢ = (p, 0, NACR) by simply shifting
the right NACs to the left, as shown in the next example.

Example 7.8 (Construction of left from right NACs).

Figure 7.3 shows the derivation of the simple left negative application con-
dition nacy (L® = X;D) from the simple right negative application condition
nacg(R® 5 Y{), which was originally presented in Example 7.5. Note that
production projBookRoom is functional projective . The resulting left negative
application condition nacy (L* = X?) prevents the production projBookRoom
to be applied to a symbolic graph that still contains a booking, whose date is
in conflict with the exam date.

The simple left NACs nac (L® 3 X7), nacy (L® = X7), and nac (L* = X7)
(shown in Figures 7.4a-7.4c) are derived in a similar manner from simple right
NACs nacg(R® 8 Yzq)), nacg(R® 4 Yg)), and nacg(R® 4 Yf) (shown in
Figures 7.2a-7.2c), respectively.

The extended functional projective production ¢’ is then defined as:

o' = (p',NAC],0), where NAC; = | | {nac (L® % XP)).
i€{1,2,34)

Based on the results presented in Section 5.3, we are now able to show that the
derived left NACs and right NACs are indeed equivalent in the following sense:

Theorem 7.9 (Equivalent left NACs for functional projective productions).

Given an extended production ¢ = (p, shift,(NACr), NACR) over functional pro-
jective production p and left NAC shift,(NACR) derived from NACg according
to Definition 7.7, then for all direct transformations G® === H? via o with

inj inj
match m € M TG and comatch n € M ge

m I+ Sl’llftp(NACR) iff n - NACg.

Proof. The proof follows directly from Theorem 5.23 and the fact that category
TSGop 16 is (L,R, N)-adhesive (for L = MngG, R = M;frjo]-,TG/ N = MZJ’TG)/
M;ch,TG is a subclass of Mg[)ﬁc, as well as the facfc 'that category TSGyp, 1 has
the R-N-PO-PB decomposition property for R = MZZ”C TC" m]
Note that the equivalence of NACg and shift,(NACR) implies the equivalence of
productions ¢ = (p,0, NACr) and ¢" = (p, shift,(NACR), 0); that is G® £, H%isa

direct transformation if and only if G® <£2%, H® is a direct transformation.

7.3 MINIMIZATION OF SYMBOLIC NEGATIVE APPLICATION CONDITIONS

Using the results of Theorem 7.6 and Theorem 7.9, we are able to construct an
extended production ¢’ = (p, shift,(Accr(NC)),0) from any functional projective
production p and negative constraint NC in the category TSGyp, g such that for

125

7 VERIFICATION OF SYMBOLIC CONSISTENCY CONSTRAINTS

126

D) & Dk

J(ex.state’).3(bo.begin').3(bo.end’). ((ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A (bo.end'=da.begin+da.duration))

[ro : Room}- Vﬁ_‘o.nm_u_mxm:g@ F

|

boB.end 1boB : Bookin boB.begin X1
_uoo_a:mmé

[ro : Room](ro.capExam)

[ro: Room}-~{ro.capExam) E

Pr

(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A (bo.end'=da.begin+da.duration)

(ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A

Tmr&_.:mzo_‘dwA ““““ _n_m : _Umwm— ““““ vﬁ am._umm:‘_u
éamﬁm
mmx.mnmﬁmu _mx : _mxm:j—i vﬁmx.«mwwﬁw

|

(da.duration J¢ {da : Date v_%.cmm:_-
Ndate

meAmﬂmﬁmuA {ex : Exam} .v?x&m@m&

I

boB.end k-{boB : Booking boB.begin E

UooZ:mmé
[ro : Room](ro.capExam)

[ro: Room]}-(ro.capExam) E
UooE:wmj_\
(bo.end’ ¥{bo : Booking]-{(bo.begin’)
?oBzo:
da.duration je----- da : Date}{da.begin
¢ Jer] fof)
ﬁn_mnm
(exstate) [ex . Exam}—{exregSt)

|

_ da.duration -A .*&m : Date v_ um._umm:._-
MNdate

me.mamnmu _mx : mxm:j— .vﬁmx.wmmm&

Px1 & Pz

J(ex.state').3(bo.begin’).3(bo.end"). ((ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A
(bo.end'=da.begin+da.duration) A (bo.end’ > boB.begin) A (boB.end > bo.begin’))

Py

(bo.end’'=da.begin+da.duration) (bo.end’ > boB.begin) A (boB.end > bo.begin’)

boB.end }1boB : Booking|{ boB.begin E

_uoormzmm\—,

Mdate

(exstate) [ex: Exam}»(exregst)
_ ex.state’ -A

(ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A

Figure 7.3: Derivation of simple left NAC nac (L® = X7) from right NAC nacg(R® 5 Y)

7.3 Minimization of Symbolic Negative Application Conditions

lro : Room})[ro.capExam) [boB.end}'{boB : Bookin_g}"{boB.begin)\ﬁ
b g

ookings

bookings

'da.duration'(""" 'Ida . Datel""')[da.begin)

(boA.end }-{boA : Booking]+{ boA.begin)

Adate

[ex.state)(""" '|ex: Exm """)[ex.regSt)

T
Px2

J(ex.state’).3(bo.begin’).3(bo.end’). ((ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin’=da.begin) A (bo.end'=da.begin+da.duration) A
(boA.end > boB.begin) A (boB.end > boA .begin))

(a) Simple left NAC nacr (L® 3 X(ZI’), derived from nacg (R® 3 YED)

[boA.end}'{ boA : Booking|

%]

[boB : Booking}'{boB.endj

[ro - Room}-+(ro.capExam)

(da.duration }-—{da : Date}- >' da-begin)

date

'ex.state'< """" iex : Examl """" >' ex.regSt'

J(ex.state’).I(bo.begin’).3(bo.end").
((ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin'=da.begin) A

(bo.end'=da.begin+da.duration) A

Px;

(boA.end > boB.begin) A (boB.end > boA.begin))

x|

[boA.end}'{boA : Bookingl [boA.begin]
bookings'T

[ro - Room}(ro.capExam)

Dyy |
X4 J(ex.state’).3(bo.begin’).3(bo.end’).

((ro.capExam<ex.regSt) A (ex.state=EX_ST.PLAN) A
(ex.state’=EX_ST.READY) A (bo.begin’=da.begin) A
(bo.end'=da.begin+da.duration) A

(bo.end’ > boA.begin) A (boA.end > bo.begin’))

(b) Simple left NAC nacy (L® 3 Xg’), derived

(c) Simple left NAC nacy (LP %3 Xf), derived

from nacg (R® 3 Yg)) from nacg (R® X Yf)

Figure 7.4: Derived simple left NACs for production projBookRoom.

all direct transformations G® =22, H?, the derived typed symbolic graph H? is

consistent with respect to NC. However, not all generated left NACs are required
to ensure that extended production ¢’ is consistency preserving. In the following,
we shall see how to reduce the number of generated application conditions. This is
especially interesting from a practical point of view, as each application condition
creates overhead when checking the applicability of a production.

Note that although we can construct equivalent left NACs from right NACs
for functional projective transformations only, the results for minimizing NACs
presented in the following also apply for projective productions, as it is irrelevant
how the left NACs are obtained.

7.3.1 Consistency Preserving Minimization of left NACs

Recall, that consistency preservation (Definition 3.32) just requires the result of a
direct transformation to be consistent if the symbolic graph was consistent before
the transformation. Especially if we assume that the initial graph is consistent, it
is sufficient to require that each production preserves consistency to ensure that
inconsistent graphs are unreachable.

The following theorem shows that consistency preservation of an extended pro-
jective production ¢ with respect to a negative constraint NC is retained if we
remove simple left NACs that are inconsistent with respect to NC.

127

128

7 VERIFICATION OF SYMBOLIC CONSISTENCY CONSTRAINTS

Theorem 7.10 (Consistency preserving minimization of left NACs).

Given an extended production ¢ = (p, NACr, 0) that is consistency preserving
with respect to a negative constraint NC, then any extended production ¢’ =
(p, NAC], 0) with left NAC

NAC), = NAC\{nac(L® % X?)} for a nac (L® = X?) € NAC,
is consistency preserving with respect to NC if X?’ ¥ NC.

Proof. Given extended productions ¢ = (p, NACr,0) and ¢’ = (p, NAC},0) with
typed projective production p = (@1, L « K — R, Dr), where negative application
condition NAC] is defined as NAC; = NAC \{nac (L2 5 X?’)} such that X;I’ ¥ NC.

We prove this theorem by contradiction. To that end, suppose that extended
production p is consistency preserving with respect to NC, but ¢" is not. Then
there must exist a typed symbolic graph G® and match m : L — G?® leading to
direct transformation G® <22 H? via o’ such that G® NC and H® ¥ NC. By
assumption, the extended production g is consistency preserving; hence, there must
be a simple negative application condition in NAC, that prevents the application
of g at match m.

(Xi, @x;) —*¥i— (L, ®r)

S
~ |

C\\ (G, ®¢)

(N, @)

As NAC] = NACp\{nacy (L = XP)}, it must be the case that ¢ cannot be applied
at match m because of m ¥ nacy(L® 5 ch.D), which implies the existence of a
morphismm’ : X?’ — G?®such thatm = m’ o x;. By assumption Xiq) ¥ NC, thus there
is a simple negative constraint nc(N ®) ¢ NC with morphism ¢ : N > X;D. This
means we can construct morphisms (m’ oc) : N ® 5 G?, which is a contradiction
as it implies that G?® is inconsistent with respect to NC. m|

Example 7.11 (Consistency preserving minimization of left NACs).

Consider the left NAC with simple left NACs nacy (L® it X;I’) forie{1,2,3,4}
derived in Example 7.8 (see Figure 7.3 and Figure 7.4). If we take a closer look at
the simple left NAC nacy, (L* 3 X;D) we can see that it prevents the application
of production projBookRoom if there is another room ro2 with a pair of bookings
that have mutually overlapping time slots. This means, if nac; (L? 3 X7)
prevents the application of rule projBookRoom to a graph G?, then G? is already
inconsistent with respect to negative constraint NoCompetingBookings. Similarly
nacr (L* 3 X7) prevents production projBookRoom to be applied to a room
ro that already has a pair of bookings with mutually overlapping time slots.

7.3 Minimization of Symbolic Negative Application Conditions

According to Theorem 7.10 we may remove simple left NACs nacy (L® = X;D)
and nacy (L* 3 Xf) such that the resulting extended production

0" = (p’, NACY,0), with NAC} = {nac (L* = X7¥), nac, (L® = X7)}

remains consistency preserving.

7.3.2 Minimization of Subsumed left NACs

Hence after removing those NACs that are not required for preserving consistency,
there might be NACs that are subsumed by other NACs and, thus, may be removed
without altering the semantics of a production. Basically, a subsumed NAC is a simple
negative application condition for which there exists an other simple application
condition that is a subgraph of the corresponding NAC.

Definition 7.12 (Subsumed NACs).

Given a negative application condition NAC; over symbolic graph (L, ®;) then
a simple negative application condition nacy, (L® = ch) € NAC| is subsumed by
an other application condition nacy (L® = X‘D) € NAC L with X; # X; if there

exists an M:],Tc-morphlsm s 1 (X, Dxj) — (Xi, Px;) such that s o x; = x;.

Removing subsumed simple negative application conditions from a NAC does
not alter its semantics:

Proposition 7.13 (Subsumed NACs).
Given a negative application condition NAC, over the symbolic graph (L, D)
with simple negative application conditions nacy (L® = X?), nacy (L® = XCD) €

NAC| such that nacy (L® 5 Xq’) is subsumed by nacy, (L® 5 Xq’) Then for any
M:]TG-morphlsm m : {L,®r) — (G, Dg), we have m I NAC|, if and only if
m I NAC’L, where

NAC] = NAC\{nac (L® 5 X)}.
Proof. Without loss of generality we may assume that
NACy, = {nacp (L® % XP), nac (L® 5 Xq’)} and NAC} = {nacy (L® % X(D)}

Now assume that nacy (L® % X?) subsumes nacy (L® = X;D) ; that is, there exists a
morphism s : (X, CI)X]) — (Xj, Px;). We proof the theorem by contradiction.

Case 1. Given an M:jTG -morphism m : (L, ®r) — (G, Dg) such that m - NACy,

and m ¥ NAC; . Thus, there must be an M:ZTG -morphism p; : (X;, @x;) — (G, Pg),
suchthatpjox; = m. As nacy (L® = X;D) is also in NAC, we have m ¥ NAC; which
is a contradiction.

Case 2. Given any M:> rg-morphism m : (L, @) — (G, Pg) such that m ¥ NACL,

and m I NAC] . Hence, we have the following cases:

a) There exists an MZ];TG-morphism pj: (Xj, Pxj) = (G, DPg) suchthatp;ox; =
m. Thus m ¥ NAC], which is a contradiction.

129

130 7 VERIFICATION OF SYMBOLIC CONSISTENCY CONSTRAINTS

b) There exists an MZjTG—morphism pi : {Xi, ®;) = (G, D¢) such that p; o x;
m; hence, there is a morphism (p; 0 s) : (Xj, ®x;j) — (G, Pg) withp;os o x;
m. Thus m ¥ NAC'L, which is a contradiction.

O

In the following, we define essential NACs, which are basically those NACs that
remain after removing consistency guaranteeing and subsumed NACs:

Definition 7.14 (Essential NAC).

Given a set of negative constraints NC and an application condition NACy, over
a symbolic graph (L, @), NAC|, is essential if all simple negative application
condition in NAC|, are consistency preserving but not consistency guaranteeing
with respect to NC and there does not exist a simple negative application
condition in NACy, that is subsumed by an other application condition in NACr..

Example 7.15 (Subsumed and essential NACs).
Consider the extended production

0" = (p’, NACY,0), with NACY = {nacp(L® 3 X7{), nac, (L® = X))

after the minimization performed in Example 7.11. It can be seen that symbolic
graphs (X1, @x1) and (X4, Px4) are isomorphic; consequently, there exists an
symbolic graph isomorphism s : (X1, ®x1) — (X4, Pxs). Moreover, we have
that sox; = x4 and s ! o x4 = x1. Hence, according to Proposition 7.13, we
may remove either nacy (L® 5 Xf’) or nacy (L® =5 Xff) from NAC7, and in both
cases, the resulting negative application conditions

NAC} = {nacp(L® % X7)} and NAC;] = {nac.(L? = X7}

are essential.

CONFLICT DETECTION AND RESOLUTION

In this chapter we present our results on conflict detection and resolution for
attributed graph transformation systems. Intuitively, two transformations of the
same graph have no conflict if the result of executing them in parallel is the same
as executing them serially. Accordingly, two transformation are in conflict if the
results of executing them in parallel differs from the result of a serialized execution.
A conflict of two transformation for the same graph can be resolved if the outputs of
first transformations can be joined again, i. e., there are transformations that lead
to the same result.

The main contributions of this chapter is the extension of our results presented in
[KDL*15] to local confluence for projective graph transformation on arbitrary symbolic
graphs. Moreover, we propose local confluence modulo normal form equivalence to increase
the precision of the confluence analysis.

We begin with introducing the different properties for characterizing conflicts
and their resolution, and discuss their application to conflict analysis in Section 8.1.
In Section 8.2 we present the notions required to lift conflict analysis from the
transformation level to the production level. In Section 8.3, we present our main
contribution, namely the Local Confluence Theorem for projective graph transfor-
mation systems. For the rest of this chapter we assume that the category TSGyp, g
is defined by a symbolic type graph TG® and a Z-structure D.

8.1 ConrricTs AND CONFLICT RESOLUTION

As mentioned before, two transformations of the same graph are not in conflict if
the result of executing them in parallel is the same as executing them serially. This
property is captured by the concept of parallel independence. The idea of parallel
independence is shown in Figure 8.1a; that is, two parallel independent transfor-
mations of the same graph can be executed in parallel, and the result is the same as
executing the transformations arbitrarily serialized. For two direct transformations
without negative application conditions, this is the case if none of the involved
transformations deletes an element that is in the match of the other.

However, in many cases it is sufficient that a pair of parallel dependent (i.e.,
not parallel independent) transformation can be joined again; that is, there exist
other transformations leading from results of the diverging transformations to the
same result. This brings us to the concept of conflict resolution. Conflict resolution
is usually captured by the concept of confluence. Figures 8.1b-8.1d show different
forms of confluence that can be used to characterize different strategies for conflict
resolution.

132

8 Conrrict DETECTION AND RESOLUTION

D

G o G® G® G®
A R 7 Ny VR
H® H? H? H® H® H?

H? & e N HED 1 2 1 2 1 2
\"@%Um@% N % N %7 N\
H;D H<I> H<D HS@

3 3

S

N

(a) Parallel (b) Confluence (c) Local Confluence (d) Subcommutativity
Independence

Figure 8.1: Commutativity Properties

In the context of typed projective graph transformation systems, confluence means
if whenever typed symbolic graph G® can be transformed into typed symbolic
graphs H{’ and H, there are transformations leading to the graph Hy, as shown
in Figure 8.1b. Note that HY =% Hy &= H; means that there exist the following
sequences of direct transformations

H?@ZASQ:...:A?;ZH?:Bg:...:BBD:HED

for some n > 0 and m > 0 (see Definition 3.24). Hence, = is a relation on isomor-
phisms classes of (typed) symbolic graphs.

A weaker form of confluence is local confluence, shown in Figure 8.1c. In case of
local confluence we require that Hf’ and Hy can be transformed to H;D when Hf’
and Hy are obtained by a direct transformation from G®. As shown by Newmann,
local confluence implies (global) confluence if the given transformation system
is terminating [New42]. Moreover, if a graph transformation system is (locally)
confluent and terminating it is functional; that is, given a set of productions and
a start graph, then applying the productions as long as possible leads always to
the same result, independently from the actual sequence in which the productions
are applied. Functional behaviour is an important property in the context of model
transformations, where we often expect that the result of transforming a model is
the same for each run.

However, for analysing reactive systems (e.g. our running example) local con-
fluence seems inadequate as those systems are nonterminating by design. Nev-
ertheless, conflict resolution for nonterminating systems can be performed by re-
quiring subcommutativity, shown in Figure 8.1d, as subcommutativity implies
confluence without requiring termination [EEKR99]. Basically, two direct trans-
formation Hf’ = G®* = H;D are subcommutative if there are transformations
HY 25 HY &= HY, whereas H &1 Hy means that either H; is isomorphic to

H;D (i.e. Hf’ ~ Hg’) or there is a direct transformation Hf) = H;D .

8.1.1 Independence, Local Confluence and Subcommutativity

In the following, we give formal definitions for parallel independence, local conflu-
ence, and subcommutativity for typed projective graph transformation systems.

8.1 Conflicts and Conflict Resolution

Basically, two direct transformations of the same graph are parallel dependent if
one transformation deletes an element that is in the match of the other.

Definition 8.1 (Parallel independence for TPGTS).

Let TPGTS be a typed projective graph transformation system, then two direct
transformations

(Hy, @1y E25L (G, Dc) 2222 (Hy, Drp), p1,p2 €P
are parallel independent if there exist MZ] 1c-morphisms
i:(L1,®r1) — (D2, Ppy) and j : (L, Pr2) — (D1, Pp1)

such that go 07 = mj and g1 0 j = my.

(R1, Pr1) 11— (K1, Px1) —h— (L1, Pra) (Lo, @12) «b— (Ko, Pxa) —T2— (Rp, Pro)
\ \ ‘ \
n kq i n m 7 ko 5]
[P! (e '~ [

(D2, ®py) ~ho~ (Ha, Ppa)

The existence of morphisms i : (L1, ®11) — (D2, Ppp)and j : (Ly, Pr2) — (D1, Pp1)
and g2 oi = mj and g1 o j = my ensures that all elements in the matches m; and m;
are not deleted by the other production, respectively.

The next theorem states that any parallel independent pair of direct transfor-
mations is subcommutative and, therefore, confluent. This property is interesting,
as checking parallel independence is computationally less complex than checking
subcommutativity or local confluence. Hence, as we shall see later, parallel indepen-
dence serves as a first filter criterion for subsequent confluence analysis steps.

Theorem 8.2 (Parallel Local Church—Rosser Theorem for TPGTS).
Let TPGTS be a typed projective graph transformation system and let

(Hy, @p1) &L (G, Dg) 222 (Hy, D), p1,p2 €P,

be two parallel independent direct transformations then there is a typed sym-
bolic graph (Hs, ®y3) and direct transformations

(H1, PH1) 2285, (Hs, ®n3) p2lis (Ha, Pm2).

Proof. This is a direct consequence of Theorem 5.25 and the fact that typed projective
graph transformation systems are (£, R, N)-adhesive (Corollary 6.8). m]

Example 8.3 (Parallel dependent pair of direct transformations).

Figure 8.2 shows an example for a pair of parallel dependent direct transfor-
mation via productions unregExam (left) and regExam (right), originally intro-
duced in Chapter 2. However, to be able to print the critical pair on a single page,

133

[ex - Exam]¢<—{cmo : CMO]

en .
cRecords

[cr : CRecord]

[cr : CRecord]

E [cmo : CMOl—>{ex : Exam]

cRecords E

offer

[cmo : CMOl=—>[ex : Exam]

offer regExam

[cmol . CMO}>{ex : _,mxm-:_T_.nBom : Q/_O_/

exam exam

(ex.regSt=70)

[cr :_CRecord]

[ex : Exam]s—{cmo : CMO]

m (ex.regSt" =ex.regSt+1)

[ex : Exam]e—{cmo : CMO]

[cmol : CMO}>[ex : Examl¢{cmo2 : CMO]

[cmol : Q<_O|_|v_ox” Exam|<{cmo2 : CMO]

S (

) (

en3 : Enrollm

llmx. regSt

cRecords

offer

[emol : m_,_p_lv_mx” Exam]<{cmo2 : CMO]

exam exam

ex.regSt’

8 Conrrict DETECTION AND RESOLUTION

134

ﬁ (ex.regSt=70) A (ex.regSt'=69) u

offer regExam

)
)N,
en3 : Enrollm

regExam offer

cRecords

[emotl : Q/_Ol_lv_mx :

exam Y exam
ex.regSt’

(ex.regSt=70) A (ex.regSt"=71)

Figure 8.2: Parallel dependent pair of direct transformations via productions unregExam (left) and regExam (right)

Exam]<{cmo2 : CMO]

8.1 Conflicts and Conflict Resolution

we had to simplify the productions. More specifically, we removed all variables
and corresponding expressions, except those related to the ex.regSt attribute.
Moreover, we abbreviated Enroliment by Enroll, CourseRecord by CRecord, and
CoModOffer by CMO.

Production unregExam is given by (L1, ®Pr1) < (K1®Pk1) — (Ry,Pr1). The
production takes an enrollment (en : Enroll) and an examination (ex : Exam) as
input. To unregister from an exam the link regExam is deleted and the number
of registrations (ex.regSt) is decremented by one.

Production regExam is given by the span (L, ®;5) < (Ko®k2) — (Rp, Pr2).
The production takes also an enrollment (en : Enroll) and an examination (ex :
Exam) as input. The registration is performed by creating the link regExam and
incrementing the number of registrations (ex.regSt) by one.

Both productions are typed projective productions as

A(ex.regSt’).(ex.regSt’ = ex.regSt—1) & T

and
A(ex.regSt”).(ex.regSt” = ex.regSt+1) & T,

assuming the Y-structure of natural numbers with addition and subtraction, defined
as usual. In Figure 8.2 both productions are applied to symbolic graph (G, ®¢).
More specifically, production unregExam is applied to enrollment en1 and ex-
amination ex; production regExam is applied to enrollment en2 an examination
ex. Symbolic graph (G, @) contains an additional enrollment en3 that exem-
plarily represent all elements of (G, ®¢) that are not required for applying
the productions (note that (G, @) usually comprises hundreds of exams, and
thousands of enrollments).

As both direct transformations changes the value of ex.regSt, they are in con-
flict. More specifically, both direct transformations are parallel dependent, as
there does not exists morphisms i : (L1, P11) — (D2, Pp2) and j : (L, Prp) —
(D1, ®p1), because both direct transformations delete the label edge between
ex : Exam and ex.regSt.

Remark 8.4 (Checking parallel independence).

Note that it is sufficient (and necessary) to ensure only the presence of a E-
graph M™/-morphisms i : L1 — D; and j : L, — Dy, in order to show par-
allel independence. Recall that morphisms g1 : (D1, Pp1) — (G, Pg) and g :
(D7, ®p2) — (G, Dg) in the definition of parallel independence (see Definition 8.1)
arein Mg/TG (closure of MZZ/TG under pushouts); hence, ®p1[$1] © Pc © Pp2[$2]
isvalid. Consequently, as @¢ = @p1[1i;1] and O = Pp, (2], alsoPpr = Pry [f] and
Op1 = Dpp [ﬂ for all typed E-graph M?é—morphisms i:Li—=>Dyandj:Ly — Dy,
such that g, oi = m and g1 o j = my. This property is especially relevant regarding
an implementation. In Chapter 9 we use this property to guarantee the soundness
of our implementation.

In order to show that the conflict shown in the previous example can be resolved,
we need to give a formal definition for local confluence and subcommutativity for
typed projective graph transformation systems.

135

136

8 Conrrict DETECTION AND RESOLUTION

Definition 8.5 (Local confluence and subcommutativity for TPGTS).
Let TPGTS be a typed projective graph transformation system, a pair of direct
transformations

2@y

(Hi, @p1) E25L (G, Dg) 2222 (Hy, Drp), p1,p2 €P
is locally confluent if there are transformations
(H1,PH1) = (H3, PHz) — (Ha, Pr2)

via productions in P.
A pair of direct transformations

(Hy, @p1) 2L (G, Dg) 222 (Hy, Drpp), p1,p2 €P
is subcommutative if there are transformations
(H1, 1) =3 (H3, O3y &= (Ha, o)

via productions in P.

A typed projective graph transformation system TPGTS is locally confluent (sub-
commutative) if each pair of direct transformations via productions in P is locally
confluent (subcommutative).

One might expect that the two parallel direct transformations of the previous
example are subcommutative. Unfortunately, this is not the case as illustrated by
the next example.

Example 8.6 (Subcommutativity).

The upper part of Figure 8.3 shows the application of the productions un-
regExam (i.e., production p1) and regExam (i.e., production p;) to symbolic
graph (G, ®g) via matches my and mj, as shown in Example 8.3. The result
are the symbolic graphs (Hi, ®x1) and (Hy, @p»2), respectively. The lower part
of Figure 8.3 shows the application of productions regExam (i. e., production
p2) to symbolic graphs (H1, ®y1) and unregExam (i. e., production p1) to sym-
bolic graph and (Ha, ®p»). The matches m/ and mi are indicated by the bold
elements in (Hy, ®y1) and (Hy, Pyyp), respectively. The results are the graphs
<H3, CDH3> and <H4, (DH4>. Although <H3, (DH3> and <H4, (DH4> look very sim-
ilar (i.e., for graph nodes, graph edges and label edges and the value of the
ex.regSt” attribute), they are not isomorphic, because of the label nodes ex.regSt’
and ex_regSt” represent different values (i. e. ex.regSt'=69 and ex.regSt”=71).
Hence, the diagram shown in Figure 8.3 is not subcommutative.

The problem illustrated by Example 8.6 is that from a practical point of view, we
are often interested only in the values of the variables that are assigned to a graph
node when comparing two graphs. However, if we check whether the results are
isomorphic, we also take the values of the auxiliary variables (i.e., the variables
not assigned to a graph node; see Definition 4.10) into account. These auxiliary

8.1 Conflicts and Conflict Resolution

cRecords

en3 : Enrollm \Q

en2 : Enrollm

cRecords
i cr2 : CRecord

offer regExam i offer

[emol : CMOJ—>|ex: Examl¢<{cmo2 : CMO]

ex.regSt=70) j

(

(
en3 : Enrollm @

[enl : Enrolim] en? : Enrollm
\l, cRecords (ex.regstj cRecords!

crl : CRecord

cr2 : CRecord

offer offert

[cmol : CMOJ>{ex : Examl€{cmo2 . CMO]

exam

' ex.regSt’ '(

(ex.regSt=70) A (ex.regSt'=69) j

\

10
W@

e
77,

@ en3 : Enrollm

enl : Enrollm

cRecords ex.regSt cRecords
crl : CRecord

offer regkxam

en2 : Enrollm

cr2 : CRecord

exam T exam

cmol : CMOPex . Exam]<{cmo2 : CMO
LA—)' ex.regSt” '

)

(ex.regSt=70) A (ex.regSt"=T71)

e,

en3 : Enrollm @

ﬂ en3 : Enrollm

en2 : Enrollm
cRecords ex.regSt cRecords

enl : Enrollm
cRecords

cRecords

cr2 : CRecord]

[cr1 : CRecord] cr2 : CRecord

regExam Offer\l’

offer regExam offer

[cmol : CMO}>[ex : Examl¢{cmo2 : CMO]

exam exam

ex.regSt’ ex.regSt*

[cmol : CMOJ—>|ex: Exam]<{cmo2 : CMO]

ex.regSt* ex.regSt”

[(ex.regSt=70) A (ex.regSt'=69) A (ex.regSt*=70)]

[(ex.regSt:70) A (ex.regSt"=71) A (ex.regSt*:70)]

Figure 8.3: Example for nonsubcommutative direct transformations

137

138

8 Conrrict DETECTION AND RESOLUTION

variables may differ, although the values of the nonauxiliary variables are the same
as shown in the previous example.

8.1.2 Local Confluence Modulo Normal Form Equivalence

To overcome this problem, we propose normal form equivalence to compare two
symbolic graphs. Basically, two symbolic graphs are normal form equivalent if their
normal forms (see Definition 4.10) are isomorphic.

Definition 8.7 (Normal form equivalence of symbolic graphs (=)).

Two symbolic graphs (G1, ©c1), (G2, Pc2) in TSGp 16 are normal form equivalent
(denoted as (G1, Pg1)=(G2, Dgp)) if their normal forms are isomorphic, i.e.,
nor({Gy, @g1)) = nor({Gz, ®c2)).

Note that = is an equivalence relation on symbolic graphs.

Based on the notion of normal form equivalence, we can reformulate Defini-
tion 8.5 leading to the notions of local confluence and subcommutativity modulo
normal form equivalence. Basically a pair of direct transformation is locally confluent
(or subcommutative) modulo normal form equivalence, if there are transformations such
that the resulting graphs are normal form equivalent.

Definition 8.8 (Local confluence and subcommutativity modulo =).
Let TPGTS be a typed projective graph transformation system. A pair of direct
transformations

(Hy, Pp1)y 2 (G,) 222 (Hy, Opn), pi1, pa € P
is local confluent modulo = if there are transformations
(H1,@n1) = (H3, Pyz) and (Ha, Pro) = (Ha, Pra)

via productions in P, such that (H3, ®y3)=(Hy, PHa).
A pair of direct transformations

(Hy, @1y 82 (G, D) 2222 (H,,), p1,p2 €P
is subcommutative modulo = if there are transformations
(H1, ®H1) 23 (H3, Pr3)=(Ha, Ppa) &= (Hp, Dpp)

via productions in P.

In the following example, we show that subcommutativity modulo normal form
equivalence leads to the expected result.

Example 8.9 (Subcommutativity modulo normal form equivalence).
Figure 8.4 shows the direct transformations as presented in Example 8.6, but
instead of requiring (H3, ®y3) and (H4, ®xy4) to be isomorphic (as in Exam-

139

8.1 Conflicts and Conflict Resolution

wex3Ba. pue wex3zbaiun suononpoird a3 era uoeWIOJSURI) J03IIP S} 10 ddud[eAnba wrI0f TewIoU ONpoW AJIATIEINUIWIOdqNS :§°g 9IS

((02=438821%3) V (12=,35891%3) V (02=3584x3)) ((0£=,35831%3) V (69=,35821%3) V (0L=135824%3))
(35824 x9)E (35804 33)E .ﬁ.uwww‘_.xwvm.?www‘_.xmvm
Iummm‘_.xm lxumwm_.xw
wexs l wexa wexa l wexa
O>_u R NoEu_|v_meM_ ”xw_AI_lo_\/_u R HoEu_ _O_>_u R NoEuT_mem ”xw_A|_|O_>_U R HoEu_

|

pi033y) : ¢ P03y : ¢Id pi033y) : 0
JIRENE] Spi029Yd Spi029Yd
wjoiug : guo
mﬁomH*umwm_.va V (12=.35821'%3) Vv ﬁomHumww_.vaw ﬁ (02=,38821%3) Vv (69=,35824%x3) Vv (0L=15824'x3) u
<z 1z
JIS-CIRC) L16821' %3 EIS-CIRC) RIS-EIRC)
(astora) (asBre) N EEEED N €210
[OWD ~ oun}[wexg = e« {OWD - 10| [OWD ~ zoun}—»[wexg T e« {OND * T0W)]
49J§0 wex38a4 19JJ0 wex33a1
P03y © ¢Io [EEEN IS
Sp4029Yd E Spi029Yd
@,o.
m (12=.35821'%3) Vv (0L=15824'%3) u m (69=.15924%3) Vv (0L=35354'x3) u
I.umwm_.xm - ::Iummﬁ.vﬁ

wexs : wexs wexa : wexa

[OWD * Zownd}s[wexg T X3le—{QIND * Towd] [OIWD T Zowd}—s[wexg “xo_A|_|O_>_U - Toun]
43JJ0 wex38a4 wex3g38a1 49jj0 a0
pi0d9y) : ¢ pioday) : 10
wi[oiug : gua
wS@wm\ S:@&
ﬁ (02=15831'x3) u
wexa wexa

OND : NoEu_|v_mem ”xw_Al_O_\/_u : HoEu_

joIug © gus

wijjoiug : gus

140

8 Conrrict DETECTION AND RESOLUTION

ple 8.6), we require that (H3, Py3) and (H4, Py4) are normal form equiva-
lent. To this end we, derive the normal forms (Z1, ®z1) = nor({H3,Py3)) and
(Z,®z2) = nor({H4, Py4)) with induced morphisms z; and z; as shown in
Figure 8.4. The normal forms (Z1, ®z1) and (Z,, Pz,) are isomorphic; hence,
(H3,®p3) and (H4, Pyy) are normal form equivalent. Consequently, the pair
of transformations (H1, ®y1) bem (G, Dg) LR (Hp, @) is subcommutative
modulo =.

8.2 ConrricT DETECTION BY CRITICAL PAIR ANALYSIS

Up until now we discussed conflicts and confluence on the transformation level. In
this section we generalize this analysis to productions using critical pair analysis.
The basic idea of critical pairs is very similar to the construction of application con-
ditions from constraints. Instead of verifying local confluence (subcommutativity)
for all possible transformation, it is sufficient to ensure local confluence (subcom-
mutativity) for only some minimal contexts that are built by all jointly surjective
gluings of the left-hand sides of the involved productions. If the pair of direct
transformation that results from applying the pair to a minimal context is parallel
dependent it is a critical pair.

Before we define critical pairs we first introduce other results that allow for ex-
tending transformations to larger contexts. The definitions and theorems in this
section are instantiations of the results in Chapter 5 to projective graph transforma-
tion systems.

8.2.1 Embedding and Extension

We begin with the definition of extension diagrams for typed projective transfor-
mations. Basically, an extension diagram describes how to extend a transformation
t: (Go, Dg,) = (G, Pg,) to a transformation ¢’ : (G’,(D’GO> = (G;,@én) via an ex-
tension morphisms ko : (Go, Pg,) — (G’,@’GO), where t’ and t are transformations
via the same sequence of productions

Definition 8.10 (Extension diagram for TPGTS).

Let TPGTS be a typed projective graph transformation system, then diagram
(1) is an extension diagram over transformation ¢ : (Go, @,y = (G, g,) and
extension morphism ko : (Go, Pg,) — (G’,CI)’GO), ko € MZ] 7g» Where t and #/
are transformations via the same sequence of productions py, ..., p, € P with
matches (my, ..., my—1) and (ko o my, ..., ky—1 0 m,_1), respectively, given by
the double pushout diagrams on the right.

8.2 Conflict Detection by Critical Pair Analysis

(Li, ®1,) —Li— (K;, Pk;) —ri— (R;, DR;)
n‘u (PO) 1, (PO) T
(Go, ®g,) ==t=>"(Gn, Pc,) (Gi, ®G,) «—8i— (D;, ®p,) —hi— (Git1,PG,,,)
kf (1) kf k‘i (PO) d‘i (PO) k,L
(Go, @) =+=5(Gy,, B,) <c;,£1>gi> — g <D;,£1>bi> — (Gl O,)

The following definition of a derived span describes how to combine the changes
of a transformation t : (Go, @g,) = (Gn, Pg,) (i.e., a sequence of direct transfor-
mations) into a a single transformation step t : {(Go, @g,) = (G, @,). In this way
any transformation can be treated as a direct transformation.

Definition 8.11 (Derived span for typed projective transformations).

Let TPGTS be a typed projective graph transformation system, the derived
span of a direct projective transformation (G, ®¢) e (H, @) with p € P, is
given by

der((G, @) =5 (H, @n)) = ({G,Pc) « (D, ®p) — (H, Pn)).
Given a transformation sequence
t : {(Go, P,) = (Gn-1,PG, ;) = (Gn, Dg,),
via productions in P, and with derived spans

51 :d67(<G0, cDGo) :*> <Gn—1/q)Gn_1>) = ((GOI q)G0> — <D,/ cDID) - <Gn—1/(DGn_1>)
52 :der(<Gn—1/ q)Gn_1> =5 <Gnl (DGn>) = (<Gn—1/ q)Gn_l) — <D”/ CI)B) - <an ®Gn>)

as shown in the following diagram:

)

(Go, Dg,) 80— (D', @) —8n-1— (Gy—1,Pg,_,) —fu1— (D", ®}) —fu— (Gu, Dg,)

The derived span
der(t) = (Go, Pg,) & (D, dp) % (Gy, P,),

of transformation sequence ¢ is given by the composition of derived spans s;
and s; via pullback (1), where dy = gopocv and d, = f, o w.

Note that a derived span is unique up to isomorphism and does not depend on the
order of the pullback constructions. For more details see Remark 5.28.

141

142 8 Conrrict DETECTION AND RESOLUTION

Based on the notion of initial pushouts we can now define consistency, and
show that consistency is sufficient (Theorem 8.13) and necessary (Theorem 8.14) to
guarantee the existence of an extension diagram.

Definition 8.12 (Consistency for TPGTS).

Let TPGTS be a typed projective graph transformation system. Given a trans-
formation ¢ : (Go, @g,) = (G, Pg,) via productions in P, where der(t) =
({Go, Dg,) < (D, Pp) = (Gn, Dg,))-

b
—
(B, ®p) —bp—> (Go, Pg,) «—do— (D, Pp) —dn—> (Gy, Dg,,)

(1) ko
|

(C,@c) —— (Go, ,)

A morphism ko : {Go, Pg,) — (G, P) ko € M] ¢ 1s consistent with respect
to transformation ¢ if there exists an qua51 (LN) 1n1t1a1 pushout (1) over ko

and a morphism b € Mpr]o] ¢ With dg o b = bo.

Theorem 8.13 (Embedding Theorem for TPGTS).

Let TPGTS be a typed projective graph transformation system. Given trans-
formation t : (Go, @g,) = (G, g,) via productions in P and an MZ] o nor=
phism ko : (Go, Dg,) — (G’,CIDE:()) such that ko is consistent with respect to
transformation ¢, then there is an extension diagram over ¢t and k.

Proof. This is a direct consequence of Theorem 5.30 and the fact that category
TSGop,1c is (L, R, N)-adhesive and has (£, N)-initial pushouts (for £ = MY

s, TG’
inj inj
R= MPm] TG’ N = M:> TG) =

8.2 Conflict Detection by Critical Pair Analysis

Theorem 8.14 (Extension Theorem for TPGTS).
Let TPGTS be a typed projective graph transformation system, given a trans-
formation t : (Go, @g,) = (G, Pg,) via productions in P, with derived span

der(t) = ((Go, ®Go) & (D, ®p) % (G, D¢,))

and extension diagram (1)

(B, @) —bo— (Go, Pg,) ==t== (G, O,

(2) ko 1) kn
! |

(C,®c) — (Gf, Op,) =v=>" (G}, ¥G,)

with (£, N)-initial pushout (2), then we have the following:

a) ko is consistent with respect to transformation ¢.

b) There is a direct transformation (G’,@’GO) ik i (G ,@’Gn> given by the

n
following double pushout diagram.

(Go, @c,) «do— (D, Pp) —dn— (Gun, Pg,)
\ | \
k 3 h 4 k
0 (3) I (4) i
<G6,<I>2;0> —— (D, @) — (G;,Cbér’)

c) There are quasi (L, N)-initial pushouts (5) and (6).

<B,¢’B> —b— <D,<I>D> <B,q>B> —d,ob— <G1’l/q>Gn>
| [
e b e
(C,@c) —— (D', ®p) (C,2c) (G, @,

Proof. This is a direct consequence of Theorem 5.31 and the fact that category

TSGop, 16 is (£, R, N)-adhesive and has (L, N)-initial pushouts (for £ = Mg TG
_ inj _ inj

R= MProj,TG’ N =M_). o

8.2.2 Critical Pairs and Completeness

Now we define symbolic critical pairs and show that symbolic critical pairs are
complete; that is, for any pair of parallel dependent transformations, there exists

143

144 8 Conrrict DETECTION AND RESOLUTION

a critical pair that can be extended to the pair of parallel dependent transforma-
tions.

Definition 8.15 (Symbolic critical pairs for TPGTS).
Let TPGTS be a typed projective graph transformation system, then a critical
pair of TPGTS is defined as a pair of parallel depended direct transformations

(P1, Dp1) E2L (K, Dk) 222, (Py, Dpy)

with p1, p2 € P such that the morphism pair (01, 02) is in 82”;]6.

Lemma 8.16 (Completeness of symbolic critical pairs for TPGTS).

Let TPGTS be a typed projective graph transformation system, then the sym-
bolic critical pairs of TPGTS are complete. This means that for each pair of
parallel dependent direct transformations

(Hy, @) &=L (G, D) 222 (Hy, D),
with p1, p2 € P, there exists a symbolic critical pair
(P1, @p1) &L (K, Ok 2222, (P, Opy)

with the following extension diagrams (1) and (2) over extension morphism .

(P, ®p1) <——— (K, &) ——> (P, Dpy)

ORI ¢
I

(H1, 1) <= (G,) ——> (Hp, Pm2)

Proof. This is a direct consequence of Lemma 5.33 and the fact that category
TSGop, 1 is (L, R, N)-adhesive, has binary coproducts, E-N factorization and the

L-N-pushout—pullback decomposition property for L = MIZ’TG, R = M?r];j’TG,
_ inj bij
N =M_ 1, and M. o

Example 8.17 (Extension diagram for symbolic critical pairs).
Figure 8.6 shows the extension diagram for a critical pair derived for pro-
ductions unregExam and regExam and the parallel dependent direct transfor-
mations presented in Example 8.3. The minimal context (K, @x) is obtained
by gluing (L1, ®r1) and (L, ®12) together, whereas the glued elements are
drawn bold. The formula component @ is the conjunction of ®;; and ®p (see
Definition 7.1); hence, the morphisms pair (01, 02) is jointly epimorphic (see
Lemma 7.3).

The critical pair (P, @p1) e (K, D) REEEN (P2, ®py) is obtained by ap-
plying the productions unregExam (i.e., p1 = (®11,L1 < K; — Ry, ®r1)) and
regExam (i.e., p2 = (@1, L2 « Ky — Ry, Dr2)) to the minimal context (K, k).

145

8.2 Conflict Detection by Critical Pair Analysis

*(wop0q 9y} uo umoys) ¢'g ardurexy ur pajuasard suoryeurIojsuer) 30211p juspuadap [Errered pue (doj uo umoys) wex3i041uspnis
-JgisiBayun pue wex3io4iuspnigialsibal suononpoid jo (syppru a3 ut umoys) ired [edILId dI[OqUIAS € 10§ weiderp UoIsualxe ue 10y ajdurexy :g'g aInSry

((12=a580130) (0L=15801%)) ((69=as301%0) v (02=15301%2))
JRIS-CYR) 15821 %3
wexd E wexe wexs { wexs
[OWD : Zowd}—»[wexg HXo_Al_lo_Zu - Jowd| [OND * Zowd]—»[wexg T X3l«{OIND * Tow?d]

49J30 wex33a1 wex3Ja1 43J30

pIod9y) : ¢Io

SpI029Yd

pio39y) : 140

SpI029Yd

m (02=15824'x3) u m (02=35821%3) u
wexa wexa wexa wexa
[OWD * Zowd}—sfwex3g _xm_Al_lo_\/_u - Joud] [OIND T Zownd}—swexg = Xale{QND * TOouwd]

wexj3a1 49Jj0

ﬁ (1+15804'x9=,15824%x3) (1-15824x9=1G824x3) u
I_umww%xw 0/=15501%> IuWMS.X@
wexd : wexs (S) w 18 wexd " wexa
OWD : coud}—s{wexg : xo ND © Towd _ wexs ___ues - T oun]—[wexy : xo T oD
_ [{0 _ /_o_zu o T Tl (O HQS_\ [OWD [>[exg el {OND _
49J30 wex33a1 wex338a1 3J30 T 13)30 wex3821 19)j0

wex38a4 43J30

pioday) : ¢

piodey) : 140
e D)

SpI023Yd

wjoiug : gue _j TTus
d
wexs Lr wexs u m wexs = wexs u -\S\
[OWD * Zowd}s[WexT - Xel«{OWD * 10Wo] [OWD * zoud]—s[Wexg xe]«[OWD * Towd)]

wex38a1 43Jj0

pio3sy) | 10
(35%2) sproomn (353
15824 %9

I wjoug © Tus

[OIND * owd|—[wexg 3] El [wexg T x3l—{QIND * owd]

1 u Io 13450

% /_O_\/_U T gowd}s[Wexy T X3le—{0OND - ﬁo_.tu_\ @ Spiodayd
z N7 13430 wexgFas 43430 147 T us

A [OND - owd|-=S[wexy * Xa| pio3sy) : oo < piodsyy 140 [Wexg e R=TOWD - oud) A
m (1+35801 %= ,35804'x3) u 50 ém_ﬂ:oUmmu Huwww‘_.xwu mn_oumw_ué i3y50 m (115801 x0=15801%3) u
PO) wonT Zv WoT 1w POy 7

splodayd E E spiodayd

ﬂ V]

146

8 Conrrict DETECTION AND RESOLUTION

On the bottom of Figure 8.6 the parallel dependent pair of direct transforma-
tions (Hy, Opyp) &t o (G, Dg) LECIEN (Hz, @) is depicted, which was originally
introduced in Example 8.3. The the matches m1 and m; are givenby m; = m o o1
and m1 = m o 0. Hence, the diagram shown in Figure 8.6 is an example for an
extension diagram in the sense of Lemma 8.16 as all rectangles are pushouts.

8.3 ConNrricTt REsoruTioN BY CriTicaL PAIR ANALYSIS

In this section we present the main result of this chapter, namely the Local Confluence
Theorem Modulo Normal Form Equivalence for typed projective transformations systems.

On may expect that local confluence (subcommutativity) of all critical pairs en-
sures local confluence of the graph transformation system. Unfortunately, this is not
the case as shown in [P1u93]. Nevertheless, a slightly more restricted version of local
confluence, called strict confluence, is sufficient to ensure local confluence [P1lu93].
Intuitively, a critical pair (P, ®p1) == e (K, Pg) =— e (P,, ®py) is strict local conflu-
ent if it is local confluent, i. e., there are transformations t3 : (P1, ®p1) = (P3, ®p3),
ty @ (Py, ®py) = (P3,Pp3), and all elements of (K, Pk) that are not deleted are
mapped to the same elements in (P3, @p3). In this way it is ensured that transforma-
tions <P],(Dp1> 2%, (P3, CDp3) JaLLn (Pp, Dpy) can be extended to transformations
(Hy,) L2 (Hs, Dpy,) L2 (Py, Dp).

In order to define strict local confluence modulo normal form equivalence we first have

to define the class of normal form preserving morphisms I, pr;] s

Definition 8.18 (The class 7, Pn],] TG—morphisms)

The class I] . 1s given as the subclass of M) -morphisms that are bijective

Proj, TG
for graph nodes and all kind of edges, and injective for label nodes.

nj
The class I 0iTG

morph1smsf (A, P4) — (B, Dp) in 7,
isomorphic normal forms.

In the following, we only define strict local confluence modulo normal form equiva-
lence. We do not give an explicit definition of strict subcommutativity modulo normal
form equivalence as the corresponding definition (and later the corresponding proof)
can be obtained as a special case of strict local confluence modulo normal form
equivalence.

is called the class of normal form preserving morphisms as for any

Pm] 1 We have that (A, ®4) and (B, ®p) have

8.3 Conflict Resolution by Critical Pair Analysis

Definition 8.19 (Strict local confluence modulo =).
Let TPGTS be a typed projective graph transformation system, a critical pair

- (K, Dk) L8 (P, Dpy), £ : (K, Dg) 2222 (P2, ®p2),p1,p2 € P

of TPGTS with derived spans der(t1) = ((K,®g) & (E1, Pp1) 2B (Py, Dpr))
and der(ty) = ((K,Dg) < & (Ey, D) B3 (P, ®py)) is strict local confluent modulo
=, if the following holds:

a) Modulo confluence. The critical pair is local confluent modulo =, i. e., there are
transformations t3 : (P1,®p1) = (P3,Pp3) and t4 : (Py, ®po) = (P, Ppy),
via productions in P, such that (P3, ®p3)=(P4, Op4).

b) Strictness. Let der(t3) =({P1, Pp1) & (E3, Pr3) 3 (P3, Dp3)), and der(ty) =
((Py, ®pp) & (Ey4, Dpy) B (Py, Dps)) be the derived spans of transforma-
tions t3 and #4; let (N, ®y) be the pullback object of pullback (1). Then,

there exists a (Z ®z) with morphisms z1,z2 € Ipréj e and morphisms

Y3, Ya, Y5 € MP i TG such that (2), (3), (4), and (5) commute.

Example 8.20.
Figure 8.6 shows that the critical pair (P;, ®p1) —— oo (K, Dg) RESEN (P, Dpy)
(originally presented in Example 8.17) is subcommutative modulo normal form
equivalence. To actually show that (P1, ®p1) &—— oo (K, Dg) REEEN (Pp, Dpy) is
subcommutatlve we have to find transformations t3 : (P, ®pq) => (P3,<Dp3),
: (P, Dpy) 23 (P4, Dpy) and a symbolic graph (Z, Dz) with I, pm] 7G-mor-
ph1sms 71 :{Z,Dz) — (P3,DPp3) and z5 : (Z,DPz) — (P4, DPpy) such that (2), (3),
(4), and (5) commutes. As shown in Figure 8.6 there is indeed such a pair of
transformations and symbolic graph (Z, ®z). Note that (Z, ®z) is isomorphic
to the projection of (P3, ®p3) to Z’ (or (P4, Ppy) to Z’), where Z’ is the subgraph
of P3 (P4) obtained by removing all auxiliary variables from P3 (P4) that have
no preimage in N via w3 o y3 (w4 0 y4).

147

8 Conrrict DETECTION AND RESOLUTION

148

enl :

\ offer regExam | offer /

U1 [cmol : CMO>[ex : Examl¢<{cmo2 : CMO] U2

exam exam

enl : enl :

crl :

crl :

w _033 : Q/_Ol_lv_mx” Exam|<—{cmo2 : CMO] [emotl : m_<_O|_|v_mx_ Exam]<{cmo2 : CMO] w
\ 1 exam exam A”—v exam exam N/V

enl : E enl : E
cRecords

cRecords % cRecords %
crl : CRecord cr2 : CRecord crl : CRecord
omm_‘qmmmxfj

[cmol : Q<_O|_|v_mx“ Exam}<{cmo2 : CMO] ANV va [cmol : Q<_O|_|v_mx“ Exam}¢{cmo2 : CMO]

cRecords

cr2 : CRecord

regExam offer

enl :

cRecords

crl : CRecord

exam exam

exam exam
ex.regSt’ J- offer ex.regSt”
[cmol . CMO}P>lex : Examl<{cmo2 : CMO]
m (ex.regSt'=ex.regSt-1) u exam exam m (ex.regSt” =ex.regSt+1) u
~ (T) g
U3 U4

enl : @

cRecords E cRecords
crl : CRecord cr2 : CRecord cr2 : CRecord
_‘mmmxm:_omm«

[cmol : CMOJ{ex : Examl¢—{cmo2 : CMO] [cmol : CMO}>{ex : Examl¢—{cmo2 : CMO]

mx.«mmmﬁ_mxma o A%v ¥ Amv - mxmlimx.«mwmn:

m (ex.regSt'=ex.regSt-1) u m (ex.regSt” =ex.regSt+1) u

B3]

cRecords

en2 : Enrollm

en2 : Enrollm :
cRecords

cRecords

cRecords a
crl : CRecord cr2 : CRecord enl : cr2 : CRecord
regExam offer cRecords regExam offer
[cmol : CMO}>[ex : Examl<{cmo2 : CMO] crl : CRecord [emol : CMO}>[ex : Exam]<—{cmo2 : CMO]
exam ; exam offer exam : exam
ex.regSt’ ex.regSt* _030”_. . ﬁ_/_o_lv_mx : _mxm_B_Al_nBON . ﬁ—/_O_ ex.regSt* ex.regSt”
m (ex.regSt'=ex.regSt-1) A (ex.regSt*=ex.regSt'+1) u eem ﬁmx «m,mmﬁ*u eem ﬁﬁmx._‘mmwﬁ:me.«mmerC A Amxamwmn*me._‘mwwﬁ:‘Cu
ﬁ (ex.regSt*=ex.regSt) u

Figure 8.6: Application of Definition 8.19 to show that the critical pair of Example 8.17 is subcommutative.

8.3 Conflict Resolution by Critical Pair Analysis

At the end of this chapter, we shall see a method for constructing the most general
(Z,Dz), whereas most general means that if the method fails to constructa (Z, @z),
then there does not exists any symbolic graph (Z, ®z) with 7, pn; rg-morphisms z; :
(Z,Dz) — (P3,Dp3) and z; : (Z,Dz) — (P4, Pps) such that (4), and (5) commutes.
To this end, we need to give an alternative definition for the construction of normal

forms from arbitrary symbolic graphs in terms of the smallest IPré -subgraph.
7, TG

While the notion of normal forms given in Definition 4.11 is of more constructive

nature, the following definition in terms of smallest 7, pn])] rg-Subgraph has a more

declarative character. However, we shall see that both definitions are equivalent.

Definition 8.21 (Smallest 7, Prg] rc-subgraph).
Let (B, ®p) be a typed symbolic graph in TSGp 1. An 7, Pni] rg-Subgraph of
(B, CDB) is any typed symbolic graph (A, ®4) in TSGp 16 for which there exists
an I -morphisms f : (A, ®4) — (B, Pp).

Proj, TG
An Iprg] G -subgraph (A, @4) is the smallest 7, Pré] G -subgraph of (B, @) if for
any I] re-subgraph (C, ®c¢) of (B, ®p) with 7, . . --morphism & : (C,®¢) —

(B,CDB), there exists an Ipr;] 7g-morphism ¢ : (A, Dy) > (C,Dc) such that
hog=f.

(A, Dy) f— (B, ®p)

N @ 7

N S
(C, ®c)

To actually prove that the smallest 7, Pni] rc-subgraph of a graph (B, ®p) is indeed

isomorphic to the normal form of (B, ®p), we first need to show that I " oj,7G O~
phisms are closed under composition and decomposition.

Lemma 8.22 (Pro] 16 18 closed under composition and decomposition).

Fa)

. is closed under composition and decomposition.
r0j, TG

Proof. For untyped E-graphs, this is a consequence of the fact that E-graph mor-
phisms can be composed (decomposed) componentwise in Set, and isomorphisms
and monomorphisms are closed under composition and decomposition in Set. For
typed E-graphs this follows from Definition 3.16. The composition and decomposi-
tion property for the formula component is a direct consequence of the fact that the
formula component for 7, 7 -morphisms is the same as for MPm] rg-morphisms

Proj, TG
and MP]0 ¢ s closed under composition and decomposition. m]

149

150

8 Conrrict DETECTION AND RESOLUTION

Lemma 8.23 (Smallest I] 1c-subgraph and normal form).

Let (B, ®g) be a typed symbohc graph in TSGop, 1, then a typed symbolic
graph (A, @4) in TSGop,1: is the normal form of (B, @p) if and only if (A, P4)
is the smallest I] rg-subgraph of (B, @p).

Proof. For technical reasons we begin with the only if direction.
Only if. Given typed symbolic graph (A, ®4) =~ nor({(B,®p)) with induced
morphism f 1 (A, ®a) — (B,Dp). We have to show that (A, D) is the smallest

I Py;] TG—subgraph of (B, ®p), which is equivalent to prove that f € 7, Pm] ¢ and for

any I] rg-Subgraph (C, @c) of (B, ®p) w1th h:{(C,dc) > (B,Dp), h €)

Proj, TG’
there ex1sts ag (A D4 = (C,Dc), g€, Pm] 1c such thatho g = f.

(A, @) (B, ®p)
Ny S

~N 7
(C,®c)

It is easy to see that f € 1, Pm] G- as it is constructed as the projection of (B, ®p)
to A, where A is obtained by just removing all auxiliary variables from B. Now, we
show that there exists a typed E-graph morphism g defined by ¢ = h™! o f, where
h=1 : B* = C is the inverse of h with domain B* = h(C). We have to verify that
¢ = h7' o f is defined for all elements in A. As I is in 7, Prg] 1c (- e., bijective for graph
nodes and all kind of edges), this trivially holds for graph nodes and all kind of
edges. For the label nodes, we have to show that fx(X4) C hx(Xc). By definition
fx(Xa) = Bx\aux(B). Moreover, h is a bijection on label edges; Therefore, at least
the label nodes in Bx\aux(B) that are assigned via a label edge must be in hx(Cx).
Consequently, fx(X4) C hx(Xc);so g =h™' o f is a valid E-graph morphism such
that (1) commutes.

It remains to show that ¢ € 7,

inj
of M Proj, TG*

graph morphism. From f,h € I,

inj s inj inj
Proj,TG" By definition, h € 1, Proj, TG I Proj, G is a subclass

Hence, from the projection property of / follows that g is a symbolic

zn]

 and the closure of I "/ under decomposi-

0j, TG

inj
tion we obtain g € 7, Proj,TG"

If. Let (B, ®p) be a typed symbolic graph in TSGyp, g and (A, ®4) the smallest
fpmj o-subgraph of (B, @) with morphism f : (A, ®a) — (B, ®p), f € I;’j;] o We
have to show that (A, ®,4) is isomorphic to the normal form of (B, ®g). Consider

the following diagram:

(A, @4)

8.3 Conflict Resolution by Critical Pair Analysis

Suppose that (C,®c) is the normal form of (B, ®p) with induced morphism # :
(C,Dc) — (B, Dp), constructed aqcprding to Definition 4.11. From th'e'previous part
of the proof, we know that i € 7, o As (A, ®,) is the smallest 7,,” -subgraph

i Proj, 1G* Proj, TG

of (B, ®p) there is an Iligj rg-morphism ¢ : (A, ®4) — (C,Dc) such that
f=hog. (8.1)
From f € I, ;Z{ﬂc, we know from the previous part of this proof that there exists

morphisms d : (C,Pc) — (A, D4) such that
h=fod. (8.2)

By inserting Equation (8.2) into Equation (8.1), we obtain f = f od o ¢ which is
equivalent to f oidy = f od o g, hence idy = d o g. By inserting Equation (8.1) into
Equation (8.2), we obtain i = h o g o d which is equivalent to hoidc = ho god,
hence idc = g o d. Consequently, g is an isomorphism with inverse ¢! = h. So
(A, ®4) and (C, Oc) are isomorphic. O

As mentioned before, all morphisms in 7, IZZ] 1c arenormal form preserving which
we prove next.

Lemma 8.24 (7" -morphisms preserve normal forms).

- Proj, TG
Any II;:Z]. 7c-morphism preserves normal forms; that is, given a morphism
f (A ®y) > (B,dg), if f € z;';gm, then nor({A,®4)) ~ nor({B,®z)) and

the following diagram commutes, where g and / are the morphisms induced
by constructing the normal forms of (A, ®4) and (B, ®p) according to Defini-
tion 4.11, respectively.

(A, @4) f

8 (1) h
\ /
nor({A, ®4)) =~ nor((B, P3))

Proof. Consider the following diagram, where (A’,®’,) and (B’, ®}) are the nor-
mal forms of (A, P4) and (B, Pp) with morphisms g : (A’, CD;‘) — (A, Dy) and

h: (B, @) — (B,@p), g, h € I .

Given morphism f : (A, ®4) — (B, Pp), f € I;':g}’TG, we have to show that
(A, @) and (B’, @) are isomorphic.

151

152

8 Conrrict DETECTION AND RESOLUTION

As (B’, D) is ’Fhe smallest I;Zgj’TG—subgraph of (B, ®p) (see Lemmg ‘8.23) and mor-
phism f € 1, 1;:1;] 16+ there exists (according to Definition 8.21) an 1;’:(]]] 1c-morphism
r: (B, ®y) — (A, Dy) such that

h=for. (8.3)
From f,g € I, 1;:21 ¢ and the closure of 7, ;:g] 7 under composition, we obtain (f o ¢) €

I If:g].,TG. Hence, there is an 7, Iﬁfgj,TG—morphism t: (B, P5) — (A, @,) with

h=fogot, (8.4)
as (B’, @}) is the smallest 7, IZZJ rc-subgraph of (B, ®p). Similarly, using the smallest
I I;féleG—subgraph property of (A’, @,) with r € 7, I;':(])j,TG, we obtain J, IZZ;‘,TG
s 1 (A, @) — (B’,D}) such that

-morphism

g=ros. (8.5)
Combining Equations (8.3) and (8.4) leads to f or = f o g o, which implies

r=got. (8.6)
By inserting Equations (8.5) into (8.6) and (8.6) into (8.5) we obtain

r=rosot (8.7)
g =gotos. (8.8)

Rewriting Equations (8.7) and (8.8) leads to idpr = s ot and idgs = t os. Hence,
(A’, @) and (B’, @}) are isomorphic. O

As alast property, we‘r‘equire that 7, ;’:;/Tc-morphisms are closed under pushouts
and pullbacks along MZJ 7c-morphisms, shown next.

Lemma 8.25 (Closure of II%] 1 under pushouts and pullbacks).

I Iﬁfgj’TG is closed under pushouts and pullbacks along MZ] rg-morphisms.

Proof. For untyped E-graphs this is a direct consequence of the fact that pushouts
in EG can be constructed componentwise in Set and the fact that isomorphism
and monomorphism in Set are closed under pushouts. The closure property for
typed E-graphs follows from Fact 3.17.a. The closure property for the Z-formula
component is a direct consequence of the fact that the formula component for
inj inj

ProjTG Proj,7G 18 closed

inj . .
I Pm].,TG—morphlsms is the same as for M

under pushouts.

-morphisms and M

The proof for the closure of IIZZJ 7 under pullbacks along MZJTG-morphisms
can be obtained similarly. o

Now we are able to proof the main result of this chapter, namely the Local
Confluence Theorem modulo normal form equivalence for typed projective trans-
formations systems.

8.3 Conlflict Resolution by Critical Pair Analysis

Theorem 8.26 (Local Confluence Theorem modulo normal form equivalence).

Let TPGTS = ((TSG@,TG,MZZ,TG,Mg;leG,MZ{TG),P) be a typed projective
graph transformation system, then TPGTS is locally confluent modulo = if all
its critical pairs are strictly confluent modulo =.

Proof. Assume that all critical pairs of TPGTS are strictly confluent modulo =.
Given a pair of direct transformations

(Hy, @1y E&2L (G, Dg) 222 (H,, Dppn)

via projective productions p1, p» € P, we have to show that there exist transforma-
tions
t5 : (Hi, PH1) = (Hz, Du3), t) : (Hp, Ppo) = (Ha, PHa)

via productions in P such that (Hz, Py3)=(Hs, PHa).

If the given pair is parallel independent, then, according to Theorem 8.2, there
are transformations t; and t; such that (Hs, ®p3) and (H4, @p4) are isomorphic
and, therefore, also normal form equivalent.

If the given pair is parallel dependent we show in part (i) that there exists trans-
formations té and t}; in part (ii) we show that the results (H3, ®y3) and (Hs, Opa)
are normal form equivalent.

The first part of this proof is an adaption of the proof of Theorem 6.28 in [EEPT06].

i). Suppose the given pair is parallel dependent, then Lemma 8.16 implies the
existence of a critical pair (P, ®p1) Pk (K, Dg) 2%, (P, ®p,) with extension
diagrams (20) and (21):

<G/ CDG>

(P3, @p3) = (Py, py)

By assumption, this critical pair is strictly confluent modulo =, which leads to
transformations

t3 : (P1,®p1) = (P3,DPp3), ta : (P, Ppp) = (Ps, Ppa),

and symbolic graphs (N, ®n) and (Z, ®z) with morphisms shown below, such that
(1) is a pullback and (2), (3), (4), and (5) commute:

153

154 8 Conrrict DETECTION AND RESOLUTION

(G, @¢)
81/ ll:l \82
/ |
(Dy, q> (11) (K, @) (12) (D, @)
vl/ \vz 52]
/ \ /
E [} 1 E,, ® hy
(10) r /] e1) ~, ® V2/< ’ E2\>w (13)
(Hy, @pg1) «n— (Py, ‘1>P1) (2) (N, ®n) 3) (P, @py) —92 (Ha, Pr2)
vs\ /y3 y4\ Uy
<E3 (13'53) <E4 cI>E4>
s @ 5. 6 o
N v
<P3,¢'p3> <P4 cI>P4>
\21 22/
(Z,@z)

. bij bij . .
Morphism class M Z] ¢ is a subclass of MM SO U1, 02,703,003 € M ‘g ¢ implies

P i, TG’

V1,02,03,03 € M From v1,0y € MY pullback (1), and the closure of

inj
M Proj, TG

(2) and (3) together with v3, w1, y1,v4, w2, Y2 € MM

Proj, TG* Proj, TG’

under pullbacks it follows that y1, y» € M The commutativity of

Proj, TG*
and the closure of M

inj
Proj, TG
Similarly, the

Proj, TG

under composition and decomposition 1rnphes Y3, Y4 € MPm] _—

commutativity of (4) and ws, y3,21 € MP ;TG a5 well as the commutativity of (5)

and wy, Y4, 23 € MPm] ¢ implies ys € Mpmj G
Now consider the following diagram in which (6) is a quasi (£, N)-initial pushout
over m; (10) and (11) are as in the previous diagram.

by

(B,®p) —b— (K, k) «01— (E1, Pp1) Wi~ (P, Ppy)
\ \ \ \
m' (6) m (11) S1 (10) 71
1 1 l 1
(C,@c) —c— (G, Pg) «81— (D1, Pp1) 1~ (Hy, Pm)
\Cl—/

The initiality of (6), applied to pushout (11), leads to unique morphisms by, ¢y €
M?rjoj ¢ such that v1 o by = b and g1 0 c1 = ¢. Moreover, Lemma 5.19 implies that
also (17) and (18) are quasi (£, N)-initial pushouts over s; and g1, respectively.

(B, ®p) —b1— (E1, Prp) —w1~ (P, Ppy) (B, ®p) —wy o b1~ (P, Pp1)
\ \ \ \
m' (17) 51 (10) @ (18) 1
l 1

m/
! 1 1
(C,®¢c) —1— (D1, ®p1) 1~ (Hy, ®1) (C,Dc) —hy o~ (Hi, Pry)

8.3 Conlflict Resolution by Critical Pair Analysis

Analogously, we obtain morphisms b, c; € M;fr];j TG with vy 0 by = b from (12) and

(13).

(C,@c)

(H3, ®ps) (Hyg, pa)

By using the universal property of pullback (1) with v 0o by = b = v 0 by, we ob-
tain unique morphism b’ : (B, ®p) — (N, Pn) with 14 ° b" =byand yp o b’ = by. By
bi,y1 € M;ZOJ.’TG and the decomposition property of M;frjoleG, we can conclude that

also b’ € M;?OJ ¢~ To show the consistency of g1 with respect to transformation 3,
with quasi (L, N)-initial pushout (18), we have to construct b3 : (B, Pp) — (E3, PE3),

b; € M;Z];].,TG, such that v3 0b3 = wy o by. This holds for b3 = y3 o b’. More-

’ inj inj . iy
over, as y3, b’ € Mpm].’TG, so b3 € Mpm].,TG (using the composition property of

inj
MProj,TG

respect to t4. Finally, by Theorem 8.13 we get extension diagrams (22) and (23).

-morphisms). In the same way we can show the consistency of > with

155

156

8 Conrrict DETECTION AND RESOLUTION

ii). For the second part we have to show that (H3, ®y3)=(Hy4, P4). To this end,
consider the following diagram.

/w30b3/b/<31<1>3> \w40b4\

P;, @ z ' Py, @
(Ps ‘ r3) \21\ <ZI¢Z>//<C’:¢L§2/< 4J p4)
T 4 h30c3j3/*/'<f2> Tyoe |
(Hz, Pp3) \le\ l Z/le (Ha, Ppa)
(Z!,@7)

First we choose morphism b, : (B,®g) — (Z,®z) such that b, = ys5 o b’. Then,
we construct the diagonal face as the pushout of b, and m’. By morphisms g3 o z;
and c3 o h3 and the universal property of the diagonal pushout we obtain unique
morphism zi {7, (D’Z) — (H3®py3). As the back left face is an pushout (i. e., a quasi
(L, N)-initial pushout; see Theorem 8.14.c), we may conclude that (7) is a pushout
by decomposing the back left pushout with the diagonal pushout. Similarly, we
may obtain pushout (16). It still remains to show that (Hz, ®y3)=(Hs, PH4), which
is equivalent to show that nor((Hz, ®n3)) =~ nor({Ha, Pns)). To this end, consider
the following diagram.

(P3, @p3) «—21 (Z,@z) Zo—— (Py, Ppy)
| }
qf (7) Zl (16) 5{4
(H3, ®p3) «——2) (Z', @) zp—— (Ha, PHa)
\xl X0 X2
N /
(X', @)

From pushouts (7) and (16) and 43,94 € MZ] 1c follows z” € Mij 16+ By defini-
tion z1,z7 € I;Zgj’TG, so0 21,2} € 1, ;ZZLTG as 7 ;Z{].,TG is closed under pushouts along
MZZ’TG—morphisms. Now we construct (X', @) as the normal form of (Z’, @’,). As
2,25 € 1, ;:ZJ,,TG we can conclude from Lemma 8.24 that (X', @) is the normal form
of (Hs, ®y3) and (Hy, Py4); hence, nor({Hs, ®y3)) and nor({Hy, Py4)) are isomor-
phic. m|

To construct the most general (Z, @z) we use the fact that any finite symbolic graph
has finitely many 7, 1;%] 1c-subgraphs.

Definition 8.27 (Construction of the most general (Z, ®z)).

q inj
Given MpmleG
(P3, ®p3) with finite symbolic graph (P3, ®p3) as given in Definition 8.19. Let

-morphisms y3 : (N, ®yn) — (E3, ®p3) and w3 : (E3, Pp3) —

8.3 Conflict Resolution by Critical Pair Analysis

Z = {z} : (Z],9,,) — (P3Dp3),. 1 (Zy, @,) — (P3,Pp3)} be the finite

set consisting of all I v morphlsms for all [] rc-subgraphs (Z7, @7) of

0j, TG
(P53, ®p3) such that w3 o ys = zjoy. foralli € { ,...,n}, as shown in the

diagram below.

/ (N, ®n)
ys //
(E3, D3) / Voo
(4) (21, @71)
w3 z’/
€//1/‘2/2’// <Zé’ q)/ZZ> y/5
(P, ®p3) & v 1\
‘\Z;\

(Z3, @)

Symbolic graph (Z, ®7) is then derived by iterated pullback constructions
as shown in the diagram below, where (2’), (3’), ..., (n’) are pullbacks. Pull-
back (1) (not shown in the diagram below) is the trivial pullback obtained by
intersecting (Z’,CD’Zl) with itself, leading to (Z1, Pz1) = (Z’,@’Zl).

A
\ | F<Zr‘1>z>
\

(z, @’Zn

For each pullback (i") the morphism ys,; : (N, ®n) — (Z;, Pz;) is constructed
by applying the universal pullback property of pullback (i’) to morphisms
ys,i-1 2 (N, ®On) = (Zi—1,DPzi—1) and ySZ (N, ®n) — (Z], D). After n pull-
backs the result is the symbolic graph (Z, ®z) with morph1sm 721 :{Z,Dz) >
(P3, ®p3) defined as z; = z), o b,. As IpréleG is closed under pullbacks, mor-

. inj c _
phism a;, b;, 2} € IPm] G forie{l,.,n}soz; =z, o0b,.

Note that for any symbolic graph (Z/,@’,.) there is a symbolic ‘Z-Pr;] rg-morphism
(Z,®z) = (2, D).

157

158

8 Conrrict DETECTION AND RESOLUTION

Lemma 8.28 (Construction of the most general (Z, ®z)).

Let (Z,Dy) with I;:gﬂc-morphism z1 : {(Z,Dz) — (P3,Pp3) be the symbolic
graph constructed according to Definition 8.27, then (Z, ®z) is the most gen-
eral in the following sense. If no morphism z; : (Z, ®z) — (P4, Pps) exists
such that zp o y5 = w4 o y4, then there does not exists an other (Z’, Q)’Z) with

Ili:loleG-morphisms z1 :(Z',@7,) — (P3,Dp3) and z} : (Z', D7) — (P4, Dpy), as

well as MZZOJ rg-morphism ys i (N, Dn) — (Z', D)) such that 2| oy = w3 0 y3
and z; o yé = W4 O V4.

<Nr q)N>
/ys/ \y4\
(Es, Dr3) yf (E4, PEa)
4 5
\ZU3 @ _— (2,@z) __ ©) 104/
AN z1 ‘\"22‘\\\\> e
(P3, Pp3) - (Py, py)

Proof. We show this lemma by contradiction. To this end, consider the diagram
shown below, where (Z, ®z) with z; o y5 = w3 o y3 is the symbolic graph con-
structed according to Definition 8.27. Let us assume that there does not exists
morphism z; : (Z,®z) — (P4, ®ps) but there exists an other graph (Z’,d’)

with IliféleG—morphisms z] (2, @) = (P3,®p3), 2z} : (Z', D) — (P4, Dps), and

M?r];)j’m-morphism ys : (N,®n) — (Z’,@,) such that z] oy, = w;0y; and
zy o yi = wy o ys. Hence, (Z/,@}) is an II;Z])]. rg-subgraph of (Ps, ®p3). Conse-
quently, z] : (Z/,®’,) — (P3,®Pp3) must be in Z and there must be a morphism

2" :{Z,Dz) - (Z',¥’,) such that z/ 0 z* o y5 = w4 o y4 which is a contradiction.

N, ®
y———— { | N) —_
/ Ys \

(E3, Pp3) ! (E4, Pga)
AN (Z,®@z) ~

N _aT N\ -
(P3, Pp3) z* (Py, ®pa)

Z \
ey

TOOL SUPPORT AND EVALUATION

To show that the presented theoretical result are applicable in practice, all tech-
niques presented in Chapter 7 and Chapter 8 were implemented resulting in the
SymeoLic GRAPH ANALYsIS AND VERIFICATION (SYGRAV) tool prototype. In this chap-
ter we give an overview on our efforts and insights gained when implementing
SYGRAV and analysing the CMS case study introduced in Chapter 2. More specifi-
cally, in Section 9.1, we give an overview on the SYGRAV tool prototype. In Sections
9.2 and 9.3 we present the measurement results and insights gained when applying
the constant enforcement and conflict analysis techniques to the CMS case study.
The chapter concludes with discussing the measurement results and giving some
directions for further improvements.

9.1 TuE SymBoLrLic GRAPH ANALYSIS AND VERIFICATION FRAMEWORK

The majority of SYGRAV is realized using the model transformation and metacase
tool (i. e., a tool for building tools) EMorLoN [LAS14]. Hence, almost all components
are realized in Java and conform to the EcLirse MopgLING FRaMEWORK (EMEF).

Figure 9.1 depicts the basic structure of SYGRAV, which consists of the following
main components:

1. The SymBoric GrRaPHS AND MoORPHISMS component provides an EcLipse MODELING
Framework (EMF) compliant metamodel for symbolic graph productions in
terms of symbolic graphs and morphisms. This component facilitates interfacing
between SYGRAV and other graph transformation tools. As a proof of concept we
have realized a transformation to translate graph transformation specifications
from the EMorLoN tool to SYGRAV. In the current version we support symbolic
graphs as presented in this thesis, i.e., node attributed symbolic graphs with
first-order formulas. Basically, arbitrary first-order formulas can be specified;
however, the actual support is constrained by the capabilities of the solver used
within the symbolic graph pattern matching component.

2. The SymBoric GRaPH PATTERN MATCHING component is conceptually the most
challenging part, as it draws on solving a combination of two problems that are
themselves subject to intensive research, namely graph pattern matching (also
known as the subgraph isomorphism problem) and satisfiability checking of
first-order formulas over multiple background theories. However, by combining
specialized of the shelf solvers for each problem, respectively, we were able
to reduce the implementation efforts and increase the efficiency and reliability

160

9 TooL SurPORT AND EVvALUATION

CONFLICT
ANALYSIS

SYMBOLIC SYMBOLIC
GRAPHS SYMBOLIC DEMOCLES
GRAPH
PATTERN
SYMBOLIC MATCHING
GRAPH Z3-SOLVER
MORPHISMS [{ TRANSFORMATION

CONSTRAINT
ENFORCEMENT

Figure 9.1: The Symbolic Graph Analysis and Verification Framework (SYGRAV)

of the implementation at the same time. For the current implementation we
combined the DEmocLEs pattern matching engine with the Z3 SMT solver.

a)

b)

Democtes is a local search based pattern matching engine that is currently
developed at the Fachgebiet Echtzeitsysteme, Technische Universitdt Darm-
stadt, Germany [VAS12]. Note that the subgraph isomorphism problem is
NP-complete (or polynomial assuming a fixed size pattern graph). For this
reason, DEMocLEs uses heuristics and a search plan driven strategy in order
to optimize execution times of the pattern matching process.

Z3 is a well-established satisfiability modulo theories (SMT) solver, which
is widely used in several projects [dMBO08]. Z3 is interfaced by using the
SMT-LIB! format, which defines common input and output language for
SMT solvers. Hence, Z3 may easily be replaced with any other SMT solver
that supports the SMT-LIB format. Z3 supports first-order formulas with
equality over various background theories, including nonlinear integer and
real arithmetic. Note that satisfiability of problems using these FOL fragments
is undecidable in general. Nevertheless, this does not prevent Z3 from finding
an answer in many cases.

In combination, also symbolic graph pattern matching is undecidable. Hence, in
contrast to pure graph pattern matching, we have to handle the case that there
is an E-graph morphisms but Z3 is not able to decide whether the morphism is
a symbolic graph morphism. In such a case Z3 returns unknowN. In the current
implementation those cases are basically treated as there is no morphism. As we

1 http:/ /smtlib.cs.uiowa.edu/

9.2 Support for Enforcing Symbolic Graph Constraints

shall see later, this treatment guarantees the soundness of our implementations
for constraint enforcement and conflict analysis.

3. The SymBoric GRaPH TRANSFORMATION component encapsulates the basic cate-
gorical constructions for symbolic graphs such as pushouts and pullbacks, but
also more complex compound functionalities such as the computation of direct
transformations via double pushouts and the construction of all possible glu-
ings of two graphs. The SymBoLic GRAPH TRANSFORMATION component relies on
the SymBorLic GraPHS AND MoRPHISMS and SymBoLic GRAPH PATTERN MATCHING
components. Note that this component is not a library for generic categorical
construction as, e.g., proposed in [MS10]; in fact, it offers specific categorical
constructions optimized for symbolic graphs.

4. The ConsTRAINT ENFORCEMENT component realizes the translation of graph con-
straints to left application conditions. The current version supports in addition
to negative constraints and application conditions (as presented in Chapter 7),
also arbitrary nested conditions as, e. g., proposed in [EGH*14].

5. The ConrLicT ANALYSIS component encapsulates the critical pair and confluence
analysis techniques for symbolic graphs as presented in Chapter 8. The current
version supports construction of symbolic critical pairs and subcommutativity
analysis modulo normal form equivalence for projective graph transformation
systems. Currently, productions with application conditions are not supported.

Summing up, the SYGRAV framework is a toolbox for static analysis and verifi-
cation of attributed graph transformations. The main component to facilitate this
techniques is the SymBoLic GRAPH PATTERN MATCHING component, which allows for
finding symbolic graph morphisms between arbitrary symbolic graphs and not
only for finding matches of symbolic graphs in instance models (i. e., definite or
grounded symbolic graphs). As we shall see in the following sections, SYGRAV
performs quite well for symbolic graphs consisting of a couple of elements, i. e., for
symbolic graphs as they appear in productions. However, SYGRAV is not intended
as a model transformation tool to transform large models (i. e., grounded or definite
symbolic graphs) consisting of thousands of elements.

9.2 SuPPORT FOR ENFORCING SyMBOLIC GRAPH CONSTRAINTS

In the following, we first give an overview on the constraint enforcement capabili-
ties of SYGRAV in Section 9.2.1. Subsequently we present the measurement results
collected by actually verifying the campus management system case study in Sec-
tion 9.2.2. Finally, we argue that the current implementation is sound.

9.2.1 Support for Enforcing Symbolic Graph Constraints in SyGRAV

The current implementation of the constraint enforcement techniques is very close
to the theoretical results presented in Chapter 7. Accordingly, the overall process
from a set of constraints to a rule with only essential NACs comprises the following
steps:

161

162

9 TooL SurPORT AND EVvALUATION

Generation of right application conditions (presented in Section 7.1). Although
we presented only the generation of negative right application condition from neg-
ative constraints in Section 7.1, the current version of SYGRAV also supports the
generation of right application conditions from arbitrary nested constraints. The
current implementation is based on the procedure proposed in [EGH"14]. However,
both procedures (i.e., the one presented in Section 7.1 and the one presented in
[EGH"14]) rely on the generation of all possible gluings of two graphs. As the num-
ber of possible gluings grows exponentially with the size of the involved graphs,
this procedure itself does not scale. However, a more important aspect is to keep
the number of generated gluings as small as possible, as all succeeding steps have
to be performed on the outcomes of this step, i.e., for each gluing. During our
experiments, it turned out that the restriction to linear gluings (i. e. gluings that are
linear symbolic graphs, see Definition 4.8) dramatically reduces their number; that
is, we require that if two graph nodes are glued together all their label nodes have
to be glued together, too (if present).

right to left application conditions (presented in Section 7.2). Similar to the
previous step SYGRAV supports the transformation of arbitrarily nested right appli-
cation conditions to left application conditions. The current implementation follows
closely the procedure proposed in [EGH"14].

Minimization of left NACs (presented in Section 7.3). While the construction of
left application condition is purely syntactically (also for the formula components),
the minimization of application conditions requires semantic reasoning about arbi-
trary nested application conditions which is undecidable in general (still for pure
graphs without attribute conditions). For this reason, SYGRAV currently supports
only the minimization of negative application conditions. The minimization is per-
formed as described in Section 7.3; that is, in a first step all consistency guaranteeing
left negative application conditions are removed (see Section 7.3.1). The result is a
set rules with only consistency preserving left NACs. Subsequently, for each rule all
subsumed left NACs are removed (see Section 7.3.2). The result is a set of rules that
carry only essential left NACs.

9.2.2 Performance Evaluation

The results of running the construction of left application conditions for the cam-
pus management system are summarized in Table 9.1. The graph transformation
system comprises 18 productions, which are all listed in the Appendix A. The pro-
ductions are denoted using the compact notation originally introduced in Chapter 2.
However, to establish a connection between the notation used for symbolic graphs
and productions in Chapters 3-8, all attribute expressions are given as a first-order
formula depicted below the productions. Note that primed variables appear only
in the RHS graph and are implicitly assumed to be existentially quantified in the
LHS formulas.

The campus management system example comprises 90 negative constraints,
where 7 negative constraints are user defined (see Appendix B). The remaining 83
negative constraints were automatically generated from the cardinality and con-
tainment restrictions imposed by the metamodel. For example, consider Figure 9.2

9.2 Support for Enforcing Symbolic Graph Constraints

Table 9.1: Overall measurement results

#Rules | #Constraints | Time NC to Pre NAC | Time Minimize | Time Overall
18 90 3.66 sec 6.48 sec 10.13 sec

that shows the negative constraints generated for the containment association date
of cardinality 0..1 from the class Exam to the class Date (see Figure 2.1). Negative
constraints (a) and (b) are generated from the fact that association date has cardinal-
ity 0..1; hence, there must not exist two links of type date from an Exam ex to two
different dates or to the same date. Note that constraint (b) is owed to the fact that
we support only injective symbolic morphisms. Negative constraint (c) is generated
from the fact that association date defines a containment relation; that is, an object
of type Date is contained in at most one other object. However, as according to the
CMS metamodel (see Figure 2.1) dates may also be contained in instances of class
Lecture, additionally negative constraint (c) is generated. The negative constraints
for the other association are generated similarly. Note that the generated constraints
do not impose any restriction on the attributes which is represented by a formula
component equivalent to T (i.e., true).

The overall process for generating all left application conditions from those 90
constraints for all 18 productions requires about 10 seconds, where the most time
(i.e., 6.5 sec) was spent for minimizing and 3.7 sec were spent for generating all
left NACs. The measurements were performed on a Windows machine with a
core i-7-2600-3.4GHz CPU and 8 GB memory. For the measurement the overall
procedure was run 20 times. In order to compensate the just-in-time optimization
performed by the java virtual machine, only the last 15 runs were considered to
calculate the average values shown in Table 9.1. The standard deviation of the
overall runtime with respect to the last 15 runs was below 200ms.

daA : Date |gate
[1 [] []
date date date

[ex: Exam | | [da: Date | [ex: Exam || [da: Date |

[] |1] |] |1 |

d date date
daB : Date |date le : Lecture
[1 []

(a) (b) () (d)

Figure 9.2: Negative constraints generated from the containment association date of cardi-
nality 0..1 from the class Exam to the class Date.

Table 9.2 shows the measurement results for each production separately. The
first column contains the name of the productions followed by the sum of the
graph nodes and edges contained in the left-hand side of the production. As we
only consider linear gluings, we did not take the number of label nodes and edges
into account as they do not influence the number of gluings. As mentioned, all
productions can be found in the appendix. The second column contains the number
of generated right application conditions, and column 3, 4, and 5 contain the number

163

164

9 TooL SurPORT AND EVvALUATION

of generated left application conditions before minimization, after removing the
consistency guaranteeing NACs, and after removing subsumed NACs for each
production, respectively. One interesting result is, that most of the generated left
NACs are consistency guaranteeing and thus are removed during minimization.
By also removing the subsumed NACs the number of remaining essential NACs is
quite small. More specifically, from the 2043 right application conditions generated
for all productions (see last row of Table 9.2), just 24 remain after minimization.
Although, the minimization step is not necessary form a theoretical point of view
(i. e.,no constraint can be violated by applying a production), these results show that
the minimization step is important from a practical point of view to not degrade the
performance when applying a production by hundreds of unnecessary application
condition checks.

As shown in Table 9.2 the number of right NACs and, consequently, also the
runtimes are mainly influenced by the number of contained graph elements.

Table 9.2: Detailed measurement results

#NACs Time [ms]
; #gi?}?]t:lliﬁ):ms) Post NACs Pre NACs NCs to Pre NACs Minimizing
All All ‘ Preserving ‘ Essential || NC to Post ‘ Post to Pre ‘ Overall || Guaranteeing | Subsumed | Overall
transResFail (12) 212 212 0 0 178 91 269 625 0 625
transResPas (12) 212 212 0 0 176 85 261 619 0 619
updateEx (9) 191 191 2 1 165 83 248 714 8 722
regExam (7) 187 187 3 2 178 89 267 570 8 578
unregExam (8) 184 184 0 0 172 72 244 544 0 544
updateLect (9) 163 163 0 0 161 60 221 544 0 544
regCMO (6) 140 80 4 2 170 53 223 302 17 319
setExam (6) 139 139 6 3 162 50 212 746 43 789
setLecture (7) 126 126 4 2 158 44 202 579 15 594
1egIMO (7) 103 76 2 1 163 35 198 162 7 169
regThesis (5) 83 59 2 1 157 27 184 144 6 150
bookRoom (4) 75 52 4 2 154 21 175 150 17 167
updateDate (3) 62 62 3 2 154 1 165 145 6 151
obtDeg (2) 49 36 2 1 154 11 165 97 6 103
setDate (4) a1 a1 7 4 153 8 161 115 18 133
uploadRes (1) 38 38 6 3 152 6 158 118 29 147
closeExam (2) 19 19 0 0 152 3 155 53 0 53
resetCMO (1) 19 19 0 0 150 3 153 71 0 71
Sum (105) H 2043 H 1896 ‘ 45 24 H 2909 752 ‘ 3661 H 6298 180 ‘ 6478 ‘

9.2.3 Soundness of the Conflict Enforcement Procedure

Although, symbolic graph pattern matching is undecidable, the implemented con-
straint enforcement procedure is sound in the sense that after running the constraint
enforcement procedure for a set of constraints and productions, the resulting ex-
tended productions are consistency preserving. To show this, we have to argue that
for the involved steps either (i) no symbolic graph pattern matching is required,
or (ii) if symbolic graph pattern matching is required, we have to argue that not
recognizing a morphism (although there exists one) does not lead to the loss of a
left application condition.

9.3 Support for Conflict Analysis

Construction of right application conditions. As shown in Remark 7.2 the con-
struction of the formula component for the gluings is performed on the on the
syntactical level. Hence, there is no need to invoke Z3.

Construction of left application conditions. As mentioned in Remark 6.13 to
decide whether an right application condition can be shifted along a functional
projective production, as well as the shift construction itself do not require any
reasoning on the semantics of the involved formulas.

Minimization of left NACs In order to argue that minimization procedure is
sound, we have to show that not recognizing a symbolic graph morphism (although
there exists one) does not lead to a removal of an essential NAC. By considering
the procedures presented in Section 7.3 one can see that a NAC is only removed
if there either exists a symbolic graph morphism from a negative constraint to the
corresponding NAC or a symbolic graph morphism from an other NAC to the
corresponding NAC. Hence, in both cases not capturing a morphism does not lead
to the removal of a NAC. Consequently, the minimization procedure is sound also
for undecidable background theories. However, we cannot guarantee that the set of
application condition is minimal (also in case of negative application conditions);
that is, after minimization there might remain negative application conditions that
are not essential.

Although we could not observe such a case when analyzing the CMS case study,
it is reasonable that such case become more likely especially for difficult problems
over background theories such as nonlinear real arithmetic. However, note that all
generated left application condition are sufficient and necessary in the sense that
none of the generated application condition blocks an application of a production
that would lead to a consistent graph.

9.3 SuprpPORT FOR CONFLICT ANALYSIS

In the following, we present the capabilities fo conflict analysis of SYGRAV. In Sec-
tion 9.3.1, we report on our experiences gained when analysing the CMS case study
with SYGRAV. The measurement results collected by actually analysing the CMS
case study are presented in Section 9.3.2. Finally, we show that the implemented
conflict analysis procedure is sound, also for undecidable background theories.

9.3.1 Conflict Detection and Resolution with SYGRAV

In the current version, SYGRAV supports conflict detection by critical pair analysis
and conflict resolution by subcommutativity analysis as presented in Chapter 8.
In the following, we present how the proposed techniques can be used to analyze
our CMS system to detect and correct unintended conflicts. Table 9.3 summarizes
the results of our efforts. More specifically, Table 9.3a shows the nonresolvable
conflicts (marked by an X) of the initial campus management system specification
called CMS. Table 9.3b shows the nonresolvable conflicts of the corrected campus
management system specification called CMS’. The primed productions denote
those productions that were actually changed to mitigate a conflict. The complete
list of all productions (i. e., initial as well as the corrected ones) can be found in the

165

166 9 TooL SurPORT AND EVvALUATION

Table 9.3: Comparison of nonresolvable conflicts (X) of the initial and the improved GTS
specifications CMS and CMS’, respectively.

AORHSEE IR PAREREIEE gle| IZEIE 8lulo Bl le| 2] l2lE]
SIE2B|EIE|1Z15121510 % w2 BB IS |% =B I EE R EHE S
Eﬁag%‘ﬁﬁxeméqégﬁgg; 2IEEIE2E12 152 B2 IE IR B 1512 5|5
SN =R R e SO R Lol o8 L= e RS R B RS I R L S A R e S e e =S R R EA]
HEEEEEEIEEEEE R R EE HEEEEEEREEEEEEE I EE
Q|5 |a|lBR|E|lE| o055 |F|&|a|o|a|la|s|=]= Q2 |a|lR|e|E|0|A|&|F|E2|5|0|la|ln|=|R|R

bookRoom |X bookRoom’ |X

uploadRes X uploadRes X

setDate | | | setDate

updateDate |X updateDate |X

transResPas transResPas’

transResFail transResFail’

closeExam X\ X | | closeExam XX

regExam X X |X regExam’

regCMO X X regCMO X X

unregExam X |X unregExam’

regTMO X regTMO X

regThesis X | X regThesis XX

obtDeg X obtDeg X

setLecture X setLecture X

setExam X setExam X

resetCMO resetCMO

updateLect X updateLect ‘X

updateEx X |X X X X |X | |updateEx’ ‘X X

(a) Nonresolvable conflicts of the initial GTS(b) Nonresolvable conflicts of the corrected GTS
specification CMS specification CMS’

appendix. We were able mitigate 9 nonresolvable conflicts; that is, from initially 25
nonresolvable conflicts for CMS to 16 for CMS'. As expected, we were not able to
mitigate all conflicts, as this would imply that the system is confluent; consequently,
every (or none) enrollment would lead to a degree regardless the actual results
achieved for the exams. However, we were able to discover and mitigate some
problematic conflicts.

Our studies with SYGRAV lead to the following workflow:

1. Running the conflict analysis. To run this step a graph transformation system
has to be provided containing the productions that have to be analyzed. During
this step the conflict analysis is performed on all pairs of productions. The result
is an analysis report for each pair. Accordingly, a pair has

* no conflict; that is, the pair is parallel independent

* a conflict that can be resolved; that is, the pair is parallel dependent but is
subcommutative.

* a conflict that can not be resolved; that is, the pair has either a real conflict
that can not be resolved or SYGRAV (i. e., more specifically the Z3 solver)
was unable decide the validity of a formula during the analysis. In order
to guarantee the soundness of our approach such a case is reported as
nonresolvable even if the involved productions actually do not constitute
a nonresolvable conflict (details follow in Section 9.3.3). For each nonre-
solvable conflict the reason is given by means of the corresponding critical
pair.

2. Manually analysing the critical pairs. As the critical pairs contain the minimal
contexts that lead to the conflict they provide useful hints how to adapt the spec-

9.3 Support for Conflict Analysis

ification to mitigate the conflict. During our work with SYGRAV we established
the following characterization of nonresolvable conflicts.

* Intended conflict. As mentioned before the campus management system is
intentionally nonconfluent. Hence, there are intended conflicts that shall
not be resolved. However, by inspecting the minimal contexts it can be
ensured that there are no unintended reasons for a conflict. For example,
the updateDate and bookRoom task are in conflict, as according to the life
cycle of an examination artifact (Figure 2.4) the date of an exam may only
be updated as long as no room is booked. By inspecting the critical pairs
we can ensure that there is no additional reason for the conflict of these
tasks. Especially, those reasons caused by the concurrent interaction of two
or more artifacts are of interest.

* Impossible conflict. By inspecting the critical pairs we often encountered the
case, where a captured conflict relied on the existence of a minimal context
that should not occur in normal system operation. In such cases the conflict
can be mitigated by adding a negative constraint. For example, the reason
that implies the existence of two current Semesters (i. e., two semesters both
with current attribute value equal to true).

* Unintended conflict. This kind of conflict characterizes all conflicts that are
unintentionally and can only be solved by adapting the involved produc-
tions.

* Undecidable conflict. Such a conflict usually appears if during the conflict
analysis the Z3 solver was not able to decide the validity of a formula.

® Lack of expressiveness conflict. We were not able to mitigate some conflicts
due to the missing support of application conditions for conflict detection.

After manually analysing the critical pairs and refining the specification, the process
is repeated until the desired results are obtained.

In the following, we demonstrate this process by mitigating the conflict between
bookRoom and regExam. The result of running the conflict analysis is a single critical
pair that is not subcommutative. The corresponding minimal context is shown in
Figure 9.3. By inspecting this minimal context, we can see that the left-hand sides
of the rules are glued along the Exam ex. Consequently, the reason for the conflict
is related to a conflicting manipulation of attributes located in ex : Exam. The only
attribute variable that is accessed by both productions is ex.regSt. Consequently, it
is sufficient to consider only the part of the formulas that are related to the variables
ex.regSt or ex.regSt’. Accordingly, the problematic parts are (ro.capExam < ex.regSt)
of bookRoom and (ex.regSt” = ex.regSt + 1) of regExam. More specifically, to apply
the production bookRoom the number of registrations for the exam (i. e., the value
of ex.regSt) must not exceed the exam capacity of the room (i.e., the value of
ro.capExam). However, the application of production regExam increments the value
of ex.regSt by one. Hence, if the exam capacity of the room and the number of
registered students are equal (i. e., ex.regSt = ro.capExam) the production bookRoom
cannot be applied to the same room after applying regExam. Consequently, first
applying bookRoom and then regExam leads to a different result than applying
the production the other way around. Note that Z3 provides an counterexample if

167

168 9 TooL SurPORT AND EVvALUATION

bookRoom(ex : Exam, ro : Room) regExam(en : Enrollment, ex : Exam)
LHS R LHS
ro : Room en : Enrollment
- capExam - state
cRecords
da : Date cr : CourseRecord
- beginl - tries
- duration - grade
Tdate
ex : Exam offer
- state ex : Exam | exam cmo : CoModOffer
- regSt - regSt L 1
(ex.state=EX_ST.PLAN) A (ro.capExam <ex.regSt) A ((en.state=EN_ST.STUDY) V (en.state=EN_ST.THESIS)) A
(bo.end'=da.begin+da.duration) A (bo.begin’=da.begin) A (cr.tries<3) A (cr.grade>4) A (en.enrolled=true) A
(ex.state’=EX_ST.READY) (cr.tries'=cr.tries+1) A (ex.regSt'=ex.regSt+1)

ﬁ ro : Room en : Enrollment
- capExam - state
cRecords
da : Date cr : CourseRecord
- begin - grade
- duration - tries
Tdate
offer

ex : Exam
- state <—|exam cmo : CoModOffer

regSt

(ex.state=EX_ST.PLAN)A(ro.capExam <ex.regSt)A(bo.end'=da.begin-+da.duration)A(bo.begin’=da.begin)A(ex.state’=EX_ST.READY)A
((en.state=EN_ST.STUDY)V(en.state=EN_ST.THESIS)) A (cr.tries<3)A(cr.grade>>4)A(en.enrolled=true) A
(cr.tries’=cr.tries+1)A(ex.regSt'=ex.regSt+1)

Figure 9.3: The minimal context of bookRoom and regExam that leads to a conflict that is
not subcommutative.

two formulas are note equivalent. Basically, these counterexample might be used
to assist with finding the reason for the conflict. However, this is currently not
implemented.

According to the aforementioned characterization, this conflict is an unintended
conflict. Hence, we have to adapt the involved productions. There are several possi-
bilities to synchronize the involved productions. We decided us to assign a global
schedule to each semester to ensure that productions bookRoom and regExam can-
not be applied at the same time. To this end, we augmented the class Semester with
the attributes semBegin, semEnd, regBegin, and regEnd determining the begin and
end of the semester as well as the begin and end of the corresponding examination
registration period, respectively. The intended schedule of the tasks bookRoom and
regExam is illustrated in Figure 9.4; that is, registrations for an examination should
only be possible during the registration period of the semester, whereas a room
may only be booked for an examination after the registration period. In this way;,
bookRoom and regExam cannot be applied at the same time. Moreover, scheduling
the task bookRoom after the registration period also ensures that the booked room
provides sufficient capacity (i. e., seats) to conduct the examination.

In order to realize this scheduling we need access to the current time. To this end,
we introduce the class System that has an attribute currentTime carrying the actual
time. The refined productions bookRoom’ and regExam’ are shown in Figure 9.5a

9.3 Support for Conflict Analysis

regExam’(en:Enrollment, ex:Exam) bookRoom’(ex:Exam, ro:Room)
b 7

semBegin regBegin regEnd semEnd

Figure 9.4: Schedule for the bookRoom’ and regExam’ tasks.

and Figure 9.5b, respectively. Both refined productions now look up the current
semester (sem : Semester) and the system timer (sys : System). By adding the
corresponding predicates to the formula (the middle line), production bookRoom’
is only applicable if the current time is larger than the value for the semester begin
the (sys.currentTime > sem.regEnd), whereas (sys.currentTime > sem.regBegin) A
(sys.currentTime < sem.regEnd) ensures that production regExam’ is only applicable
during the registration period of the current semester.

Finally, to get things working, we have to tell the analysis framework that Systemis
a singleton class, otherwise we may have a gluing with two Systems with potentially
different values for the currentTime attribute. This is achieved by adding the negative
constraint shown in Figure 9.6 to the specification.

The other production is refined in the same manner according to the schedule
shown in Figure 9.7. The complete list of productions (i. e., the initial and corrected
versions) and negative constraints can be found in the appendix.

Table 9.4 shows the remaining nonresolvable conflicts characterized according to
the aforementioned characterization. It can be seen that most conflicts are intended
conflicts (I). However, there are two lack of expressiveness conflicts (LE) and one
undecidable conflict (U). The lack of expressiveness conflict between the produc-
tion closeExam and the productions transResPas’ and transResFail’ can be resolved
with a NAC that requires that all results have been transferred before the exam
can be closed. However, application conditions are not supported by the current
implementation ot the conflict analysis process.

9.3.2 Performance Evaluation

In the following, we give an overview on the runtime results for performing conflict
analysis with the SYGRAV framework for the campus management system example,
whereas the measurement setup is the same as for constraint enforcement. Table 9.5a
compares the overall measurement results of the conflict analysis for initial version
(CMS) and improved version (CMS’) of the campus management system.

The results are interpreted as follows:

Generation of all minimal contexts. The minimal contexts are generated by all
possible gluings of the left hand sides of the productions. For this step, the same
procedure as for the generation of right application conditions is used; that is,
only linear gluings are considered (i. e. gluings that are linear symbolic graphs, see
Definition 4.8). The number and the time for generating all minimal contexts for
all pairs of productions for CMS and CMS’ are shown in the corresponding row. It
can be seen that modifications to correct the specification increase the number of
minimal contexts by a factor of approximately 3, which is a result of increasing the

169

170

9 TooL SurPORT AND EVvALUATION

bookRoom'’(ex : Exam, ro : Room)

LHS RHS
ro : Room ro : Room
- capExam - capExam
bookings
sys : System sys : System bo 3 Booking
N " - begin’
- currentTime - currentTime Cend’

i IocationT

sem : Semester da - Date sem : Semester da - Date
- current begin - current ~begin
- regBegin - . - regBegin .
- regEnd - duration - regEnd - duration
Tdate Tdate
ex : Exam ex : Exam
examg | - State exams | - State’
- regSt - regSt
(ex.state=EX_ST.PLAN) A (ro.capExam <ex.regSt) A
(sem.current=true) A (sys.currentTime>sem.regEnd) A (sys.currentTime<sem.semEnd) A
(bo.end’'=da.begin+da.duration) A (bo.begin’'=da.begin) A (ex.state’=EX_ST.READY)
(a) Refined graph production bookRoom’(ex : Exam, ro : Room)
regExam’(en : Enrollment, ex : Exam)
LHS RHS
sys : System en : Enrollment sys : System en : Enrollment
- currentTime - state - currentTime - state’
- enrolled - enrolled
—cp -cp
- regCp - regCp
sem : Semester J,cRecords j sem : Semester \l/ Record
cRecords
- current 3 - current
- regBegin cr - CourseRecord - regBegin cr : CourseRecord
- regEnd - tries - regEnd _ tries’
- grade
\l,offer regxam offer
ex : Exam | oam cmo : CoModOffer ex: Exam | eam cmo : CoModOffer
exam$ | - regSt exams | - regSt’

en.state= . V (en.state=EN_ST. A (cr.tries<3) A (cr.grade>4) A (en.enrolled=true) A (en.cp<en.regCp) A
EN_ST.STUDY EN_ST.THESIS ies<3 de>4 lled C
(sem.current=true) A (sys.currentTime>sem.regBegin) A (sys.currentTime<sem.regEnd) A
(cr.tries’=cr.tries+1) A (ex.regSt'=ex.regSt+1)

(b) Refined graph production regExam’(en : Enroliment, ex : Exam)

Figure 9.5: Refined graph productions bookRoom’ and regExam’

number of elements in left-hand sides of some productions. A more remarkable
fact is that although the number of minimal contexts increased by a factor of 3 the
calculation time increased by a factor of nearly 9. Hence, (at least in the specific
case) it seems that the runtime of the implemented procedure is quadratic in the
number of generated gluings.

Calculating consistent minimal contexts. In order to reduce the number of
minimal contexts, in this step those minimal contexts that are inconsistent with
respect to a negative constraint are removed. The result is a set of consistent minimal
contexts. Surprisingly, although 3 times more minimal contexts were constructed
for CMS’ (compared to the number constructed for CMS) the amount of consistent
minimal contexts is only slightly larger.

As shown in Table 9.5a, by this step the number of minimal contexts that have to
be considered for conflict analysis can be dramatically reduced. More specifically,
in case of CMS by 92% and in case of CMS’ by 97%. Hence, filtering inconsistent

9.3 Support for Conflict Analysis

SingeltonSystem

s [S—

Figure 9.6: Negative constraints to forbid the existence of two instances of class System.

setExam’(cmo:CoModOffer, ex:Exam) uploadRes'(ex:Exam, rl:resultList)

updateDate’(ex:Exam, da:Date) transResFail' (ex:Exam)

setDate’(ex:Exam, da:Date) unregExam’(en:Enrollment, ex:Exam) transResPas’(ex:Exam)

setLect’(cmo:CoModOffer, le:Lecture)iypdateEx’(cmo:CoModOffer, ex:Exam);, regExam’(en:Enrollment, ex:Exam) bookRoom’(ex:Exam, ro:Room)

semBegin regBegin regEnd semEnd

Figure 9.7: Overall schedule for the tasks CMS’

minimal contexts can be considered as the key measure to reduce the runtime of
the overall conflict analysis procedure.

Critical pair analysis. In this step all critical pairs are built as explained in
Section 8.2. The result is a set of pairs of parallel dependent direct transformations.
As expected, improving the specification leads to fewer conflicts (i. e., critical pairs).

Subcommutativity analysis. In this step subcommutativity modulo normal form
equivalence is checked for each critical pair. As the number of critical pairs for
CMS’ is smaller than for CMS, the time for subcommutativity analysis, as well as
the number of nonsubcommutative critical pairs for CMS’ is smaller than for CMS.

Table 9.5b shows the relative amount of time spent for symbolic graph pattern
matching, which is the sum of the time spent for pure graph pattern matching and
the amount of time required for solving the involved first-order formulas. In both cases
(i. e. for CMS and CMS’) more than 80% of the runtime is spent for symbolic graph
pattern matching. However, while for analysing CMS most of the time (i. e., 59%) is
spent for first-order logic solving, the situation is turned for analysing CMS’; that is,
most of time (i. e., 50%) is spent for graph pattern matching. This can be explained
with the huge difference in the number of generated minimal contexts for CMS and
CMS’, and the efforts required to filter them. Recall, to check whether a symbolic
graph (K, ®@k) is inconsistent with respect to a negative constraint nc({(N, ®y)), we
have to find a symbolic graph morphisms c : (N, ®n) — (K, Pk); thatis, an E-graph
morphisms ¢ : N — K such that such that (dg = Py [¢]) is valid. As mentioned in
Section 9.2 the majority of negative constraints are generated from the metamodel,
which means they are of the form nc({N, T)) (recall, T means true). Hence, finding
a symbolic graph morphism c : (N, T) — (K, ®k) reduces to pure graph pattern
matching as (Px = T) is trivially valid. Hence, regarding our example, filtering
inconsistent minimal contexts requires manly pure graph pattern matching.

Table 9.6 shows the overall runtime results for conflict analysis for each pair of
productions measured in milliseconds. Additionally, we denoted after each pro-
duction the number of graph elements (i.e., the sum of graph nodes and edges)
contained in the left-hand side. It can be seen that the overall time required for con-
flict analysis is influenced by (i) the similarity of the involved productions, (ii) the
the number of graph elements, and (iii) the complexity of the involved formulas.
The correlation between the runtime and similarity of the involved productions is

171

172

9 TooL SurPORT AND EVvALUATION

Table 9.4: Corrected version CMS’ with nonresolvable conflicts where I denotes an in-

tended conflict, LE a lack of expressiveness conflict, and U an undecidable con-
flict.

uploadRes
updateDate
transResPas’
transResFail’
closeExam

setDate
regExam’

regCMO
unregExam’
regTMO
regThesis
obtDeg
setLecture
setExam
resetCMO
updateLect
updateEx’

—| bookRoom’

bookRoom’
uploadRes
setDate
updateDate | 1
transResPas’
transResFail’
closeExam LE | LE
regExam’
regCMO I I
unregExam’
regTMO I
regThesis U I
obtDeg I
setLecture I
setExam I
resetCMO
updateLect I
updateEx’ I I

—

the most significant. It can be seen that in almost all cases analysing the production
with itself requires the most time, which is not surprising as two similar graphs
have potentially more overlappings as less similar graphs. Also the relation between
runtime and size of the involved productions is reflected by the measurements. The
relation between the complexity of the involved formulas and the runtime is quite
more harder to grasp. However, during our experiments it has become apparent
that Z3 has problems with if then else expressions (see for example production
transResFail in Appendix A).

9.3.3 Soundness of the Conflict Analysis Procedure

Similar to the constraint enforcement procedure, we can guarantee the soundness
of our conflict analysis procedure.

We begin with arguing that the critical pair analysis procedure is sound; that is,
if according to the procedure two productions p; and p; are nonconflicting, then
for all symbolic graph (G, ®¢) any pair of direct transformations

(Hy, @p1) &L (G, Dc) 222 (Hy, Drp),

via productions p1 and p, and matches m; and m; is parallel independent. To show
this, we have to argue that for the involved steps either(i) no symbolic graph pattern
matching is required, or (ii) if symbolic graph pattern matching is required, we have

9.3 Support for Conflict Analysis

Table 9.5: Overview of the measurement results of the conflict analysis for the initial version
(CMS) and corrected version (CMS’) of the campus management system.

CMS CMS' \ [cms | cws' |

Quantity | Time | Quantity | Time Graph
. 27% 50%
Minimal Contexts 2794 4.1s 9441 34.2's Pattern Matching ° ’

Consistent Minimal Contexts 209 144 s 211 23.8's i i

- . First Ordfer Logic 59% | 33%

Critical Pairs 144 2.2s 110 2.7s Solving
Nonsubcommutative Critical Pairs 36 21.8 s 24 15.3 s Symbolic Graph asm | 3%

Sum H ‘ 42,6 s ‘ ‘ 76 s ‘ Pattern Matching
(a) (b)

Table 9.6: Pairwise runtime required for overall conflict analysis in milliseconds

—~ | & & =
Elg Sl =1z |8]|s = = 3 =128
tlg|al8| 8|8 || |E|E|E|Z|s|e|Clc| B |
SI2|5/58| 8| % s|elc|8|lcldlelE|el2]l3 |4
el Q s3] Q o Q <
ZIE|E|E|5 5|28 & 2| |28 &8 |8|2| 5|5
s | 2 [a R - =t =t @ =) Q -t = = =) = o | o| © -
2|53 |8|E | E|s| €| |5 |8 ¥ 2|8 |3|¢ 5|5
bookRoom’ (7) 517
uploadRes (2) 22 | 191
setDate (2) 65 | 11 | 220
updateDate (2) || 301 | 11 | 49 | 220
transResPas’ (15) || 126 | 218 | 12 | 12 | 3918
transResFail’ (15) || 121 | 208 | 12 | 12 | 3822 | 3926
closeExam (1) 22 | 50 | 11 | 11 | 1143|1138 85
regExam’ (10) 96 | 135|147 | 147 | 1578 | 1581 | 143 | 995
regCMO (7) 10 0 0 0 |1985|1550 | 0O 594 | 1033
unregExam’ (11) 96 | 130 | 141 | 141 | 1649 | 1651 | 140 | 1017 | 520 | 1066
regTMO (7) 10| 0 0 0 |1322|1295| 0 | 217 | 194 | 257 | 181
regThesis (5) 10| 0 0 0 |1330]1285| 0O 98 | 156 | 145 | 73 | 122
obtDeg (3) 10| 0 0 0 |1288|1118| 0O 78 67 | 125 | 62 | 15 | 115
setLecture (6) 73 0 0 0 |1441|1425| 0 341 | 145 | 379 5 1 2 979
setExam (6) 98 | 129 | 141 | 141 | 1556 | 1538 | 138 | 431 | 143 | 465 5 1 1 602 | 963
resetCMO (1) 10| 0 0 0 |[1270|1263| O | 175 | 108 | 216 | 5 1 1 45 | 48 |62
updateLect (9) 7410 0 0 |1457|1442| 0 | 353 | 152 | 389 | 5 1 1 | 1450|601 | 16 | 3148
updateEx’ (10) 452|329 | 386 | 387 | 1504 | 1493 | 332 | 351 | 175 | 398 5 1 1 575 1928 |17 | 878 | 1906

to argue that not recognizing a morphism (although there exists one) does not lead
to the loss of a critical pair.

Construction of all minimal contexts. As shown in Remark 7.2 the construction
of the formula component for the gluings is performed on the on the syntactical
level. Hence, there is no need to invoke Z3.

Filtering minimal contexts. It is easy to see that missing a morphism from a
negative constraint to a minimal context during the filtering process does not lead
to the removal of a consistent minimal context.

Constructing direct derivations (for minimal contexts). As mentioned in Re-
mark 6.18, the construction of a direct transformation for a projective production
with a given match can be performed purely syntactically also for the formula
component. Hence, there is no need to invoke Z3 for constructing direct derivation
(provided that a match of the left-hand side is given).

Checking parallel independence (dependence). As mentioned in Remark 8.4,
only pure E-graph matching is required to decide whether a pair of transformations

173

174

9 TooL SurPORT AND EVvALUATION

is parallel independent or not. Consequently, the critical pair analysis procedure is
sound.

In order to argue that our conflict resolution procedure based on subcommu-
tativity analysis (see Definition 8.19) is sound, we basically have to consider two
situation where symbolic graph pattern matching is required. Assume, given a
critical pair

(Hy, 1) &4 (G, Do) 22 (Ha, Dipa),

to show (or refute) subcommutativity of the critical pair the procedure has to con-
struct direct transformations t3 : (P, ®p1) L2, (P3, ®p3) and t4 : (Py, Ppy) L4224,
(P4, ®p4). To this end, the matches m3 and m4 have to be looked up, which requires
symbolic graph pattern matching. However, if the recognition of one of the matches
fails (i. e., it is falsely not recognized as a symbolic graph morphism), we potentially
miss a direct transformation that potentially would resolve the conflict, but does
not lead to a conflict that is falsely resolved.

The second situation where we need symbolic graph pattern matching is to
decide whether the results of the transformation t3 : (P1, Pp1) L2 (P3,®p3) and
ty : (P, Dpp) 424, (Py, Opy) are equivalent modulo normal form. To this end the
procedure constructs the most general symbolic graph (Z, ®z) with morphism
z1: (Z,Dz) — (P3,Dp3) from (P3, Dp3). In order to show that (4) and (5) commutes

(see Definition 8.19), we have to find symbolic 7, Ii:zﬂc—morphism zp and symbolic

M?f{)j 7c morphism ys. However, if the recognition of one of the morphisms fails
(i.e., it is falsely not recognized as a symbolic graph morphism), the procedure
potentially misses a (Z, ®z) that possibly would resolve the conflict, but does not

lead to a conflict that is falsely resolved.

94 THREATSs TO VALIDITY

By providing the SYGRAV prototype we have shown that the theoretical results
obtained in Chapters 4-8 can be implemented.

We conducted experiments on a case study from the enterprise modeling domain,
including 18 productions that were inspired by the real workflows of the campus
management system actually used at Technische Universitit Darmstadt. During
our experiments it turned out that the minimizing and filtering steps are the key
measures to apply the proposed constraint enforcement and conflict analysis tech-
niques to reasonably realistic problems. Regarding the scalability of the approach,
the complexity of the underlying analysis problem is mainly caused by the size and
number of the productions (and graph constraints) under consideration. While we
expect that the number of productions is much larger in an industrial size sce-
narios, the number of elements per production in our running example is quite
representative for medium size productions (according to our experiences with
model transformation). However, to finally assess the significance of the measure-
ments with respect to larger scenarios, further experiments have to be conducted.
Nevertheless, by taking into account that for industrial size verification problems,
runtimes of several days on large multiprocessor computers are acceptable, it seem
reasonable that the proposed techniques are also applicable to those problems.

9.4 Threats to Validity

By introducing (functional) projective graph transformation and thereby omit-
ting the need for an infinite number of label nodes to represent attribute values,
we were able to provide an implementation that is very close to our theoretical
construction, that were shown to be correct. We have shown that the implemented
procedures are sound, also if the used fragment of first-order logic is undecidable.
All results that were obtained for the CMS case study were manually revised and
checked for plausibility. Additionally, we have a test suite with several (smaller)
examples whose validity were checked manually. However, SYGRAV is still a proto-
type and we cannot exclude the presence of bugs.

Threats to external validity may arise from the usage of off-the-shelf SMT solver
and pattern matching capabilities. However, Z3 is a well-established SMT solver
which is widely used in many projects and known for producing reliable results.
Democts is actually (since mid of 2015) the main pattern matching engine used in
the EMorLoN tool and has reached during this time an adequate degree of reliability.

175

RELATED WORK

In the following, we compare the new concepts presented in this thesis with other
existing approaches.

10.1 TRANSFORMATION OF ATTRIBUTED GRAPH STRUCTURES

We begin with comparing projective graph transformation with other existing con-
cepts for the transformation of attributed graph structures. As there are various
attribution concepts for graph transformation we focus on those approaches that
have a formal foundation, which are mainly those that are based on the algebraic
double pushout approach.

Symbolic and lazy graph transformations. Symbolic graphs were first intro-
duced in [Ore08] to define attributed graph constraints. Subsequently these results
were extended to symbolic graph transformation in [OL10b]. As mentioned in
Chapter 3, transformations via symbolic productions enjoy the properties of adhe-
sive transformation systems. However, as discussed in Section 3.5 transformations
via symbolic productions are improper for transforming nongrounded symbolic
graphs. In [OL12] lazy graph transformation is proposed to overcome these lim-
itations. Similar, to projective productions the left-hand side morphism of a lazy
production has to be in MZ{, whereas the right-hand morphism of a lazy produc-
tion is only required to be in M/ (note, we require the right-hand side morphism
to be in M?rjoj in case of projective productions, and r € M?ch in case of functional
projective productions). Hence, lazy graph productions provide more expressive
power than projective and functional projective productions; that is, a transforma-
tion via a lazy graph production may further constrain the values of existing label
nodes, whereas in case of projective and functional projective graph transforma-
tions only the values of created label nodes may be constrained. Unfortunately, this
gain of expressiveness leads to the loss of the HLR properties for lazy graph produc-
tions, which build the basis for proving the correctness for consistency enforcement
and conflict analysis techniques. Accordingly, projective and functional projective
transformation systems can be considered as a compromise between symbolic and
lazy graph transformation; that is, (functional) projective graph productions are not
only restricted to transformations of grounded symbolic graphs (such as symbolic
graph productions), but still retain the properties required to apply the existing
results for constraint enforcement and conflict analysis techniques.

Transformation approaches based on algebra attributed graphs. Basically, we
can distinguish between two algebra based approaches for graph attribution. In

178

10 Reratep WoRKk

[LKW93] both the graph structure and the attributes are coded as an algebra. In
[HKTO2] the algebra is embedded into the graph. More specifically, an algebra at-
tributed graph is seen as a pair formed by an E-graph and an algebra, to define
values for thelabel nodes. In [Ehr03] it is shown that both approaches are equivalent,
up to a certain point. In [EPT04] it was shown that algebra attributed graphs fit into
the framework of adhesive high-level replacement (HLR) systems; thus providing a
formal foundation for graph transformation including all its basic results. However,
although this representation is theoretically satisfactory, including the algebra in
the graph structure leads to potentially infinite graphs. This is especially problem-
atic with respect to an implementation, as the theoretical results can not be directly
transferred to an implementation, as real systems rely on finite data structures in
general. In [OL10b] it is shown that every algebra attributed graph can be coded as
a symbolic graph, whereas the converse is not true. Hence, symbolic graph trans-
formations and, consequently, also (functional) projective graph transformations,
are expressively more powerful than algebra attributed graph transformations.

Transformation approaches based on partially labeled Graphs. Basically, a
partially labeled graph is a graph together with a partial label function to assign
labels from a label alphabet to the graph nodes (and edges). In contrast to algebra
and symbolic attributed graphs the labels are not coded in the graph structure,
which eliminates the need for infinite graphs. Moreover, attributed graphs based on
partially labeled graphs circumvent some inconveniences of algebra and symbolic
attributed graphs. For example, every node has by definition at most one value for
each attribute. In case of algebra and symbolic attributed graphs this can only be
achieved by additional negative constraints. Also the typing concept of attributed
graphs based on partially labeled graphs is more elegant compared with algebra
and symbolic attributed graphs. For algebra and symbolic attributed graphs label
nodes are typed twice, i. e., by the type graph and the signature of the algebra. In
case of partially labeled graphs the typing can de done at either level; for example,
untyped graphs with typed attributes may be defined [PH15].

In [HP12a] a category for attributed graphs based on partially labeled graphs
is proposed; it is shown that the category is (M, N)-adhesive. Thus, all results
obtained for (M, N)-adhesive transformations systems directly apply to this ap-
proach. However, although this approach enjoys the aforementioned advantages
of partially labeled graph, it is currently limited to simple replacement of attribute
values and does not support computations on attribute values [PH15].

In [Gol12] a general attribution concept for M-adhesive transformation systems
is presented. In [PH15] it was shown that this concept is related to (M, N)-adhesive
transformation systems. Similar to the approach presented in [HP12a, PH15] only
the replacement of attribute values is currently supported.

In [P1u09] graph programs are proposed, which provide an other attribution con-
cept based on partially labeled graphs. In contrast to the approach presented in
[PH15], graph programs allow for computations on attribute values. The main
drawback of this approach is that it does not fit into the framework of adhesive
transformation systems. Hence, all results that are direct consequences from the
HLR-properties, need to be verified separately.

10.2 Verification of consistency constraints

10.2 VERIFICATION OF CONSISTENCY CONSTRAINTS

In the following, we relate our results with respect to other existing approaches for
verifying consistency constraints.

The construction of application conditions from constraints was initially intro-
duced for plain graphs in [HW95]. Subsequently the approach was generalized to
high-level structures within the framework of M-adhesive categories in [EEHP06].
To this end, the underlying category has to provide (in addition to the HLR prop-
erties) some extra properties referred to as HLR " properties.

In [DV14] we have shown that the symbolic graph transformation systems (orig-
inally introduced in [OL10b]) provide these HLR+properties; thus, the results for
constructing equivalent precondition application conditions from graph constraints
obtained in the context of high-level transformation system [EEHP06] also apply
for symbolic graph constraints and transformations via symbolic graph produc-
tions. Compared with the notion of functional projective productions presented
in this thesis, symbolic graph productions are expressively less powerful, as every
symbolic production is also a functional projective production, but not vice versa.
However, from a practical point of view, this increase in expressive power is very
small. Nevertheless, in contrast to symbolic graph productions, functional projec-
tive productions are suitable for transforming nongrounded symbolic graphs; thus
the underlying computational model is more close to real implementations.

Asmentioned in the previous section transformations via lazy graph productions
provide more expressive power than transformation via projective and functional
projective productions. However, as shown in Chapter 7, projective productions
fail to provide the required properties to transform post- into equivalent precondi-
tion application conditions. As a direct consequence, also lazy productions fail to
provide these properties.

In [EEPT06] it was shown that algebra attributed graph transformation systems
provide the HLR " properties required for transforming constraints to equivalent
application conditions. As mentioned in the previous section the approach comes
with some technical difficulties that arise from the conceptual complexity of combin-
ing graphs with algebras. As shown in [Ore08] algebra attributed graph constraints
provide less expressive power than symbolic graph constraints.

The construction of precondition application conditions from graph constraints
in the framework of partially labeled graphs and graph transformation systems
was shown [HP12a].

For graph programs the construction of precondition application conditions from
graph constraints was proven in [PP12]. In [PP14] graph constraints are extended
to make them equivalently expressive to monadic second-order logic on graphs; a
construction for preconditions for these assertions is provided, too. As mentioned
in the previous chapter, graph programs do not fit into the framework of adhesive
transformation systems. Hence, all constructions were verified separately. More-
over, other results obtained in the framework high-level transformations systems
(e.g., for conflict analysis) cannot directly be transferred to graph programs.

An approach that also considers constraints with an expressive power equivalent
to second order monadic logic is presented in [HR10]. In contrast to graph programs

179

180

10 Reratep WoRKk

this approach is defined for adhesive transformation systems; thus, these results
may be transferred to (functional) projective graph transformation systems with
reasonable efforts.

In [AHRT14] and [RAB*15] the transformation of OCL constraints into graph
constraints is considered. As these results are defined for adhesive transformation
systems, they likely apply also to functional projective transformations system;

10.3 ConNrricT DETECTION AND RESOLUTION FOR ATTRIBUTED GRAPH TRANS-
FORMATIONS

The only related approaches that provenly provide the properties to perform con-
flict analysis are symbolic graph transformation systems and algebra attributed
graph transformation system.

From a theoretical perspective, all results presented in Chapter 8 are also valid
for symbolic graph productions, as every symbolic graph production is also a
projective production. However, from a practical point of view, performing con-
fluence analysis with symbolic productions does not lead to satisfactory results.
Recall that symbolic productions are in general not useful when applied to non-
grounded symbolic graphs. However, for confluence analysis we have to transform
minimal contexts, which are generally nongrounded. Lazy symbolic graph pro-
ductions [OL12] circumvent these shortcomings by allowing the creation of label
nodes. Moreover, transformation via lazy productions may further constrain the
values of existing label nodes. Unfortunately, this gain in expressive power leads to
the loss of the locality property; that is, further constraining the values of existing
label nodes potentially affects the values of label nodes that are not in the match
of the production. This problem is illustrated in Figure 10.1. The lazy production
shown on top of Figure 10.1 further restricts the value of existing label node x by
adding constraint (x=5). Thus, the production is not a projective production. The
direct transformation derived by applying this production to a symbolic graph
(G, D) is shown on the bottom of Figure 10.1. In addition to a label node x the
graph G contains an other label node y, whose value is given by (x=y). Applying
the production to symbolic graph (G, ®¢) results in symbolic graph (H, @) with
®y & (x = y) A (x = b). Hence, in addition to setting te value of x equal to 5, the
application implicitly sets also the value of y equal to 5, although label node y was
not in the match. Without this locality property, the Embedding and Extension

T T Pr (x:5)
L K R
o — x|, #
[[[
m k n
=—ici 1o ppe—y:]
g h
(x=y) (x=y) (X:V)/\(X:5)

Figure 10.1: Example of a transformation via a lazy production which has nonlocal effects.

Theorems (Theorem 8.13 and Theorem 8.14) as well as the completeness lemma for

10.3 Conflict Detection and Resolution for Attributed Graph Transformations

symbolic critical pairs (Lemma 8.16) are not valid anymore, as they are based on
the assumption that transformations have only local effects.

The results for conflict detection and resolution are also valid for algebra at-
tributed graphs [EEPT06]. However, the results for conflict detection do not apply
for arbitrary algebra attributed graph productions; that is, only productions, where
the left-hand sides are attributed by merely variables are permitted. However, this
further restricts the expressive power of algebra attributed graph productions.

Local confluence for productions with negative application conditions in the
context of adhesive transformation systems is studied in [LEO06, LEPO08]. The
results were generalized to nested application conditions in [EGH"12]. As these
results are formalized within the framework of adhesive transformation systems,
we are optimistic thatitis possible to provide similar proofs for functional projective
transformation systems.

181

CONCLUSIONS

Graph transformation with its formal foundations and its broad range of theoretical
results constitutes an effective framework for the specification, analysis, and ver-
ification of software systems. Nevertheless, almost all realistic systems for which
graph-based modeling is appropriate incorporate primitive data in terms of at-
tributes. Although there exists a broad spectrum of theoretical results for consis-
tency enforcement and conflict analysis techniques, there is currently rather limited
tool support for these techniques with respect to attributed graph structures. Ac-
cordingly, the main objective of this thesis was to close this gap by developing
a formal framework for the static verification of attributed graph transformation
systems, with the aim to deliver an implementation. We identified the need for po-
tentially infinite graphs as the main obstacle that prevents an implementation. As
for an implementation the underlying data structures need to be finite, it is rather
difficult to argue that an implementation of the developed verification techniques
preserves the properties of the related theory. More concretely, it is by no means
trivial to show that an implementation with finite representations of infinite graph
structures preserves the correctness and completeness proofs of its underlying
graph transformation theory.

Accordingly, The main contributions of this thesis are (i) the development of a formal
framework for attributed graph transformations that does not rely on infinite graphs, (ii) the
proofs of the results for consistency enforcement and conflict analysis in this framework, and
(iii) the realization of the developed theoretical concepts leading to the SymBoLic GRAPH
ANALysis AND VERIFICATION (SYGRAV) tool prototype. Moreover, we assessed the
practical applicability of the theoretical results by evaluating the tool prototype by
means of a case study.

In the following, we first summarize the contributions of this thesis in detail in
Section 11.1. Subsequently, we discuss in Section 11.2 the practical relevance of our
findings. This chapter concludes with providing directions for future improvements
and research (Section 11.3).

11.1 CONTRIBUTIONS

The basis for all contributions provided in this thesis, was to identify the classes of
projection and functional projection morphisms. These morphism classes provide
the basis to formalize attributed graph transformation systems without the need
for potentially infinite graph data structures. At the same time, these morphisms
classes retain the characteristics required for consistency enforcement and conflict
analysis techniques.

184

11 CoNCLUSIONS

Based on these morphism classes we developed a formal framework for attributed
graph transformation systems including the following contributions:

(£, R, N)-adhesive categories and transformation systems. To prove the funda-
mental results of the double pushout approach for projective graph transforma-
tion systems we introduced the new concept of (£, R, N)-adhesive categories and
transformation systems in Chapter 5. Moreover, we have shown that basic results
obtained for HLR-categories are also valid for (£, R, N)-adhesive categories.

Enforcing Symbolic Graph Constraints. Chapter 7 provides the proofs of the
additional properties required to construct equivalent application conditions from
symbolic graph constraints. Moreover, we have shown that the construction of
equivalent precondition application conditions is valid for functional projective
transformation rules. Finally, we provided minimization procedures to reduce the
number of generated negative application conditions. Our experiments have shown
that most of the generated application condition are not necessary to preserve
consistency. Accordingly, they are removed by the minimization procedures. Hence,
the minimization procedures are important from a practical point of view to not
degrade the performance of applying a production by hundreds of unnecessary
application condition checks.

Conflict Detection and Resolution. Chapter 8 provides the proofs required
to transfer the well-known results for conflict detection (by parallel dependence
analysis) and conflict resolution (by local confluence analysis) to projective graph
transformation systems. It turned out that the standard local confluence analysis
approach, which performs well for graph transformation without attributes, does
not lead to the desired results when applied to projective graph transformation sys-
tems. This problem was solved by introducing local confluence modulo normal form
equivalence. Additionally, we have shown tat the results of the Local Confluence
Theorem remain valid for local confluence modulo normal form equivalence.

Tool support and evaluation We implemented all theoretical results obtained in
this thesis leading to the SymBoLic GRAPH ANALYSIS AND VERIFICATION framework. In
Chapter 9 we used SYGRAV to conduct experiments on a case study from the enter-
prise modeling domain. The measured run times obtained during our experiments
are quite promising. However, to finally assess the significance of the measurements
with respect to larger scenarios, further experiments have to be conducted.

11.2 PracticaL RELEVANCE

An other important metric regarding the practical applicability of our approach is
its expressive power. In general, there is always a trade-off between the expressive
power of a language and the properties that can be verified. Accordingly, it was
necessary to impose certain restrictions on the allowed attribute expression in order
enable consistency enforcement and conflict analysis techniques. These restrictions
led to the notions of projective and functional projective graph transformations. In
the following, we discuss the implications of these restrictions concerning the real-
ization of static verification support for current state of the art graph transformation
tools. To this end, we analyzed the permissible attribute conditions in the graph
transformation tools Hensuin [AB]*10], Viatra2 [BDH*'15], GRGen.NET [GBG106],

11.3 Future Directions

and EMorronN [LAS14]. It turned out that all tools permit attribute expression com-
parable to the expressive power of first-order logic without quantifiers. Moreover,
all tools require new attribute values to be defined in terms of functions by the
existing attribute values, which matches exactly the restriction imposed by func-
tional projective transformation rules. Consequently, the SYGRAV tool prototype
can be considered as a major step towards extending current state of the art graph
transformation tools with static verification capabilities. The term “major step” is
owed to the fact that the considered graph transformation tools provide further lan-
guage features such as inheritance and amalgamation, which are in fact orthogonal
to attribution but currently not supported by SYGRAV. This leads us to possible
direction for future work.

11.3 Future DIRECTIONS

Asmentioned the SYGRAV tool prototype can be considered as a major step towards
offering support for static verification for current state of the art graph transfor-
mation tools. Nevertheless, additional language features need to be integrated to
achieve a comprehensive support.

An important language extension are application conditions. Local confluence
analysis for graph transformation systems with negative application conditions was
tirst presented in [LEO06, LEPOO08] in the context of adhesive transformation sys-
tems. The results were generalized to nested application conditions in [EGH"12].
Hence, to establish support for conflict analysis with application conditions the
formal requirements to apply these techniques need to be verified. Towards an im-
plementation of these techniques the main challenge is to establish capabilities for
reasoning over application conditions. This problem is undecidable for arbitrary
nested application conditions, but decidable for a certain subset including proposi-
tional expressions over negative and positive application conditions [Pen08]. Hence,
it should be possible (with reasonable efforts) to provide an implementation for con-
flict analysis with negative and positive application conditions.

Another concept is type inheritance, which is especially important for the objec-
t-oriented approach to metamodeling. We are optimistic that the results for consis-
tency enforcement presented in [TR05] as well as the results for conflict analysis
presented in [GLEO12] for algebra attributed graphs with type inheritance can be
transferred to functional projective graph transformation systems.

Another popular language extension are amalgamated graph transformations,
which allows for the definition of transformations whose size is determined at
transformation time by means of the actual model characteristics. In this way it
is possible to express for each loops by graph transformation rules. Recently an ap-
proach for conflict analysis and an algorithm for conflict detection for amalgamated
graph transformations was proposed [TG15, BT16]. A next step might be to study
if (or to which extent) our results can be combined with the results for conflict
resolution of amalgamated transformations.

Other future directions aim at improving current tool support with respect to
expressive power and performance. Concerning the expressive power of SYGRAV,
we plan to integrate support for sequence based datatypes such as strings. Currently

185

186

11 CoNCLUSIONS

only integer and real numbers as well as bitvectors (for finite domain datatypes) and
enumerations are supported. Z3 supports sequences since version 4.4.2, including
operations for concatenation, comparison as well as predicates on the length of
strings. However, in version 4.4.2 the Z3 Java AP has some major bugs. Nevertheless,
if these problems are fixed it should be possible (with negligible efforts), to provide
support for strings, too.

As mentioned before SYGRAV is currently in the prototype stage. Accordingly,
we expect that the performance of SYGRAV can be considerably increased by fine
tuning several components. Despite this, there are still proposals for optimizing
the conflict resolution procedure itself (e. g., [LEOO08]). However, it is still an open
question whether these optimizations indeed lead to an considerable performance
boost when implemented.

BIBLIOGRAPHY

[AA10]

[ABJ*10]

[AHPZ07]

[AHRT14]

[BCW12]

[BDH*15]

[BGH*07]

[BT16]

Rainer Alt and Gunnar Auth. Campus management system. Busi-
ness & Information Systems Engineering, 2(3):187-190, 2010. (Cited on
page7.)

Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,
and Gabriele Taentzer. Henshin: Advanced concepts and tools for
in-place EMF model transformations. In Dorina C. Petriu, Nicolas
Rouquette, and Oystein Haugen, editors, Model Driven Engineering
Languages and Systems - 13th International Conference, MODELS 2010,
Oslo, Norway, October 3-8, 2010, Proceedings, Part I, volume 6394 of Lec-
ture Notes in Computer Science, pages 121-135. Springer, 2010. (Cited
on page 2 and 184.)

Karl Azab, Annegret Habel, Karl-Heinz Penneman, and Christian
Zuckschwerdt. ENFORCe: A system for ensuring formal correctness
of high-level programs. In In Graph Based Tools (GraBaTs'06), Electronic
Communications of the EASST, pages 82-93, 2007. (Cited on page 2.)

Thorsten Arendt, Annegret Habel, Hendrik Radke, and Gabriele
Taentzer. From core OCL invariants to nested graph constraints. In
Giese and Konig [GK14], pages 97-112. (Cited on page 180.)

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven
software engineering in practice. Morgan & Claypool Publishers, 2012.
(Cited on page 1.)

Gabor Bergmann, Istvan David, Abel Hegediis, Akos Horvath,
Istvan Réth, Zoltan Ujhelyi, and Déniel Varré. Viatra 3: A reactive
model transformation platform. In Dimitris S. Kolovos and Manuel
Wimmer, editors, Theory and Practice of Model Transformations - 8th In-
ternational Conference, ICMT 2015, Held as Part of STAF 2015, L'Aquila,
Italy, July 20-21, 2015. Proceedings, volume 9152 of Lecture Notes in
Computer Science, pages 101-110. Springer, 2015. (Cited on page 2
and 184.)

Kamal Bhattacharya, Cagdas Evren Gerede, Richard Hull, Rong Liu,
and Jianwen Su. Towards formal analysis of artifact-centric business
process models. In Gustavo Alonso, Peter Dadam, and Michael Rose-
mann, editors, Business Process Management, 5th International Confer-
ence, BPM 2007, Brisbane, Australia, September 24-28, 2007, Proceed-
ings, volume 4714 of Lecture Notes in Computer Science, pages 288-304.
Springer, 2007. (Cited on page 8.)

Kristopher Born and Gabriele Taentzer. An algorithm for the criti-
cal pair analysis of amalgamated graph transformations. In Rachid

188

BIBLIOGRAPHY

[CEM*06]

[Dial3]

[DKL*16]

[dMBO08]

[DV14]

[EEHP06]

[EEKR99]

[EEKR12]

Echahed and Mark Minas, editors, Graph Transformation - 9th Interna-
tional Conference, ICGT 2016, in Memory of Hartmut Ehrig, Held as Part
of STAF 2016, Vienna, Austria, July 5-6, 2016, Proceedings, volume 9761
of Lecture Notes in Computer Science, pages 118-134. Springer, 2016.
(Cited on page 185.)

Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro,
and Grzegorz Rozenberg, editors. Graph Transformations, Third In-
ternational Conference, ICGT 2006, Natal, Rio Grande do Norte, Brazil,
September 17-23, 2006, Proceedings, volume 4178 of Lecture Notes in
Computer Science. Springer, 2006. (Cited on page 190 and 191.)

Vicente Garcia Diaz. Advances and Applications in Model-Driven Engi-
neering. 1GI Global, 2013. (Cited on page 1.)

Frederik Deckwerth, Géza Kulcsar, Malte Lochau, Gergely Varro,
and Andy Schiirr. Conflict detection for edits on extended feature
models using symbolic graph transformation. In Julia Rubin and
Thomas Thiim, editors, Proceedings 7th International Workshop on For-
mal Methods and Analysis in Software Product Line Engineering, FM-
SPLE@ETAPS 2016, Eindhoven, The Netherlands, April 3, 2016., volume
206 of EPTCS, pages 17-31, 2016. (Cited on page 3.)

Leonardo Mendonga de Moura and Nikolaj Bjerner. Z3: an efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture
Notes in Computer Science, pages 337-340. Springer, 2008. (Cited on
page 160.)

Frederik Deckwerth and Gergely Varré. Attribute handling for gen-
erating preconditions from graph constraints. In Giese and Konig
[GK14], pages 81-96. (Cited on page 51, 119, and 179.)

Hartmut Ehrig, Karsten Ehrig, Annegret Habel, and Karl-Heinz Pen-
nemann. Theory of constraints and application conditions: From
graphs to high-level structures. Fundam. Inform., 74(1):135-166, 2006.
(Cited on page 28, 36, 119, and 179.)

Hartmut Ehrig, Gregor Engels, Hans-Jorg Kreowski, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing by
Graph Transformation: Vol. 2: Applications, Languages, and Tools. World
Scientific Publishing Co., Inc., River Edge, NJ, USA, 1999. (Cited on
page 132.)

Hartmut Ehrig, Gregor Engels, Hans-Jorg Kreowski, and Grzegorz
Rozenberg, editors. Graph Transformations - 6th International Confer-
ence, ICGT 2012, Bremen, Germany, September 24-29, 2012. Proceedings,

[EEPRO4]

[EEPTO6]

[EFT94]

[EGH10]

[EGH*12]

[EGH*14]

[EGSWO07]

[EH86]

[EHKP90]

BIBLIOGRAPHY

volume 7562 of Lecture Notes in Computer Science. Springer, 2012.
(Cited on page 191.)

Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce, and Grze-
gorz Rozenberg, editors. Graph Transformations, Second International
Conference, ICGT 2004, Rome, Italy, September 28 - October 2, 2004, Pro-
ceedings, volume 3256 of Lecture Notes in Computer Science. Springer,
2004. (Cited on page 190.)

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Monographs in The-
oretical Computer Science. An EATCS Series. Springer, 2006. (Cited
on page 12, 23, 46, 75,87, 96,97, 98, 117, 153, 179, and 181.)

H.-D. Ebbinghaus, J. Flum, and Wolfgang Thomas. Mathematical
Logic. Undergraduate Texts in Mathematics. Springer, 1994. (Cited
on page 38 and 44.)

Hartmut Ehrig, Ulrike Golas, and Frank Hermann. Categorical
frameworks for graph transformation and HLR systems based on
the DPO approach. Bulletin of the EATCS, 102:111-121, 2010. (Cited
on page 31.)

Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and
Fernando Orejas. M-adhesive transformation systems with nested
application conditions. Part 2: Embedding, critical pairs and local
confluence. Fundam. Inform., 118(1-2):35-63, 2012. (Cited on page 87,
181, and 185.)

Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and
Fernando Orejas. M-adhesive transformation systems with nested
application conditions. Part 1: parallelism, concurrency and amal-
gamation. Mathematical Structures in Computer Science, 24(4), 2014.
(Cited on page 161 and 162.)

Gregor Engels, Baris Giildali, Christian Soltenborn, and Heike
Wehrheim. Assuring consistency of business process models and
web services using visual contracts. In Andy Schiirr, Manfred Nagl,
and Albert Ziindorf, editors, Applications of Graph Transformations
with Industrial Relevance, Third International Symposium, AGTIVE 2007,
Kassel, Germany, October 10-12, 2007, Revised Selected and Invited Pa-
pers, volume 5088 of Lecture Notes in Computer Science, pages 17-31.
Springer, 2007. (Cited on page 1.)

Hartmut Ehrig and Annegret Habel. Graph grammars with application
conditions. Springer, 1986. (Cited on page 36.)

Hartmut Ehrig, Annegret Habel, Hans-Jorg Kreowski, and Francesco
Parisi-Presicce. From graph grammars to high level replacement sys-
tems. In Hartmut Ehrig, Hans-Jorg Kreowski, and Grzegorz Rozen-

189

190 BIBLIOGRAPHY

[EHPPO4]

[Ehr03]

[EHRTOS]

[EPS73]

[EPTO04]

[ERRS10]

[FG98]

[Fow02]

[Gal85]

[GBEG14]

[GBG*06]

berg, editors, Graph-Grammars and Their Application to Computer Sci-
ence, 4th International Workshop, Bremen, Germany, March 5-9, 1990,
Proceedings, volume 532 of Lecture Notes in Computer Science, pages
269-291. Springer, 1990. (Cited on page 31.)

Hartmut Ehrig, Annegret Habel, Julia Padberg, and Ulrike Prange.
Adhesive high-level replacement categories and systems. In Ehrig
et al. [EEPR04], pages 144-160. (Cited on page 31.)

Hartmut Ehrig. Attributed graphs and typing: Relationship between dif-
ferent representations. Techn. Univ. Berlin, Fakultit IV, Elektrotechnik
und Informatik, 2003. (Cited on page 178.)

Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele
Taentzer, editors. Graph Transformations, 4th International Conference,
ICGT 2008, Leicester, United Kingdom, September 7-13, 2008. Proceed-
ings, volume 5214 of Lecture Notes in Computer Science. Springer, 2008.
(Cited on page 192 and 193.)

Hartmut Ehrig, Michael Pfender, and Hans Jiirgen Schneider.
Graph-grammars: An algebraic approach. In 14th Annual Sympo-
sium on Switching and Automata Theory, lowa City, lowa, USA, October
15-17, 1973, pages 167-180. IEEE Computer Society, 1973. (Cited on

page 31.)

Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental
theory for typed attributed graph transformation. In Ehrig et al.
[EEPRO04], pages 161-177. (Cited on page 178.)

Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and Andy
Schiirr, editors. Graph Transformations - 5th International Conference,
ICGT 2010, Enschede, The Netherlands, September 27 - - October 2,
2010. Proceedings, volume 6372 of Lecture Notes in Computer Science.
Springer, 2010. (Cited on page 192.)

Mark S. Fox and Michael Griininger. Enterprise modeling. Al Maga-
zine, 19(3):109-121, 1998. (Cited on page 1.)

Martin Fowler. Patterns of enterprise application architecture. Addis-
on-Wesley Longman Publishing Co., Inc., 2002. (Cited on page 7.)

Jean H. Gallier. Logic for Computer Science: Foundations of Automatic
Theorem Proving. Harper & Row Publishers, Inc., 1985. (Cited on
page 38.)

Karsten Gabriel, Benjamin Braatz, Hartmut Ehrig, and Ulrike Golas.
Finitary -adhesive categories. Mathematical Structures in Computer
Science, 24(4), 2014. (Cited on page 73 and 80.)

Rubino Geif$, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and
Adam Szalkowski. GrGen: A fast spo-based graph rewriting tool. In
Corradini et al. [CEM™*06], pages 383-397. (Cited on page 2 and 184.)

[GK14]

[GLEO12]

[Gol12]

[HKT02]

[HP12a]

[HP12b]

[HR10]

[HW95]

[KDL*15]

[LAS14]

[LEO06]

BIBLIOGRAPHY

Holger Giese and Barbara Konig, editors. Graph Transformation - 7th
International Conference, ICGT 2014, Held as Part of STAF 2014, York,
UK, July 22-24, 2014. Proceedings, volume 8571 of Lecture Notes in
Computer Science. Springer, 2014. (Cited on page 187, 188, and 193.)

Ulrike Golas, Leen Lambers, Hartmut Ehrig, and Fernando Orejas.
Attributed graph transformation with inheritance: Efficient conflict
detection and local confluence analysis using abstract critical pairs.
Theor. Comput. Sci., 424:46-68, 2012. (Cited on page 185.)

Ulrike Golas. A general attribution concept for models in
M-adhesive transformation systems. In Ehrig et al. [EEKR12], pages
187-202. (Cited on page 178.)

Reiko Heckel, Jochen Kiister, and Gabriele Taentzer. Towards auto-
matic translation of UML models into semabtic domains. In APPLI-
GRAPH Workshop on Applied Graph Transformation, pages 11-22, 2002.
(Cited on page 2 and 178.)

Annegret Habel and Detlef Plump. M, N-adhesive transformation
systems. In Ehrig et al. [EEKR12], pages 218-233. (Cited on page 31,
33,73, 80, 87,178, and 179.)

Annegret Habel and Detlef Plump. M, N-adhesive transformation
systems (long version). http://formale-sprachen.informatik.
uni-oldenburg.de/pub/index.html, 2012. (Cited on page 93.)

Annegret Habel and Hendrik Radke. Expressiveness of graph con-
ditions with variables. ECEASST, 30, 2010. (Cited on page 179.)

Reiko Heckel and Annika Wagner. Ensuring consistency of condi-
tional graph rewriting - a constructive approach. Electr. Notes Theor.
Comput. Sci., 2:118-126, 1995. (Cited on page 87, 119, and 179.)

Géza Kulcsar, Frederik Deckwerth, Malte Lochau, Gergely Varré, and
Andy Schiirr. Improved conflict detection for graph transformation
with attributes. In Arend Rensink and Eduardo Zambon, editors,
Proceedings Graphs as Models, GaM 2015, London, UK, 11-12 April 2015.,
volume 181 of EPTCS, pages 97-112,2015. (Cited on page 3 and 131.)

Erhan Leblebici, Anthony Anjorin, and Andy Schiirr. Developing
emoflon with emoflon. In Davide Di Ruscio and Déniel Varrd, ed-
itors, Theory and Practice of Model Transformations - 7th International
Conference, ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22,
2014. Proceedings, volume 8568 of Lecture Notes in Computer Science,
pages 138-145. Springer, 2014. (Cited on page 2, 159, and 185.)

Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Conflict de-
tection for graph transformation with negative application condi-
tions. In Corradini et al. [CEM*06], pages 61-76. (Cited on page 181
and 185.)

191

http://formale-sprachen.informatik.uni-oldenburg.de/pub/index.html
http://formale-sprachen.informatik.uni-oldenburg.de/pub/index.html

192

BIBLIOGRAPHY

[LEOO08]

[LEPO0S]

[LKWO93]

[LSO04]

[MS10]

[NCO3]

[New42]

[OL10a]

[OL10b]

[OL12]

Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Efficient con-
flict detection in graph transformation systems by essential critical
pairs. Electr. Notes Theor. Comput. Sci., 211:17-26, 2008. (Cited on
page 186.)

Leen Lambers, Hartmut Ehrig, Ulrike Prange, and Fernando Orejas.
Embedding and confluence of graph transformations with negative
application conditions. In Ehrig et al. [EHRTO08], pages 162-177.
(Cited on page 181 and 185.)

Michael Léwe, Martin Korf, and Annika Wagner. An algebraic frame-
work for the transformation of attributed graphs. In Term Graph
Rewriting: Theory and Practice, pages 185-199. Jhon Wiley and Sons
Ltd., 1993. (Cited on page 178.)

Stephen Lack and Pawel Sobocinski. Adhesive categories. In Igor
Walukiewicz, editor, Foundations of Software Science and Computation
Structures, 7th International Conference, FOSSACS 2004, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS
2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume
2987 of Lecture Notes in Computer Science, pages 273-288. Springer,
2004. (Cited on page 31.)

Mark Minas and Hans Jiirgen Schneider. Graph transformation by
computational category theory. In Gregor Engels, Claus Lewerentz,
Wilhelm Schéfer, Andy Schiirr, and Bernhard Westfechtel, editors,
Graph Transformations and Model-Driven Engineering - Essays Dedicated
to Manfred Nagl on the Occasion of his 65th Birthday, volume 5765 of
Lecture Notes in Computer Science, pages 33-58. Springer, 2010. (Cited
on page 161.)

Anil Nigam and Nathan S. Caswell. Business artifacts: An approach
to operational specification. IBM Systems Journal, 42(3):428-445, 2003.
(Cited on page 8 and 10.)

M. H. A. Newman. On theories with a combinatorial definition of
"equivalence". Annals of Mathematics, 43(2):223-243, 1942. (Cited on
page 132.)

Fernando Orejas and Leen Lambers. Delaying constraint solving
in symbolic graph transformation. In Ehrig et al. [ERRS10], pages
43-58. (Cited on page 59.)

Fernando Orejas and Leen Lambers. Symbolic attributed graphs
for attributed graph transformation. ECEASST, 30, 2010. (Cited on
page 3,45,47,48, 49, 50, 51, 53, 109, 177, 178, and 179.)

Fernando Orejas and Leen Lambers. Lazy graph transformation.
Fundam. Inform., 118(1-2):65-96, 2012. (Cited on page 3, 177, and 180.)

[Ore08]

[Pen08]

[PH15]

[Plu93]

[Plu09]

[PP12]

[PP14]

[PW15]

[RAB*+15]

[RET11]

BIBLIOGRAPHY

Fernando Orejas. Attributed graph constraints. In Ehrig et al.
[EHRTO08], pages 274-288. (Cited on page 177 and 179.)

Karl-Heinz Pennemann. An algorithm for approximating the satisfi-
ability problem of high-level conditions. Electr. Notes Theor. Comput.
Sci., 213(1):75-94, 2008. (Cited on page 185.)

Christoph Peuser and Annegret Habel. Attribution of graphs by
composition of M, N-adhesive categories. In Detlef Plump, editor,
Proceedings of the 6th International Workshop on Graph Computation
Models co-located with the 8th International Conference on Graph Trans-
formation (ICGT 2015) part of the Software Technologies: Applications and
Foundations (STAF 2015) federation of conferences, LAquila, Italy, July
20, 2015., volume 1403 of CEUR Workshop Proceedings, pages 66-81.
CEUR-WS.org, 2015. (Cited on page 33 and 178.)

Detlef Plump. Term graph rewriting; hypergraph rewriting: critical
pairs and undecidability of confluence. pages 201-213. John Wiley
and Sons Ltd., Chichester, UK, 1993. (Cited on page 146.)

Detlef Plump. The graph programming language GP. In Symeon
Bozapalidis and George Rahonis, editors, Algebraic Informatics, Third
International Conference, CAI 2009, Thessaloniki, Greece, May 19-22,
2009, Proceedings, volume 5725 of Lecture Notes in Computer Science,
pages 99-122. Springer, 2009. (Cited on page 178.)

Christopher M. Poskitt and Detlef Plump. Hoare-style verification
of graph programs. Fundam. Inform., 118(1-2):135-175, 2012. (Cited
on page 179.)

Christopher M. Poskitt and Detlef Plump. Verifying monadic sec-
ond-order properties of graph programs. In Giese and Konig [GK14],
pages 33—-48. (Cited on page 179.)

Francesco Parisi-Presicce and Bernhard Westfechtel, editors. Graph
Transformation - 8th International Conference, ICGT 2015, Held as Part of
STAF 2015, L'Aquila, Italy, July 21-23, 2015. Proceedings, volume 9151 of
Lecture Notes in Computer Science. Springer, 2015. (Cited on page 193
and 194.)

Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Ha-
bel, and Gabriele Taentzer. Translating essential OCL invariants to

nested graph constraints focusing on set operations. In Parisi-Pres-
icce and Westfechtel [PW15], pages 155-170. (Cited on page 180.)

Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0 - new
features for specifying and analyzing algebraic graph transforma-
tions. In Andy Schiirr, Déniel Varr6, and Gergely Varrd, editors,
Applications of Graph Transformations with Industrial Relevance - 4th In-
ternational Symposium, AGTIVE 2011, Budapest, Hungary, October 4-7,

193

194

BIBLIOGRAPHY

[TG15]

[TRO5]

[VAS12]

[WVvdA*+09]

2011, Revised Selected and Invited Papers, volume 7233 of Lecture Notes
in Computer Science, pages 81-88. Springer, 2011. (Cited on page 2.)

Gabriele Taentzer and Ulrike Golas. Towards local confluence anal-
ysis for amalgamated graph transformation. In Parisi-Presicce and
Westfechtel [PW15], pages 69-86. (Cited on page 185.)

Gabriele Taentzer and Arend Rensink. Ensuring structural con-
straints in graph-based models with type inheritance. In Maura
Cerioli, editor, Fundamental Approaches to Software Engineering, 8th In-
ternational Conference, FASE 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings, volume 3442 of Lecture Notes in Com-
puter Science, pages 64-79. Springer, 2005. (Cited on page 185.)

Gergely Varr6, Anthony Anjorin, and Andy Schiirr. Unification of
compiled and interpreter-based pattern matching techniques. In An-
tonio Vallecillo, Juha-Pekka Tolvanen, Ekkart Kindler, Harald Storrle,
and Dimitrios S. Kolovos, editors, Modelling Foundations and Applica-
tions - 8th European Conference, ECMFA 2012, Kgs. Lyngby, Denmark,
July 2-5, 2012. Proceedings, volume 7349 of Lecture Notes in Computer
Science, pages 368-383. Springer, 2012. (Cited on page 160.)

Moe Thandar Wynn, H. M. W. Verbeek, Wil M. P. van der Aalst,
Arthur H. M. ter Hofstede, and David Edmond. Business process ver-
ification - finally a reality! Business Proc. Manag. Journal, 15(1):74-92,
2009. (Cited on page 1 and 14.)

CURRICULUM VITAE

Frederik Deckwerth

—— Education

2012-2016 Ph.D, Real-Time Systems Lab, Data Systems Technology Institute, Eletrical
Engineering & Information Engineering, Technische Universitit Darmstadt,
Germany.

2004-2012 Dipl.-Ing., Technische Universitat Darmstadt, Germany.
Diplom-Ingenieur fiir Elektro- und Informationstechnik.

ALL PRODUCTIONS OF THE CMS CASE STUDY

A1l PropucTtiON BOOKROOM

bookRoom'(ex : Exam, ro : Room)

LHS

RHS
ro : Room ro : Room
- capExam - capExam
lbookings
bo : Booking
- begin’
- end’
i IocationT
da : Date da : Date
- begin - begin
- duration - duration
Tdate Tdate
ex : Exam ex : Exam
- state - state’
- regSt - regSt
(ex.state=EX_ST.PLAN) A (ro.capExam >ex.regSt) A
(bo.end’'=da.begin-+da.duration) A (bo.begin'=da.begin) A (ex.state’=EX_ST.READY)

Figure A.1: Production bookRoom(ex : Exam, ro : Room) takes an Exam ex and a Room ro. It
is applicable if Exam ex is in the PLAN state, has a Date assigned, and the exam capacity of
Room ro is smaller or equal to the number of registered students. The production is applied
by creating a Booking bo and assigning it to Room ro. The value of bo.begin is set equal to
da.begin. The value of bo.end is set equal to da.begin+da.duration.

198

BIBLIOGRAPHY

bookRoom'(ex : Exam, ro : Room)

LHS ro : Room

- capExam

sys : System
- currentTime

sem : Semester da - Date

- current .

- regBegin - begln.

- regEnd - duration

Tdate
ex : Exam
- state
exams$

- regSt

sys : System
- currentTime

sem : Semester
- current

- regBegin

- regEnd

ro : Room RHS

- capExam

lbookings

bo : Booking
- begin’
- end’

IocationT

da : Date
- begin
- duration

Tdate

ex : Exam

exam<| - state

- regSt

(ex.state=EX_ST.PLAN) A (ro.capExam >ex.regSt) A

(sem.current=true) A (sys.currentTime>sem.regEnd) A (sys.currentTime<sem.semEnd) A
(bo.end’=da.begin+da.duration) A (bo.begin'=da.begin) A (ex.state’=EX_ST.READY)

Figure A.2: In contrast to bookRoom, the production bookRoom’(ex : Exam, ro : Room)

is only applicable after the registration period of the current Semester sem has ended
(sys.currntTime > sem.regEnd), but before sem has ended (sys.currentTime < sem.semEnd).

A.2 ProbuctioN UPLOADRES

setDate(ex : Exam, da : Date)

LHS RHS
ol : GradeList ex : Exam i |- GradelList | 8radelist ex : Exam
L 1 - state etate’
[(ex.state=EX_ST.READY) A (ex.state’=EX_ST.FINALIZING) j

Figure A.3: The Production uploadRes(ex . Exam, da : Date) adds a given grade list to the
Exam ex containing the results for the examiniation. The production is applicable if Exam ex
is in the READY state. By applying production uploadRes ex.state is changed to FINALIZING

A.3 ProbucTiON SETDATE

setDate(ex : Exam, da : Date)

LHS

RHS

ex : Exam

ex: Exam
]

- state

j da : Date |date
—1

- state

(ex.state=EX_ST.PLAN)

Figure A.4: Production setDate(ex : Exam, da : Date) assigns a Date da to Exam ex.

BIBLIOGRAPHY
A4 ProbpucTtioN UPDATEDATE
updateDate(ex : Exam, newDa : Date)
LHS RHS
ex : Exam newDa : Date | date ex : Exam
L 1 - state - state
oldDa : Date |date
1
[(ex.state=EX_ST.PLAN)]

Figure A.5: Production updateDate(ex Exam, newDa : Date) updates the date of an Exam ex.

A.5 ProbpucTtiON TRANSRESPAs

transResPas(ex : Exam)

LHS RHS
en : Enrollment en : Enrollment
- studld - studld
-cp -cp’
\LcRecords \LcRecords
cr : CourseRecord cr : CourseRecord
- grade - grade’
regExam offer offer
ex : Exam [exam| cmo : CoModOffer ex : Exam | exam| cmo : CoModOffer
- state -cp - state -cp
gradeList gradeList
gl - GradeList | entries | €& Entry gl : GradeList et : Entry
- nrOfEntries - studld - nrOfEntries’ - studtld
- grade - grade
(et.grade < 4) A (ex.state=EX_ST.FINALIZING) A (en.studld=et.studld) A (cmo.cp>0) A
(cr.grade’=et.grade) A (en.cp’=en.cp+cmo.cp)

Figure A.6: Production transResPas(ex : Exam) is intended to transfer a result for an exam
stored in Entry et to the corresponding CourseRecord cr. The production transfers only re-
sults whose grades (et.grade) are smaller or equal 4 (i. e., passed). To this end the production
looks up the corresponding Enrollment en such that en.studld=et.studld. The production can
only be applied if the Exam ex is in the FIALIZING state. The condition cmo.cp>0 ensures
that the credit point that can be obtained for the course are not negative. The condition is
required to guide the solver ensuring that that en.cp’gegen.cp. By applying the production
the corresponding the grade stored in the entry is written to the corresponding Cours-
eRecord cr (i. e. cr.grade’=et.grade), and the obtained credit points are incremented by the
number of credit points granted for the course (i. e.. en.cp’=en.cp+cmp.cp). Additionally, the
link entires is deleted.

199

200

BIBLIOGRAPHY

transResPas’(ex : Exam)

sem : Semester

\l,cRecords

LHS RHS
sys : System en : Enrollment sys : System en : Enrollment
- currentTime _ studld - currentTime _ studld
-cp -cp'

(sem.current=true) A (sys.currentTime>sem.regEnd) A
(cr.grade’=et.grade) A (en.cp’=en.cp-+cmo.cp)

sem : Semester \l/cRecords
- current cr : CourseRecord - current cr : CourseRecord
- regEnd - regEnd)
- grade - grade
regExam offer offer
ex : Exam | exam| cmo : CoModOffer ex : Exam | exam| cmo : CoModOffer
exams | - state -cp exams | - state - cp
gradelList gradelList
gl - GradeList | entries | €t Entry gl : GradeList et : Entry
- nrOfEntries - studld - nrOfEntries’ - studtld
- grade - grade
(et.grade < 4) A (ex.state=EX_ST.FINALIZING) A (en.studld=et.studld) A (cmo.cp>0) A

Figure A.7: Production transResPas’(ex : Exam) is similar to production transResPas(ex :

Exam) but can only be applied after the registration period of the current semester has
ended (i. e., sys.currentTime>sem.regEnd).

A.6 PropucTiON TRANSRESFAIL

transResFail(ex : Exam)

LHS

en : Enrollment

- studld
- enrolled

\l,cRecords

cr : CourseRecord

regExam

ex :

Exam

- state

gradeList

gl : GradeList | entries et - Entry |
- - studentld

- grade
- tries

£am| cmo : CoModOffer
| I

offer

- grade

RHS
en : Enrollment
- studld
- enrolled’

\l/cRecords

gl : GradelList

cr : CourseRecord
- grade’
- tries
offer
ex : Exam | exam[;o . CoModOffer
- state L 1
gradeList

et : Entry

- studentld
- grade

(et.grade = 5) A
(

(ex.state=EX_ST.FINALIZING) A (en.studld=et.studld) A

(cr.grade’'=et.grade) A (if (cr.tries = 3) then (en.enrolled'=false) else (en.enrolled'=en.enrolled))

Figure A.8: Production transResFail(ex :Exam) is similar to production transResPas, but
in contrast to transResPas only entries with a grade equal to 5 (i. e., the exam was failed)
are transferred. Hence if the number of tries (cr.tries) is equal to 3, the Enroliment en is

exmatriculated (i. e., en.enrolled is set to false).

BIBLIOGRAPHY 201

transResFail'(ex : Exam)

LHS RHS
sys : System en : Enrollment sys : System en : Enrollment
- currentTime - studld - currentTime - studld
- enrolled - enrolled’

R d \l/ R d
sem : Semester \l’c ccorgs sem : Semester crecores
 current cr : CourseRecord current cr : CourseRecord
- regEnd - grade - regEnd - grade’

- tries ; - tries
regExam offer offer
ex : Exam | exam[cmo : CoModOffer ex : Exam | exam[cmo . CoModOffer
exams | - state exams | - state
gradelist gradelist
T Gradell entries | €t - Entry T Gradell et : Entry
- grade - grade

(sem.current=true) A (sys.currentTime>sem.regEnd) A

(et.grade = 5) A (ex.state=EX_ST.FINALIZING) A (en.studld=et.studld) A
(cr.grade’=et.grade) A (if (cr.tries = 3) then (en.enrolled'=false) else (en.enrolled'=en.enrolled))

Figure A.9: Production transResFail’'(ex : Exam) is similar to production transResFail(ex :

Exam) but can only be applied after the registration period of the current semester has
ended (i. e., sys.currentTime>sem.regEnd).

A.7 ProbpucCTION CLOSEEXAM

closeExam(ex : Exam)

LHS

RHS

ex : Exam j ex : Exam
- state

- state’

[(ex.state=EX_ST.FINALIZING) A (ex.state’ =EX_ST.CLOSED)]

Figure A.10: Production closeExam(ex : Exam) closes an by changing ex.state from FINAL-
IZING to CLOSED.

202 BIBLIOGRAPHY

A.8 PrRoODUCTION REGEXAM

regExam(en : Enrollment, ex : Exam)

LHS RHS
en : Enrollment en : Enrollment
- state - state
- enrolled - enrolled
-cp -cp
- regCp - regCp
\l,cRecords i \l,cRecords
cr : CourseRecord cr : CourseRecord
- tries - tries’
- grade - grade
offer regExam offer
ex : Exam [exam cmo : CoModOffer ex : Exam [exam cmo - CoModOffer
- regSt - regSt’

((en.state:EN,STSTUDY) V (en.state=EN_ST.WRITE_THESIS)) A (cr.tries<3) A (cr.grade>4) A (en.enrolled=true) A
(cr.tries'=cr.tries+1) A (ex.regSt'=ex.regSt+1) A (en.cp<en.regCp)

Figure A.11: Production regExam(en : Enroliment, ex : Exam) registers a given Enrollment
en to an Exam ex, by creating link regExam from the CourseRecord cr to the examination
ex. Note that the production can only be applied if a RourseRecord for the corresponding
course module offer (cmo : CoModOffer) exists. Moreover, Enroliment en as to be in the the
STUDY or WRITE_THESIS state, the number of tries (cr.tries) has to be lower than 3, and the
Exam ex must not be passed before (i. e., cr.grade>4). Additionally the Enrollment en must
be enrolled (i. e. en.enrolled=true). By applying the production the number of tries recorded

in the course record cr and the number of registered students ex.regSt are incremented by
one.

regExam’(en : Enrollment, ex : Exam)

LHS RHS
sys : System en : Enrollment sys : System en : Enrollment
- currentTime - state - currentTime - state’
- enrolled - enrolled
-cp -cp
- regCp - regCp
sem : Semester \l,cRecords i sem : Semester \l,cRecords
- current cr : CourseRecord - current
- regBegin = - regBegin cr : CourseRecord
- regEnd - tries - regEnd _ tries’
- grade
regExam
offer offer
ex : Exam | exam cmo : CoModOffer ex : Exam | exam cmo : CoModOffer
exams | - regSt exams | - regSt'

((en.state:EN,ST.STUDY) V (en.state=EN_ST.WRITE_THESIS)) A (cr.tries<3) A (cr.grade>4) A (en.enrolled=true) A (en.cp<en.regCp) A
(sem.current=true) A (sys.currentTime>sem.regBegin) A (sys.currentTime<sem.regEnd) A
(cr.tries’=cr.tries+1) A (ex.regSt'=ex.regSt+1)

Figure A.12: Production regExam’(en : Enroliment, ex : Exam) requires in addition to pro-
duction regExam(en : Enrollment, ex : Exam) that the currentTime is between the begin

(sem.regBegin) and end (sem.regEnd) of the registration period of the current Semester
sem.

BIBLIOGRAPHY 203

A9 PropuctioN REGCMO

regCMO(en : Enrollment, cmo : CoModOffer)

LHS RHS
en : Enrollment or - CourseRecord en : Enrollment
- state — cRecords [gtate
- enrolled - trle; E - enrolled
- regCp - grade - regCp’
offer
cmo : CoModOffer ; cmo : CoModOffer
- cp - cp
current current
program program
mo : Module cModules pr: Program mo : Module cModules pr: Program

- reqCp - reqCp

{((en.state:EN,ST,STUDY) V (en.state=EN_ST.WRITE_THESIS)) A (en.regCp<pr.reqCp) A (en.enrolled=true) A (cmo.cp>0) A

(cr.tries’=0) A(cr.grade'=6) A (en.regCP'=en.regCP-cmo.cp)

Figure A.13: Production regCMO(en : Enroliment, cmo : CoModOffer) registers Enroliment en
to a given course module offer cmo of the Program pr. To this end a CourseRecord cr is crated
and assigned by link offer to course module offer cmo. The production is only applicable if
the Enrollment en is in the STUDY or WRITE_THESIS state; en.enrolled=true.

A.10 ProODUCTION UNREGEXAM

unregExam(en : Enrollment, ex : Exam)

LHS RHS
en : Enrollment en : Enrollment
- state - state
- cp - cp
- regCp - regCp
cRecords i cRecords
cr : CourseRecord cr : CourseRecord
- tries - tries’
regxam offer offer
ex: Exam | exam cmo : CoModOffer ex : Exam | exam cmo : CoModOffer
- regSt - regSt’
((en,state:EN,STASTUDY) V (en.state=EN_ST.THESIS)) A
(cr.tries'=cr.tries-1) A (ex.regSt'=ex.regSt-1) A (en.cp<en.regCp)

Figure A.14: Production unregExam(en : Enroliment, ex : Exam) takes as input an Enrollment
en and an Exam ex. By applying the production, the link regExam from cr : CourseRecord to

ex : Ex is removed, as well as the number of tries (cr.tries) and the number of registrations
(ex.regSt) are decremented by one.

204

BIBLIOGRAPHY

unregExam’(en : Enrollment, ex : Exam)

LHS RHS
sys : System en : Enrollment sys : System en : Enrollment
- currentTime - state - currentTime - state
-cp -cp
- regCp - regCp
sem : Semester cRecords j sem : Semester cRecords
- current - current
_ regBegin cr : CourseRecord regBegin cr : CourseRecord
- regEnd - tries - regEnd - tries’
regExam offer offer
ex: Exam | e@m["cmo ;. CoModOffer ex: Exam | e@m["cmo . CoModOffer
exams | - regSt exams | - regSt

((en.state:EN,ST.STUDY) V (en.state=EN_ST.THESIS)) A
(sem.current=true) A (sys.currentTime>sem.regBegin) A (sys.currentTime<sem.regEnd) A
(cr.tries'=cr.tries-1) A (ex.regSt'=ex.regSt-1) A (en.cp<en.regCp)

Figure A.15: Production unregExam’(en : Enrollment, ex : Exam) is the corrected version of
unregExam Production unregExam’ requires in addition to production unregExam that the
currentTime is between the begin (sem.regBegin) and end (sem.regEnd) of the registration
period of the current Semester sem.

A1l ProbuctioN REGTMO

regTMO(en : Enrollment, tmo : ThModOffer)

LHS RHS
en : Enrollment tr - ThesisRecord | ,r.corg en : Enrollment
- state . tRecor - state
- enrolled - trle; X - enrolled
- regCp - grade - regCp’
offer
tmo : ThModOffer ; tmo : ThModOffer
-cp -cp
offer current
program program
tm : ThesisModule |tModule pr : Program tm : ThesisModule |tModule pr : Program
(en.state=EN_ST.STUDY) A (en.cp>130) A (en.enrolled=true) A
(tr.tries’=0) A(tr.grade’=6) A (en.regCP’'=en.regCP+tmo.cp) A (en.state’=EN_ST.WRITE_THESIS)

Figure A.16: The production regTMO(en : Enrollment, tmo : ThModOffer) registers an student
represented by its enrollment for a thesis module offer (ThModOffer). To this end, the
corresponding thesis module offer tmo has to be part of the thesisModule tm of the enrolled
Program pr. Moreover, the Enroliment en has to be in the STUDY; the number of archived
credit points en.cp must be larger or equal to 130. By registering for a thesis module offer
a ThesisRecord tr is created and assigned to Enroliment en and thesis module offer tm. The
values for number of tries tr.tries is initialized with value 0; the value for the grade tr.grade
is initialized value 6. The number of registered cp en.regCP stored in the Enrollment en is
incremented by the value of tmo.cp; that is, the number of credit points that can be obtained
for a thesis. After applying the production, the Enroliment en is in the WRITE_THESIS state.

A.12 ProDUCTION REGTHESIS

regThesis(en : Enrollment)

BIBLI

OGRAPHY

LHS

en : Enrollment

- state
- enrolled

tRecord

tr : Thes|

isRecord

- tries
- grade

offer

tmo : ThModOffer

RHS

en : Enrollment

- state
- enrolled

tRecord

tr : Thes|

isRecord

thesis

th : Thesis éheses tmo : ThModOffer

- tries’
- grade’

offer

(en.state=EN_ST.WRITE_THESIS) A (tr.grade>4) A (tr.tries<2) A (en.enrolled=true) A

A (tr.tries'=tr.tries+1)

Figure A.17: An Enrollment en can be registered for a Thesis th if it has assigned a Thesis-
Record, no already passed thesis exists (tr.grade>4), the number of tries (ir.tries) must be
smaller than two, and the corresponding student is enrolled (en.enrolled=true). By register-
ing for a thesis the number fo tries is incremented by one.

A.13 PropbuctioN oBTDEG

obtDeg(en : Enrollment)
LHS en : Enrollment en : Enrollment RHS
- state - state’ degree | de : Degree
-cp -cp)
- regCp - regCp - obtDegree
- enrolled - enrolled
program program
pr : Program pr : Program
- reqCp - reqCp
- degree - degree

(en.cp>en.regCp) A(en.cp>pr.reqCp) A (en.enrolled=true) A (en.state=EN_ST.WRITE_THESIS) A
(en.state’=EN_ST.CLOSED) A (de.obtDegree'=pr.degree)

Figure A.18: The production obtDeg assigns a Degree de to and Enrollment en. A degree can
only be obtained if number of obtained credit points en.cp are larger or equal to the number
of registered credit points en.regCp and the number of registered credit points en.regCp
must be larger or equal to the number of credit points pr.reqCp required for the registered
Program pr. The enrollment must be valid,i. e., EN.ENROLLED=TRUE and in the WRITE_THESIS

state.

205

206 BIBLIOGRAPHY

A.14 ProbpucCTION SETLECTURE

setLecture(cmo : CoModOffer, le : Lecture)

LHS RHS
[nextSem : Semester |2ext | currSem : Semester [nextSem : Semester |ext [currSem : Semester
- current | | - current
lectures lectures
le : Lecture cmo : CoModOffer le : Lecture |Jecture cmo : CoModOffer
- state - state’
[(cmo.state=CMO_ST.CREATED) A (currSem.current=true) A (cmo.state’=CMO_ST.LECT_SET) j

Figure A.19: The production setLecture sets the lecture for a course module offer cmo the
first time, i. e., the course module offer was newly CREATED. To this end, a new link lecture
is created to the given lecture le.

A.15 ProbucTiON UPDATELECT

updateLect(cmo : CoModOffer, newLe : Lecture)

LHS RHS
[nextSem : Semester | lectures | newle : Lecture [nextSem : Semester | 'ectures [newle : Lecture |
[] [] []
next next lecture
cmo : CoModOffer j cmo : CoModOffer
- state - state’
lecture
currSem : Semester lectures ["g|dLe : Lecture currSem : Semester lectures [gldLe : Lecture
- current - current
[(cmo.state=CMO_ST.CREATED) A (currSem.current=true) A (cmo.state’=CMO_ST.LECT_SET) j

Figure A.20: The production updatelect is intended to update the lecture for an already
existing course module offer. To this end, the link lecture is redirected from the old lecture
oldLe to a given new lecture newLe that has to be contained in the next semester nextSem.
The production is applicable only if the the course module offer is in RESET state. After
updating the lecture the course module offer is in the state LECT_UPDATED.

BIBLIOGRAPHY
A.l6 PropucTtioN SETExAM
setExam(cmo : CoModOffer, ex : Exam)
LHS RHS

[nextSem : Semester | 2ext

currSem : Semester

exam

- current

[nextSem : Semester |2ext

currSem : Semester

exams

- current

ex : Exam cmo : CoModOffer o+ Exam |&xam cmo : CoModOffer
- state - state’
[(cmo.state=CMO._ST.LECT_SET) A (currSem.current=true) A (cmo.state’=CMO_ST.READY)]

Figure A.21: The production setExam sets a given examination ex for a given course module
offer cmo. The production can only be applied if examination ex is in the next semester
nextSem and cmo is in state LECT_SET. By applying the production the state of the course

module offer is change to READY.

A.17 PropuUcCTION UPDATEEX

updateEx(cmo : CoModOffer, newEx : Exam)

LHS

currSem : Semester

- current

next

exam3 | newEx : Exam

cmo : CoModOffer

- state

exam

[prevSem : Semester | exams] oldEx : Exam
[|

currSem : Semester

RHS

- current

next

[prevSem : Semester |
[|

exams | newEx : Exam
L 1

exam

cmo : CoModOffer

- state’

exam3 | oldEx : Exam
[]

(cmo.state’=CMO_ST.READY)

[((cmo.state:CMO,ST.RESET) V (cmo.state=CMO_ST.LECT_UPDATED))A (currSem.current=true) A }

Figure A.22: The production updateEx(cmo : CoModOffer, newEx : Exam) is applied to an
course module offer (cmo : CoModOffer) to set a new exam (newEx : Exam). To this end, the
link exam is redirected from the old examination (oldEx : Exam) to the new examination

(newEx : Exam)is removed and a new link of type exam. The new examination newEX has
to be contained in the current semester (as (currSem.current=true)), whereas the old exam is

assumed to be in the previous semester prevSem. The production can only be applied if the
course module offer cmo is in the RESET or LECT_UPDATED state, whereas the new state

(i. e., cmo.state’) is set to READY.

207

BIBLIOGRAPHY

updateEx’(cmo : CoModOffer, newEx : Exam)

LHS

currSem : Semester
- current

- semBegin

- regBegin

next

exam3 | newEx : Exam
1

sys : System

cmo : CoModOffer

currSem : Semester
- current

- semBegin

- regBegin

next

RHS

exams | newEx : Exam

exam

sys : System

cmo : CoModOffer

- currentTime - state - currentTime - state’

exam

exam3| oldEx : Exam
L 1

[prevSem : Semester | [prevSem : Semester |
[| [|

exam3 | oldEx : Exam
]

(currSem.current=true) A (sys.currentTime>currSem.semBegin) A(sys.currentTime<currSem.regBegin) A

((cmo.state:CMO,ST.RESET) V (cmo.state=CMO_ST.LECT_UPDATED))A (currSem.current=true) A
(cmo.state’=CMO_ST.READY)

Figure A.23: The production updateEx’(cmo : CoModOffer, newEx : Exam) is similar to pro-
duction updateEx(cmo : CoModOffer, newEx : Exam) except that production updateEx’ can
only be applied after the begin of the current semester and before the begin of the current
registration period.

A.18 ProbucTioN RESETCMO

resetCMO(cmo : CoModOffer)
LHS RHS
cmo : CoModOffer : cmo : CoModOffer
- state - state’
[(cmo.state=CMO_ST.READY) A (cmo.state’=CMO_ST.RESET) j

Figure A.24: The production resetCMO resets a course module offer by changing the state
from READY to RESET.

USER DEFINED NEGATIVE CONSTRAINTS

SingeltonSystem

sysl : System sys2 : System
1 1

Figure B.1: The negative constraint SingeltonSystem ensured that consistent instance models
only contain one instance of class System. This is required to ensure that there is only one
currentTime value. Alternatively we might define a constraint that requires that there do
not exists a pair of Systems with different values for currentTime.

SingeltonCurrentSemester

seml : Semester sem?2 : Semester
- current - current

[(sem1.currrent=true) A (sem2.current=true) j

Figure B.2: Negative constraint SigeltonCurrentSemester declares that any instance model
that contains two semesters whose current attribute is set to true (i. e. (sem1.currrent=true)
and (sem2.current=true)) is inconsistent.

OnyOneRecordPerExamAndEnrollment

en : Enrollment
L 1

entries entries

[crA : CourseRecord | [crB : CourseRecord |
[| []

L cemfex: Exam |eem |
I

Figure B.3: Negative constraint OnyOneRecordPerExamAndEnroliment ensures that any En-
rollment has at most one CourseRecord for an Exam.

210 BIBLIOGRAPHY

OnlyOneRecordPerCMOAnNdEnrollment

en : Enrollment
]

entries entries

[crA : CourseRecord | [crB : CourseRecord |
[] [|

offet [cmo : CoModOffer | 2ffer
]

Figure B.4: Negative constraint OnlyOneRecordPerCMOANdEnroliment ensures that any En-
rollment has at most one CourseRecord for an course module offer (CoModOffer).

NoTwoEntriesWithSameldInGradelList

gl : Gradelist
L 1

etA : Entry etB : Entry
- studld - studld

[(etA studld=etB.studld) j

Figure B.5: Negative constratin NoTwoEntriesWithSameldInGradeList ensures that there are
two Entries for the same student (i. e. studld) in a GradeList.

NoTwoEnrollmentsWithSameld

enA : Enrollment enB : Enrollment
- studld - studld

[(enA.studld=enB.studld) j

Figure B.6: Negative constraint NoTwoEnrolimentsWithSameld ensures that no two Enroll-
ments with same studld exist.

NoCompetingBookings

bookings

boA : Booking
- begin
- end

bookings

boB : Booking
- begin
- end

(boA.end > boB.begin) A
(boB.end > boA.begin)

Figure B.7: Negative constraint NoCompetingBookings ensures that a Room does not have
two Bookings with overlapping time slots.

	Abstract
	Contents
	Acronyms
	1 Introduction
	1.1 Objectives
	1.2 Outline
	1.3 Hints for Reading This Thesis

	2 Motivation and Contributions
	2.1 A Graph Transformation Based Data-Centric Workflow Model
	2.1.1 Modeling the Domain for Artifacts
	2.1.2 The Life-Cycle of Artifacts
	2.1.3 Modeling Tasks by Graph Transformations

	2.2 Static Analysis and Verification by Graph Transformation
	2.2.1 Constraint Enforcement
	2.2.2 Conflict Analysis

	3 Fundamentals Of Symbolic Graphs and Graph Transformations
	3.1 Introduction to Category Theory and Transformation Systems
	3.1.1 Introduction to Category Theory
	3.1.2 (M,N)-Adhesive Categories and Transformation Systems
	3.1.3 Negative Constraints and Negative Application Conditions

	3.2 Introduction to First-Order Logic Languages
	3.2.1 Syntax of First-Order Logic
	3.2.2 Semantics of First-Order Logic

	3.3 Symbolic Graphs ans Symbolic Graph Transformation
	3.3.1 The Category of Symbolic Graphs
	3.3.2 Typed Symbolic Graph Transformation Systems

	3.4 Model Transformation by Symbolic Graph Transformation
	3.5 Open Issues of Symbolic Graph Transformations

	4 Projective Graph Transformations
	4.1 Projection Morphisms
	4.2 Projective Graph Transformation Systems
	4.3 Model Transformation by Projective Graph Transformation

	5 (L,R,N)-Adhesive Categories and Transformation Systems
	5.1 (L,R,N)-Adhesive Categories and Transformation Systems
	5.2 HLR+Properties for (L,R,N)-Adhesive Categories
	5.3 Constraints and Application Conditions
	5.3.1 Construction of Equivalent Negative Application Conditions
	5.3.2 Construction of Equivalent Left NACs from Right NACs

	5.4 Local Church–Rosser, Embedding, and Critical Pairs
	5.4.1 Parallel Independence and Local Church–Rosser
	5.4.2 Embedding and Extension
	5.4.3 Critical pairs

	6 Projective Graph Transformation Systems are (L,R,N)-Adhesive
	6.1 HLR Properties for Projective Graph Transformation Systems
	6.2 HLR+Properties

	7 Verification of Symbolic Consistency Constraints
	7.1 Construction Equivalent NACs From Negative Constraints
	7.2 Construction of Equivalent Left From right NACs
	7.3 Minimization of Symbolic Negative Application Conditions
	7.3.1 Consistency Preserving Minimization of left NACs
	7.3.2 Minimization of Subsumed left NACs

	8 Conflict Detection and Resolution
	8.1 Conflicts and Conflict Resolution
	8.1.1 Independence, Local Confluence and Subcommutativity
	8.1.2 Local Confluence Modulo Normal Form Equivalence

	8.2 Conflict Detection by Critical Pair Analysis
	8.2.1 Embedding and Extension
	8.2.2 Critical Pairs and Completeness

	8.3 Conflict Resolution by Critical Pair Analysis

	9 Tool Support and Evaluation
	9.1 The Symbolic Graph Analysis and Verification Framework
	9.2 Support for Enforcing Symbolic Graph Constraints
	9.2.1 Support for Enforcing Symbolic Graph Constraints in SyGrAV
	9.2.2 Performance Evaluation
	9.2.3 Soundness of the Conflict Enforcement Procedure

	9.3 Support for Conflict Analysis
	9.3.1 Conflict Detection and Resolution with SyGrAV
	9.3.2 Performance Evaluation
	9.3.3 Soundness of the Conflict Analysis Procedure

	9.4 Threats to Validity

	10 Related Work
	10.1 Transformation of Attributed Graph Structures
	10.2 Verification of consistency constraints
	10.3 Conflict Detection and Resolution for Attributed Graph Transformations

	11 Conclusions
	11.1 Contributions
	11.2 Practical Relevance
	11.3 Future Directions

	Bibliography
	Curriculum Vitae
	Curriculum Vitae
	Appendix A All Productions of the CMS Case Study
	A.1 Production bookRoom
	A.2 Production uploadRes
	A.3 Production setDate
	A.4 Production updateDate
	A.5 Production transResPas
	A.6 Production transResFail
	A.7 Production closeExam
	A.8 Production regExam
	A.9 Production regCMO
	A.10 Production unregExam
	A.11 Production regTMO
	A.12 Production regThesis
	A.13 Production obtDeg
	A.14 Production setLecture
	A.15 Production updateLect
	A.16 Production setExam
	A.17 Production updateEx
	A.18 Production resetCMO

	Appendix B User Defined Negative Constraints

