

University of New Hampshire University of New Hampshire Scholars' Repository

PREP Reports & Publications

Institute for the Study of Earth, Oceans, and Space (EOS)

10-14-2015

Shellfish Tissue Monitoring in Piscataqua Region Estuaries 2014

Matthew A. Wood New Hampshire Department of Environmental Services

Follow this and additional works at: https://scholars.unh.edu/prep

Part of the Marine Biology Commons

Recommended Citation

Wood, Matthew A., "Shellfish Tissue Monitoring in Piscataqua Region Estuaries 2014" (2015). PREP Reports & Publications. 357. https://scholars.unh.edu/prep/357

This Report is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository, It has been accepted for inclusion in PREP Reports & Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Shellfish Tissue Monitoring in Piscataqua Region Estuaries 2014

A Final Report to

Piscataqua Region Estuaries Partnership University of New Hampshire Durham, New Hampshire

Submitted by

Matthew A. Wood New Hampshire Department of Environmental Services Watershed Management Bureau Concord, New Hampshire

October 14, 2015

This project was funded in part by a grant from the Piscataqua Region Estuaries Partnership, as authorized by the U.S. Environmental Protection Agency's National Estuary Program.

Table of Contents

INTRODUCTION	. 4
PROJECT GOALS AND OBJECTIVES	4
METHODS	
RESULTS	. 6
CONCLUSIONS AND RECOMMENDATIONS	. 7
REFERENCES	. 7

APPENDICES

APPENDIX A: SAMPLING SUMMARY REPORT FOR 2014

APPENDIX B: NH GULFWATCH DATA FOR 2014

Introduction

Originally conducted by the Gulf of Maine Council on the Marine Environment from 1993 to 2011, the Gulfwatch Program examined trends in the water quality of the Gulf of Maine by monitoring toxic contaminant concentrations in the tissues of shellfish. Starting in 2012 the Piscataqua Region Estuaries Partnership (PREP) continued this program in the Piscataqua Region. Each year, PREP collects blue mussels at three sites: Dover Point, NH (NHDP), Clark Cove on Seavey Island, ME (MECC), and Hampton-Seabrook Harbor (NHHS). The mussel tissue is analyzed to determine the concentrations of toxic contaminantss including heavy metals, chlorinated pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs).

Project Goals and Objectives

The goal of this project was to provide data for two PREP indicators of estuarine condition: TOX1 and TOX3. These two indicators report on "Shellfish tissue concentrations relative to FDA standards" and "Trends in shellfish tissue contaminant concentrations", respectively. Both of these indicators depend on data from the Gulfwatch Program. In particular, TOX3 requires annual data at benchmark sites to assess trends. In 2014, PREP supported the collection and analysis of tissue samples from benchmark mussel sites in Hampton-Seabrook Harbor, Portsmouth Harbor and Dover Point.

Methods

Blue mussel samples for the NH Gulfwatch Program were collected from three locations on September 30, 2014. The station visits and field data have been documented in an interim report (Appendix A).

All field sampling was conducted as outlined in Sowles et al. (1997). Collection times were set to avoid collecting during or shortly after periods when stormwater runoff and wave resuspension of bottom sediment could result in enhanced uptake and accumulation of sediment in the mussel gut. At each site, mussels were collected within a segment of the shoreline that was representative of local water quality. Using a ruler to measure length, a composite sample of 60 mussels of 50-60 mm shell length was collected from each area. The mussels were cleaned of all sediment, epibiota, and other accretions in clean seawater from the collection site, placed in clean containers, and then transported to the lab in coolers with ice. Prior to shucking, residual seawater was drained from the shells.

In the laboratory, individual mussel lengths, widths and heights (as defined by Seed, 1968) were determined to the nearest 0.1 mm using calipers. Using plastic or stainless steel wedges, mussels were shucked directly into appropriately prepared glass jars for metal and organic analysis, respectively (for details see Sowles et al., 1997). Each sample (20 mussels/sample/station) was capped, labeled and stored at -15 degrees Celsius.

The sets of samples to be analyzed for metal and organic contaminants were delivered to the Battelle Marine Sciences Laboratory in Duxbury, Massachusetts. Battelle analyzed the samples

for organic compounds and sub-contracted the analysis for metal cotaminants with ALS Environmental. Table 1 contains a summary of the trace metal (inorganic) and organic compounds measured in the shellfish tissue.

The data were quality assured by the laboratory. When appropriate to the method, method blank were conducted with each analytical test. Additional quality control analyses conducted include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS). In addition, DES conducted three quality assurance tests on the data:

- 1. Relative percent differences (RPD) were calculated between routine samples and lab duplicates. An acceptance criteria of RPD <25% was used to flag results for additional review.
- 2. Summary statistics (mean and maximum) of the concentrations for each parameter measured in 2014 were compared to the same statistics for the 1993-2013 dataset. The RPD between the mean value for 2014 and the mean value for 1993-2013 was calculated. The ratio of the maximum value for 2014 and the maximum value for 1993-2013 was calculated. Acceptance criteria include maximum value in current year < maximum value in full dataset, RPD <50%, or a ratio of the maximum values <1.5 were used to flag results for additional review.</p>
- 3. Trend plots for each parameter at each station were generated to identify any outliers or unusual trends.

For all quality assurance tests, censored results were included in the analyses. The results were assigned a value of the reporting detection level. Gulfwatch procedures for aggregating congeners, testing for normality, and calculating descriptive statistics were followed (Chase et al., 2001).

Table 1: Target analytes for tissue analysis

METAL	C1-Fluorenes	PESTICIDE	Cl3(29)
ALUMINUM	C1-Naphthalenes	2,4'-DDD	Cl4(44)
CADMIUM	C1-Phenanthrenes/Anthracenes	2,4'-DDE	Cl4(50)
CHROMIUM	C2-Chrysenes	2,4'-DDT	Cl4(52)
COPPER	C2-Dibenzothiophenes	4,4'-DDD	Cl4(53)
IRON	C2-Fluoranthenes/Pyrenes	4,4'-DDE	Cl4(66)
LEAD	C2-Fluorenes	4,4'-DDT	Cl4(77)
MERCURY	C2-Naphthalenes	a-BHC	Cl5(87)
NICKEL	C2-Phenanthrenes/Anthracenes	aldrin	Cl5(95)
SILVER	C3-Chrysenes	dieldrin	Cl5(101)
ZINC	C3-Dibenzothiophenes	endosulfan I	Cl5(105)
PHYSICAL	C3-Fluorenes	endosulfan II	Cl5(118)
LIPID CONTENT	C3-Naphthalenes	endrin	Cl5(126)
PERCENT SOLIDS	C3-Phenanthrenes/Anthracenes	g-chlordane	Cl6(128)
PAH	C4-Chrysenes	heptachlor	Cl6(138)
Acenaphthene	C4-Naphthalenes	heptachlor epoxide	Cl6(153)
Acenaphthylene	C4-Phenanthrenes/Anthracenes	Hexachlorobenzene	Cl6(169)
Anthracene	Chrysene	Lindane	Cl7(170)
Benzo(a)anthracene	Dibenz(a,h)anthracene	methoxychlor	Cl7(180)
Benzo(a)pyrene	Dibenzothiophene	Mirex	Cl7(187)

Benzo(b)fluoranthene	Fluoranthene	trans-nonachlor	Cl8(195)
Benzo(e)pyrene	Fluorene	Total DDT	C19(206)
Benzo(g,h,i)perylene	Indeno(1,2,3-cd)pyrene	PCB	Cl9(208)
Benzo(k)fluoranthene	Naphthalene	C12(5)	Cl10(209)
Biphenyl	Perylene	C12(8)	SUM PCBS
C1-Chrysenes	Phenanthrene	Cl2(15)	
C1-Dibenzothiophenes	Pyrene	Cl3(18)	
C1-Fluoranthenes/Pyrenes	TOTAL PAHS	Cl3(28)	

Results

Quality Assurance Test #1

A laboratory duplicate analyses was only performed on present solids for NHHS COMP (mussels). The only duplicate pair analyzed had a RPD value of 0.6%.

Quality Assurance Test #2

The mean and maximum values for each parameter in the 2014 dataset were compared to the same statistics for the 1993-2013 databases. If the maximum value in 2014 was greater than the maximum value form the 1993-2013 dataset, the RPD between the means was greater than 50%, or the maximum value in 2014 was more than 50% greater than the maximum value from 1993-2013 the parameter was flagged for additional review. The flagged results are listed in the table below.

2014 - Results Flagged for Additional Review

Parameter	Donomoton	19	93-2013 F	Results		2014 Res	sults	RPD
Type	Parameter	N	Mean	Max	N	Mean	Max	KPD
PCB	190;	2	0.2	0.2	2	0.6	0.6	112%
PESTICIDE	A-ENDOSULFAN	1	1.6	1.6	3	3.8	4.8	82%

Although the RPD between the mean values exceeded the data quality objective, the number of samples that have been collected for these two parameters is relatively low (<5) and many of the samples were for low concentrations below the detection limit, which inflates RPD calculations. These results were considered acceptable

Quality Assurance Test #3

The results for each parameter at each station were plotted against year starting in 1993. The 2014 results were visually compared to the 1993-2013 trends to identify outliers or unusual results. There were no issues identified during the analysis.

Quality Assurance Conclusions

The quality assurances tests did not identify any anomalious data. Therefore, all of the data from the 2014 Gulfwatch sampling in New Hampshire were considered valid.

Quality Assured Data

The laboratory results for the samples are provided in Appendix B. The data from 2014 have been incorporated into the DES Gulfwatch database.

Conclusions and Recommendations

Conclusions about the condition of the estuaries based on these data will be drawn in the next PREP Environmental Indicators Report.

References

- Chase, M., S. Jones, P. Hennigar, J Sowles, G. Harding, K. Freeman, P. Wells, C Krahforst, R. Crawford, J. Pederson, and D. Taylor. 2001. *Gulfwatch: Monitoring Spatial and Temporal Patterns of Trace Metal and Organic Contaminants in the Gulf of Maine (1991-1997) with the Blue Mussel, Mytilis edulis L.*
- Seed, R., 1968. *Factors influencing shell shape in the mussel* Mytilus edulis. J. Mar. Biol. Ass. U.K. 48: 561-584/
- Sowles, J., R. Crawford, P. Hennigar, G. Harding, S. Jones, M.E. Chase, W. Robinson, J. Pederson, K. Coombs, D. Taylor, and K. Freeman, 1997. *Gulfwatch project standard procedures: field and laboratory Gulfwatch implementation period 1993-2001*. Gulf of Maine Council on the Marine Environment, State Planning Office, Augusta, ME.

Appendix A: Sampling Summary Report for 2013

MEMORANDUM

TO: Rachel Rouillard, PREP FROM: Matthew A. Wood, DES RE: 2014 Gulfwatch Samples

DATE: October 1, 2014

The purpose of this memorandum is to document the sample collection activities for Gulfwatch 2014.

On September 30, 2014, DES managed the collection of mussel samples from three sites. These sites are summarized in the following table. Maps showing the location of each site are provided in Appendix A.

Date / Start Time	Station	Latitude (Decimal degrees)	Longitude (Decimal degrees)	Water Temperature (deg C)	Water Salinity (ppt)	Personnel
9/30/14 9:30	MECC – Clarks Cove, Kittery, ME	43.0773	-70.7241	14.8	29.5	K. Edwardson K. Moore
9/30/14 9:15	NHHS - Hampton/ Seabrook Harbor, Hampton, NH	42.8975	-70.8163	15.8	30.8	M. Wood J. McCarthy
9/30/14 10:15	NHDP – Dover Point, Dover, NH	43.1196	-70.8271	15.0	30.1	M. Wood J. McCarthy

Sample collection and processing was conducted following NH Gulfwatch SOPs (Appendix B). Samples were processed and frozen at the DES Limnology Center within 8 hours of collection.

Physical data on the mussels were transferred from hard copy datasheets to Excel spreadsheets. Data entry was checked twice for transcription errors following DES protocols. The physical data for the samples is provided in Appendix C. The field data for the samples are provided in Appendix D. The original datasheets will be kept on file at DES. It should be noted that despite the difficulties in collecting the composite sample of 50 mussels at NHHS - Hampton/Seabrook Harbor in 2013, there appeared to be a substantial rebound in the abundance of mussels in the 50-60mm size range in 2014. Additionally, an excessive amount of young green crabs (approximately 4-5 under every rock) at NHHS were observed in 2013. However, in 2014 virtually no green crabs were present at NHHS.

If you have any questions about this report, please contact me at (603) 271-8868 or Matthew.Wood@des.nh.gov

Sampling Summary Report for 2014: Appendix A

Maps of Sampling Sites

GULFWATCH STATION INFORMATION

GULFWATCH STATION INFORMATION

GULFWATCH STATION INFORMATION

Sampling Summary Report for 2014: Appendix B NH Gulfwatch SOPs

Standard Operating Procedures for Gulfwatch

Revised: 1/30/2014

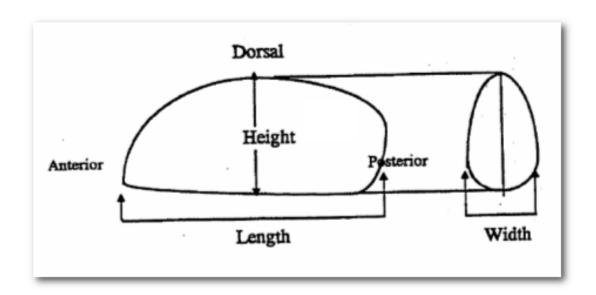
Prep Work SOP

- 1. Print and fill out field sheets
- 2. Print lab sheets (2 sets)
- 3. Print maps of stations and SOPs
- 4. Label bait bags/baskets.
- 5. Label jars (4 oz. jars for mussels, 12 oz. jars for clams or oysters). The labels will have three lines:
 - Line one should include "NH Gulfwatch" and the year.
 - Line two should include the species being collected.
 - Line three should be in **Bold** and include the station ID, "-", the replicate number followed by the letter N, "-", and the collection date in YYMMDD format. For example, NHDP replicate 1 collected on 9/02/11, the label would be "NHDP-1N-110902". For the composite sample, the replicate number should be replaced with "COMP". The destination of the sample (e.g., "Metals Lab", "Organics Archive", etc.) should follow the sample ID in parentheses. There will be one set of jars for organics analysis, which will be covered by aluminum foil, and another set of jars for metals analysis, which will be covered by plastic wrap. Place the jars back into the box in order. Use a mail merge to generate the labels as shown below.

NH Gulfwatch 2013 Mussel Tissue MECC-COMP-130910 (Metals Lab)

- 6. Weigh jars. Use a scale to weigh the jars without lids. Record the value in the "Jar Weight" column of the appropriate lab data sheet. Note there are separate data sheets for metals and organics for each replicate. Make sure the weights of the jars for organics are recorded on the lab data sheets for organics.
- 7. Put field materials into coolers and distribute to team leaders. Use checklist.
- 8. Make sure that DES soaks the knives in advance of the shucking.
- 9. Check calibration of YSI-30 meters with 10,000 µS/cm standard.
- 10. Contact Portsmouth Naval Shipyard 2 weeks in advance. Select a field crew with valid US passports. Verify that the vehicle has registration and insurance information. Arrange for the Installation Restoration Manager to meet the crew at the gate. Have the IRM's number on the field paperwork.

Mussel Field Collection SOP


- 1. Navigate to station (low intertidal zone).
- 2. Complete field data sheet including measuring the latitude and longitude of each replicate site with a GPS unit.
- 3. Measure water temperature and salinity with YSI-30 meter and record values on field data sheet.
- 4. Select the bait bags or plastic baskets which are pre-labeled with the site name.
- 5. Collect at least 50 mussels from the site (must be 50-60 mm in length). Use the gauge or ruler to measure the mussels. Place the mussels from the site in a bait bag or plastic basket.
- 6. Count out exactly 50 mussels from the bait bags or baskets onto a clean surface (spread out a plastic garbage bag if needed), verifying that each mussel is not full of mud by trying to separate the two shells.
- 7. Return any extra mussels to the intertidal zone at the site.
- 8. Collect wash water in a large basin.
- 9. Use a toothbrush and the wash water to clean the outside shell of attachments (seaweed or barnacles) for all 50 mussels collected, placing all of the mussels back into the bait bag or basket labeled as "COMP" after they are cleaned. Do not pour all of the mussels into the cleaning basin. Dunk and clean each mussel separately.
- 10. Place the bait bag or basket of clean mussels upright in the cooler on ice.
- 11. Verify that field sheet is complete and that the bait bags or baskets are correctly labeled.
- 12. Transport cooler to laboratory.

Clam/Oyster Collection SOP

- 1. Navigate to station
- 2. Complete field data sheet including measuring the latitude and longitude of each replicate site with a GPS unit.
- 3. Measure water temperature and salinity and record it on field data sheet.
- 4. Select the bait bags or plastic baskets which are pre-labeled with the site name.
- 5. Collect at least 50 shellfish from the site (must be 50-100 mm in length for clams, 50-125 mm in length for oysters). Use the gauge or ruler to measure the shellfish. Place the shellfish from the site in the correct bait bag or plastic basket.
- 6. Count out exactly 50 shellfish from the bait bag or basket onto a clean surface (spread out a plastic garbage bag if needed), verifying that each clam/oyster is not full of mud by trying to separate the two shells.
- 7. Collect wash water in a large basin.
- 8. Use a toothbrush and the wash water to clean the outside shell of the 50 clams/oysters collected, placing each clam/oyster back into the correct bait bag or basket after it is cleaned. Do not pour all of the clams/oysters into the cleaning basin. Dunk and clean each clam/oyster separately.
- 9. Place the bait bags or baskets of clean clams/oysters upright in the cooler on ice.
- 10. Verify that field sheet is complete and that the baskets are correctly labeled.
- 11. Transport cooler to laboratory.

Shellfish (Mussels, Clams or Oysters) Measurement SOP

- 1. Bring the coolers into the laboratory.
- 2. Set up measuring stations, each with a caliper, the lab data sheets for one station, the shellfish from one station.
- 3. Assign two to three people to each measuring station.
- 4. Each team will take 20 shellfish (mussels, clams or oysters) from "COMP" sample. One team will work on the metals while the other team works on the organics. Each team will place 20 shellfish (mussels, clams or oysters) from the "COMP" sample into rows of 10 on the lab bench, using the pre-made grids. There should be ~10 left over shellfish (mussels, clams or oysters) in each bait bag or baskets. Leave the extra shellfish (mussels, clams or oysters) in the bait bag or baskets and return the bait bags or baskets to the cooler.
- 5. Each team will measure the length, height and width of the shellfish (mussels, clams or oysters) in the grid and record the information on the lab data sheet. Be sure to record the measurements of the shellfish (mussels, clams or oysters) for metals and organics analysis on the correct sheets (there are separate sheets for metals and organics analysis). The shellfish (mussels, clams or oysters) are in the same order on the lab bench as on the sheet. The top left mussel is number 1. The bottom left is 10. The top right is number 11. The bottom right is 20. The height and width (and later weight) measurements are done for shellfish (mussels, clams or oysters) number 11 through 20. Record the length, height and width to the nearest tenth of a millimeter. Do not report values for cells that are filled in with gray.

Shellfish (Mussels, Clams or Oysters) Shucking SOP - Organics

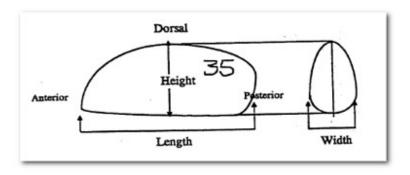
- 1. Set up shucking stations for organics analysis. Each station will have two metal knives, a beaker of DI water and the corresponding jar (from the jars for organics analysis). One of the scales should be placed on a separate table so that the full jars can be weighed easily.
- 2. Assign two people to each shucking station.
- 3. Clean all of the metal knives in solvents. Put out 100 ml of **methanol**, **toluene**, and **hexane** in 150 ml beakers under the fume hood. Swish each metal knife in the 3 solutions (in order) three times. Clean the knives in this way before each new set of shellfish (mussels, clams or oysters).
- 4. Open and scrape the meat from the shellfish (mussels, clams or oysters) into the jar using the following procedure.
 - a. Swish the knife tip in DI water.
 - b. Select one of the shellfish (mussels, clams or oysters) marked for organics analysis.
 - c. For mussels Turn the mussel upside down so that the byssus is facing up.
 - d. For mussels Tear off the byssus.
 - e. Insert the tip of knife between the shells (for mussels where the byssus was formerly) and twist the knife to open the shell slightly.
 - f. Shake the mussel, clam or oyster over the waste bin for 10-20 seconds to remove water from the shell.
 - g. Run the knife blade around the mussel, clam or oyster between the two shells to cut the adductor muscle and then separate the two shells.
 - h. Place the two shells on the table, meat side up.
 - i. Scrape the meat out of one of the shells into the jar.
 - j. Discard the empty shell into the waste bin.
 - k. Scrape the meat from the second shell into the jar.
 - 1. Discard the empty shell.
 - m. Swish the knife in DI water to clean it.
 - n. If there are more shellfish (mussels, clams or oysters) left on the grid for organics analysis, repeat steps b-m.
- 5. When all 20 shellfish (mussels, clams or oysters) have been shucked, weigh the jar and record the value on the lab data sheet, screw on the lid, and place the jar in the freezer. Then, clean the knives in the solvents under the hood using the same procedure from Step 3.

Shellfish (Mussels, Clams or Oysters) Shucking SOP – Metals

- 1. Set up shucking stations for metals analysis. Each station will have a scale, a waste bucket, DI water, one acid-washed plastic wedge and three acid-washed plastic knives.
- 2. Assign 2 people to each station.
- 3. Clean all of the knives and wedges in **nitric acid** solution. Put out 100 ml of 4 N nitric acid in a 150 ml beaker under the fume hood. Swish each knife and wedge in the solution. Clean the knives and wedges in this way before each new batch of shellfish (mussels, clams or oysters).
- 4. Open and scrape the meat from the shellfish (mussels, clams or oysters) #11 through #20 into the jar using the following procedure. Mussel, clam or oyster #11 will be the one at the top of the right hand row for metals analysis. Mussel, clam or oyster #20 will be the one at the bottom of the right hand row for metals analysis. Each person in the group does a different task. The person with the plastic wedge does steps c-i. The person with plastic knife does steps j-m. The person with the scale and lab sheets does steps a and o.
 - a. Tare the scale, then place the correct jar on the scale.
 - b. Swish the knives in DI water.
 - c. Select mussel, clam or oyster #11 marked for metals analysis.
 - d. For mussels Turn the mussel upside down so that the byssus is facing up.
 - e. For mussels Tear off the byssus.
 - f. Insert the tip of knife between the shells (*for mussels where the byssus was formerly*) and twist the knife to open the shell slightly.
 - g. Shake the mussel, clam or oyster over the waste bin for 10-20 seconds to remove some water from the shell.
 - h. Run the plastic wedge or plastic knife around the mussel, clam or oyster between the two shells to cut the adductor muscle and then separate the two shells.
 - i. Place the two shells on the table, meat side up.
 - j. Scrape the meat out of one of the shells into the jar.
 - k. Discard the empty shell into the waste bin.
 - 1. Scrape the meat from the second shell into the jar.
 - m. Discard the empty shell.
 - n. Swish the knives in DI water to clean them.
 - o. Record the total weight of the jar and the mussel, clam or oyster meat on the lab data sheet in the location for mussel #11.
 - p. Repeat steps for mussel, clam or oyster #12 through #20. When complete, leave the jar on the scale and go to Step 5.
- 5. Open and scrape the meat from mussel, clam or oyster #1 through #10 into the jar using the same procedure as for Step 4 except: (1) Weight does not need to be recorded after each mussel, clam or oyster (step o), only at the end; (2) the person who recorded the weights should use a plastic knife to help with steps j-m.

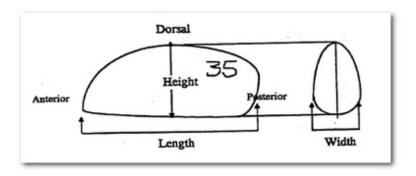
6. When all 20 shellfish (mussels, clams or oysters) from the grid have been shucked, weigh the jar (without the cap) and record the value on the lab data sheet, screw on the lid, and place the jar in the freezer. Then, clean the knives in the nitric acid solution under the hood using the same procedure from Step 3.

Cleanup SOP


- 1. Wash all knives in hot water and soap.
- 2. Wash all DI containers.
- 3. Wash all tubs.
- 4. Discard shells and unused shellfish (mussels, clams or oysters).
- 5. Collect bait bags for storage at DES.
- 6. Return bottles, rulers and other equipment to lab.
- 7. Wipe down scales and counters.

Sampling Summary Report for 2014: Appendix C

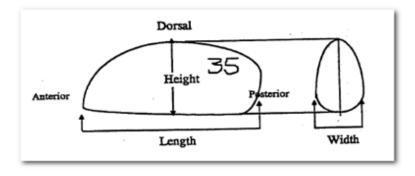
Physical Data for Mussels


ME CC 2014 (IN	DIGE	NOUS MUS	SELS)	1.00	METALS	5	*calculated field	*Weight of jar and	d mussel meat
Site	#	Length (mm)	#	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
MECC-COMP	1	55.4	11	59.5	30.0	24.3	8.08	206.81	198.73
MECC-COMP	2	55.5	12	52.5	26.0	22.8	4.30	211.11	×.
MECC-COMP	3	50.3	13	52.8	27.5	23.9	5.52	216.63	
MECC-COMP	4	56.3	14	57.7	28.5	25.5	8.27	224.90	
MECC-COMP	5	57.1	15	56.0	29.7	32.1	9.16	234.06	
MECC-COMP	6	53.9	16	55.6	28.1	24.8	5.83	239.89	
MECC-COMP	7	54.1	17	57.1	27.9	25.2	6.53	246.42	
MECC-COMP	8	59.8	18	57.2	31.9	23.9	5.29	251.71	
MECC-COMP	9	57.1	19	57.6	31.9	24.5	7.07	258.78	8
MECC-COMP	10	53.7	20	54.5	28.5	23.4	6.20	264.98	
1-	20 total						122.97	321.70	e e

ME CC 2014 (IN	ME CC 2014 (INDIGENOUS MUSSELS)				ORGANI	CS	*calculated field	i mussel meat	
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jarweight (g)
MECC-COMP	1	58.0	11	57.1					198.50
MECC-COMP	2	54.3	12	54.4					
MECC-COMP	3	59.9	13	52.8					
MECC-COMP	4	57.9	14	58.0					
MECC-COMP	5	58.2	15	51.2					
MECC-COMP	6	53.7	16	57.7					
MECC-COMP	7	58.5	17	51.1					
MECC-COMP	8	58.2	18	53.4					
MECC-COMP	9	57.6	19	52.4					
MECC-COMP	10	58.1	20	56.3					
1-	20 total					3	129.06	327.56	

NHDP 2014 (IN	DIGE N	OUSMUSS	ELS)		METALS		*calculated field *Weight of jar and mussel meat			
Site	#	Length (mm)	#	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)	
NHDP-COMP	1	57.4	11	53.1	23.6	23.1	4.27	202.88	198.61	
NHDP-COMP	2	56.1	12	58.6	28.2	26.2	5.58	208.46		
NHDP-COMP	3	54.6	13	58.3	29.8	24.4	7.18	215.64		
NHDP-COMP	4	56.4	14	56.1	26.8	20.7	3.86	219.50		
NHDP-COMP	5	54.0	15	52.9	26.1	22.9	4.01	223.51		
NHDP-COMP	6	58.9	16	57.6	26.8	24.1	6.34	229.85		
NHDP-COMP	7	57.5	17	51.5	25.1	21.2	4.00	233.85		
NHDP-COMP	8	53.3	18	54.8	26.1	22.8	4.49	238.34		
NHDP-COMP	9	53.6	19	57.7	28.6	22.3	5.65	243.99		
NHDP-COMP	10	56.4	20	58.0	29.6	21.6	4.91	248.90		
1-	20 total						96.06	294.67		

NHDP 2014 (IN	DIGEN	OUSMUSS	ELS)		ORGANI	CS	*calculated field	*Weight of jar and	i mussel meat
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHDP-COMP	1	52.2	11	53.6					198.30
NHDP-COMP	2	56.9	12	50.6					
NHDP-COMP	3	56.9	13	53.6					
NHDP-COMP	4	52.9	14	59.1					
NHDP-COMP	5	56.2	15	55.6					
NHDP-COMP	6	53.8	16	50.1					
NHDP-COMP	7	59.6	17	54.9					
NHDP-COMP	8	57.3	18	52.8					
NHDP-COMP	9	54.2	19	52.5					
NHDP-COMP	10	56.5	20	57.6					
1-	20 total				-		110.56	308.86	



NHHS 2014 (I	NDIGE	NOUS MUS	SELS)	METALS		*calculated field	*Weight of jar and	l mussel meat
Site	#	Length (mm)	#	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHHS-COMP	1	52.0	11	53.9	29.1	25.8	6.99	205.24	198.25
NHHS-COMP	2*	48.9	12	55.0	28.9	25.8	7.13	212.37	
NHH8-COMP	3	55.0	13	56.0	28.4	26.2	8.28	220.65	
NHH8-COMP	4	57.1	14	54.7	31.4	23.3	7.27	227.92	
NHHS-COMP	5	50.3	15	54.2	27.2	28.1	6.86	234.78	
NHH\$-COMP	6	52.8	16	50.8	27.7	30.4	5.80	240.58	
NHHS-COMP	7	51.0	17	52.5	27.5	25.6	6.11	246.69	
NHHS-COMP	8*	49.4	18	54.1	28.3	29.7	6.37	253.06	
NHHS-COMP	9	53.2	19*	49.2	26.4	26.1	4.70	257.76	
NHHS-COMP	10*	48.8	20*	49.5	26.8	28.2	5.38	263.14	
1-	-20 tota1						122.85	321.10	

^{*} under 50-60mm size range

NHHS 2014 (I	NDIGE	NOUS MUS	SELS)	ORGANI	CS	*calculated field *Weight of jar and mussel mea			
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jarweight (g)	
NHHS-COMP	1	50.4	11*	49.3					198.28	
NHH8-COMP	2	50.1	12	50.4						
NHHS-COMP	3	50.0	13	50.8						
NHH8-COMP	4	53.4	14*	48.4						
NHHS-COMP	5	50.5	15	50.5						
NHHS-COMP	6*	493	16*	49.5						
NHHS-COMP	7	52.4	17	50.1						
NHHS-COMP	8*	49.7	18*	49.2						
NHHS-COMP	9	51.0	19	51.5						
NHHS-COMP	10	53.0	20	54.7						
1-	20 total						148.60	346.88		

* under 50-60mm size range

Gulfwatch Report, 2014

NH Gulfwatch 20	013 Sample	e Jar Data Summary	TARE W	EIGHT	TOTAL W	EIGHT	TISSUE W	/EIGHT	LENGTH	
Site	Site #	Jar label	ORGANICS	METALS	ORGANICS	METALS	ORGANICS	METALS	MIN	MAX
Indigenous Mussels										
и т м.	MECC-	NECC COMP 140020	100.50	100.72	227.56	201.70	120.06	100.07	50.20	50.00
Harbor, Maine	COMP	MECC-COMP-140930	198.50	198.73	327.56	321.70	129.06	122.97	50.30	59.90
New Hampshire	NHHS- COMP	NHHS-COMP-140930	198.28	198.25	346.88	321.10	148.60	122.85	48.40	57.10
New Hampshire	NHDP- COMP	NHDP-COMP-140930	198.30	198.61	308.86	294.67	110.56	96.06	50.10	59.60
Summary Statistics			Mean	Mean	Mean	Mean	Mean	Mean	Mean	Min
Mussels			198.36	198.53	327.77	312.49	129.41	113.96	48.40	59.90

Appendix B: NH Gulfwatch Data for 2014

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ALUMINUM	19.20	MG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CADMIUM	0.23	MG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CHROMIUM	0.22	MG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	COPPER	0.84	MG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	48.10	MG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	LEAD	0.26	MG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	NICKEL	0.15	MG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.00	MG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	10.80	MG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	3.83	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	1.47	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	1.33	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	6.19	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	3.91	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	10.76	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	12.82	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(GHI)PERYLENE	7.52	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	11.05	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	0.66	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	4.72	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	< 1.179	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORANTHENE	11.72	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	< 2.653	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	2.80	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	5.08	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	4.79	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	3.32	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORANTHENE	6.04	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	< 2.653	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	2.95	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	6.19	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	< 0.516	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	2.80	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	< 2.653	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-NAPHTHALENE	2.80	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	5.60	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	< 0.516	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	2.21	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	3.17	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	10.76	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	0.52	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	0.37	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	18.94	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	1.33	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	4.50	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	1.62	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	8.33	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	5.01	UG/KG-dw

				-		Guijwai		
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	18.50	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	142.67	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	1.84	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	2.73	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128 ;	0.88	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	4.27	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	0.88	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	2.36	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	0.22	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	0.52	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	50;	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	0.22	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77 ;	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	0.66	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	27.04	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	5;	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	15;	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	53;	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;	0.59	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	95;	1.40	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;	2.65	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153;	6.71	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ;	0.52	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ;	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	208;	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	190 ;	0.59	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC (ALPHA LINDANE)	< 0.368	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	4.79	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	< 0.442	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	< 0.295	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	1.40	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR EPOXIDE	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEXACHLOROBENZENE	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	LINDANE (G-HCH)	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METHOXYCHLOR	< 0.368	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	< 0.221	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	0.96	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	< 0.147	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDD	0.81	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDE	2.21	UG/KG-dw

G. II VD	G N	Gi in		a .	D 75	Guijwai		
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	< 0.295	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	3.98	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TRANSNONACHLOR	0.44	UG/KG-dw
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	5.01	%
MECC	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	12.90	%
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ALUMINUM	8.92	MG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CADMIUM	0.21	MG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CHROMIUM	0.20	MG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	COPPER	0.67	MG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	22.30	MG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	LEAD	0.10	MG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	NICKEL	0.10	MG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.00	MG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	9.01	MG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	3.86	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	1.85	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	1.34	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	7.27	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	3.56	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	11.65	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	12.09	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(GHI)PERYLENE	5.34	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	11.42	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	0.59	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	5.49	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	< 1.187	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORANTHENE	13.58	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	< 2.671	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	2.82	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	5.86	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	5.34	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	2.97	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORANTHENE	8.16	UG/KG-dw
						C2-FLUORENE		
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH		2.23	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	3.12	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	8.09	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	< 0.519	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	3.49	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	< 2.671	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-NAPHTHALENE	2.89	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	6.82	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	< 0.519	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	2.30	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	4.08	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	10.61	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	0.52	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	< 1.187	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	18.25	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	1.04	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	3.19	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	1.48	UG/KG-dw

						Guijwai T	1	,
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	7.94	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	4.08	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	22.70	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	143.47	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	1.11	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	3.41	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	0.89	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	4.90	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	0.89	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	2.45	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	< 0.074	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	0.52	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	50;	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	0.30	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77;	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	0.74	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	29.38	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	5;	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	15;	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	53;	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;	0.74	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	95;	1.41	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;	3.04	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153 ;	7.94	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ;	0.45	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ;	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	208;	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	190 ;	0.59	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC (ALPHA LINDANE)	< 0.371	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	4.38	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	< 0.445	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	< 0.297	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	1.34	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR EPOXIDE	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEXACHLOROBENZENE	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	LINDANE (G-HCH)	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METHOXYCHLOR	0.74	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	< 0.223	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	0.89	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	< 0.148	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	< 0.148	UG/KG-dw
11111/1	COMI	07130114	THOUSEL HOSUE	LOCTINE SAMILEE	LEGITORE	O,1 -DD 1	< 0.497	J G/ IXO-uw

a		a		a .		-		
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDD	0.82	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDE	3.41	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	< 0.297	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	5.12	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TRANSNONACHLOR	0.59	UG/KG-dw
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	4.60	%
NHDP	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	14.80	%
NHHS	COMP	09/30/14	MUSSEL TISSUE	LAB DUPLICATE	PHYSICAL	PERCENT SOLIDS	16.80	%
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ALUMINUM	14.30	MG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CADMIUM	0.39	MG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CHROMIUM	0.22	MG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	COPPER	1.18	MG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	35.70	MG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	LEAD	0.24	MG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	NICKEL	0.20	MG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.01	MG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	15.60	MG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	4.07	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	0.53	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	0.59	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	0.82	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	0.59	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	1.18	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	2.06	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(GHI)PERYLENE	1.30	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	1.12	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	0.47	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	0.77	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	< 0.943	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUOR ANTHENE	3.12	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	0.82	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	2.77	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	2.95	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	1.94	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	0.94	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORANTHENE	1.71	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	2.30	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	2.89	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	3.59	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	< 0.412	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	1.00	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	< 2.121	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-NAPHTHALENE	2.89	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	2.89	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	< 0.412	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	2.89	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	1.24	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	3.01	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	< 0.177	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	0.29	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	7.84	UG/KG-dw

						Guijwai		
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	0.88	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	0.53	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	1.53	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	0.94	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	4.66	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	5.95	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	49.73	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	0.71	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	1.00	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	< 0.177	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128 ;	0.41	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	1.36	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	< 0.177	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	0.41	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	0.77	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	< 0.177	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209 ;	< 0.059	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	0.29	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	0.35	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	50;	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	0.06	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77;	< 0.177	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	0.29	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	9.37	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	5;	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	15;	< 0.177	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	53;	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;	0.47	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	95;	0.47	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;	0.88	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153;	1.89	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ;	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ;	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	208;	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	190 ;	< 0.059	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC (ALPHA LINDANE)	< 0.295	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	2.24	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	< 0.354	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	< 0.236	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	0.65	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	< 0.177	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR EPOXIDE	< 0.177	UG/KG-dw UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE			UG/KG-dw UG/KG-dw
						HEXACHLOROBENZENE	< 0.177	
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	LINDANE (G-HCH)	< 0.177	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METHOXYCHLOR	< 0.295	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	< 0.177	UG/KG-dw

Gulfwatch Report, 2014

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	0.41	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	< 0.118	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	< 0.236	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDD	0.82	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDE	1.65	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	< 0.236	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	2.89	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TRANSNONACHLOR	0.53	UG/KG-dw
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	5.01	%
NHHS	COMP	09/30/14	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	16.70	%