
Proceedings of the 1st EICS Workshop
on Engineering Interactive Computer
Systems with SCXML
Dirk Schnelle-Walka, Stefan Radomski, Torbjörn Lager, Jim Barnett, Deborah Dahl,
Max Mühlhäuser (eds.)

Fachbereich Informatik
Telekooperation

Prof. Dr. Max Mühlhäuser

1

Table of Contents

Preface 3
SCXML: Current Status and Immediate Future
Jim Barnett

4

Developing User Interfaces using SCXML Statechart
Gavin Kistner and Chris Nuernberger

5

Multimodal Multi-Device Application Supported by an SCXML State Chart Machine
Nuno Almeida, Samuel Silva and António Teixeira

12

Transforming a State Chart at Runtime
David Junger

18

A Debugger for SCXML Documents
Stefan Radomski, Dirk Schnelle-Walka and Leif Singer

22

Semantics of States and Transitions in statecharts-based markup languages: a comparative study
between SWC and SCXML
Marco Winckler, Charly Carrére and Eric Barboni

28

From Harel To Kripke: A Provable Datamodel for SCXML
Stefan Radomski, Tim Neubacher and Dirk Schnelle-Walka

33

2

PREFACE
The W3C MMI Working Group suggests the use of
SCXML [1] to express the dialog control of multimodal ap-
plications. The overall approach has already been shown to
be suitable i.e. to decouple the control flow and presentation
layer in multimodal dialog systems [5]. It has been used in
several applications to express dialog states [2] or to easily
incorporate information [4] from external systems.

As SCXML approaches formal W3C recommendation status
and more applications employing SCXML start to appear, we
gathered experiences and in general areas where clarification,
further standardization or extension are needed or open new
perspectives, like [3].

The workshop provided a forum to discuss submissions de-
tailing the use of SCXML, in particular, multi-modal dia-
log systems adhering to the concepts outlined by the various
W3C standards in general and related approaches of declara-
tive dialog modeling to engineer interactive systems.

Our goal was to attract a wide range of submissions related
to the declarative modeling of interactive multi-modal dialog
systems to leverage the discussion and thus to advance the
research of modeling interactive multi-modal dialog systems.

These proceedings contain the keynote from Jim Barnett and
six submissions around the different aspects of engineering
interactive systems with SCXML.

Format
The workshop was conducted as a two-tiered event: i In the
first part the scientific contributions with regard to application
and extensions of SCXML were presented, while ii the sec-
ond part was in the format of an open-panel discussion, where
suggestions that arose during the first part were detailed and
elaborated.

ORGANIZERS AND PROGRAM COMMITTEE
The organizers are early adaptors of SCXML as well as lead-
ing experts from the SCXML working group.

Dirk Schnelle-Walka leads the “Talk&Touch” group at the
Telecooperation Lab at TU Darmstadt. His main research in-
terest is on multimodal interaction in smart spaces.
Stefan Radomski is a PhD candidate at the Telecooperation
Lab at TU Darmstadt. His main research interest is about
multimodal dialog management in pervasive environments.
Torbjörn Lager is professor of general and computational
linguistics at FLoV, University of Gothenburg. His main re-
search interests include computational logic, web technology
and state machine technology for building web-based multi-
modal systems.
Jim Barnett is a software architect at Genesys, a contact cen-
ter software company. He is the editor of the SCXML speci-
fication.
Deborah Dahl is the Principal at Conversational Technolo-
gies and the Chair of the W3C Multimodal Interaction Work-
ing Group. Her primary technical interest is practical appli-
cations of speech, natural language and multimodal technolo-
gies.

Max Mühlhäuser is full professor and heads the Telecooper-
ation Lab at TU Darmstadt. He has over 300 publications on
UbiComp, HCI, IUI, e-learning and multimedia.

The list of program committee members is as follows:

• Rahul Akolkar (IBM Research, USA)
• Kazuyuki Ashimura (W3C, Japan)
• Stephan Borgert (TU Darmstadt, Germany)
• Jenny Brusk (University of Skövde, Sweden)
• Sebastian Feuerstack (Offis, Germany)
• David Junger (University of Gothenburg, Sweden)
• Stephan Radeck-Arneth (TU Darmstadt, Germany)
• David Suendermann-Oeft (DHBW Stuttgart, Germany)
• Raj Tumuluri (Openstream, USA)

ACKNOWLEDGEMENTS
The 1st EICS Workshop on Engineering Interactive Sys-
tems with SCXML was an interesting experience where
participants with all their different backgrounds had lively
discussions about their applications and research regarding
SCXML. If you contributed to it in any way, we are grateful
for your involvement. We wish that these proceedings are a
valuable source of information in your efforts. We hope that
you will enjoy reading the following pages. We would like to
thank the organizers and the program committee for all their
work.

The Technical University of Darmstadt’s efforts around
SCXML have been partially supported by the FP7 EU Large-
scale Integrating Project SMART VORTEX co-financed by
the European Union.

REFERENCES
1. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett,

D. C., Carter, J., McGlashan, S., Lager, T., Helbing, M.,
Hosn, R., Raman, T., Reifenrath, K., and Rosenthal, N.
State chart XML (SCXML): State machine notation for
control abstraction. W3C working draft, W3C, Feb. 2012.
http://www.w3.org/TR/2012/WD-scxml-20120216/.

2. Brusk, J., Lager, T., Hjalmarsson, A., and Wik, P. DEAL:
dialogue management in SCXML for believable game
characters. In Proceedings of the 2007 conference on
Future Play, ACM (2007), 137–144.

3. Radomski, S., Schnelle-Walka, D., and Radeck-Arneth,
S. A Prolog Datamodel for State Chart XML. In SIGdial
Workshop on Discourse and Dialogue (Aug. 2013).

4. Sigüenza Izquierdo, Á., Blanco Murillo, J. L.,
Bernat Vercher, J., and Hernández Gómez, L. A. Using
scxml to integrate semantic sensor information into
context-aware user interfaces. In International Workshop
on Semantic Sensor Web, In conjunction with IC3K 2010,
Telecomunicacion (2011).

5. Wilcock, G. SCXML and voice interfaces. In 3rd Baltic
Conference on Human Language Technologies, Kaunas,
Lithuania (2007).

3

SCXML: Current Status and Future Prospects

Jim Barnett
Genesys

jim.barnett@genesyslab.com

INVITED TALK
The W3Cs Voice Browser Group started work on SCXML as
part of its VoiceXML 3 effort. One problem with VoiceXML
2.x was that it was difficult to re-use markup because it mixed
user interaction with flow control. For example, someone
might write a form (or series of forms) to collect the callers
credit card number, but the markup that interacted with the
caller was tightly coupled with the logic that decided where
to go next in the application, so it was difficult to incorpo-
rate those forms in another application. We therefore decided
to separate flow control from user interaction, and developed
SCXML as a pure flow control application. Given the com-
position of the Voice Browser Group, most of the people who
have worked on SCXML have had backgrounds in speech
recognition or natural language processing, but our intent was
to keep voice-specific constructs out of SCXML, and we have
been pleased to see the diversity of applications to which it
has been put, including a current effort to use it for modeling
the spread of infectious diseases.

The two obvious candidates for a flow control language were
state machines and logic programming (or goal decomposi-
tion), both of which are widely used for dialogue control. We
chose state machines because Harel had produced an excel-
lent formulation of them, and because VoiceXML 2 already
had a state machine embedded inside it in the guise of the
Form Interpretation Algorithm. There is ongoing interest in
combining SCXML with logic programming, for example by
defining a Prolog datamodel. Since Harel has produced sev-
eral versions of state charts, we chose UML state machines as
our baseline, particularly because the industry has a lot of ex-
perience with them, and Harel consulted on their definition.
SCXML has attempted to adhere to the UML state machine
definition except where we had good reason for deviation,
and we have intended for it to be easy to translate a UML
state machine into SCXML.

One significant from traditional Harel State Charts is that
SCXML must define concrete datamodels and event delivery
mechanisms. This requires pinning down a lot of details that
can be left vague in a graphical notation. The most important

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish,to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Copyright is held by the au-
thor/owner(s).
EICS’14 Workshop, Engineering Interactive Systems with SCXML, June 17,
2014, Rome, Italy

distinction, however, is that we chose to make the runtime be-
havior of SCXML as deterministic as possible. Harels work,
for example, does not specify the order in which transitions in
parallel regions are taken. This is a justifiable decision, since
it is unlikely that a well-designed application would need to
rely on such details. Nevertheless, the SCXML group de-
cided to specify them, in part because most of us work for
enterprise software companies, and our customers demand a
high level of predictability and control. The last thing that a
large bank wants is for the software to suddenly decide to do
something different this time around.

One interesting question is why it has taken so long to finish
SCXML, given that we had Harels work and UML as a start-
ing point. One reason is that W3C process requires a high
degree of consensus so that decisions take much longer than
they do in a single company development project. Another
problem is that people join and leave the working group as
the work progresses. Each time a new person joins, the group
ends up revisiting previous decisions to re-build consensus
with the new member. One significant technical issue we had
to deal with was the need to abstract away from the concrete
datamodels and event processors. It took a significant amount
of time to draw the boundaries correctly. Finally, it has taken
us a long time to debug the interpretation algorithm that is
included in the specification. The big problem was that there
was no easy way to test changes to the algorithm. It might
have saved time to create a reference implementation, even
though W3C process does not call for one.

SCXML is currently at Last Call status, and we can move to
full Recommendation status quickly if we get enough imple-
mentation reports. (In order to demonstrate inter-operability,
W3C process calls for at least two independent implementa-
tions of each feature in a specification.) When we think of
possible future work after SCXML 1.0, one obvious candi-
date would be the specification of new datamodels or event
I/O processors, which could be developed as separate docu-
ments. Another possibility would be the addition of specific,
limited, new features in the form of SCML 1.1. The choice of
the features would depend on the participants, in particular on
those who would commit to implementing them. A full over-
haul of the language in the form of SCXML 2.0 would take
several years and we would need a large group of committed
people before we would even consider it.

14

Developing User Interfaces using SCXML Statecharts
Gavin Kistner
NVIDIA, Inc.
1350 Pine St.
Boulder, CO

gkistner@nvidia.com

Chris Nuernberger
NVIDIA, Inc.
1350 Pine St.
Boulder, CO

chrisn@nvidia.com

ABSTRACT
In this paper we describe NVIDIA Corporation’s
implementation of an editor and runtime for the SCXML
statechart standard. The editor and runtime are used for
both prototyping and production of user interfaces, targeted
primarily for automotive in-vehicle interfaces. We show
how state machines improve the simplicity and stability of
application development, particularly when using the
hierarchical and parallel states available in SCXML. We
investigate the usefulness of statecharts in user interaction
design. We further describe subtle additions and deviations
from the SCXML standard, the motivations for these
changes, and their benefits compared to a strictly standards-
compliant implementation.

Author Keywords
SCXML; state machine; statechart; gui

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Techniques:
State diagrams

INTRODUCTION
Since 2003 we have developed a software product for
creating 3D user interfaces. Since 2009 this tool has been
known as NVIDIA’s UI Composer Studio, or “Studio” for
short.

In Studio all user interaction is handled through triggers
known as “actions” that translate events occurring on
objects in the scene to visual changes in the interface
(Figure 1). Visual changes in Studio are most commonly
specified as “slides”, which control what aspects of the
interface are visible along with animations and transitions.
Conditional interactions—such as not responding to mouse
clicks on a button when the button is disabled—are
accomplished by placing actions only on specific slides for
items in the interface.

While actions have been effective at producing a functional
interface, they have historically caused two problems:

1. Larger interfaces became hard to edit as
interactivity was ‘hidden’ deep within specific
slides of specific interface elements.

2. Combining interaction logic with the visual
presentation made editing difficult whenever the
interactivity needed to be changed independent of
the presentation.

Visual States versus Logical States
It is often desirable in a software interface for changes in
interaction to be paired with changes in the presentation.
For example, when a text input is focused—accepting user
input—it is beneficial to the end user for the visual
appearance to reflect this and differentiate it from the case
where the input is not focused. However, the visual state
may not change along with the logical internal state.

One such example is the appearance of a modal dialog.
Modal dialogs disable interaction with other visible
content, but usually do not change the appearance of that
content. In this case a single visual state (a slide) must be
associated with multiple logical states.

A reversed example is when a transition animation is
followed by a steady-state animation. In Studio such a
situation is usually implemented using multiple slides. In
this case we have the situation where multiple visual states
are associated with a single logical state.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

EICS 2014 Workshop: Engineering Interactive Systems with SCXML,
June 17, 2014, Rome, Italy

Copyright is held by the author/owner(s) !

Figure 1: Scriptless Actions in UI Composer Studio

5

Separating Logic from Presentation
We set out to solve the problems described above by
implementing the visual states independently from the
logical interaction states. We further believed that this
separation should provide additional benefits:

1. Interaction designers would be able to develop the
logical states independently from graphical artists
working on the interface, perhaps simultaneously.

2. Artists would be protected from accidentally
breaking the interaction logic during development.

3. The interaction flow of the interface would be
testable in an automated manner, independent of
the interface.

To represent the logic of the system we chose to use a state
machine.

State Machines and SCXML
Finite state machines (or simply “state machines”) have
been in use in a variety of technical fields since the 1950s.
Traditional state machines have a single set of mutually
exclusive states. The machine must be in exactly one state
at any given time. Such systems are limited in their ability
to efficiently express the interactions of a sophisticated
software system. For example, describing a system of three
independent buttons which have four possible states each—
disabled, enabled, hovered, and active—requires a state
machine with 64 states. These states represent the Cartesian
product of the possible combinations of states for the
buttons. We have been given (unsubstantiated) reports of
such systems resulting in in-vehicle user interfaces with
over 3,000 states. We would consider such a system to be
unable to be easily tested, maintained, or even understood.

Harel statecharts [1] are a visual formalism of state
machines. They provide three features that greatly simplify
the description of a complex interface over a traditional
state machine:

• The addition of orthogonal regions (also known as
“parallel states”) permits states from multiple sets
to be active at the same time. This removes the
combinatorial explosion problem described above;
the machine requires far fewer states, instead
authoring a simpler system that is better
representative of the objects in the interface.

• The addition of hierarchical states allows a simple
programming-by-differences methodology [2].
Child states can specialize a parent state, handling
specific interactions as necessary or allowing the
parent state to handle shared interactions. This
reduces the number of transitions required in the
machine, and in doing so it also reduces the
chance of mistakes by reducing duplication of
interaction logic.

• History states within hierarchical regions allow the
state machine to record the active descendant
state(s) when leaving them, and return to that
same set of states later.

SCXML is an open standard [3] that uses XML instead of
pictures to describe content similar to Harel statecharts.
Some of the features of SCXML that are important to user
interaction include orthogonal regions, hierarchical states,
history pseudo-states, executable content on state
entry/exit, executable content during transitions, and a
formalized data model. SCXML also specifies a formal
interpretation algorithm, with a wide test suite available to
help ensure correctness.

While the feature sets of SCXML described above made it
appealing as a choice for storing the user interaction, we
felt that forcing users to understand the SCXML
specification and type raw, syntactically valid XML would
be both cumbersome and likely to cause mistakes. Once we
decided to use SCXML we needed to write an editor to
easily create valid markup, and then a runtime to support it.

SCXML VISUAL EDITOR
We created a new application named “Architect” to create
and modify SCXML files. Editing is done visually, as seen
in Figure 2. Our graphical editor provides many benefits
over a text editor. It ensures that the user produces valid
SCXML. It improves understanding [4, 5, 6] of the state
machine. It allows executive stakeholders to review and
approve interface logic without examining any ‘code’.
Finally, it hints at regions that are likely to be bug-prone.

We anticipated many of these benefits. In particular, using
visual statecharts to express and discuss the user’s
navigation through application screens replaced a more
cumbersome and error-prone exchanging of pictorial flow
charts that were then translated to code with each change.
We were able to replace this workflow by adding a feature

!

Figure 2: Portion of a production statechart created with
Architect, with transition event labels hidden

6

that allows the user to filter the display of the statechart to
only include transitions related to a subset of triggering
events. This provides custom views appropriate for high
level conversations, yet allows the same statechart to be
analyzed under different contexts.

We did not anticipate the correlation between visually
complex regions—such as states connected by many
transitions, with the same events and different conditions—
and the likelihood of bugs in that region. For example, the
collection of states labeled GridContent in Figure 2
turned out to be the source of the most bugs in the
application it was controlling.

Visual Representation
Our visual display of the statechart differs from Harel’s in
many ways. Most are designed to reduce visual clutter and
improve understanding at first glance.

Harel shows the default state within a hierarchy (called the
default initial state in SCXML) as a dot in the parent state
with an arrow pointing to the default state. We simplify this
to a single Unicode bullet prefixing the name of the default
state, seen in the states initial and a in Figure 3.

While Harel’s examples mostly use single-character event
names labeled on the transitions, real applications often
have multiple events with much longer names. For
example, a particular transition in the application could be
triggered by any of the events dpad.right.down,
touch.focusStore0, or bumper.right. To avoid
drawing large amounts of text on the statechart diagram we
hide the name(s) of the event(s) that trigger a transition at
the default zoom level. The user may zoom in to see event
names exposed in the interface, or select a particular
transition to see the triggering event(s).

A single parent state in SCXML can have multiple history
states with different behavior (different initial targets). The
circled (H) and (H)* notations used by Harel do not allow
sufficient distinction between two or more <history>
states within the same parent state. We instead display the
full name of history states. We additionally append a star
glyph to the name to visually differentiate them from
normal states, with different glyphs indicating the type of
history recorded (“shallow” versus “deep” recording).

We consider Harel’s dotted separation for orthogonal
regions to be a desirable visual representation, yet difficult
to support for intuitive editing. Instead, we draw a SCXML
<parallel> wrapper with a dotted border. In Figure 3 the
states X and Y are orthogonal; both are active whenever the
state machine is in the parallel state. This convention is
convenient to edit, but has the disadvantage that it requires
the consumer of our diagrams to understand this notation.

Organizing States
To help emphasize hierarchical placement we apply subtle
shadows to states. This creates the perception of 3D
stacking; child states appear to sit on top of their parent.

Some large applications developed with Architect have
states hierarchically nested five or more levels deep. To
better help visually distinguish the boundaries we allow the
user to apply a background color to a state. The background
of each state is semi-transparent, allowing the color of any
parent state to be visible on each of its descendant states.

Adjusting the placement of child states within a parent state
is constrained by conflicting requirements. We do not wish
to allow a child state to be placed outside the boundaries of
its parent state, since this would cause the visual diagram to
no longer properly represent the internal hierarchy. Yet if
we prevent a child from moving outside the boundaries of
the parent a “claustrophobic” feel is introduced, forcing
users to fight the system. Alternatively if we instead cause
moving a child against the parent boundaries to resize the
parent then we encounter additional problems, both with
transition routing and the need to push sibling and parent
states. A single errant child movement could destroy
important layout of the states and transitions.

Our final solution was influenced by Alan Cooper’s
recommendation to allow users to “fudge” the system [7].
Users may temporarily create a visually ‘invalid’ statechart
by placing states outside their parent, but we draw the
outline of any states with invalid placement in a bright red
color to indicate the visual error. This allows the user the
freedom to move items around at will during editing, while
still encouraging valid results. And, if the user truly wishes
to change the parent of a state, we support alternative
modes for dragging a child state into a new parent.

Display of Transitions
We believe that understanding the flow of control between
states is most important in reading a statechart. We
correspondingly expended a large amount of design and
implementation effort on their appearance.

On each transition between states we draw a dot on the
edge of the source state and a triangular head entering the
target state. The source dot exists to make clear that a
transition comes from that state and is not a line coming
from another state that happens to go under this state. (The
transparent background on states further prevents this
problem, as any transition line going under a state is visible
beneath it.) The dot is drawn smaller than the arrowhead
and with reduced opacity to help distinguish them.

!

Figure 3: Examples of states and transitions in Architect

7

When a transition is guarded by a condition—dynamic
code evaluated to determine whether or not to take the
transition—we draw the circle for the source dot with a
white background. This is demonstrated in the transition
from state a to b in Figure 3. This visual differentiation
helps to highlight to the casual observer that the transition
may not always take place.

We draw transitions that have executable content uniquely
to help highlight where side effects may occur in the
statechart. As shown on the transition from b to a in Figure
3 these transitions have a small curved line added adjacent
to the arrowhead. This visual style mimics a similar style
(not pictured) that indicates when a state has executable
content during entry or exit.

Certain transitions in SCXML may target the state that they
originated from. We depict this as a circular transition, seen
in Figure 3 at the bottom of the parent state. Other
transitions in SCXML may not target any state at all. These
“targetless” transitions are displayed without any line, as a
single dot on the edge of the source state.

Transitions may be hand-routed by the user. Whenever a
transition changes direction the corner is rounded. Beyond
the aesthetic appeal, this helps to ensure that two transitions
crossing each other at 90° angles cannot be mistaken for
transitions that happen to turn at the same spot.

We draw the transitions with a semi-transparent line so that
multiple collinear transitions are visually different from a
single transition. For example, in Figure 2 the multiple
transitions entering the pinkish states become darker than
any individual transition line. We believe that subtle details
like this—combined with our other work—result in a
diagram that is both pleasing to the eye and that also is
easier to examine and to understand.

Limitations in Graphically Representing SCXML
Our work at present does not yet allow the visual editing of
all features offered by SCXML.

Architect sets a child state to be the default initial state by
setting the initial="…" attribute on the parent state.
SCXML alternatively permits an <initial> element to be
created containing a transition with executable content on
it. We do not provide a way to author such an initial
transition. Users may instead create a state with that
executable content on entry, and immediately transition
from that state to the desired initial state.

We do not support the visual editing of transitions that
target more than one state. Though this is reasonable to
represent with some interim visual (similar to a UML
Statechart “fork” node [8]) to date no statechart we have
created has required this capability.

Finally, while we support the distinction between internal
and external transitions in SCXML, we do not do so based
on whether the transition’s edge leaves the parent state as
with UML Statechart local versus external transitions.

Though this seems a good visual differentiation, we believe
that it is not obvious enough for editing. It seems quite
likely that an intended visual-only edit to the routing of a
transition could accidentally result in a behavioral change.

CONNECTING LOGIC TO INTERFACE
Given a presentation authored in Studio and an SCXML
state machine authored in Architect, we require a way to
communicate between the two. Some changes to the logical
state must be able to trigger a change in the interface, and
some user interactions in the interface (such as tapping on a
button) must be able to fire an event in the state machine.

Driving Presentation from States
To control the interface from the state machine, we need to
be able specify interface-specific actions that may take
place during any of the “executable” regions of SCXML:
during the entering of states, the exiting of states, or during
the activation of a transition.

Since SCXML is XML, we could specify the interface
changes as executable content in a custom namespace.
However, our automotive customers have asked to be able
to re-use a single state machine with different presentation
layers. For example, a high-end car may implement the
interface using UI Composer Studio, while a less expensive
model may use a simpler interface requiring cheaper
graphics hardware. To support this we chose to specify the
presentation control separate from the state machine.

To this end we designed an XML schema for a custom file
(the “Glue” in Figure 4) that maps the entering and exiting
of specific states, and the activation of transitions, to the
desired changes in the presentation. While the format of
this file is irrelevant to this discussion, its use highlights a
limitation of the SCXML standard.

Referencing a state from this separate file is simple as the
SCXML file contains a unique id attribute for each state.
Referencing transitions, however, is not as simple: There is
no such unique identifier present in the standard for
transitions. To facilitate the reference, Architect adds a
custom uic:id="…" attribute in a custom namespace to
each transition. This value is editable by the user in order to
apply a semantic and memorable label, but Architect
ensures that the value entered is unique amongst all
transitions. We hope that a future version of the SCXML
specification may support unique identifiers on transitions.

Figure 4: Gluing the Presentation to the Logic

8

Driving States from Presentation
Communication from the UI Composer-based interface to
the state machine is performed via Studio’s “actions”.
Instead of multiple actions on each of multiple slides
tracking the onPressureDown event on a button and
causing multiple interface changes (Figure 1) the artist
instead creates a single master action that fires a semantic
event into the state machine. The button always tells the
state machine when it is pressed, for example, and it is up
to the state machine to decide what—if anything—should
occur as a result.

By processing all user interaction in the state machine, we
enable the creation of multi-modal interfaces that can use
touch, hardware input (keyboard or buttons), focusable
interface elements, voice input, gaze tracking, camera-
based gesture recognition, and more.

Synchronizing States and Presentation
Many of the applications we have developed have
transitions in the presentation that correspond to a change
in interaction. One such example is a ‘welcome’ animation
that displays during application and vehicle start. During
this animation no user input is accepted. When the
animation completes interaction is enabled.

We could use the animation completing in the interface to
trigger the logical state change. This provides a good
experience to the end user, as the visual change is
guaranteed to correspond to the interaction change.
However, this also leaves our application at the mercy of
the interface artist. If the artist modifies the duration of the
animation to be 30 seconds, the user will not be able to
interact with the interface during that time.

If, alternatively, a development team has an Interaction
Designer (“ID”) who is in charge of user experience and
interaction flow independent of the artists, the ID may
instead choose to use SCXML-based timeouts with fixed
durations to trigger the interaction change. In this case the
presentation is at the mercy of the logical interactions,
possibly being pushed to a visual state before the artist’s
animation is complete.

We support the invocation of timeouts by using standard
SCXML features. Upon entering a state we queue an event
to <send> after a specified period, but an early exit of the
state <cancel>s the queued event to avoid other effects.
Figure 5 shows authoring such a situation in Architect.

RUNTIME IMPLEMENTATION
After editing the interface and logic, and gluing them
together, the final piece needed for application support is a
runtime for the SCXML logic. This runtime interprets the
SCXML instead of compiling the state machine to code.
This enables simpler introspection of the state machine
during runtime. It also makes it easier to make changes to
the logic without requiring any recompilation. Both of
these result in shorter development cycles.

During evaluation of SCXML as a candidate language we
first implemented prototype SCXML interpreters in the
Ruby[9] and Lua[10] scripting languages. The official
SCXML interpreter algorithm was still in flux at this time
and we found it easy to test changes to the algorithm in
these languages. In fact, the initial release of the NVIDIA®
SHIELD™ portable game console [11] used the Lua-based
interpreter for its game-browsing interface.

After we decided to commit to SCXML we wrote our
official runtime in C++ with an SCXML scripting model
that uses Lua for all conditional transitions, data model
access, and executable <script> evaluation. The final
implementation included in our product weighs in at around
4,000 lines of code, including the Lua script bindings but
disregarding supporting libraries and header files.

The decision to use C++ was not due to performance
issues; the Lua interpreter ran fast enough for our purposes
on embedded hardware (though the initial SCXML parsing
did delay startup slightly). The decision was based on four
criteria:

1. The code base for all of UI Composer is C++, as it
offers far superior debugging to Lua. Despite
having our own Lua debugger (UI Composer
Studio also exposes Lua in the interface layer) we
find it easier to debug C++ than Lua.

2. Customers wishing to license our state machine
may not want to use Lua at all; the scripting
system is abstracted from the state machine and
C++ is, in general, accepted by our customers in
more varied contexts than Lua.

3. C++ allows a more compact representation of the
problem and more optimization possibilities in
terms of size/speed in the long term should such
needs arise.

4. Our entire core development team is more
experienced in C++ than Lua. However, the
subset of SCXML required for our use case is a
simple enough that it takes less than one developer
to support the entire implementation, including all
Lua bindings and maintaining our test suite.

Figure 5: Firing an event after a timeout.

9

SCXML Specification Features Not Supported
Our SCXML implementation is not fully compliant. There
are features required by the standard that we have not found
to be useful in our product, and have not implemented.

We do not implement invocation or communication with
external services. This means that we do not support the
<invoke> element, any subset features of <send> or
<cancel> related to external services, or the <content>
data container.

We do not support the <param> element for passing
annotated data along with an event. While this might be
useful in some scenarios, it has not yet been required. Also,
there exist other mechanisms to accomplish the same goal
in many cases, such as pushing event-related information
into the data model instead of onto the event.

We do not support <donedata> for describing the
resulting state machine information when it reaches a
<final> state. Our applications using the state machine do
not generally exist as services that need to communicate
results to a separate system.

We do not support a SCXML I/O Processor (section D in
the specification). Our engine only runs a single SCXML
session at a time.

We are using this subset of SCXML in high-end production
applications to great effect. While the missing features are
certainly not useless, this shows that they are not necessary
for certain domains. We hope that in the future the SCXML
standard will be simplified to a core set of features—as
occurred with the SVG Tiny standard [12]—with additional
modules describing useful add-on functionality.

Unique Implementation Features
Our engine further deviates from the SCXML standard in
various ways designed to improve the reliability of our
applications.

State Machine Unit Testing
To help verify that modifications made to a complex state
machine during editing did not break existing functionality
we have developed an XML-based unit testing system for
our SCXML engine. A unit test initializes a state machine
with custom data model values and then specifies a series
of events to inject into the system. Each event is followed
by assertions about the currently active states or data model
values. By stubbing out functions that make simple data
model changes we can create tests that simulate a working
application and fully test the machine in a standalone
environment.

Because we have integrated unit testing into Architect an
ID working on a state machine can periodically and very
easily run all unit tests against the machine. If any unit test
assertions fail the ID can investigate what recent changes
may have broken the logic, or revise the unit test to reflect
a desired change in the interaction and flow.

Dynamic Initial State
Applications deployed on the Android operating system
may be killed and restarted by the OS. When this occurs it
is the responsibility of the application to resume to match
what the user was last doing. To support this, we support a
custom uic:initialexpr="…" attribute on any state
where an initial="…" attribute is valid.

The value of the attribute is evaluated as a Lua expression,
and the result interpreted as a space-delimited set of state
identifiers to target. This code-based state change feels like
it makes the state machine less trustable, less precise.
However, it is equivalent to an initial state with transitions
leading to every possible combination of states, each
guarded by a Lua condition determining if it is to be run.
This feature does not change the functionality that is
possible by the state machine; it simply makes the
functionality possible in a more convenient manner.

We have similarly discussed adding support for a custom
targetexpr="…" attribute to dynamically determine the
state(s) targeted by a transition. As with initialexpr,
this attribute should have no impact on the functionality
possible with the machine, affecting only ease-of-use.

Remote Debugging
Our engine permits runtime debugging and introspection.
The SCXML interpreter is able to communicate the active
state(s) and current data model values over the network to
Architect for live display during execution and debugging.
Adding debugger support required only an additional 300
lines of C++ (not including transport protocol code).

Guarded Microstep Iteration
The official SCXML interpretation algorithm has an
unbounded while loop that processes internal “microstep”
transitions. Coupling this with a poorly designed state
machine produces an infinite loop. Such a machine design
is more likely than seems probable. We have repeatedly
experienced a problem where an ID beginning work on an
interface will create a pair of transitions between two states
without taking the time to enter a triggering event for
either. Consequently, as soon as one of those states is
entered the state machine will unendingly switch between
the two states as fast as possible.

To prevent this problem, and other more complex unstable
configurations, our engine will only process a (large) fixed
number of microsteps before moving on. While this value
is currently fixed at 10,000 iterations we hope to make this
configurable per state machine, in case the ID desires either
a lower or higher limit.

Update-based Event Processing
The SCXML interpretation algorithm describes a main
event loop that runs asynchronously from other systems,
with a blocking call where it waits for events to process.
Our engine instead runs synchronously, processing a queue
of events until stable and then returning. This provides us

10

with a very predictable system, where we know that all
events queued during one update frame will be processed
before the next update renders to screen.

We hope to spend more time in the future researching real-
time possibilities with algorithmic upper-bound guarantees
on processing time.

Verified State Targets
All transitions that target a state are verified once before
being taken to ensure that the referenced state id exists.
Despite Architect preventing such a scenario, a user could
hand-edit a SCXML file and enter an invalid state id.
Further, this also guards against the possible case where the
dynamic initialexpr Lua code returns invalid data.

CONCLUSION
Separating our interface development from interaction logic
has simplified the development of complex applications.
On a near-daily basis our in-house artists praise how much
easier it is to control the interface from the state machine,
and how much easier it is to find and fix user interaction
bugs.

Our customers see using SCXML as the representation of
the state machine as a benefit. As a text-based file format, it
is amenable to storage and manipulation by source control
systems. As an XML-based format, it can be understood
and edited by humans and computers alike.

Using graphical statechart editing helps engage spatial
reasoning, making interaction logic editing more accessible
to visual artists. At the same time it prevents them from
making many mistakes or typos that would produce an
invalid state machine.

The graphical depiction of interaction logic provides an
effective way to communicate with managers and other
stakeholders about the high-level flow of an application.
Because edits to this logic are immediately available in the
application—instead of transcribing logic from a diagram
into code—we have substantially reduced the time needed
to test proposed changes and fix bugs.

We found that certain aspects of the SCXML format are
harder to represent graphically, but these are rarely
necessary in our experience.

We found that large portions of the SCXML standard are
not necessary for it to be useful to our customers and us. At
the same time, we have found the standard lacking certain
features that we believe are either necessary or extremely
beneficial to add.

Implementing SCXML support in C++ with a frame-based
update engine enabled us to create a small, maintainable
codebase that integrates well with our existing update-
based interface system.

Using dynamic SCXML interpretation during application
evaluation—instead of compiling the state machine to
executable code and running that—enables us to provide
debugging introspection about the current state(s) during
development. This also reduces development time, enabling
more, faster iterations on the application.

ACKNOWLEDGMENTS
We thank the entire UI Composer development team at
NVIDIA. Without their hard work and attention to detail
our endeavors would not have been possible.

REFERENCES
1. Harel, D. Statecharts: A Visual Formalism for Complex

Systems. Science of Computer Programming, 8(3):231–
274, 1987.

2. Samek, M. Introduction to Hierarchical State Machines.
http://www.barrgroup.com/Embedded-Systems/How-
To/Introduction-Hierarchical-State-Machines

3. State Chart XML (SCXML): State Machine Notation
for Control Abstraction. http://www.w3.org/TR/scxml/

4. Xie, S., Kraemer, E., Stirewalt, R. E. K., Fleming, S. D.,
Huang, Y., and Dillon, L. K. On the benefits of UML
2.0 state diagrams on student comprehension of multi-
threaded programs.
http://cobweb.cs.uga.edu/~eileen/SE_Concurrency/state
2/icse09Draft.pdf

5. Baker, P., Loh, S., and Weil, F. Model-Driven
Engineering in a Large Industrial Context — Motorola
Case Study. Model Driven Engineering Languages and
Systems, 8th International Conference, MoDELS 2005,
2005.

6. Torchiano, M., Ricca, F., and Tonella, P. A comparative
study on the re-documentation of existing software:
Code annotations vs. drawing editors. International
Symposium on Empirical Software Engineering, 2005.

7. Cooper, A. The Inmates Are Running the Asylum.
Sams (1999), 168-170.

8. UML State Machine Diagrams. http://www.uml-
diagrams.org/state-machine-diagrams.html#fork-
pseudostate

9. Kistner, G. The Ruby XML StateChart Machine.
https://github.com/Phrogz/RXSC

10. Kistner, G. The Lua XML StateChart Interpreter.
https://github.com/Phrogz/LXSC

11. NVIDIA SHIELD. http://shield.nvidia.com
12. World Wide Web Consortium. Mobile SVG Profiles:

SVG Tiny and SVG Basic.
http://www.w3.org/TR/2003/REC-SVGMobile-
20030114/

11

Multimodal Multi-Device Application Supported by an
SCXML State Chart Machine

Nuno Almeida
DETI / IEETA

University of Aveiro
Portugal

nunoalmeida@ua.pt

Samuel Silva
IEETA

University of Aveiro
Portugal

sss@ua.pt

António Teixeira
DETI / IEETA

University of Aveiro
Portugal

ajst@ua.pt

ABSTRACT
The number of mobile and desktop devices available in the
home environment is rapidly increasing with a notable em-
phasis on applications to serve AAL contexts. The co-
existence of multiple devices and applications provides (and
demands) new interaction possibilities, posing challenges re-
garding how different devices can be used simultaneously to
access a specific application, taking the most out of each de-
vice features (e.g. screen size) and sharing input and output
modalities.

To tackle these challenges, in a multi-device scenario, we pro-
pose a solution adopting the W3C MMI Architecture in which
each device running the application runs an instance of the In-
teraction Manager (IM). Each instance can then act as an ad-
ditional modality to the other IMs, allowing input and output
events sharing. The proposed solution relies on an SCXML
state-machine to define the application logic and communica-
tion: although sharing the same state-machine, each IM can
be in its own state depending on the different combinations.

An application example is provided based on work carried
out in the scope of Project Paelife, to illustrate the proposed
solution applied to a multimodal multi-device enabled news
reader.

Author Keywords
Multi device application;Multimodal interaction; SCXML

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

General Terms
Design.

INTRODUCTION
The use of mobile devices such as smartphones and tablets
is widespread and has generated a strong demand for appli-
cations. The interaction of these devices with other common

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish,to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EICS 2014 Workshop: Engineering Interactive Systems with SCXML, June
17, 2014, Rome, Italy Copyright is held by the author/owner(s)

devices, present in our homes (e.g., television, Xbox), can
enhance the way users interact with the different devices and
their surroundings. This is particularly relevant in Ambient
Assisted Living (AAL) scenarios, aiming to provide solutions
that help people take the most out of these technologies, serv-
ing multiple usage scenarios and adaptability to different ages
and disabilities.

The multitude of devices available in the home environment,
for example, brings new possibilities into the way applica-
tions can be used, exploring each device characteristics (e.g.,
mobility, input/output modalities available) to provide a more
versatile way of interaction. To this end, applications should
allow users to interact with them not only in the common sce-
nario of one device, but using the different devices available
to the user. If users combine two or more devices, they should
be able to use the more suitable modality or various modal-
ities to interact with the application. The output modalities
should be able to provide feedback in multiple ways, with the
information presented in one device used to complement the
other. For instance, a tablet can be used to interact with the
application while the television provides a detailed view of
some of the contents.

Developing an application to run in multiple devices presents
a number of challenges concerning where the application
logic will be instantiated and how to control and take advan-
tage of the modalities available in the different devices.

In our work regarding multimodality [11, 10] we have
adopted the W3C Multimodal Architecture. It is a loosely
coupled and extensible architecture that supports multiple
modalities and the distribution of modalities across multiple
devices, such as PCs, tablets and smartphones. The architec-
ture provides flexibility, allowing to change or add modalities
in the system without the other components being aware.

To address the challenges of a multimodal multi-device ap-
plication we propose that each device running the application
runs an instance of the Interaction Manager (IM). Each of the
IM instances can be in a different state depending on how
the application is being used and what is the main purpose of
each device at each time. In our approach the different IMs
work as an additional modality to the remaining IM instances
allowing input and output events sharing with the SCXML
state-machine managing the parallel use of the different de-
vices.

12

Figure 1. Multimodal Architecture

This approach to multimodal multi-device applications has
been put to test in the scope of Project Paelife [10] from which
we extract an application example to illustrate its main as-
pects.

This article is organized as follows: Section 2 briefly presents
background and related work. Section 3 describes our appli-
cation scenario and the cases of use for a multi device sce-
nario application. Section 4 describes the method used to
accomplished the utilization of application in a multi device
scenario. Section 5 presents our application working in two
different scenarios. Section 6 presents the conclusions and
ideas for further work.

BACKGROUND AND RELATED WORK
The W3Cs Multimodal Architecture and Interfaces recom-
mendation [3] is based on a Model-Viewer-Controller (MVC)
design pattern. It can be divided into four major components
(illustrated in Figure 1):

• Modality Components – provide user interaction capabili-
ties, input or output: the Viewer in an MVC paradigm;

• Runtime Framework - offers communications capabilities
for the modules of the system and acts as a container for
the other components;

• Data component - represents the data model stored in the
system: the Model in an MVC paradigm;

• Interaction Manager - acts as a state machine that man-
ages the different modalities: the Controller in an MVC
paradigm-

Considering the component most relevant to the presented
work, the Interaction Manager (IM) of the multimodal frame-
work is configured by a state machine described in the W3C
SCXML.

The State Chart XML (SCXML) [1] is a general-purpose state
machine notation based on events. It merges concepts from
CCXML and Harel State Tables. The general characteristics
of the SCXML and its extensibility enable that it can be used
for different areas and purposes. A considerable amount of

literature has been published on the W3C SCXML recom-
mendation regarding its use in a number of contexts.

The SCXML not only defines the state-machine itself but also
a data model which, in addition to storing active states, also
provides a model to store other useful information. It fea-
tures powerful state flows by allowing parallel states and sub-
states. It adds a number of extensions to a basic state machine
and the capability to execute content such as conditions, exe-
cutable scripts, send messages to external entities and modify
the data model. This is accomplished through two elements
that execute content upon entering or leaving a state.

Researchers commonly refer to SCXML state charts in the
context of multimodal interaction [3, 4]. Its use extends to
mobile devices, smart homes, robots and AAL contexts. Al-
though SCXML has a vast list of applications, the multi-
modal interaction architecture contributes to increase its use
by proposing the SCXML state charts for the core of the In-
teraction Manager.

SCXML state charts are also used in dialog management [7,
9, 5], to describe the flow of conversation, and in ubiquitous
computing [8, 6], where it is being explored to manage smart
space environments, enabling the control of interaction across
sensors and actuators.

Several implementations of the SCXML can be found for dif-
ferent environments. One of the most frequently used im-
plementation is the Apache Commons SCXML1 developed
for Java, but other implementations are available including
scxmlcc2 and uscxml3 for C++, PySCXML for Python4 or
SCION5 for JavaScript. In addition to the SCXML imple-
mentation, there are tools available to create or edit state
charts. The scxmlgui6 is a graphical tool for creating and
editing state charts offering interaction with the Apache Com-
mons SCXML providing visual feedback of what is happen-
ing inside the state machine.

APPLICATION SCENARIO
Although the method proposed to create a multimodal multi-
device application can cover several contexts, our scenario for
developing a multimodal multi-device application focuses on
aspects of the PaeLife project. Paelife is an European collab-
orative project between industry and academia and its goal is
to contribute to an active ageing of the elderly by creating or
adapting technologies facilitating its use by these persons.

In general, Paelife Personas are older adults with more than
60 years, which have some degree of experience with com-
puters, although they may not be proficient using them. The
Personas spend most of the time at home and for this reason
a big screen would be an appropriate choice for the user to
interact with an application. However, a portable device such

1http://commons.apache.org/proper/commons-scxml/
2http://scxmlcc.org
3https://github.com/tklab-tud/uscxml
4https://github.com/jroxendal/PySCXML
5https://github.com/jbeard4/SCION
6https://code.google.com/p/scxmlgui/

13

as a tablet would give the user the possibility to use the appli-
cation in other situations.

To design our application we have adopted the proposal of [2]
for creating a model of use, combining system goal expres-
sion, application type, information on users, tasks, devices,
modalities, environment and interaction. Regarding inter-
action we consider multimodal interaction, having graphical
and speech outputs and speech, gestures and touch inputs.
This modalities are based in technologies available from pre-
vious research and development by partners of the project
Paelife

One important goal of our work, described in this article, is
the use of applications in a multi-device scenario with the
most typical case comprising a static main unit connected to
a television and a mobile unit (tablet), each of which indepen-
dent but simultaneously interoperable. The interface should
be as similar as possible in both the units, thus making it eas-
ier to use since only one interface needs to be learned. In this
scenario interaction can be performed in three different ways:
a) through the main unit; b) through the mobile unit; and c)
through both the main and mobile units.

Interaction through the main unit
In this scenario, the user only uses the main unit to interact
with the system. This way there is, for now, two interaction
modalities: voice and gestures.

The interface of the main unit must be simple enough to en-
sure that the interaction through voice and gesture modalities
is achieved in a simple and natural way. Given the various
types of services that need to be provided, the main screen in-
terface may be a dashboard that shows, in real time, personal
information relevant to the user.

Interaction through the mobile unit
In this mode the user will interact only by using the in-
put modalities available on the tablet, particularly touch and
graphical output. If the user is close to the main unit the out-
put modalities of the main unit can also be used, if needed, as
detailed in the following case.

Interaction using integration between main unit and mobile

unit
This mode will take advantage of the interaction between the
main unit and the mobile unit to improve the usability of the
system and implement new features.

For example, when detecting the user is within the range of
the main unit, the application can allow using the main screen
to visualize content while using the tablet as a controller.

When the user interacts simultaneously with both units, the
number of possible ways to interact increases. In this case,
we consider three content presentation modes, not mutually
exclusive:

• The main unit displays content and the mobile unit is used
as input;

• The main unit displays the same content as the mobile unit;

Figure 2. SCXML states chart for a news reader application

• The main unit displays the main content and the mobile
unit displays secondary content.

The system should automatically select the most appropriate
mode for each application/task the user is performing. How-
ever, the user should be able to freely switch between the var-
ious modes supported by the running application.

METHODS
To accomplish multimodal interaction in our application we
have adopted the multimodal framework described by the
W3C. The multimodal framework is a set of modules and one
among the most important is the Interaction Manager (IM).
Modalities are only allowed to communicate with the IM: the
input modalities send MMI lifecycle events and the output
modalities receive events from the IM. In the architecture the
IM and data model are two distinct modules, but in practice
they were implemented in the same module.

The implementation of the IM uses the Apache Common
SCXML to manage the state machine defining the applica-
tion logic. We extended the use of the SCXML to parse mul-
timodal architecture lifecycle events and trigger them into the
state machine. The extension also includes the generation of
the lifecycle events to be transmitted to the modalities.

For the communication between the modules we imple-
mented a simple HTTP server in the IM capable of receiving
lifecycle events from the HTTP POST method. The method
imlemented for the < send > element of the SCXML, works
in two ways. If the modality also has an HTTP server the
IM creates a lifecycle event and sends the message to his

14

Figure 3. Sequence diagram of the communication between modalities
and Interaction manager, showing the lifecycle events when the modali-
ties start and after a generation of a speech event.

server. In the cases for which the modality cannot implement
an HTTP server, it makes HTTP GET requests and waits for
a message from the IM.

For the design of the SCXML state machine, a data model is
included that stores the identification of the available modali-
ties, last performed action and other parameters regarding the
last lifecycle event received. The state machine starts with a
parallel state, owning two sub-states. The first sub-state is ex-
pecting for the registration of modalities, then the data model
is updated to store the identification of a new modality. The
second sub-state concerns the application logic and it con-
tains other sub-states regarding the different contexts of the
application. Application states should be able to change the
data model, and create lifecycle events to send to modalities.
Figure 2 depicts an overview of the states created for the news
reader application presented in the following section.

The current framework includes body gestures, touch and
speech input and output. Input modalities generate events that
are coded into an EMMA message format and sent to the IM
through lifecycle events.

APPLICATION
In what follows we briefly describe work carried out in the
scope of project Paelife illustrating the methods proposed in
this article and covering the single and multi-device scenar-
ios.

One device scenario
The created application is a news reader, developed for Win-
dows 8, which provides multimodal interaction aiming to of-
fer a better user experience and usability compared to WIMP
interfaces. The applications starts by loading the RSS news
feeds according to the user’s language. The main screen of
the application shows a grid view with the loaded news. At
the same time the feed is processed to configure a new gram-
mar for the speech modality with the news headlines.

The graphical output modality is embedded in the application
and is continuously listening for lifecycle events coming from
the IM. The modality is responsible for changing the applica-
tion view, opening the content of an article or going back to
the previous screen.

Figure 4. Collaborative use of two instantiations of the applications

Any input modality can register in the IM to send events and
the generated data should provide semantic information. The
semantic information follows a set of rules that are defined
when the application is created. The semantics are interpreted
to perform an action in the output modality.

The user interaction with the news reader, to read the entire
content of the news, can be made by speech or touch. The
user can utter the headline of the news or tap the correspond-
ing square on the grid. They can choose one of the available
modalities to interact, for example, in the main unit the user
would use speech and in the portable (tablet) they would use
touch. The same is applied for other actions such as go back
to the grid view, by tapping a back button or saying go back.

Figure 3 shows a sequence diagram depicting an example of
interaction with the application made using speech. The dia-
gram shows the modalities registering in the beginning with
the lifecycle NewContextRequest and the data model is up-
dated, acknowledging the availability of the modalities. After
the speech modality recognizes a command, it sends the event
to the IM and then the IM sends a request to the modality to
show the corresponding information. If the command is to vi-
sualize the content of a news item, the state machine changes
its active state to detail news, else it stays in the current state.

Multi-device scenario
The creation of the multi-device application is actually an up-
date to the single device application. With this update the ap-
plication now supports two different ways of presenting infor-
mation, the first is the same as the one device application, the
second shows images associated with the news in full screen.
This way we can perform combinations of the visualization
for the multi device application. Possible combinations re-
garding news content viewing are:

• Main unit showing the content / mobile unit also showing
the content

• Main unit displaying full screen images / mobile unit show-
ing the content

• Main unit showing the content / mobile unit doesnt change
and presents the list of news.

Other combinations could be accomplished, but these options
seemed the most appropriate for our goals.

15

Figure 5. Sequence diagram of the communication between modalities and the interaction managers of each device, showing the lifecycle events when
the modalities start and after a generation of a touch event.

Because we want to have the possibility of running the ap-
plication on both devices, interacting with both at the same
time, the application and IM are the same. The support for
this connected mode of operation was attained by an evolu-
tion of the IM used for the single device scenario: the IM
operating locally in the device was updated to send messages
to other devices. Figure 4 shows how the system is connected,
with the IMs in each device providing data to the other.

The data model of the SCXML stores the availability of other
IMs and the mode in which that device is operating. The
mode indicates if the application either shows the content of
the news, the full screen image or if it does not change its
state. In each state a condition was added to verify if a re-
ceived event should be sent to the other IM.

The IM can now receive events of the other device and it
sends lifecycle events for the output modalities connected to
him. Figure 5 shows a sequence diagram of the application
running in two devices and depicting an example in which
the interaction with the application is performed through the
second device using touch and through the first device using
speech.

The IM knowing the current mode of the device that is run-
ning, the sent messages carries this information for the out-
put modality. Figure 6 displays screen shots of the developed
application, with the possible ways for presenting the infor-
mation to users. On top, the figure shows the two devices
displaying the information in the same way, in the middle the
tablet shows the content with a small image and the TV only
shows the image, in the bottom the TV shows the content and

the tablet the grid of news. In this last possibility the user can
read the current news on the TV and use the tablet only for
selecting the news.

If, by any chance, one device is no longer available, the cor-
responding parameter of the data model in the state machine
changes to signal this fact and the user can continue to inter-
act with the application using the device that is still available.

CONCLUSION
In this paper we propose a method to develop multi device ap-
plications that can work on different devices. The interaction
between applications is accomplished by using a multimodal
framework which manages the communication between the
modalities and the communication between the two interac-
tion managers. A SCXML state machine controls the flow of
the exchanged messages coming from the modalities and the
other interaction managers to the output modalities.

An application example is provided, based on work carried
out in the scope of Project Paelife, in which we show differ-
ent combinations to visualize the information presented by a
news reader application to the user, while interacting with it
using two devices.

In the future our goal is to develop a method to deter-
mine if the two application are in condition of being
used jointly: if the state machine is aware that the devices
are in different places, each application should run separately.

16

Figure 6. Screen shoots of the application with different view mode com-
binations: Top, both applications show the same content; Middle, the TV
shows only the image and the tablet the news content; bottom, the TV
shows the news content and the table presents the grid with all the news.

ACKNOWLEDGMENTS
The work presented is part of the COMPETE Pro-
grama Operacional Factores de Competitividade and the
European Union (FEDER) under projects AAL4ALL
(www.aal4all.org); Part of the work presented was funded
by FEDER, COMPETE, FCT and AAL Joint Program
in the context of PaeLife (AAL/0015/2009); IEETA Re-
search Unit funding FCOMP-01-0124-FEDER-022682 (
FCTPEstC/EEI/UI0127/2011) and project Cloud Thinking
(funded by the QREN Mais Centro program, ref. CENTRO-
07-ST24-FEDER-002031).

REFERENCES
1. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett,

D. C., Carter, J., McGlashan, S., Lager, T., Helbing, M.,

Hosn, R., et al. State chart XML (SCXML): State
machine notation for control abstraction. W3C
Candidate Recommendation 13 March 2014 (2014).

2. Bernsen, N. O., and Dybkjær, L. Multimodal usability.
Springer, 2009.

3. Dahl, D. A. The W3C multimodal architecture and
interfaces standard. Journal on Multimodal User
Interfaces (Apr. 2013).

4. Feuerstack, S., Colnago, J. H., de Souza, C. R., and
Pizzolato, E. B. Designing and executing multimodal
interfaces for the web based on state chart XML. In
Proceedings of 3rd Conferência Web W3C Brasil (2011).

5. Gandhe, S., Taylor, A., Gerten, J., and Traum, D. Rapid
development of advanced question-answering characters
by non-experts. In Proceedings of the SIGDIAL 2011
Conference, ACL (2011), 347–349.

6. Harrington, A., and Cahill, V. Model-driven engineering
of planning and optimisation algorithms for pervasive
computing environments. Pervasive and Mobile
Computing 7, 6 (2011), 705–726.

7. Morbini, F., DeVault, D., Sagae, K., Gerten, J.,
Nazarian, A., and Traum, D. FLoReS: A forward
looking, reward seeking, dialogue manager. In Natural
Interaction with Robots, Knowbots and Smartphones.
Springer, 2014, 313–325.

8. Rouillard, J., and Tarby, J.-C. How to communicate
smartly with your house? International Journal of Ad
Hoc and Ubiquitous Computing 7, 3 (2011), 155–162.

9. Skantze, G., and Al Moubayed, S. IrisTK: a
statechart-based toolkit for multi-party face-to-face
interaction. In Proceedings of the 14th ACM
international conference on Multimodal interaction,
ACM (2012), 69–76.

10. Teixeira, A., Hämäläinen, A., Avelar, J., Almeida, N.,
Németh, G., Fegyó, T., Zainkó, C., Csapó, T., Tóth, B.,
Oliveira, A., et al. Speech-centric multimodal interaction
for easy-to-access online services–a personal life
assistant for the elderly. Procedia Computer Science 27
(2014), 389–397.

11. Teixeira, A. J. S., Almeida, N., Pereira, C., and e Silva,
M. O. W3C MMI architecture as a basis for enhanced
interaction for ambient assisted living. In Get Smart:
Smart Homes, Cars, Devices and the Web, W3C
Workshop on Rich Multimodal Application Development
(New York Metropolitan Area, US, July 2013).

17

Transforming a State Chart at Runtime

!
ABSTRACT
This paper proposes mechanisms allowing an SCXML
interpreter to behave consistently and sensibly when its
State Chart is being modified at runtime. A partial
implementation, powering a graphical SCXML editor/
debugger, will serve as an illustration and proof of concept.
Author Keywords
State Chart; SCXML; DOM; dynamic; editor
ACM Classification Keywords
D.2.2 Design Tools and Techniques: State Diagrams  
D.3.4 Processors: Runtime environments
General Terms
Design
INTRODUCTION
If SCXML is indeed to become the “HTML of multi-modal
applications”, what will be the HTML DOM of multimodal
applications?

SCXML is a markup language for representing Harel State
Charts (SCs), a powerful formalism to design and run
application control and particularly User Interface (UI)
control. It is possible to generate SCXML documents with
XSL transformations or scripting with the generic XML
Document Object Model (DOM)[2] before starting the
interpretation.

But SCXML can become more flexible by exposing a
specialized DOM API, like HTML does, and handling the
complexity (and dangers) of modifying the SC while it is
running.
USE CASES
Work is in progress on an SCXML editor and debugger [3]
(which I hope will be interesting in itself) that relies on the
proposed DOM behaviors, as a proof both that they work
and that they are useful.

There are also cases directly related to UI applications of
SCXML. If you’re writing a multimodal application that
wants to talk to an arbitrary number of users, that number

being known only at runtime, then how do you create the
manager states for each user? How about a modular UI that
wants to spawn the same module many times, dynamically
(think of tracks in audio editing software)?

How about artificial intelligence? Weighted transitions are
already a wanted feature for SCXML, and the (quite safe)
ability to modify their probabilities at runtime would enable
learning. A much smarter system might want to evolve by
actually changing transition targets and performing other
structural operations:

– Hello sir, welcome back. Tea?  
– Why don’t you just ask me about my day?  
– Oh… (rewrites some transitions for event=user.enters)  
 So, how was your day?

That is essentially the user editing the SC at runtime, but
using natural language instead of a traditional GUI.
SCXML PROCESSING ALGORITHM
The complete algorithm is described in the SCXML
candidate recommendation[1]. This paper cannot list every
detail relevant to every DOM mutation.

The short version is that the SCXML interpreter will
attempt to take as many transitions as it can, repeatedly
until there is no more event to process and no more
eventless transition it can take. It will then enter a stable
configuration, waiting for more events.

The process of selecting transitions and taking them is
called a microstep. It is divided in five phases:

• enabling transitions (finding transitions in active states
that might be taken in the current context), possibly by
consuming events

• preemption (eliminating conflicts between those enabled
transitions)

• exit (removing states from the configuration and running
their onexit handlers)

• running the transitions' executable content
• entry (adding states to the configuration, possibly some

that were just exited, and running their onentry handlers)
Taking microsteps until a stable configuration is reached is
called a macrostep. At the end of a macrostep, states that
have been entered during the macrostep may invoke sub-
processes which can live until the state is exited again.

David Junger
University of Gothenburg

Göteborg, Sweden
tffy@free.fr

!
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS 2014 Workshop: Engineering Interactive Systems with SCXML,
June 17, 2014, Rome, Italy
Copyright is held by the author

18

MUTATION TIMING
Interpreters supporting runtime mutations should prevent or
defer those mutations while performing a microstep. This is
important for pragmatic reasons (performance,
complexity), but most importantly because accepting
mutations mid-microstep leads to race conditions.

Imagine that multiple transitions are selected based on their
compatible targets. Right after the preemption phase, a
modification to their targets causes a conflict between
them. The algorithm for the entry phase assumes any
conflict has already been avoided, and so the interpreter
enters an invalid configuration.
Pausing the Interpreter
In order to facilitate mutation timing, a supporting
interpreter should allow its execution to be paused between
microsteps. The pause should be triggered automatically
when detecting a mutation that renders the SC invalid. In
any case, the interpreter pauses only at the end of the
current microstep, not necessarily when the pause is
requested. Thus, it needs to somehow notify interested
parties that it is paused.

When possible, applications should request a pause only
after the current macrostep, to further reduce the impact on
complexity and performance.

SCXML-controlled UIs that rely on runtime SC mutation
should ensure that the pause is as short as possible. In
particular by fetching resources in advance before pausing
the interpreter.
Self-Mutation
Executable content runs during, not between, microsteps.
Therefore, in order to change the SC’s DOM through
scripts or extensions within the SC itself, either the
interpreter will accept mutations at any time but defer their
application, or the script must define the mutations in a
callback associated with a pause request. A simple
extension would be a script element that automatically
wraps its content in such a callback and requests a pause.
Delayed events and other timers
As a side-effect of pausing the execution of the SC, in order
to preserve functionality, delayed sends[1.2] and other
timers set by executable content (such as with the
setTimeout method in ECMAScript) should also be paused.
PRINCIPLES
The proposed rules are based on these two guidelines:
Legal Configurations
The interpreter should ensure that the mutated SC is in a
legal configuration[1.1] after the mutation. It may be
impossible to reach that configuration by normal means,
but the algorithm does not need to know that to keep
running.
No Time Travel
The actions taken because of freshly deleted elements could
be impossible to reverse, and it may be hard or impossible
to simulate all that would have happened, had the SC been
mutated from the start. This proposal does not address
those issues (but see Input Replay near the end).

GENERAL RULES
An implementation that supports runtime mutations should
detect when the SC becomes invalid, and pause execution
until another mutation makes the SC valid again. It should
let the mutation’s originator know that interpretation cannot
proceed, and may allow the mutation to be rolled back. The
interpreter must not reject those mutations, because some
changes to a valid SC will often go through a transitory
invalid SC, as illustrated in Fig. 1-3:

Fig 1. A “blank” SCXML document: a targetless transition in
a state could be your editor’s starting point.

Fig 2. The transition is now targeting a state, but s1 has not
been added yet, making the SC invalid.

Fig 3. The missing target is added, and the SC can resume.

In the example, it is possible to switch steps 2 and 3 to
produce the same SC without going through an invalid
step. In fact, it should be possible to find a way to build any
SC by adding states and transitions one by one without ever
creating an invalid document.

But in practice, the valid State Chart with an unreachable
state is about as useful as the invalid one with a missing
transition target, so we might as well show some tolerance
for authors and scripts who like to start with transitions and
create target states later, or clone a whole piece of a State
Chart (thus duplicating state IDs) and work from there
rather than rebuild it from scratch.
Dynamism and Compiling
Most existing implementations use compilation to improve
speed, often relying on a static SC structure. Even the
reference algorithm assumes that the configuration does not
change between the end of a microstep and the exit phase
of the next. Frequently modifying SC structure could
severely degrade the performance of interpreters. There are
several ways to mitigate that:

• allowing the SC to be mutated in batch, similar to a
database's transaction mechanism, and deferring the
calculations until all mutations have been performed (as
a bonus, allow all the changes to be rolled back)

• change the algorithm to rely less on compilation (but too
little would degrade performance in its own way)

• use lazy compilation / memoization
• compile in a way that optimizes mutation performance,

e.g. by making it very fast to detect the impact of a
mutation and decide what has to be recompiled

s0
eventless

SCXML Editor

Load source from w3c_tests/test405.scxml or example.scxmlChoisir le fichier

run pause autoresume:

s0
eventless

s1

SCXML Editor

Load source from w3c_tests/test405.scxml or example.scxmlChoisir le fichier

run resume autoresume:

s0
eventless

always to s1

SCXML Editor

Load source from w3c_tests/test405.scxml or example.scxmlChoisir le fichier

run pause autoresume:

19

• begin to apply the mutations on a copy, in parallel to the
execution of the SC

The JSSCxml interpreter uses both lazy compilation and
mutation-optimizing compilation at this time.
SC MUTATIONS TO WATCH FOR
A State Chart is a graph whose nodes are states and arcs are
transitions. As far as the SC's structure is concerned, the
mutation of other elements, and secondary attributes of
transitions, is perfectly safe between microsteps. These are
all the mutations that matter (SC-breaking conditions are
written in bold letters):
Transition Targets
An invalid target automatically means an invalid SC.
Transitions inside a history or initial element can become
invalid even if their target exists, when that target lies
outside of the element’s parent state.
Transitions’ internal attribute
Switching the internal attribute of a transition may require
recalculating its LCCA[1.3] for implementations that
compile or memoize it.
Inserting and Removing Transitions
Removing a (targeted) transition probably involves some
compilation but is otherwise safe. However, creating a
new transition to a non-existing target would break the
SC.

History and initial elements should be created with their
mandatory transition built-in and targeting the default
substate(s), similar to the way HTML table elements create
a tBody when one is not explicitly written. Adding another
or removing it should be forbidden; instead, it can only be
modified or replaced.
Replacing Transitions
In the case of transitions, replacement can be safely
reduced to removal + insertion.
Changing State IDs
State IDs are assumed to be unique and renaming a state
to an existing ID would make the SC invalid. Otherwise,
renaming a state will always render the SC invalid if any
transition was targeting the state's former ID.

When detecting the mutation, a smart interpreter may offer
the choice of refactoring any transition that previously
targeted the renamed state so they keep targeting it with its
new ID and the SC remains valid.
Inserting and Removing States
As with renaming, deleting a state which was the target
(or contained a target) of an external transition will break
the SC until the transitions are fixed.

Removing a state also means removing it from the
configuration if it was active, canceling any invocation in it
and its descendants.

Adding a state within an active parallel state, or an active
atomic state, would cause that state to be entered
immediately (including running its onentry handlers, and
starting its invocations if the configuration is stable).

Replacing states
For states, there is something to be gained by treating
replacement as more than removal + insertion: the
replacement state can be targeted by all transitions targeting
the former state, avoiding an intermediary invalid SC.
However, replacing a state of one type with a state of
another type is trickier than it may sound (see below).
State Type
The DOM generally does not allow a node's name to be
modified. But implementations may provide a method to do
so, while internally creating a new element to replace the
existing one and putting the former’s children in the new.

Changing a compound state into a parallel state, or vice-
versa, would instantly make the SC's configuration illegal if
they have more than one substate. Therefore, a newly
parallel state should have all its inactive children entered. A
parallel state becoming a regular compound state should
cause all its children but the initial one to be exited.
Whether their onexit handlers should run or not is
debatable, but certainly their invocations need to be
cancelled.

Changing a non-atomic state into a final state would
make the SC invalid. Atomic states becoming final could
also make the SC invalid, but in a relatively harmless way,
and it can keep running as long as the final state’s
transitions are ignored and invocations cancelled.

If it was an active child of <scxml>, making it final should
terminate the SC. If it was an active substate, its parent
should raise a done event as soon as the SC resumes, and
its parallel ancestor(s) may do so too if their other final
descendants are active.

If a top-level final state is changed into a regular or parallel
state, then the SC is already terminated and this is no longer
a runtime mutation. A final state at another level becoming
a regular state would stop ignoring any transitions and
invocations it had.
Moving a State
Moving a state would entail some of the issues of adding
and deleting states: entering or exiting the state as a result
of its new position, and breaking the SC if the state is
moved to a final parent. However, transitions targeting the
state do not generally become invalid, although external
transitions to it or its descendants must be recompiled, and
initial or default history transitions will likely become
illegal. Transitions from the state and its descendants
targeting external states will require similar attention.

If an active state is moved to a position where it should still
be active, such as under a parallel or atomic parent, then it
should not be exited and re-entered. Instead, it and its
active descendants simply remain active and their
invocations keep running.
Invocations
Although they have no bearing on the SC structure,
invocations need special attention because they are the only
thing running between micro- and even macrosteps.
Therefore, some mutations concerning invoke elements

20

should have immediate consequences. Obviously, removing
an invoke in an active state entails canceling the invocation.
A new invoke added to an active parent should be started
immediately if the configuration is stable, or marked to be
invoked once it becomes stable, as if its parent had just
been entered.

The case of changing an active invocation’s source is more
delicate. Should the invocation be restarted immediately
with its new source? the safer option is to let it run, and let
the mutation’s origin explicitly restart it if that is what it
wants. Restarting the invocation without waiting could be
further complicated if it relies on executable content in its
parent to set initial parameters: that content will not be
executed again until the state itself is re-entered.
REVISING HISTORY
Whenever a state mutation occurs, the ancestors of the
mutated state (in the case of moving, both the former and,
to a lesser extent, the new) will need to revise their
recorded histories to make them legal (not to mention,
default history transitions may break). Only immediate
parents need to worry about shallow history, but every
ancestor's deep history could be affected.

A history record that includes a removed state may need to
replace it with one of its former siblings; and a recorded
deep history that goes through a parallel parent of an added
state will have to add the new substate's active or default
atomic descendants.
RELATED AND FUTURE WORK

Relative Targeting
SCXML’s global namespace for IDs can become a problem
when trying to duplicate states without writing extra code
to set unique IDs for them and refactor transitions to them.

A proposal that can be useful on its own, relative targeting
means that instead of naming target IDs, a transition could
indicate its hierarchical relation to its target state(s), e.g.
<transition path=“../state[2]”/> targets the third substate of
the transition’s parent state without knowing its ID.
Input Replay
A method used in live coding runtimes consists of
recording all input to the system and, when a mutation
occurs, starting the mutated system from the beginning and
feeding it all the recorded input as fast as possible to see
how the mutation affected the entire system.

Such a method can be particularly useful for UI, and
certainly the no-time-travel principle in this paper does not
mean that input replay is not a good idea. Only that it is not
always a good or practical idea. When relevant (especially
in a development environment), it would be a welcome
addition to an interpreter’s dynamic capabilities.
Dynamic SCXML and Static Analysis
One of the appeals of State Charts is their well-defined
mathematical structure, which allows algorithms to prove
certain properties of a SC. A dynamic SC is not, in general,
automatically translatable to a static SC.

However, since the interpreter is paused whenever a
mutation is being processed, and always resumes in a valid
configuration, it can be said that the interpreter effectively
runs a sequence of static SCs with hidden final states and
top-level initial attribute.

While the most powerful uses of dynamic SCXML would
result in nondeterministic sequences of SCs and initial
configurations, it is also possible to use the DOM purely
for its expressiveness over writing an equivalent, but larger
and/or uglier, static SC. In the middle ground, the sequence
of SCs is not easily predictable but has some predictable
properties. For example, duplicating a substate may result
in an infinite SC, but in a very regular way.
CONCLUSION
SCXML mutations may not be as easy to handle as HTML
mutations, but a combination of reasonable timing
constraints, helpful feedback for dangerous operations, and
a minimal set of housekeeping rules can make it work.

The implementation of those proposals will be more or less
demanding depending on each SCXML interpreter’s
implementation and the desired performance profile.
Optimizing a dynamic SC and optimizing its mutation
handling is a harder problem than compiling static SCs.

If the SCXML community finds DOM mutations useful, it
is in everybody’s interest to arrive at standard interface
definitions and rules, then perhaps also a reference
algorithm for implementing those rules. This paper, based
on experimental work and strongly inspired by current Web
standards, is written to initiate that effort.
ACKNOWLEDGMENTS
I couldn’t present this paper without the financial support
of the Centre for Language Technology in Gothenburg. The
CLT also funded some of the development of JSSCxml.

Many thanks to the participants on the W3C's Voice
Browser Working Group mailing list.
REFERENCES
1.State Chart XML (SCXML): State Machine Notation for

Control Abstraction, W3C Candidate Recommendation  
http://www.w3.org/TR/scxml/

1.1.Legal State Configurations and Specifications  
http://www.w3.org/TR/scxml/#LegalStateConfigurations

1.2.<send> 
http://www.w3.org/TR/scxml/#send

1.3.‘Type’ and Transitions  
http://www.w3.org/TR/scxml/#N101AA

2.DOM, WHATWG Living Standard  
http://dom.spec.whatwg.org

3.The JSSCxml interactive editor  
http://www.jsscxml.org/viewer

21

A Debugger for SCXML Documents
Stefan Radomski

TU Darmstadt
Telecooperation Group

radomski@tk.informatik.tu-
darmstadt.de

Dirk Schnelle-Walka
TU Darmstadt

Telecooperation Group
dirk@tk.informatik.tu-

darmstadt.de

Leif Singer
University of Victoria
Victoria, BC, Canada

lsinger@uvic.ca

ABSTRACT
The development of non-trivial applications as SCXML doc-
uments entails the requirement for application authors to ver-
ify and retrace their execution semantics and behavior. As of
now, there are no tools available to debug SCXML documents
as one would debug e.g. a Java or C program. In this paper we
outline an approach to map established idioms for debugging
onto the interpretation of SCXML documents, enabling doc-
ument authors to break and step through their interpretation
and to inspect the interpreter.

Author Keywords
SCXML; Harel State-Chart; Debugging; Developer Support

ACM Classification Keywords
D.2.5. Testing and Debugging: Distributed debugging

INTRODUCTION
With SCXML getting ready for recommendation status by the
W3C, the need for accompanying infrastructure such as in-
terpreters and debuggers is gaining relevance. While there is
already a selection of interpreters to choose from, only few
authoring environments and, to the best of our knowledge, no
debuggers for SCXML documents are available.

In keeping with the spirit of open standards, this paper pro-
poses a simple yet functional HTTP-based protocol to debug
SCXML documents. By aligning the protocols concepts with
the execution semantics as outlined in the SCXML draft, we
hope that interpreter developers will have minimal effort to
implement and support this approach.

We implemented the protocol as part of our interpreter and
provide a HTML-based user interface running in a browser.

RELATED WORK
“Debugging sequential programs is a well understood task
that draws on tools and and techniques developed over many
years” [4]. Usually, the program is repeatedly stopped dur-
ing execution where developers can then examine the current

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish,to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright is held by the author/owner(s).
EICS’14 Workshop, Engineering Interactive Systems with SCXML, June 17,
2014, Rome, Italy

state of the program. Then, they can either continue the ex-
ecution or restart to stop at an earlier point in the execution.
This approach is also known as cyclical debugging [5]. This
is mainly done to locate and fix code that is “responsible for
a symptom violating a known specification” [2].

A study of Eisenstadt [1] showed that 50 percent of the prob-
lems associated with debugging have their roots in inadequate
debugging tools. Hence, many vendors started to work on
integration of debugging tools into IDEs and visualization of
the underlying program construct. Hailpern [2] also mentions
efforts in automatization of debugging through program slic-
ing [3].

For SCXML there are a few tools, mostly developed as part of
the various interpreter implementations, but none will allow
to set breakpoints and to inspect the datamodel.

DEBUGGING TECHNIQUES
Without a dedicated debugger for SCXML documents an ap-
plication author has to resort to (i) insert <log> elements
as executable content in <transition>, <onentry> and
<onexit> elements, or (ii) even step through the inter-
preters implementation as the SCXML document is evalu-
ated.

The first approach amounts to println-debugging and requires
careful preparation of the log statements by the developer
to achieve a balance between traceability and intelligibility
while coping with the potentially huge amount of messages.
A major drawback of this technique is the time it takes to
identify the places where log statements will help to reveal
the problem and the fact that they are most likely deleted af-
ter the problem was resolved to improve readability of the
SCXML document, causing every debugging session to start
anew.

The second approach takes advantage of the fact that the in-
terpreter itself is likely written in a language for which mature
debugging tools already exists. These can be used to inspect
the interpreter while it is evaluating an SCXML document
but requires an in-depth understanding of an interpreter’s im-
plementation and diverts the focus from the actual SCXML
document.

When we look at established debuggers such as GDB or
the Java debugger and their various graphical frontends, the
predominant concepts to debug programs is via breakpoints
and variable inspection. An application developer sets a
breakpoint at a line of source code and control flow halts

22

upon reaching it, allowing developers to inspect the variables
in scope. Using this technique, a developer can then step
through the execution one instruction at a time or resume con-
trol flow.

Extending the concept of breakpoints, we can imagine a sim-
ilar approach when debugging SCXML documents, whereby
the role of “single instruction” as a place to halt execution and
to step towards needs to be defined.

BREAKPOINTS FOR SCXML
In our approach, an interpreter with a debugging session at-
tached will raise a series of qualified breakpoints while inter-
preting an SCXML document. A qualified breakpoint refer-
ences the current phase of execution and contains a set of ad-
ditional attributes (e.g. the relevant DOM node or a state’s id
attribute) depending on the phase. User-supplied breakpoints
are then matched against the current qualified breakpoint to
determine whether to halt interpretation.

We identified an open set of phases of execution where we
allow the interpreter to be suspended. Motivated by the “al-
gorithm for SCXML interpretation” from the SCXML draft
these are (approximately in order of execution from a stable
configuration) given in table 1.

Phase Identifier Description
event-before After popping an event from the event

queue (internal or external).
microstep-before Before performing a microstep for the

enabled transitions.
state-before-exit Before the <onexit> elements for a

state from the exit set are interpreted.
executable-before Before an element of executable con-

tent is interpreted.
executable-after After an element of executable content

was successfully interpreted.
state-after-exit After the <onexit> elements were

interpreted.
invoker-before-cancel Before cancelling the invocation of an

invoker.
invoker-after-cancel After cancelling the invocation of an

invoker.
transition-before Before a transitions executable content

is interpreted.
transition-after After a transitions executable content

was interpreted.
state-before-enter Before the <onentry> elements for

a state from the exit set are interpreted.
state-after-enter After the <onentry> elements were

interpreted.
microstep-after After a microstep was performed.
invoker-before-invoke Before actually invoking the entry

set’s invokers.
invoker-after-invoke After the entry set’s invokers were in-

voked.
stable-on When the interpreter reached a stable

configuration.
Table 1. Phases of interpretation of an SCXML document.

The identifier of a phase can be decomposed into up to three
components, (i) the subject, (ii) a time specifier (iii) and an
optional activity if it is not implied already. Depending on

the subject of the phase, there are additional attributes avail-
able in a qualified breakpoint listed in table 2. Formally, all
qualified breakpoints featuring an element attribute would not
need the other attributes as they can be be obtained via the el-
ement DOM node; including them is mere convenience for
matching user-supplied breakpoints below.

Subject Field Description
event eventName The event’s name.
microstep N/A
state stateId The state’s id attribute.

element The state’s DOM element.
executable executable

Name
The executable content’s element
name.

element The executable content’s DOM
element.

invoker invokeId The invoker’s id
invokeType The invoker’s type
element The invoker’s DOM element.

transition trans
SourceId

The id of the state containing a
transition element.

trans
TargetId

One of the transition’s target
states per id.

element The transition’s DOM element.
stable N/A

Table 2. Attributes of qualified breakpoints per phase of interpretation.

Note, that we do not provide any facilities to debug datamodel
specific source code contained in <script> elements or to
step into e.g. the cond expression of a transition. While we
do think that it would be most useful, the amount of support-
ing infrastructure for every new datamodel provided by an
SCXML interpreter would be immense and is considered out
of scope.

Also note that it would formally be sufficient to reduce the
set of phases to before-node and after-node and to
provide a single xpath expression per user-supplied break-
point. And then to halt interpretation before or after a XML
node was processed by the interpreter. We do, however, feel
that the less general phase descriptors above help developers
to identify the actual phase of interpretation where a break-
point is needed.

Breakpoint Matching
Each qualified breakpoint is matched against the set of user-
supplied breakpoints when it is raised. User-supplied break-
points resemble qualified breakpoints with all their attributes
optionally, except that the element DOM node attribute
is replaced by an xpath expression. Additionally, user-
supplied breakpoints may contain a condition attribute
which is to be evaluated on the documents datamodel to con-
clude matching.

For a user-supplied breakpoint to match, it has to be less spe-
cific or identical in all its attributes while referencing the same
phase of execution. The optional condition attribute per
breakpoint is then evaluated to determine whether execution
ought to be actually suspended. As the condition is evaluated
on the datamodel, care has to be taken to ensure that it is free

23

of side-effects. Otherwise, evaluating the condition may al-
ter the datamodel. The pseudo-code to determine a match is
given in algorithm 1.

Input : BPuser , BPqual

Output: Whether BPuser matches given BPqual

1 if BPuser.phase 6= BPqual.phase then
/* Not referencing the same phase */

2 return false;
3 end
/* Iterate every field for the phase */

4 for field ∈ FieldsFor(BPqual.phase) do
5 if BPuser.[field] = undef then

/* No value for field specified */
6 continue;
7 end
8 if field = ”eventName” then

/* Event names are matched per SCXML draft
as descriptors */

9 if not nameMatch
10 (BPqual.eventName,
11 BPuser.eventName) then
12 return false;
13 end
14 continue;
15 end
16 if field = ”xpath” then

/* Field contains an XPath expression */
17 if not NodeSet(BPuser.[field])
18 .contains(BPqual.element)) then
19 return false;
20 end
21 continue;
22 end

/* Rest is matched literally */
23 if BPuser.[field] 6= BPqual.[field] then
24 return false;
25 end
26 end

/* Check the condition on the datamodel */
27 if BPuser.condition 6= undef then
28 if not evalAsBool(BPuser.condition) then
29 return false;
30 end
31 end
32 return true;

Algorithm 1: Matching Breakpoints

The fields for a breakpoint pertaining to a phase depending
on its subject are given in table 2 with element replaced by
xpath.

Stepping Through
By introducing the concept of qualified breakpoints, we can
assign meaning to “stepping through” a SCXML document.
Whenever interpretation is halted, the debugger will simply
allow the developer to step to the next qualified breakpoint,
halting interpretation at each.

DEBUGGING PROTOCOL
In order to support the debugger, we devised a pragmatic
HTTP-based protocol (table 3) passed between our SCXML
runtime environment and a debugging client (see Fig. 1).
We implemented the client protocol in a stand-alone EC-
MAScript / HTML document which can simply be started

SCXML Runtime Environment

SCXML
Interpreter

SCXML
Interpreter

SCXML
Interpreter

Debugger
Client

D
eb

ug
ge

r H
TT

P
Se

rv
er

SCXML
Interpreter

Attached

Prepared

Debugger
Client

Debugger
Client

Figure 1. Debugging Architecture.

from the filesystem. The client follows an object-oriented ap-
proach with ECMAScript: basic functionality pertaining to
the graphical presentation is in a base class with the HTTP
protocol implemented in a derived class. This will allow other
developers to reuse the graphical presentation while adapting
communications to the specifics of their interpreters.

Path Function
No session required
/connect Request a new session identifier
/sessions List of running SCXML interpreters
Only when in session
/poll Request is long-polling for server push
/disconnect Disband session and detach from interpreter, quit

interpreter if prepared for this session
/prepare Prepare a new SCXML interpreter with a given

document
/attach Attach to a running SCXML interpreter as returned

by /sessions
/start Only available with a debugger-prepared docu-

ment, starts the interpreter
/stop Only available with a debugger-prepared docu-

ment, stops the interpreter
/pause Pauses the interpreter
/resume Resumes execution of an interpreter
/step Causes every qualified breakpoint to match, thus

allows stepping
/bp/add Add a user-supplied breakpoint
/bp/remove Remove a user-supplied breakpoint
/bp/enable Enable a user-supplied breakpoint
/bp/disable Disable a user-supplied breakpoint
/bp/enable/all Enable breakpoint evaluation
/bp/disable/all Disable breakpoint evaluation
/bp/skipto Continue execution until given breakpoint is

reached
/eval Evaluate an expression on the datamodel

Table 3. HTTP Request path and their function.

All communication via HTTP takes place as POST re-
quest and respective replies with a content-type of
application/json. If XML is to be transmitted as part
of a request or reply, it is simply encoded as a JSON at-
tribute. Every server reply contains a JSON attribute status
which is either set to success or failure in which case
reason contains a string detailing the cause of the failure.

There are two modes of operation for the debugger, it is either
(i) attached to an already running interpreter, or (ii) prepares
its own interpreter by passing an SCXML document. If at-
tached to an already running interpreter, we do not allow to

24

stop execution altogether, only to pause execution and only
as long as the debugger is connected.

A debugging session starts with the client connecting to
the HTTP server and requesting a new session identifier at
/connect. This identifier is subsequently used as an at-
tribute in every request to identify the debugging session. To
associate an interpreter with the session, the client either pre-
pares a new interpreter by requesting /prepare with an
XML document or a URL or attaches itself to a running ses-
sion as returned by /sessions.

To support server push via HTTP, a connected client main-
tains a long-polling request to the server path /poll with its
session identifier in the request. Whenever the server needs
to asynchronously return information to the client (e.g. the
match of a breakpoint or a log message), it is send as a re-
ply and the client requests /poll anew. As a reply might
be related to various events that occurred asynchronously, the
replyType attribute identifies the type of the reply.

When a session is established, the server accepts user-
supplied breakpoints encoded as a JSON structure with their
respective attributes as discussed above. We do not reference
breakpoints by an identifier but by value. This implies that
there cannot be two identical breakpoints, which makes sense
as they would match the exact same qualified breakpoints,
causing the interpreter to halt twice.

Example Session
For the example, we will use test152.scxml from the
SCXML Implementation Report Plan, XSLT transformed for
the ECMAScript datamodel. This selection is arbitrary, ex-
cept that the document features executable content and is
rather compact.

The server in the following communication is a runtime en-
vironment for SCXML interpreters. Our implementation al-
lows for the concurrent interpretation of an arbitrary num-
ber of SCXML documents and the runtime environment will
coordinate new instances or attach client debuggers to run-
ning instances. The client is an HTML document running in
a browser, issuing HTTP request via the XMLHTTPRequest
object.

Client→ Server /connect

Client← Server /connect
session: "d8782c2d",
status: "success"

We started by requesting a new session identifier. This will
cause the server to instantiate an empty debugging session
without an SCXML interpreter associated.

Client→ Server /sessions

Client← Server /sessions
sessions: [],

status: "success"

Here we requested a list of running interpreters from the
server to potentially attach this session to. The list came back

empty as no interpreters are running in this example. All sub-
sequent client requests will contain the session attribute
and all server replies a status attribute. We drop both in
the following communication for brevity.

Client→ Server /poll

We issued the long-polling HTTP request for server push.
It will only return when the server needs to notify us asyn-
chronously.

Client→ Server /bp/add
phase: "state-after-enter",

stateId: "s2",

Client← Server /bp/add

The client added a breakpoint, asking the interpreter to halt
interpretation after entering state s2.

Client→ Server /prepare
url: "http://localhost/test152.scxml",

xml: -- Escaped XML document --

Client← Server /prepare

Client→ Server /step

Client← Server /step

We prepared an interpreter by uploading an SCXML docu-
ment containing test152.scxml and started interpreta-
tion by stepping to the first qualified breakpoint.

Client← Server /poll
qualified:

phase: "state-before-enter"

stateId: "s0"

xpath: "//state[@id="s0"]"

replyType: "breakpoint"

Client→ Server /poll

The request to /poll returned with the first qualified break-
point triggered just before entering state s0. This break-
point is not caused by a user-supplied breakpoint, so no
breakpoint attribute is set. The xpath attribute allows us
to update eventual visualizations in the client. Furthermore,
no active nor basic states are returned as the interpreters
configuration is still empty.

Client→ Server /resume

Client← Server /resume

As we started the interpretation with a single step to the next
qualified breakpoint, the interpreter is still halted at the very
first opportunity, just before entering state s0. Here, we ask
the interpreter to resume normal interpretation as opposed to
step to the next qualified breakpoint.

25

Client← Server /poll
activeStates: ["s2"]

basicStates: ["s2"]

breakpoint:

phase: "state-after-enter"

stateId: "s2"

qualified:

phase: "state-after-enter"

stateId: "s2"

xpath: "//state[@id="s2"]"

Client→ Server /poll

As the interpreter was resumed, it continued to raise quali-
fied breakpoints. It was halted again after entering state s2
as it matched the user-supplied breakpoint which is also ref-
erenced in the reply. Furthermore, we can see that s2 is both
a basic and an active state of the interpreters configuration.

Client→ Server /eval
expression: "_event"

Client← Server /eval
eval: -- _event as a JSON structure --

Here, we ask the interpreter to interpret the expression
"_event" on the current datamodel, causing a reply con-
taining a JSON structure of the result of the evaluation. Using
this approach, we can inspect all variables in the interpreters
datamodel – even invoke functions.

Client→ Server /disconnect

Client← Server /disconnect

We finally disconnect the client. As the associated interpreter
in the runtime environment was prepared from and for this
session, this will cause the interpreter to exit. If the debugging
session were attached to an interpreter already running (via a
request to /attach), this would not stop the intepreter, just
detach the session.

DEBUGGER INTERFACE
We implemented a client for the protocol detailed above in
HTML/ECMAScript and the server component as part of our
SCXML interpreter. By choosing HTML for the client, we
traded native widget-sets and operating system integration for
platform independence – it will even run on mobile devices.

A screenshot of the debugger interface is given in Fig 2. The
debugger’s main window is a draggable <div> with its po-
sition fixed to the browser’s viewport. This allows a devel-
oper to scroll through the SCXML document displayed in the
main browser window while the debugger remains in place
(see Fig 3).

The debugger itself is composed of a title bar with a drop-
down button containing a menu to load SCXML documents,
attach the debugger to a running instance and save break-
points. Next to the drop-down are the well-known debugging
controls of start/stop, pause/resume and stepping. Beneath
the title bar is a input field to specify the interpreters base
URL and a button to establish the connection to the inter-
preter.

Figure 2. Debugger’s HTML interface.

The bulk of the debugger interface displays three collapsible
panels for (i) managing breakpoints, (ii) inspecting the data-
model, (iii) and messages returned by the server or raised by
the client itself.

At the bottom of the window are some status indicators
and the name of the document the associated interpreter has
loaded if any.

The breakpoint panel’s header contains buttons to disable
breakpoints altogether, add a new breakpoint and remove all
breakpoints. When execution is halted, a subtitle is displayed
referencing the current phase of interpretation. In the panel’s
content area, the user-supplied breakpoints are listed with
along with buttons to (i) enable/disable, (ii) skip to, (iii) edit,
(iv) and remove the breakpoint. When the interpretation was
halted due to such a user-supplied breakpoint being matched,
it is highlighted in the list.

The datamodel panel allows developers to issue expressions
for the SCXML interpreter to evaluate on the datamodel and
displays their results. It is possible to actually alter the data-
model if the expression is not free of side-effects.

The final panel contains a text-area where various messages
from the server or client are displayed and serves primarily
for debugging the debugger and the protocol.

EVALUATION
We did not perform a formal evaluation in the form of a user
study. Yet as a preliminary evaluation, we showed the de-
bugger to two SCXML experts to explore. We did get some
reports about usability defects, mostly related to peculiarities
with the HTML interface or the placement and visual repre-
sentations of commands. The overall approach was deemed
to be intuitive as the experts were familiar with debuggers

26

Figure 3. SCXML Document is displayed beneath Debugger.

from traditional development environments. We plan to ad-
dress these issues and conduct a more in-depth evaluation in
future work.

CONCLUSION
We proposed an approach to map the established debugging
techniques of breakpoints, stepping and variable inspection
onto the interpretation of SCXML documents. By introduc-
ing the concept of qualified breakpoints we were able to as-
sign familiar semantics to these techniques.

There are several areas where the debugger could benefit from
future work. Foremost (i) the integration of an authoring en-
vironment and subsequently (ii) a more formal user-study.
With regard to the first point, we currently only display the
SCXML document being debugged in the browser’s main

window with some highlighting for the interpreter’s configu-
ration and the element related to the last qualified breakpoint.
Allowing SCXML developers to actually edit the SCXML
document, maybe in a navigable state-chart representation
would be most useful. This would entail a more pressing need
for the second point as the resulting integrated development
environment for SCXML implies a larger design-space for
the user interface to validate as part of a user-study.

ACKNOWLEDGMENTS
This work has been partially supported by the FP7 EU
large-scale integrating project SMART VORTEX (Scalable
Semantic Product Data Stream Management for Collabora-
tion and Decision Making in Engineering) co-financed by
the European Union. For more details, visit http://www.
smartvortex.eu/.

REFERENCES
1. Eisenstadt, M. My hairiest bug war stories (1997).

Communications of the ACM 40, 4 (1997), 30–37.

2. Hailpern, B., and Santhanam, P. Software debugging,
testing, and verification. IBM Systems Journal 41, 1
(2002), 4–12.

3. Horwitz, S., Reps, T., and Binkley, D. Interprocedural
slicing using dependence graphs. ACM Transactions on
Programming Languages and Systems (TOPLAS) 12, 1
(1990), 26–60.

4. LeBlanc, T. J., and Mellor-Crummey, J. M. Debugging
parallel programs with instant replay. Computers, IEEE
Transactions on 100, 4 (1987), 471–482.

5. McDowell, C. E., and Helmbold, D. P. Debugging
concurrent programs. ACM Computing Surveys 21, 4
(1989).

27

Semantics of States and Transitions in statecharts-based
markup languages: a comparative study between SWC

and SCXML

Marco Winckler, Charly Carrére, Eric Barboni

ICS-Team, Institute of Research in Informatics of Toulouse (IRIT), Univerity Paul Sabatier (UPS)

118 route de Narbonne, 31062 Toulouse Cedex, France

{winckler, carrere, barboni}@irit.fr

ABSTRACT

Statecharts has been demonstrated as a suitable solution for

specifying the navigational behavior of hypermedia

systems. However, in order to cope with the idiosyncrasies

of the Web development (such as representation of client

and server stages) we have been proposed an extension to

the original Harel’s statecharts called StateWebCharts

(SWC). In this paper we discuss the rationale for extending

statecharts notations for specific application domains such

as the Web. Moreover, we illustrate how the domain-

specific constructs provided by SWC might help to solve

problems that would require specific semantics for states

and transitions. Then, we compare the constructs proposed

by the SWC notation with Harel’s statecharts and SCXML.

We argue that it would be possible to convert SWC

specification into SCXML by losing some semantic on

transitions and states. Conversely, extensions for adding

domain-specific semantics on SCXML would benefit not

only its inner utility to specifying Web application but it

could also useful in other application domains.

Author Keywords

Statecharts, Web navigation, Web applications, SCXML,

StateWebCharts, SWC.

ACM Classification Keywords

H.5.m. Information interfaces and presentation (e.g., HCI).

INTRODUCTION

Research on navigation modelling has a long history in

hypertext and hypermedia domain and it has strongly

influenced the technology for the Web. State-based

notations such as Petri nets [7] and StateCharts

[2][4][6][7][9] have been explored to model navigation for

hypertext systems. However, such proposals are not able to

represent some aspects of Web applications such as

dynamic content generation, support to link-types (toward

external states, for instance), client and server-side

execution. However, some of them [2, 7, 12] do not make

explicit the separation between interaction and navigation

aspects in the models while this is a critical aspect for the

usability of Web application. Connallen [1] proposed an

efficient solution for modelling Web applications using

UML stereotypes. Such as an approach mainly target data-

intensive applications and even propose prototyping

environments to increase productivity. However, the

limitation is that navigation is described at a very coarse

grain (for instance navigation between classes of

documents) and it is almost impossible to represent detailed

navigation on instances of these classes or documents. The

same problem appears in Kock [5] which may reduce

creativity at design time as they impose the underlying

technology and as they do not provide efficient abstraction

views of the application under development. In order to

cope with the idiosyncrasies of Web navigation, we have

proposed in previous work [10] an extension to Harel’s

statecharts called StateWebCharts notation (SWC). Such as

a notation dedicated constructs for modelling specificities

of states and transitions in Web applications. Most elements

included in SWC notation aim at providing explicit

feedback about the interaction between users and the

system.

In this paper we discuss the importance of representing

domain-specific semantics that can be associated to states

and transitions whilst using statechart-based markup

languages such as SWC and SCXML [13]. We illustrate

how domain-specific constructs can help to solve problems

that would require specific semantics for states and

transitions for the Web. We assume that the semantics of

states and transitions of SWC might be specific to the Web

domain and not easily generalizable. However, other

application domains have their idiosyncrasies thus require

different semantics for transitions and states. Nonetheless,

we argue that by adding semantics to states and transitions

of SCXML, it would be possible to employ SCXML as a

markup language for copying with the same challenges

addressed by SWC. In the next section we present the SWC

notation and we illustrate its uses. Then we compare the

syntax of construct present in the original Harel’s

statecharts, those proposed by SWC and SCXML markup

languages.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish,to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

EICS 2014 Workshop, Engineering Interactive Systems with SCXML, June

17, 2014, Rome, Italy

Copyright is held by the author/owner(s)

28

THE STATEWEBCHART NOTATION (SWC)

SWC is rooted on Harel’s StateCharts [3] but it adds

semantics to it to address Web domain issues. SWC’ states

are abstractions of containers for objects (graphic or

executable objects). For Web applications such containers

are usually HTML pages. States in SWC are represented

according to their function in the modelling. In a similar

way, a SWC transition explicitly represents the agent

activating it. Each individual Web page is considered a

container for objects and each container is associated to a

state. Links and interactive objects causing transitions are

triggered by events. The semantic for a SWC state is:

current states and their containers are active while non-

currents are hidden. Figure 1 show all SWC elements.

Figure 1. Graphical representation of StateWebCharts.

Static states (Figure 1.a) are the most basic structures to

represent information in SWC. They refer to a container

with a static set of objects; in a static state all objects are

present in the browser. However, those objects are not

necessarily static by themselves; they could have dynamic

behaviour as we usually find, for example, in applets,

JavaScript or animated images. Static is the default type.

Transient states (Figure 1.b) describe a non-deterministic

behaviour in the state machine. Transient states are needed

when a single transition cannot determine the next state for

the state machine. Only completion or system events are

accepted as outgoing transitions of transient states.

Transient states only process instructions and they do not

have a visual representation towards users. They refer to

server-side parts of Web applications, such as PHP scripts.

Dynamic states (Figure 1.c) represent content that is

dynamically generated at runtime. They are usually the

result of a transient state processing. The associated

container of a dynamic state is empty. The semantics for

this state is that in the modelling phase designers are not

able to determine which content (transitions and objects)

will be made available at run time. However, designers can

include static objects and transitions inside dynamic states;

in such case transitions are represented, but the designer

must keep in mind that missing transitions might appear at

run time and change the navigation behaviour.

External states (Figure 1.d) represent information that is

accessible through relationships (transitions) but are not

part of the current design. For example, consider two states

A and B. While creating a transition from A to B, the

content of B is not accessible and cannot be modified. Thus,

B is considered external to the current design, which is

often the case of external sites. External states avoid

representing transitions without a target state, however all

activities (i.e. entry, do, and exit) in external states are null.

SWC’s events indicate the agent triggering them: user (e.g.

a mouse click), system (e.g. a method invocation that

affects the activity in a state) or completion (e.g. execution

of the next activity). A completion event is a fictional event

that is associated to transitions, e.g. change the system state

after a timestamp. This classification of event sources is

propagated to the representation of transitions. Transitions

whose event is triggered by a user are graphically drawn as

continuous arrows (Figure 1.k.) while transitions triggered

by system or completion events are drawn as dashed arrows

(Figure 1.l and Figure 1.m, respectively).

In order to represent behaviour such as those found in

StateCharts, SWC provides the following pseudo-states (g)

shallow history, (h) deep history, (i) end state and (j) initial

state. These pseudo-states do not have any container

associated to them. Pseudo-states and composite state in

SWC are very close of the definition given by StateCharts

(see [10] for details). Both states and transitions can have

associated actions. When associated to transitions, actions

represent what is executed by the system while traversing a

transition. When associated to state, actions represent the

activity performed by the state. All SWC constructs are

stored in a XML format as illustrated at the Figure 2.

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with SWCEditor -->

<swc>

<CompositeState id="root" label="root" file="null"

initial="S1" concurrent="false">

<BasicState id="S1" label="main intro" type="BasicState"

file="spider_intro.html" >

</BasicState>

<BasicState id="S2" label="schedule" type="BasicState"

file="spider_schedule.html">

</BasicState>

...

</CompositeState>

<Transition id="t1" type="user" label="" source="S1"

target="S2" trigger="mouseClick" guard="true" action="">

</Transition>

...

</swc>

Figure 2. XML file describing a SWC model.

29

SWC IN PRACTICE

SWC models can be built using the tool SWCEditor [11]

which supports the creation, edition, visualisation,

simulation and analysis of SWC models. Hereafter we

illustrate how the some elements of the SWC notation have

been operationalized using the SWCEditor to solve

problems associated to navigation modelling of Web

applications.

Separation between client/server states

One of the main features of SWC is the possibility to

associate specific semantics for states and transitions in the

navigation diagrams. Figure 3 illustrates these semantics by

a simple SWC statemachine diagram which models the

navigation behaviour for client/dynamic/transient states and

user/system driven transitions.

Figure 3. Navigation modelling client/dynamic/transient states

and user/system transitions.

As we shall see at Figure 3, states are depicted accordingly

to the semantic given to states. For example, the state “input

form” is a Web page that contains a web form whilst the

page “results” is automatically generated at the client-side

(i.e. the browser) as a response to an execution of a state

that can only be processed on the server side (i.e. “search

database”). User driven transitions, depicted with

continuous lines, are interpreted as users’ clicks whilst

transitions automated by the system (ex. “t2”) are depicted

as dashed lines. Such as inner semantic for states and

transitions can properly mapped to the proper constructs

used to build the Web sites.

Setting boundaries between local and external models

During early evaluation phases of development designers

have to check if abstract modelling will behave as expected.

Simulations of models can be useful for that purpose.

Thanks to the special constructs of SWC it is possible to

associate navigation model with advanced Web prototypes.

Figure 4 presents how SWCEditor allows simulation and

co-execution of SWC models. First of all, let us to focus on

the left part of the figure 4. There are two windows: the

simulator window (at top-left) and the visualization window

(at bottom-left). The window simulator is composed of two

panels showing: the set of active state (grey panel at left)

and the set of enabled transitions at a time (white panel at

right). The visualization window is the main graphic editor

of SWC models (the SWCEditor module).

When an enabled transition is selected the system fires it

immediately causing the changing of the system, which

displays the next stable configuration. The current

statemachine configuration is shown in red. If a container is

associated to a state, it is possible to concurrently display

the corresponding container (typically a Web page) in a

browser during the simulation. The concurrent simulation

of model and implementation is suitable during the

prototyping activity. Thus, designers can follow the

changes in the abstract specification at the SWCEditor as

well as its concrete implementation at the Web browser.

Figure 4 shows in a browser window (at right part) the

corresponding Web page for the current state in that

simulation. Notice that external states are used to represent

external links attached to the current web site design.

Figure 4. Co-execution of navigation models and Web prototypes.

Automated usability inspection of SWC models

One of the advantages of the semantic added to constructs

is to support the reason about models in a certain way. In

previous work [14] we have investigated how to use SWC

models to support guidelines verification in early phases of

development. The basic idea was to map concepts present

in ergonomic guidelines (ex. “page”) to SWC constructs as

show in Figure 5. After that, we have implemented

automated parsers for guidelines such as “Each page must

have a link to it” that inspect SWC models as follows

“Each state must have a transition pointing to it”. Those

tools thus exploit the semantic of models for automatically

inspecting models in

Figure 5. Mapping SWC constructs and Ontological concepts.

COMPARING NOTATIONS

In order to assess the expressiveness power of SWC, we

compare in Table 1 its constructs with those defined by the

original Harel’s statecharts and duly supported by SCXML.

30

Table 1. Comparing constructs in Harel’s statecharts, SCXML and SWC.

Harel’s SCXML SWC

Statemachine

The language start by an <scxml> tag, example:
<scxml>
 <state> … </state>
</scxml>

The language start by an <swc> tag, ex :
<swc>
 <state type="BasicState"> … </state>
</swc>

States
Basic state reference, example:
<state> … </state>

<BasicState> … </BasicState>
Possible types: Basic/Static/TransientState/External

Composite State

Composition defined by inner hierarchy, example:
<state id="S" initial="s1" >
 <state id="s1"> </state>
</state>
--
AND states:
Classic state hierarchy, ex :
<state id="S" initial="s1" >
 <state id="s1"> </state>
</state>

OR states: The <parallel> element encapsulates a set of child states which are simultaneously, ex :
<parallel id="Test5P">
 <state id="Test5PSub1" initial="Test5PSub1Final"> <final id="Test5PSub1Final"/>
 </state>
 <state id="Test5PSub2" initial="Test5PSub2Final"> <final id="Test5PSub2Final"/>
 </state>
 <onexit>
 <log expr="'all parallel states done'"/>
 </onexit>
</parallel>

Dedicate state type, ex :
<CompositeState id="root" label="root" file="null"
initial="S1" concurrent="false">
</CompositeState>

AND states:
<CompositeState id="root" label="root" file="null"
initial="S1" concurrent="false" />

--
OR states:
<CompositeState id="root" label="root" file="null"
initial="S1" concurrent="true"/>

History

Determined by a pseudo-state, ex :
<history type="deep" id="history-actions">
</history>

Determined by a pseudo-state, ex :
<CompositeState id=”root” …>
 <DeepHistory id=”S1” />
 <ShallowHistory id=”S2” />
</CompositeState>

Final states
Determined by a pseudo-element, ex :
<final id="Test5PSub1Final"/>

Determined by a pseudo-element, ex :
<EndState id=”S1” />

Variables

<datamodel> is a wrapper element which encapsulates any number of <data> elements, ex :
 <datamodel>
 <data id="door_closed" expr="true"/>
 </datamodel>

<script> time.setHours(_event.data.currentHour + (_event.isAm ? 0 : 12) - 1); </script>

The name and value are in the parameter
declaration, ex :
<parameters>
 <parameter name="param1" value="0" />
</parameters>

Conditions

The conditions are defined using multiple tags, ex :
<if cond="true">
 <foreach array="cart.books" item="book">
 <log expr="'Cart contains book with ISBN ' + book.isbn"/>
 </foreach>
 <elseif cond="false"/>
 <log expr="You can't use it"/>
 </else>
 <log expr="Error boolean"/>
</if>

Condition in transition definition, ex :
<Transition id="t1" type="user" label="" source="S1"
target="S2" trigger="mouseClick" guard="true"
action="" />

Action

<state id="s1" initial="s11">
 <onexit> <log expr="'leaving s1'"/> </onexit>
 <onentry> <log expr="'entering S'"/> <onentry>
</state>

Action defined in the Transition definition, ex :
<Transition id="t1" type="user" label=""
source="S1" target="S2" trigger="mouseClick"
guard="true" action="methodCall()" />

Transition

<transition event="ping" target="takeOrder"/> <Transition id="t2" type="user" label="" source="S1"
target="S3" trigger="mouseClick" guard="true"
action=""> </Transition>

External
communication

<invoke id="timer" type="x-clock" src="clock.pl">
 <finalize>
 <script> time.setHours(_event.data.currentHour + (_event.isAm ? 0 : 12) - 1); </script>
 </finalize>
 </invoke>

<send target="csta://csta-server.example.com/" type="x-csta">
 <content>
 <csta:MakeCall>
 <csta:callingDevice>22343</callingDevice>
 <csta:calledDirectoryNumber>18005551212</csta:calledDirectoryNumber>
 </csta:MakeCall>
 </content>
</send>

31

As we shall see in Table 1, SWC and SCXML cover most

of the original elements proposed by Harel’s statecharts.

Nonetheless, a few elements differ with respect to the inner

Document Type Definition (DTD) they implement. Indeed,

whilst SWC features a specific tag, SCXML implicitly

represent for composite states by adding sub-states inside

the tags. In addition, actions in SCXLM are represented by

dedicated tags whilst SWC embedded them as expressions

associated to attributes elements in the tag transition. Some

tags have different names for addressing the same element,

ex. final and endstate for indicating end pseudostates. Most

of these differences are syntactic and can be easily

overcome by a few transformation rules ensuring the

compatibility between notations.

However, SWC does not take into account complex

external communication mechanisms. Further investigate

would be required to determine in which extension

communication mechanisms could correspond to dynamic

states in SWC. In all cases, all these difference worth to be

carefully discussed, and would require extension in both

notations if compatibility should be assured.

Lastly but not less important, a significant difference

between SWC and SXCML is that the latter one provides a

generic representation of states and transitions without any

domain-specific semantics, whilst the former clearly

features a semantics for navigation of Web application.

Indeed, SWC offers four alternative types which specific

semantics for basic states, whilst SCXML only provides

one type of state. This is observable by the attribute type

that can be associated to states and transitions. Moreover,

SWC also provides another attribute to states that allows

the mapping to contents, namely file.

CONCLUSION

SWC and SCXML are both based on Harel’s statecharts

and therefore share many similarities. In some extensions,

models built in one notation could be translated to another,

however, the compatibility is not 100% accurate and we

would lose semantic and functionality in this operation.

Further studies are required to determine the compatibility

level and the side-effect implications of converting models.

But still, we estimate that some level of compatibility

ensured by model-transformation is possible.

However, if we consider the Web as a suitable application

domain for SCXML we might argue that this notation lacks

of some attributes to express the rich semantic of

navigation. This lack of semantics of states and transitions

would prevent the reasoning about the application and the

development of dedicated tools as illustrated by the

research around SWC. Moreover, we assume that this lack

of semantics might not be specific to Web navigation

models and other researchers would be interested in

proposing other elements.

The proliferation of DLS might not be a definite solution

for similar problems in different application domains. For

that purpose, as standard language such as SCXML would

be ideal as a lingua franca between statechart-based DSL

like SWC. We argue that the level of semantic expected for

state and transitions in SCXML could be easily solved by a

couple of attributes that could be added to markup

language. If so, we could pursue the research about

navigation modeling using SCXML as a replacement to

SWC and still achieve similar results as those previous

illustrated in this paper.

REFERENCES

1.Connallen, J. Building Web Applications with UML.

Addison-Wesley, 1999.

2.Dimuro, G. P.; Costa, A. C. R. Towards an automata-

based navigation model for the specification of Web sites.

In: 5th Workshop on Formal Methods, Gramado, 2002.

Electronic Notes in Theoretical Computer Science.

3.Harel, D. StateCharts: a visual formalism for computer

system. Science of Computer Programming, 8, N. 3:231-

271 p., 1987.

4.Horrocks, I. Constructing the User Interface with

Statecharts. Addison-Wesley, 1999.

5.Koch, N.; Kraus, A. The expressive Power of UML-based

Web Engineering. In 2nd Int. Workshop on Web-oriented

Software Technology (IWWOST02). June 2002.

6.Leung, K., Hui, L., Yiu, S., Tang, R. Modelling Web

Navigation by StateCharts. In proc. 24th Inter. C.S.A.,

2000, Electronic Edition (IEEE Computer Society).
7. Oliveira, M.C.F. de; Turine, M. A. S.; Masiero, P.C. A

Statechart-Based Model for Modeling Hypermedia
Applications. ACM TOIS. April 2001.

8. Stotts, P. D.; Furuta, R. Petri-net-based hypertext:
document structure with browsing semantics. ACM
Trans. on Inf. Syst. 7, 1 (Jan. 1989), Pages 3 - 29.

9.Turine, M. A. S.; Oliveira, M. C. F.; Masieiro, P. C. A

navigation-oriented hypertext model based on statecharts.

In Proc. 8th ACM Hypertext. 1997, Southampton, UK.

10.Winckler, M.; Palanque, P. StateWebCharts: a Formal

Description Technique Dedicated to Navigation

Modelling of Web Applications. DSVIS'2003, Portugal,

June 2003.

11.Winckler, M.; Barboni, E.; Farenc, C.; Palanque, P.

SWCEditor: a Model-Based Tool for Interactive

Modelling of Web Navigation. International Conference

on Computer-Aided Design of User Interface -

CADUI'2004, Funchal, Portugal, 13-16 January 2004.

12.Zheng, Y.; Pong, M. C. 1992. Using statecharts to model

hypertext. In Proc.of the ACM Conference ECHT'92,

Milan, Italy. ACM Press, New York, NY, 242-250.

13.State Chart XML (SCXML): State Machine Notation for

Control Abstraction. W3C Candidate Recommendation

13 March 2014. At: http://www.w3.org/TR/scxml/

14.Xiong, J., Farenc, C., Winckler, M. Towards an

Ontology-based Approach for Dealing with Web

Guidelines. In Proc. Int. Workshop on Web Usability and

Accessibility. Auckland, New Zealand, September 1-4,

2008. Springer LNCS 5176, pages 132-141.

32

From Harel To Kripke: A Provable Datamodel for SCXML
Stefan Radomski

TU Darmstadt
Telecooperation Group

radomski@tk.informatik.tu-
darmstadt.de

Tim Neubacher
TU Darmstadt

neubacher@cs.tu-darmstadt.de

Dirk Schnelle-Walka
TU Darmstadt

Telecooperation Group
dirk@tk.informatik.tu-

darmstadt.de

ABSTRACT
When writing critical applications, developers need a way to
formally prove that the resulting system complies to a set of
constraints and exposes a specified behavior. With SCXML
being a markup language for Harel state-charts, there is an un-
tapped possibility to reduce the expressiveness of its embed-
ded datamodel to enable model-checking techniques. In this
paper we introduce a Promela datamodel for SCXML docu-
ments, enabling to transform these documents onto input files
for the SPIN model-checker. By retaining most of the seman-
tics, developers can prove various properties of systems ex-
pressed via SCXML documents employing this datamodel.

Author Keywords
SCXML; Harel State-Chart; Formal Verification; Languages

ACM Classification Keywords
D.2.4. Software/Program Verification: Model checking

INTRODUCTION
The use of model-checking tools is most pronounced with
controller software for embedded systems: A formal proof
that a controller for an elevator will always allow the system
to reach a state where the passenger cabin is on the ground
floor with the doors open would guarantee this very essential
property of elevators. Enabling model-checking approaches
for SCXML [1] documents would, consequentially, allow us
to formalize and guarantee similar properties of the systems
described.

One popular implementation for model-checking is the SPIN
model checker: A system described in the PRocess MEta
LAngauge (Promela) is taken as input and SPIN allows to
analyze this program with respect to different questions, e.g.:

1. Is there an execution sequence that invalidates an asser-
tion?

2. Can the system reach an invalid end-state?

3. Is the system always making progress?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish,to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright is held by the author/owner(s).
EICS’14 Workshop, Engineering Interactive Systems with SCXML, June 17,
2014, Rome, Italy

4. Does a claim given in Linear Temporal Logic (LTL) hold?

Especially the LTL claims enable very elaborate techniques
to prove various properties of a system. There are several
operators to create simple and compound claims dealing with
properties in linear temporal logic.

Always ([]c1): A given claim will always be true.

Eventually (<> c1): Some claim will be true in the future,
with the future starting now.

Not (!c1): Negates a claim.

Next (Xc1): In the next state a given claim will be the case.

Strong Until (c1 U c2): A claim is replaced by another
claim.

Weak Until (c1 W c2): When a claim holds, another one will
be the case later.

And (c1 && c2), Or (c1 ‖ c2), Implies (c1 → c2), Equiv-
alence (c1 ↔ c2): Additional boolean operators for logical
composition.

Claims can be simple atomic properties, expressions of inte-
ger arithmetic, or again claims. By compounding these with
the operators above, complex claims about the temporal re-
lationship between properties of a system can be established
and proven.

In this paper we will show that an SCXML document with a
suitable datamodel can be transformed onto a Promela pro-
gram, enabling developers to utilize all of SPIN’s model-
checking techniques.

RELATED WORK
After the introduction of statecharts by David Harel in 1987
[6] as a visual formalism for complex systems, statecharts
have gained widespread usage, e.g. through STATEMATE
[7] or as part of the Unified Modeling Language (UML) and
SCXML.

In this section some of the existing approaches to enable
model-checking tools for statecharts, mostly for the opera-
tional semantics of STATEMATE and UML, are briefly de-
scribed. For a more detailed discussion of these approaches
and a few others, we refer to the paper of Bhaduri and Ramesh
[2].

We have distinguished the approaches into two groups, de-
pending on the model-checking tool they aim for. The two

33

most addressed model-checking tools are PROMELA/SPIN,
already described above, and the SMV system [11].

The SMV system is a model-checking tool for checking finite
state machines (FSMs) against specifications in the tempo-
ral logic CTL. The tool uses BDDs[3] for the representation
of state sets and transitions relations and a symbolic model-
checking technique for verification.

State-Charts to SMV
One of the first approaches for translating state-charts into
SMV code can be found in Chan et al.[4]. The authors are us-
ing the Requirements State Machine Language (RSML) [10],
a variation of Harel state-charts, as basis for the translation to
SMV code. While this translation scheme is working for de-
terministic state-charts, the translations do not preserve the
semantics of non-deterministic ones. Furthermore, RSML
has no priority scheme for resolving certain conflicting transi-
tions, history connectors, synchronizations through activities
and optional trigger events.

Another approach can be found in [5]. The authors are trans-
lating STATEMATE state-charts to SVM using the temporal
language ETL. The approach attempts to reflect the hierarchi-
cal structure of state-charts as close as possible in SVM in or-
der to obtain a fully abstract or modular translation. As there
is no subroutine style hierarchical composition of modules in
SVM, only AND-hierarchy of state-charts can be modeled by
this translation. Furthermore, with the modular translation
interlevel-transitions and the PROMELA priority scheme for
conflicting transitions can not be handled.

State-Charts to PROMELA/SPIN
In [13] the authors are using extended hierarchical automata
(EHA[12]) as an intermediate format for their translation to
the PROMELA language. The translation is based on the op-
erational semantics of STATEMATE and the semantics of an
EHA is given in terms of a Kripke structure. In the paper two
translations frameworks are presented resulting in sequential
or parallel PROMELA code. For different reasons, the au-
thors have restricted themselves to a subset of state-charts.
Data transformations, history and timing issues are not con-
sidered. Additionally the transition labels are restricted as
follows:

1. Only boolean combinations of predicates in(st) are al-
lowed in expression Cond

2. The only effect of taking a transition is the generation of
events.

Another very similar approach using EHAs as an intermedi-
ate format for the translation can be found in the paper from
Latella et al.[8]. This translation is based on the operational
semantics of UML [9] instead of PROMELA’s and therefor
slightly modified. Like the previous approach, the considered
subset of state-charts does not include history, activity states
or actions. Furthermore, time and change events, object cre-
ation and destruction events and deferred events and branch
transitions are not considered. As data and variables are not
considered, actions can only generate events.

APPROACH
Our approach to transform SCXML documents onto Promela
programs is divided in two steps:

1. Flatten the SCXML document into an equivalent docu-
ment without any parallel, nested or history states. This,
essentially, transforms the state-chart into a state-machine
as only a single state can only ever be active.

2. Transform the state-machine onto a Promela program
where we can use the model-checking techniques of SPIN.

The first step is completely agnostic of the datamodel and just
syntactically transforms the SCXML document. We do loose
some expressiveness but can account for most by extending
the interpreter slightly, this is discussed in detail later. In
fact, all tests from the SCXML IRP suite for the ECMAScript
datamodel still pass after being transformed and interpreted
with slight modification of the interpreter (with the exception
of a few unrelated tests already failing with the original doc-
ument).

In the second step, SCXML documents employing the
promela datamodel can be transformed onto Promela pro-
grams for the SPIN model-checker. This datamodel is rather
restrictive as the Promela language only has very limited ex-
pressiveness.

SCXML STATE-CHARTS TO STATE-MACHINES
To transform the Harel state-charts into state-machines, we
use a power set construction similar to the one employed
when creating deterministic from non-deterministic finite au-
tomatons. As there are no formal operational semantics for
SCXML, we took a pragmatic approach wherein we use the
interpreter itself to create an equivalent flattened document.
This shifts the problem of operational semantics onto the ex-
istence of a compliant interpreter as the resulting documents
will exhibit the same behavior as the SCXML interpreter we
used for the transformation.

For the following formalization, we will use definitions from
the SCXML standard for readability. The reader is encour-
aged to refer to the standard itself.

Global States
First we need to define what constitutes a global state in
SCXML. We can ignore the state of the embedded datamodel:
as long as we process the same set of statements in the same
order, the datamodel’s internal state will be the same as with
the state-chart representation. We encode an SCXML inter-
preters global state Sg at a given time t as follows:

Sa(t) := {s | s ∈ current configuration} (1)
Sv(t) := {s | s ∈ Sa(t2), t2 < t} (2)

Sh(t, i) := {history of si at time t} (3)
Sh(t) := (Sh(t, 1), .., Sh(t,H)) (4)
Sg(t) := (Sa(t), Sv(t), Sh(t)) (5)

Where Sa(t) is the set of active states at a given time, Sv(t)
is the set of states we already visited at least once before and

34

Sh(t) is the set of states to be reentered per history state in
the SCXML document.

This construction leads us to:

LEMMA 1. The machine’s configuration will only ever
contain a single active state per step. This is obvious as we
will have neither nested nor parallel states per construction.

Global Transitions
For every global state, we need to establish all optimally en-
abled sets of transitions that can occur in this configuration.
As we cannot assume anything about the state of the data-
model, we will need a construction where the first enabled
transition with a matching condition represents the correct
set of transitions from the original state-chart. To ease the
formulae we will assume that each transition has at most a
single event descriptor, without loss of generality, as we can
easily bring a transition into this form by duplicating it for
each descriptor.

We start by gathering all transitions from the active configu-
ration’s states, combine, filter, and sort them. Let g be any
global state from Sg(t):

Tg := {t | t.source ∈ Sa(g), t a transition} (6)
P(Tg) := {(z1, .., zK) | zi ∈ Tg, 1 ≤ K ≤ |Tg|} (7)

Initially, P(Tg) will contain the power set of every combi-
nation of transitions in the current configuration in document
order for a total of 2|Tg| sets. Some of these transition sets are
invalid as they could never form an optimally enabled set for
a given event name.

Looking at the selection of transitions from the SCXML stan-
dard and its execution semantics, there are several criteria to
reduce P(Tg):

Inv1 := {T ∈ P(Tg) | ∀ti, tj ∈ T, i 6= j,@e, e 6= ε : (8)
e ∈ ti.event ∧ e ∈ tj .event}

Inv2 := {T ∈ P(Tg) | ∃ti, tj ∈ T : (9)
ti.source ⊃ tj .source,
ti.event ⊆ tj .event}

Inv3 := {T ∈ P(Tg) | ∃ti, tj ∈ T : (10)
ti preempts tj}

Inv4 := {T ∈ P(Tg) | ∃ti, tj ∈ T : (11)
ti.event = ε ∧ tj .event 6= ε}

R(g) :=P(Tg) \ {Inv1 ∪ Inv2 ∪ Inv3 ∪ Inv4} (12)

Equation 8 invalidates a set if there is no event name that
would enable all of its constituting transitions as such a set
can never be enabled. The next equation (9) identifies sets
that contain two nested transitions where the inner will al-
ways be enabled whenever the outer is enabled. Such a set
cannot exist as SCXML would only trigger the deepest en-
abled transition per basic state in a configuration. Equation
(10) filters sets that contain two transitions with a non-empty
intersection of their respective exit sets. This is known as

transition preemption in the SCXML standard - we can just
drop those as we operate on the power set of all potentially en-
abled transitions. The last equation (11) drops those sets that
mix eventful and eventless transitions. They can never occur
together as they are taken in different processing steps of the
SCXML interpretation algorithm (macro- vs microstep).

At this point we have all potential optimally enabled transi-
tion sets and their subsets for the global configuration g in
R(g). We can now aggregate each individual transition set
into a new global transition for the current global state as fol-
lows: 1. The global transition’s event attribute is the longest
event descriptor from the set, 2. its cond attribute is the con-
junction of all its individual cond attributes, 3. its target
is detailed in the next section with the actual construction.

We do know that the every event matched by the longest
(most specific) event descriptor from a set will be matched
by each shorter (less specific) event descriptor as per equa-
tion 8. Therefore, event names matching the longest event
descriptor will enable all transitions from the original set.

LEMMA 2. Every global transition from R(g) is enabled
by a given event name if each of its constituting transition’s
are enabled.

LEMMA 3. Only a single global transition will ever be
taken per step. All transitions per state conflict pairwise as
they all have the active global state in its exit set and there is
only one active state per step.

As we also have the subsets of all potential optimally enabled
sets in R(g), we can construct a global transition’s cond at-
tribute by syntactically conjuncting the cond attributes and
sort them by the number of contained transitions. Which will
cause the largest set to be selected when interpreting the trans-
formed document later.

LEMMA 4. Every global transition from R(g) has its
guard evaluate to true if each of its constituting transition’s
guards are true.

We conclude by sorting the transition sets inR(g) as follows:

1. Most specific event descriptors first: A transition set en-
abled by a more specific event descriptor will contain more
transitions than those with a less specific descriptor.

2. Supersets precede subsets: For those sets enabled by the
same event descriptor, supersets need to precede subsets.
The subsets are still eligible to be chosen when a transi-
tion from the superset contains a cond attribute that will
evaluate to false at runtime.

T (g) := (T1, .., TN | Ti ∈ R(g), N = |R(g))| (13)
∀k, l(1 ≤ k < l ≤ N) :

Tk ⊃ Tl,
Tk.event ⊆ Tl.event)

This results in T (g) as the sorted set of potential optimally
enabled transition sets for the global configuration g and their

35

subsets with the essential property:

LEMMA 5. Every global transition in T (g) is optimally
enabled iff its constituting transitions are optimally enabled.

Construction
Now that we defined an interpreters global state and its re-
spective transitions, we can construct the state machine. To
illustrate the approach, we will start by assuming that the
interpreter is already in the initial stable configuration. As
mentioned earlier, we actually use a standards compliant in-
terpreter to help with the transformation by intercepting var-
ious calls: (i) Whenever the interpreter were to interpret ex-
ecutable SCXML content, (ii) whenever an external compo-
nent were to be invoked or cancelled, (iii) every entry or exit
of a state and before a transition were to be taken, (iv) as well
as all processing of <donedata> when a final state (also
from compound states) was reached.

When the interpreter is in a stable configuration g, we con-
struct the sorted set of potentially optimal enabled transitions
T (g) as explained above. For each global transition in this
set, we perform a microstep for its constituting transitions,
causing the interpreter to process the implied event by (i) ex-
iting the states from the transition’s exit sets and interpreting
their <onexit> handlers, (ii) interpreting the transition’s
executable content, (iii) processing any <datamodel> el-
ements when the data binding is late, (iv) interpreting the
transition’s entry sets <onentry> handlers and (v) invoking
any external component activated by the new configuration.

If this leads to a new global state, we will repeat the process
until all global states were visited. In essence, we perform a
depth-first search for all reachable global states. After each
microstep for a transition set from T (g) per global state, we
reset the interpreters configuration, visited states and history
to their original values to take all transitions as if we started
in the original current global state. While the interpreter pro-
cesses the micostep, we gather the various actions we inter-
cepted and associate them with the current global transition.

For the initial transition, we just introduce a new global state
with its constituting sets empty and have a single transition
from this one to the first actual global state.

When we exhaustively spanned the global state space we can
construct the flattened SCXML document: For every global
state, we introduce a new state in the flattened SCXML doc-
ument with only its global transitions from T (g) as child el-
ements. If there were no actions performed by the interpreter
and associated with a global transition, its target will just
be the global state we reached after performing its microstep
earlier. When there were any actions, its target will be
the start state of a transient state chain connected via guard-
less transitions and ending in the global destination state as
before.

Within a transient state chain, we organize all the actions we
gathered when we took the global transition’s microstep with
the original document. For the sake of construction we will
just argue to create one transient state in the chain per action
encountered during the microstep, when in fact several ac-

Global State g1

Global State g2

Transient State g1.1.1

Transient State g1.1.2

Transient State g1.2.1

1 2
3

Figure 1. Three global transitions from global states g1 to g2 with 1) no,
2) a single and 3) multiple transient states.

tions can be aggregated into one transient state (e.g. multiple
consecutive <onexit> handlers).

The actions are to be handled in the order they were observed
as follows:

1. For each <onentry> and <onexit> handler encoun-
tered, copy it into a transient state.

2. Every executable content from a transition is copied into a
new state, either into an <onentry> or <onexit> han-
dler, it does not matter.

3. For every <invoke>, add an attribute
persist="true" and copy it. We will discuss
the extensions required below.

4. For every canceling of an invoker, we add a new
<uninvoke> with the invokers id in a transient state.
Again, see below for discussion.

5. Whenever a state was entered and the data binding is set
to late, copy its eventual <datamodel> elements into
a transient state iff Sv(t − 1) did not already contain the
state. Also copy its <script> elements.

6. Whenever <donedata> was about to be send, add
a transient state with a <raise> element with the
<donedata>’s eventual content. Again, see below for
discussion.

This construction ensures (i) that the error semantics for ex-
ecutable content remains as with the original document (next
<onentry>, <onexit> or transition block is processed
when an error is encountered), (ii) data with late binding is
initialized at the correct time, (iii) all statements for the em-
bedded datamodel is executed in the same order and (iv) in-
vokers are started and stopped correctly.

Finally we copy any other global elements from the orig-
inal <scxml> element such as <script> or the global
<datamodel> and write an SCXML file.

Now, there are a few things we implied in the construction
that a standards-compliant interpreter cannot do without mod-
ifications and some language features that cannot be trans-
formed at all; they are discussed in the following subsections.

The invoke Element
It is not possible to support the <invoke> element with a
flat SCXML state-machine as the invoked element will only

36

ever be active when the invoking state is in the current config-
uration. As traversing the nested compound or parallel states
from the original state-chart will cause the interpreter to as-
sume different global configurations, each of those will trig-
ger a state transition in the flattened document, causing the
invoked component to be canceled. Having <invoke> in
every global state that contains the respective original state
still causes the invoked component to be continuously in-
voked and canceled.

As implied earlier, we extended the interpreter to support
an additional attribute persist with <invoke> elements,
causing them to remain invoked until an <uninvoke> with
the invoker’s id is encountered in a state entered.

The donedata Element
Whenever a compliant interpreter enters a final state, i.e. of a
compound state, it will raise an internal done.<stateid>
event. This is realized by raising a respective event in a
global transition’s transient state chain, but if the final state
contained a <donedata> element, its contents are to be
sent along with the internal event. The <raise> element in
SCXML does not support to specify content like the <send>
element does. We just extended our interpreter for <raise>
to be a <send> to the internal event queue.

The in() Predicate
With all states from the original SCXML state-chart doc-
ument being aggregated into global states, their names
changed, causing the In() predicate to fail. As we still en-
code all states from Sa(t) in the global state’s identifiers and
the transient states respectively, we can easily support this
predicate by having it parse the set of active states from the
current identifier.

SCXML STATE-MACHINES TO PROMELA
The sections above described a construction to transform a
large subset of SCXML documents into equivalent docu-
ments without nested, parallel or history states, regardless of
the employed datamodel. In this section we will introduce
the promela datamodel, which enables the transformation
of such a state-machine onto a Promela program as input for
the SPIN model-checker.

While the intermediate step of constructing a state-machine
as decribed above might not be strictly necessary to express
an equivalent system in Promela (cf. extended hierarchical
automatons), it helps to trivialize the transformation which is
important in the absence of formal operational semantics.

The Promela Language
In order to decide the set of language features for a promela
datamodel to support, we first need to have a brief discussion
about the Promela language itself and the workings of model-
checking with SPIN.

The Promela language itself is already rather restricted as it
will implicitly be transformed onto a Kripke structure as a
transition system with a label function K := (S, I, T, L).
Where S is a set of states, I ∈ S is the initial state, T ∈ S × S
the set of transitions and L : S− > 2P a label function to as-
sociate properties with a given state.

A system in Promela is modeled as a set of concurrent pro-
cesses, passing events via channels. In an exhaustive search,
every possible interleaving of statements of these processes
is, as an execution sequence, validated for one of the crite-
ria given in the introduction. Statements can be grouped into
an atomic block to prevent them from being interleaved by
statements from another process in an execution sequence.

The only datatypes in Promela are booleans and integer val-
ues of varying sizes, there is no notion of strings. There are
the usual constructs for control flow, such as loops and con-
ditional execution. For the analysis, labels on statements play
a prominent role, e.g. it is possible to label a statement as
progress, causing the model-checker to consider the exe-
cution sequence to make progress if it will always pass such
a statement sometime in the future.

A Promela program, per convention, starts by running the
process called init, which can spawn other concurrent pro-
cesses. To synchronize processes, channels of varying length
as simple FIFO queues are available where values can be
pushed into and popped from.

A Finite State Machine in Promela
In preparation of the construction below, we exemplified an
implementation for a state-machine modeled in Promela in
listing 1.
/* event descriptors and their prefixes */
#define e1 0
#define e11 1
#define e2 2
#define e3 3

/* global states */
#define s1 0
#define s2 1
#define s3 2

int e; /* current event */
int s; /* current state */
chan iQ = [100] of {int} /* internal queue */
chan eQ = [100] of {int} /* external queue */
bit doneEventSource1; /* stop event source */
...

proctype step() { /* state machine process */
/* initial transition’s statements */
atomic { ...

s=s1; /* set initial state */
}
goto: nextStep;

/* statements per global transition */
t1ExecContent:
atomic { ...

s=s2; /* Update current state */
iQ!e3 /* push events as part of <raise> */

}
eQ!e3 /* push events as part of <send> */
goto: nextStep;

t2ExecContent: ...
goto: done;

nextStep: /* pop an event */
if
:: empty(iQ) -> eQ ? e /* from external queue */
:: else -> iQ ? e /* from internal queue */
fi

/* event dispatching per state */
if

37

:: (s==s1 & e==e1) -> goto t1ExecContent;
:: (s==s2 & e==e2) -> goto t2ExecContent;
:: else -> goto nextStep;

fi;
/* stop event sources and return */
done: doneEventSource1 = 1; ...

}

/* an external event source */
proctype eventSource1() {

doneEventSource1 = 0;
newEvent:
if

:: doneEventSource1 -> skip;
/* push random event sequence */
:: eQ!e1; goto newEvent;
:: eQ!e11; goto newEvent;
:: eQ!e2; Q!e3; goto newEvent;

fi;
}
... /* other event sources */

init() {
run step();
run eventSource1();

}

Listing 1. A SCXML state-machine in Promela

Using this state-machine as a template, one can already see
how a given SCXML state-machine with a suitable datamodel
can be transformed into a Promela state-machine. The set of
event descriptors for the SCXML state-machine is encoded
as an equivalent class of events, a global state is similarly
represented as an integer value. The event queues are sim-
ple FIFO message channels of sufficient length (long enough
to contain all event sequence permutations). The procedure
init will start step and the external event sources (here
eventSource1), wherein we raise events for the external
queue. After the processing of statements for the initial set of
transitions from the SCXML state-machine we try to pop an
event. If the internal queue is empty, we try to (blockingly)
read an event from the external queue.

Then we dispatch the event with respect to the current state
and the event’s name by executing its global transition’s state-
ments from its transient state chain introduced earlier in an
atomic block. We continue to do so until one transition
leads to a document-final state.

The event dispatching as implied above has one fatal flaw: In
an exhaustive search every condition that is true will lead to
a new execution sequence. That is, at analysis time we will
get false reports from conditions deeper down in the list that
were also true but not meant to be taken (i.e. subsets of the
optimally enabled transition set). The solution is to use nested
if / else blocks for every condition per state.

In SCXML, there is no notion of event envelopes: An external
event sequence raised by some component can be interleaved
by events raised by other components. The processing of an
event, however, is performed exclusively, which is reflected
by the atomic blocks. Events raised for the internal queue
can be embedded in the atomic block as they cannot be in-
terleaved by other events. Whereas events send to our own
external queue, have to be enqueued outside of the atomic
block. Event delays are not modeled as every possible se-
quence of events will be created in an exhaustive search by

SPIN.

The eventSource1 will enqueue any sequences of events
as they can be delivered by external systems (e.g. a parent
SCXML document or via basichttp). It is, again, im-
portant to think about the possible sequences of events and
whether interleaving can occur. The easiest solution is to
have one concurrent process per external event source, en-
queue event sequences as they can occur and let SPIN handle
the interleaving.

Promela Datamodel
Now that we have an idea how a state-machine can be ex-
pressed in Promela, we can argue about the language features
which we can introduce via a datamodel into the SCXML run-
time while still being able to transform it. Such a datamodel
will enable developers to write SCXML documents with a
behavior that can be proven via SPIN and interpreted by an
SCXML interpreter.

We seperate the datamodel’s features into the various
SCXML language features where it is relevant and introduce
a subset of the Promela language for each. The Promela lan-
guage as such is given as a YACC grammar with a hand-
written lexer in the SPIN distribution. By isolating the var-
ious production rules and a subset of their children, we allow
an application developer to use subsets of the actual Promela
syntax.

The Promela runtime as implemented in the SPIN model-
checker is, unfortunately, unsuited to be embedded as such
as a scripting language into an SCXML interpreter: (i) The
parser is not reentrant, only allowing a single expression to
be parsed at a time, (ii) global variables are used in the parser
as well as the actual runtime, (iii) generic function names
pollute the global namespace unacceptably. All of which
are perfectly fine, for a stand-alone program but unsuited for
an SCXML interpreter when potentially invoking multiple
nested SCXML interpreters with the promela datamodel.
This necessitates our datamodel to reimplement the semantics
for the language features we will support when interpreted as
part of an SCXML document.

Furthermore, some Promela statements will cause the SPIN
model-checker to branch out into every possible execution
sequence, a feature without an equivalent counterpart for a
SCXML interpreter and something we have to consider when
providing language features in the datamodel: We only want
the Promela program to consider every possible sequence of
events, not indeterminism introduced by e.g. ambiguous con-
trol flow statements.

Data Element
The <data> element can occur as a child of <datamodel>
in SCXML states and allows to declare variables. With a late
data binding, these are only introduced when their respec-
tive parent state is entered for the first time. There is only
limited support for variable scopes in Promela, variables can
be local to a procedure, hidden with regard to the program’s
state or global. As neither of these supports the semantics of
the SCXML <data> element with a late binding, we will
only support early data bindings as global Promela variables.

38

Within a <data> element, we allow developers to write any
sequence of statements that can be reduced to Promela decla-
ration lists (decl_lst rule from the Promela grammar) with
the exception of user defined types and channel declarations.

What remains is the declaration and initial assignment of all
Promela native types as atoms and arrays with a fixed size.
These expressions will just be copied into the head of the re-
sulting Promela source file right after the declaration of states
and events.

Assign Element
Within the <assign> element, a developer can provide as-
signments that can be reduced via the Promela grammar’s
assign rule. If the <assign> element has an id attribute
its content is supposed to be an expression, if not an actual
assignment is expected.

Script Element
While it is desirable to allow any sequence of Promela state-
ments in a <script> element, only a subset can be sup-
ported. In fact, of all possible statements allowed by the
Promela grammar (stmnt rule), we only support assign-
ments and iterations for now, as most others will cause the
SPIN model-checker to potentially branch out. Remember
that all these statements will end up in the respective atomic
block of a global transition.

It is conceivable to support some other statements as well,
but at the end, they all are ultimately used to assign values
to variables and we prefer to e.g. handle control flow via the
state-machine.

Attribute cond
For the cond attribute, we will allow a subset of expressions
(expr rule) that can be evaluated as a boolean value. We do
not support operations on message queues or those that refer
to Promela’s execution process (pid) in these attributes.

Evaluate as String
There are several situation with an SCXML datamodel, where
an expression is supposed to be evaluated as a string. As there
are no strings in Promela, it is not possible to support these
in any meaningful way. At the moment, evaluating a Promela
expression as a string will return a string representation of
its integer or boolean value. Evaluating an array will yield a
JSON structure with an array.

This has severe consequences as we cannot, in any meaning-
ful way, represent an event’s data, the interpreter’s name or
session identifier, nor e.g. the location of the basichttp
I/O processor.

It is conceivable to introduce string literals and encode them
as integer values: Whenever the datamodel encounters a
string as part of an expression, it would introduce a new literal
and assign an integer value. This might improve expressive-
ness but we did not research this any further.

Foreach Element
As variable arrays and ranges are available in the Promela
syntax, there is a straight-forward semantics for the

err

err

req

req

err.
foo

err.
bar

foo bar

req.
one

one

req.
two

two

baz

baz

Figure 2. Event descriptor’s prefix tree.

<foreach> element. The array attribute is either a vari-
able reference or two arithmetic expressions separated by two
dots. The item attribute is just a variable reference.

Construction
Using the template in listing 1, we already have an idea how
we could express a state-machine in Promela. In the follow-
ing section we will detail how the remaining SCXML lan-
guage features can be transformed into a Promela program.

Event Names and Dispatching
We do not need to know the name of every possible event
that is eventually passed into the interpreter, only the set of
event descriptors. We start by building a prefix tree from all
event descriptors at the global transition’s event attribute
at transformation time (see figure 2). Here, a symbol does
not correspond to a single character, but to each sequence of
characters separated by a dot. That is, error and errFoo
are prefix free, whereas err.or and err.Foo are not. This
corresponds to the event name matching for descriptors from
the SCXML standard.

Every event that is to be represented in the Promela program
is expressed or transformed to its deepest matching node in
the prefix tree, where any remaining suffix is dropped. When
dispatching events, every global transition that is enabled by
an event encoding a given node in the prefix tree is also en-
abled by all its children.

This will cause global transitions enabled by e.g. error to
be selected in the Promela program for every event name that
start with its event descriptor, mimicking the behavior from
the SCXML standard.

As we cannot, in any meaningful way, support an event’s data,
two events with the same name in the original SCXML doc-
ument but handled differently with respect to their data will
have to be separated by an application developer when writ-
ing for the promela datamodel. It is conceivable to provide
tool support for this differentiation, but for now we will have
to assume that an event’s name is sufficient to imply the set
of statements its processing will entail.

External Event Sources
A state-machine in itself might already be required to be
proven for correctness but the more interesting and general
approach is enabled by allowing external components to pass
event sequences into the machine.

39

External components will send sequences of events to an in-
terpreter’s external queue and we can model them in Promela
as concurrent processes, enqueuing events or sequences of
events to the external queue. By having SPIN handle the in-
terleaving of the statements in the concurrent processes, we
will validate for all possible event sequences.

Now, we cannot know the external components when trans-
forming the SCXML document into a Promela program, it
might be a HTTP client passing events via the basichttp
I/O processor, so we need for an application developer to
specify them. This is done by introducing special XML com-
ments:
<!-- promela-event-source:

e1, e2, e2
e1, e3

-->

These are valid children of the <scxml> and <invoke>
elements and will cause the resulting Promela program to
contain a procedure enqueuing the event sequences separated
by newlines onto the external queue. When supplied within
the <invoke> element, their respective processes will be
started and stopped as the invoked component would.

The if / else / elseif Elements
There is an obvious but wrong approach to express con-
ditional control flow for SCXML <if> / <elseif> /
<else> blocks in Promela. As with the selection of tran-
sitions during event dispatching, every true condition in a
Promela if statement will cause the SPIN interpreter to
branch out. Therefore, we need to, again, nest <elseif> el-
ements as if statements. The Promela else statement will
only be considered if none of the other conditions are eligible.

The raise / send Elements
We already had a brief discussion about <send> and
<raise> as part of executable content in a global transi-
tion’s transient state chain. The important point is that events
raised cannot be interleaved by other events so we can en-
queue their encoded prefix-tree node within a global transi-
tions atomic block onto our internal queue, whereas events
send to ourself need to be enqueued to our external queue
after we left the atomic block.

There is one problem with this approach though, the set of
events to be send or raised eventually depends on the condi-
tional interpretation of <if> / <elseif> / <else> blocks.
To nevertheless keep the transition’s atomic block intact,
we enqueue events to be send to our external queue in a tem-
porary queue and move them into the external queue, when
we left the block.

...
/* statements per global transition */
tExecContent:
atomic {
if

:: expr1 -> { tmpQ!e3; } /* send */
:: expr2 -> { iQ!e3; } /* raise */
...

fi
...

}
/* push send events to external queue

here to allow interleaving */

for (tmpQItem in tmpQ) {
eQ!tmpQItem;

}
goto: nextStep;

The foreach Element
We choose expressiveness for the <foreach> element with
our promela datamodel to have a simple equivalent in a
Promela program. The array attribute is taken as a range
or a Promela array and assigned to the global variable intro-
duced in item for each iteration.

ANALYSIS WITH SPIN
In order to analyze a Promela program, SPIN relies upon la-
beled statements: When an execution sequence will always
eventually pass a statement preceded by a progress label,
the sequence is considered to make progress, similarly with
acceptance- and end labels. In order to introduce such labels
into the Promela program, we allow developers to write spe-
cial XML comments within executable SCXML content that
are copied verbatim into the atomic block of transitions that
caused them to be interpreted:
<!-- promela-inline:

progress: skip;
-->

The skip statement here is side-effect free and always ex-
ecutable. When a promela-inline comment is a child
of the <scxml> element, its contents are copied verbatim
into the programs body after the variable declarations. This
feature can be used to i.e. introduce LTL claims. In fact,
a developer can introduce any Promela code into a global
transition’s atomic block or the program’s body. This al-
lows to customize the Promela program considerably and it
is the responsibility of the developer to ensure that the result-
ing program still reflects the behavior of the original SCXML
document.

CONCLUSION
We described a new promela datamodel and a two step con-
struction to transform a large subset of SCXML documents
employing this datamodel into equivalent Promela programs.
This allows for a formal verification of such SCXML docu-
ments with respect to their properties along all possible event
sequences.

While the expressiveness of the datamodel is rather limited
(e.g. no strings and as such no data attached to an event) it is
very suited to be employed as a formally proven subsystem
when used in a nested, invoked SCXML interpreter from a
parent interpreter with a more expressive datamodel.

We extended the approaches described in related work with
support for <history> states, external events and an actual
implementation as part of our SCXML interpreter.

ACKNOWLEDGMENTS
This work has been partially supported by the FP7 EU
large-scale integrating project SMART VORTEX (Scalable
Semantic Product Data Stream Management for Collabora-
tion and Decision Making in Engineering) co-financed by

40

the European Union. For more details, visit http://www.
smartvortex.eu/.

REFERENCES
1. Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett,

D. C., Carter, J., McGlashan, S., Lager, T., Helbing, M.,
Hosn, R., Raman, T., Reifenrath, K., and Rosenthal, N.
State chart XML (SCXML): State machine notation for
control abstraction. W3C working draft, W3C, Mar.
2014.
http://www.w3.org/TR/2014/CR-scxml-20140313/.

2. Bhaduri, P., and Ramesh, S. Model checking of
statechart models: Survey and research directions. ArXiv
Computer Science e-prints (July 2004).

3. Bryant, R. E. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput. 35, 8 (Aug.
1986), 677–691.

4. Chan, W., Anderson, R. J., Beame, P., Burns, S.,
Modugno, F., Notkin, D., and Reese, J. D. Model
checking large software specifications. IEEE Trans.
Softw. Eng. 24, 7 (July 1998), 498–520.

5. Clarke, E. M., and Heinle, W. Modular translation of
statecharts to smv. Tech. rep., 2000.

6. Harel, D. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program. 8, 3 (June 1987),
231–274.

7. Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi,
M., Sherman, R., and Trauring, S. A. Statemate: a

working environment for the development of complex
reactive systems (1988). 1–3.

8. Latella, D., Majzik, I., and Massink, M. Automatic
verification of a behavioural subset of uml statechart
diagrams using the spin model-checker. Formal Asp.
Comput. 11, 6 (1999), 637–664.

9. Latella, D., Majzik, I., and Massink, M. Towards a
formal operational semantics of uml statechart diagrams.
In FMOODS, P. Ciancarini, A. Fantechi, R. Gorrieri,
P. Ciancarini, A. Fantechi, and R. Gorrieri, Eds., vol. 139
of IFIP Conference Proceedings, Kluwer (1999).

10. Leveson, N. G., Heimdahl, M. P. E., Hildreth, H., and
Reese, J. D. Requirements specification for
process-control systems. IEEE Trans. Software Eng. 20,
9 (1994), 684–707.

11. McMillan, K. L. Symbolic Model Checking: An
Approach to the State Explosion Problem. PhD thesis,
Pittsburgh, PA, USA, 1992. UMI Order No.
GAX92-24209.

12. Mikk, E., Lakhnech, Y., and Siegel, M. Hierarchical
automata as model for statecharts. In ASIAN, R. K.
Shyamasundar and K. Ueda, Eds., vol. 1345 of Lecture
Notes in Computer Science, Springer (1997), 181–196.

13. Mikk, E., Lakhnech, Y., Siegel, M., and Holzmann, G. J.
Implementing statecharts in promela/spin (1998).
90–101.

41

	Preface
	Format

	Organizers and Program Committee
	Acknowledgements
	REFERENCES

