
  

 

 

 

ABSTRACT 

The Structure of Norms and Legal Uncertainty: 

A Framework for the Functional Analysis of Law as Transformed in Multi-Member 

Decision Mechanisms 

Gunnar Nordén 2016 

Doctrinal studies of law describe relationships between conditioning legal facts and con-

sequences, distinguishing between substantive and procedural norms. The latter consti-

tute decision mechanisms that maintain the legal system’s norms. These mechanisms 

generate binding decisions—ordered pairs of facts and consequences—that may obtain 

the status of res judicata and become part of the norm system in the extensive sense. 

Functional analyses of law undertake to study agent equilibrium behavior under 

given norms, perceived as incentive structures. 

Characteristically, norms that are maintained through adjudication (or arbitration) are 

not complete or unambiguous: In the ex ante sense, consequences are not uniquely im-

plied by relevant conditioning facts. This indeterminacy has profound implications: first, 

in multi-member decision mechanisms norm structures are systematically transformed; 

second, these transformed norms or incentive structures guide agent (equilibrium) behav-

ior. These observations challenge the approach that currently prevails in legal theory, 

namely of considering substantive norms as abstract entities independent of procedural 

mechanisms. They also suggest opportunities for widening the scope of functional or 

repercussion analyses of law. 

This dissertation develops an analytical framework that seeks to enable the study 

of norm transformation in multi-member judicial decision mechanisms. The framework’s 

relevance is demonstrated through numerous examples showing how equilibrium out-

comes vary with mechanisms shaping the incentive structures. The framework is devel-
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oped using formal representation of norms and by ex ante identification of judges (arbi-

trators) and norms. These representations combine functional relations with basic notions 

from probability theory that are simple enough to be operative in equilibrium analyses, 

and, at the same time, rich enough to embody detailed aspects of procedural law. The 

framework facilitates: (i) distinction between “meta-norms” (the doctrine of sources and 

judicial method) and “ordinary norms” (doctrine in the customary sense); (ii) depiction of 

(possible) indeterminacy at both levels; (iii) modeling of multi-member decision-making; 

and (iv) simultaneous consideration of epistemic uncertainty. The identification of norms 

and judges envisions judging as commitment, in contrast to a preference-based, rational 

choice account. The approach combines insights from logical aggregation, case-space, 

and evolutionary theories. 

Under meta-level uncertainty, judges may base decisions on different substan-

tive norms. Under ordinary-level uncertainty, they may reach different conclusions under 

the same substantive norm. In correspondence with standard conceptions of legal deci-

sion-making, judges applying law vote directly on outcomes or on substantive norm ele-

ments, not abstractly over substantive norms. The commitment notion assumes judges 

vote independently (non-strategically) as uncertainty is resolved. Both majority and su-

per-majority aggregation rules are studied (the latter require default state specifications). 

Implications of sequential decision-making (bifurcation) and separation of (collective) 

decisions on law and facts are also analyzed. 

The framework is applied to a detailed analysis of the model of precaution, 

which has a prevalent and unifying role in many areas of law. Equilibrium precautionary 

investment is derived under uncertain negligence standards, and under mixed norms (un-

certainty between strict liability and negligence). Continuous comparative statics reflects 

the parametric representation of uncertainty on both the meta and ordinary level. Discrete 

comparative statics reflects decision mechanism size. A condensed analysis of final-offer 

arbitration demonstrates that the framework is applicable to strategic environments. 
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The norm representation enables one to distinguish between primary norms ex-

pressing obligations and power-conferring secondary norms, which express discretion or 

options. This distinction is reflected in suggested law-in-force notions, with discretion 

motivating a forward-looking, means-end approach (in fact, partly due to logical prob-

lems arising under aggregation). Examples used to illustrate the benefits from detailed 

attention to norms structures include entitlement-protection in exchange economies and 

legal commitment mechanisms in strategic environments. 

Under indeterminacy, norm structures and induced equilibria vary systematical-

ly with decision mechanisms. This sensitivity, exacerbated by epistemic uncertainty, ac-

centuates the question of evaluative criteria as discussed in legal and political philosophy. 

In reference to observed authority structures, the majority outcome in large panels is sug-

gested as a benchmark, making possible a study of the link between (finite, real-world) 

mechanism choice and Type I and II error generation. 

Some analytical results may be of independent interest. Judicial panels trans-

form marginal dimensions of incentive structures. This is important when conditioning 

legal fact sets are choice or strategy spaces for optimizing agents (level transformations 

correspond to Condorcet-type theorems). Second-order stochastic dominance is used to 

describe panel size effects on a domain of substantive norms. First-order stochastic dom-

inance is used to compare unitary and bifurcated trials.  

Due to analytical challenges, some results are based on asymptotic theory. The 

equilibrium analyses are supported by simulations. 
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PART ONE 

INTRODUCTION 

Surely, as in other cases of the progress from empiricism 

to science, the first step must be in the direction of math-

ematical or symbolic expression of the facts. The value 

of such a symbolisism is twofold: first, as an aid to pre-

cision of thought; and second, as a preliminary to gener-

alisation. 

“An Application of Mathematics to Law” 

—H. E. Potts, 1913 

Statistical reasoning, like mathematical reasoning, legal 

reasoning, or any other form of reasoning, is essentially 

independent of its content. 

—W. A. Wallis & H. V. Roberts, 1956 

1 Background 

In this work, legal norms are understood as relationships between sets of condi-

tioning legal facts X , and sets of (conditioned) legal consequences Y . Legal sys-

tems are understood as constituted by sets of such relationships. Characteristical-

ly, the systems include mechanisms (courts and tribunals) M  that maintain and 

make authoritative decisions regarding a subset of the relationships, be they clas-

sified as substantive or procedural. Maintenance of procedural norms is related to 

mechanisms themselves and is made possible through hierarchical court organi-

zation. 

The authoritative decisions, judgments, essentially take the form of or-

dered pairs of facts and conclusions, ,x y , x X  and y Y . The constituting 

elements can be complex bundles, given by direct enumeration or by propositions 
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describing fact patterns and conclusions (the sets X  and Y  are abstract and can 

be given general interpretations). 

Let d  be a vector of data and  the set of admissible decision mecha-

nisms. A judgment j  is more completely denoted , jd
x y , jd  describing addi-

tional information made available, including the mechanism M   rendering 

the decision, time and place, and (possibly) the distribution of votes in judicial 

panels and opinions (including concurring and dissenting ones). 

A subset of the judgments obtains the status of res judicata and becomes 

enforceable. The set of enforceable judgments,  
1

, j
J

d

j

x y


 say, represents the 

normative relationship in extensive form. The set of judgments forms a binary 

relation in the Cartesian product space of possible judgments: 

 
0

, j
J

d

j

x y X Y


  . In a rudimentary sense, legal systems can be understood as 

composed of such relations (subsets or extensions). 

Through legal systems’ meta-norms (relationships constituting the doc-

trine of law sources), individual judgments , jd
x y  may influence legal relation-

ships in other ways than in the direct extensive sense (keyword: precedent), if 

they are not formally recognized as a source class in some jurisdictions.
1
 Fur-

thermore, modern legal systems contain more potent mechanisms for dynamic 

evolution, distinguishing them sharply from other normative orders. Most im-

portantly, they contain institutions for legislation and contract formation (includ-

                                                 
1
 This work concerns the operational sources and norms. See Sacco [1991a,1991b] and 

Monateri & Sacco [1998] on legal formants. See Ross [1959] on the foundational role of 

the doctrine of sources and method to legal systems (esp. pp. 75–78). 
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ing international conventions).
2
 These norms are (directly or indirectly) main-

tained in applications to new cases. Courts ensure that system specific criteria for 

norm generation are satisfied and may screen enacted or contracted norms for 

content (judicial review). However, the selection of cases for adjudication 

(“dockets”) is only negatively controlled, if at all.
3
 

In theory, a legislative body could produce complete norms, in the sense 

of mapping every relevant conditioning legal fact x  on a domain X  to a unique 

element in Y ,  y r x , for example. In this case,  r x  is called the image of x  

and the set of ordered pairs   ,  and  x y X Y x X y r x     a functional re-

lation. The rule connecting elements in X  to elements in Y  is denoted 

:r X Y . In this way, parties, in theory, could design contracts (including cor-

porate forms) as complete mappings :c X Y , specifying a unique action 

 y c x  for every possible circumstance (contingency) x X .
4
 

Ideals of completeness and determinacy have long traditions in law. The 

Panel on Statistical Assessments as Evidence in the Courts, which describes ju-

                                                 
2
 Enacted formants. In addition, legal systems may make unilateral promises and self-

legislation enforceable. 

Historically, legislation occurs much later than judge made law (Ross [1958:78–

84], Mackaay [1998]). As precedents, contracts are not universally (formally) recognized 

as a source of law (Ross [1958:84–91], Merryman & Pérez-Perdomo [2007:22–23]). 

3
 As emphasized by Damaška [1986:88], judicial decision making concerns settlement of 

contested matters between parties by passive adjudicators. Rare exceptions of self referral 

concern constitutional courts (Ferejohn & Pasquino [2004:1682–83]). 

 The passing of retroactive legislation, reversing existing decisions , jd
x y  is 

generally blocked by maintained notions of court independence (Shetreet [1985:609]) or 

constitutional constraints. 

4
 As will be discussed, there are various notions of completeness in modern contract theo-

ry. For the present purpose, X  corresponds to a set of third party verifiable states and 

:c X Y  is obligationally complete, in the sense of Ayres & Gertner [1989:92]. 

 The possibility of writing complete contracts and codes is heavily dependt on 

the development of measurement systems and monitoring costs (see, generally, Al-

len [2012]). 
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risprudence as evolving parallel to science, points out that earlier procedural 

forms were premised on certainty, as exemplified by divine intervention in trial 

by ordeal—a system that guarantees correct answers.
5
 As classical physics devel-

oped between 1600 and 1900, leading scientists and mathematicians understood 

the universe to be regulated by strict determinism.
6
 Probabilistic notions of un-

certainty were tolerated as a useful tool when data were insufficient, but “in a 

sense, as a lesser discipline, because if our ignorance were only eliminated we 

wouldn’t need probability […]”.
7
 

In emerging monolithic nation states on the European continent, Enlight-

enment ideas about supremacy of the legislature and separation of powers meant 

that extensive codes were promulgated and envisioned as complete, unambigu-

ous, coherent and judge-proof.
8
 Given any fact pattern, the legal order dictated 

the outcome and was eine logische Geschlossenheit
9
: law application merely re-

                                                 
5
 The distinguished Panel, pooling information from a variety of academic fields, studies 

courts’ factual assessments. The report is published in Fienberg [1989]. 

 Elster [1989:104] suggests that “legal lotteries” used to select (impartial) judges, 

originally were interpreted as implementing intentional acts. 

6
 “In many respects, the world of physics mirrors its surrounding cultural milieu, and, to 

some extent helps shape it. The classical and formal art, music, literature, and mathemat-

ics created during the Renaissance and Enlightenment periods, until the dawn of the 20
th

 

century, were complemented by the classical physics of Newton’s dynamics, Maxwell’s 

electromagnetism and Bolzman’s thermodynamics. [---] Physics was precise, predictable 

and deterministic” (Reese [2000:1250]). As luminously explained in Ekeland [1988], 

with sufficient information about initial conditions, the future (and past) could be perfect-

ly predicted. 

7
 Isaac [1995:2] (see also Ekeland [1988:20]). As pointed out by Ekeland [1988:49] and 

Hacking [1975:1,148], the complex probability notion has the dual aspects of tendency 

and incomplete knowledge. 

8
 See, generally, Merryman & Pérez-Perdomo [2007] and von Mehren & Gordley [1977] 

on the French and German legal system. See Ferris [2010] on the simultaneous rise of 

science and liberal democracies. 

9
 von Mehren & Gordley [1977:1137]: if not even metaphysically predetermined (see 

Ross [1958:344-7] on the historical school). 
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quired “subsumption” of facts to self-applying norms.
10

 The commitment to gen-

eral rules, formal legality and separation of powers was famously formulated by 

Cesare Beccaria in 1764: 

Only the laws can determine the punishment of crimes; and the authority of 

making penal laws can reside only with the legislator, who represents the whole 

society united by the social compact.
11

 

The revolutionary period’s ideals of certainty and determinacy have affected 

formal sources of law doctrines, creating a rigid hierarchical system, that only 

accepts three classes: (i) legislation, dominating (ii) regulation, dominating (iii) 

custom. More fundamentally, these early ideals have had a lasting effect on legal 

decision mechanisms. 

The characteristic sequential decision-making in adjudication, be it in or 

between mechanisms M , compartmentalizes uncertainty. Bifurcation (key-

words: separation of questions of liability and consequences of liability) and sep-

                                                 
10

 Under Frederick the Great, Prussia promulgated a code with more than 17,000 articles 

(in comparison, Code Napolén has 2,281), and judges caught interpreting the code were 

severely punished (Merryman & Pérez-Perdomo [2007:30,39]). 

 The same attitude towards the third branch did not exist in revolutionary Eng-

land and the U. S. (Merryman & Pérez-Perdomo [2007:16–19]). Diggins [1987] points 

out that ideas from classical mechanics (forces and counter-forces) helped secure an au-

tonomous role for courts in the tri-partition of powers in the U.S. federal government and 

in the division between federal and state governments. (See La Porta et al. [2004] on the 

distinct development of judicial independence and constitutional review.) 

11
 Beccaria’s Of Crimes and Punishment is the most influential work on criminal law and 

procedure in Western history (claim and quote from Merryman & Pérez-Perdomo 

[2007:125]). A modern statement is provided in the European Court of Human Rights’ 

plenary judgment Sunday Times v. United Kingdom: “[T]he law must be adequately ac-

cessible: the citizen must be able to have an indication that is adequate in the circum-

stances of the legal rules applicable to a given case. [A] norm cannot be regarded as a 

“law” unless it is formulated with sufficient precision to enable the citizen to regulate his 

conduct: he must be able […] to foresee, to a degree that is reasonable in the circum-

stances, the consequences which a given action may entail” (April 26, 1979, Sec. 49). 

Fuller [1978:373,380] stresses inter-subjectively available principles, and ra-

tional reasoning, as necessary for adjudication: “Without some standard of decision the 

requirement that the judge be impartial becomes meaningless. Similarly, without such a 

standard the litigants’ participation through reasoned argument looses its meaning. [---] 

adjudication is a form of social ordering institutionally committed to ‘rational’ decision.” 

Coleman & Leiter [1993] emphasize the link between determinacy, the possibil-

ity of democratic rule, and protection of agents’ liberal autonomy (see also Allan [1998]). 
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aration of decisions on law and facts (according to various doctrines) are notori-

ous examples.
12

 While purely factual questions, as well as mixtures of law and 

facts (such as in the determination of liability), are often determined using super-

majority thresholds in judicial panels (prioritizing default states, such as no liabil-

ity), purely legal questions are resolved using symmetric majority rules. In hier-

archical systems, peak courts typically are available only to settle pure questions 

of law (de jure in criminal cases and regularly in private law). These structures 

arguably assume the existence of accessible and independent answers to legal 

questions.
13

 

The emphasis on (apparent) certainty in civil law traditions is also ex-

pressed in norms regulating decision announcements: In judicial panels, the dis-

tribution of votes are not noted, and concurring or dissenting opinions are not 

published.
14

 Because judges, according to civil law traditions, are stipulated not 

to interpret law, pronouncements on law in higher echelons of judicial hierarchies 

formally do not bind lower courts.
15

 

                                                 
12

 Stein [1992:8] notes: “Western legal tradition, whether in its Roman or its common law 

form, has always required that a legal action produce a winner and a loser. Legal issues 

are seen in terms of black and white; either the defendant is liable or he is not liable. 

Courts have not been at liberty to strike an equitable balance.” 

See Landes [1998] on sequential decision making, and Coons [1964] and 

Kornhauser [1992a] on dichotomization in legal thought more generally (in Fer-

ris [2010:288] described as “on-off swiches” characterizing moral precepts). 

13
 See Damaška [1986] on legal authority structures. The suggested link between aggre-

gation rules and (epistemic) access to independent truths are discussed at various points 

below (see generally Nitzan [2010]). On the distinction between epistemic and ontologi-

cal questions with particular reference to the legal domain, see Coleman & Leiter [1993]. 

14
 Merryman & Pérez-Perdomo [2007:36–37] and von Mehren & Gordley [1977:1148–

50]. This is in contrast to common law traditions (Merryman & Pérez-Perdomo 

[2007:48–55]; Kornhauser [1998]; see Ledebur [2009] on the U.S. Supreme Court). 

15
 Damaška [1986:36–39]; Merryman & Pérez-Perdomo [2007:24–26]. 
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Legislation and contracts are the results of collective decisions. In 1951, Ken-

neth J. Arrow opened the vast field of axiomatic social choice theory by noting 

that “[i]n a capitalist democracy there are essentially two methods by which so-

cial choices can be made: voting, typically used to make ‘political’ decisions, and 

the market mechanism, typically to make ‘economic’ decisions.”
16

 Choices are 

made from a set of possible states, S , and system members are represented by 

complete and transitive preference orderings on S .
17

 A list of such orderings for 

all 1, ,i I  members, 
1, , I

, is called a preference profile. Defining a 

constitution as a function from the set of all possible preference profiles (a prod-

uct space of orderings) to a set of possible societal preference orderings, and en-

dowing the constitution with basic normative properties, Arrow famously proved 

that no such constitution (function) exists. Various versions of this impossibility 

theorem have devastating implications in many contexts, challenging the mean-

ing of collective preferences (and a fortiori, of legislation and legislative intent
18

). 

Drawing on the link to game theory, Karl Borch noted:
 19

 

[C]omplete knowledge about the rules of the game and the objectives of the 

players would in general only make it possible to specify a probability distribu-

tion over outcomes of the game. This should indicate that group decisions and 

group preferences can only be predicted in a probabilistic sense, even if we have 

full knowledge about individual preferences. [---] game theory has brought into 

economics an uncertainty principle, similar to the one brought into physics by 

the quantum theory. (Emphasis in original, underlining added). 

                                                 
16

 All references are to the third edition of Social Choice and Individual Values, here 

quoted from p. 1. 

17
 A preference ordering i  is a set (binary relation) in S S . 

18
 See Rodriguez [1998]. 

19
 Borch [1968:115,222]. See Maskin [2012] and Laffont & Martimort [2002] on the 

links between Arrow’s theorem and game theory. 
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The uncertainty principle “revolutionized the foundations of physics [---] now 

saying that in principle you could not make exact predictions; the best you could 

do would be to make probability statements no matter how much data you col-

lected.”
20

 From the more profane perspective of jurisprudence, in the 20
th
 centu-

ry, the mechanical and abstract approach to law has been replaced by more con-

jectural and complex visions.
21

 In particular, the spread of functionally rigid con-

stitutions, constitutional courts, judicial review, and super-national courts after 

the Second World War has revealed the impossibility of a sharp separation of 

legislative and judicial powers, implying a reconceptualization of sources of law 

doctrines.
22

 

                                                 
20

 Isaac [1995:2–3]. Modern physics began developing around 1900. “[P]hysicists dis-

covered a new abstract formulation of the physical world as Bohr, de Broglie, Schröding-

er, Heisenberg and Dirac elucidated the features of a totally new and unexpected (almost 

counterintuitive) type of mechanics: quantum mechanics. [---] Strict determinism was 

replaced by probability, uncertainty, and an unfamiliar new world of nature” (Reese 

[2000:1250]). 

 Remarkably, Leibniz, who concurrently with Newton discovered the calculus 

that made classical physics possible (Devlin [1994:87]), at the same time made funda-

mental contributions to probability theory. Developed in his work on “natural jurispru-

dence”, Leibniz’ essay De conditionibus of 1665 is a study of legal relations, jus purum, 

jus nullum, and jus conditionale meaning absolute, void and conditional rights, respec-

tively (Hacking [1975:85-92]). 

21
 See generally Merryman & Pérez-Perdomo [2007] and von Mehren & 

Gordley [1977:1138–39] on civil law systems; Langbein, Lerner & Smith [2009:982–91] 

on common law systems. 

Parisi [1992] gives a comprehensive historical and comparative account of neg-

ligence liability in civil and common law jurisdictions (including the mixed Louisiana 

traditions), concluding that “[a] substantial level of unpredictability is innate in the negli-

gence process. [---] The recognition of the crucial role played by judicial discretion in the 

negligence process is necessary for—what I am afraid is—a more skeptical understand-

ing of the history of negligence, and for a more informed discussion over negligence 

rules and standards of liability” (443). 

22
 The need to decide cases erga omnes in the case of judicial review (keyword: uniform 

development of law) has accentuated prior decisions as law sources (distinctions between 

cassation and revision echoes historical functions). In civil law jurisdictions, and in con-

stitutional courts and the ECJ, the norm remains suppression of uncertainty in the deci-

sion process and announcement of unanimous decisions (Merryman & Pérez-

Perdomo [2007:125]; Ferejohn & Pasquino [2004:1692–99]). 
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Understanding the degree to which legal sources determine outcomes 

can be used to classify jurisprudential positions. Broadly, a range from “legal-

ism” to “legal realism” may be identified.
23

 However, as argued by Kornhauser 

& Sager [1986], a mapping of positions onto this spectrum is still too simple and 

intimately linked to the collective character of legal decision-making, an aspect 

(they point out) that generally has been ignored in jurisprudence. Notoriously, 

apex legal decision-mechanisms *M  are collective. Table 1.1. illustrates that 

subsets of the relations defining law in the extensive sense, 

   
1

, jugdment rendered by * ,j j
J

d d

j

x y M x y X Y


    

are generated by judicial panels. All render decisions by majority rule.
24

 

Table 1.1 Select apex mechanisms, *M  

;

panel

3 European Court of Justice (ECJ), chamber

5 ECJ, chamber

7 European Court of Human Rights (ECtHR), chamber

8 German Const. Ct., senate

9 U.S. Sup. Ct.  Italian Sup. Ct.; French Const. Council  

13 ECJ, gr

n

and chamber

15 International Court of Justice; Italian Const. Ct.

16 German Const. Ct., plenum

17 ECtHR, grand chamber

19 Norwegian Sup. Ct., plenary session

28( ) ECJ, full court

501( ) Athenian juries




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 See Coleman & Leiter [1993] on notions of determinacy applied to the legal domain. 

24
 Whitman [2008] criticizes jurisprudence for ignoring important institutional features 

described e.g. in comparative studies of law. 

 See Cabrillo & Fitzpatrick [2008] on court structures in the U.S., England, 

France, Germany, and Spain. Mackenzie et al. [2010] provide information on a large 

number of international courts and tribunals (arbitration panels typically have three or 

five members). Working juries have not been included in the table, even though they de-

cide a subset of issues with finality, typically under super-majority rules in criminal pro-

cedure. See French [1964:151] on Athenian juries. 
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If normative sources applied to facts do not determine outcomes uniquely, the 

difficulties identified in the impossibility theorems recur under collective judicial 

decision-making. Kornhauser & Sager’s seminal [1986] paper persuaded econo-

mists and political scientists alike to pay closer attention to the complex struc-

tures of adjudication. The discovery (in fact, re-discovery) of a new kind of im-

possibility, arising in environments with multiple judges, now called a doctrinal 

paradox, originates in their paper. Two lines of literature have developed. The 

first, known as logical aggregation theory, extends the axiomatic Arrovian pref-

erence-based theory to the aggregation of (individual) judgments on intercon-

nected propositions.
25

 The second line, case-based theory, puts structure on the 

domain of judicial preferences, allowing a more explicit role for legal doctrine.
26

 

Both strands of literature demonstrate that the confluence of legal doc-

trine and structures of adjudication lead to new classes of paradoxes (impossibil-

ity theorems) and ambiguity in multi-member panels. These challenges remain, 

                                                 
25

 Building on Kornhauser & Sager [1986], the axiomatic theory starts with List & Pet-

tit [2002]. However, as emphazised in Mongin [2012], their version of the paradox 

(called the discursive dilemma) deviates from the initial, legal formulation by letting 

judges vote on connection rules. Mongin describes the theoretical development with par-

ticularly close attention to the initial formulation (as explained below, in courts, voting 

generally does not take place on doctrine or connection rules as such). 

As pointed out in Nordén [2012,2015], the doctrinal paradox has been well 

known in European jurisprudence for hundreds of years, and has been continuously 

struggled with in Anglo-American procedural contexts. A main source is Albert Gottlieb 

Heckscher’s [1892] largely unknown work. Heckscher was a practicing lawyer in Copen-

hagen. His dissertation was considered too esoteric by the law faculty there, but was rec-

ognized by Thorvald N. Thiele (one of Niels Bohr’s teachers) and awarded the Dr.phil. 

degree at the Faculty of Mathematics and Natural Sciences. It has recently been argued 

that his work belongs “in the pantheon of the theory of social choice” 

(Lagerspetz [2014:338]). 

26
 The case-based approach can be interpreted as concerning the evolution of norms in an 

extensive sense, explicitly modelling multi-member decisions. The approach originates in 

Kornhauser [1992a,1992b]; see generally Landa & Lax [2009]. 

 A quantitatively dominating third line of literature is based on rational choice 

theory and judges having preferences over general policy spaces (keywords: constitution-

al economics, positive political theory, principal agent, and team theory). This literature 

has a more implicit role for legal doctrine (see Landa [2007] on the distinction between 

the “case space” and “policy space” approaches). 
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even if judges vote non-strategically (sincerely). In short, the investigations have 

led to remarkable insights about the possibility of coherence and determinacy 

that challenge the normative expectations expressed in jurisprudence and re-

flected in the quotes above. 

2 Conceptual framework, approach and main themes 

As suggested in Section 1, legal decision-making—the processes leading to for-

mally binding decisions ,
M

x y  based on substantive norms in mechanisms 

M  —has more structure than decisions in legislatures and decisions regard-

ing conventions or contract formation in political or market contexts.
27

 Under 

legal decision-making, sources of indeterminacy can be traced to: 

 the structure of meta-norms (the doctrine of sources and judicial 

method); 

 the structure of ordinary norms I (static considerations), such as the ef-

fects of logical, strategic, and cost constraints on promulgated law or 

contracts; 

 the structure of ordinary norms II (dynamic considerations), which re-

flects the fact that even if norms initially were complete, “conditions 

change, and, no matter how explicit the code may have been in the first 

place determining how society shall act in different circumstances, its 

meaning becomes ambiguous with the passage of time”
28

; and 

                                                 
27

 No clear demarcation needs to be made between political and market choices (see 

Lax [2007]). In the limiting case of contracts formed in so-called perfectly competitive 

markets, there is no direct interaction among agents. The question of completeness takes 

on a different perspective, in this context, and concerns the span of markets (see e.g. 

Laffont [1989]). 

Basic notions of enforceable property rights and mechanisms for their transfer 

are necessary in all but the most rudimentary contexts, and presuppose existence of col-

lective goods. Resources necessary to establish and maintain these goods are called trans-

action costs (see e.g. Allen [2012:19,230]). In this sense, collective action is therefore 

prior to market mechanisms (Coleman [1987]). 

28
 Arrow [2012:1]. In dynamic settings, even single judge decision-making creates possi-

bilities of inconsistency and path dependence (see e.g. Saari [2001:117–19] on priority 

systems and Gilmore [1961] on “legal cycles”). 
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 epistemic uncertainty concerning conditioning legal facts, x X . 

The Panel on Statistical Assessments as Evidence in the Courts, while document-

ing a preoccupation with certainty and even the appearance of certainty in law, 

emphasizes “a probabilistic notion of justice” as “realistic, sensible, natural and 

inevitable.”
29

 Probability theory provides “a model for situations in which like or 

similar causes can produce one of a number of unlike effects.”
30

 

In this dissertation, norms—conceived as relationships between condi-

tioning legal facts X  and (conditioned) legal consequences Y —are represented 

as functions from X  to the set of (simple) probability distributions over Y , de-

noted Y . A norm is denoted : Yg X  , and the set of possible norms 
X

Y . In 

this way, the Section 1 extensional representation is replaced with an intentional 

formulation: the objects in 
X

Y  are probabilistically complete, assigning a unique 

distribution to each conditioning fact. At x X , the norm is locally represented 

by the conditional distribution or prospect   Yg x  . This definition is flexible 

and can represent locally or globally determinative norms, by letting g  map to 

degenerate probability distributions at relevant fact bundles (regions) in X .
31

 By 

slightly varying definition elements, a distinction is made between relationships 

expressing obligations (keywords: conduct or primary norms) and relationships 

expressing protected options, and, at the same time, possible uncertainty about 

the range of options (keywords: discretion, power-conferring or secondary 

norms). Both norm classes are important in legal systems; the latter, arguably, is 

                                                 
29

 Fienberg [1989:139]. 

30
 Bickel & Doksum [2001:441] (see Feynman [1994:121–42] for a fascinating explica-

tion). 

31
 In these regions, like causes produce like effects. 
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more rarely directly maintained by courts (having received less attention in func-

tionally oriented analyses). 

Meta-norms have the same logical structure as ordinary norms, mapping 

from a set of legal sources LS  (a product space of classes, 
1 lLS LS LS   , 

say) to the set of (simple) distributions over the set of ordinary norms, 

: X
Y

LS  .
32

 If the meta-norm image at source constellation ls LS  is non-

degenerate, the resulting probability-weighted combination of norms (weights 

given by the prospect   X
Y

ls   ) is a convex combination of elements in 
X

Y  

and called a mixed norm. Importantly, mixed norms have the same structure as 

“pure” norms (
X

Y  is a convex set). 

Judges are identified, in the ex ante sense, with meta-level norms and as-

sumed to vote non-strategically (sincerely) in and across decision mechanisms 

M   as uncertainty is resolved. The identification of judges and norms re-

flects normative expectations, as formulated in Section 1, and envisions judging 

as commitment, in contrast to (purely) preference based accounts.
33

 This repre-

                                                 
32

 The source classes must represent all formants of the system (Sacco [1991b:343]). 

33
 The notion of judging as commitment, in contrast to preference based rational choice 

accounts, is motivated by Sen [2009] (see in particular pp. 174–93 and the discussion of 

Adam Smith’s The Theory of Moral Sentiments). It may also be noted that Heck-

scher [1892] conceives judicial decisions as representing cognition (qvod est eller fuit), in 

contrast to political decisions expressing preferences (qvod fiery debet), linking the dis-

tinction to judicial and parliamentary decision mechanism design and to expectations of 

non-strategic behaviour in the former (see Nordén [2015]). Judgments “are not merely 

reports of a judge’s preference” (Coleman & Leiter [1993:600]).—“[C]courts must de-

clare the sense of the law; and if they should be disposed to excercise will instead of 

judgment, the consequence would equally be the substation of their pleasure to that of the 

legislative body” (Alexander Hamilton in The Federalist No. 78, quoted from Ferejohn & 

Pasquino [2004:1680]). 

In legal proceedings, the bearing role of parties’ claims and a doctrine such as 

res judicata attest to judges duty to follow stipulations and the laws institutional and su-

pra-individual character (see e.g. James, Hazard & Leubsdorf [2001] on claim and issue 

preclusion; many dimensions of evidentiary rules could be added under epistemic uncer-
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sentation and identification makes it possible to account for uncertainty (and dis-

cretion) on both the meta-level and ordinary level.
34

 The approach has similari-

ties to judgment aggregation theory, the case-space approach, and evolutionary 

theories of law.
35

 However, discretion accentuates preference-based accounts of 

judging (if in a more limited sense), complicating the analysis of multi-member 

decision-making as seen in the ensuing discussion of law-in-force notions, where 

positive and normative questions merge. 

 Represented norms 
X

Yg  are called abstract, and mixed abstract, if 

there is explicit uncertainty on the level of meta-norms, reflecting the two-stage 

character of legal reasoning. The process of law application in courts is con-

ceived of as implying direct voting under abstract (mixed) norms, or under ab-

stract (mixed) norm elements. Voting on complete norms is not admissible: The 

                                                                                                                         
tainty). In bifurcated criminal trials, a judge or juror concluding no liability, may fully 

participate in the determination of penal reactions (Nordén [2015]). 

34
 Judges are fully informed about legal sources and applicable norms (common 

knowledge) and subscribe to the norms of (propositional) logic. It corresponds to a “zero 

method” approach, as advocated by Popper [1964] (see esp. pp. 140–42 and 158). Argua-

bly, consistency on the level of individual judges is a fundamental element in any rule of 

law notion. 

Technically, judges (in most situations) are modeled as independent drawings 

from intangible populations. However, it does not mean that probability theory is sug-

gested as a “plausible account of the semantics of [legal] discourse” (Coleman & Leiter 

[1993:610]). Independence, given the normative sources and facts produced at trial, is 

partly motivated by the idea of commitment, corresponding to so-called substantive 

(“functional” or “decisional”) independence, which includes “internal” relations to joint 

panel members, judicial colleagues and superior judges (Shetreet [1985:630–38].) See 

also Caminker [1999] for a normative discussion of voting in multi-member courts. 

Intra-panel decisional independence can also be motivated by epistemic argu-

ments, see Part VII below. 

35
 As emphazised by Kornhauser [1992a:1], economists have predominantly analyzed 

effects of given norms, rather than their creation. The inattention to judicial process is 

ascribed to the difficulty of imputing a proper objective function to judges (courts “are 

not representative institutions” and “[o]n most jurisprudential accounts […] not even po-

litical institutions”). Kornhauser suggests that the development of evolutionary theories 

law is a reflection of these difficulties. Recent formulations use probabilistic norm formu-

lations in single-judge contexts. See Borchgrevink [2011] for a discussion of the litera-

ture. 
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binding decisions concern ordered pairs ,
M

x y X Y  , not ,
M X

Yx g X   

or 
M X

Yg  . This restriction on procedures reflects a fundamental distinction 

between legal decision-making (law application) and legislation or contract for-

mation.
36

 Since abstract (mixed) norms are elements in 
X

Y , and judges vote un-

der ordinary (mixed) norms, or on ordinary (mixed) norm elements, decision-

mechanisms can be analyzed as operators : X X

Y YM  , transforming abstract 

(mixed) norms in the ex ante sense. Images, denoted  M g  or Mg , are called 

transformed norms. The mechanisms are varied exogenously in , variations 

referring to size and aggregation rules (e.g. the number of votes required for re-

jection of a default proposition or default state: voting on premises or out-

comes).
37

 Sequential decision-making, and in particular bifurcated trials, are con-

sidered in detail.
38

 Implications of separation of collective decisions on law and 

on facts are studied under joint legal and epistemic uncertainty. 

                                                 
36

 A court generating decisions ,
M

x g  forms views on aspects that go beyond the imme-

diate case and, hence, treads into the realms of other branches of government (which may 

undermine its independence, Shetreet [1985:636]). The voting regime restriction is re-

flected in the formulation of the doctrinal paradox and the discursive dilemma as formal-

ized in Mongin [2012]. (The finer nuances in judgment aggregation theory are, regretta-

bly, beyond the reach of the present work.) 

 Some constitutional courts vote on norms in abstraction from individual cases 

(facts) x X  generating decisions 
M X

Yg  . However, they are staffed by specifical-

ly elected judges (and are, in fact, not called courts by some authors), see Section III.1. 

37
 Procedural norms define the mechanisms, whose maintenance is made possible by hi-

erarchical court systems. In Elster’s [2013:21–23] terminology, lower level courts are 

heteronomous, apex courts autonomous (in effect controlling their own procedures). 

38
 Landes [1998] argues that the sequential nature of legal decision making largely has 

been overlooked in functionally oriented literature. For example, the U.S. Federal Rules 

of Civil Procedure 42(b) gives courts wide discretion to invoke sequential decision mak-

ing. Rules of the American Arbitration Association and the World Intellectual Property 

Organization allow bifurcation, while rules of the International Chamber of Commerce 

and UNCITRAL do not address the issue. In criminal procedural law, bifurcation is gen-

erally compulsory, but at the same time, further decomposition of issue determination 

blocked (keywords: protection of general verdicts). 
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The fact that images   X

M YM g g   depend systematically on 

M   challenges a prevailing approach in legal theory of considering substan-

tive norms as abstract entities, independent of the procedural mechanisms. It also 

suggests a way of opening the scope for the functional analysis of law: Agent 

equilibrium behavior arguably is guided not by abstract norms but by trans-

formed norms (or their shadows).
39

 

In order to demonstrate that the analytical framework is fruitful and op-

erative, it is applied to a condensed analysis of final-offer arbitration and to an 

extensive analysis of the model of precaution. The analyses establish an equilib-

rium correspondence from ordered pairs of abstract norms and legal decision 

mechanisms ,g M  to the set of legal facts *: X

Yx X . The study of arbi-

tration illustrates the confluence of substantive and procedural norms, even in 

single-judge cases. Although using a strategic equilibrium notion, arbitration 

turns out to be a remarkably simple context in which to start discovering the links 

between norm structures, multi-member decision-making, and equilibrium out-

comes.
40

 

The model of precaution has a prevalent and unifying role in many areas 

of law, and a central role in the development of the law and economics disci-

                                                 
39

 Following North [1994], norms and their enforcement characteristics are formal con-

straints defining incentive structures, constituting (jointly with informal constraints such 

as conventions and self-imposed norms of conduct) institutions. The institutions, defining 

game structures, are distinguished from the agents and organizations (players). 

40
 The model is a reinterpretation of Farber [1980] and Gibbons [1992:22–26], transposed 

to a multi-member context.  

From the point of view of formal legal theory, there is no reason to distinguish between 

arbitration and adjudication, see Ross [1947:275–86]. Elster [1989:94] points out that 

mechanisms similar to final-offer arbitration were used by Athenian juries. However, 

from a functional perspective, there are important differences with respect to the envi-

ronment in which arbitrational panels and full fledged courts operate (see Posner & 

Yoo [2005] and Section VI.3.2 below). 
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pline.
41

 Hence, uncertain negligence standards, and mixes of negligence standards 

with strict liability, are analysed in a simple unilateral model with stochastic ac-

cident technology.
42

 A distinction is made between discrete and continuous com-

parative statics. The former refers to the equilibrium effects of making mecha-

nism changes. The latter concerns the impact from (parameterized) norm-based 

uncertainty, referring both to meta-level and ordinary norms. 

The framework is applied to an analysis of law-in-force notions. In this 

system-oriented context, the distinction between norms representing obligations 

and norms representing protected options (discretion), takes on particular im-

portance. Under discretion, a forward looking, means-end perspective on norma-

tive relationships are accentuated and, in fact, partly motivated by logical diffi-

culties arising under aggregation. From a control theoretic point of view, under 

structural (epistemic) uncertainty, norm-based and preference-based notions of 

judging converge. In strategic environments, analyses of credibility and institu-

tional design aimed at implementing formally enacted targets benefit from de-

tailed attention to norm structures. 

In environments with additive epistemic uncertainty, judges observe not 

actual or “true” states x X , but verifiable legal facts x   x , where   is 

an error term. Judges are assumed to have homogenous epistemic competencies 

(the same error distributions) and to observe facts independently (conditioned on 

information that becomes available in proceedings). Under (pure) legal uncertain-

ty, norm structures and induced equilibria vary systematically with the procedur-

                                                 
41

 See Cooter [1985] and Polinsky [2003] (Appendix), respectively. 

42
 The analysis of (pure) uncertain negligence standards builds on the (implicitly) single-

judge analyses Craswell & Calfee [1986] and Shavell [1987]. The analysis of mixed lia-

bility regimes is tentatively suggested by Posner [1990:438–39]. 
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al mechanism design. This sensitivity is further exacerbated by epistemic uncer-

tainty, accentuating dimensions of indeterminacy as discussed in legal and politi-

cal philosophy (notions of justice and ontological questions). In reference to ob-

served authority structures, the outcome in large majority voting mechanisms (or 

population majorities in suitably defined pools of potential adjudicators) is sug-

gested as a benchmark with respect to legal variables. The benchmark makes 

possible a study of the link between actual (finite, costly, real-world) decision 

mechanisms M   and Type I and II errors. 

3 Organization and outline 

The dissertation contains nine main parts, numbered I–IX, and three appendices, 

A.1–A.3. The main parts contain subsections, each with a series of numbered 

propositions, equations, examples, remarks, and figures. Objects referred to 

without roman numerals belong to the same main part. Conclusion of proofs, ex-

amples, and remarks are indicated by ◄, ■,  

 The subject matter has required attention to analytical detail, but hope-

fully that does not detract from the methodological perspectives offered. Formu-

lation of explicit propositions, consistent notation, and more than 40 figures 

should help make the arguments clear. A series of examples illustrate concepts or 

introduce notions that recur in later sections. Proposition proofs are included in 

the running text. (Some have a purely technical character and can be skipped 

with no loss of meaning.) 

Part II develops the general norm representation (and includes a primer 

on analytical concepts). Rules and standards are carefully distinguished, reflect-

ing local and global notions of determinacy. The representation of the two-stage 
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character of legal reasoning implies that mixed norms occur when meta-norms 

are (locally) indeterminate. Convexity of 
X

Y  simplifies the ensuing analyses. 

Part III studies the transformation of (pure and mixed) norms in multi-

member mechanisms. Particular emphasis is on (general) dichotomous situations, 

due to their prevalence from the characteristic sequential structuring of legal de-

cision-making. Both majority and super-majority mechanisms are discussed (in-

cluding asymptotic properties). Polychotomous situations are analyzed under the 

classical rule, a fundamental legal aggregation method that assumes an ordering 

of alternatives along a single dimension. Premise-based and outcome-based vot-

ing regimes are studied in the context of two-dimensional norms. Ordinary-level 

doctrinal paradox probabilities are calculated globally over the set of legal facts. 

The calculations are directly relevant to the ensuing comparison of unitary pro-

cedures (direct voting on consequences) and bifurcated procedures (first-stage 

decisions on liability, second-stage decisions on consequences of liability). In 

addition, voting rules and mechanism size (mechanism combinations, in the case 

of bifurcated trials) are demonstrated to affect the final probability distributions 

over legal consequences, enabling a first-order stochastic dominance characteri-

zation, in the case of low-dimensional norms. A separate section studies decision 

procedures determining legal standard elements prior to fact application. The ag-

gregation method is based on the classical rule and named “theoretical norm ele-

ment determination.” The section yields analytical results that are used in the en-

suing analyses. Part III is closed with a detailed study of majority mechanisms: 

Under equilibrium analysis, conditioning sets X  correspond to choice or strategy 

spaces for optimizing agents. In this case, the aggregation-function transfor-

mation of the marginal dimension of legal uncertainty or incentive structures is 
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essential (transformation of the level dimension is handled by reference to Con-

dorcet-type theorems, if not under the traditional parametric interpretation of 

probabilities). Majority transformation of a large norm class is characterized by 

the notions of mean-preserving reduction in risk and second-order stochastic 

dominance. 

Parts IV and V concern equilibrium analysis, establishing a link between 

abstract (mixed) norms, decision mechanisms and outcomes in systems endowed 

by agents who are fully informed about the legal regimes. Part IV is limited to 

pure norms. First, (single issue) final-offer arbitration is studied. Contract-based 

standards are represented by uniform and normal distributions. “Contract zones” 

in Farber’s [1980] terminology are established as functions of parameters, de-

scribing the norms and the arbitration panels. Next, uncertain negligence stand-

ards are analyzed, in the context of the model of precaution: Craswell & Cal-

fee [1986] and Shavell [1987] have demonstrated that uncertainty about abstract 

norm content creates opposing effects on compliance incentives: On the one 

hand, a “level effect” from existence of uncertainty weakens incentives to invest 

in precaution. On the other hand, a “marginal effect” on liability probability 

strengthens investment incentives. Defining compliance as efficient precaution 

(minimization of total expected real costs), Calfee-Craswell-Shavell were able to 

demonstrate that overcompliance is connected to narrow (concentrated) uncer-

tainty and undercompliance to broad (dispersed) uncertainty. 

Judicial panels affect both the level and marginal dimension of uncertain-

ty. Analysis of an abstract standard class, with the median equal to efficient pre-

caution, shows that sequences of equilibria, induced by increasing majority pan-

els, eventually converge toward the efficient point from above. However, while 

equilibrium investments do not switch between over and under-compliance, the 
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convergence need not be monotonic. The general analysis is enhanced by a de-

tailed study of uniform standards: In this case, unique (global) solutions are en-

sured under abstract norms, and (continuous) comparative static analysis con-

ducted in a parametric measure of legal uncertainty for fixed panel sizes. The 

abstract norm equilibria corroborate the Calfee-Craswell-Shavell results and are 

used as input to the analysis of panels. While some of the difficulties in charac-

terizing undercomplying solutions recur, the input solutions allow sharper state-

ments about panel-size effects (discrete comparative static analysis). The analysis 

is supplemented with simulations. The study of bounded standards demonstrate 

that determinative (“bright line”) rules must be defined with care in the context 

of judicial panels: Due to the transformation of marginal incentives at the upper 

support boundary, a class of abstract norms that locally function as determinate 

cast a shadow in panels. 

Part V focuses on equilibrium analysis under mixed norms. The effects 

of uncertainty between strict liability and global negligence rules and between 

strict liability and negligence standards are investigated. Comparative statics re-

fer to both meta-level and ordinary-level norm-based uncertainty. Due to the ana-

lytical difficulties faced in Part IV, the analysis of panels is limited to mixes of 

global rules. 

Part VI syntheses the Parts III through V analyses, focusing on system 

aspects. If both meta- and ordinary-level norms can be understood as obligatory 

(primary), “deductive” probabilistic law-in-force notions are almost directly sug-

gested by the framework. If admissible and relevant, equilibrium analysis enables 

a sharpening of propositions. In subsets of legal source constellations, legal sys-

tems function as (locally) determinative, a crucial ability that is reflected in the 

developed notions. 
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If norms are conceived as power-conferring, be it at the meta or ordinary 

level, conceptual challenges arise in multi-member mechanisms, even in the ab-

sence of norm-based uncertainty. Because power-conferring norms have been 

given limited attention in functionally oriented literature, their representation is 

thoroughly discussed. A tentative analysis suggests that norm-based and prefer-

ence-based notions of judging converge (and includes discussion of a recently 

developed generalized doctrinal paradox). Discretion and logical difficulties aris-

ing under aggregation accentuate a forward-looking, means-end perspective on 

law and are investigated from a control-theoretic perspective. Under a realistic 

assumption of structural epistemic uncertainty, the distinction between normative 

positions regulated by obligatory and power-conferring norms seems to evapo-

rate. 

The use of Pareto-efficiency as a means in norm design is discussed in a 

general equilibrium context. In the absence of anchoring in formal sources, posi-

tive analyses of simple exchange economies suggest there is value in distinguish-

ing between efficiency as a criterion in contract and tort law. Power-conferring 

norms are used to illuminate rule-bound and discretionary policy implementation 

in strategic environments. Positive analyses suggest the value (and possibly le-

gitimacy) of system-based commitment mechanisms constraining legislatures in 

(and only in) a limited subset of situations. The nuts and bolts character of Sec-

tion VI.3 illustrates the limitations on regularity that arise from norm-based pro-

tected choice. 

Part VII is on joint legal and (additive) epistemic uncertainty. Based on 

the suggested benchmark for decisions on legal variables, Type I and II error 

generation in multi-member mechanisms is discussed under normality assump-

tions and homogeneous, epistemic competencies. The effects of separating col-
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lective decisions on facts and law are investigated. Analytical challenges have 

necessitated the use of asymptotic theory and a reliance on approximations. 

However, a tentative insight (with parallels in reliability theory) concerns the 

costs of splitting decision makers into subgroups. The question is of considerable 

interest, because decisions on law and facts are often separated in legal decision 

mechanisms. 

Part VIII suggests further applications and framework development. 

Part IX concludes. Simulation results used in Parts IV and V are reported in Ap-

pendix A.1. Appendices A.2 and A.3 give additional results on mixed and trans-

formed power-conferring norms, respectively. 
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PART TWO 

REPRESENTATION OF NORMS 

 

1 Basic concepts and notation 

Part I introduces analytical notions, such as relations and (descriptive) functions. 

This section provides precise definitions and introduces concepts and notation 

that will be used in the ensuing analyses.
1
 

 The abstract sets used to define legal relations in Part I, allow general 

interpretations. They will given more structure in the applications and defined by 

enumeration of elements (definition by “extension”), or by propositions charac-

terizing the elements (definition by “intention”). In some applications, sets corre-

spond to sample spaces in the sense of probability theory. Subsets that exhibit 

common features are called events.
2
 

If V  and 'V  are two sets, \ 'V V  denotes set difference, that is, the set of 

elements in V  but not in 'V . Assume that V  has a finite number of L  elements, 

denoted # V L . The power-set of V , V , is the set of all subsets of V , in-

cluding the empty set   and the set V  itself:
 
 

                                                 
1
 The following is largely abridged from Suppes [1972], Bartle [1976], and Carter [2001]. 

2
 Individual sample space elements are called elementary outcomes, and are mutually 

exclusive outcomes of actual or conceptual experiments (Bickel & Doksum [2001], Ap-

pendix A; Bartoszyński & Niewiadomska-Bugaj [1996], Ch. 1). 
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        1 1 2 1 1, , , , , , , , , ,L LV v v v v v v V   .
3
 

An ordered pair (couple) is formed by two objects in a fixed order. ,u v  denotes 

the ordered pair whose first member is u  and second member is v . Two ordered 

pairs ,u v  and ', 'u v  are identical if and only if 'u u  and 'v v , The Carte-

sian product of two (non-empty, but not necessarily distinct) sets U  and V , de-

noted U V , is the set of all ordered pairs which can be formed from the two sets 

in a fixed order:  , :  and U V u v u U v V    . 

Notions of relationship—that things stand in some given relation to each 

other—can be made precise with the notion of a (binary) relation: A binary rela-

tion R  is a set of ordered pairs, R U V  . Equivalent notation for relation 

membership ,u v R , is uRv . The relation’s domain,  D R , is the set of all 

u U  such that, for some v , ,u v R . Its counter-domain (range),  C R , is 

the set of v V  such that for some u , ,u v R .
4
 

 A relation f U V   is a function if ,u v f  and , 'u v f  implies 

that 'v v : a function is a binary relation which relates a unique element in the 

counter-domain to each element in its domain. The element v  is called the image 

of u  under f , and denoted  f u . Alternatively, the argument u  is said to be 

mapped to  v f u  by f , or :f u v . It is important to distinguish individual 

                                                 
3
 If V  has # V L  members, the power-set has # 2LV   elements (sets), explaining 

the origin of the name (Suppes [1972:47]). 

4
 Each u U  may be a list of  aspects (an ordered  -tuple) 1,...,u u u  and each 

v V  an ordered  -tuple 1,...,v v v . In this case, U  and V  are the Cartesian prod-

ucts 1 ...U U U    and 1 ...V V V   , respectively (themselves examples of relations). 
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elements of the function and the function itself.
 5

 The symbols f ,  f   and 

:f U V  are used to denote functional relations. In the latter case, it is under-

stood that  U D f , but it is possible that  C f  is a proper subset of V  (V  

contains elements not in  C f ). The ordered pairs that constitute the function 

are called the function graph, conveniently used to visualize relations. The fol-

lowing definitions will be employed: 

 If :f U V  and 'U U , the function 1 : 'f U V , defined by 

   1 ' 'f u f u  for ' 'u U  is called the restriction of f  to 'U  (also written 

1 '|Uf f ). If ''U U  then any function 2f  with domain ''U  such that 

   2f u f u  for all u U  is called an extension of f  to ''U . 

 Let :f U V . f  is called injective if    1 2f u f u  implies 1 2u u  

for every 1 2,u u D . If  C f V , f  is called surjective. A function which is 

both injective and surjective is called bijective.  

 Let :f U V  be bijective. Then there exists an inverse function 

:g V U , denoted 
1g f  , such that   g f u u  for all u U , and 

  f g v v  for all v V . 

 Let :f U V  and 'U U , 'V V . The direct image of 'U  under f  

is     ' : 'f U f u u U  . The inverse image of 'V  is 

    1 ' :  and 'f V u u U f u V    .
6
 

                                                 
5
 If the function domain is a product set   1 ...D f U U   , the notation  1,...,f u u  

is conventionally simplified to  1,...,f u u . 

6
 It is not necessary that f is bijective to define  1 'f V U  . 
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Let U , V and W  be sets and :f U V  and :g V W . The composite  

function :g f U W  is defined by     g f u g f u , for each u U . 

Let :f U V . The set of functions from U  to V  is denoted 
UV . Final-

ly, a correspondence   is a generalized (multi-valued) function from U  to V , 

assigning a non-empty set  u V   to each  u D U  . It is denoted 

:U V .
7
 

 

2 Legal norms: definitions and examples 

As discussed in Part I, the extensive perspective on legal norms corresponds to an 

ex post vision of law, and possibly a very incomplete one: If R  denotes a legal 

relation in X Y , its domain  D R  typically is a proper subset of the set of 

conditioning facts, X .
8
 To study norms from a realistic ex ante perspective, ex-

tensive representations are replaced by intensions. The suggested notion assigns a 

consequence (or a set of consequences), to any fact bundle in  X D R , if only 

in a probabilistic sense: the norm is (probabilistically) complete.
9
 This represen-

tation combines functional relations with basic notions from probability theory.
10

 

                                                 
7
 A correspondence can also be interpreted as a special type of relation on U V  (Carter 

[2001:178]). 

8
 To exemplify: If a statute is promulgated according to system-specific norms (qualify-

ing as an element in the legal source set), the norm is empty in the extensional sense 

( R  ) because no judgments have been rendered. Still, it is not satisfactory to claim 

that it does not exist. Similar remarks apply more generally to norms not directly main-

tained by courts. 

9
 See generally Kaplow & Shavell [2002:436–44] on the importance of studying norms 

from an ex ante and global perspective (to consider all possible configurations of condi-

tioning facts). 

10
 The notions of experiment, sample space, events, and elementary outcomes and have 

been mentioned. A probabilistic description of an experiment has three elements: (i) the 

sample space, (ii) a set of “probabilizable” subsets in the sample space, and (iii) a proba-
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The conditioning facts x X  are assumed non-stochastic and verifiable (as-

sumptions relaxed in Part VII). 

Let Y  be the set of simple probability distributions over the set of legal 

consequences, Y. Let : Yg X   be a function from  X D g  to   YC g  . 

Definition 2.1 A norm is a triple  , , :Y YX g X  . The set of possible 

norms (functions g  from X to Y ) is denoted X

Y . 

Remark 2.1 The general norm concept is formally equivalent to an object that 

occurs in axiomatic (subjective) expected utility theory.
11

 In the context of deci-

sion mechanisms, the norm defined in 2.1 is called abstract, in contradiction to 

norms transformed in mechanisms M  . Adding epistemic uncertainty, the 

objects become similar to so-called information structures with noise, used in 

mathematical communication theory and in information economics.
12

  

Remark 2.2 Functions (norms) define their own domains. Probabilities are a part 

of the objective norm description. The distributions  | Yg     can take any 

form, as long as they satisfy the axioms of probability. Probability is linked to 

(conceptual) random experiments. Their interpretation vary in different situa-

tions. It expresses notions of regularity (random does not mean arbitrary!).  

                                                                                                                         
bility measure assigning a number between 0 and 1 to each of the subsets. See generally 

Bickel & Doksum [2001], Appendix A, and Bartoszyński & Niewiadomska-

Bugaj [1996], Ch. 2. 

11
 Technically, Definition 2.1 corresponds to so-called Savage-acts with an added element 

of probability distributions as introduced by Anscombe & Aumann [1963] (see, gener-

ally, Kreps [1988] and Gilboa [2009]). 

12
 See Laffont [1989]. 
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Definition 2.1 implies that each conditioning legal fact is mapped to a distribu-

tion over the set of legal consequences,  | Yx g x  :  |g x  is the image of 

x X . The simple distribution  |g x  at x X  assigns probability to a finite 

number of elements in Y, notably in its support, 

   1 2supp | , , , Lg x y y y Y   , say. Locally, for a given conditioning fact 

x X , the norm corresponds to the prospect
13

 

       1 2| , , , Lg x g y x g y x g y x  . 

For later reference, let the number of elements in the support, conditioned on x , 

be denoted  g x  (    # supp |g x g x   ). The prospect is a row vector with 

dimension  g x  and may be depicted as the chance node in Figure 2.1: 

 

Figure 2.1 Local representation of g  

For clarity, elements in  supp |g x  may be included in the prospect description: 

     1 2 1 2| , | , , | ; , , ,L Lg y x g y x g y x y y y . 

The norm associates a probability distribution (possibly degenerate) to every el-

ement in its domain,  X D g . In this sense, g  is complete. Figure 2.2 exem-

plifies a norm assigning a degenerate distribution  |g x  to x  

                                                 
13

 See Borch [1968:23]. 

1y  

2y  

Ly  

 1g y x  

 2g y x  

 Lg y x  
x  
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(    1supp |g x y  ) and a non-degenerate distribution  |g x  to x  

(    'supp | ,k kg x y y  ). 

 

Figure 2.2 Global representation of g  

Being a function, g  assigns one and only one element in Y  to each element in 

its domain X . It may assign the same element in Y  to a subset (even all) ele-

ments in X  (see Figure 3.1). If subsets in X  are focused, X X  say, 
X

g  de-

notes the restriction of g  to X . The importance of keeping a sufficiently global 

perspective on norms will become evident when the set of legal facts is constitut-

ed by choice or strategy sets for optimizing agents. 

In representing norms, system-aspects inform the choice of suitable sets 

X  and Y  (keyword: individuation). Functions may be composed (or decom-

posed!) to obtain adequate formulations (this will be demonstrated at several 

points).
14

 

In Figure 2.2, the image of g  at x  is the prospect    1| |g x g y x   

and at x ,      '| | , |k kg x g y x g y x  . With a view to simplifying the 

presentation, it will be convenient to represent norms as prospects of a uniform 

                                                 
14

 See generally Bartle [1976:15–18] and Carter [2001]. 

X  
Y

 

'ky  

g  

Y  

x  

ky  

 ' |kg y x  

 |kg y x  

x  

 1 |g y x  1y  
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dimension,  # supp |g

x X
g x


   . For example, if x  and x  are the only ele-

ments in X , 3g  , the representation is: 

 

     

1 '

' 1 '

| 1,0,0; , ,

| 0, | , | ; , ,

k k

k k k k

g x y y y

g x g y x g y x y y y

  



 

. 

The following paradigmatic example demonstrates that the suggested norm defi-

nition is relevant and introduces notation and concepts that will be used repeated-

ly. 

Example 2.1 (one-dimensional legal standards). Let a be a proposition such as ‘the 

agent’s driving is negligent’, ‘the agent’s pollution is a negligent taking of entitlement’, 

and let 1a   and 0a   denote that the proposition is found to hold and not hold, respec-

tively (also denoted a , a ). Let a ax X  be an index of facts deemed relevant to the 

evaluation of a under applicable law, such as speed or amount of pollution type per time 

period. Assume that all other variables of interest are known and constant. The legal 

standard can be represented by a stochastic variable A  on the set of legal facts aX   

with cumulative distribution function (cdf)  : 0,1AF  . The cdf is assumed to be con-

tinuous and bounded with support  ,a ax x  , and sufficiently smooth to have a den-

sity Af .
15

 Liability occurs iff aA x . The interpretation is that sufficiently high speeds or 

pollution levels a ax x , imply liability with certainty, and sufficiently low speeds or 

                                                 
15

  and   denote the set of real and positive real numbers, respectively. On cdfs and 

densities (or probability mass functions), see Apostol [1969], Ch. 14, and Bartoszyński & 

Niewiadomska-Bugaj [1996], Ch. 6.  

The use of bounded legal standards is instructive with respect to classification of 

norms (Section 3), and will be seen to have interesting consequences in the context of 

judicial panels. For analytical convenience, unbounded (normal) standards are assumed in 

Example IV.2.2 and Part VII and appear as limit distributions in other contexts. 

The terminology regarding the (normative) propositions is chosen to avoid dis-

cussion about truth value (see, generally, Cohen & Nagel [1964], Ch. 18 and Sec-

tions III.1.2, and VI.3 below). 
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pollution levels aax x  imply no liability with certainty. In interim situations, 

 ,aa ax x x , the law is indeterminate from the ex ante perspective.
 16

 As a mnemonic 

device, liability and no liability are denoted   and  , respectively. It follows that 

         1
ax

a a a A a AP a x P x P A x F x f d 


        . 

The situation is illustrated in Figure 2.3. 

 

Figure 2.3 A legal standard density and cumulative distribution function 

Each conditioning fact a ax X  is mapped to a probability distribution over the set of 

legal consequences,  ,Y    . Locally,      | | , |a a ag x g x g x    

     ,
1 ,A a A aF x F x

 
    is depicted in Figure 2.4. Outside its support, the distribu-

tion degenerates and the norm locally functions as a rule (see Section 3 for precise defini-

tions). Globally, the norm is the mapping  ,
: ag X

 
 , given by: 

       | , | 1 ,
a

a

a a A a A a
x X

x X

g x g x F x F x




   . 

                                                 
16

 The interval boundary descriptions are not important if the cdfs are is continuous. They 

are chosen with a view to analytical convenience in later parts, and the convention of 

defining cdf’s as right continuous (Bartoszyński & Niewiadomska-Bugaj [1996:165]). 



 A aF x

1  

ax  ax  
ax  

 AF   

 Af   
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In compact notation, 
 ,

a

A

X

Fg
 

 . A perturbation of AF  ( Af ) leads to a different norm 

in  ,
aX

 
. ■ 

 

Figure 2.4 Chance node representation 

Remark 2.3.A Taroni et al. [2006:37] date Leibniz’ transformation of proposi-

tions into numerical values to 1669 (Section I.2). Modern probabilistic formula-

tions of (abstract, one-dimensional) norms include Craswell & Calfee [1986] and 

Shavell [1987].  

Remark 2.3.B Example 2.1 is intended to represent a (“primary”) conduct norm, 

with a “core of certainty” [ suppa Ax f ] and “a fringe of vagueness or ‘open tex-

ture’” [ supp Ax f ], to use a well-known formulation.
17

  

Remark 2.4 Assume that a court M  at time t  is to decide a case defined by 

 ,at a ax x x , based on    1 , ; ,A t a A t aF x F x   . After the judgment is ren-

dered and becomes final, ,
M

t ax   or ,
M

t ax   becomes a legal system ele-

ment in the extensive sense “plot[ing] a point on the graph of tort”
 18

. Meta-

                                                 
17

 Hart [1961:119–20]. 

18
 G. W. Paton cited from Ross [1959:88]. 

  

  
   | 1a A ag x F x    

   | a A ag x F x   

ax  
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norms (the doctrine of precedent) suggest that the standard should be updated to 

cdf  | ,
M

A t aF x   or cdf  | ,
M

A t aF x  .
19

  

Example 2.2 (higher-dimensional standards). Assume that second norm dimension is de-

scribed by a proposition b  (e.g. referring to a driver’s mental state, or to causation re-

garding pollution), and let b bx X  be an index of facts relevant to the proposition evalu-

ation, with    1 b B bP b x F x  . Let c  denote the proposition that an agent is liable, and 

assume that doctrine dictates liability iff a  and b : 

 a b c   (2.1) 

Let a bX X X  , c  , and c  . If the norm dimensions are stochastically inde-

pendent, 
 ,

a bX X
g



 
  is given by: 

          
, ,

| , 1 , ; ,
a b a b a b a b

a b A a B b A a B bx x X X x x X X
g x x F x F x F x F x

   
     . (2.2) 

Two-dimensional, orthogonal and conjunctive norm formulations suffice for the applica-

tions in Part III.
20

 ■ 

Remark 2.5 Propositional logic dominates legal literature on judgment aggrega-

tion, while more sophisticated formulations are used in logical aggregation theo-

ry.
21

 Both literatures represent legal doctrine on a “second-stage level” (as illus-

                                                 
19

 Under a doctrine of stare decisis an updated cdf  | ,
M

A t aF x   should have a new 

upper support boundary t a t a ax x x   (or  | ,
M

A t aF x   a new lower support bound-

ary t a at ax x x  ). Borchgrevink [2011] reviews and contributes to a literature on case 

selection, evolution of precedent, and dynamic norm notions in a single-judge context. 

20
 Formulation (2.2) generalizes to higher dimensions. The disjunctive form a b c   

under independence gives  1 , ; ,A B A B A B A BF F F F F F F F       . If the norm di-

mensions are stochastically dependent, the multiplicative forms are replaced by bi- or 

multivariate cdf’s (see Nordén [2015]). 

21
 See, generally, Mongin [2012]. 
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trated by (2.1)), with no explicit role for the underlying conditioning  legal facts 

,a bx x . A similar remark applies to the case-space approach.  

Remark 2.6 Inspired by procedural literature, the terminology ultimate legal facts 

will be used about norm premises, such as a  (“liability”) and b  (“causality”).
22

 

The terminology, however, is not stabilized.
23

  

Remark 2.7 Discussions of legal relations typically concern ultimate legal facts 

(Ross’ [1959], esp. Sec. 35, is a prominent example). Arguably, the analyses can 

be enhanced by the use of notions from general relation theory. Recent contribu-

tions include an ex ante perspective in rich environments (see e.g. Cooter [1998] 

and the references to option theory in Remark 5.1 below).  

Under the classical aggregation-rule assumptions discussed in Part III, the set of 

legal consequences Y  is, or can be, associated with a subset of the real numbers. 

Let    1 2supp | , ,..., Lg x t t t  , with elements named such that 
'k kt t  if 'k k . 

                                                 
22

 “When [the judge] tells the jury how to determine what [a and b] are, he is giving the 

legal definitions. Thus, the legal definitions are the norms which must be applied to the 

evidentiary facts in order to derive the ultimate facts [a and b] which, once a legal rule is 

applied [ a b c  ], will provide a result.” Dudnik [1965:493]. 

23
 Ultimate facts are called “legal facts” in Coleman & Leiter [1993]. Elements in the 

case space defined in Example 3.5 below, are called “legal findings” or ”doctrinal fac-

tors”, and “may be thought of as a particular mix of both purely objective facts and in-

termediate legal conclusions” Landa & Lax [2009:949]. Ross [1959:215–16] uses the 

term “operative facts” about ultimate and non-ultimate facts: “Some operative facts are 

purely factual (for example, birth, death, fire, collision at sea), others are legally condi-

tioned, which means they are defined relative to the law. [---] this means that legal rule 

1R  describes its operative facts, not directly, but by reference to the circumstances opera-

tive in relation to other legal rules 2R , 3R , and so on. [---] The same is also the case 

where a term has reference not to a formal legal rule, but to a legal standard. That a per-

son has acted ‘negligently,’ for example, is not a purely factual statement, but has refer-

ence to a presupposed standard in respect of the course of action that can be expected by 

a reasonable man in the given situation.” The quote points to system-aspects (individua-

tion). As long as any chain component has standard character, from the ex ante perspec-

tive, a non-degenerate distribution over a penultimate set of consequences is implied. 
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In this class of situations, it is convenient to represent norms with a discrete con-

ditional (right continuous) cdf    | : 0,1G x  :
24

 

  

  

  

    

  

1

1 1 2

1 2 2 3

0 if min supp |

 if ,

 if ,

1 if max supp | L

t g x t

g t x t t t

G t x g t x g t x t t t

t g x t

   

 


   


   



 (2.3) 

The cdf is illustrated in Figure 2.5. 

 

Figure 2.5 Cdf representation of 
Xg  

Example 2.3 (Ex. 2.1 continued). In the dichotomous case  ,Y    , no liability can be 

associated with 1 0t   and liability with 2 1t  . Hence, at x X , 
Xg   is given by 

         | 0 | , 1| 1 ,g x g x g x F x F x    , with cdf: 

                                                 
24

  |G x  “jumps” at all points in  supp |kt g x  , with jumps equal to the point proba-

bilities      | | lim |
k

k k

t t
g t x G t x G t x


  , 1,...,k L . 

 1 |g t x  

 |G x  

   1 2| |g t x g t x  

1  

t  3t  2t  1t  
Lt  
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     

0 if 0

1  if 0,1

1 if 1

t

G t x F x t

t




  




.  

■ 

Definition 2.1, mapping legal facts directly to distributions over individual (con-

ditioned) legal consequence bundles y Y , is well suited to model duty-

imposing (“primary”) norms (obligations). However, legal systems contain 

norms which endow agents with options or discretion. To model protected choic-

es, and (possible) uncertainty about their range, a generalization of the represen-

tation is suggested: 

Definition 2.1’ Let Y  be the power-set of Y . A norm is a triple 

 , , :Y YX g X  . The set of norms (functions g  from X  to Y ) 

is denoted 
X

Y . 

The definition is illustrated in Figure 2.6. For each x X , the support is a family 

of sets,     'supp | ,k kg x y y  ;  supp |g x      ' '' ' '' ''', , , ,k k k k ky y y y y ). In 

situation x , options 
ky  and 

'ky  are certainly available. Likewise, in situation x , 

options 
'ky  and 

''ky  are certainly available, but option 
'''ky  only with probability 

  ' '' ''', , |k k kg y y y x .
25

 

Remark 2.8 Importantly, legal systems contain norms that constitute the ability to 

select new norms becoming system elements (legal formants), giving legal sys-

tems their characteristic dynamic character. To model “power-conferring” or 

                                                 
25

 Section VI.2 introduces notions that describe these positions more efficiently. 
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“secondary” norms (including delegation arrangements), Y  is taken to be a set of 

ordinary norms X

Y , and X

Y  is a family of norm sets, see Section VI.2.
26

  

 

Figure 2.6 Global representation of g  (the set of consequences a power set) 

 

3 Rules and standards: local and global definitions 

A degenerate probability distribution in Y  assigns all probability mass to a sin-

gle element in Y  (such as  |g x  in Figure 2.2 leading to 
1y  with probabil-

ity 1). Let the subset of degenerate probability distributions in Y  be denoted 

Y . The inverse image of Y  under g ,  1

Yg X  , is given by 

    1 |Y Yg x X g x      . 

Definition 3.1 Norm 
X

Yg  locally has rule character at all points in 

 1

Yg 
, and locally standard character at all points in  1\ YX g 

. 

Definition 3.2 Norm 
X

Yg  is a global rule if  1

Yg X   and a 

global standard if  1

Yg   . 

                                                 
26

 See Ross [1959,1962], Hart [1961] and Tur [1998] on norm notions. Contestable con-

cepts in norms (Waldron 1994) arguably also call for a Definition 2.1’ type representa-

tion. 

X  
Y  

 ' '',k ky y  

g  

Y  

x  

 ' '' ''', ,k k ky y y  

  ' '', |k kg y y x  

  ' '' ''', , |k k kg y y y x  

x  

1   ',k ky y  



54 

 

Definition 3.3 Let  1

Yx g  . The unique element to which g  in ef-

fect maps is denoted ,! x gy . 

The set of global rules or globally determinative norms, which map all x X  to 

Y , is denoted X

Y . Norms in \X X

Y Y  will be called standards. Non-

global standards are determinative on subsets of X  (locally have rule character). 

Because global rules X

Yg  , in effect, map conditioning facts x X  to 

unique elements 
,! x gy Y , a more direct representation is as functions 

:gr X Y . The set of such functions from X  to Y  is denoted XY . Figure 3.1 

illustrates the set of such rules from a two-point set X  to a two-point set Y .
27

 

The mode of representation is a matter of convenience. The seemingly more 

complex formulation 
X

Yg   will, in fact, in many situations, be easier to han-

dle than the corresponding 
X

gr Y .
28

 

 

Figure 3.1 The universe of global rules from a two-point set X  to a two-point set Y  

                                                 
27

 It is worth noting that that XY  grows rapidly in the number of defining set elements: 

Assume that X and Y are finite with # X m and # Y L  ( # Y L  ), respectively. It 

follows that  # #
mX X

YY L   (Cameron [1999], Theorem 1.13); a remarkably 

large number even for “small” sets. (The introduction of probabilities means a continuum 

of possibilities even if # 1X   and # 2Y  .) 

28
 In contrast to XY , X

Y  is convex (see Section 4). 

X  

 

Y  

  

 

X  

 

Y  

  

 

X  

 

Y  

  

 

X  

 

Y  

  

 

1r  2r  
3r  
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Part III models decision mechanisms M  as binary operators, that is, as functions 

: X X

Y YM  , mapping abstract norms X

Yg  into transformed norms 

  X

YM g  . These mechanisms are reduced expressions of (procedural) global 

rules. 

Remark 3.1 Global rules are essential in any legal system, guiding endless ac-

tions and transactions. If all norms involved in a decision are (local) rules, the 

system works an algorithm, see Table VI.1. The propositional calculus in (2.1) is 

an example of a formal system and, hence, an algorithm.
29

  

Kaplow [1992] and Fon & Parisi [2007] consider optimal ex ante infor-

mation content in norms (the optimal degree of incompleteness) and their relation 

to promulgation and enforcement costs (including adjudication). For a general 

discussion of contractual form and organization of economic activity, see 

Hansmann [1996]. See Salzberger [1993] on strategic delegation to (independent) 

courts. Due to the logical difficulties inherent in case-by-case adjudication in 

multi-member courts, Landa & Lax [2009:961] suggest that courts may openly 

endorse “indeterminate legal standards” (see Section VI.3 below).  

Example 3.1 (contract notions and representation). Let  1, , n    be a set of contin-

gencies, and jE  an event (a subset of  ). Let  
1

m

j j
E


 be a family of mutually exclusive 

events, and ja  an act selected from a set of possible acts, A . Shavell [2006] defines a 

(general) contract term as an ordered pair ,j jE a . The term is said to be specific if jE  

contains a single element. A contract K  is defined as the set: 

 1 1, , , ,m mK E a E a . 

                                                 
29

 See, generally, Berlinski [2000]. 
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K  is said to have gaps if there are unmapped contingencies, 
1

m

j
j

E

  . If 

1

m

j
j

E

  , K  

is said to be obligationally complete, if possibly incomplete in the economic sense by 

being “insufficiently state contingent” or “insensitive to relevant future contingencies”.
30

 

If 
1

m

j
j

E

   and each term is specific, K  is fully detailed complete, and is defined by: 

            1 1 2 2, , , , , ,n na a a      . 

It follows that a contract K  is a binary relation in A . It has gaps if the relation 

domain  D K  is a proper subset of \  . An obligationally complete contract can be 

written as :K Ag  , such that for all i jE  , i  is mapped to ja  with probability 

one (to 
,

!
i K E j

g

ja


; 
j

K E
g  denoting the restriction of Kg  to jE ), 1, ,j m . If K  is fully 

detailed complete, K  is a functional relation, and :K Ag   such all i   gets 

mapped to a uniquely determined act  ia   with probability one (to  
,

! i Kg

ia


 ), 

1, ,i n . 

There is no language ambiguity in Shavell’s framework. Hermalin, Katz & 

Craswell [2007:71] represent contracts as functions  :C D C A . The contin-

gencies in  D C  are addressed, but “whenever the contract mapped [a contingency] to a 

set with more than one outcome” parties have “said too little or too much” (named lin-

guistic under- and over-determination, p. 71). In all contingencies  i D C  , the con-

tract determines exactly which subset of actions in A  becomes available, hence the 

contract corresponds to  
 D C

AC   , in terms of Definition 2.1’.
31

 ■ 

                                                 
30

 Ayres & Gertner [1989:92]. 

31
 Contingencies not addressed, gaps  \i D C  , are called unmapped contingencies 

(see pp. 69–73 for further nuances). In this case, the notion of partial functions can be 

used in the contract definition (Kornhauser [1992:174] suggests their use in the context of 

so-called extended rules). 
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Example 3.2 (Ex. 2.1 continued: global rules in a cdf framework). Let 0c   be a parame-

ter. A global negligence rule—partitioning the set of legal facts such that liability   re-

sults if and only if x c —can handled in the cdf-framework, by introducing a right con-

tinuous function: 

 
0 if 

1 if 
c

x c
F x

x c



 


, 

where c  indicates the point of discontinuity of the distribution function. For any ran-

dom variable S  with cdf G  and 0t  ,    
0

0lim
t t

G t G t


  and  
0

lim
t t

G t


 

   0 0G t P S t   : the “jump” at 0t  is equal to the probability mass concentrated at the 

point.
32

 Hence, a global negligence rule in  ,

X
 

 can be represented by 

     | 1 , ; ,c c
x X

g x F x F x 


     , the jump at x c  equal to 1. The notation cg  

will be used for  ,c

X

Fg



 

 , with the understanding that the the mass at c is equal to 

one. A continuum of negligence rules is generated as c  varies in  . ■ 

Remark 3.2.A Ehrlich & Posner [1974:268] suggest combining a rule-element 

with a standard-element (“unlawful to drive more than 60 miles per hour or to 

drive at any lower speed that is unreasonably fast in the particular circumstanc-

es”). Assume that, under the “particular circumstances”, the 60 miles per hour 

corresponds to an interior point in the standard density support. The resulting 

                                                                                                                         

 An alternative formulation, emphasizing the relation between  D C  and A  is 

as a correspondence (multi-valued function) from  D C  to A ,  *:C D C A , assign-

ing a non-empty subset in A  to every conditioning state (Carter [2001:177]). Defini-

tion 2.1’ allows uncertainty over the sets representing linguistic under- and over-

determination (  D C

AC  ). 

32
 Apostol [1969], Theorem 14.5. 
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norm can be represented by a cdf  60G t  continuously increasing on  ,60x , 

making a jump from  60
60

0 lim 1
t

G t
   to 1 at 60x  .  

Remark 3.2.B A similar object results from dynamic law evolution (see Re-

mark 2.4 with further references).  

Example 3.3 (representation of liability norms). In the Parts IV–V analyses of the precau-

tion model, care levels are measured positively in X , noncompliance ( ) occurrs if 

x S  (too low precaution investment compared to the stochastic requirement, S ). The 

event has probability      1 1P S x P S x F x      . 

It will be convenient to represent liability norms as mapping directly to damag-

es. Hence, negligence standards map noncompliance to losses L  and compliance to 0  

(no damage payment). The standards  0,

X

F L
g   are represented as: 

     | ,1 ;0,F x X x X
g x F x F x L

 
   . 

The subclass of global negligence rules    0, 0,

X X

L L
   are represented as ( c  ) 

     | ,1 ;0,c c cx X x X
g x F x F x L   

   , or: 

 
0,1;0,

|
1,0;0,

x c

c

x c

L
g x

L









  


. 

Situation 0c   corresponds to the global rule of no liability,  0 0,

X

L
g  . A global rule 

of strict liability is denoted (slightly abusing notation)  0,

X

L
g  . The norms are rep-

resented by: 

 

 

0 | 1,0;0,

| 0,1;0,

x X x X

x X

g x L

g x L





 

 

  


 

, 
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respectively.
 33

 As functions from X  to  0, L  (elements in  0,
X

L ), the global rules 

may be defined as  0 0r x   and  r x L   for all x X , respectively. Global negli-

gence rules are given by: 

 
 if 

, 0
0 if 

c

L x c
r x c

x c


 


. 

■ 

Example 3.4 (state contingent rules). Consider a set of global rules in Xr Y  and assume 

that the rules’ domain can be decomposed into a Cartesian product space 

1X X X   . Relative to X , a distinction can be made between completely state 

contingent rules (CSC) and partially state contingent rules (PSC). A CSC is a function of 

the set of variables 1, ,x x . A PSC is a globally determinative norm  PSCr   defined 

over X , but restricted to depend on a subset of the variables 1, ,x x . ■ 

Example 3.5 (base rules). In the study of case disposition and aggregation of legal rules 

in multi-member courts, Landa & Lax [2009] introduce base rules that map from a case 

set C  to a dichotomous outcome set,  : ' ', ' 'br C no yes . A case c C  has k  dimen-

sions or factors potentially relevant to a decision. Each case dimension is coded as a bina-

ry variable, taking value 1 if the factor is present and 0 if not. Accordingly, a case 

1, , kc c c  is an element in    0,1 0,1C      0,1
k

 .
34

 For example, 

1, ,1c   has all factors present, 1, ,1,0c   all but the last, etc. Let 

1, , krd rd rd  be a vector defining potentially relevant rule dimensions, 1drd   if 

                                                 
33

 In the model of precaution, legal fact sets can be assumed closed and finite, and c  an 

interior point. (Parts IV and V identify classes of negligence rules that function as strict 

liability.) 

34
 Case dimensions are called “legal (sub)findings” or ”doctrinal factors”, and “may be 

thought of as a particular mix of both purely objective facts and intermediate legal con-

clusions” (p. 949). 



60 

 

dimension d  is relevant, and 0drd   otherwise. Let  0,1, ,k   be the so-called rule 

threshold. Base rules are given a simple additive structure: outcome ' 'yes  is implied iff 

the inner product c rd   . A base rule, therefore, is compactly defined as the ordered 

pair ,rd  ,  0,1
k

rd  ,  0,1, ,k  . Hence, 1, ,1 , k  corresponds to the con-

junctive base rule (all factors are necessary for outcome ' 'yes , threshold value 1   

corresponds to disjunctive base rules (one factor is sufficient), and 1 k   to intermedi-

ate base rules. ■ 

 

4 Convex combinations of norms (mixed norms) 

Convex combinations of norms arise due to the system character of legal norms. 

This section discusses the notion independently of its applications. The following 

assumes a finite set of J  (potential) norms  1 2, , , Jg g g , 
X

j Yg  . Norms 

may be depicted as prospects of the same dimension:
 35

 

       1 2| | , | , , |L

j j j jx X x X

g x g y x g y x g y x
 

  , 

with  | 0k

jg y x   if  supp |k

jy g x  . 

Definition 4.1 Let  1 2, , , Jg g g  be a subset of norms in 
X

Y , and   a 

vector  of weights 1 2, , , J    , such that 0 1j   and 
1

1
J

j

j




 . 

A convex combination of  1 2, , , Jg g g , denoted 

1 1 2 2 J Jg g g g


      , is defined point-wise for each x X  by: 

                                                 

35
 

    1 2, ,

1
# supp |J

J
g g g

j
j x X

L g x
 

     , compare Section 2. 
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       

     

1 1 2 2

1 2

1 1 1

| | | |

| , | , , |

J J

J J J
L

j j j j j j

j j j

g x g x g x g x

g y x g y x g y x


  

  
  

       

   
. 

The second definition equality is obtained by the linearity properties of probabil-

ity and vector addition.
36

 The convex combination of (simple) prospects is a so-

called compound or composite prospect. The next example illustrates how a 

compound prospect is reduced to a simple prospect.
37

 

Example 4.1 (simple and compound prospects) Let 2J   and 

 

 

1 '

1

'th comp.

1 '

2

'-th comp. -th comp.

| 0, 0, 1 ,0 ,0; , , , , , ,

| 0, 0, 1 ,0 , ,0 ,0; , , , , , ,

k k L

k

k k L

k k

g x y y y y

g x y y y y 

 

  

 

Point-wise, the combination of  1 |g x  and  2 |g x  is illustrated in Figure 4.1:  

   
1 2

1 '

1 2 2,

-th comp.'-th comp.

| 0, 0, 1 ,0 , ,0 ,0; , , , , , ,k k L

kk

g x y y y y
 

        . ■ 

 

Figure 4.1 Reduction from compound to simple prospects 

                                                 
36

 For each x X ,  |g x

  is given by: 

           

           

           

1 1 1

1 1 1 2 2 2

1 1 1

1 1 1 1 2 2 2 2

1 1 1

1 1 1 1

| , , | | , , | | , , |

| ,..., | | , , | | , , |

| | , , | | | , , |

L L L

J J J

L L L

J J J J

L L L

J J J J

g y x g y x g y x g y x g y x g y x

g y x g y x g y x g y x g y x g y x

g y x g y x g y x g y x g y x g y x
 

  

     

   

  

   

     

 

37
 See Mas-Colell, Whinston & Green [1995:169-70], Kreps [1988:50], 

Wakker [2010:59–62], and Borch [1968:32–33]. 

'ky  

2  ky  

 1 2 1     

2   'ky  

ky  

1   

  

1  'ky  1  
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Norms are defined globally on X . The next example and Figure 4.2, therefore, 

transplant Example 4.1 to a global context. Because the Part V applications con-

sider mixes of two norms, the simpler notation ,1     and 

 1 21g g g      is used. 

Example 4.2 (convex combinations of norms). Consider 1 2, X

Yg g  , locally represented 

in Example 4.1. The convex norm combination  1 21g g g      can be illustrated as: 

 

Figure 4.2 Convex combination of norms (global representation) 

■ 

X  
Y

 

'ky  

1g  

Y  

X  
Y

 

'ky

2g  

Y  

x  

x  
ky  

1   

  

1  

X  
Y

 

'ky

 1 21g g g      

Y  

x  
ky  

 1 1     

 1    
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It can be directly verified that for all x X  and all admissible  , 

 
  supp |

| 1
y g x

g y x




 

 .
38

 It follows that 
X

Yg

 : the function space X

Y  is 

convex and, in fact, a so-called mixture space.
 39

 This convexity property in part 

has motivated the representation of norms (Definition 2.1). The term mixed 

norms will be used about explicitly convex combinations of “pure” norms. 

 

5 Meta-norms 

This section introduces the notion of “norms over norms”, arising from the char-

acteristic two- stage character of legal decision-making: Judges are identified 

with the legal system meta-norms, constituted by the doctrine of sources and 

method, expressing a notion of judging as commitment (Section I.2). This per-

spective distinguishes legal decision-making from agents an organizations mak-

ing preference-based decisions in legislatures or in markets (and is reflected in 

legal aggregation mechanisms, see Part III). 

Let LS  be a set of legal sources (formants), a Cartesian product of clas-

ses 1 lLS LS LS   , exemplified by statutes, regulations, prior judgments, 

                                                 

38
      1 1 1 1

1

| | 1
J

L J L Jk k

j j j j jk j k j
j

g y x g y x  
   



 
   

 
      (using that 

X

j Yg   for all j , hence for all x X ,  
1

| 1
L k

jk
g y x


 ). 

39
 A set S is convex if and only if it contains all convex combinations of each pair of 

points in S (see Sydsæter [1981:152–54]). The convex combination (mixture) corre-

sponds to a J-nary operation on X

Y
 (a function from  

J
X X X

Y Y Y    to X

Y
). 

 Locally, if Y  , the mixed norm can be represented by the cdf 

   
1

| |
J

j jj
G t x G t x





  (Mas-Colell, Whinston & Green [1995:183]). See 

Kreps [1988:52–53] on mixture-spaces. 
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and contracts.
40

 The set of potential (ordinary) norms is given by X

Y . Norms 

functioning at the meta-level are represented by: 

Definition 5.1 A meta-norm is a triple  , , :X X
Y Y

LS LS  . The set 

of meta-norms is denoted X
Y

LS . 

Meta-norms have the same logical structure as ordinary-level norms (and are 

elaborated in Part VI based on Definition 2.1’). Given source constellation 

ls LS  and X
Y

LS , the correspondence supp : X

YLS  maps to a subset 

of ordinary norms,  supp | X

Yls    1 2, , , Jg g g , say. This is the set of 

norms assigned positive probability, given the normative sources, called enforce-

able in Part VI. However, the framework gives more than a set of enforceable 

norms: As explained in Section 4, conditioned on ls LS , the convex combina-

tion: 

        1 1 2 2|
| | |J Jls

g g ls g g ls g g ls g


  


    , (5.1) 

is a mixed norm  |

X

Yls
g
 

 , given by: 

   

           

|

1 2

1 1 1

|

| | , | | , , | |

ls
x X

J J J
L

j j j j j j

j j j
x X

g x

g ls g y x g ls g y x g ls g y x



  




  


 

  
(5.2) 

                                                 
40

 This is a rough description. Legislation arguably should be considered as ordered pair 

of enacted norms and preparatory works (if applicable). More complete representations of 

objects based on Definition II.2.1’ are suggested below both with regard to legislation 

and contracts (see also Examples 3.1–3.5). The source-classes (formants) are the ones 

actually influencing decisions, not official ideology (Section I.1). 
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The mixing weights  0 | 1jg ls   are provided by the meta-norm 

(  
1

| 1
J

jj
g ls


 ). The reduction and resulting mixed norm  |

: Yls
g X
 

 , 

are illustrated in Figure 5.1. 

 

Figure 5.1 Mixed norm generated by meta-norm X
Y

LS  

As elements in 
X

Y , mixed norms can be classified as discussed in Section 3. 

The next example introduces (abstract) mixed norms, which are used in Part V. 

Example 5.1 (Ex. 3.3 continued: mixed liability regimes). A pollutee’s entitlement might 

be protected by a negligence standard  0,

X

F L
g  , given by 

     | ,1 ;0,F
x X

g x F x F x L


   , or by strict liability    0, 0,

X X

L L
g   , given 

by  | 0,1;0,
x X x X

g x L
 

  . Under a constellation of legal sources ls LS  and meta-

norm 
 0,

X
L

LS , it may be uncertain which liability regime prevails. Let 

LS  
X

Y

 

1g  

  

X

Y  

ls  

Jg

 1 |g ls  

 |Jg ls

 2 |g ls  
2g

X  
Y

 

1y  

       1 1 2 2|
| | |J Jls

g g ls g g ls g g ls g


  


     

Y  

x  

Ly

 1 |j jg y x  

 |L

j jg y x  

 2 |j jg y x  2y
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   | 0,1g ls     (that is, 
 

 
0,

1\ X
L

LSls LS   ). The mixed norm 

   0,
1 X

F L
g g     is given by: 

         

       

1
| 0,1;0, 1 ,1 ;0,

1 ,1 1 ;0,

Fg g x X x Xx X

x X

g x L F x F x L

F x F x L

 
 

 

   



    

   
. 

Mixing strict liability with global negligence rules corresponds to 

   0,
1 X

c L
g g      , defined by: 

           1
| 1 ,1 1 ;0,

c
c cg g x Xx X

g x F x F x L
    

 
  

     . 

The (pure) global rule of no liability corresponds to  0 0,

X

L
g  . 

Strict liability and (global) negligence rules may, alternatively, be represented 

by functions      , 0,
X

cr r L     , convex combinations that correspond to ordinary 

sums: 

     
 if 

1
 if 

c

L x c
r x r x

L x c
  





   


. 

That the resulting functions are not elements in  0,
X

L  (the function space is not con-

vex). ■ 

Remark 5.1 The Example 5.1 liability regimes allocate a so-called call option to 

the polluter: the ability to choose x X , while paying an exercise price as de-

fined by the law (see Example VI.3.4 for a general equilibrium perspective; 

probabilistic externalities are considered in Parts IV and V). However, a 

pollutee’s entitlement can be protected by a larger set of norms, such as being 

assigned a put option. In this case, the pollutee decides on the level of x  and can 

exercise a right to be paid, according to a price defined by law. See, generally, 

Ayres [2005], including rich extensions of the Calabresi & Melamed [1972] 

property rule regimes.  
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Remark 5.2 Brooks & Schwartz [2005] observe that uncertainty about entitle-

ment protection underlies the availability of preliminary injunctions. They dis-

cuss doctrinal design which enables efficient breach under contracts and, more 

generally, efficient “takings” (including areas such as intellectual property and 

constitutional law). In the present setting, it corresponds to meta-norm design.  

Example 5.2 (Ex. 3.1 continued: contract interpretation). Obligationally complete con-

tracts K  can be represented as elements in  A


, and contracts with gaps as elements 

in  
\ G

A
 

, where G  corresponds to unmapped contingencies. Define 

   
\ G

A A 
  
 . Shavell’s [2006] definition of contract interpretation corresponds to 

the meta-norm 

   
 

\
: G

A

K

A A 
    

  
  , 

mapping from the source class “written contracts”    
\ G

A A 
  
  (a set of possible 

contracts) to the set of (degenerate) distributions over the set of obligationally complete 

contracts  A


 (the latter corresponds to an image set of interpreted contracts). See 

Remark IV.1.2 for additional comments on  K  . ■ 

In some circumstances, it is relevant to base representation of meta-norms on 

Definition 2.1’. Under a notion of discretion as norm protected options (power-

conferring norms), judges select different norms. This change in emphasis leads 

to conceptual challenges in multi-member court contexts. Meta-norms also up-

hold characteristic hierarchical norm structures. These, and similar system-

oriented aspects, are considered in Sections VI.2–3. 

Remark 5.3 Landa & Lax [2009] consider the construction of global rules based 

on individual judgments generated by judge selected base-rules (Example 3.5). 
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From the present perspective, it concerns the possibility of a rational construction 

of legal doctrine—a problem on the level of meta-norms—based on extensive 

formulations (see Example VI.3.2).  



  

 

 

 

PART THREE 

TRANSFORMATION OF NORMS IN MULTI-MEMBER DECISION 

MECHANISMS 

Equation Chapter 1 Section 1 

1 Introduction 

This part studies how abstracts norms X

Yg , from the ex ante perspective, are 

transformed in decision mechanisms M  . The mechanisms are constituted 

by global rules, regulating the mapping of judgment profiles to binding decisions 

,
M

x y X Y  , which become law in the extensive sense.
1
 

Throughout, it is assumed that voting takes place directly, on conse-

quences under ordinary norms (outcome-based voting) or on ordinary norm ele-

ments (premise-based voting). Fundamentally, judges—identified with the doc-

trine of sources of law—do not vote on ordinary norms as such, but apply the law 

to individual cases x X , generating ordered pairs ,
M

x y X Y  .
2
 

                                                 
1
 See Urfalino [2010] on the notion of binding decisions. To become legal system ele-

ments in the extensive sense, the judgments should be final according to system internal 

criteria (Section I.1). 

2
 Generation of ,

M X

Yx g X   essentially corresponds to declaratory judgments and 

generation of 
M X

Yg   to abstract decision-making or legislation. These phenomena 

occur in some constitutional and super-national courts, generally not considered a part of 

the judiciary (Ferejohn & Pasquino [2004]), and in fact not called “courts” by some pur-

ists (Merryman & Péres-Perdomo [2007:90]). Such decisions are not studied here (but 

see Example VI.1). (Eng [2000] points out that arguments on the level of meta-norms 

typically are not discussed by courts. It arguably reflects the voting methods.) 
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This part is organized as follows: The present gives an overview of legal 

aggregation methods. General dichotomous situations, of wide applicability due 

to the characteristic sequential structure of legal decision-making, are analyzed in 

Section 2. The results are relevant to the analysis of polychotomous environ-

ments in Section 3, which studies the classical aggregation rule. Higher-

dimensional norms, and outcome-based and premise-based voting protocols, are 

considered in Section 4. The analysis is conducted with a view to the study of 

bifurcated trials, which follows in Section 5. Collective decisions on legal stand-

ard elements S  prior to their application to facts x X —named theoretical 

norm element determination—are considered in Section 6. The section provides 

analytical results which are used in Parts IV and VII. Section 7 prepares for the 

equilibrium analyses, depicting majority aggregation-function curvature proper-

ties. 

1.1 Legal aggregation methods 

In collectives of n  judges, v  or more votes are required for rejection of a default 

proposition or default state (such as no liability,  ).
3
 All judges are required to 

vote (abstentions are not allowed).
4
 Such mechanisms are denoted  ;v n

M . By de-

                                                 
3
 The terminology is inspired by scientific use of a null-hypothesis being exposed to re-

jection under criteria defined in testing regimes (see Larsen & Marx [1986:286–304]). By 

rejecting a null, the alternative hypothesis is not claimed to be true. However, in law, the 

doctrines of res judicata and similar inspires terminology such as the defendant is liable 

or similar. 

Interestingly, in Scottish law, the form “not proven” is used when defendants are 

acquitted in criminal cases (Schauer & Zeckhauser [1996]). 

4
 In this sense, legal norm systems are ex post complete: action for denial of justice can 

be brought against a judge who refuses to give judgment on the ground of incomplete 

norms (von Mehren & Gordley [1977:1135]; for similar observations regarding interna-

tional law, Ross [1947:278–79]).  

 To the extent that a dispute arises about the meaning or scope of a judgment 

,
M

x y X Y  , parties, generally, can obtain a new judgment interpreting the former 

judgment. Such mechanisms must be distinguished sharply from revision and appeal and 
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fining appropriate defaults, attention can be limited to majority and super-

majority mechanisms.
5
 A super-majority requirement is: 

2

1
2

+1 if  is even

+1 if  is odd

n

n

n
n v

n


  


. 

A majority requirement is: 

2

1
2

 if  is even

 if  is odd

n

n

n
v

n


 


. 

In the case of majority rule, for analytical convenience, an odd number of judges 

will be assumed throughout, 2 1n m  ,  0,1,2,m . Majority mechanisms 

are denoted 2 1mM  . Due a fundamental symmetry property (neutrality among 

outcomes), they do not require default state specification. 

Dichotomous situations are of particular importance in law. Substantive 

norms may map directly over binary spaces. In legal proceedings, multi-

dimensional questions are often mapped into (sequences of) dichotomous ques-

tions. Bifurcated proceedings provide a prominent example: Consider a situation 

with possible damage levels  10, , , LY l l , 0  corresponding to no liability, 

and 1j jl l   to findings of liability; jl  ,  1,2, , 1j L  . Instead of vot-

ing directly on a large set of consequences in unitary trials, Y  may be partitioned 

into: 

10 , , Ll l
 

  
 
  

, 

                                                                                                                         
are exercised with care not to underscore judgment properties of res judicata (see gener-

ally Mackenzie et al. [2010]). 

5
 As documented by Vermeule [2005], sub-majority rules have legal relevance and in-

clude the U.S. Supreme Court’s “Rule of Four”, permitting four out of nine judges to 

grant a writ of certiorari. 
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and the question of liability determined at a first stage (voting on  ,IY    ), 

prior to a conditional second stage determination of damages (given liability vot-

ing on  1, ,II LY l l ). 

In non-dichotomous situations, the set of possible legal consequences is 

assumed to be linearly ordered and associated with a subset of the real numbers. 

The modeling reflects assumptions of the classical rule (extended to super-

majority settings). This fundamental legal aggregation method proceeds in two 

steps. Let 1 2, , , ny y y y  be a vector (profile) of individual judgment conclu-

sions, iy Y , and: 

I. rank the conclusions in non-decreasing order: 

   1: 2: :, , ,n n n nr y y y y ;
6
 

II. select the conclusion backed by a (super-)majority of v  or more  

 votes as the collective judgment, either: 

 counting votes from above in the mechanism denoted 
 ;v n

M  ; 

(prioritizing as default states at the lower end of Y ). It corre-

sponds to selection of 1:n v ny    

 counting votes from below in the mechanism denoted 
 ;v n

M   (pri-

oritizing as default states at the higher end of Y ). It corresponds 

to selection of :v ny ; or 

                                                 
6
 Formally, the procedural rule component  r   is a function : n nr   defined recur-

sively as (dropping possible ties in its statements):  

2: 1:
1: 2: :min , min , , max

n n
n i n i n n i

i y y i
y y y y y y


   , 

see Carter [2001:429]. 
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 counting votes from above or below in (neutral) majority mecha-

nisms 
2 1mM 

. It corresponds to selection of the middlemost vote, 

1:2 1m my  
. 

These methods produce a collective decision—an ordered pair ,
M

x y X Y  —

which has as concluding element y , identical to the individual judgment conclu-

sion of at least one judge,  
1

n

i i
y y


 . 

Remark 1.1 The classical rule is extensively discussed in Heckscher [1892]: The 

method goes back hundreds of years and, apparently, is so natural in judicial con-

texts, that its legislation is often considered unnecessary.
7
 Although considering 

judging as a form of cognition, Heckscher emphasizes that the rule leads to a 

binding decision corresponding to the complete judgment , ix y  of at least one 

of the judges (Section I.2 above). An aggregator, such as the mean, is, therefore, 

rejected, even if it would be a better tracker of an external truth (“det Sande”).
8
 

Supermajority rules do not concern the collective’s meaning (“Mening”), but pri-

oritize certain default states.
9
  

 

                                                 
7
 P. 154. The rule fits jurisdictions in the civil law tradition particularly well, where 

claims, in general, must be collected by obtaining money judgments and contract-based 

promises that cannot be converted into money, are not seen as creating legal obligations 

(Merryman & Pérez-Perdomo [2007:123]). 

8
 Pp. 161–62 and “Efterskrift”; see Remarks VII.5.1–2 below. 

9
 Pp. 17 and 106–8. For further remarks on Heckscher and implementation of the classi-

cal rule in more complex environments, see Nordén [2015]. 

 The classical rule is, for example, formulated in the Norwegian Civil Procedure 

Act (with a parallel provision in the Criminal Procedure Act): “Each ruling shall be made 

by majority vote unless otherwise provided by statute. [---] If there is no majority for any 

outcome when a sum of money or other quantity is to be determined, the votes in favor of 

higher amounts or quantities shall be added to the votes in favour of the closest amounts 

or quantities until a majority has been reached” (Sec. 19–3(4)). 
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1.2 Modeling the decision process 

The conception of judging as one of commitment, and ex ante identification of 

judges and norms, assume that judges vote independently—in and across stages 

in sequential trials—as uncertainty is resolved (intra-court decisional independ-

ence is a part of fair trial requirements). Because judges apply the law, voting 

fundamentally concerns consequences under substantive norms in outcome-based 

regimes or substantive norm elements in premise-based regimes. It does not take 

place on norms in  supp | X

Yls   . 

In most applications, the ex ante identification of norms and judges im-

plies that judges are modeled as random drawings (i.i.d.’s) from intangible popu-

lations, defined by norm structures  |

X

Yls
g
 

 , and conditioned by sources and 

facts ,ls x . A theory about norms and legal phenomena is constructed.
10

 Proba-

bility theory is not suggested as a “plausible account of the semantics of [legal] 

discourse” (Coleman & Leiter [1993:610]): judges are not perceived as perform-

ing lotteries.
11

 

                                                 
10

 See e.g. Wedberg [1951] and Ross [1958:6–11]. As emphazised by Gilboa [2009:55–

64], an advantage of formal representation is that questions about modality can be rele-

gated to the level of interpretation (see Section VI.3). 

11
 On the level of individual judges, Coleman & Leiter [1993:561] formulate the process 

that is modeled in the following manner: “The set of legal reasons is a function of two 

elements: (i) the set of valid or binding legal sources; and (ii) the set of interpretive oper-

ations that can be legitimately performed on those sources (to generate rules and princi-

ples of law) and the set of rational operations that can be performed on law and facts (to 

generate outcomes).” 

In some circumstances, it is relevant to directly identify judges and (weighted) 

lotteries. Lotteries are used to break ties in judicial panels, and procedural rules define 

lotteries over potential judges (corresponding to random sampling), representing notions 

of impartiality and independence (Sections I.2 and VII.3). Elster [1989] describes im-

portant examples of substantive law-prescribed lotteries (such as to allocation of scarce 

resources). Optimal contracts may be designed with explicitly stochastic elements (Bol-

ton & Dewatripont [2005:81]). Proof standards in both civil and criminal procedure are 

candidates for being stated in probabilistic terms (Fienberg [1989], Appendix A). 
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The constellation of sources and facts that condition ordinary norms, 

,ls x LS X  , become common knowledge in formal proceedings. From the ex 

ante perspective, the decision process may be described as follows: Judges inde-

pendently: 

 observe constellation ,ls x LS X  ; 

 apply meta norm X
Y

LS  to ls LS , leading to the abstract  

 mixed norm      1 1 2 2| | |J Jg ls g g ls g g ls g      

 |

X

Yn ls
g


  , and 

 vote in M  conditioned on x X  (or abstractly in a two-stage 

  procedure in theoretical norm element determination), generating  

 a binding decision ,
M

x y . 

Due to convexity of X

Y , it is not necessary to explicitly distinguish the levels of 

legal argumentation in the study of norm transformations. It will be demonstrated 

that mechanisms correspond to operators 

: X X

Y YM  , 

mapping abstract (mixed) norms X

Yg  to transformed (mixed) norms 

  X

M YM g g   (
    | | ,

X

Yls ls M
M g g

  
  ). In the case of a single judge 

( 1M ), the transformation is given by the identity mapping  X
Y

id g g . Due to 

the Section II.2 convention of writing prospects as vectors of a uniform dimen-

sion g  (  |
g

x X
g x 


  ), : X X

Y YM   can be depicted as a function with 

the product space      0,1 0,1 0,1
g

    as counter-domain: Decomposed to 

1, ,
g

M M M  , the g  components are given by  : 0,1i X

YM  . The im-
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age at X

Yg  is  M g    1 , ,
g

M g M g .
12

 In the binary case ( 2g  ), it 

suffices to focus on one component by the laws of probability (  
1

1
g

i

i
M g




 ). 

Equation Section 2 

2 Dichotomous environments: basic legal geometries 

To guide intuition and exemplify the approach, this section starts with an analysis 

of the abstract legal standard 
 ,

X

Fg
 

  defined in Example II.2.1, applied in 

three-member panels,  ;3v
M ,  2,3v . The norm is given by 

     | 1 , ; ,F x X x X
g x F x F x

 
     , with F  the cdf of the stochastic varia-

ble S , liability   occurring iff S x . 

Example 2.1 (Ex. II.2.1 continued: three-member panels). Judges vote directly on 

 ,Y     conditioned on x X  in  ;3v
M . Due to independence, the sequence in 

which judges vote does not matter. In the Figure 4.1 probability tree, at the first stage, 

Judge 1 concludes liability ( ) with probability  F x  (“up”) and no liability ( ) with 

probability  1 F x  (“down”). At the second stage, the two nodes which directly follow 

Judge 1’s possible decisions, Judge 2 concludes liability and no liability, with probabili-

ties  F x  and  1 F x , respectively. The same applies to the four nodes at the third 

stage. The 32  possible sequences of votes (elementary sample space outcomes) corre-

spond to tree branches. Each sample space point has probability equal to the product of 

the assigned branch segment probabilities:
13

  

                                                 
12

 Carter [2001:173]. 

13
 Formally, the segment probabilities are conditional, the condition being that the rele-

vant node is reached. Branch probabilities are calculated according to the chain rule 

(Bartoszyński & Niewiadomska-Bugaj [1996:95–97]), independence implying that mar-

ginal and conditional probabilities are equal. 
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Figure 2.1 Probability tree and elementary outcomes 

An unanimity requirement ( 3v  ) for rejection of default state  , corresponds to the 

event   . It has probability  
3

F x   . A majority requirement ( 2v  ) corresponds 

to  , , ,    , with probability      
3 2

3 1F x F x F x            . 

Hence, norms generated by  3;3
M  and  2;3

M  are given by: 

 

   

           

3 3

3 2 3 2

1 , ; , ,  and

1 3 1 , 3 1 ; , ,

x X

x X

F x F x

F x F x F x F x F x F x





        

                            

, (2.1) 

respectively. Limiting attention to the liability component and abstracting from the under-

lying legal fact, it is seen that  3,3
M  implies a strictly increasing and strictly convex 

transformation ( 3F ) globally on  0,1 , whereas 3M  implies a transformation strictly 

increasing and strictly convex on 1

2
0,    and strictly increasing and strictly concave on 

1

2
,1   . Both transformations are bijections, see Figure 2.2 and 7.1. 

 1 F x  

 F x
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  
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  

  

  

  

  

sample

space
 

elementary out-

come-probabilities
 

 
3

F x    

   
2

1F x F x      

   
2

1F x F x      

   
2

1 F x F x  

   
2

1F x F x      

   
2

1 F x F x  

   
2

1 F x F x  
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1 F x  
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The liability component, as a (composite) mapping from X  to  0,1 , cannot be 

so easily described. This will be a recurrent theme.
14

 ■ 

Abstract norms 
 ,

Xg
 

  are transformed  ;v n
M  with default  . In trans-

formed norms 
       ,; ;

X

v n v n
M g g

 
  , also denoted 

   ;
|

v n
x X

g x


  

       ; ;
| , |

v n v n
x X

g x g x


   ,. liability components    ;
|

v n
g x  are focused, 

without loss of generality (
       ; ;

| 1 |
v n v n

g x g x     for all x X ). 

Proposition 2.1 If each judge rejects   with probability  |g x , in 

 ;v n
M  with default  , for all x X : 

              
            ; ;

| | 1 | |
n

i n i

v n v n
i v

n
g x g x g x H g x

i





 
              

 
  (2.2) 

Proof. The proposition gives the tail probability of a binomial distribution, starting from 

v  with success probability  |g x  and n  trials. It follows directly from the fact that 

Bernoulli Trial conditions are satisfied if judges observe the same non-stochastic condi-

tioning fact x X  and vote independently (see e.g. Bartoszyński & Niewiadomska-

Bugaj [1996:334-6]). ◄ 

In (2.2), a distinction can be made between the “outer” aggregation 

     ;
: 0,1 0,1

v n
H   and the abstract norm component    | : 0,1g X   . The 

transformed norm component      ;
| : 0,1

v n
g X   , as a function of legal fact 

                                                 
14

 Both transformed norm liability-components are increasing on  ,x x X , but the 

classification of convex and concave regions is in general not preserved. (Outside the 

support, the probability distributions are degenerate, mapping to   with certainty if 

x x  and to   with certainty if x x .) 
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x X , is given by the compositìon 
     ;

| : 0,1
v n

H g X   , defined by 

    ;
|

v n
x X

H g x


 . This section studies the effects of the outer mechanism, sep-

arately from the underlying abstract norm. It gives simple results that reappear in 

more complex settings. Hence, in the next propositions,    | 0,1g x F    is 

taken as parametrically given ( x X  is fixed). In majority-mechanisms, 

     2 1 1;2 1m m m
h H  

    denote aggregation functions.
15

 

Remark 2.1 Outer aggregation function values can be obtained from binomial 

tables. Let  ; ,b n F  denote the binomial probability mass function and 

 ; ,B n F  the corresponding cumulative distribution function: 

 
         

1

; 0
; , 1 ; , 1 1; ,

n v

v n i v i
H F b i n F b i n F B v n F



 
       . (2.3) 

 

Proposition 2.2 If 3n   the bijection 
   ;v n

H F  is (i) strictly increasing 

on  0,1  with    ;
0 0

v n
H  ,    ;

1 1
v n

H  , (ii) strictly convex on 

 0, ,F v n 
   and strictly concave on  , ,1F v n 

  , with inflection point 

      1
2

, 1 1F v n v n    , and        ; ;
' 0 ' 1 0

v n v n
H H  . In majority 

mechanisms, the inflection point is invariant for all 1m  , 

  1
2

1,2 1F m m   , with   1
2 1 2mh F  .

16
 

                                                 
15

 The majority case notation is borrowed from Boland [1989]. 

16
 If 1n  ,    ;

'
v n

H   increases monotonically from 0 on  1
1

0, v
n



, and thereafter falls to 0 

from above on  1
1
,1v

n



:    ;
'

v n
H F  has a strict global maximum at F  (see 

Sydsæter [1981], Definition 5.13 and Theorem 5.6 regarding the point of inflection). 

Functions that are strictly convex (concave) on the open interval  ,a b  are strictly con-
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Proof. The identity 
           1

; 0
1 , 1

n Fi i n vv

v n
i v

n
H F F F C v n d

i
  





 
    

 
  , 

     , ! ! 1 !C v n n n v v   , allows differentiation. From Leibniz’s formula 

        
1

;
' , 1

v n v

v n
H F C v n F F

 
  , which is strictly positive if 0,1F  .

17
 From 

   ;
0 0

v n
H   and    ;

1 1
v n

H  , the continuous function is a bijection. Furthermore, 

                
       

2 1 1

;

2 1

'' , 1 1 1

, 1 1 1

v v n vn v

v n

v n v

H F C v n v F F n v F F

C v n F F v n F

   

  

     

    

. 

Hence,      ;
'' 0 0

v n
H F    iff         1 1 ,F v n F v n     . In super-majority 

mechanisms with an even number of judges,  2 1v n   implies  2 1F n n  , and in 

super-majority mechanisms with an odd number of judges,   1 2 1v n   , implies 

   1 2 1F n n   . In majority mechanisms with and odd number of judges 

 1 2v n  , gives 1

2
F   and  1 1

2 1 2 2mh   . ◄ 

The next proposition is illustrated in Figures 2.2 (part A) and 7.1 (part B).  

Proposition 2.3 If  0,1F : 

A) In all super-majority mechanisms  ;v n
M ,        ; ;

1 1
v n v n

H F H F   . 

B) In majority mechanisms 2 1mM  ,    2 1 2 11 1m mh F h F    . 

                                                                                                                         

vex (concave) on the closed interval  ,a b  (see Sydsæter [1981:247–54] for precise defi-

nitions and characterizations of concavity and convexity).  1h   is the identity mapping 

(hence concave and convex). 

17
 See Arnold, Balakrishnan & Nagaraja [2008], equation 2.2.14, regarding the identity. 

See Bartle [1976], Theorem 31.8, for Lebniz’ formula (at the end points in  0,1  the de-

rivatives are right and left hand, respectively). 
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Proof. A: From Remark 2.1, 
       

1

; 0
; , 1 ; ,

n v

v n i v i
H F b i n F b i n F



 
    . The general 

relation  ; ,b i n F   ; ,1b n i n F    gives 
     ;

1 ; ,1
n

v n i v
H F b i n F


    

 ; ,
n

i v
b n i n F


   

0
; ,

n v

i
b i n F




 .

18
 It follows that 

       ; ;
1 1

v n v n
H F H F    

   
1

0 0
; , ; ,

v n v

i i
b i n F b i n F

 

 
      1; , ; ,B v n F B n v n F    . It remains to ensure 

that  1 2 1v n v v n       is positive (  ; ,B n F  is increasing). With an even number 

of judges, super-majority implies  2 1v n  . It follows that 

  2 1 2 2 1 1 1v n n n       . With an odd number of judges, super-majority implies 

  1 2 1v n   . It follows that    2 1 2 1 2 1 1 2v n n n        . B: In the case 

of majority rule and an odd number of judges, 1v m   and 

   2 1 2 1 2 1 1 0v n m m        , for all m (cf. Boland [1989:181]). ◄ 

 

Figure 2.2 Liability probability in  ;v n
M  (with inflection point  ) 

                                                 
18

 See Bartoszyński & Niewiadomska-Bugaj [1996], equation 3.14, on the general rela-

tion. 

   0

;
1

v n
H F  

   0

;
1

v n
H F  

1
2  

1  

F  

   ;v n
H   

1
2  1  01 F  0F  

   0

;
1 1

v n
H F   

   0

;v n
H F  

  

F

   ;v n
H F  
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The impact of decision mechanism size-increases are most easily described in the 

context of majority rules. In this case, the inflextion point is fixed ( 1
2

F  ), and 

the S-shaped curves  2 1mh    monotonically become more pronounced, see Fig-

ure 7.1. For a given input  0,1F , the following are finite and asymptotic as-

pects, respectively, of the famous: 

Condorcet theorem
19

 

 

 

 

 

 

1
2 12

1
2 12

1
2 12

1
2 12

if 1,  for all 1
C1

if 0 ,  for all 1

if 1, 1 as 
C2

if 0 , 0 as 

m

m

m

m

F h F F m

F h F F m

F h F m

F h F m









    


   

    


   

 (2.4) 

Section 7 gives additional results on majority transformations. 

For a fixed n, increasing v shifts the S-shaped function graph to the 

south-east in Figure 2.2 (fewer terms are added in (2.2).
20

 

In small super-majority mechanisms, increasing size affects inflection 

points and curvature properties, making precise statements complicated (for in-

terim increases in n , there are no monotonicity properties corresponding to 

Proposition C2). Table 2.1 illustrates that increasing v  and n , such that 

1 2
3

vn  , tends to make the S-shaped curves more pronounced, monotonically 

                                                 
19

 Boland [1989]. The symbol   ( ) means that for any  1
2
,1F  (any  1

2
0,F ) and 

any m, 2 1mh   gets larger (smaller) as m increases: the bounded sequence 

  2 1 : 0,1,2mh m   is increasing (decreasing).  1 1
2 1 2 2mh    for all m. 

20
 A qualitative change happens if unanimity results:      ;

n

n n
H F F , is strictly 

convex on  0,1 . 
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reducing 
   ;v n

H F  for sufficiently small F , and monotonically increasing 

   ;v n
H F  for sufficiently large F .

21
 

Table 2.1: Size-effects under super-majority rules 

   

   

   

2;3

4;6

6;9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.028 0.104 0.216 0.352 0.500 0.648 0.784 0.896 0.972

0.001 0.017 0.070 0.179 0.344 0.544 0.774 0.901 0.984

0.000 0.003 0.025 0.099 0.254 0.483 0.730 0.914 0.992

F

H F

H F

H F

 

In sufficiently large mechanisms, monotonicity is obtained for all F , relative to a 

suitably defined point. In the limit, the aggregation function is turned into a step 

function, as illustrated in Figure 2.3. If  1
2
,1q  and qn    denotes the smallest 

integer larger than or equal to qn , a “q-rule mechanism” is defined as 
;qn n

M
    

 

with    ; 1
|

n

iqn n i
H F P J qn F

     
     . It follows: 

q-rule theorem (Fey [2003]) 

   

 

; ;

;

If , there exists an integer  such that for all 
)

 and lim =1

ii) If  , there exists an integer  such that for all 

 and lim

qn n qn nn

qn n qnn

F q n n n
i

H F F H F

F q n n n
ii

H F F H



            

       

 




 

  
;

=0
n

F 

  





 

More powerful asymptotic results are discussed in Section 6. 

 

                                                 
21

 Nordén [2015] compares  5;7
M  and  7;10

M  in detail. 
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Figure 2.3 Liability probability under a q-rule ( n ) 

Equation Section (Next) 

3 Polychotomous environments and the classical rule 

This section studies transformation of abstract norms X

Yg  with Y  . Let 

the g L   elements in    1 2supp | , , , L

x X
g x t t t


    be denoted such that 

'k kt t  if 'k k . With    | 0,1
g

g x


   for all x X , the the transformed norms 

    2 1; ;
, , X

mv n v n
g g g     generated in 

 ;v n
M  , 

 ;v n
M  , and 2 1mM   are depicted 

as: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

       

1 2

; ; ; ;

1 2

; ; ; ;

1 2

2 1 2 1 2 1 2 1

| | , | ,..., | ;

| | , | ,..., | ;  and

| | , | ,..., | ,

L

v n v n v n v n

L

v n v n v n v n

L

m m m m

g x g t x g t x g t x

g x g t x g t x g t x

g x g t x g t x g t x

   

   

   

 

 

 

, 

respectively. From independence, the order in which judges vote does not matter. 

The vector of individual conclusions 1 2, , , n

ny y y y   corresponds to a 

random sample (i.i.d.’s) of size n , from a population defined by the discrete 

1
2  

1  

F  

 
:

lim
qn nn

H
    

  

1
2  

1  q  1 q  
0F  01 F  
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conditional cdf  
x X

G t x


, see Figure II.2.5. Ranking of the judgment conclu-

sions in non-decreasing order 
1: 2: :n n n ny y y   , as dictated by the classical 

rule (Section 1.1), generates a variational sequence, the stochastic variable 
:k ny  

corresponding to the k-th (single) order statistic.
22

 The aggregator (transfor-

mation) involves the entire set of variables, 
1

n

i i
y


.
23

 It follows from the classical 

rule variants that 
 ;v n

M  , 
 ;v n

M  , and 
2 1mM 

 correspond to the 1n v  ’th order 

statistic 
1:n v ny  

, the v ’th order statistic :v ny , and the median 1:2 1m my   , respective-

ly. The following result will be needed: 

Proposition 3.1 If the individual judgment conclusions  
1

n

i i
y


 are i.i.d.’s 

from a discrete cdf  |G t x , for all x X , the following cdfs are gener-

ated: 

(i) in 
 ;v n

M   

 
 

 

   

         

;

1: 1:

1

1; ;

1

1 1 ,

v n

n v n n v n
M

n i n i

i n v

n v n v n

P y t x G t x

n
G t x G t x

i

H G t x H G t x t



   



  

 

 

 
         

 

       

  

(ii) in 
 ;v n

M   

 
 

      
;

: : ;
,

v n

v n v n v nM
P y t x G t x H G t x t



        

                                                 
22

 Arnold, Balakrishnan & Nagaraja [2008:1]. 

23
 In the case of a continuous population cdf, the probability of variational sequence 

equalities is zero, simplifying derivations (see the rank order function defined in Sec-

tion 1.1 and Section 6). 
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(iii) in 
2 1mM 

 

   

  
2 1

1:2 1 1:2 1

2 1 ,

m
m m m m

M

m

P y t x G t x

h G t x t


   



 

    
 

Proof. The notation stresses the fact that cdfs are obtained (and, hence, defined for all 

t ). (i): The first equality follows from Arnold, Balakrishnan & Nagaraja [2008], 

equation 2.2.13 and pp. 41–42. The second equality follows from Proposition 2.1 above. 

The third equality follows from Proposition 3.2 below. (ii) and (iii) follow by the same 

lines of argument. ◄ 

Proposition 3.2 The following identity holds for all  0,1F : 

       1; ;
1 1

n v n v n
H F H F

 
   . 

Proof. From Remark 2.1, 
       1; 1 0

; , 1 ; ,
n n v

n v n i n v i
H F b i n F b i n F



     
    . Due to 

the general relation    ; , ; ,1b i n F b n i n F   24
,   

0
1 ; ,

n v

i
b i n F




   

 
0

1 ; ,1
n v

i
b n i n F




          1 ; ,1 1; ,1 ... ; ,1b n n F b n n F b v n F          

     ;
1 ; ,1 1 1

n

v ni v
b i n F H F


      .◄ 

Transformed norm components can be obtained from  1:n v n
x X

G t x 


, 

 :v n
x X

G t x


, and  1:2 1m m
x X

G t x 


: 

Proposition 3.3 Let    0 1 2supp | , , , L

x X
t g x t t t


    . For each x X , 

prospect component  0 |g t x  in the abstract norm Xg  is trans-

formed to: 

                                                 
24

 Bartoszyński & Niewiadomska-Bugaj [1996], equation 3.14. 
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(i) in 
 ;v n

M  ,  

 

 
           

 
 

 

0

0

0 0

; ;;

0 0

;

if supp | ,

| 1 lim 1

if supp | , | 0

v n v nv n t t

v n

t g x

g t x H G t x H G t x

t g x g t x








 

   

  

. 

(ii) in 
 ;v n

M   

 

 
           

 
 

 

0

0

0 0

; ;;

0 0

;

if supp | ,

| lim

if supp | , | 0

v n v nv n t t

v n

t g x

g t x H G t x H G t x

t g x g t x








 

 

  

. 

(iii) in 2 1mM   

 

       
   

0

0

0 0

2 1 2 1 2 1

0 0

2 1

if supp | ,

| lim

if supp | , | 0

m m m
t t

m

t g x

g t x h G t x h G t x

t g x g t x

  




 

 

  

. 

Proof. (i) By right continuity of the Proposition 3.1.i cdf, at each point 
0t  with positive 

probability (each possible point under the discrete cdf  
x X

G t x


), 
 

 0

;
|

v n
g t x   

   
0

0

1: 1:limn v n n v n
t t

G t x G t x
   


            

0

0

; ;
1 1 lim 1 1

v n v n
t t

H G t x H G t x


      . 

By continuity of    ;v n
H  ,           0 0; ;

lim 1 1 1 1 lim
v n v n

t t t t
H G t x H G t x

  
     , giving 

(i). (ii) and (iii) follow by the same argument. ◄ 

Example 3.1 (Ex. II.2.3 continued: Proposition II.2.1 derived with a cdf). To demonstrate 

the approach outlined in this section, let 0  and 1   and define cdf  |G t x , as in 

Example II.2.3: 
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     

   
1

0 if 0

| 0 |  if 0,1

0 | 1|  if 1

t

G t x g x t

g x g x t


 


 


 


. 

From Propositions 3.3 and 2.2: 

 
           

        

   

            

   

; ;; 0

; ;

;

; ;

;

0 | 1 lim | 1 0 |

1 0 1 0 |

1 1 1 1 if 

1 1 1 1  if ,

1 1 0 0 if 

v n v nv n t

v n v n

v n

v n v n

v n

g x H G t x H G x

H H g x

H x x

H F x H F x x x x

H x x




   

   

   



      

   

 

It follows that: 

 
 

 
        ;; ;

0 if 

1 | 1 0 |  if ,

1 if 

v nv n v n

x x

g x g x H F x x x x

x x

 

 


   




. 

Hence, Proposition 3.3 gives the “direct” Proposition 2.1 (binary) result 

                 ; ; ; ;
| , | 1 ,

v n v n v n v n
x X x X

g x g x H F x H F x
 

   . ■ 

Equation Section 4 

4 Higher-dimensional norms and voting protocols 

Under the conjunctive “second stage” norm formulation c a b   in Exam-

ple II.2.2 and stochastically independent norm dimensions, the abstract standard 

 ,
a bX X

c c
g




  is given by 

 

 

       

,

,

| ,

1 , ; ,

a b a b

a b a b

a b x x X X

A a B b A a B b
x x X X

g x x

F x F x F x F x c c

 

 

 

 
. (4.1) 

Under an outcome-based voting regime (OBV), judges vote directly on conse-

quences, the set  ,Y c c  , to reject or not reject the (default) proposition of 

‘no liability’ ( c ). Under a premise-based regime (PBV), judges vote separately 
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on proposition a and on proposition b . The connection rule a b c  , is subse-

quently used to generate the collective decisions on liability. 

Judges observe facts ,a b a bx x X X   prior to voting (Section 6 consid-

ers voting on conditioning norm elements in abstraction from facts). The same 

aggregation rule is used for decisions on all propositions (composite or simple). 

Under super-majority, proposition c  is taken as a default in outcome-based 

regimes, and a  and b  as defaults in the premise-based regimes: v  or more 

votes out of n  are required for proposition rejections. 

Let c   and c  . From independence (orthogonality), conjunc-

tion, and Proposition 2.1, under OBV the transformed norm    ,;
a bX XOBV

v n
g



 
  is 

given by: 

 
   

             

;

; ;

| ,

1 , ; ,

OBV

a bv n

A a B b A a B bv n v n

g x x

H F x F x H F x F x

 

  
 (4.2) 

for all ,a b a bx x X X  . Under PBV transformed norm    ,;
a bX XPBV

v n
g



 
  is 

given by: 

 
   

                   

;

; ; ; ;

| ,

1 , ; ,

PBV

a bv n

A a B b A a B bv n v n v n v n

g x x

H F x H F x H F x H F x

 

    
 (4.3) 

for all ,a b a bx x X X  . 

 The next example demonstrates that, for some constellations of 

premise findings (“ultimate legal facts”, see Remark II.2.6),  ;

OBV

v n
M  lead to col-

lective decision  , whereas  ;

PBV

v n
M  lead to  . 
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Example 4.1 (a doctrinal paradox). Consider a case ,a b a bx x X X   decided under 

c a b   in 3M . Let    , 0,1 0,1
i

a b    denote Judge i’s findings with respect to the 

premises and assume the profile of findings 
1 2 3

1,1 , 1,0 , 0,1 . Each judge applies 

the doctrine consistently. In 
3

OBVM , two judges conclude no liability, and the judgment 

3

, ,
OBVM

a bx x   is rendered. In 
3

PBVM , two judges conclude that 1a   and that 1b  . 

The doctrine implies liability and the judgment 
3

, ,
PBVM

a bx x  is rendered.
25

 ■ 

Example 4.1 illustrates the doctrinal paradox: the judges (or, more generally, a 

group of agents) who decide under OBV and the constraint (or theory) c a b   

cannot reason their decision (OBV is a legislated procedure in many situations). 

It illustrates deep logical problems arising under aggregation of judgments of 

interconnected propositions. The phenomenon potentially affects any collective 

making decisions under a doctrine or theory.
26

 The present discussion is limited 

to aspects needed in the analysis of bifurcated trials in Section 5. For this purpose 

the simple two-dimensional, conjunctive formulation of doctrine is sufficient (a 

recent generalized version of the paradox is considered in Example VI.2). 

Let the probability of a paradox occurring in  ;v n
M  be denoted  ;v n

 . It 

depends on: 

 the abstract norm structure,  ,
a bX X

g


 
 ; 

                                                 
25

 Independence means that the sequence in which judges vote is irrelevant. There are 
34 64  possible profiles of findings. In addition to the Example 4.1 profile, five other 

profiles generate a paradox: 1,1 , 0,1 , 1,0 , 1,0 , 1,1 , 0,1 , 0,1 , 1,1 , 1,0 , 

1,0 , 0,1 , 1,1 , and 0,1 , 1,0 , 1,1  See List [2005] for a systematic combinatori-

al approach. 

26
 See Part I and Mongin [2012]. 



91 

 

 fact location, ,a b a bx x X X  , and 

 mechanism size n  and aggregation rule threshold v . 

Proposition 4.1 Let 
 ,

a bX X
g



 
  be defined by 

       
,

1 , ; ,
a b a b

A a B b A a B b
x x X X

F x F x F x F x
 

    in (4.1). The doctri-

nal paradox probability in  ;v n
M  under the conjunctive connection rule 

and orthogonality, 
   ;

: 0,1a bv n
X X   , is given by: 

           

                

; ; ;

; ; ;

, | , | ,PBV OBV

a b a b a bv n v n v n

A a B b A a B bv n v n v n

x x g x x g x x

H F x H F x H F x F x

    

 
. 

 ;v n
  is strictly positive in the interior of    , ,a ba b a bx x x x X X   , 

and zero elsewhere. 

Proof. See Nordén [2015]. ◄ 

Remark 4.1.A The proposition generalizes directly to higher-dimensional norms 

(Nordén [2015]). The function    ;v n
   is complex, even under Proposition 4.1 

assumptions.  

Remark 4.1.B In Landa & Lax’s [2009] framework (see Example II.3.5), Exam-

ple 4.1 can be illustrated as follows: Let the case-space    0,1 0,1C   , the first 

and second dimension representing proposition a and b, respectively, coded such 

that 1,1  corresponds to 1a   and 1b  , 1,0  to 1a   and 0b  , etc. The 

judges share the (conjunctive) base rule , 1,1 ,2rd   , corresponding to 

c a b  , but disagree about legal findings (case dimensions).  
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Due to the central role of majority mechanisms, paradox probabilities 

  2 11;2 1 mm m
   

  are particularly interesting. They can be calculated globally on 

a bX X  based on Proposition 4.1.
27

 The next result concerns maximal paradox 

probabilities on a bX X : 

Conjecture 4.2 The constellation of facts solving  2 1
,

argmax ,
a b

m a b
x x

x x   is 

given by 
,2 1 ,2 1,m m

a bx x  
    1 1

2 1 2 1* , *A m B mF q F q 

  , where for all 

1m    1
2 1 2

* ,1mq    is the unique (implicit) solution to: 

      
1

2 1 2 1 2 1 2 1* * 1 *
m m

m m m mh q q q


     , (4.4) 

with maximal values     
2 2

2 1 2 1 2 1 2 1 2 1* * *m m m m mh q h q          .  

Solutions to (4.4) and function values 2 1 *m   for  1, ,9m  are given in Ta-

ble 4.1. 

Remark 4.2 In the case of  1,2m , solutions to (4.4) are easily found: 

     
2

3 3 3 3* * 1 *h q q q  2
3 3
*q  .  5 5 *h q     

3 2

5 5* 1 *q q     

   
2

5 55 * 17 * 9 0q q   , with positive root 5* 0.656q  . Solutions 2 1 *mq   for 

                                                 
27

 Nordén [2015] reports function values 3  and  5;7
  over the probability space (that is, 

alternative combinations      , 0,1 0,1A BF F   , corresponding to fact variations ,a bx x  

in supp suppA B a bf f X X    (the paper focuses variation in decision mechanisms, 

rather than the abstract norm structure). List [2005] calculates doctrinal paradox probabil-

ities in majority mechanisms in what may be characterized as a sampling framework with 

exogenous parameters describing population parameters (see Remark VII.3.2). List also 

calculates maximal paradox probabilities. As explained in Nordén [2015], the substantive 

norm formulation (4.1) reduces the degrees of freedom compared to List’s constraint 

c a b   and therefore must imply lower maximal paradox probabilities. 



93 

 

3m   are approximate and based on simulations. 
2 1 *m 

 can be obtained using 

Remark 2.1: 

    
     

       

2 2

2 1 2 1 2 1 2 1

2 2

2 1 2 1

2

2 1 2 1 2 1

* *

1 ;2 1, * 1 ;2 1, *

;2 1, * ;2 1, * 2 ;2 1, *

m m m m

m m

m m m

h q h q

B m m q B m m q

B m m q B m m q B m m q

   

 

  

   

        

     

, 

 B   is the binomial cdf (with parameters 2 1m   trials and success probability 

2 1 *mq 
 or  

2

2 1 *mq   

Proof (outline). Due to due to continuity of 2 1mh  , given continuous cdfs ,A BF F ,  2 1m    

defined in Proposition 4.1 is continuous, hence obtains a maximum on the closed set 

   , ,a a b bx x x x . The maximum lies in the interior ( 2 1 0m    on the boundary). Assum-

ing sufficiently smooth cdfs, a maximum is necessarily described by the first order condi-

tions: 

 
                

                

2 1

2 1 2 1 2 1

2 1

2 1 2 1 2 1

' ' ' ' 0

' ' ' ' 0

m a

m B b m A a A a m A a B b B b A a

m b

m A a m B b B b m A a B b A a B b

x

h F x h F x F x h F x F x F x F x

x

h F x h F x F x h F x F x F x F x







  



  

  

 

  

 

 (4.5) 

On    int , ,a a b bx x x x , the derivatives ', 'A BF F  cancel. Assuming a symmetric equilib-

rium, A BF F q  ,  0,1q , (4.5) reduces to      2

2 1 2 1 2 1' ' 0m m mh q h q h q    . Sub-

stituting for 2 1 'mh   from (7.3) in Section 7 below gives (4.4). 

Uniqueness of solutions to (4.4) can be established as follows: Define the 

strictly convex function  2 1 : 0,1m    by      
1

2 1 1
m m

m q q q


   .  2 1 0 0m    

and  2 1 1 2m

m   , with  2 1 ' 0 0m   ,    2 1 2 1' , '' 0m mq q     if  0,1q  and 1m  . 

Consider      2 1 2 1 2 1m m mq h q q     . Solutions to (4.4) corresponds to points 

2 1 *mq   such that  2 1 2 1 * 0m mq   .       2 11 1 1 1
2 1 2 1 2 12 2 2 2

3 2 0m m

m m mh  

         



94 

 

for all 1m   and  1 1
2 1 2 2m   if m .      2 1 2 1 2 11 1 1 1 2 0m

m m mh          for all 

1m   and  2 1 1m    if m . From Proposition 2.2,  2 1mh    is strictly concave on 

1

2
,1   . Because  2 1m    is strictly convex,  2 1m    is strictly concave. It follows that 

 2 1m  , being a sum of concave functions, is (strictly) concave on 1

2
,1   .

28
 Hence, 

 2 1 0m q   has a unique solution 2 1 *mq   in  1

2
,1  for all 1m  . ◄ 

Table 4.1 Maximal doctrinal paradox probabilities 2 1 *m   

2 1

2 1

1 2 3 4 5 6 7 8 9

* .667 .656 .650 .645 .642 .640 .638 .636 .635

* .132 .228 .306 .371 .427 .478 .520 .559 .594

m

m

m

q







 

Remark 4.3 The proof of Conjecture 4.2 is incomplete because the possibility of 

non-symmetric solutions (in the probability space), has not been ruled out for 

2m  .
29

 In large mechanisms ( 2 1lim m
m

M 


), , a bX X  is partitioned into areas 

where the probability of paradoxes is 0 and 1, respectively (Nordén  

Equation Section (Next) 

5 Unitary versus bifurcated trials 

In Section 3, voting takes place directly on the set of legal consequences Y . This 

section considers the effect of partitioning Y , such that a decision is first made 

between dichotomous alternatives, followed by a decision on a subset of alterna-

tives conditioned by the first stage outcome. Such bifurcation of proceedings is 

typically jus cogens with respect to criminal liability, and representative of a 

                                                 
28

 Sydsæter [1981], Theorem 5.14.i. 

29
 Nordén [2015] proves a symmetric solution if 1m   (and for  5;7

  using a theorem on 

global univalence). 
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wider class of sequential decision-making regimes, frequently observed in legal 

procedures (Section I.1). 

This section considers a negligence standard protecting legal entitle-

ments, as introduced in Example II.2.1, combined with uncertainty regarding the 

scope of liability (damages). The negligence standard is given by the stochastic 

variable S  with cdf F , liability occurring iff 
sS x . The standard 

 0,1
sX

g  is 

represented by    1 , ;0,1
s s

s s
x X

F x F x


 , where 0  and 1  denotes no liability 

( ) and liability ( ), respectively. 

Let l lx X  be an index of (non-stochastic) facts relevant to the scope of 

liability. The norm defining damages 
 1 2, , ,

l

L

X

p l l l
g   is given by: 

      1 2

1 2, , , ; , , ,
l l

L

l l L l
x X

p x p x p x l l l


, 

with 1 20 Ll l l    .
30

 Substantive law is assumed to treat liability and dam-

ages as independent (a fact attested to by the various mechanisms that separate 

the decisions!).
31

 The substantive norm can be represented as in Figure 5.1. Using 

independence and the linear structure of probabilities, a reduced form (final dis-

tribution over outcomes) is obtained: 

            1 2

1| , 1 , , , ;0, , , , L

r s l s s l s L lg x x F x F x p x F x p x l l l   , 

,s l s lx x X X  . The (abstract) reduced norm is compactly denoted 

 1 20, , , ,

s l

L

X X

r l l l
g


 . 

                                                 
30

 Because damages are independent of sx , a simplified (discrete) version of 

Shavell’s [1987] loss function is defined (see Section IV.5.1 below). 

31
 See Wissler, Rector & Saks [2001] on the possible fusion (lack of independence) be-

tween decisions on liability and damages in actual decision-making. 
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Figure 5.1 Abstract and abstract reduced norm (local representations) 

In unitary trials (U), judges vote directly on consequences  1 20, , ,..., Ll l l  under 

rg . In two-stage bifurcated trials (B), judges vote on liability ( 0,1 ) under Fg  

at stage one, and over awards ( 1 2, ,..., Ll l l ) under pg  at stage two, given liabil-

ity at stage one. 

In dichotomous settings, with a super-majority rule, no liability is as-

sumed to be the default state. In polychotomous environments, the classical rule, 

aggregating “from above” ( ), protects default 0, or states corresponding to 

lower damage awards (Section 1.1). Unitary trial mechanisms are denoted 

 ;

U

v n
M 

. Under bifurcation, panel size and aggregation rule may vary at the two 

stages. The (combined) mechanisms are denoted 
; ;I I II II

B

v n v n
M 

   
   

. Varying first 

stage (I) and second stage (II) parameters, ,I Iv n  and ,II IIv n , respectively, a 

large set of mechanisms in  result. 

Judges vote conditionally on non-stochastic legal facts ,s l s lx x X X  . 

Commitment and independence are interpreted to imply that judges vote inde-

pendently, across stages, in bifurcated trials. 

 1 sF x  

 sF x  

0  

2l  

kl  

Ll  

 1 lp x  

 2 lp x  

 k lp x  

1l  

 

 

1l  

kl  

Ll  

   1s lF x p x  

   s k lF x p x  

   s L lF x p x  

 

 

0  
 1 sF x  

 L lp x  
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The next propositions compare transformation of the abstract reduced 

norm 
 10, , ,

s l

L

X X

r l l
g


  in 

 ;

U

v n
M 

 to the transformed norm generated in 

; ;I I II II

B

v n v n
M 

   
   

 leading to 
   1 20, , , ,, ; ; ,

, s l

L
I I II II

X XU B

l l lr v n v n v n
g g 



   
   

 , respectively. 

Particular attention will be paid to the case of uniformly sized mechanism at all 

“decision points” ( I IIv v v   and I IIn n n  ) and two-dimensional damage 

functions ( 2L  ), e.g. interpreted as uncertainty regarding availability of puni-

tive damages. These situations give sharp results. First, however, general trans-

formations are established (if somewhat tersely). Let 

 
,

# supp | , 1r

s l s l

g

r s l
x x X X

g x x L
 

     : 

Proposition 5.1 (Unitary Trials). Direct voting on  1 20, , ..., Ll l l  under 

   1 20, , , ,, ;

s l

L

X XU

l l lr v n
g 


  in 

 ;

U

v n
M 

 results in 
   1 20, , ,, ;

s l

L

X XU

l l lr v n
g 


  with 

 1rg
L    prospect components 

 
 0

, ;
| ,U

s lr v n
g t x x

 given by 

(  sF F x  and  k k sp p x , 1,2,..., 1k L  ): 

 
    

 
       

 
       

 
       

 
   

. 1 1, ;

1

. 1 2 . 1 1, ;

. 1 1 . 1, ;

2

. 1 . 1 2, ;

1

: ., ;

| , 1

| , 1 1

| , 1 1

| , 1 1

| ,

U L

s l v n Lr v n

U L

s l v n L v n Lr v n

U k

s l v n k v n kr v n

U

s l v n v nr v n

U

s l v n vr v n

g l x x H F p p

g l x x H F p p H F p p

g l x x H F p p H F p p

g l x x H F p H F p p

g l x x H F H















 



   

       

       

    

    

 
   

1

:, ;

1

0 | , 1

n

U

s l v nr v n

F p

g x x H F


















 


 

Proof. The (reduced) abstract norm has cdf: 
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 

 

  

      

          

          



1

1 2

1

1

1 2

1

1 2 1

0 if ,0

1  if 0,

1  if ,

| ,
1  if ,

1  if ,

1 if ,

s

s s l

s l k k

s s l l k l

L L

s s l l L l

L

t

F x t l

F x F x p x t l l

G t x x
F x F x p x p x p x t l l

F x F x p x p x p x t l l

t l







 


  


   



 
         



         
  

 

From Proposition 3.3.i 
 

           0

0 0

; ;, ;
1 lim , 1 ,U

s l s lv n v nr v n t t
g t x H G t x x H G t x x




    , 

 0 10, ,..., Lt l l . Then 
 

 
, ;

0U

r v n
g x

          ; ;
0

1 lim , 1 0 ,s l s lv n v n
t

H G t x x H G x x


    . 

From right continuity of  ,s lG t x x  and Proposition 2.2, it equals 

       : : :1 0 1 1 1v n v n s v n sH H F x H F x        . Similarly, (  sF F x  

 k k lp p x , 1,..., 1k L  ) 

 
                    1

1 1; ; ; ;, ;
1 1 1 1 1U

v n v n v n v nr v n
g l x H F H F Fp H F H F p


           

 
           

         

2

1 1 2; ;, ;

1 1 2; ;

1 1 1 1

1 1

U

v n v nr v n

v n v n

g l x H F Fp H F Fp Fp

H F p H F p p


        

      

 

 
         

         

1 1 : 1;, ;

1 1 1; ;

1 1 1 1

1 1

U k

k v n kv nr v n

k kv n v n

g l x H F Fp Fp H F Fp Fp

H F p p H F p p

 



           

             

 

 
           

         

1

1 2 1 1; ;, ;

1 2 1 1; ;

1 1 1 1

1 1

U L

L Lv n v nr v n

L Lv n v n

g l x H F Fp Fp H F Fp Fp

H F p p H F p p





 

 

           

             

 

 
           

             

1 1 1; ;, ;

1 1 1 1; ; ;

1 1 1 1

1 0 1

U L

L Lv n v nr v n

L Lv n v n v n

g l x H F Fp Fp H F Fp Fp

H F p p H H F p p

 

 

           

              

 

◄ 
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Proposition 5.2 (Bifurcated Trials). A bifurcated trial (first-stage voting 

on  0,1  under 
 0,1

sX
g  in 

;I Iv n
M

 
 

, and second-stage voting on 

 1 2, ,..., Ll l l  under 
 1 2, , ,

l

L

X

p l l l
g   in 

;II IIv n
M 

 
 

 results in 

 1 20, , , ,; ;

s l

L
I I II II

X XB

l l lv n v n
g 



   
   

  with  1L    prospect components 

 0

; ;
| ,

I I II II

B

s l
v n v n

g t x x
   
   

 given by given by (  sF F x  and 

 k k lp p x , 1,2,..., 1k L  ): 

 

   

 

      

 

; ;

1 1; ;

1

; ;

1 2 1 1; ; ;

; ;

;

| ,

1

| ,

1 1

| ,

I I II II

I I II II

I I II II

I I II II II II

I I II II

I I

B L

s l
v n v n

Lv n v n

B L

s l
v n v n

L Lv n v n v n

B k

s l
v n v n

v n

g l x x

H F H p p

g l x x

H F H p p H p p

g l x x

H







   
   

   
   



   
   

      
     

   
   

   

       

       

 

      
      

1 1 1; ;

2

; ;

1 1 2; ; ;

1

1; ;; ;

;

1 1

| ,

1 1

| , 1 1

II II II II

I I II II

I I II II II II

I I II II
I I II II

I I

k kv n v n

B

s l
v n v n

v n v n v n

B

s l v n v nv n v n

v n

F H p p H p p

g l x x

H F H p H p p

g l x x H F H p

g





     
     

   
   

     
     

             




      

    

 

   1 1;;
0 | , 1

II II

B

s l v nv n
x x H F        




























  


 

Proof. It follows directly from Proposition 2.1, that the first stage transformed norm is 

     
, ,

1 , ;0,1I I I Is sv n v n
H F x H F x

   
   

 . The second stage transformed norm follows 

from Proposition 5.1 with 1F  , IIn n  and IIv v  (in the discrete setting, 1F   im-



100 

 

plies that outcome 0 is impossible;  
;

1 1II IIv n
H

 
 

 ). The reduced distribution over the set 

of consequences is, therefore, given by the product of the probabilities assigned to con-

secutive segments of the corresponding probability tree branch. ◄ 

Comparison of 
 , ;

U

r v n
g 

 and 
   ; ;

B

v n v n
g 


 (a uniform number of judges and the same 

super-majority rule at all “decision points”), corresponds to a court voting direct-

ly on outcomes, or splitting the proceedings, respectively. 

Proposition 5.3 The (component-wise) difference between 
   ; ;

B

v n v n
g 


 and 

 , ;

U

r v n
g 

 is (  sF F x ;  k k lp p x , 1,2,...,k L ;    ;
,

v n
    denotes the 

function 
       ;

: 0,1 0,1 0,1
v n

    defined in Proposition 4.1, 

               ; ; ; ;
,

v n v n v n v n
H H H       , 

       , 0,1 0,1s lx x    ): 

   
 

 
 

       

   
 

 
 

       

   
 

 
 

     

; ; , ;

;

1 1

; ; , ;

1 2 1 1; ;

; ; , ;

1 1; ;

| , | ,

, 0 if , , 0,1

| , | ,

,1 ,1

| , | ,

,1 ,1

B L U L

s l s lv n v n r v n

L Lv n

B L U L

s l s lv n v n r v n

L Lv n v n

B k U k

s l s lv n v n r v n

kv n v n

g l x x g l x x

F p x x x p

g l x x g l x x

F p p F p p

g l x x g l x x

F p p F p



 

 

 

 

 



 



 







   



       



      

   
 

 
 

       

   
 

 
 

       

   
 

 
 

1

2 2

; ; , ;

1 1 2; ;

1 1

; ; , ;

1 1;

; ; , ;

| , | ,

,1 ,1

| , | ,

,1 0 if , , 0,1

0 | , 0 | , 0

k

B U

s l s lv n v n r v n

v n v n

B U

s l s lv n v n r v n

v n

B U

s l s lv n v n r v n

p

g l x x g l x x

F p F p p

g l x x g l x x

F p x x x p

g x x g x x

 



 

 

 





















 


 


    




     


 

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Proof. From Proposition 5.2 and 5.1 with I IIv v v   and I IIn n n  , the k-th compo-

nent difference 
   

     , ;; ;
| , | ,B k U k

a b a br v nv n v n
g l x x g l x x




  is given by: 

            

          

            

           
       

1 1 1; ; ;

1 1 1; ;

1 1 1 1; ; ;

. 1 1; ;

1 1 1; ;

1 1

1 1

1 1

1 1

,1 ,1

k kv n v n v n

k kv n v n

k kv n v n v n

v n k kv n v n

k kv n v n

H F H p p H p p

H F p p H F p p

H F H p p H F p p

H F H p p H F p p

F p p F p p 





 



      

             

         

         

       

 

The last equality follows from Proposition 4.1. If 1k  ,        1; ;
,1 ,1

v n v n
F F p    

   1;
,1

v n
F p   .

32
 If k L , 

       1; ;
,1 ,0 0kv n v n

F p p F      , hence 

   
 

 
         1 1; ;; ; ;

| | ,1 ,B L U L

L Lv n v nv n v n v n
g l g l F p p F p 

  
        . ◄ 

Proposition 5.3 confirms that the mechanisms are equivalent under determinacy, 

          , 1,1 , 1,0 , 0,1 , 0,0    and that they are equivalent for all values of   

given 0   (if x x , no liability is the only possible outcome under the sub-

stantive norm). In higher dimensions ( 3L  ), if 2 1k L   , the component 

differences (  sF F x  and  k k lp p x , 1,2,...,k L ) 

   
 

 
 

       

; ; , ;

1 1 1; ;

| , | ,

,1 ,1

B k U k

s l s lv n v n r v n

k kv n v n

g l x x g l x x

F p p F p p 

 






       
 

may be positive or negative depending on the location ,s l s lx x X X  . Few 

general statements seem possible, except regarding 1l  and Ll , due to the com-

plex structure of    ;
,

v n
   .

33
 

                                                 
32

 The paradox probabilities collapse at boundaries (certainty with respect to at least one 

norm component). 

33
 See Nordén [2015] for some curvature properties. 
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In the binary case ( 2L  ), sharper characterizations can be given. Let 

2l l  and 1l l ,  2 lp p x  and  1 1 lp p x  . Figure 5.2 illustrates 

   
 

; ;
| ,B

s lv n v n
g x x


  and 

 
 

, ;
| ,U

s lr v n
g x x  . 

, 

Figure 5.2 Transformed reduced norms from bifurcated trials (left node) and unitary tri-

als (right node), 2L  ,  sF F x ,  lp p x  

Component-wise probability differences are given by: 

 

   
 

 
        

   
 

 
        

   
 

 
 

;; ; , ;

;; ; , ;

; ; , ;

| | , ,

| | , ,

0 | 0 | , 0

B U

s l s lv nv n v n r v n

B U

s l s lv nv n v n r v n

B U

s lv n v n r v n

g l x g l x x F x p x

g l x g l x x F x p x

g x g x x





 

 

 







 

  

 

. (5.1) 

The corresponding cdf’s, 
   

 
; ;

| ,B

s lv n v n
G t x x


 and 

 
 

, ;
| ,U

s lr v n
G t x x

 are illustrated 

in Figure 5.3: 

 

Figure 5.3 Transformed norm cdfs in bifurcated and unitary trials: first-order stochastic 

dominance 

   
 

; ;
| ,B

s lv n v n
G t x x


 

1  

t  l  0  

 
 

, ;
| ,U

s lr v n
G t x x

 

l  

      ;
,s lv n

F x p x  

        ; ;
1

v n v n
H F H p  

   ;
1

v n
H F  

0  

l  

       ; ;v n v n
H F H Fp  

   ;
1

v n
H F  

0  

l  

l  l  

       ; ;v n v n
H F H p  

   ;v n
H Fp  
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Assume that an agent (plaintiff) is an expected utility maximizer, with (an in-

creasing) Bernoulli utility function  u  . Cdf  *G t  first-order stochastically 

dominates cdf  G t  if , for every non-decreasing function :u  , 

       *u t dG t u t dG t  .
34

 

Proposition 5.4 (First-Order Stochastic Dominance). If 2L  , 

     0, ,; ;

sX XB

l lv n v n
g 




  (

   
 

; ;
,

| ,
s l s l

B

s lv n v n
x x X X

G t x x


 

) first-order stochasti-

cally dominates 
     0, ,, ; ;

sX XU

l lr v n v n
g 




  (

   
 

, ; ;
,

| ,
s l s l

U

s lr v n v n
x x X X

G t x x


 

) for 

all ,s l s lx x X X  . 

Proof. The bounded cdf  *G t  first-order stochastically dominates  G t  if and only if 

   *G t G t  for every t (Mas-Colell, Whinston & Green [1995], Proposition 6.D.1). 

Therefore, Proposition 5.4 is a direct consequence of (5.1), as illustrated in Figure 5.3. ◄ 

The degree to which 
   ; ;

B

v n v n
g 


 (

   
 

; ;
,

| ,
s l s l

B

s lv n v n
x x X X

G t x x


 

) dominates 

   , ; ;

U

r v n v n
g 


 (

   
 

, ; ;
,

| ,
s l s l

U

s lr v n v n
x x X X

G t x x


 

) depends on: 

 the structure of the underlying abstract norms (as represented by 

norm components  F   and  p  ; 

 the location of ,s l s lx x X X  ; and 

 the specifics of the mechanism used (  ;v n
M  shaping    ;v n

  ). 

                                                 
34

 Mas-Colell, Whinston & Green [1995], Definition 6.D.1. 
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The majority case comparison of 2 1

B

mg   (
     1;2 1 1;2 1

,
| ,

s l s l

B

m m m m
x x X X

G t x p
    

 
) 

and ,2 1

U

r mg   (
     , 1;2 1 1;2 1

,
| ,

s l s l

U

r m m m m
x x X X

G t x p
    

 
) is of particular relevance to 

civil law. In this case, the maximum difference between the cdfs (maximum cdf 

jumps in Figure 5.3) is obtained at    1 1

2 1 2 1, * , *s l m mx x F q p q 

  , with 

maximum values given in Table 4.1.
35

 

From a rule of law perspective, it seems questionable to assign courts 

discretion as to sequencing of trials.
36

 

Equation Section (Next) 

6 Theoretical norm element determination 

In Sections 2–5, judges vote on (ordinary-level) norm conclusions, or possibly 

over norm premises, conditional on legal facts x X  or ,a b a bx x X X  . This 

section considers effects of judicial panels determining (ordinary-level) legal 

standard elements, prior to the application to facts. The assumption of non-

stochastic facts is maintained (Section VII.5 studies separation of decisions on 

law and facts under joint legal and epistemic uncertainty). 

Consider the standard  ,

X

Fg
 

  introduced in Example II.2.1, liability 

( ) occurring iff S x , S  with cdf  F t . In super-majority mechanisms, no 

liability ( ) is the default state. In panel decisions on S , in abstraction from or 

prior to the application to facts, the classical rule corresponds to “aggregation 

from below ( )” and selection of :v nS  (realizations of S  towards the upper sup-

                                                 
35

 In the case of s lX X , a maximum is obtained under the restriction s lx x  and there-

fore reduced (in general, the restriction will be binding in the optimization problem). 

36
 Under indeterminacy, the splitting of trial into two stages, can be seen as involving a 

structural commitment to “polarized justice” as criticized by Coons [1964]. 
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port boundary protects the defendant, Section 1.1). Applied to fact x X , liabil-

ity concluded iff 
:v nS x . The mechanisms are denoted 

 
,

;
T

v n
M   and the trans-

formed standards denoted 
   , ,, ;

T

X

F v n
g   

 . Parallel results for 
 

,
;

T
v n

M   are 

stated and will be used regarding factual aggregation in Section VII.5. Majority 

mechanisms, denoted 2 1

T

mM  , are neutral and do not require specification of de-

faults.
37

 Transformed norms are denoted , 2 1

T X

F m Yg   . 

Proposition 6.1 If 
 ,

X

Fg
 

  is a standard with stochastic variable S  

with cdf  F t , theoretical panel decisions on S  according to the classi-

cal rule, lead to: 

(i) in 
 

,
;

T
v n

M   (state   prioritized, liability iff :v nS x ), 

   , ,, ;
T

X

F v n
g   

 , given by: 

 
           , ; ;, ;

| 1 1 , ; ,T v n v nF v n x Xx X

g x H F x H F x



       

(ii) in 
 

,
;

T
v n

M   (state   prioritized, liability iff 1:n v nS x   ), 

   , ,, ;
T

X

F v n
g   

 , given by: 

 
           , ; ;, ;

| 1 ,1 1 ; ,T v n v nF v n x Xx X

g x H F x H F x



        

(iii) in 2 1

T

mM   (no default, liability iff 1:2 1m mS x   ),  ,2 1 ,

T X

F mg   
 , 

given by:  

       ,2 1 2 1 2 1| 1 , ; ,T

F m m mx X x X
g x h F x h F x   

      

                                                 
37

 
   

, ,
1;2 1 1;2 1

T T
m m m m

M M 
   

 . 
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Proof. Judges are i.i.d.’s  
1

n

i i
S


 from the continuous cdf  F t  (no conditioning on legal 

facts!). The resulting variational sequence is 1: 2: :n n n nS S S    (the probability of 

equalities is zero due to continuity). 
 

,
;

T
v n

M 
 corresponds to the single order statistic :v nS  

(Section 1.1). From Arnold, Balakrishnan & Nagaraja [2008], equation 2.2.13, it has cdf: 

        : : 1 ,
n

i n i

v n v n

i v

n
P S t F t F t F t t

i





 
               

 
 . (6.1) 

It follows that given x X ,    : :v n v nP S x F x  . From Proposition 2.1,  :v nF x  

    ;v n
H F x . This proves (i). 

 
,

;
T

v n
M   corresponds to order statistic 1:n v nS    (Section 1.1). By the same argu-

ment,       1: 1;n v n n v n
P S x H F x   

  . From the Proposition 3.2 identity, 

         1; ;
1 1

n v n v n
H F x H F x

 
   . Hence (ii). 

Majority mechanisms correspond to 1:2 1m mS    (Section 1.1). Hence, 

      1:2 1 1:2 1 2 1m m m m mP S x F x h F x       , confirming (iii). ◄ 

Remark 6.1.A In super-majority mechanisms, 
 

 
 

 , ,
, ; , ;

| |T T
F v n F v n

g x g x     

for all x X  with strict inequality on the support  ,x x X . The component 

difference 
 

 
 

 , ,
, ; , ;

| |T T
F v n F v n

g x g x     is equal to 

     1; , ; ,B v n F x B n v n F x   , see Proposition 2.3.A.  

Remark 6.1.B In majority mechanisms, for all x X  Proposition 2.3.B implies 

       ,2 1 2 1 2 1| 1 1T

F m m mg x h F x h F x        

Remark 6.1.C From Propositions 6.1.i and 2.1 (with  |g x   

     1 , ; , |FF x F x g x     , 
 

,
, ;

T
F v n

g   generated in 
 

,
;

T
v n

M   is equal to 
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 , ;F v n
g  generated in  ;v n

M  (in majority mechanisms, , 2 1

T

F mg   generated in 2 1

T

mM   

is equal to ,2 1F mg   generated in 2 1mM  )  

Remark 6.1.C implies that that norm transformations in  ;v n
M  (

2 1mM 
) can be 

analyzed as if taking place in 
 

,
;

T
v n

M   ( 2 1

T

mM  ). This fact has analytical interest 

and will be utilized repeatedly. For example, if the abstract standard 
 ,

X

Fg
 

  

has a sufficiently smooth cdf F , it has density  f t , see Example II.2.1. Let 

 :v nf t  be the transformed density corresponding to  :v nF t  arising from 
 

,
;

T
v n

M   

(see the proof of Proposition 6.1.i). From Remark 6.1.C, (6.1) and Bartoszyński 

& Niewiadomska-Bugaj [1996], equation 6.32, the transformed density generated 

by 
 

,
;

T
v n

M   and  ;v n
M  is given by: 

                  : : ; ;
' ' ' ' ,v n v n v n v n

f t F t H F t F t H F t f t t      , (6.2) 

and the majority mechanism density generated by 2 1

T

mM   and 2 1mM   is given by: 

         1:2 1 1:2 1 2 1' ' ,m m m m mf t F t h F t f t t          . (6.3) 

The “outer” results in Propositions 2.2 and 2.3 give insight into these complex 

transformations (majority mechanisms are considered in detail in Section 7). 

Example 6.1 (uniform densities). Parts IV and V use a class of uniform distributions 

 ln , lnS U L x L x  . The abstract norm has density: 

   

0 if ln

1
; , if ln , ln

2

0 if ln

t L x

f t x L t L x L x
x

t L x

  



   

  

. 

Closed form transformed densities may be obtained. For example: 
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 
 

      1:2 1 2 1

0 if ln

; , ln ln if ln , ln
2

0 if ln

m mm

m m m

t L x

k
f t x L t L x L x x t L x L x

x

t L x

  

  



       



 

. 

■ 

In large courts, the following asymptotic result provides approximations for 

analyses in later sections. Let  0,1q  and nq    denote the smallest integer, 

larger than or equal to nq : 

Proposition 6.2 (Legal standard asymptotic distribution under the classi-

cal rule in 
;

T
qn n

M
    

). If the standard cdf  F t  is sufficiently smooth 

with pdf  f t ,   1 0f F q   and  f t  continuous at  1F q
, and 

n   

  
  

 
 

1

:1 0,1
1

nq n D
S F q

n f F q N
q q



  





.
38

 

Proof. The proposition follows directly from Arnold, Balakrishnan & Nagaraja [2008], 

Theorem 8.5.1 on central order statistics. ◄ 

Remark 6.2 1
2

q   corresponds to majority mechanisms. 1
2

q   corresponds to 

 
,

:
T

v n
M   and 1

2
q   to 

 
,

:
T

v n
M  , respectively. For sufficiently large, but finite n, 

                                                 
38

 The symbol 
D  denotes convergence in distribution: Let 0 1 2, , ,    be a se-

quence of random variables and    k kP t F t   , 0,1,2,k  be their cdf’s. The se-

quence  k  converges in distribution if    0lim k
k

F t F t


  at every t  at which  0F t  is 

continuous. See Bartoszyński & Niewiadomska-Bugaj [1996], in and at Defini-

tion 10.2.3, for concept motivation and discussion. 
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:nq n
S
  

 is approximately    

  
2

1

11 ,
q q

n f F q

N F q




 
 

 
 
 

.
39

 If the abstract norm distribu-

tion is symmetric,    1

: :nq n nq n
E S F q 

      
  , otherwise  1

:nq n
F q 

  
  

(    

  
2

1

12

, :

q q

nq n nq n
n f F q

Var S 




        
 

  ).  

Example 6.2 (Ex. 6.1 continued: approximated density). In the majority case, 1

2
q  . Be-

cause  ; ,f t x L  is symmetric,  1 1

2
; , lnF x L L   and   1

2
ln ; , 0

x
f L x L    and con-

tinuous at that point. From Proposition 6.2 and Remark 6.2, for sufficiently large m , 

1:2 1m mS    is approximately from  
2

2 1
ln ,

x

m
N L


. ■ 

Equation Section (Next) 

7 Majority mechanisms 

Due to the central role of majority mechanisms in civil procedure and in deci-

sions on (pure) law, this section studies their properties in further detail. Curva-

ture aspects are highlighted, reflecting their impact in equilibrium analysis (see, 

especially, Parts IV and V). Without loss of generality, liability components of 

transformed standards  ,

X

Fg
 

  are considered. Due to the functional equiva-

lence of 2 1

T

mM   and 2 1mM  ,    ,2 1 ,2 1| |T

F m F mg x g x       2 1mh F x  are not 

distinguished (Remark 6.1.C). 

Propositions 2.1 and 2.2 imply that the “outer” aggregation functions 

   2 1 : 0,1 0,1mh    are strictly increasing bijections. If 1m  , they are strictly 

                                                 
39

 Linear transformation of normal variables are normal, Bartoszyński & Niewiadomska-

Bugaj [1996], Theorem 9.10.2. 
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convex on  1
2

0, , and strictly concave on  0,1 , with inflection point 1
2

F   (
1h  is 

 0,1
id ). In convenient notation: 

  2 1
0

( ) 1
F mm

m mh F k d     , with (7.1) 

             
2 2 2

2 1 ! ! 2 1 2 ! ! 2 1 1m

m
k m m m m m m

m

 
       

 
. (7.2) 

 
 

   

2 1

1

2 1

'( ) 1

''( ) 1 1 2

m

m m

m

m m

h F k F F

h F k m F F F







      


      

. (7.3) 

Fundamental symmetry properties around 1
2

F  —corresponding to the median 

of underlying abstract norm distributions—are expressed by  1 1
2 1 2 2mh    and 

   2 1 2 11 1m mh F h F    , for all m  and all  0,1F , see Proposition 2.3.B 

and Figure 7.1. The Condorcet theorem monotonicity property (C2, Section 6) is 

also illustrated. The 45  line represents a single judge,  1h F F . 

 

Figure 7.1 The graph of    1 2 1, mh h   , and    2 1 1m
h

 
  

   2 1 1m
h

 
  

1  

F  

 2 1mh    

1
2

 1  

1
2

 

2 1m 
 2 1m 

 

 2 1 1m
  

  2 1 1m
  
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At 1
2

F  , the slope of the aggregation function is given by: 

       
22 21

2 1 2
' 2 2 1 2 ! 2 !m m

m mh k m m m    . (7.4) 

These monotonically increasing derivatives will play a key role in the equilibri-

um analysis. Some function values are given in Table 7.1 For large m, 

   
2

2 ! !m m


 may be approximated by  
1

2
2 2 mm


 (see the Proposition 7.1–2 

proof). Accordingly: 

    1
2 1 2

' 2 1mh m m   . (7.5) 

In the limit, the derivative 
2 1 'mh 

 does not exist at 1
2

F  .
40

 

Table 7.1 Derivatives at the point of inflection 

 1
2 1 2

0 1 2 3 4 5 6 7 8 9

' 0 1.5 1.875 2.188 2.461 2.707 2.933 3.142 3.339 3.542m

m

h 

 

An immediate consequence of convergence property C2 in (2.4) is that for any 

(fixed) 1
2

F  ,  2 1lim ' 0m
m

h F 




 .
41

 However, there is no parallel to level-

monotonicity property C1, with respect to marginals 2 1 'mh  . As seen in Fig-

ure 7.1, if input values F  are sufficiently close to 1
2

, derivatives 2 1 'mh   grow in 

interim increases of m. These facts motivate considering the following experi-

ments: For 1m  , find input levels 2 1m   such that: 

    2 1 2 1 1' ' 1m mh h F    . (7.6) 

                                                 
40

 By L’Hospital’s Rule (Bartle & Sherbert [1982], Theorem 5.3.4) 

     lim 2 1 lim 4
m m

m m m 
 

    . 

41
 Because the limit function is constant on the half open intervals  1

2
0,  and  1

2
,1 , in the 

limit 2 1mh   must have a vanishing derivative. 
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The equation roots 
2 1m 

 partition the input set  0,1  into intervals where mar-

ginal incentives are boosted (slope of the aggregation functions increased), con-

stant (slope invariant) and weakened (slope decreased) relative to the single 

judge mechanism ( 045 -line). The roots also identify the points at which the lev-

el-differences in probability between  majority voting panels ( 2 1

T

mM  ,
2 1mM 

) and 

the single-judge mechanisms ( 1

TM  and 
1M ) are maximized and minimized, re-

spectively.
42

 

Proposition 7.1 Equation (7.6) has roots: 

 

 
, 2 1 2

2 11 4
1 1 ,

2 !
m m

m
m

m
k

k m
  

  
    
 
 

. 

Figure 7.1 and Table 7.2 suggest that , 2 1m    converge monotonically toward 1
2

 

from above and below, respectively: 

Proposition 7.2 For large m, the equations in (7.6) have roots: 

 
1

2

, 2 1

2 1 21
1 1 4

2

m m

m

m

m






  

 
  

    
  

 

, 

with 1
2 1 2m    and 1

2 1 2m    as m  . 

 

                                                 
42

 For example,  1 1
, 3 2 3

1    . The 1m   solutions corresponds to maximizing or min-

imizing the difference    3 1( )d g h g h g   on  0,1 .     1 2 1d g g g g   , with 

   0 1 0d d  . Critical points are roots of  ' 0d g  , equaling , 3   and 1
2

. Because 

1
3 2

  ,  3 0d   , 1
3 2

  ,  3 0d   , and  1
2

0d  , 3  and 3  are strict 

global maximum and minimum points for  d   in  0,1 , respectively. (Because  d   is 

continuously differentiable, no other candidates exist, Bartle & Sherbert [1982], Theo-

rem 5.2.1.) 
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Table 7.2 Partitioning input-values in majority mechanisms ( 2 1mM  , 2 1

T

mM  ) 

 

 

 

 

 

 

 

 

2 1 2 1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2 1

3 1 .2113 1 0.577 .7887

5 2 .2403 1 0.519 .7597

7 3 .2604 1 0.479 .7396

9 4 .2755 1 0.449 .7245

11 5 .2875 1 0.425 .7125

13 6 .2974 1 0.405 .7026

15 7 .3058 1 0.388 .6942

17 8 .3130 1 0.374 .6870

1

m mn m m      

 

 

 

 

 

 

 

 

 1
2

9 9 .3193 1 0.361 .6807 

 

Proof (Propositions 7.1 and 7.2). The requirements  2 1 ' 1mh F   are equivalent to 

 1 1
mm

mk F F   or     
1

1
m

mF F k


  , with mk  given in (7.2) . Taking the m-th root 

and arranging terms,  2 1 0m
mF F k   . The cubic equations admit two real roots: 

, 2 1

1 4
1 1

2
m

m
mk

  

 
   
 
 

, 

if and only if 41 0
m

  , or 4m  , m
m mk  , 1m  . Table 7.3 gives values for a sub-

set of values of m . For large m , the binomial coefficient in (7.2) may be approximated 

with Stirling’s formula
43

: 

 

 
   

2
11

2 222
2

2 2 ! 1
2 2 exp 2 2 2

!

mm m m
m m

m m m e
m mm

 


 
  

     
   

. 

It follows that:  
1

22 1 2 m mm
mk m m  

 
. Because: 

   

    

1 11
22 1 2 4 2 1

4 exp ln 2 1 exp ln

m m mmm m m m

m m m m

 



 
     

 

      

, 

                                                 

43
 Stirling’s formula: 

1

2! 2
n

nn n e


 . It is accurate even for small m (Feller [1968:52–

54]) 50  is approximated as 4.1703. Direct calculation gives 4.1702. 
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by L’Hospital’s Rule:
44

      lim ln 2 1 lim 2 2 1 0
m m

m m m
 

    , and 

   lim ln lim 1 2 0
m m

m m m
 

  , implying lim 4m
m

m
k


 . 

Table 7.3 Parameter values 

1 2 3 4 5 6 7 8 9

6 5.4772 5.1925 5.010 4.8816 4.7856 4.7108 4.6505 4.6009

5 4.667 4.5 4.4 4.333 4.286 4.25 4.222 4.20

m

m

m

b

  

◄ 

Because sequences of roots 
2 1m 

 are falling in m, and  2 1mh    are strictly in-

creasing and strictly concave on  1
2
,1  for all 1m  , 

     2 12 1 1
' 'mm

h F h F 
  if 

  2 12 1 1
, mm

F     
 
 

, see Figure 7.1. The inequalities extend to 

  2 1 1
,1

m
  




.
45

 This gives structure to the derivatives  2 1 'mh    that will be used 

in comparative statics: 

Proposition 7.3 

i) For all 0m   and all 
  , 2 1 1

,1
m

F   



, 
     2 12 1 1

' 'mm
h F h F 

  with 

equality if and only if 0m   and 
3F  . 

ii) For all 0m   and all 
  2 1 1

0,
m

F   



, 
     2 12 1 1

' 'mm
h F h F 

  with 

equality if and only if 0m   and 
3F  . 

Proof. (i) Let 1m   and consider the difference: 

                                                 
44

 Bartle & Sherbert [1982], Theorem 5.3.4. 

45
 At 1F  ,  2 1 ' 0mh F   for all 1m  . 
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         

    

11

2 1 12 1 1

1

' ' 1 1

1 1 ,

m mm m

m m mm

m

m m

h F h F k F F k F F

F F k F F k



  



    

     

 

with 

          

          

        

1

2

2 2
2 3 2 3 2 2 ! 1 ! 1 !

1

2 3 2 2 2 1 2 ! 1 ! 1 !

2 3 2 2 1 2 ! 1 ! .

m

m
k m m m m m

m

m m m m m m m m

m m m m m



 
       

 

     

   

. 

It follows that   
1

1 2 2 3 1m mk m m k


    , and: 

          2 12 1 1
' ' 1 1 1

m

m m mm
h F h F F F k b F F 

       , 

   2 2 3 1mb m m   . The sign of the difference is determined by the sign of 

 1 1mb F F  . The coefficient mb  falls monotonically in m with 1 5b  , and lim 4
m




 . 

The function   2 1m m mF b F b F      is strictly concave and has a global maximum at 

1

2
F   for all m, with maximum value  4 4 0mb   , and  1 1m   . Accordingly for 

each m, a unique (non-empty) interval where   0m F   (   0m F  ) is determined 

by mF r  ( mF r ), with mr  defined as the positive root of   0m F  , or: 

    
1

21 2 1 1 4m mr b
 

   
 

. Because m
m m mb k  , for all values of 1m  , 

2 1m mr    (see the Proposition 7.1–2 proof). Hence, it can be concluded that 

     2 12 1 1
' 'mm

h F h F 
 , not only in   2 12[ 1 1

, mm
    

 
 

, but in  2 1,1m  . 

If 0m  , 3 1' ' 0h h   for all  3 ,1F   by the definition of 3  and linearity 

of 1h . 

Proposition 7.3.ii follows by symmetry:    2 1 2 11 1m mh F h F    . ◄ 

Remark 6.1.C and     1:2 1 2 1m m mF t h F t    imply that richer characterizations 

of majority mechanism standard transformations are possible. Consider the class 
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of abstract standards, with mean equal to the median,    1 1
2F tdF t F    

(the class includes all symmetric ones
46

). As t  increases in supp f , F  increases 

from 0 to 1. Majority transformations of distributions F  with  1 1
2 FF    are 

mean-preserving because  1 1
2 1 2 2mh    for all m. From monotonicity property C2 

in (2.4) and Figure 7.1, it follows that     ' 1:2 ' 1 2 ' 1m m mF t h F t    is a mean-

preserving reduction in risk compared to     1:2 1 2 1m m mF t h F t    if 'm m , 

displacing weight from the tails of the distributions to the center, while keeping 

the mean constant.
47

 If supp f  is interpreted as an outcome space for expected 

utility maximizing agents with (increasing) Bernoulli utility function  u  , as 

defined in and at Proposition 5.4, an even sharper characterization can be given: 

Let  *G t  and  G t  be (any) cdfs with the same mean.  *G t  second-order 

stochastically dominates  G t  if for every non-decreasing function :u  : 

       *u t dG t u t dG t  .
48

 

                                                 
46

 A standard is symmetric around a constant (mirror line)   if the relation 

   1F t F t      (    f t f t    ) holds identically in t . Symmetry implies 

that the median is equal to the expectation (Larsen & Marx [1986:155,119]). 

47
 Mean-preserving reduction in risk is also called a reduction in the Rothschild-Stigliz 

sense. See Laffont [1989:24–30] and Mas-Colell, Whinston & Green [1995:194–99] for 

alternative characterizations. 

 Substantive norm symmetry implies that transformed norms are symmetric: 

From 
2 1 2 1

T

m mM M  ,    1:2 1 1:2 1'm m m mF t f t       . From (7.3), the transformed den-

sity equals     1
m

mk F t F t             1 1 1
m

mk F t F t          

    1
m

mk F t F t       . Hence,    1:2 1 1:2 1m m m mf t f t       . 

48
 Mas-Colell, Whinston & Green [1995], Definition 6.D.2. 
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Proposition 7.4 If 'm m , the transformed norm liability component 

    ' 1:2 ' 1 2 ' 1m m mF t h F t    second order stochastically dominates 

    1:2 1 2 1m m mF t h F t   . 

Proof. See Laffont [1989:32–33].◄ 

Remark 7.1 In large courts, the property of mean-preserving reduction of risk is 

applies to any underlying substantive norm distribution F  (as long as it is suffi-

ciently continuous around the median  1 1
2

F 
 and   1 1

2
0f F   ). By Proposi-

tion 6.2 ( 1
2

q   and 2 1n m  ): 

       
1

2
1 11 1

1:2 1 2 2
, 4 2 1m mS N F m f F


 

 

 
    

 
.  
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PART FOUR 

EQUILIBRIUM UNDER TRANSFORMED (PURE) NORMS 

Equation Chapter 1 Section 1 

1 Equilibrium analysis 

This part allows the set of legal facts to be X  constituted by choice or strategy 

spaces for agents with complete information about legal source constellations, 

meta-norms, and the decision mechanism in place. It corresponds to knowing the 

triple , ,ls M , with ls LS , X
Y

LS , and M  . A positive theory capa-

ble of, in effect, “contracting” the set of conditioning legal facts enhances com-

parison of the legal norms, objects in X

Y , defined globally on X . Such a theory 

may also allow a sharpening of law-in-force statements and even inform the 

analysis of meta-norms (Part VI). 

The legal source data and meta-norms generate abstract mixed norms 

 |

X

Yls
g
 

  (Section II.5). Part III explains how such abstract (mixed) norms are 

transformed in a subset of mechanisms M  , leading to transformed incentive 

structures (transformed mixed norms)  | ,

X

Yls M
g
 

 . A relevant theory (T ) for 

studying agent behavior under these structures, may be represented by a set of 

equations: 

 
    | ,

, | 0
n ls M

x X

T x g x




  . (1.1) 

A solution correspondence: 
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 *:T X

Yx X , (1.2) 

is sought, assigning to each 
 |

, X

Yls
g M
 

   system determined variables 

  | ,
*

ls M
x g X

 
  such that          | , | | ,

* , | * 0
ls M n ls ls M

T x g g x g
   

  .
1
 

While some general system-theoretic concepts are discussed in Sec-

tion VI.3, economic theory is a particularly relevant and powerful source for 

theory relations. Parametric equilibrium notions are used in the precaution model 

analysis in Parts IV and V and in the Section VI.3.1 applications to exchange 

economies (the latter include the core solution from cooperative game theory). 

Strategic non-cooperative solutions appear in Sections 2 and VI.3.2.
2
 The use of a 

solution correspondence formulation reflects possible non-uniqueness of 

equilibria (and core allocations). Continuous and discrete comparative statics is 

conducted, corresponding to changes in parameters which describe legal norms 

and legal decision mechanisms, respectively. This part considers pure norms 

(abstracts from uncertainty on the level of meta-norms). Part V considers (explic-

itly) mixed norms, permitting comparative static analyses referring both to ordi-

nary and meta-level norms. Throughout Parts IV and V absence of epistemic 

uncertainty is assumed, meaning that abstract norms X

Yg  and norms trans-

formed in single-judge mechanisms,  1 1g M g  need not be distinguished 

(compare Section VII.2). 

The confluence of legal uncertainty and uncertainty from the precaution-

model accident technology creates analytical challenges. Therefore, links be-

                                                 
1
 The equations in (1.1) correspond to propositional functions. Solutions (1.2) reduce the 

equations to identities. 

2
 See, generally, Arrow [1968] and Hahn [1974] on equilibrium notions and the methodo-

logical approach. 
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tween decision mechanisms and equilibrium outcomes are first investigated in 

the context of final offer arbitration in Section 2. Section 3 introduces the model 

of precaution. Equilibrium analysis is conducted under general assumptions 

about the abstract norm and the accident technology in Section 4. Section 5 ana-

lyzes uniform distributions. Section 6 uses results from Section III.6 to motivate 

the direct relevance of the Crasswell & Calfee [1986] analysis to large but finite 

mechanisms. The analysis is supported by simulations reported in Appendix A.1. 

Remark 1.1 Particularly sophisticated analyses of abstract norms are found in 

modern theories on incentives and contracts (see Laffont & Martimort [2002] and 

Bolton & Dewatripont [2005]). The theories concern “the choice of constraints as 

opposed to the choice within constraints”.
3
  

Remark 1.2 In Shavell’s [2006] framework (Example II.5.2), contract parties 

have complete information about a fixed meta-norm 
  

   
\ G

A A

A

K
 


 

  





 . 

Contract interpretation corresponds to use of this global rule to produce an 

obligationally complete contract. Given K , parties chose equilibrium contracts 

 K

Kg  , in a model with all variables contractible, and writing costs which in-

crease in number of terms.
4
 An optimal rule *M  is derived., and gives an im-

portant example of choice of meta-norms under equilibrium analysis  

The Parts IV and V equilibrium analyses concern choice within constraints, var-

ied exogenously via parametric change which represent decision mechanisms and 

                                                 
3
 James Buchanan (on constitutional economics) quoted from Stremitzer [2005:82]. 

4
 Risk neutral parties maximize expected value (no renegotiation). In applying K , courts 

only have information about the distribution of contract parties (types). 
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norm-based uncertainty on the ordinary and meta-level. Sections VI.3 and VII 

give examples of constraint choice at the ordinary and meta-level, respectively 

(VI.3.2 under equilibrium agent behavior). 

Equation Section 2 

2 Introductory example: final-offer arbitration 

Final-offer arbitration (FOA) is used in important contract disputes. This section 

reinterprets and extends a simple version of Farber‘s [1980] model of single issue 

final offer arbitration to situations with arbitration panels. Rather than letting 

agents be uncertain about a single arbitrator’s preference (fair settlement notion), 

the panel’s decision basis will be a contract-based standard. Panel members are 

identified, in the ex ante sense, with the abstract standard. Following Gibbons’ 

[1992:23-6] variant of the underlying model, a firm ( f ) and union ( u ) are una-

ble to reach a settlement on wages. Under FOA, each party’s strategy is given by 

an offer 
f fw W  and 

u uw W , respectively.
5
 The defining global procedural rule 

requires arbitrators to choose the offer closest to the wage defined by the con-

tract-based standard. The contract norm price element is represented by a sto-

chastic variable S  with cdf F . Arbitrators are i.i.d.’s from F  and assumed to 

observe the strategy profile ,f uw w  before voting in majority mechanism 

2 1mM 
 (or in 2 1

T

mM  ). Both the contract-based norm and the procedural rules 

defining the game structure are is common knowledge. 

The set of legal facts is taken to be 
f uX W W  . The FAO procedure 

means: 

                                                 
5
 The strategy sets are assumed to be  convex and compact in  . 
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,  if 

,  if 

f u f f u

f u u f u

w w w w s w s

w w w w s w s

  

  
. (2.1) 

 

The equations in (2.1) partition X . Let  ,f u f u u fW w w W W w w      and 

 ,f u f u u fW w w W W w w     . The norm resulting from the contract and 

procedural norm confluence can be represented as 
`

f uW W

Fg
 



 , given by: 

 
     

     

2 2

2 2

| , ,1 ; ,

| , 1 , ; ,

f u f u

f u f u

w w w w

F f u f u
W

w w w w

F f u f u
W

g w w F F w w

g w w F F w w





 

 

  

  

, (2.2) 

F W
g   and F W

g   denotes the restriction to W


 and W


, respectively.
6
 

                                                 
6
 Ad F W

g  : If 
u fw w  and  ,f us w w , first line inequality in (2.1) is equivalent to 

  2f us w w  . The event has probability    2

f uw w

fF F w


 . Clearly, ,f uw w  is also 

mapped to 
fw  if 

fs w . The event has probability  fF w  The union of the two disjoint 

events has probability  2

f uw w
F


. If 

f uw w w  , say,   0P S w  . It follows that each 

,f uw w W   is mapped to 
fw  with probability  2

f uw w
F


 (and hence to uw  with proba-

bility  2
1 f uw w

F


 ). Similarly, F W
g   follows from the first line in (2.1) by noting that if 

 ,u fs w w , the inequality is equivalent to   2f us w w  , an event with probability 

   2

f uw w

fF w F


 . Clearly, ,f uw w  is also mapped to 
fw  if 

fs w , an event with 

probability  1 fF w . It follows that ,f uw w  is mapped to 
fw  with probability 

 2
1 f uw w

F


  (disjoint events), and finally ,f uw w  to uw  with probability  2

f uw w
F


. 
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Figure 2.1 Abstract norm defined by final-offer arbitration 

It follows directly from Propositions III.2.1 and III.2.3.B that in majority panels, 

Fg  is transformed to: 

 

       

       
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f u f u

f u f u
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F m f u m m f u
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w w w w

F m f u m m f u
W

g w w h F h F w w

g w w h F h F w w





 

  

 

  

  

  

 (2.3) 

Assuming risk-neutral agents, minimizing or maximizing the expected wage 

settlement, respectively, the payoff functions induced by (2.3) are:
 7
 

 
        
       

,2 1 2 1 2 12 2

,2 1 2 1 2 12 2

, 1

, 1

f u f u

f u f u

w w w w

f m f u f m u m

w w w w

u m u f f m u m

w w w h F w h F

w w w h F w h F





 

  

 

  

    
  

   
  

. (2.4) 

                                                 
7
 The payoff formulation has been simplified by noting that a Nash equilibrium profile 

*, *f uw w  must lie in W 
: Assume that an equilibrium profile is in W   and that *fw  

is chosen by the panel. It follows (by continuity) that it could have been reduced, imply-

ing a direct increase in 
f  as well an indirect increase in 

f  (by increasing the probabil-

ity that fw  is chosen). Similarly, had *uw  been chosen by the panel, by the same argu-

ments it’s increase would have resulted in a higher u . Hence, a Nash equilibrium cannot 

exist in W  . 

uw  

uw  

fw  

fw  

 2
1 f uw w

F




 2

f uw w
F


 

uw  

fw  

 2

f uw w
F


 

 2
1 f uw w

F



W 

W 
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A Nash equilibrium *, *f uw w  is given by simultaneous optimization:
8
 

   

   

,2 1

,2 1

* 2 1 arg max , *

* 2 1 arg max , *

f f

u u

f f m f u
w W

u u m u f
w W

w m w w

w m w w











 

 
 

Define: 

 

 

        
,2 1

* * *1
2 1 2 12 2 2 2

, *

* ' 'f u f u f u

f m f u f

w w w w w w

m u f m

w w w

h F w w h F F

 

  

 

  

    

 (2.5) 

 

      

         

* *2 2

,2 1 2 1 2 2

2
* * * *1 1 1

2 1 2 12 2 2 2 2 2 2

, * ' '

'' ' ' ''

f u f u

f u f u f u f u

w w w w

f m f u f m

w w w w w w w w

f m m

w w w h F F

w h F F h F F


 

 

   

 

   

      

 (2.6) 

 
 

       
,2 1

* * *1
2 1 2 12 2 2 2

, *

1 * ' 'f u f u f u

u m u f u

w w w w w w

m u f m

w w w

h F w w h F F

 

  

 

  

    

 (2.7) 

 

      

         

* *2 2

,2 1 2 1 2 2

2
* * * *1 1 1

2 1 2 12 2 2 2 2 2 2

, * ' '

'' ' ' ''

f u f u

f u f u f u f u

w w w w

u m u f u m

w w w w w w w w

u m m

w w w h F F

w h F F h F F


 

 

   

 

   

      

 (2.8) 

From the first order conditions: 

 

 

 

, 2 1

,2 1

, *
0

, *
0

f m f u

f

u m u f

u

w w

w

w w

w










 








, (2.9) 

                                                 
8
 It is maintained that this and Section VI.3.2 use, in principle, sophisticated equilibrium 

notions: “In the one-person context, we are usually led to a well-defined optimization 

problem […]. While this problem might be difficult to solve in practice, it involves no 

conceptual issue. [---] But in the interactive multi-person context, the very meaning of 

“optimal decision” is unclear, since in general, no one player completely controls the 

final outcome. One must address the conceptual issue of defining the problem before one 

can start solving it. Game Theory is concerned with both matters: defining “solution 

concepts”, and then investigating their properties, in general as well as in specific models 

coming from the various areas of application” (Aumann & Hart [1992], preface). 
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it follows that   * * 1
2 1 2 2

f uw w

mh F


   in equilibrium. Because    2 1 : 0,1 0,1mh    

is strictly increasing, bijective, and  1 1
2 1 2 2mh    for all  0,1,2,...m  (Proposi-

tion III.2.2),  * * 1
2 2

f uw w
F


 , hence (†)  

* * 1 1
2 2

f uw w
F

  : the average of the equi-

librium offers equals the legal standard median. Substituting back into the first 

order conditions, (††)      
1

11 1
2 1 2 2

* * ' 'u f mw w h F F




  , relating the offer 

gap to the inverse of the derivative of the aggregation function and standard den-

sity property at the median (      1 11 1
2 2

'F F f F   given sufficient smooth-

ness). From (†) and (††), 

 

   
    

   
    

1 1
2 11 1

2 1 2 2

1 1
2 11 1

2 1 2 2

1
* 2 1

' 2 '

1
* 2 1

' 2 '

f

m

u

m

w m F
h F F

w m F
h F F













  

  

, (2.10) 

with         
221

2 1 2
' 2 1 2 ! 2 !m

mh m m m   , see equation (III.7.4). The solutions 

define a what Farber calls “contract zone[s]”    * 2 1 , * 2 1f uw m w m    , a 

range of settlements that the agents prefer to the FOA-induced outcome in 

2 1mM 
.
9
 The solutions (2.10) illustrate that the effects of legal uncertainty (“law 

shadows”) are eliminated in large courts because the derivatives  1
2 1 2

'mh   grow 

monotonically towards infinity. The solutions converge on the standard median 

irrespective of the amount of uncertainty in the underlying abstract norm. 

                                                 
9
 See Farber [1980:694–98] on 1M , importantly including risk-averse agents. 
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To ensure that the first order conditions define solutions, saddle-point 

conditions must be checked. Sufficient conditions for strict local equilibria are 

demonstrated for two families of distributions:
10

 

Example 2.1 (uniform distributions  ,S U w w ). The cdf is: 

   

0 if

; ,  if ,

1 if 

t w

w w

t w

F t w w t w w

t w








 




. 

  1' ; ,
w w

F t w w


  and  '' ; , 0F t w w  .  1 1
2 2
; ,

w w
F w w

  . Hence, from (2.6) and 

(2.8) (as  1
2 1 2

'' 0mh   ),  2 2

,2 1 *, *; ,f m f u fw w w w w    

 2 2

,2 1 *, *; ,u m u f uw w w w w        1
2 1 2

' 0mh w w    , It follows that locally 

unique interior equilibria are given by: 

 
 

 
 

1
2 1 2

1
2 1 2

1
* 2 1; , 1

2 '

1
* 2 1; , 1

2 '

f

m

u

m

w w
w m w w

h

w w
w m w w

h





   
   

  

   
   

  

. 

■ 

Example 2.2 (normal distributions  2,S N   ). The cdf is  2; ,F t     

   2

1
22 12

2
2 exp

t

d


    




  
  , with derivative (density)  2' ; ,F t     

   2

1
22 12

2
2 exp


   


  
 

. The second order derivative is  2'' ; ,F t     

     2

1
23 12

2
2 expt


    

     
 

. By symmetry  1 21
2
; ,F      

                                                 
10

 Because the cdf’s are continuous, existence of equilibria follows from appropriate 

fixed-point theorems, see in and at Proposition 8.D.3 in Mas-Colell, Whinston & 

Green [1995]. (The possibility of parameter constellations giving rise to boundary solu-

tions in the uniform case, or unbounded solutions in the normal case, has not been inves-

tigated.) 
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  1 2 21
2

' ; , ; ,F F      
1

2 22 


 , and   1 2 21
2

'' ; , ; , 0F F       (   is the 

distribution expectation, median and mode).  1
2 1 2

'' 0mh   , (2.6) and (2.8) give: 

 2 2 2

,2 1 *, *; ,f m f u fw w w     2 2 2

,2 1 *, *; ,u m u f uw w w     , which is 

equal to      1 2 21 1
2 1 2 2

' ' ; , ; , 0mh F F    

  . Hence, locally unique (interior) 

Nash-equilibria are given by: 

 
 

 
 

2
2

1
2 1 2

2
2

1
2 1 2

* 2 1; ,
' 2

* 2 1; ,
' 2

f

m

u

m

w m
h

w m
h

 
  

 
  





  

  

. 

■ 

Equation Chapter (Next) Section 3 

3 The model of precaution 

The analysis is limited to variations over the paradigmatic model of unilateral 

“accidents” with fixed activity levels and identical, risk-neutral (potential) injur-

ers. Losses are non-stochastic and there is no contact (bargaining) between (po-

tential) injurers and victims.
11

 Precaution investments are measured by costs 

x  , which reduce the probability of an adverse outcome p  at a decreasing 

rate as given by the function  : 0,1p X  , ' 0p   and '' 0p  . If an adverse 

outcome occurs, the loss 0L   is incurred. The maintained assumption 

 ' 0 1p L   ensures that it is efficient to commit resources to precaution. Total 

expected (real) costs are: 

                                                 
11

 Autarky in Ayres’ [2005] terminology. See Kraakman et al. [2004:76–77] regarding 

insulation of shareholders from damages and law that controls externalities. On the no-

tion of externalities, see Arrow [1970] and Example VI.3.5 below (allowing contracting 

around background liability law in a general equilibrium context). 
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    k x x p x L  . (3.1) 

   0 0k p L L  .    k L L p L L L   , hence    0k L k  and  k x L  

for x L .  k   is continuous and strictly convex.    
0

' 1 ' 0 0
x

k x p L

   . 

Hence,  k  has a unique strict minimum   arg minPE

x

x k x  in  0,L , satisfy-

ing: 

    ' 1 ' 0PE PEk x p x L   . (3.2) 

The abstract liability standard and induced incentive structures 

The set of legal facts is identified with the set of precaution investments, 

X  . An uncertain negligence standard is defined by a bounded stochastic 

variable S on X  with a continuous cdf F . Given an accident and care level x, 

liability is incurred if and only if S x  (noncompliance  ), an event with prob-

ability    1P S x F x   . Liability implies payment of damages equal to the 

loss, L. Hence, the abstract negligence standard  0,

X

F L
g   is represented as: 

      | ,1 ;0,F x X x X
g x F x F x L

 
   , (3.3) 

see Example II.3.3.
12

 The cdf  F t  is assumed to be bounded with support 

 supp ,F x x , and to be weakly uni-modal around the median,  1 1
2

PEF x  .
13

 

                                                 
12

 Liability is incurred only if an accident occurs according to a realization of  p  , em-

bedding the notion of causality (see Shavell [1987:118–26] on uncertainty over causa-

tion). 

 The norm is defined over losses  0, L  rather than liability  ,  . This con-

venient norm individuation is inconsequential because losses (damages) are non-

stochastic (compare Section III.5). 

13
 Weak uni-modality means that there exists a point 

0x  such that the density function f  

is weakly increasing for 
0x x  and weakly decreasing for 

0x x . (The property is not 

required in Proposition 4.1.) 
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 F   is supposed to be twice continuously differentiable everywhere except pos-

sibly at the support boundaries:  ' 0F x   if  x x  and x x ,    'F x f x  if 

,x x x . At the upper boundary, left and right hand derivatives are given by 

(separating only if the density function jumps at x ), 

 

 
   

 

 
   

0

0

' lim

' lim 0

h

h

F x h F x
F x f x

h

F x h F x
F x

h





 







  
 




   


.
14

 (3.4) 

In 
2 1mM 

, 
Fg  is transformed to  , 2 1 0,

X

F m L
g   , given by (Proposition III.2.2) 

     2 1 2 11 1 , 1 ;0,m m
x X

h F x h F x L 


   , from Proposition III.2.3B equal to 

     2 1 2 11 1 ,1 ;0,m m
x X

h F x h F x L 


   . Hence, minimands: 

       2 1 2 11m mK x x h F x p x L 
     , (3.5) 

define agents’ decision problems. Equivalent formulations are: 

     2 1 1:2 11m m mK x x F x p x L        . 

 1:2 1m mF x 
 denotes the cdf from theoretical norm element determination in Sec-

tion III.6. 

Equation Section (Next) 

4 Equilibrium analysis I: the structure of solutions 

Let *(2 1)x m   denote the level of care that minimizes expected cost defined by 

the minimands in (3.5). In case of non-uniqueness, *(2 1)x m   denotes a solu-

tion set. The term compliance will be used about efficient equilibria, and under- 

                                                 
14

 Continuity of F  means that density function jumps are finite (  0 f x    ). It will 

be demonstrated that solutions cannot occur at x . 
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and overcompliance about  * 2 1 PEx m x   and  * 2 1 PEx m x  , respective-

ly.
15

 

Equilibrium under legal certainty 

Solutions under legal certainty are considered as benchmarks. In this case, the 

abstract negligence norms are global rules  0,

X

c L
g  , described by 

   ,1 ;0,c c x X
F x F x L  

 , c  , mapping care levels x c  to liability if an 

accident occurs, and to no liability in all other situations (Example II.3.3). 

Define care level x  such that  PEx k x , see Figure 4.1. If 0m  , the 

following solution correspondence follows (Shavell [1987], Proposition 4.5):
16

 

  

 

 

 

 if 0

* 1; ,  if 

 if 

PE

PE

c c x

x c x x c x

x c x

  



 




.
17

 (4.1) 

Under legal certainty, the same solution is reproduced by all collectives: the equi-

librium (set) equality    * 2 1; * 1;x m c x c   holds for all m , because all judg-

es reach the unique outcome dictated by the doctrine.
18

 

                                                 
15

 Asymptotic outcomes may be used to motivate the terminology (Sections 4.1 and 6). 

16
 Set notation is used because c x  admits two equilibria. 

17
 Regarding c x ,  * 1;x x x , while implying a low accident probability, leaves vic-

tims uninsured, whereas  * 1; PEx x x  implies a higher accident probability but fully 

insures the victim. If c x , the negligence norm functions as strict liability ( g ). 

18
 If x c ,   0F x   and  2 1 0mh F   for all m . If x c ,   1F x   and  2 1 1mh F   

for all m . From (3.5), 

  
 

2 1

 if 

 if 
m

x p x L x c
K x

x x c


  
 


. 
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Equilibrium under norm-based uncertainty 

Interior solutions to the minimization problem defined in (3.5) exists in  0,L  for 

all m.
19

 Candidates in  0,L  are either at points where the derivative  2 1 'mK x
 

does not exist (that is, possibly at support boundaries x  and x ) or where 

 2 1 ' 0mK x   (that is, at critical points).
20

 

From the Condorcet theorem (Section III.2, monotonicity property C2), 

the following relations hold for all (finite) 2 1n m  :
21

 

 

         

         

       

         
         

3 1

3 1

1
3 1 2

1 3

1 3

 on 0, ;

 on , ;

;

 on , ;  and

 on , .

n

PE

n

PE PE PE PE PE

n

PE

n

n

k x K x K x K x x

k x K x K x K x x x

K x K x K x x p x L

k x K x K x K x x x

k x K x K x K x x x L

    


   


     


   


    

. (4.2) 

Figure 4.1 summarizes this situation (anticipating some results derived below). 

Because  k x  is strictly falling on 0, PEx   , by the first two lines in (4.2), 

                                                 
19

 By continuity of  2 1mK   , an absolute minimum exists in  0, L  (Bartle & 

Sherbert [1982], Theorem 4.6.4). At 
PEx ,   1

2

PEF x   and 

     1
2 1 2

PE PE PE PE

mK x x p x L k x    . From  
0

' 0
x

k x

 , and    0k k L , 

     0PEk x k k L  , hence the solution lies in  0, L  (because  2 1mK x x   if 

 0x L k  , there are no candidates x L ). 

20
 Sydæter [1981], Theorem 5.3. 

21
 On  0, x  0F   and 2 1mK k   since  2 1 0 0mh   . This establishes the first line. Re-

garding the second line, on  1

2
,x ,  1

2
0,F  . From C2,    02 1 2 1m m

h F h F 
  if 

0m m . Hence    02 1 2 1
1 1m m

h F h F 
        , implying 02 1 2 1m m

K K 
 . The third 

line follows from   1

2

PEF x   and  1 1
2 1 2 2mh    for all m. The fourth line follows from 

 1

2
,1F   on  ,PEx x , hence    02 1 2 1m m

h F h F 
  for 

0m m  (C2). Therefore 

   02 1 2 1
1 1m m

h F h F 
         and 02 1 2 1m m

K K 
 . The fifth line follows from 1F   

on  ,x L  and  2 1 1 1mh    for all m. 
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equilibria are not possible at the lower support boundary for any m; 

 * 2 1x x m  . Because  2 1mK x x   for all m  if x x  (fifth line), 

 * 2 1x m x  . Because  2 1

PE

mK x   for all m (third line), 

   * 2 1 min ,x m x    for all m. Section 4.2 demonstrates that 

   * 2 1 min ,x m x   , with the exception of a possible boundary solution 

 * 2 1x m x   only if 0m   and x   (necessary, not sufficient, conditions). 

 

Figure 4.1 Incentive structures (illustrated with x    and   0f x   and indi-

cating the area where curvature properties are “open”) 

4.1 Large panels 

In large panels, the following results: 

Proposition 4.1 The sequence of functions  2 1 :mK m N   converges 

point-wise to the limit function K  on  0, L  with: 

 1K x  

 PE PEx p x L  

L  

x  

 k x  

PEx L    

  

x  

 p x L

x  x  x  

 2 1mK x
 

   2 1 1m
K x

 

   1

2

PE PEx p x L    

 0p L  
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   

 

 1
2 1 2

 if  0

lim  if 

 if   

PE

PE PE PE

m
m

PE

k x x x

K x K x x p x L x x

x x x




  


    




. 

The proposition follows directly from the relations in (4.2) and the Condorcet 

theorem limit property (C2, see Section II.2).
22

 A large majority-voting panel 

transforms the minimization problem under uncertainty into a situation approxi-

mating an efficient rule under certainty: As m gets (sufficiently) large, the trans-

formed norm induces the injurer to take (from above, arbitrarily close to) effi-

cient care.
23

 

4.2 Finite panels 

In finite panels, detailed aspects of the aggregation function  2 1mh    and the 

abstract norm  0,

F X

L
g   influence outcomes. Denote strictly undercomplying 

solution candidates in  , PEx x  by  * 2 1x m   and overcomplying candidates in 

 ,min ,PEx x    by  * 2 1x m  . Incentives to invest in precaution are deter-

mined by: 

                                                 
22

 See Bartle & Sherbert [1982] Sec. 7.1 on point-wise convergence of sequences of func-

tions (smoothness and weak unimodality of F is not required for the proposition). While 

each of the minimands  2 1mK x  is continuous, the limit function is not: On  , PEx x , 

 1

2
0,F   and  2 1 0mh F 

   if m  (C2). Hence  2 11 1mh F 

     and 

2 1mK k 

  . At PEx , 1

2
F   and 1

2 1 2mh   . Hence, 2 1mK     for all m . On  ,PEx x , 

 1

2
,1F   and  2 1 1mh F 

   if m  (C2). Hence  2 11 0mh F 

     and 

2 1mK x

  . 

23
 The discontinuity point of the limit function is determined by the median of F. Hence, 

more generally, a convergence result holds with  1 1
2

F 
 replacing 

PEx  in Proposi-

tion 4.1: A large panel transforms the minimization problem under uncertainty to a prob-

lem parallel to a certain legal standard with  1 1
2

c F  . (Section 5.2.2 gives a more de-

tailed argument regarding large, but finite, panels.) 
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            2 1 2 1 2 1' 1 1 '( ) ' 'm m mK x h F x p x L h F x F x p x L  
      , (4.3) 

left and right derivatives possibly separating at support boundaries. Critical 

points in  ,x x  are defined by: 

  2 1 ' 0mK x  . (4.4) 

Legal uncertainty affects precaution investment incentives through two terms: 

 negatively, by discounting the marginal real value of precaution, 

 'p x L , through the liability probability   2 11 mh F x
   . The weak-

ened incentives through   2 1mh F x —or  1:2 1m mF x 
—will be called a 

level dimension of legal uncertainty 

 positively, by increasing the probability of a compliance decision 

  2 1 ' '( )mh F x F x , valued at  p x L . The strengthened incentives 

through   2 1 ' '( )mh F x F x —or    1:2 1 1:2 1 'm m m mf x F x    —will be 

called a marginal dimension of legal uncertainty 

Equation (4.3) shows that aggregation affects the level and marginal dimensions 

of legal uncertainty and thereby (interior) equilibria through (4.4). Due to the 

offsetting effects of level and marginal dimensions, and their interplay with the 

accident technology, it is difficult to characterize equilibria even in a single-judge 

context: Potential injurers may under or overcomply depending on specific as-

pects of the standard and the accident technology. However, Calfee-Craswell-

Shavell were able to demonstrate that overcompliance is connected to concen-

trated distributions (“narrow uncertainty”) and undercompliance to dispersed 

distributions (“broad uncertainty”), see Section 5.1.3. 

Unfortunately, it is not possible to sign the second-order derivative of the 

minimand 2 1mK   uniformly on  ,x x : 
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           

             

2 1 2 1 2 1

2

2 1 2 1

'' 1 ''( ) 2 ' '

'' ' '

m m m

m m

K x L h F x p x h F x f x p x

h F x f x p x h F x f x p x

  

 



    





  


 (4.5) 

However, it can be demonstrated that  2 1mK    is strictly convex for all m on an 

interval  2 1,ma x
, with 

2 1

PE

ma x  .
24

 Strict convexity implies local uniqueness 

of solution candidates  * 2 1x m   and endows the derivative of 
2 1mK 

 at PEx  

with important information regarding the structure of solutions. At 
PEx , 

   ' PE PEF x f x  and  ' 1PEp x L  , implying: 

      
   

 
1:2 1 1:2 1

1 1
2 1 2 12 2

'

' '

PE PE
m m m m

PE PE PE

m m

F x f x

K x h f x p x L

   

 



  . (4.6) 

At the efficient point, panel size only affects marginal dimensions of legal uncer-

tainty (   1
2

PEF x  , and  1 1
2 1 2 2mh    for all m , eliminating the level effect). It 

follows that the incentive to invest in precaution increases monotonically in m at 

PEx , see equation (III.7.4) and Table III.7.1.
25

 

4.2.1 Overcomplying solutions 

                                                 
24

 On ,PEx x ,  1
2
,1F , hence  1

2 1 2
,1mh   , 2 1 ' 0mh    and 2 1 '' 0mh    (Propostion 

III.2.2). (If 1m   2 1 '' 0mh    only if 
PEx x . 1 '' 0h  .). It follows that on ,PEx x 0 , 

0  and 0 . Due to weak unimodality, ' 0f   on ,PEx x , hence 0 . It 

follows that 2 1 '' 0mK    on ,PEx x . By continuity of, there is an interval  2 1,
PE

ma x
  to 

the left of 
PEx  where 2 1 '' 0mK    (  2 1 '' 0PE

mK x  ). 

25
 In fact, for all 1m  ,  2 1 'mh    is maximized at the point of inflection  1

2

PEF x  

(Proposition III.2.2). 
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By convexity of the minimand  2 1mK    in  2 1,ma x
, a necessary condition for 

 * 2 1 PEx m x   is  2 1 ' 0PE

mK x  , or equivalently: 

         1 1
2 1 1:2 12 2

' PE PE PE PE

m m mh f x p x L f x p x L    , 

marginal incentives for precaution from legal uncertainty, as transformed by the 

collective, must be sufficiently strong at 
PEx . This condition is satisfied irrespec-

tive of the standard (density) and accident technology for sufficiently large m 

(  1:2 1m mf x 
 peaks). 

However, the condition is not sufficient for a global overcomplying solu-

tion (
2 1mK 

 is not necessarily convex on  ,x x ). For interim values of m, solu-

tions  * 2 1x m   are possible. For sufficiently large m, however, 

overcompliance must result (see (4.2) and Section 4.3 below). 

It has been established that    * 2 1 min ,x m x    , see in and at (4.2). 

If x  ,    2 1 2 1

PE

m mK x K x   . Due to strict convexity on  2 1,ma x
 and 

necessity of  2 1 ' 0PE

mK x  , if solutions are strictly overcomplying, 

  2 1 * 2 1mK x m

   . Hence,  * 2 1x m   . It follows that a solution at 

the upper support boundary x  is possible only if x  . Hence, 

 * 2 1x m   , with  * 2 1x m x    only if x   (necessary, not sufficient 

conditions). 

The right hand derivative of 
2 1mK 

 at x  is constant and positive for all 

m;  2 1 ' 1mK x 

  . The left derivative of 2 1mK   at x  is given by (from (4.3), 

(3.4), continuity of F, and Proposition III.2.2): 
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      

    
 

 
   

2 1 2 1

1

2 1

0 if 1
1 if 0

' 1 1 '

1 if 1
' '

1  if 0

m m

m

m f x
m

K x h F x p x L

m
h F x F x p x L

f x p x L m




 



 




 
   
 
 


  

 

 (4.7) 

Hence, for all 1m  , 
2 1mK 

 is smooth and the derivative strictly positive at x . 

The same applies if 0m   and   0f x   . Because 

   2 1 2 1' ' 1 0m mK x K x 

    ,    * 2 1 min ,PEx x m x     are unique 

interior solutions given by first-order condition (4.4), see Figure 4.2.a ( x  ) 

and 4.2.b ( x  ). 

It remains to investigate the possibility of boundary solutions  * 1x x   

if  1 ' 0PEK x  , x  , and   0f x   ; the continuous  1K   has a kink at 

x   (necessary, not sufficient conditions). 

If  1 ' 0K x   , the solution candidate  * 1x   is interior with 

 * 1PEx x x    uniquely described by first-order condition (4.4), see Fig-

ure 4.2.c. However, if  1 ' 0K x   , the boundary solution candidate 

 * 1x x    results (Figure 4.2.d). From (4.7) this condition is equivalent to 

       1:2 1 1m mf x p x L f x p x L 

   : sufficiently high investment incentives 

at the boundary.
26

 (Section 5.1 identifies families of uniform distributions which 

implement global solutions  * 1x x .) 

                                                 
26

 The condition is not strong enough to rule out global solution candidates in  , PEx x . 
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Figure 4.2 Overcomplying solution candidates (  2 1 ' 0PE

mK x  ). a) and b): 

1m  , or 0m   and   0f x   . c) and d): 0m  ,   0f x    and x   . 

4.2.2 Efficient solutions 

The “hairline” situation: 

         1 1
2 1 1:2 12 2

' PE PE PE PE

m m mh f x p x L f x p x L    , 

by strict convexity of the criterion in  2 1,ma x
, implies that  * 2 1 PEx m x    

is a local strict minimum. Solution candidates   2 1* 2 1 mx m a

   cannot be 

ruled out. 

 1K   

  

  PEx x  



 * 1x 

 1K   

  PEx x  



 * 1x 

  

 1) ' 0K x  c  1) ' 0K x  d  

 2 1mK    

  

  PEx x  



 * 2 1x m   

 2 1mK  

  PEx x  



 * 2 1x m   

) x  a ) x  b

  
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Should an efficient equilibrium prevail, it would be shifted by a change 

in panel size or a perturbation of the distribution function F  (or the accident 

technology). 

For large values of m, there might not exist admissible distributions im-

plementing efficient solutions. (Section 5.2 derives a unique sequence of uniform 

distributions ensuring efficient solutions for small and interim values of m.) 

4.2.3 Undercomplying solutions 

If  2 1 ' 0PE

mK x  , strict convexity of 
2 1mK 

 on  2 1,ma x
 and the increasing 

2 1mK x   on  ,x   implies that a global solution must be undercomplying (suf-

ficiency). Furthermore, solutions are found among critical points 

 * 2 1 PEx x m x   , defined by (4.4).
27

 

The sufficient condition for undercompliance is equivalent to: 

         1 1
2 1 1:2 12 2

' PE PE PE PE

m m mh f x p x L f x p x L    , 

marginal incentives for precaution from legal uncertainty, as transformed by the 

collective, must not be too strong at 
PEx . Low expected (real) accident costs at 

the efficient level of care facilitates undercompliance, while increasing panels 

                                                 
27

 Regarding exclusion of the lower boundary solution candidates (in terms of deriva-

tives), 

                 2 1 2 1 2 1' 1 ' ' 0 ' ' 0m m mK x p x L h f x p x L k x h f x p x L


       . 

If 1m  ,  2 1 ' 0 0mh    (equation (III.7.3)). Hence    2 1 ' 'mK x k x


   and 2 1mK   smooth 

at x  and its strictly negative derivative independent of m. If 0m  , 

       1 ' 'K x k x f x p x L

  . It follows that      1 2 1' ' ' 0mK x K x k x

 

   , the first 

inequality strict if and only if   0f x   (the density function is discontinuous at x ). This 

situation is illustrated in Figure 4.1. Since all derivatives are strictly negative at x , it is 

confirmed that  * 2 1x m x    for all m. 
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and a large abstract norm distribution mode tend to undermine the condition (see 

Table 2.1). 

Due to the possible lack of convexity in  , PEx x , uniqueness of solutions 

to (4.4) is not guaranteed. In order to ensure that a solution candidate is not (lo-

cally) maximizing expected cost, it is necessary that   2 1 '' * 2 1 0mK x m

   . If 

  2 1 '' * 2 1 0mK x m

   , minima are locally unique.
28

 

Because  2 1 ' 0PE

mK x   is only sufficient, not necessary, for 

undercomplying solutions, breach of the inequality does not mean that a global 

minimum is overcomplying. But for large m, solutions must be overcomplying, 

see Section 4.3. (Section 5.2 identifies classes of uniform distributions that im-

plement undercomplying equilibria, for small and interim values of m.) 

4.2.4 Summary 

The structure of solutions has been characterized for finite panels and weakly 

uni-modal standards, with median at the efficient level of precaution, 
PEx . Only 

the case of  2 1 ' 0PE

mK x   allows definitive conclusions: under-investment 

 * 2 1 PEx x m x    is implied (if not uniquely). If  2 1 ' 0PE

mK x   characteri-

zations of (unique) candidates    * 2 1 min ,PEx x m x     are local: the pos-

sibility of global minima in  , PEx x  cannot be ruled out, for small or interim 

values of m . However, as will be demonstrated in Section 4.3, for sufficiently 

large m , (unique) global solutions lie in   ,min ,PEx x  . 

                                                 
28

 2 1 '' 0mK    is necessary for a critical point to be a local minimum. A strict inequality is 

sufficient (Sydsæter [1982], Proposition 5.9 and Theorem 5.5.ii). A property of 

2 1 '' 0mK    at critical points ensures isolated equilibria. It is a weak assumption of regu-

larity and allows use of the Implicit function theorem (see Section 5). 
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4.3 Comparative statics: panel size 

By the second line in (4.2), the sequence  * 2 1K m    

    2 1inf : , PE

mK x x x x   is monotonically increasing in m toward a number 

strictly larger than  . By the fourth line in (4.2), the sequence  * 2 1K m    

    2 1inf : ,PE

mK x x x x   is monotonically decreasing in m  to a number strict-

ly smaller than  . These monotonicity properties—deriving from transformation 

of the legal uncertainty level dimension     2 1 1:2 1m m mh F x F x   —imply that 

in sufficiently large panels, solution candidates are overcomplying: From strict 

convexity on  2 1,ma x
 unique global solutions  * 2 1x m  in   ,min ,PEx x   

defined by first-order condition (4.4) eventually result.
29

 By proposition 4.1, so-

lutions are arbitrarily close to 
PEx  from above for sufficiently large m. 

Monotonicity implies that solutions  * 2 1x m do not switch back and 

forth between under- and overcompliance as m increases. But a path from 

undercomplying equilibria needs not be unique (due to possible non-convexity of 

 2 1mK    in  2 1, mx a 
 ) nor monotonic, and (unique) overcomplying solutions 

 * 2 1x m   need not contract monotonically towards 
PEx . These difficulties in 

describing equilibrium effects of “interim” increases in m are due to the joint 

transformation of the marginal dimension of legal uncertainty: 

    2 1 ' 'mh F x F x   1:2 1m mf x  . 

                                                 
29

 It is possible (if unlikely) that a single 
0m  implies  0* 2 1 PEx m x   (see Sec-

tions 4.2.2 and 5.2.1). Because 2 1 'mK   is strictly falling in m,  * 2 1 PEx m x   for 

0m m . 
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To illustrate, consider an abstract norm with cdf F  and an accident tech-

nology such that an overcomplying global minimum    1 1
2

* 1PEF x x x     

results, corresponding to an input value   1
2

* 1 1F x   in Figure III.7.1. From 

the Craswell-Calfee-Shavell results, this is the case if the distribution is not too 

dispersed. Let the solid curve represent the tree-member panel, 
3h . For all such 

 F x ,      3 1h F x h F x : the level dimension of legal uncertainty—, ceteris 

paribus, pushing towards reduced precaution—is strengthened by the panel push-

ing towards reduced precaution.
30

 

Globally on  1
2
,1F   (  ,PEx x x ), there is not a corresponding uni-

directional impact from the panel, via the marginal dimension of legal uncertain-

ty: If 1
32

F    (  1

3

PEx x F 

  ), the marginal dimension is strengthened 

by the panel            3 1' ' ' ' 'h F x F x h F x F x F x  , pushing towards in-

creased precaution. However, the condition 
3 F  , that is 

   1

3 * 1F x x

   , from strict concavity of  3h   on  1
2
,1  is sufficient for 

the two dimensions of legal uncertainty to pull towards a contracted equilibrium 

   * 3 * 1x x . Because  3K   is strictly convex on  3 ,a x ,  * 3x  is a unique 

global optimum in   , * 1PEx x .
31

 

                                                 
30

 PEx  ( 1

2
F  ) and x x  ( 1F  ) are “level fixed-points”. 

31
 The condition is “too sufficient” in the sense that 3 'h  changes continuously around 

3 , whereas there is a discrete jump between 1h  and 3h  at 3 , implying that the con-

clusion    * 3 * 1x x  can be extended to an interval larger than  3 ,1  (larger than 

  1

3 ,F x


  in X ). 
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The argument generalizes to any increase in m from an input 

   1

2 1 * 1PE

mx F x

   , using the monotonicity property of  1mh     on 

 1
2
,1  regarding the level dimension (the Condorcet theorem), and strict concav-

ity of  2 1mh    on  1
2
,1 . But it also follows that, if    1

1 * 1mF x m

     

(
1m F   ), then     * 1 1 * 1x m x m     (see Figure III.7.1). For this re-

sult, the Proposition 2.3.i conclusion that      2 12 1 1 mm
h F h F 

  if 

  2 1
,1

m
F  




 if 
  2 1

,1
m

F  



is invoked.
32

 Using, then, the fact that the 

sequene of roots 
2 1m 

 is falling and strict convexity of  2 1mK    on  2 1,ma x
, 

2 1

PE

ma x  , it follows: 

Proposition 4.2 (sufficient conditions). Assume that the abstract norm cdf 

and accident technology is such that  * 1x  is a global solution in 

 ,PEx x  . Define the unique and falling sequence  2 1 1

2 1

m

mx F 
  

   

in  ,PEx x . For all 1m  , global equilibria  * 2 1PEx x m x    are 

unique and the following relations hold (ad inf) conditionally on the ab-

stract norm equilibrum  * 1x : 

                                                 
32

 The conditions clearly are sufficient, not necessary. 
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 

 

 

 

   
 

 
   

 
 

 
     

   

         7 5 5 3 3

* 5
* 3

3 * 7 * 3 * 7 * 5 * 7 * 1
* 1

* 1

* 3
2 * 5 * 5 * 3 * 1

* 1

1 * 3 * 1

* 1 * 1 , * 1 , * 1 ,

x
x

m x x x x x x
x

x

x
m x x x x

x

m x x

x x x x x x x x x x
    


 

      
 




   



 

      
   

 

Remark 4.1.A The “stacked” variables cannot be ranked internally. Derivatives 

    2 1 ' 'mh F x F x  change continuously around a point 
2 1m

x
 

 in X . By con-

tinuity, inequalities established in 
  2 1 1 2 1

,
m m

x x
    


 will also hold in the larger 

intrerval 
  2 1

2 1 1
,

m

m
l x

 

  
, where 

 

 2 1 1

2 1 1

m

m
l x

  

  
  is some number suffi-

ciently close to 
 2 1 1m

x
  

.  

Remark 4.1.B Indeterminacy for interim increases in m depends on the location 

of “input value”  * 1x  and the absolute size of panel variations considered. For 

 * 1x  sufficiently close to 
PEx , and m sufficiently small, an increase in precau-

tion, as a response to panel size growth, is a possibility for several size increases. 

This is illustrated in Figure 5.4.  

Remark 4.2. In case of a corner solution, the abstract norm maps legal fact 

 * 1x x  to no liability, with probability one (   1F x  ). Hence, locally, the 
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abstract norm       | * 1 ,1 ;0, 1,0;0,Fg x F x F x L L     is determinate (a 

“bright line”). However, it casts a shadow in the institutional context, due to the 

transformation of marginal incentives at x :
33

 Transformed norms 

          ,2 1 2 1 2 1| * 1 * 2 1 ,1 * 2 1 ;0,F m m mg x h F x m h F x m L        have 

non-collapsing nodes implementing equilibria      * 1 * 3 * 5x x x x    .
34

 

Section 5.1.1 derives a family of uniform standards, which implements 

 * 1x x . See Figure 5.4.  

Section 5.2.1 defines explicit families of distributions that identify input intervals 

assumed in Proposition 4.2. 

Proposition 4.3 Assume that the abstract norm distribution cdf and the 

accident technology is such that  * 1 PEx x  is a global solution. For 

each 1m  ,  * 2 1PEx x m x    is uniquely determined, eventually 

falling in m. 

The proposition is a direct implication of the monotonicity properties of 

 * 2 1K m   and  * 2 1K m  , from relations (4.2) and derivative (4.6) at 
PEx : 

Overcompliance is activated through transformation of the marginal dimension 

                                                 
33

 A necessary condition for the corner solution  * 1x x  is  1 ' 0K x   . At x , be-

cause   1F x  ,   2 1 1mh F x   for all m , including 0m  . Hence, at x  the level 

effect is invariant in panel size. However,   1 ' 1h F x   (  1 ' 0K x   ), but 

  2 1 ' 0mh F x   (  2 1 ' 1mK x 

  ) if 1m   implying a fall in precaution investment (see 

(4.7) and Figure 4.2.d). 

34
 The weaker conclusion    * 2 1 * 1x m x x    for all 1m   follows from the proof 

of interior solutions in Section 4.2.1. 
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of legal uncertainty (the level dimension is invariant at 
PEx , but  1

2 1 2
'mh   is 

strictly increasing in m). For sufficiently large m,  * 2 1x m  falls monotonical-

ly in m  (compare Remark 4.1.B). 

Assume that the abstract legal standard distribution cdf F  and the acci-

dent technology is such that a global minimum    1 1
2

* 1 PEx x x F     exists, 

corresponding to an input value 1
2

0 F   in Figure 2.2. From the Craswell-

Calfee-Shavell-results, this correspondins to a sufficiently dispersed standard. 

For all  1
2

0,F  ,  2 1 0mh F   as m  . Ceteris paribus, the level effect of legal 

uncertainty is dampened by increased panel size that pushes towards higher pre-

caution levels. 

As described above, a similar monotonicity property does not apply to 

marginals  2 1 'mh   . Let the solid line in Figure 2.2 represent  3h  . If 

    1

3* 1 , PEx F x


  corresponding to  1

3 2
, , from strict convexity of 

 3h   on  1
2

0,  (Proposition III.2.2),    3 1' ' 1h h     on  1
3 2
, , with equality 

at 
3 : Marginal precaution incentives are (weakly) strengthened, ceteris pari-

bus, pushing towards increased precaution investments. Accordingly 

    1

3* 1 , PEx F x


  is sufficient for    * 3 * 1x x .

35
 If, however, 

    1

3* 1 ,x x F 

 , the level and marginal effects from legal uncertainty 

transformation work in opposite directions, and the net effect is uncertain. 

                                                 
35

 Because the derivative 3 'h  changes continuously around 3 , but the level jumps 

from  1 3 3h     to  3 3 3h    , the condition is “too sufficient”: it holds for an 

interval larger than  1
3 2
,  in  1

2
0,  (larger than   1

3 , PEF x


  in X ). 
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From the fact that the level mononicity property holds for all m, and us-

ing the increasing sequence of input levels   2 11

2 1

m

mF x
 

    from Proposi-

tion 2.1-2 and the property of the strictly convex marginals  2 1 'mh    on  1
2

0,  

noted in Proposition III.7.3.ii, it follows: 

Proposition 4.4 (sufficient conditions). Assume that the abstract norm 

distribution cdf and the accident technology is such that  * 1x  is a glob-

al solution candidate in  , PEx x  and define the increasing sequence, 

 2 1 1

2 1

m

mx F 
  

  . If   2 1
* 1

m
x x

 
 , then    * 2 1 * 1x m x   for 

all 1m  . 

 

 

 

 

 

 
 

 

 
 

           

          3 5 5 7 7 9

* 7

3 * 5 * 1

* 3

* 5 * 5
2 * 1 * 1

* 3 * 3

1 * 3 * 1 * 3 * 1 * 3 * 1

* 1 * 1 , * 1 , * 1 ,

x

m x x

x

x x
m x x

x x

m x x x x x x

x x x x x x x x x x
     




 



  
   

  

   

     
  
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Remark 4.3 From the inequalities in (4.2),  * 2 1 PEx m x   for sufficiently 

large m from any initial   * 1 , PEx x x   . The lack of structure in the table (weak 

predictions) reflects that the (eventual) convergence to efficiency, in general, is 

not monotonic.
36

 Remark 4.1.A about local extension of the comparative statics 

from continuity applies.  

Section 4.2.3 establishes sufficient (not necessary) conditions for global 

undercomplying solutions  * 2 1x m . In terms of size m : 

Proposition 4.5. If there exists an m N  such that 

     1 1
2 1 2 2

' PE PE

mh f x p x L  , there exists global undercomplying solu-

tions  * 2 1 PEx x m x    for all m m ,  , 0,1,2,...m m . 

Remark 4.4 Relative to a class of abstract norms and accident technologies, there 

might not exist an m  such that the proposition inequality holds. Function values 

 1
2 1 2

'mh   are reported in Table III.7.1. (Sufficient conditions for undercomplying 

equilibria under uniform distributions are given in Proposition 5.7.)  

Equation Section (Next) 

5 Equilibrium analysis II: uniform distributions 

This section specializes on a class of abstract norms with distributions symmetric 

and uniformly distributed around the efficient point,  ,PE PES U x x x x   and 

  xp x e . Because  ' 0 1p L  , an interior efficient point lnPEx L  is given 

by (3.2). The family of cdfs is given by: 

                                                 
36

 All abstract equilibria in Figure 5.4 share this property. 
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 
 

 
0,ln

0 if ln

ln
;  if ln ln

2

0 if ln

x L

x L x

x L x
F x x L x x L x

x

x L x



 


 
    

  

. 

The parameter  0,lnx L  measures legal uncertainty and allows (continuous) 

comparative statics. An increase in x  corresponds to a mean-preserving increase 

in risk, see Section III.7 and Figure 5.2. The equilibrium analysis is supported by 

simulations with 15.154eL e   and  0,x e , solutions reported in Appen-

dix A.1.
37

 

The cdfs are continuous with  ; 0F x x  ,   1
2

ln ;F L x  , and 

 ; 1F x x  .  ;F x  is continuously differentiable everywhere, except at the 

support boundaries. Define  ; 'F x x x F   . ' 0F   if x x  or x x , and 

    1
2

' ;
x

F x f x x   on  ,x x . At x , derivatives are given by: 

   

 

1
' ;

2

' 0

F x f x x
x

F x






 


 


. 

The accident technology allows separation of real and institutional factors. Criti-

cal points are given by: 

 

   

       

2 1 2 1

2 1 2 1

real factors
level dimension marginal dimension

institutional factors

; ' ;

1 1 ; ' ; ' ; 0

m m

x

m m

K x x x K x x

e L h F x x h F x x F x x

 



 

  

 
 

     
 
 

. (5.1) 

                                                 
37

 The qualitative illustrations below reflect that L e , implying that xe L  and x  inter-

sect to the left of the efficient point, ln L . 
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Let  2 1 2 1 2 11 ' 'm m mh h F      . 
2 1 0m    on  ,x x . Equation (5.1) is equiva-

lent to: 

 
2 1ln ln mx L    . (5.2) 

As is demonstrated in Section 4.2, solutions  * * 2 1x x m   are characterized 

by *x x  for all 0m  , and for all 1m  ,  * min ,x x   

 1
2

min ln ,lnL x L   .
38

 A boundary solution *x x  is possible only if 0m   

and x  , that is, 1
2

x   (necessary, not sufficient). Interior solutions can be 

characterized as follows:
 
 

 undercompliance iff 
2 1 1m   , that is, the level effect dominates the 

marginal effect of legal uncertainty as transformed in panels: 

       2 1 2 1* ' * ' *m mh F x h F x F x  ; 

 compliance iff        2 1 2 1 2 11 * ' * ' *m m mh F x h F x F x      ; and 

 overcompliance iff 
2 1 1m   , that is, the marginal effect dominates the 

level effect,        2 1 2 1* ' * ' *m mh F x h F x F x  . 

Detailed aspects of the solutions in the single-judge case ( 0m  ) are utilized for 

characterizing solutions with 1m   (compare the role of  * 1x  in Proposi-

tions 4.2–5). Abstract norm equilibria are studied in Section 5.1 and equilibria 

under transformed norms in Section 5.2. Frequent reference will be made to the 

minimand derivative at the efficient point (compare (4.6)): 

     1
2 1 2 1 2

ln

1
' ; '

2PE

PE

m m
x L

K x x x h
x

 


  . (5.3) 

                                                 
38

   ln1 1 1

2 2 2
ln lnPE PE Lx p x L L e L L       . 
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5.1         Abstract norms 

 ;F x x  is linear in x on  ,x x  and  1h   the identity function. It follows that the 

minimand    1 ; 1 ; xK x x x F x x e L       is strictly convex on  ,x x .
39

 Hence, 

for each  0,lnx L , a unique global minimum  * 1x  exists. The solution is a 

function of x  and is denoted  1; x . 

5.1.1 Solutions 

Proposition 5.1 If  ln ,lnS U L x L x   and   xp x e , lnPEx L  

and   1
2

ln 1; lnL x x L      is uniquely given for all  0,lnx L  

with: 

 

 

 

 

ˆ1; ln   if 0 ;

ˆ ˆln 1; ln   if 1;

1; ln   if 1;  and

ln 1; ln   if 1.

x L x x x

L x L x x x

x L x

L x x L x









   

    

 

   

 

The interior equilibria, obtained for ˆ 0.352x x  , are given by the (im-

plicit) solution to (5.2) with 0m  . 

Solutions are illustrated in Figures 5.1 and 5.4. 

Proof. From (5.3),    1
1 2
' ln ; 1

x
K L x x  . By strict convexity of  1 ;K x  on  ,x x , a 

unique solution for each  0, lnx L  follows: 

    

    

    

1

1

1

1; ln  iff 1 ' ln ; 0

1; ln  iff 1 ' ln ; 0

1; ln  iff 1 ' ln ; 0

PE

PE

PE

x L x x K L x

x L x x K L x

x L x x K L x







   

   

   

 

                                                 
39

 Strict convexity follows from (4.5) because 1 '' ' 0h f  , eliminating terms  and 

, leaving  2 1 '' 0mK     on  ,x x . 
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From Section 4.2:  1; lnx x L x    . From Section 4.2.1,   1

2
1; lnx L     . 

Only standards with x    ( 1

2
x  ) need to be investigated regarding possible solutions 

at x . Interior solutions are the (implicit) solutions to (5.2) with 0m  . Boundary solu-

tions  1; lnx x L x     obtain if         1F x p x L f x p x L  , that is, 

      
1

1 2 exp ln 2 exp 1x L x L x x


      , or   ln ln 2 0x x x     .     is 

strictly increasing and strictly concave with     if 0x   and  1 1

2 2
  . The 

inequality is satisfied for all ˆ0 x x  , with x̂  approximately equal to 0.352. 

From Proposition 5.2 below,  1; 0x x    if ˆx x . Hence,   ˆ1; x x   for 

ˆx x . The only way to make  1; lnx L   is to have 1 1  , or, equivalently, 

ln 1 ln 2 1L x L x    . It follows that  1;1 ln L  . ◄ 

 

Figure 5.1. Equilibria under uniform abstract norms (  0, lnx L ). 

 

 

 1 1
;

x
K x x


 

 PE PEx p x L  

 k x  

ln

PEx

L
L  

L  

  

  

x  

xe L  

ln 1

x

L 

ln 1L   

 
 1 ˆ ,1

;
x x

K x x


 

 1 ˆ
;

x x
K x x


 

  

ˆln L x

 1 ˆ
;

x x
K x x


 

 1 1
;

x
K x x


 

1

2
ln L    

x  
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5.1.2 Comparative statics: legal uncertainty 

This section considers the structure of abstract equilibria in further detail, in par-

ticular their response to legal uncertainty, as measured by  0,lnx L . The proof 

of Proposition 5.1 establishes results that will be used in Section 5.2. Let 

   1; 1;xx x x    . 

Proposition 5.2 Let  ln ,lnS U L x L x  ,   xp x e  and legal un-

certainty be measured by  0,lnx L .  

i) Precaution investment increases linearly in legal uncertainty if: 

 ˆ0,x x :  1; lnx L   and  1; 1x x  . 

ii) Precaution investment decreases in legal uncertainty if ˆx x : 

if  ˆ ,1x x ,  1; 0x x  , with   1
31

1;x x
x


   at the efficient point. 

Proof. If ˆx x , solutions are interior from Proposition 5.1. First-order condition (5.1) is 

an identity in x . By the Implicit function theorem:
40

 

  
 

 

  1

1

1;  const.

' ;
1; '' 1; ;x

x

K x
x K x x

x
 


 




 


. (5.4) 

By strict convexity of the minimand at interior points,   
 1
1;  const

' ; 0
x

K x x
 




    

implies  1; 0x x  , and   
 1
1;  const

' ; 0
x

K x x
 




    implies  1; 0x x  . 

Holding  1; x   constant under differentiation in (5.1) ( 0m  ,  1h F F  

and 1 ' 1h  ), gives (after rearranging terms): 

                                                 
40

 The parameter x  enters directly in the  1 ' ;K x -function and through the equilibrium 

 1; x .   1 '' 1; ; 0K x x   by strict convexity on  ,x x , and is sufficient for isolated 

equilibria and for 
1C -functions  1; x  to exist locally (Sydsæter [1981], Theorem 3.3). 



 155 

 
     1 ' ; ; ' ;

a b

K x F x F x
e L

x x x


  



 
   

  
   

 

. (5.5), 

Component a measures the direct (  fixed) impact of increased legal uncertainty on its 

level dimension. Component b measures the direct (  fixed) impact of increased legal 

uncertainty on its marginal dimension. Because    1, ,x x x   , 

    ; ln 2F x L x x     and    ' ; ; 1 2F x f x x   . It follows: 

 

 

   

2

2

; ln
  

2

' ; ; 1
  

2

F x L
a

x x

F x f x
b

x x x

 

 

 





 
  

  

. (5.6) 

Figure 5.2.b illustrates that component b is negative at all equilibrium levels  ,x x  , 

pulling towards a positive derivative  1 ' ;K x x   in (5.5) at the initial equilibrium 

(critical point) and hence, ceteris paribus, towards lower precaution investments.
41

 Fig-

ure 5.2.a illustrates that component a is positive, at undercomplying equilibria, thereby 

also pulling towards reduced precaution investments. At overcomplying equilibria, com-

ponent a is negative, and the direct level and direct marginal effect work in opposite 

directions. However, due to the upper bound on equilibria   1

2
1; lnx L     , the 

direct marginal effect dominates: 

  
2

ln 1 2 0a b L x     , (*) 

implying  1 ' ; 0K x x   . It follows that  1; 0x x   for all ˆx x . 

From (4.5),         1
1 '' 1; ; exp 1; 1 1; ;

x
K x x x F x x        . Accord-

ingly           2 11; 1; ln 1 2 1 1; ;x x
x x L x F x x         , and   1

3
1;1x   . 

                                                 
41

 This “global” property is a feature of the uniform distribution. For example, if 

 2,S N   , uncertainty measured by 
2 , precaution incentives from the marginal 

dimension would be strengthened at points sufficiently far from  . 
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If ˆ0 x x  , from Proposition 5.1  1; lnx L x   . Hence,  1; 1x x  .
42

 ◄ 

 

 

Figure 5.2 Mean-preserving increase in abstract norm uncertainty ( x  ; direct 

impact on the a) level dimension and b) marginal dimension) 

The value function: 

           1;

1 1 1; ; 1; 1 1; ;
x

x K x x x F x x e L


  
     K , 

also characterizes solutions (see Figure 5.1): 

                                                 
42

 The corner solution condition, requiring a  sufficiently large marginal incentive 

       ' ; ; 1F x x p x L f x x p x L   , even though the direct impact b  is negative, 

remains satisfied unless initially satisfied with equality (corresponding to 

  ˆ1; lnx L x   ). 

t

   ' | |F t x f t x

ln L

1
2 x

ln L x

b) marginal dimension 

ln L x

 'F t x

x




 

1
 

t
 

 F t x

ln L x  ln L

1
2

 

ln L x

 ;

ln
0

F x

x
L












 

a) level dimension (interior solution) 

 ;

ln
0

F x

x
L











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Proposition 5.3: Let  ln ,lnS U L x L x  ,   xp x e  and legal un-

certainty be measured by  0,lnx L . 

i) From overcomplying solutions—from given levels of uncertainty 

 0,1x —expected cost increases in legal uncertainty,  1 ' 0x K . 

ii) From undercomplying solutions—from given levels of uncertainty 

1x  —expected cost falls in legal uncertainty,  1 ' 0x K . 

Proof. If ˆx x ,  1; lnx L x   and 1F   (Proposition 5.1). Hence, 

   1 ' ln 1x L x x    K . If  ˆ , lnx x L , solutions are interior. By the Envelope 

theorem  1 ' xK  is given by:
43

 

 

 

 
 

 

   21

1;  const. 1;  const.

; ;
exp 1; 1; ln 2 x

x x

K x F x
x L x L x e

x x
   

 
 

 

 
       

. 

Hence, i) and ii) follow from Proposition 5.1. ◄ 

5.1.3 Discussion 

For the class of uniform standards symmetric around the efficient solution, equi-

librium behavior implies overcompliance when the standard is concentrated, and 

undercompliance when it is dispersed. Hence, compared to a determinative neg-

ligence rule  0,

X

c L
g   with care level lnPEc x L   (or the class of rules 

with ln 1c x L    functionally equivalent to strict liability), uncertain stand-

ards    0, 0,
\X X

F L L
g   impose real costs on the jurisdiction for all 1x  .

44
 

                                                 
43

 The set  0, L  is compact and the derivative    
 

1
1;  const

1; ;
x

K x x x


   continuous 

when ˆx x  (interior solution). Hence, the conditions of the Envelope theorem are satis-

fied (Carter [2001], Theorem 6.2). 

44
 The situation c x  is indeterminate, see (4.1). 
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The findings corroborate Shavell’s proof that overcompliance results if 

the legal standard distribution is not too dispersed and undercomplying solutions 

with dispersed standards.
45

 Craswell & Calfee [1986] measure legal uncertainty 

with the standard deviation in normal distributions  2,N   , finding in simula-

tions that, in the case of abstract norms with PEx   (equal to the median by 

symmetry), that (i) if   is large, undercompliance results (compare 1x  ), and 

(ii), if   is small, overcompliance results (compare 1x  ).
46

 They also find that 

a reduction of legal uncertainty for sufficiently low initial values of  , will not 

necessarily improve compliance decisions, and, in fact, aggravates the 

overcompliance problem (compare x   in  ˆ ,1x ).  

Due to corner solutions in the uniform case for  ˆ0,x x , a reduction in 

uncertainty from sufficiently low initial levels, reduces the overcompliance prob-

lem linarly. 

 

 

                                                 
45

 Shavell [1987], Remark 3 to Proposition 4. 4. His proof is valid for a general expected 

loss function      ;l x p x g l x dl   (  ;g x  is the density of losses given precaution 

investment x and occurrence of an accident; Sec. 6A.1). The distribution of the legal 

standard is allowed to take any form as long as the probability of liability is strictly posi-

tive and it gets sufficiently concentrated around a level   ˆ ' argmin
x

x x x l x    (Sec-

tions 4A.3.3 and 4A.3.1). In the present setting, with x  defined in (4.1) corresponding to 

'x  and ln L to x̂ , Shavell’s requirements translates to i)  1 ln ; 0F L x     and ii) 

 ;F x  becomes concentrated at ln L  as 0x   (see Property 1 and 2, p. 97, respec-

tively). Both are satisfied because   1
2

1 ln ;F L x   for all x  and  ;F x  has a jump 

discontinuity at ln L  in the limit (with the amount of probability mass concentrated at 

ln L  equal to 1; Apostol [1969], Theorem 14.5). 

46
 See column four in Table 1. (Second order conditions are not explicitly considered. 

The paper also discusses distributions with mean different from the efficient level.) 
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5.2 Transformed norms 

If 1m  , interior equilibria     1
2

* 2 1 ln ,min ln ,lnx m L x L x L      are 

defined for all  0,lnx L  by (5.2).
47

 Convexity is no longer ensured in 

 2 1, mx a 
, implying that the difficulties encountered in Section 4 recur. However, 

the unique, global solutions  1; x  derived in Section 5.1 allow sharper state-

ments about panel size effects. 

5.2.1 Comparative statics: panel size  

Concentrated distributions 0 1x   

If  0,1x , unique global solutions  1; lnx L   follow from Proposition 5.1. 

Hence, Proposition 4.2 implies that for all 1m  , there are unique overcomplying 

global equilibria,  * 2 1; lnx m x L   , that eventually converge to 

lnPEx L  (Proposition 4.1). However, due to the mix of marginal and level di-

mensions of legal uncertainty, the convergence is not (in general) monotonic: 

Proposition 4.2 can be sharpened to statements about families of legal 

standards. To this end, for all  0,lnx L  define the function: 

     1; ;x F x xF . (5.7) 

As illustrated in Figure 5.3,   1x F  if  ˆ0,x x    and      1
2

1 1;1 ;1F  F . 

F  is continuous for all 0x   and continuously differentiable for all ˆx x . F  is 

strictly falling on ˆ ,1x 
  : If  ˆ ,1x x    and 0   is sufficiently small: 

                                                 
47

 Section 4.2.1. 
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       
  1; ;

' ' 1; ; 1; 0x

F x x
x F x x x

x


 


  


F .

48
 (5.8) 

This implies that to any element in the (falling) sequence of roots 
2 1m 

 in 

 1
2
,1 , 1,2,m   (Proposition 2.2), a unique (increasing) sequence of distribu-

tion parameters 
2 1m

x
 

 may be defined in  ˆ ,1x 
  such that 

  2 1 2 1

2 1 1; ;
m m

m F x x 
   

   , or: 

  2 1 1

2 1

m

mx 
  

  F . (5.9) 

 

Figure 5.3 A “spanning property” 
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 If  ˆ ,1x x ,   ˆln 1; lnL x L x    (Proposition 5.1), implying 

  ' 1; ; 1 2F x x x   and   1; ; 0F x x x    (equation (5.6)).  1; 0x x   from 

Proposition 5.2.ii. By the same argument, at 1x  ,  1,1 ln L  ,    1
2

' 1,1 ;1F   , 

  1;1 ;1 0F x   , and   1

3
1,1x    (Proposition 5.2.iii). Accordingly   1

6
' 1  F . 

By continuity of  ' F , there exists an interval to the right of 1x   such that  ' 0x F  

(   may be a small number). 

1 

ln L  

    1; ;x F x xF  

1
2

 

1 x  x̂  

2 1m 
 

3

5

3
x


 5
x


 2 1m
x
   

 1

2 1m

 F  
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Proposition 5.5 (sufficient conditions). For each  0,1x  and each 

1m  , a unique overcomplying global solution 

  ˆln 2 1; lnL m x L x    , is defined by (5.2) and the following rela-

tions hold (ad inf) with  2 1 1

2 1

m

mx 
  

  F : 

       
 

 
 

 

 

 

       
 

 

   

  3 3 5 5 7

5;
3;

3 7; 1; 7; 5; 7; 3;
1;

1;

3;
2 5; 3; 1; 5;

1;

1 3; 1;

0, , ,

x
x

m x x x x x x
x

x

x
m x x x x

x

m x x

x x x x x x x x x




     





   



 

    


 

      
 




    



 

     
  

 

Remark 5.1 If  ˆ0,x x    (
3

x̂ x


 ), the boundary solution  1; lnx L x    

obtains with 1F  . Remark 4.2 applies: While the abstract norm is locally de-

terminate (      1; ; ,1 1; ; ;0, 1,0;0,F x x F x x L L   ), the transfor-

mation of marginal incentives at x  implies that the corner equilibrium is per-

turbed by any panel size increase.  

Table 5.1 gives values of 
2 1m

x
 

, based on simulations with 
eL e . The 

equilibria reported in Appendix A.1 corroborate Propositions 4.2 and 5.5, see 

Figure 5.4. Remark 4.1.A on sufficiency is also reflected: If 0.47x  , all 
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overcomplying equilibria  2 1;m x   fall in m  towards ln PEL x . For more 

dispersed distributions, increasing m initially increases overcompliance. The 

simulations demonstrate (giving more structure to the stacked variables in 

Propsitions 4.2 and 5.2) that if: 

 0.48,0.59x ,  2 1;m x   increases in m from 0m   to 1m  , then falls; 

 0.60,0.69x ,  2 1;m x   increases in m from 0m   to 2m  , then falls; 

 0.70,0.78x ,  2 1;m x   increases in m from 0m   to 3m  , then falls; 

 0.79,0.86x ,  2 1;m x   increases in m from 0m   to 4m  , then falls; 

 0.87,0.93x ,  2 1;m x   increases in m from 0m   to 5m  , then falls: 

 0.94,0.99x ,  2 1;m x   increases in m from 0m   to 6m  , then falls. 

Table 5.1 Sequence of 
2 1m

x
 

-values (calculations based on eL e ) 

2 1

1 2 3 4 5 6 7 8 9

0.458 0.480 0.496 0.509 0.521 0.531 0.539 0.547 0.554
m

m

x
 

 

Next, consider the “hairline” case of 1x   (compare to Propostition 4.3): 

Proposition 5.6 

If 1x  , for each 1m  , a unique global solution 

  ˆln 2 1; lnL m x L x     is given by equation (5.2). 

Remark 5.2 Because    1
2

1;1 ,1F    and  1 1
2 1 2 2mh    for all m, the level effect 

of legal uncertainty is invariant at 
PEx . The panel effect is activated by the mono-

tonically increasing  1
2 1 2

'mh   through the marginal dimension of legal uncertain-

ty (see Remark 4.3).  
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As illustrated in Figure 5.4, solutions  2 1;1m   increase in m up to and in-

cluding 13-member panels, and then fall. 

Dispersed distributions 

If  1,lnx L ,  1 ' ln ; 0K L x  , and by Propositions 5.1, 5.2, and 5.3, a unique 

 1; lnx x L   results with  1 x K ,  1; 0x x   and  1 ' 0x K . 

Due to a possible lack of convexity in  , PEx x , if 1m  , solution candi-

dates  ln * 2 1; lnL x m x L      might not be unique. To ensure that candi-

dates defined by first-order condition (5.2) do not (locally) maximize cost, it 

must be ensured that   2 1 '' * 2 1; ; 0mK m x x 

   . It can be assumed that 

  2 1 '' * 2 1; ; 0mK m x x 

   , ensuring local uniqueness (regularity). Equilibria 

are denoted  2 1;m x  .
49

 

For fixed x , the relations in (4.2) imply that the sequence of value func-

tions  2 1m xK  increases in m , as long as solutions are undercomplying, and 

that solutions eventually switch to overcompliance. However, sufficiently dis-

persed distributions retain under-compliant equilibria for interim increases in 

panel size.  

From Section 4.2.3, Proposition 4.5, and equation (5.3), convexity of 

 2 1 ;mK x   in  2 1,lnma L x   implies undercomplying equilibria 

                                                 
49

 The probability of a non-regular equilibrium is ignored due to the multitude of impacts 

of x  on 
2 1 ''mK 

, given by 

 
 

  

     
 

2

2 1 2 1* 2 1;

1 1
2 1 2 14

* 2 1;

'' ; 1 ;

' ; '' ;

x

m mm x

m mx x
m x

K x Le h F x

h F x h F x

 

 

 

 







  

 
 

 

 
. 

(It is conjectured that  
  2 1 * 2 1;

'' ;m m x
K x x

 


  
   is non-zero.) 
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 ln 2 1; lnL x m x L     if     1 1
2 1 2 12 2

' ln ; ' 0m mx
K L x x h    . Because 

 1
2 1 2

'mh   increases in m  (see equation (III.7.4)), it follows: 

 Proposition 5.7 (Sufficient conditions for undercompliance). Define:  

 
  

 

ˆ2 1 1
ˆ2 1 2 2ˆ2

ˆ ˆ2 1 2 !
'

2 !

m

m m

m m
x h

m






  . 

If  ˆ2 1
,ln

m
x x L x

  


, then  2 1; lnm x L    for all ˆm m , 

 ˆ, 0,1,2,3,4,5m m . 

Table 5.2 and Figure 5.4 report values for 
ˆ2 1m

x


 for a subset of panel sizes (the 

case ˆ 0m   corresponds to  1; lnx L   if 1x   in Proposition 5.1). For panels 

larger than or equal to 6m   ( 13n  ), the interval collapses (the mechanisms 

only admits overcomplying solutions). 

Table 5.2 Parameter values 
ˆ2 1m

x


 implying undercompliance 

ˆ2 1

ˆ 0 1 2 3 4 5 6 7 8 9

1 1.5 1.875 2.188 2.461 2.707
m

m

x


   
 

Based on the sequence of increasing roots 2 1m   in  1
2

0, , Proposition 4.4 can, 

in principle, be used to develop results for families of distributions, analogously 

to Proposition 5.5. It means defining a sequence of solutions 
2 1m

x
 

 to: 

   2 1 2 1

2 1 1; ;
m m

m F x x 
   

   . (5.10) 

However, as indicated in Figure 5.3, for small and interim values of m, i) solu-

tions may not exist and ii) even if solutions exist, the monotonicity property may 

be absent. This is due to the fact that for small values of m, 2 1m   might not be 
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in the range of F  and that the inverse function 1
F  might not exist (  ' xF  de-

fined in (5.8) is not necessarily negative when x  is sufficiently larger than 1).
50

 

The following conditional statement of can be made: 

Proposition 5.8 Assume that m  is sufficiently high that a 
ˆ2 1m

x
 

 is a so-

lution to (5.10) such that  xF  is strictly falling on 
2 1

1,
m

x
  

 
. If 

 2 1
1,

m
x x

  


    2 1; 1;m x x  
51

 and    2 1; 1;m x x    for 

all m m .
 
 

From the simulations with 
eL e ,     min 1, 0.4440x x e F , which is strict-

ly larger than 
19 0.3193   (outside the range). In addition, 

  0.4445 0.4440e  F , illustrating that the inverse does not exist on the whole 

of  1,e . The simulations show that by choosing x  sufficiently close to 1x   

from below, for m sufficiently large, further increases in m lead solutions to fall 

off: 

 1.01,1.06x ,  2 1;m x   increases in m from 0m   to 7m  , then falls; 

 1.07,1,11x ,  2 1;m x   increases in m from 0m   to 8m  , then falls; 

 1,12,x e ,  2 1;m x   increases in m from 0m   to 9m  . 

5.2.2 Comparative statics: legal uncertainty in fixed panels 

                                                 
50

 Define       1,ln 1
2ln 2

1;ln ;ln ln
L

L L
F L L L


   F F  for undercomplying solutions. 

By continuity F  takes all values between 1
2  and LF  on  1,ln L . 

51
 Since  ' 1 0F  and 2 1m   converges to 1

2 , a solution 
2 1m

x
 

 exists. 
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The increasing sequence of parameter values 
ˆ2 1m

x
  defined in Proposition 5.7 

corresponds to finding the substantive norm (distribution) that implements the 

efficient solution for a given panel size,  ˆ2 1
ˆ2 1; ln

m
m x L


  . That is, 

  ˆ2 1

ˆ2 1 ' ln ; 0
m

mK L x


  . (5.11) 

The left hand side of the equation is given by (5.3). By strict convexity of 

 2 1mK    on  2 1,ma x
, solutions are uniquely given (but may not exist for ad-

missible parameter values for large m̂ ). At the efficient point: 

 
   

 

ˆ2 1
1

ˆ2 1 ˆ2 1 2

2ˆ2 1

' ln ; '
0

2

m

m m

m

K L x h

x x



 




 


. (5.12) 

Hence, from strict convexity of 
2 1mK 

 on  2 1,ma x
, for any (admissible) m̂ , 

ˆ2 1m
x x


  is sufficient for  ˆ2 1; lnm x L   :  ˆ2 1

ˆ2 1; 0
m

x m x


  . The proper-

ty is confirmed in the simulations. 

The next proposition gives a more general description of equilibrium re-

sponses to increased legal uncertainty, as measured by x  (giving efficient point 

impacts as a special case). 

Let    * 2 1 2 1;x m m x    be an isolated solution (possibly not 

unique if undercomplying). 

Proposition 5.9 Let 1m  ,  ln ,lnS U L x L x  ,   xp x e  and le-

gal uncertainty be measured by  0,lnx L . The sign of the derivative 

 2 1;x m x   is determined by the sign of: 
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(§)          

 

2 1 2 1

0
0 2 1;

1
' ; ln 1 '' ; ln

2
m m

c
d m x

h F x L h F x L
x

 

    


  

 
 

    
 
 

, 

 strictly positive for sufficiently concentrated distributions, 

 
2 1

0,
m

x x


  for all m  (the set of admissible parameter values 

smaller the smaller m); and 

 strictly negative around efficient equilibria. 

Proof. Solutions are interior for all 1m   (Section 4). First-order condition (5.1) is an 

identity in x . By the Implicit function theorem
52

 

  

 

 

  

2 1

2 1;  const.

2 1

' ;

2 1;
'' 2 1; ;

m

m x

x

m

K x

x
m x

K m x x

 








 






  


. (5.13) 

 2 1;m x    is constant under differentiation. By the necessary convexity of the 

minimand at critical points,   
 2 1
2 1;  const

' ; 0m
m x

K x x
 


 

    implies 

 2 1; 0x m x   , and   
 2 1
2 1;  const

' ; 0m
m x

K x x
 


 

    implies  2 1; 0x m x   . 

Holding  2 1;m x   constant under differentiation of (5.1) and rearranging: 

 

 
  

 

  
 

    
 

2 1

2 1

2 1 2 1

' ; ;
' ;

; ' ;
'' ; ' ; ' ;

m

m

A

m m

B

K x F x
e L h F x

x x

F x F x
h F x F x h F x

x x


 



 
  

 



 


 

 
 




  

  
  



 (5.14) 

                                                 
52

 The parameter x  enters directly in the  2 1 ' ;mK x  -function and through the equilibria 

 2 1;m x  .   2 1 '' 2 1; ; 0mK m x x    is sufficient for isolated equilibria and for 
1C -

functions  2 1;m x   to exist locally (Sydsæter [1981], Theorem 3.3). 
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Component A measures the direct (   is fixed) impact of increased legal uncertainty on 

its level dimension, as transformed by the collective. Component B measures the direct 

impact of increased legal uncertainty on its marginal dimension, as transformed by the 

collective. A positive B would imply a negative effect on the sign in (5.14) contribution 

to a positive derivative 
x  (the marginal dimension stimulating investment), whereas a 

positive A would contribute to a positive sign in (5.14), contributing to a negative deriva-

tive 
x  (the level dimension dampening investment incentives). 

Because solutions are interior, 2 1 ' 0mh   . From (5.6) the substantive norm direct 

effect 
 

2

; ln

2

F x L

x x

  



, implying that A is positive at overcomplying equilibria and 

negavtive at undercomplying equilibria. 

Substitutions from (5.6) and   1

2
' ;

x
F x   give 

   2 2

ln 1 1
2 1 2 122 2

'' '
L

m mxx x
B h h



     . Due to convexity of 2 1mh   at undercomplying 

equilibria and concavity at overcomplying equilibria, B is indeterminate. However, 

A B  has the same sign as     1
2 1 2 12

' ln 1 '' lnm mx
h L h L      . The sign of 

 2 1;x m x   is, therefore, given by: 

(§)     1
2 1 2 12

00

' ln 1 '' lnm mx

dc

h L h L  



    . 

Because   1

2
2 1; lnm x L       (Section 4.2 and Proposition 5.1 proof), 0c  . 

0d   at all points different from the efficient one follows from  2 1mh    strictly convex 

at undercomplying equilibria and strictly concave at overcomplying equilibria.  

 To prove that (§) becomes positive if x  is sufficiently small, from equa-

tion (III.7.3), if  ,x x  : 
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          

    

  
 

    

2 1

2 1

1 2 ;
'' ; ; 1 ;

; 1 ;

1 2 ;
' ; .

; 1 ;

m

m m

m

F x
h F x m k F x F x

F x F x

F x
mh F x

F x F x


  

 




 






    






 (5.15) 

Let  
 

    
1 2 ;

;
; 1 ;

F x
x

F x F x


 

 





. Because 2 1 ' 0mh    on  ,x x , it follows that (§) is 

positive if: 

(§’)    
 

 
'

''

;
ln 1 ln 0

2
c

d

x
L m L

x

 
      , 

 2 1;m x   . Because   is fixed in the Implicit function theorem formula (5.4), the 

sign of the sum in (§’) can be determined if x  becomes small: From Proposition 5.5 

 2 1; lnm x L    if 1x  . In ''d , 2 0x  . For a fixed 0 ln L  ,  0

0
lim , 1
x

F x





  

(see Figure 5.2.a). If 1F  ,  0 ; x     (     has a vertical asymptote at 1 ). 

Accordingly, ''d  must become strictly larger than 'c , if the distribution becomes suffi-

ciently concentrated. Also, an increase in m directly boosts ''d , relaxing the required 

constraint on x . ◄ 

Remark 5.3 From Proposition 5.5, equilibria are overcomplying for all m if 1x  . 

Proposition 5.9 parallels the sharper 0m   result in Proposition 5.2.i. on linear 

growth in precaution investments as a function of x  in sufficiently concentrated 

distributions (  ˆ0,x x   ). The simulations have solutions with a uni-modal char-

acter; growing monotonically, then falling monotonically, with: 

 3;x x  increasing in x  up to and including 0,48; 

 5;x x  increasing in x  up to and including 0,59; 

 7;x x  increasing in x  up to and including 0,70; 
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 9;x x  increasing in x  up to and including 0,78; 

 11;x x  increasing in x  up to and including 0,85; 

 13;x x  increasing in x  up to and including 0,92;* 

 15;x x  increasing in x  up to and including 1,00*; 

 17;x x  increasing in x  up to and including 1.05*; and 

 19;x x  increasing in x  up to and including 1,12*. 

In the *marked situations, efficient (and undercomplying) solutions are not ob-

tained, although solutions eventually fall in x  (see in and at Table 5.2)  

Remark 5.4 The impact of increased legal uncertainty is negative around efficient 

equilibrium points ( 0d  ). The increasing sequence of distributions 
ˆ2 1m

x


 iden-

tify such solutions. However, for sufficiently large panels, there might not exist 

admissible distributions admitting efficient points. These simulations illustrate 

that this is the case, for 6m   (Table 5.2). Because an efficient solution is suffi-

cient, not necessary, for  2 1; 0x m x   , there might still—for interim values 

of m—exist classes of distributions that imply falling precaution investments, in 

the face of increasing legal uncertainty (in equilibrium, there’s a complex interac-

tion between the components in (§’)). In the simulations, all panels admit distri-

butions characterized by  2 1; 0x m x   , even though there are no admissible 

distributions (no  
ˆ2 1

0,
m

x e

 ) implementing the efficient solution, if 6m  .  

Consider the effect of increased legal uncertainty for the potential injurer. In spite 

of the complexities in signing the impact of legal uncertainty on precaution lev-
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els, the derivation of the next proposition is immediate. Define the value func-

tion: 

    

       

2 1 2 1

2 1;

2 1

2 1; ;

2 1; 1 2 1; ;

m m

m x

m

x K m x x

m x h F m x x e L




 

 

 



 

     
 

K
. 

Proposition 5.10 Let  ln ,lnS U L x L x  ,   xp x e  and legal un-

certainty be measured by  0,lnx L . 

i) From overcomplying solutions potential injurers’ expected cost in-

creases in legal uncertainty,  
 2 1 2 1; ln

' 0m m x L
x

  
K . 

ii) From undercomplying solutions potential injurers’ expected cost falls 

in legal uncertainty,  
 2 1 2 1; ln

' 0m m x L
x

  
K . 

Remark 5.5 For sufficiently concentrated distributions  0,1x , overcompliance 

results for all m (Proposition 5.5), and increases in legal uncertainty is costly for 

potential injurers.  

Sufficiency conditions on parameter values for  2 1 ' 0m x K  are given 

in Proposition 5.7. (The case of 0m   in Proposition 5.3 allows sharper result 

due to the one-to-one relation between compliance and parameter values.)  

Remark 5.6 The efficient point ln L  is a fixed point for minimands 

 2 1 ln ;mK L x   for all m and x . It follows that 

  ˆ ˆ2 1 2 1

ˆ2 1
ˆ2 1; ;

m m

mK m x x
 

    and that  ˆ2 1

ˆ2 1 ' 0
m

m x


 K .  

Proof. By the Envelope theorem:
53

 

                                                 
53

 Carter [2001], Theorem 6.2. 
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 
 

 

   
 

 

 

2 1

2 1

2 1;  const

2 1;

2 1

2 1;  const

;
'

;
' 2 1; ;

m

m

m x

m x

m

m x

K x
x

x

F x
h F m x x e L

x

 



 










 

 



 







  



K

. 

Because    2 1, ,m x x x    if 1m  , 

 

 

 
2

2 1;  const.

; ln 2 1;

2
m x

F x L m x

x x


 

 

  



, 

see the proof of Proposition 5.2. Accordingly, 

   

   

   

2 1

2 1

2 1

' 0 if 2 1; ln

' 0 if 2 1; ln

' 0 if 2 1; ln

m

m

m

x m x L

x m x L

x m x L













   


  


  

K

K

K

. ◄ 

5.2.3 Discussion 

The analyses show that in panels of fixed size, sufficiently concentrated distribu-

tions induce overcomplying solutions, whereas dispersed distributions induce 

undercomplying solutions, if the panel is not too large (smaller than 11n   in the 

simulations). As in the single judge case, overcompliance increases in legal un-

certainty (if not linearly) from sufficiently concentrated initial distributions, but 

eventually falls in growing uncertainty, to and below the efficient point (if the 

panel size m is not too large). 

 Figure 5.4 summarizes the effects of panel size variations qualitatively, 

reflecting the impact of level and marginal aspects of legal uncertainty and its 

transformation in multi-member panels (and the interaction with the accident 

technology). Consistent with the general observations in Section 4.3, for suffi-

ciently concentrated distributions, the level and marginal effects push towards an 

efficient solution. However, as the abstract norm equilibrium lies closer to the 

efficient point from above, equilibria increase in interim panel size increases 

(reflecting a dominating marginal dimension effect), but eventually the level 
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effect dominates (in the simulations, for all 1x  , equilibria fall in m for panels 

larger than 6m  ). All undercomplying equilibria grow for initial increases in 

panel size. All abstract equilibria become overcomplying for 6m  , and 

equilibria induced by more concentrated distribution by smaller panels. The latter 

equilibriua, while growing beyond the efficient point as panels become large, 

start converging to the efficient point for sizes above 6m  . The most dispersed 

distributions induce equilibria that grow monotonically for all 9m  , meaning 

that the marginal dimension of legal uncertainty dominates. 

 

Figure 5.4 Equilibrium structure under uniform distributions, 9m   

e  
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
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
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
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Equation Section (Next) 

6 Asymptotic approximation 

Section 4.1 demonstrates convergence of equilibria from above in large panels, 

effectively eliminating the uncertainty in the legal standard  ,2 1 0,

X

F m L
g   . Sec-

tions 4 and 5 analyze equilibrium effects in small, finite panels. Considering 

large, but finite panels, by Proposition III.6.2 (requiring only that the legal stand-

ard cdf  F t  continuous around the median  1 1
2

PEF x   and   0PEf x  ) the 

transformed norm cdf in 
2 1mM 

,  1:2 1m mF t 
 is approximately from: 

    
1

2

, 4 2 1PE PEN x m f x
 

   
 

. 

In case of a uniform distribution  ln ,lnU L x L x  ,  1:2 1 ;m mF t x 
 is approx-

imately from (see Example III.6.2): 

2

ln ,
2 1

x
N L

m

 
 

 
. 

It follows that the single judge simulation results in Crasswell & Calfee [1986], 

with PEx  , can be applied directly to these larger mechanisms. 



  

 

 

 

PART FIVE 

EQUILIBRUM UNDER (TRANSFORMED) MIXED NORMS 

Equation Chapter 1 Section 1 

1 Introduction 

Sections IV.2 through IV.6 implicitly assume (locally) determinate meta-norm 

(  1
X

Y

ls   ): judges are identified with a unique ordinary norm in a single-

element set,    supp | Fls g   . From a functional perspective, reference to 

meta-norms is superfluous. This part assumes a fixed meta-norm 
 0,

X
L

LS  and 

 
 

0,

1\ X
L

ls LS   , that is, a non-degenerate distribution over ordinary liabil-

ity norms. Hence, (explicitly) mixed norms are analyzed. 

In the case of (probabilistic) externalities, entitlements can be protected 

by a variety of regimes (Remark II.5.1). This part considers mixes of strict liabil-

ity with negligence standards,  0,
, X

F L
g g   as introduced in Example II.3.3. 

Mixing weights are given by  |g ls    and  | 1Fg ls   ,  0,1 . 

The resulting abstract mixed norms    0,
1 X

F L
g g     are denoted 

 1 Fg g
g

  
 and are given by: 

 
           1

| 1 ,1 1 ;0,
Fg g x Xx X

g x F x F x L
 

 
  

     , (1.1) 

see Example II.5.1. Transformations of  1 Fg g
g

  
 in 2 1mM   lead to: 
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             2 1 2 11 ,2 1
| 1 , 1 1 ;0,

F
m mg g m

x X x X
g x h F x h F x L

 
 


   

 
     , 

see Proposition III.2.1. Using Proposition III.2.3B identities, the norms are con-

veniently represented by: 

 
   

         

1 ,2 1

2 1 2 1

|

1 ,1 1 ;0,

Fg g m
x X

m m
x X

g x

h F x h F x L

 

 

  


 


 

  
. (1.2) 

Use of mechanism 1M  (in absence of factual uncertainty) corresponds to the 

identity function 
 

 
0,

X
L

id g g  for all  0,

X

L
g . Hence, abstract mixed norms 

 1 Fg g
g

  
and transformed mixed norms 

  1 1 Fg g
M g

  
 need not be distin-

guished. 

This part is organized as follows: Section 2 analyzes global rules. Strict 

liability  0,

X

L
g    is mixed with global negligence rules,  0,

X

c L
g  , 

c  . The resulting class of global rules,    1 0,s c

X

g g L
g

 


 
 , exemplifies 

situations were all legal uncertainty derives from the meta-level. In Section 3, 

strict liability is mixed with negligence standards    0, 0,
\X X

F L L
g  . To uti-

lize the Section IV.5 analysis, that section’s accident technology and legal stand-

ard assumptions are maintained. In this case, legal uncertainty derives from both 

meta-level norms and ordinary-level norms, allowing richer comparative statics. 

Section 4 considers mixed norms transformed in multi-member courts. Due to the 

difficulties encountered in Part IV, the analysis is limited global rules (under 

general assumptions about the accident technology). Therefore, all legal uncer-

tainty derives from the level of methodology. 

Equation Section (Next) 
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2 Mixed norms transformed in 1M : strict liability and negligence rules 

Under the mixed norm    0,
1 X

c L
g g     , the minimand is given by: 

       1 1 cx F x p x L   , (2.1) 

with   0cF x   if x c  and   1cF x   if x c . Potential injurers choose: 

   
 

 

 if 
* 1 arg min

 if 
c

x X

x p x L x c
x g g

x p x L x c
  






  
   

 

 (2.2) 

To describe the equilibrium, it is convenient to define a family of functions 

: X R  ,  0,1 , by: 

    x x p x L   . (2.3) 

For all x X  and  0,1 : 

        0 1x x x x k x      ; 

   is strictly convex
1
; 

         x x
  ,    ' 'x x

  ,      1 0' ' ' 1x x x     . 

The functions are illustrated in Figures 2.1 and 2.2. Program (2.2) may be formu-

lated as: 

   
 

 

1  if 
* 1 arg min

 if 
c

x X

x x c
x g g

x x c
 




 






 
   



. (2.4) 

As a benchmark, under a pure strict liability regime ( 1  ), the minimand in 

(2.4) is continuous and strictly convex,    1 x k x  , implementing the efficient 

solution, 
PEx . Under the maintained assumption    1' 0 ' 0 0k   , that is, 

                                                 
1
 Ad convexity:    '' '' 0x p x L   . 
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 ' 0 1p L  , the efficient point is interior with  1 ' 0PEx  , see Figures IV.4.1 

and V.2.2. The value of the minimand at 
PEx , is denoted  PEx k x . 

Under a pure negligence regime ( 0  ), the minimand is discontinuous 

at x c , shifting from 1  to 0 , and the equilibrium given by the solution corre-

spondence: 

 

 

 

 

 if 0

* 1; ,  if 

 if 

PE

PE

c c x

x c x x c x

x c x

  



 




, 

see Figure 2.1 and Section IV.4. 

2.1 The structure of solutions 

Define: 

    : PEx x k x 

  . (2.5) 

A solution  ,PEx x x   to (2.5) exists for all  0,1 , satisfying 
PEx x   as 

1   and x x   as 0  , see Figures 2.1 and 2.2.
2
 

“Low” probability of strict liability 

If '(0) 0  , by strict convexity, '( ) 0 for all 0x x   . It implies that for all for 

all  0,c x , *x c , see Figure 2.1: Agents comply with the (quite probable) 

                                                 
2
 More precisely, fix  0 0,1  . By the the Implicit function theorem, around 

0

x
equa-

tion (2.5) is reduced to an identity in   and 
0'( )x      

0 0
1

01 'p x L p x 


    

    
0 0

0

1

' 0p x L g x 





    (Sydsæter [1981], Theorem 3.3). (The derivative is strictly 

negative because '( ) 0x

  , following from 1 '( ) 0PEx  , 1'( ) '( )PE PEx x  , 
PEx x   

and strict convexity of  .) 
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negligence rule. Due to the low value of  , it does not pay off to insure against 

strict liability by further precaution. When  0,c x , precaution investments 

rise one-to-one in the required care level. In the “hairline” case of 
PEc x x  , 

agents are indifferent between * PEx x  and *x x . If c x , meeting the neg-

ligence requirement is so costly, that it is better for agents not to satisfy the 

standard and be liable for adverse outcomes. The care level jumps down and the 

accident probability jumps up the efficient, but higher level, the potential victims, 

however, now fully insured. The solution tracks pure negligence regimes, except 

for x x   and partial insurance when  0,c x . 

The condition '(0) 0   is equivalent to: 

 
 

1
1

' 0p L
  


, (2.6) 

the strict inequality by the condition which ensures that it is efficient to commit 

resources to precaution. 

 

Figure 2.1 Incentive structures, low probability of strict liability 
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“High” probability of strict liability 

If  1 ' 0p L   , '(0) 0  , see Figure 2.2. Define the critical point: 

  min min: ' 0x x 

  . (2.7) 

Because 
1 '( ) 0PEx  , 1' '   for all x X , '( ) 0PEx  . Because   is strict-

ly convex and '(0) 0  , an interior solution 
min0 PEx x   to (2.7) exists for all 

  1

' 0
,1

p L



 , and it is a unique global minimum point of  x .

3
 Hence, if 

 min0,c x   , 
min*x x  (as exemplified by c  in Figure 2.2): due to a “high” risk 

of strict liability, agents overcomply relative to the pure negligence requirement. 

The required   is less stringent the higher the cost of an adverse outcome, L . If 

 min ,c x x  , because  x  is strictly convex and  ' 0c  , *x c  (as ex-

emplified by c ): At costly negligence levels, agents satisfy the requirement, but 

do not insure against the risk of strict liability. The solution is as discussed 

above: In the “hairline” case c x , by (2.5), agents are indifferent between 

* PEx x  and *x x . If c x , they choose not to meet the negligence re-

quirement and implement the solution corresponding to strict liability regime, 

* PEx x . 

By the Implicit function theorem,
4
 (2.7) is an identity in   around 

  1

' 0
,1

p L



 , with: 

        min min min' ' '' 0x p x p x        . (2.8) 

                                                 
3
 Darboux’s intermediate value theorem (Bartle & Sherbert [1982], Theorem 5.2.12). 

4
 Sydsæter [1981], Theorem 3.3. 
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It follows that with a higher risk of strict liability, the set of negligence rules rela-

tive to which the agent will overinvest in precaution (  min0,c x   ) increases, as 

do precaution investments (
min*x x ). 

 

Figure 2.2 Incentive structures, high probability of strict liability 

The solutions are summarized in the following proposition:  

Proposition 2.1 Under the mixed norm    0,
1 X

c L
g g     , 

:p X  , ' 0p  , '' 0p   and  ' 0 1p L  : 

 PEk x  

1  

,x c  

 0p L  

0  

x
 c  x  

,x c  
PEx  

 ' 0p L  

1  

minx  

 'p x L  

 'p x L  

  

  

c  c  

 ' 0p L  
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 (A)      
 

   

 

 
1
' 0

 if 0,

* 1 ,  if 

 if 

p L

PE

c

PE

c c x

x g g x x c x

x c x



 

 




 





 



   




; (2.9) 

 (B)     
 

  

   

 

 

1
' 0

min min

min

 if 0,

 if ,
* 1

,  if 

 if 

p L

c
PE

PE

x c x

c c x x
x g g

x x c x

x c x

 

 

   



 





  
 

   





, (2.10) 

with x
 defined in (2.5) and falling in  , and 

minx  defined in (2.7) and 

increasing in  , 
min0 PEx x x x     . 

2.2 Comparative statics: the probability of strict liability 

Assume an initial “low” probability of strict liability, 
 
1

' 0p L



 . The only effect 

on equilibria of an increased probability of strict liability, is through a fall in the 

switching point to strict liability solutions ( x
 falls in  ). 

From an initial “high” probability of strict liability, 
 
1

' 0p L



 , an further 

increase mixes with the class  0,

X

c L
g  ,  min0,c x    induce a higher level of 

precaution relative to the negligence requirement (
minx increases in  ). In mixes 

with negligence rules defined by 
minc x , effects are as described above. 

The expected cost for potential injurers is independent of   if strict lia-

bility is mixed with the class of global negligence rules  0,

X

c L
g   defined by 

c x , and increases if c x .
5
 

                                                 
5
 If  1 ' 0p L    and  min0,c x   , the value function is     min minx p x L    . The 

equilibrium response to an increase in   cancels due to  min' 0x

   (“envelope proper-
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Equation Section (Next) 

3 Mixed norms transformed in 1M : strict liability and negligence 

standards 

The mixed norm    1 0,s F

X

g g L
g
  

  is given by (  0,1 ): 

       1 ; ,1 1 ; ;0,
x X

F x x F x x L 


   , 

the family of uniform negligence standard cdfs  ;F t x  defined in Section IV.5 

and   xp x e , giving minimand: 

      1 ; 1 1 ; xK x x x F x x e L        . (3.1) 

3.1 The structure of solutions 

The ordinary-norm legal uncertainty, defined by  ;F t x  in the negligence stan-

dard, which, ceteris paribus, pushes towards undercompliance, is dampened by 

the strict liability probability given by meta-norm uncertainty  |sh g ls  .  The 

next propositions demonstrate how mixing strict liability with negligence stan-

dards stabilizes equilibria around the efficient point. 

Note that for all x : 

        1 1; 1 ;K x x k x K x x     . (3.2) 

As demonstrated in Section IV.5.1,  k x  is strictly convex on X  and  1 ;K x x  

strictly convex on  ,x x .  1 ;K x x  is a convex combination of  k x  and, hence, 

                                                                                                                         

ty”), giving an increase in   at the rate  minp x L
. Otherwise, the value function is 

 'c p c L , giving an increase in   at the rate  p c L . 
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 1 ;K x x  strictly convex on  ,x x .
6
 The minimand is smooth at all x  (except at 

the support boundaries , lnx x L x  ), with: 

        1 1' ; ' 1 ' ;K x x k x K x x     . (3.3) 

In  0, x ,    1 ;K x x k x  . Because    1 ' ; 'K x x k x   on  0, x , and  ' 0k x   

on  0,ln L , a solution must be larger than or equal to x .    1 ;K x x k x  . At 

the efficient point, lnPEx L , 

   1
1 12 2 2

ln ; lnK L x L       . (3.4) 

Because    1min ln 1
x

k x L    , solutions cannot lie at the lower support 

boundary x . Hence, the solution lies to the right of x . 

Consider, then, the upper support boundary, x . If x x , the function 

     1 ; 1K x x k x x      
xx e L    is strictly increasing and strictly con-

vex. The probability of liability under the “pure” negligence standard Fg  is re-

duced to zero, but agents still risk strict liability and hence face (expected) costs 

that lie above the linear precaution cost function, x . Hence, it is never cost-

efficient (even for 1  ) to invest more in precaution than at that level which 

eliminates the possibility of negligence liability. Solutions are bounded by x , 

where  1 ; ln xe
K x x L x    . 

Hence, for all  0,1  and all  0,lnx L  solutions lie in  ,x x . Due 

to strict convexity of  1 ;K x   in  ,x x , unique solutions are ensured for all 

   , 0,1 0,lnx L   . They are denoted  1; x  and illustrated in Figure 3.1. 

                                                 
6
 Sydsæter [1981], Theorem 5.14.i, Note 1. 
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Figure 3.1 Equilibria under mixed norms (illustration based on 1x   and L e ) 

At x , the right hand derivative is: 

        1 1' ; ' 1 ' ; 1 1 0x

x

e
K x x k x K x x e L             . (3.5) 

As illustrated in Figures 3.2 and 3.3, the expected marginal total cost increases at 

the upper support boundary at a rate lower than under a pure negligence regime, 

 1 ' ; 1K x x  , reflecting the value of reducing  p x  as liability occurs with 

probability p  in adverse situations. 

 Let the parameter x̂  and “pure” equilbria  1; x  be defined in Proposi-

tion IV.5.1. It follows: 

Proposition 3.1 Under the mixed norm    1 0,s F

X

g g L
g
  

 , cdf F  from 

 ln ,lnU L x L x   and   xp x e , a unique solution 

  1
1 2

ln 1; lnL x x L         exists for all    , 0,1 0,lnx L    

with ˆ ˆx x


 , the parameter x̂


 falling in   and: 

 1 ;K x x

 

ln 1L 

 

x
 

 k x

 

ln L

 

L
 


 

1
2

ln L  

 

xe L

 

x

 

ln 1L 

 


 

 1; x

 

 1 ;K x x

 

 1; x

 

ln 1L 

 


 

1 2

  
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      
           
     

           

ˆ1; 1; ln  if , 0,1 0, ;

ˆ ˆ1; ln ,  and 1; < 1;  if , 0,1 ,1 ;

1;1 1;1 ln  if 0,1 ;  and

1; ln ,ln  and 1; 1;  if , 0,1 1,ln .

x x L x x x

x L x x x x x

L

x L x L x x x L



  



 

  

   

  

   

    


  

  

    

 

Proof. At the efficient point,  ' ln 0k L   and: 

     1 ln
' ; 1 1 2

x L
K x x x x 


   . (3.6) 

From (3.6) and strict convexity of  1 ;K x   on  ,x x , all  0,1   solutions are (i) 

undercomplying if 1x   (ii) efficient if 1x   and (iii) overcomplying if 1x  . 

(i) Dispersed standards, 1x  . At undercomplying solutions  1; lnx L  , the corre-

sponding pure negligence equilibria ( 0  ) are also undercomplying,  1; lnx L   

(Proposition IV.5.1), implying   ' 1; 0k x  . By definition   1 ' 1; ; 0K x x  . 

Hence, (3.3) gives      1 ' 1; ; ' 1; 0K x x k x     . Therefore, from strict convexity 

of  1 ;K x   on  ,x x ,    ln 1; 1; lnL x x x L      for all  0,1   and all 

 1,lnx L . The situation is illustrated in Figure 3.1.  

(ii) Efficient standard, 1x  . In this “hairline” case,    
11

1; 1; ln
xx

x x L 


  , 

solutions are independent of  : increasing the probability of strict liability only affects 

expected cost levels   1 1
1

1; ;
x

K x x  

 .  

(iii) Concentrated standards, 1x  . Overcomplying equilibria are interior in  ln ,L x  or 

at the support boundary, lnx L x  . Because  1 ' ln ; 0K L x   and  1 ;K x   is strictly 

convex on  ,x x , a boundary solution x   requires  1 ' ; 0K x x   . Because 

 ' 0k x  ,  1 ' , 0K x x  : 

        1 1' ; ' 1 ' ;K x x k x K x x      . (3.7) 
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The situation is illustrated in Figure 3.2. 

 

Figure 3.2 Mixed norm boundary solution at ˆ ˆlnx L x
    

At x̂ , defined in Proposition IV.5.1 and corresponding to ˆ ˆlnx L x   in Figure 3.3, 

 1
ˆ ˆ' ; 0K x x  . Therefore,    1

ˆ ˆ ˆ' ; ' 0K x x k x    . Hence, from strict convexity of 

 1
ˆ;K x  , an interior solution    ˆ ˆ ˆ1; 1; lnx x L x     is implied. It follows that 

more concentrated distributions ˆx x  are required for support boundary solutions in the 

mixed-norm case.  

 

Figure 3.3 Mixed norm interior solution (boundary solution under a pure negligence re-

gime) 

 1
ˆ;K x

ln L  x̂  

  1
2

ln L   

1
2 2

ln L  

1



  

 1
ˆ;K x 

 ˆ1; x  
 ˆ1; x  

 1
ˆ;K x


  

ln L  x̂  

  1
2

ln L   

1
2 2

ln L  

1



  

 1
ˆ;K x
   

x̂ 

 ˆ1; x

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Define ˆ ˆlnx L x
    such that  1

ˆ ˆ' ; 0K x x
   . Such an ˆ ˆx x



  exists for all values 

of  0,1   and is falling in  :     1
1 2

' ; 1 1 2 1x

x
K x x e x      .

7
 Hence. 

 1 ' ; 0K x x    is equivalent to (*)       ln ln 2 ln 1 2 1x x x x x         . 

    is the strictly increasing and strictly concave function defined in the proof of Prop-

osition IV.5.1 (  
0

lim
x

x


  ). The function     is strictly increasing and is strictly 

concave on  0,1  with    0 ln 1    ,    1 ln 1    , and  1

2
0   and inde-

pendent of  . As illustrated in Figure 3.4, the uniquely determined x̂


 falls in  . 

 

Figure 3.4 Parameter values  ˆ0, x
 


 giving mixed norm support boundary solutions 

 1; x x   

It follows that if ˆx x


     1; 1; lnx x L x    . If  ˆ ,1x x


  solutions 

 ln 1; lnL x L x    are interior. 

If  ˆ ˆ,x x x


 , the pure negligence equilibrium  1; x  continues the linear in-

crease in x , hence    1; 1;x x   in this interval. 

                                                 
7
      

1
2

1

0

' ; 1 1 ; ' ;

x

x xK x x F x x e L F x x e L        
1

2
1 x

x
e L   and  ' 1 xk x e L  . 

1  

x̂

 0ln 1   

 0ln 1   

x

0

x̂


 

  

1
2

 
0 

 
* * 0,      

 *ln 1   

1 ln 2  

*

x̂

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If  ˆ ,1x x , both mixed and pure equilibria are overcomplying and interior. 

From (3.2),      1 ' 1; ; ' 1; 0K x x k x      because   1 ' 1; ; 0K x x   (Proposi-

tion IV.5.1). From strict convexity of  1 ;K x   on  ln ,L x ,    1; 1;x x   for all 

 0,1   and  ˆ ,1x x . ◄ 

3.2 Comparative statics: uncertainty on the level of ordinary norms 

Let the parameter x̂


 and the unique equilibrium  1; x  be defined in Propo-

sition 3.1. It follows: 

Proposition 3.2 For all  0,1 : 

   
   

1;
ˆl  if 0, ,  and

1;
ˆ0 if , ln .

x
x x

x

x
x x L

x












 




 



 

Proof. If  ˆ0,x x


 , by Proposition 3.2,  1; lnx L x   . Hence,  1; 1x x   . 

By the Implicit function theorem, at all interior solutions (  ˆ , lnx x L


 ): 

 
   

 

  1

1

1;  const.

1; ' ;
'' 1; ;

x x

x K x x
K x x

xx 

 

 








 
 


, (3.8) 

that is, by strict convexity of  1 ;K x   on  ,x x   1; x  falls in x  if 

 1; 0K x x    and increases if  1; 0K x x   . From (3.3): 

 

 

 
 

 

1 1

1;  const.1;  const.

' ; ' ;
1

x xx x

K x x K x x

x x 









 
 

 
. 

It follows from the proof of Proposition IV.5.2 that the sign of  
 1 1;  const.

' ;
x x

K x x x


   

is determined by the sign of   ln 1 1;L x  . The latter is strictly positive due to 
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  11; ln 1x L      .
8
 Hence, for all  0,1   and  ˆ , lnx x L



 ,  1; 0x x   . 

◄ 

Regarding the effects of x  on expected costs under the mixed norm, consider the 

value function: 

               1;

1 1 1; ; 1; 1 1 1; ;
x

x K x x x F x x e L
       


    K  (3.9) 

It follows: 

Proposition 3.3 For all  0,1 : 

 
   

 
1

0 if 0,1

0 if 1,ln

xx

x x L

   
 

  

K
 

Proof. If  ˆ0,x x


 , boundary solutions give the explicit value function 

 1 ln xx L x e    K . Direct differentiation gives  1 1 0xx x e      K . If 

ˆx x


 , solutions are interior. Hence, by the Envelope theorem:
9
 

   

 

 

 

        

1 1

1;  const

1; 1;

1;  const

;

;
= 1 1 ln 1;

x x

x x

x x

x K x x

x x

F x x
e L L x e L

x



 



 



 



  



 



 


 


     



K

, 

                                                 
8
  1 1ln ;K L x  . At  1 1 1;K x      because  1 ;K x x x   for all x . Hence, 

1

    cannot be an equilibrium for any parameter constellation  , x . 

9
 Interior solutions  1;x x x   if  ˆ ,lnx x L

 


 and strict convexity of  1 ;K x   on 

 ,x x  ensures that the assumptions of the theorem are satisfied (Carter [2001], Theo-

rem 6.2). 
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implying that expected cost increases in x  at all overcomplying mixed equilibria (for all 

 ˆ ,1x x


  and  0,1  ), and falls at all undercomplying mixed equilibria (all 

 1,lnx L  and  0,1  ). ◄ 

Remark 3.1 At the efficient mixed equilibrium corresponding to 1x  , expected 

cost is invariant with respect to a small change in x :   1
1

1; ;
x

K x x  

   

1
2 2

ln L    .  

3.3 Comparative statics: uncertainty on the level of meta-norms  

This subsection considers the equilibrium dependence on meta-level uncertainty 

(mixing weight  ) and characterizes its influence on expected cost. 

Proposition 3.4 For all  0,1 : 

   
   
 

 
 

1;
ˆ0 if 0, ;

1;
ˆ0 if ,1 ;

1;1
0 ; and

1;
0 if 1, ln .

x
x x

x
x x

x
x L




























 




 









 



 

Remark 3.2 If  ˆ0,x x


 ,  1; lnx L x   , and the mixed norm equilibria are 

independent of  . A necessary, but not sufficient, condition for this situation is 

an upper support boundary solution in the corresponding pure negligence regime, 

eliminating risk of liability under  ;F x x
g . The more likely strict liability, the 

more concentrated the negligence distribution needs to be to ensure this situation 

(sufficiency).  
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Proof. By the Implicit function theorem, at interior solutions (  ˆ , lnx x L


 ): 

 
   

 

  1

1

1;  const.

1; ' ;
'' 1; ;

x x

x K x x
K x x



 

 









 
 


. (3.10) 

From (3.3): 

 
 

 

      1

1

1;  const.

' ;
' 1; ' 1; ;

x x

K x x
k x K x x





 



 





 


 (3.11) 

At all interior overcomplying equilibria, corresponding to  ˆ ,1x x


 , relation 

   1; 1;x x   hold for all  0,1   (Proposition 3.1). Because  1 ;K x  is strictly 

convex on  ln ,L x ,   1 ' 1; ; 0K x x  . Clearly,   ' 1; 0k x  . Hence 

 
 1 1;  const.

' ; 0
x x

K x x








    and  1; 0x    . 

At undercomplying equilibria, corresponding to  1,lnx L , the relation 

   1; 1;x x   holds for all  0,1   (Proposition 3.1). Because  1 ;K x  is strictly 

convex on  , lnx L ,   1 ' 1; ; 0K x x  . Clearly,   ' 1; 0k x  . Hence 

 
 1 1;  const.

' ; 0
x x

K x x








    and  1; 0x    . 

If 1x  , implementing the efficient solution in all regimes changing the mixture 

weights has no equilibrium effects ( 1' ' 0k K  ); see also in and at (3.6). ◄ 

Let the value function  1 x
K  be defined in (3.9). It follows: 

Proposition 3.5 For all    , 0,1 0,lnx L   : 

 1
0

x








K
. 
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Proof. If  ˆ0,x x


 ,  1 ln xx L x e    K  and direct differentiation gives 

 1 0xx e     K . Precaution is never above x . In situations (initial equilibria) 

where there is no risk of negligence liability, increasing the probability of strict liability 

does not affect the optimal precaution level, but directly increases the cost of being held 

liable for damages x xe L e  . 

If ˆx x


 , solutions are interior. By the Envelope theorem:
10

 

   

 

    1;1 1

1;  const

;
1; ; 0

x

x x

x K x x
F x x e L





 





 





 
  

 

K
. ◄ 

Remark 3.3 Because  1 1  K , the derivative has a particularly simple form at 

the efficient point; 1

2

     

Equation Section (Next) 

4 Mixed norms transformed in 2 1mM  : strict liability and negligence 

rules 

From (1.2), under the transformed mixed norm    1 ,2 1 0,c

X

g g m L
g

  


  
 , the 

minimand is given by: 

        2 11 1m cx h F x p x L   . (4.1) 

Because   0cF x   if x c ,   1cF x   if x c ,  2 1 0 0mh    for all m  (Propo-

sition III.2.2) and    2 1 2 11 1m mh h      for all m  and all  0,1 , agents 

choose: 

   
 

   
1 ,2 1

2 1

 if 
* arg min

 if cg g m
x X

m

x p x L x c
x g

x h p x L x c  
  




  
 

 

. (4.2) 

                                                 
10

 Carter [2001], Theorem 6.2. 



194 

 

With     defined in (2.3), the incentive structure induces the program: 

 

       
2 1

1

2 1

 if 
argmin

 if 
m

x X mh

x x c

x x h p x L x c




 


 

 


  

 

Because    2 1 0,1mh    for all  0,1 , it follows that    
2 1mh

x





 inherits all 

the properties of      
2 1 0mh

m
x x 

 
 

  in the Section 2 bullet points. By the 

Condorcet theorem monotonicity properties (Section III.2),  2 1 0mh    if 

1
2

  ,  2 1 1mh    if 1
2

  , and  1 1
2 1 2 2mh    for all m . It, therefore, follows 

from Proposition 2.1 that the structure of equilibria can be summarized as 

(     arg minPE

x

x k x x p x L   ,  PEk x x , and the functions  2 1mh 
 giv-

en in equation (III.7.1)): 

Proposition 4.1 Under the transformed mixed norm 

   1 , 2 1 0,c

X

g g m L
g

    
 , :p X  , ' 0p  , '' 0p   and  ' 0 1p L   

solution correspondences 
  1 , 2 1

* *
cg g m

x x g
    

  are given by: 
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 

 

 

2 1

1

' 0

1 1 1
 

2 2 2

*  as  in P.2.1A, for small/interm. ,*  constant

  decreasing *  possibly as in P.2.1A, for all ,

acc. to , eventually 1 1 def. in P.2.1A

' 0 2  converging to as 

a pure -regime

m

p L

c

x mx

xm

h

p L

g

  







  




 
 

 

1

2

2 1

1 1

2' 0

 case 

*  as  in P.2.1B, for small/interm. , *  constant

  incr. acc. to ,*  possibly as in P.2.1B,  for all ,
1 1

eventually def. in P.2.1B converging to
' 0 2

 a pure -regimeas  case

m

p L

xm x

hx m

p L
g

 










min

;

 ,PE PEx x x x  

 

Remark 4.1 Transformed mixed standards    1 ,2 1 0,F

X

g g m L
g

   
 , leading to 

minimands        2 1 2 1; 1 1 ; x

m mK x x x h F x x e L  

     , may also be con-

sidered, combining the Section IV.5.2 results with the Section 3 approach.  
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PART SIX 

LAW-IN-FORCE NOTIONS AND SYSTEM-BASED REPERCUSSION 

ANALYSES 

This part considers decision-making in judicial panels, with emphasis on the two-

stage character of legal reasoning deriving from the distinction between meta-

norms and ordinary norms. Law-in-force notions based on Definition II.2.1, in 

which norms express obligations, are discussed in Section 1. Section 2 gives a 

general definition of power-conferring norms, and develops some of their proper-

ties. Expressing the notion of protected options (discretion), power-conferring 

norms are used as elements in more complex law in-force-notions, in Section 3. 

Discretion, and logical difficulties which arise under judgment aggregation, are 

used to motivate the relevance of forward-looking, means-end analyses of law. 

Illustrating examples include normative use of Pareto-efficiency in the design of 

contract and tort law in a general equilibrium context in Section 3.1. More gen-

eral aspects of means-end analyses are also considered, and translated to strategic 

environments in Section 3.2. 

1 Configurations of norm-based uncertainty and law-in-force 

notions I: (probabilistically) deductive systems 

Let the meta-norm X
Y

LS  represent the doctrine of sources and method, that 

is, a mapping from the set of legal sources LS  to the set of (simple) probability 
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distributions over the set of ordinary norms (Definition II.5.1). Legal decision-

making, from the ex ante perspective, is conceived as follows: At point in time t , 

judges  1,2, ,j n  independently: 

I. observe the constellation of data ,t tls x LS X  ; 

II. apply meta-norm X
Y

LS  to 
t ls , leading to the (abstract) mixed 

norm  | t

X

Yls
g
 

  given by
1
 

           1 2

| | |
| , | , , |

t t t

L

ls ls ls
x X

g y x g y x g y x
    



; 

III. apply mixed norm  | t ls
g
 

 to fact 
t x  in mechanism M  , leading 

to 
               1 2

| | | |
| | , | , , | ,

t t t t

L

ls ls ls ls
x X x X

g x g y x g y x g y x
      

 

   

that is, a final distribution over the set of consequences. The process is illustrated 

in Figure 1.1. The following definition is suggested: 

Definition 1.1 At time t , conditional on data ,t tls x LS X  , 

X
Y

LS , and M  , the set of enforceable norms is 

 supp | X

t Yls   , and the set of formally enforceable judgments the 

set of ordered pairs     | ,
, supp |

t

M

t tls M
x y X Y y g x X Y

 
      , 

with elements (judgments) realized with probability    | ,
|

t
tls M

g x
 

 . 

                                                 

1
 See Section II.5 regarding the reduction (   

1
# supp |

t

J

j t
j x X

L g x
 

    , see Sec-

tion II.4). 
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Figure 1.1 The process generating formally enforceable norms and judgments (node 

   1

| ,
|

t
tls M

g y x
 

 is degenerate) 

As a function of the legal source constellation 
t ls LS , meta-norm  , and 

mechanism M , Definition 1.1 at time t  delineates a set of conceivable (proba-

bilistically complete) ordinary-level norms: the correspondence 

supp : X

YLS  assigns positive probability to the norms in 

 supp | X

t Yls   . The set of formally enforceable judgments are elements in a 

binary relation (compare the extensive norm notions in Section I.1). 

However, the definition involves more than delineation of a range, it 

provides explicit distributions over the ordered pairs, reflecting: 

 the meta-norm and ordinary norm structures, 

 detailed aspects of the decision mechanism, and  

 location of input data in LS X . 

To exemplify, if the transformed mixed norm is locally determinate, as illustrated 

by    1

| ,t
t Yls M
x g





  in Figure 1.1, the set of formally enforceable judgments 

X
Y

 

'ky  

 | ,t ls M
g
 

Y

t x  

ky  

   '

| ,
|

t

k

tls M
g y x
 

 

   | ,
|

t

k

tls M
g y x
 

t x  

   1

| ,
|

t
tls M

g y x
 

 
1y

LS  
X

Y

1g



X

Y

t ls  

Jg  

 1 | tg ls  

 |J tg ls  

 2 | tg ls  
2g  
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is the single element set   | ,,
,!

t ls Mt

M
x g

t x y   . If    1

|
\t Yls

x X g





 , the set of 

formally enforceable judgments equals  ', , ,
M M

k k

t tx y x y , generated with 

probability 
   '

| ,
|

t

k

tls M
g y x
 

 and 
   | ,

|
t

k

tls M
g y x
 

, respectively. 

Equilibrium analysis may reduce the set of formally enforceable judg-

ments to a subset named enforceable judgments: 

Definition 1.2 At time t , conditional on data 
t ls LS , X

Y

LS , and 

M  , the set of enforceable judgments is the set ordered pairs 

        | , | , | ,
* , supp | *

t t t

M

ls M ls M ls M
x g y X Y y g x g X Y

    

 
      

 

, with elements (judgments) realized with probability 

     | , | ,
| *

t tls M ls M
g x g
  

 . 

Parts IV and V give a series of propositions characterizing solutions *t x  and 

distributions 
     | , | ,

| *
t tls M ls M

g x g
  

 , as functions of parameters describing 

mechanisms M   and ordinary and meta-level norms. 

Table 1.1 classifies alternative configurations of legal uncertainty. Because legal 

source data and meta-norms are exogenously given, it suffices to distinguish situ-

ations where the latter locally function as rules or standards. Mechanisms 

M   only affect norm structures and equilibrium outcomes in †-marked sit-

uations in the table: If abstract norms are determinative, they remain so in multi-
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member mechanisms, generating functional relations. (Local) indeterminacy is 

necessary for legal decision mechanisms to have effect.
2
 

Table 1.1 Configurations of norm-based uncertainty (relevant section references 

are indicated) 

     1 , 1

meta-norm meta-norm

(local) rule (local) standard

ord. norm(s)
; ! \ ;supp |

global rule(s)
deductive system (IV.4) meta-level uncertainty (V.2)†

ord. norm(s)

local rul

X X X
Y Y Y

ls X X

j Y Yls g ls ls           

         

   

1 , 1 1 1

|

1 , 1

; ! \ ;

e(s) locally deductive system (IV.4-IV.5) meta-level uncertainty (V.3)†

; ! \ord. norm(s)

local std(s) ord. lev. uncertainty

X X X
Y Y Y

X
Y

ls

j Y Yls

ls

j Y Y

ls x g ls x g

ls x g







     

  

   



 

   

       1 1

|
\ ; \

 (IV.4-IV.5)† uncert. on meta and ord. level (V.3)†

X X
Y Y

Y Yls
ls x g


   


 

 

2 Power-conferring norms 

In Definition II.2.1’, norms 'g  map from a set of legal facts 'X  to the set of 

simple probability distributions over the power set of the set of consequences 'Y , 

                                                 
2
 In the case of bounded standards and corner solutions, there is an exception to this rule 

(necessity). The classifications in Table 2.1 depends on the decision mechanism if 

1M M  and the standard 
 0,

X

F L
g   and accident technology induces equilibrium pre-

caution investment equal to the upper support boundary,  * 1x x . In this case, the ab-

stract norm locally functions as a rule:     1

0,
* 1t F L

x g  . However, if 1m  , due to 

the transformation of marginal aspects of legal uncertainty, equilibrium effects of panels 

imply that transformed norms locally are standards, 

      1

,2 1 0, 0,1
* 2 1 \t F m L Lm

x m g 


  , see Remarks IV.4.2 and IV.5.1. 

 Local uncertainty is not sufficient for mechanisms to have an effect. In the case 

of 2 1mM   and dichotomous outcomes  ' ,k ky y , say, the fixed point x  such that 

 , 1
2

! |t ls k

jg y x


 , or the fixed point x  such that    ' 1
2|

|
t

k

ls
g y x
 

  by Proposi-

tion III.2.2 is reproduced by all mechanisms (  1 1
2 1 2 2mh   ). By the same arguments, cor-

responding fixed points exists (that vary with mechanism parameters) for all 
 ;v n

M , as 

defined in probability space by the intersection of the 45 -line and 

     ,

; ;
! |t ls k

jv n v n
H g y x

 and 
       ; ;|

|
t

k

v n v nls
H g y x

   , respectively, in Figure III.2.2. The 

argument generalizes to other mechanism. 
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'Y . The set of such mappings, 
'' : ' Yg X  , is denoted '

'

X

Y
 and is intend-

ed to represent norm-based discretion (protected choice) over elements in 'Y  

and, at the same time, possible uncertainty about discretion range. This section 

extends 'Y  to be a set of (ordinary) norms, X

Y
. In this case, the power-set 

' X

YY   is a family of norm sets, and 'g  is a mapping from the set of legal 

facts to the set of simple distributions over this family, ' : ' X
Y

g X


 .
3
 The in-

tended interpretation of norms in 
'

X
Y

X


 is as power-conferring, see Re-

mark II.2.8. Because the situation, in principle, is one of “norms over norms 

(norm sets)”, they are denoted '  (see Section II.5).
4
 

Definition 2.1 A power-conferring norm is a triple 

 ', , ' : 'X X
Y Y

X X
 

 . The set of possible power-conferring norms 

is denoted 
'

X
Y

X


. 

Remark 2.1 If power-conferring norms represent norms on the level of sources of 

law, 
1' lX LS LS LS     and '  .  

Power-conferring norms endow legislators and contract parties with the ability to 

create new norms, that is, objects that become elements in the source classes, 

1 lLS LS  . The enacted norms become input to new court decisions, giving 

                                                 
3
 To avoid technical difficulties it is assumed that X

Y
 is finite. If # X

Y J , 

# 2X J

Y   (Section II.1). 

4
 For a motivation, consider the ECtHR chamber judgment Gillow v. United Kingdom: 

“A law which confers a discretion is not in itself inconsistent with the requirement of 

foreseeability, provided that the scope of the discretion and the manner of its exercise are 

indicated with sufficient clarity, having regard to the legitimate aim of the measure in 

question, to give the individual adequate protection against arbitrary interference [---]” 

(Nov. 24, 1986, Sec. 51). 
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legal systems their characteristic dynamic character:   maps from an updated set 

of legal sources LS .
5
 

Example 2.1 (power-conferring norms). To explicate the notion of power-conferring 

norms, consider a set of potential norms,  1 2, , , X

J Yg g g  , say. In “normal” circum-

stances, 'nX X  power-conferring norm 
 1

'

, ,
'

J

X

g g



  allows a choice from the 

whole set,  1 2, , , Jg g g : 

           1 2 1 2 1'
' | ' 0,0, ,0,1; , , , , , , , , , ,

n J Jx X
x g g g g g g g


   . 

In Definition II.3.3-notation, if ' nx X , ' , in effect, maps to the unique and full set of 

legislative or contract options,    
', '

1 2 1! , , , , ,
x

J Jg g g g g

 . Under “extraordinary 

circumstances” ' 'ex X X  , '  implies incompetence or void contracts 

           1 2 1 2 1'
' | ' 1,0, ,0,; , , , , , , , , , ,

e J Jx X
x g g g g g g g


   , 

' , in effect, maps to the unique empty set of options set   
', '

1! , ,
x

Jg g


  . 

                                                 
5
 “All modern legal systems a well-developed series of norms concerning the various 

modes of procedure for the establishment of formulated law, the reciprocal relation be-

tween the various levels of enacted law from the constitution to the private contract, the 

promulgation and coming into force of statutes, the delegation of legislative power, 

voidability and judicial control, and so on. These all constitute elements of the doctrine of 

the sources of law even though they may not be collected under this heading, but includ-

ed under constitutional law, administrative law and the law of contracts” 

(Ross [1959:103]). 

 Procedural norms endowing courts and arbitrational tribunals with ability to 

generate binding decisions are power-conferring, but (generally) in the more limited 

sense of specific ordered pairs (Section I.1). Also, norm content judicial review is typical-

ly done in deciding individual cases and not in general, abstract terms: judgments do not 

take the form ,
M

ls g . The question of contract content restriction is broad, an includes 

questions about enforceability, interpretation and civil and criminal law sanctions (see 

Hermalin, Katz & Craswell [2007]). See also Ayres & Gertner [1989] on preceptive 

(immutable) versus declaratory (default) rules. 

 The possibility of successful enactments, in the sense of being mapped to them-

selves under  , may be discussed using fixed point theorems (convexity and continuity 

ensures the possibility). The question has analogies in jurisprudential disputes about pre-

dictions (but accentuate both Arrow-type impossibility and the warnings in 

Aubert [1984]). 
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Similarly, '  singles out non-empty, proper subsets of  1, , Jg g , with proba-

bility 1 in 
  

1 2

1

, , ,
' \

J

n e

g g g
n X X


 . In 

  
1 2

1

, , ,
' \ '

Jg g g
X n 


, the span of compe-

tence is uncertain: '  locally functions as a standard, giving a non-degenerate distribu-

tion over the family of norms, such as at 'x , in Figure 2.1. ■ 

 

Figure 2.1 Global representation of power-conferring norms (node '( | ')x   degenerate) 

Two definitions are introduced to give “snapshot” descriptions of established 

positions. In this regard, note that at 'x , the normative ability extent is indeter-

minate. Consider the family of sets, defined by  supp ' | 'x      ', ,k k kg g g .  

The intersection of the family at 'x  is the largest set contained in all 

family members, defined by:
6
 

            ', ',supp ' | ' ,k k k k k k kx g g g g g g g      . 

The set identifies the norms that can be selected for sure given 'x , corresponding 

to a certain competence span (CS). 

Definition 2.2 At ' 'x X , the certain competence span  ' 'CS x is giv-

en by:    ' ' supp ' | 'CS x x   .
7
 

                                                 
6
 Let  1 2, ,...F F  be a family of sets. The intersection of the family, denoted  , is 

the set of all things that are members of all the sets in the family (see Suppes [1972:39]). 

'X  
 1 2, , , Jg g g

 ',k kg g

'  

 1 2, , , Jg g g
  

'x  

 kg

  '' , | 'k kg g x  

  ' | 'kg x

'x  

 ' | 'x 

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In a similar manner, the union of the family at 'x  is the smallest set containing all 

the members, defined by:
8
 

            ' ' 'supp ' | ' , , , ,k k k k k k k kx g g g g g g g g      . 

The set identifies the set of norms that may be available at 'x . 

Definition 2.3 At ' 'x X , the range of possible competence span 

 ' 'CS x  is given by    ' ' supp ' | 'CS x x   .
9
 

Remark 2.2 In the context of constitutions, systems of power-conferring norms 

induce hierarchally ordered norms, another characteristic feature of legal systems 

(Ross [1959], Sec. 44 and 48). Both rank and range dimensions of competence 

are important in dynamic strategic contexts, see Section 3.2 below.  

Remark 2.3 The demarcation between meta-norms and ordinary norms is rela-

tive. Constitutional norms typically function as meta-norms in legal discourse, 

but may function as ordinary norms in specific situations.
10

  

                                                                                                                         
7
 More generally, by letting the conditioning fact 'x  run through a region R  in 'X , a 

more global notion    '

'
supp ' | '

x R
CS R x 


    may be defined.  'CS R  is the set 

of norms always available on R . In Figure 2.1,   ', 'CS x x  . 

8
 The union of the family, denoted  , is the set of all things that belongs to some mem-

ber of the family (see Suppes [1972:37]). 

9
 Clearly,    ' '' 'CS x CS x    (Suppes [1972], Theorem 79). The set difference de-

fines options only available with a positive probability,      ' '' \ ' 'CS x CS x CS x   , 

say. In Figure 2.1,            ' '' ' \ ' , \k k k kCS x CS x CS x g g g g   . 

10
 See for example the Sunday Times v. United Kingdom judgment referred to in Sec-

tion I.1. Similarly, the principle of lex superior functions as a meta-norm in legal argu-

mentation. However, the extent of constitutionally admissible delegation may be the ob-

ject of litigation. 
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Mixes and transformation of power-conferring norms may arise, due to meta-

level uncertainty and to direct norm-maintenance in judicial panels. However, 

because these situations are not accentuated in the applications below, analytical 

dimensions are outlined in Appendix A.2 and A.3. 

3 Configurations of norm-based uncertainty and law-in-force no-

tions II: discretion 

Discretion can be present at the meta-level (corresponding to optional norm se-

lection) or at the level of ordinary norms (corresponding to optional legal conse-

quence selection). The general formulation X
Y

LS


  admits discretion and 

norm-based uncertainty about discretion span, at both levels. The next two ex-

amples illustrate challenges that arise under collective legal decision-making in 

discretionary environments. The examples abstract from norm-based uncertainty 

and isolate discretion to either the ordinary or meta-level, respectively. 

Example 3.1 (ordinary-level discretion and a Condorcet-style paradox). Assume that 

 1
X

Y
t ls 

 


 , such that  , in effect, maps to the single element set of enforceable 

norms  
,

! t ls

kg


, and that the global rule X

k Yg    at t x X , in effect, maps to 

 
,

! ', '', ''' t kx g
y y y . Consider 3M , and assume that judges order outcomes under kg  condi-

tioned on t x  as follows: 

1 1

2 2

3 3

Judge 1     ' '' '''

Judge 2     '' ''' '

Judge 3     ''' ' ''

y y y

y y y

y y y

 

If protected choices are made from the set  
,

! ', '', ''' t kx g
y y y  by sequential majority deci-

sions, 3' ''
M

y y , and 3'' '''
M

y y . Hence, a court satisfying basic rationality expectations 

(compare Section I.1) should find ' '''y y . However, the court expresses a circular or-
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dering when presented with a sequence of binary choices, 3''' '
M

y y : so-called Condor-

cet paradox has occurred. The rendered judgment depends on how the agenda is set (even 

assuming sincere voting). Starting with 'y  versus ''y , 
3, '''

M

t x y  results; starting with 

'y  versus '''y , 
3, ''

M

t x y  results; starting with ''y  versus '''y , 
3, '

M

t x y  results.
11

 ■ 

Example 3.2 (Ex. II.3.5 continued: meta-level discretion and a generalized doctrinal par-

adox). Assume 
 

 
0,

1
X

L
t ls 

 


 , the meta-norm, in effect, mapping to the set of en-

forceable norms  
,

! , ,
t ls

c cg g g


  
. The global rules g , 

cg , and cg  represent strict 

liability, a lenient negligence rule, and a rigorous negligence rule, respectively (see Ex-

ample II.3.3 and Section V.2). Assume that tc x x c    ( x  is defined in Fig-

ures IV.4.1 and V.2.1). 

Judges, envisioned to apply the law, do not vote on g , 
cg , and cg .

12
 In-

stead, judgments are aggregated analogously to the OBV and PBV regimes considered in 

Section III.4. It is instructive to apply the framework introduced by Landa & Lax [2009], 

discussed in Example II.3.5: Let      0,1 0,1 0,1C     be the case space, and let the 

first, second, and third dimensions correspond to whether the criterion for strict liability, 

rigorous negligence, or lenient negligence is satisfied, respectively. Because judges ob-

serve the same conditioning fact tc x c  , 1,1,0c  . They select the following base 

rules (mapping to L  iff 
j jc rd   ): 

                                                 
11

 The profile corresponds to Arrows [2012:3] example. Stressing the role of transitivity, 

Arrow remarks “Independence of the final choice from the path to it” makes legal sys-

tems “capable of full adaption to varying environments” (p. 120). 

12
 If they did, an implied notion of judges forming preferences (complete transitive order-

ings) over norms is accentuated (see Section VIII.2). With three or more norms and three 

or more judges, Condorcet cycles may appear as exemplified in Example 3.1. 
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 

 

 

11

22

33

Judge 1     , 1,0,0 ,1

Judge 2     , 0,0,1 ,1

Judge 3     , 0,1,0 ,1

c

c

g br rd

g br rd

g br rd













  

 

 

 

If voting directly on outcomes  0,Y L  (“case-by-case adjudication”), in 3M  Judge 1 

and Judge 3 vote for liability ( 1,0,0 0,1,0 1 1c c     ). Hence, the judgment 

3,
M

t x L  is generated. Alternatively, the court might proceed using what Lada and Lax 

call a doctrinal aggregation method, involving a so-called collegial factor rule (CFR). 

This implies (i) generation of a collective base rule,  , : 0,CFR Mbr C L  

(  ' ', ' 'Y no yes  in their framework) and (ii) application of 
,CFR Mbr  to the case, c C . 

The collegial factor rule 
,CFR Mbr  is constructed by majority vote on each factor dimen-

sion, combined with the median threshold. Hence: 

3,
0,0,0 ,1

CFR M
br  .

13
 

It follows that 3,
1,1,0 0,0,0 0

CFR M
c rd    , generating judgment 

3, 0
M

t x .  

Generation of 
3,

M

t x L  and 
3, 0

M

t x  means that what Landa and Lax call a 

generalized doctrinal paradox arises.
14

 They analyze the paradox from a global perspec-

tive and reveal logical difficulties inherent in case-by-case decision-making that chal-

lenge visions of law as coherent and determinate.
15

 ■ 

                                                 
13

 Note that 3,
0,0,0 ,1

CFR M
br   generated by the collective is not equal to any of the 

individual judges’ base rules. This contrasts to the classical rule, see Remark III.1.1. 

14
 The paradox has similarity to the (regular) doctrinal paradox illustrated in Exam-

ple III.4.1 where all judges share the same base norm (corresponding to the doctrinal con-

straint c a b  ), but form different views on ultimate facts (the case), see Re-

mark III.4.1.B. 

15
 All judges observe the same case c C  and are identified with base rules (mappings) 

 : ' ', ' 'br C no yes . A rule can be associated with its outcome set (“decision set”), the 

ordered set of pairs of cases and case outcomes (“case dispositions”). In Section I.1 ter-

minology, the set is a functional relation in  ' ', ' 'C no yes . Under reasonable assump-

tions about the outcome set and base functions (keyword: monotonicity), Landa and Lax 

investigate to which extent outcome sets generated by collectives (called the collegial 
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Legal decision-making under discretion and norm-based uncertainty, from the ex 

ante perspective, is conceived as follows: At point in time t , judges 

 1,2, ,j n  independently: 

I. observe data constellation ,t tls x LS X  ; 

II. apply (power-conferring) meta-norm X
Y

LS


  to 
t ls , leading to 

the (simple) distribution  | X
Y

t ls


   over the family of norm sets in 

X

Y ; 

III. (i) select norms from  supp | X

t Yls   ; 

(ii) apply selected norms to 
t x X ; and 

(iii) vote in M  , according to the selected norm and (possible) re-

solved uncertainty. 

The process is illustrated in Figure 3.1 and simplified using Definitions 2.2 and 

2.3. At stage II, the set of possibly available norms is given by  n

tCS ls  

 supp | t ls  .
16

 At stage III, the set of options possibly available to a judge, 

conditional on selection of 
kg , is    supp |kg

t k tCS x g x  .
17

 The set of pos-

sible conclusions conditioned on 
t x  is, therefore, spanned by 

 
 k

k t

g

t
g CS ls

CS x

 . 

This leads to the following suggested law-in-force definition (reflecting the lack 

                                                                                                                         
decision set) can be induced by the individual base rules when decisions are generated by 

majority rule and median thresholds. In this setting they develop impossibility theorems. 

16
 The set of certainly available norms is given by  n

tCS ls   supp | t ls   

 tCS ls , a correspondence : X

YCS LS


. 

17
 The set of certainly available consequences is given by  kg

tCS x  

 supp |k tg x   kg

tCS x , a correspondence :kg
CS X Y . 
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of structure from norm-based uncertainty and discretion at both the meta- and 

ordinary level): 

 

Figure 3.1 Enforceable norms and formally enforceable judgments under discretion and 

legal uncertainty (global representation) 

Definition 3.1 At time t , conditional on data ,t tls x LS X  , 

X
Y

LS


 , and M  , the set of enforceable norms is 

   supp | X

t t YCS ls ls     . The set of formally enforceable 

judgments is the set of ordered pairs: 

 
  

 
  supp |

,

, supp |

k

n
k t

k t

M g

t t
g CS ls

M

t k t
g ls

x y X Y y CS x

x y X Y y g x






   

     

. 

Discretion means (protected) choice. The normative sources (conditioning facts 

and norm structures) do not determine a probability distribution over formally 

enforceable judgments, but only delineate a binary relation counter-domain. As 

Ross [1959:21–22] pertinently points out: 
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YCS LS
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Any presentation of [law-in-force] confined to a definite date is [---] a question 

as to what will happen tomorrow. A co-determining factor for this calculation is 

what happened yesterday. [Law-in-force] is never a historical fact but a calcula-

tion, with regard to the future. This gives to the propositions of present-day study 

of law a fundamental element of uncertainty and results, as the certainty of the 

calculation diminishes, in a peculiar fusing together of problems of the law in 

force with problem of legal politics […]. 

Sen [1967] fundamentally distinguishes between basic and non-basic value 

judgments. Basic value judgments are normative propositions, that will not be 

revised under any conceivable variation in factual premises. However, as he 

points out, at closer inspection, many seemingly basic propositions turn out to be 

factually conditioned, and, as such, can be subject to positive analysis. Further-

more, a set of inconsistent normative propositions cannot all be basic 

(Sen [1979:67–70]). The unavoidable logical problems occurring in collective 

legal decision-making (see Section I.1, Examples 3.1, 3.2, and III.4.1), thus, in-

dependently suggest a role for functional analyses. As Arrow [2011:25] notes: 

Hume famously distinguished between normative and descriptive propositions 

[…]; one can never deduce a proposition that imposes an obligation (an “ought”) 

from a series of statements that describe the world (statements of what “is”). 

Obviously, in some sense, this must be right, but the examination of social 

choice theory suggests that the dichotomy is more blurred than it seems. 

In conclusion, in situations where decision are not logical derivations under (lo-

cally) consistent and determinative norms, there is room for functional or reper-

cussion analysis of law (“legal politics” in the sense of Ross), as constrained by 

the conditioning sources and legal system meta-norms.
18

 

                                                 
18

 In the Ross quote the inserted “law-in-force” term replaces “valid law” (the latter 

caused confusion, see Ross [1962] and Tur [1998]). The suggested legal norm and law-

in-force notions make use of decision theory elements. As stressed by Gilboa [2009:55–

64], an advantage of formal representations is that questions regarding proposition status 

(modality) can be left to interpretation. Discussions about the “nature of law” and “true 

meaning of definitions” (Merryman & Pérez-Perdomo [2007:63]) can be avoided.  

Paul Dirac points out: “When you ask what are electrons and protons I ought to 

answer that this question is not a profitable one to ask and does not really have a mean-

ing. The important thing about electrons and protons is not what they are but how they 

behave – how they move. I can describe the situation by comparing it to the game of 

chess. In chess, we have various chessmen, kings, knights, pawns, and so on. If you ask 

what a chessman is, the answer would be [that] it is a piece of wood, or a piece of ivory, 
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Mattei & Cafaggi [1998:350] argue that as state monopoly on legal pro-

duction is eroded, and agents increasingly are able to choose law, competitive 

forces should put more focus on a means-end, forward-looking approach to law.
19

 

Fon & Parisi [2007:147] emphasize that “incomplete legal precepts can be pur-

posefully enacted as a way to optimize the lawmaking and adjudication func-

tions, transferring to the judiciary some of the tasks that would otherwise have to 

be carried out ex ante by the legislature.” On the meta-norm level, means-end 

approach is used by Shavell [2006] (contract interpretation
20

) and Macey [1998] 

(precedent
21

). This perspective is adopted below. 

Remark 3.1 In absence of norm-based uncertainty on the meta-level, ordinary-

level, or both levels, the sets of formally enforceable judgments reduce to: 

 
  , k

n
k t

M g

t t
g CS ls

x y X Y y CS x


    , 
 

  , k

n
k t

M g

t t
g CS ls

x y X Y y CS x


    , 

                                                                                                                         
or perhaps just a sign written on paper, [or anything whatever]. It does not matter. Each 

chessman has a characteristic way of moving and this is all that matters about it. The 

whole game of chess follows from this way of moving the various chessmen […]” (quot-

ed from Farmelo [2009:354]). 

Interestingly, the chess metaphor is similarly used by Feller [1968:1–6] regard-

ing probability and by Ross [1959:11–18] regarding law-in-force notions. (See Pop-

per [1964] for a critical account of essentialism.) 

19
 See also Posner [1990], especially pp. 105–8. 

20
 See Example II.5.2 and Remark IV.1.2. 

21
 “A richer conception of precedent would have judges pursue the general societal goals 

articulated in previous cases, even when those general goals are no longer being reached 

by the particular rules articulated in individual cases. This approach permits judges to 

remain faithful to the ideal of precedent by following general principles reflected in pre-

vious cases while ignoring the specific holdings when such specific holdings are incon-

sistent with these principles. In a world of flux, the most desirable legal systems are those 

that offer credible promises to legal actors that they will continue to maximize social wel-

fare by quickly responding to new information and changing conditions” (pp. 72–73). 
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and 
 

  , k

n
k t

M g

t t
g CS ls

x y X Y y CS x





    , respectively. The sets are contract-

ing.
22

  

3.1 Legal politics I: parametric environments (controllability) 

A general framework for discussion of “legal politics” may be conceived as fol-

lows: Let S  be the set of possible social system states in the general sense of Ar-

row [2012:17], and individual states be described by 
1, , ns s s . Assume that 

(democratically elected) law empowers an agent to use a vector of instruments 

1, , k

k    , but at the same time, obligates the agent to ensure that 

the target vector 
1, , ms s s S S   , m n  is reached. A positive theory 

about the working of the system is represented by a system of n  (independent) 

equations: 

 

 

1

1 1

1 1

, , ; , , 0

, , ; , , 0

n k

n

n k

s s

s s

  

  





. 

Generally, the system can be solved for n m  variables (not of direct concern) 

and be written: 

 

 

 

1

1 1

1 1

, , ; , , 0

, , ; , , 0

m k

m

m k

s s

s s

 

 

 

 

. (3.1) 

                                                 
22

 In a simple binary situation (without meta-level uncertainty), conditioned on the possi-

ble configurations of a fixed panel of 19 apex judges, Nordén [2010] calculates the prob-

ability of outcomes in smaller panels ( 3M , 5M  and 11M ) deviating from the 19 *M  ma-

jority benchmark. The calculation of deviation probabilities assume of random (“impar-

tial”) allocation of the 19 judges to the smaller panels. It is a simple exercise in hyper-

geometric probabilities to demonstrate serious risk of contrary judgments appropriatly 

conditioned on plenary-panel configurations. The deviation-risk, not surprisingly, in-

creases in panel size reductions, peaking at more than 44 percent. 
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Locally, the transformation : mS   can be described by its linear ap-

proximation (assuming the Jacobian matrix 
m m  has full rank, m) and is given 

by:
23

 

 10m k m km m m ms s 

         . (3.2) 

It follows:  

 for an arbitrary target s S S   to be reachable, at least as many inde-

pendent instruments as independent targets in 
1, , ms s  are needed: If 

k m , a unique instrument vector (control) is defined for each s S 24
 

 if k m  (more targets than instruments), the system has k m  degrees 

of freedom: For a given target vector s , k m  instruments can be se-

lected in  , while the remaining instruments are uniquely determined 

From (3.2), if k m , the law implicitly defines a global rule :g S  , 

1

m m m ms


    . If k m , it defines a correspondence : S   . The two 

situations, conditioned on  , track the distinction between obligation (to do ex-

actly  g s   ) and constrained option (select one of the instruments 

 s    ). If structural (epistemic) uncertainty is added to (3.1), corre-

sponding to random matrix elements in (3.2), and the target is described as a loss 

function around s , the optimal instrument is generally uniquely determined, 

                                                 
23

 The inverse matrix 1

m m



  exists by the full rank assumption (Sydsæter [1981:92–98]). 

24
 The result concerns so-called static controllability. The number of independent instru-

ments corresponds to the dimension of the column-space of m k : it has dimension k  

and hence spans m . In general, each instrument is a function of all targets. In some cir-

cumstances (keyword: block-recursive structures) the constraint on instrument use is less 

rigid (admitting delegation of instrument use): see generally Johansen [1978], Ch. 7. 
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even if the number of instruments is larger than the number of variables in the 

minimand ( k m ), closing the discretion.
25

 

Remark 3.2 The controllability results generally hold in dynamic settings. The 

system of equations is then written  , ; 0s s   , where  s s t  is a vector of 

continuous state variables and  s t  its derivative with respect to time.
26

  

The next two examples concern the use of Pareto-efficiency (PE) as a (necessary) 

criterion for norm selection. The concept’s centrality in functionally oriented 

analyses of law and appearance in formal sources (both legislation and interna-

tional conventions), accentuate its importance. Combined with a positive theory 

linking norm structures to (equilibrium) outcomes, PE is a powerful concept:
27

 

Add to the description of S  a set of  1, ,i I  agents, represented by the pro-

file 1, , I  of weak (complete, transitive) preference orderings on S  (a set 

of “culmination outcomes in Sen’s [2009:215-7] terminology). A movement 

from state 's S  to ''s S  is a Pareto-improvement (PI) if all agents weakly pre-

fer ''s  to 's  ( '' 'is s  for all i ), and at least one agent strictly prefers ''s  (for at 

                                                 
25

 Under standard regularity assumptions a unique instrument vector *   (as a function 

of system parameters, including the ones describing the loss function) results, see 

Brainard [1967] and Example 3.6 below. 

Craswell & Calfee [1986] demonstrate that as uncertainty increases (the stand-

ard deviation in normally distributed standards) the effect of a change in legal policy (the 

distribution mean) is blunted. 

26
 In Leibniz’ notation (Devlin [1994:83–87])! See generally Murata [1977]. 

27
 See generally Kaplow & Shavell [2002]. Anti-trust law is a classic example of law pre-

scribing target states s S ; functional analysis (“infiltration of economics” 

Whinston [2006:6]) seems unavoidable. Similar arguments can be made regarding corpo-

rate law (see, generally, Easterbrook & Fischel [1991]). Normative issues have been in-

tensively discussed, see e.g. Coleman [2003]. 
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least one i , '' 'is s  and not ' ''is s ). The set of Pareto-efficient states, 

PES S , is the set of states from which no PI is possible.
28

 

 

Figure 3.2 The set of possible states S  and Pareto-efficient states PES  

States in 
PES  do not waste resources, in the sense that states allowing PI-moves 

have been filtered out. However, not all moves from \ PES P  to 
PES  can be de-

signed as PI-moves. In lack of backing in formal sources ls LS , it will be ar-

gued that use of the PE concept regarding coerced moves in mechanisms 

M   (in contradistinction to legislatures), should rely on a positive analysis 

demonstrating a PI move. This leads to a distinction between contract and tort 

law. Exchange economies are used as a framework for the analysis. 

It is helpful to define the set of states that agent i , relatively to state s , 

strictly prefers, is indifferent to, and finds strictly worse, respectively: 

   

   

   

 and not 

 and 

 and not 

i i i

i i i

i i i

P s s S s s s s

I s s S s s s s

W s s S s s s s

 

 

 

. 

Example 3.3 (contracts in general equilibrium). Consider a convex exchange economy, 

with L  commodities available in fixed quantities 
1, , L  .

29
 Let i

jx  be the quantity 

                                                 
28

 In defining S , basic notions of property rights and mechanisms for their transfers are 

implicit and invariant under the analysis. The definition of PE is a so-called strong ver-

sion. 

S

PES  

's  

''s  
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of commodity j  allocated to agent i , and 
1 , ,i i i

Lx x x  the L -tuple of commodities 

allocated to i , respectively. An allocation is a L I -tuple 
1, , Lx x x , such that 

1

I i

j ji
x 


 , 1, ,j L  (the equations define S ). An initial assignment of entitlements 

to the commodities is denoted 
1, , I   .

30
 The situation is illustrated in the 2 2  

economy in Figure 3.3, with the added assumption that agent 'si  preferences effectively 

only depend on 1 , ,i i i L

Lx x x   , which correspons to an assumption of no exter-

nalities.
31

 

 Agents endowed with (transferable) entitlements may form coalitions and trade. 

The Core defines a theoretical benchmark: A coalition of agents K  is a subset of 

 1, , I , including the whole set and the I  sets of single agents,  i .
32

 An allocation 

x S  is blocked by K  if, by using the resources available to it, the coalition can make 

all members better off: K  blocks x  if there is an allocation x  such that 

i i

i K i K
x 

 
   and i i ix x  for all i K . The core,  C  , is the set of allocations 

which no coalition of agents can block. 

In Figure 3.3, indifference sets (curves)  AI   and  BI   pass through the 

initial endowment point S . A move to the north-east of A’s indifference curve is a 

move to  AP  : an improvement for A. (A move to the south-west into  AW   is 

blocked by  A  and is said to be to be “individually irrational”.) Using the same reason-

                                                                                                                         
29

 The discussion is conceptual. For full details, see Maulinvaud [1985], Hildenbrand & 

Kirman [1998], and Mas-Colell, Whinston & Green [1995]. 

30
 The initial assignment of entitlements must be distinguished from their protection 

(Ayres [2005:14], Example II.5.1, and Remark II.5.1). A keyword for the present exam-

ple is property rule protection. 

31
 The illustrated downward sloping lines, convex toward origo, represent indifference 

sets and reflect local non-satiation and falling relative marginal valuation. The preference 

map orientations are indicated. (Under uncertainty, convexity expresses risk-aversion.) 

32
 There are 2 1I   coalitions (the empty set is not counted), see Section II.1. 



218 

 

ing with respect to B, the set of mutually beneficial agreements available from   lie in 

the lens defined by    A BP P  . The coalition  ,A B  blocks   because, by mov-

ing into the lens, both are better off (a PI-move). However, if an allocation such as x  is 

suggested as final, a new lens is defined, and a second PI-move is possible. In conclusion, 

the Core consists of the points of tangency as illustrated, end-points of all possible (path-

dependent) sequences of PI-moves: The elements in  C   are PI-reachable from  . 

The set of Pareto-efficient allocations, PES , is the set that cannot be blocked by 

(and only by) the coalition of all individuals  1, , I . It follows that   PEC S  : PE 

only allows for blocking by  ,A B , not  A  and  B .
33

 

 

Figure 3.3 The Pareto-set PES , Core  C  , and Walrasian equilibrium set  W   in the 

Edgeworth-Bowley box 

In Walrasian (general competitive) equilibrium, an L -dimensional vector q  of (relative) 

prices, perceived as a datum by all agents, induces sets of affordable vectors (budget sets 

                                                 
33

 The PE-concept has no individual rationality constraint, and is given by the curve from 

the south-west to the north-east corner in Figure 3.3. In the two-dimensional case, the 

subset of PES  defined by  C   is also called the contract set.  
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iB ), from which agents choose optimal bundles  ;i ix q q . In equilibrium, *q  clears 

all markets: As illustrated in Figure 3.3, the final state  1* *, , *Ix x x W    is in-

duced. It is a fundamental theorem of economics that    W C  .
34

 

 The two transition mechanisms take the economy from an(y) initial S  to 

end states in S : The Core correspondence :C S S  assumes unlimited communication 

and negotiations between freely formed coalitions of agents. The dynamics are implicit 

and path dependent.
35

 The Walrasian correspondence :W S S  supposes a decentral-

ized mechanism, where agents make decisions knowing only the tuple of anonymous 

prices. Both mechanisms assume the existence of enforceable contracts in entitlements, 

and may be considered as meta-theorems for pacta sundt servanda, in relevant environ-

ments.
36

 

 Both transition mechanisms ensure PI-movements. The operational Walrasian 

mechanism has additional properties of normative interest.
37

 ■ 

                                                 
34

 More precisely, the  1L I  -tuple 
1*, *, , *Iq x x  is a Walrasian equilibrium if the 

price vector  *q q   and demand functions     * ;i i ix x q q    satisfy 

    
1 1

;
I Ii i i

i i
x q q   

 
   (vector equality), and     ;i i i ix q q x    for all 

         ;i i i i L i ix B q q x q x q         , 1, ,i I .  W   is a single-

element set only under additional strong assumptions, but can be shown to be non-empty 

and have a finite (in fact, odd) number of elements under weak regularity assumptions. 

35
 See Hahn [1974]. 

36
 See Remark 3.5. (Enforcement means injunctions or sufficiently high penalty clauses 

or option excise prices.) 

37
 Keywords regarding the transition mechanism :W S S  are: equal trading opportuni-

ties, anonymity, non-manipulability, and low informational requirements. Regarding end 

states, symmetric initial wealth distributions (symmetric initial entitlements distributions 

are special cases) give rise to so-called envy-free (even coalitional envy-free) equilibria. 

See Varian & Thomsen [1985]. 

In large economies, the core in fact inherits these properties, due to the famous 

Core convergence theorem: as the economy grows (the number of individuals I  increas-

es) the Core shrinks to the set of Walrasian equilibria. The theorem is remarkable, be-

cause the two equilibrium notions have completely different motivations (unrestricted 

cooperation and decentralized decisions). 
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In contract law, due to ensured PI-moves, use of PE for norm selection in legal 

decision-mechanisms M  is arguably suggested by a reasonable interpretation of 

the institution of contracting itself. However, in more complex environments than 

discussed in Example 3.3 (keywords: trading over time under uncertainty and 

asymmetric information), design questions quickly become complex.
38

 

Example 3.4 (liability in general equilibrium). Let  2 0,A Ax e e   be an index of A’s 

use of resource 2 (such as clean air), assumed to directly affect B adversely (B’s access to 

clean air is defined by 
2

B Ax e e  ).
39

 An initial entitlement allocation defines 

, , ,
eA e A B e B     , say. As remarked above, initial entitlement assignments 

should be distinguished from their protection. Figure 3.4 illustrates 

0
,0 , ,A B e   , and , , ,0

e A Be   . Letting   increase in  0,e , any 

point 

  between 

0
  and 

e
  is defined on the vertical dashed line. 

Assume that the initial entitlement distribution is 
0
 , and that A is identified as 

a tortfeasor. If B’s entitlement is protected by strict liability, A has the option to move 

along  0BI  , fully compensating B in units of the physical commodity. A forces a 

move to    0 0B

PEC I S   .
40

 

                                                 
38

 Optimal contracts are complex and sensitive to changes in information structures. Ar-

guably, power-conferring norms are well suited to describe theory-prescribed authority 

allocations. See Laffont [1989], Laffont & Martimort [2002], and Bolton & 

Dewatripont [2005] on modern theories of information and institutions (theories that are 

only hinted at in Sections I.2 and 3.2). 

39
 This is a much simplified way of introducing (intentional) externalities in general equi-

librium (see Arrow [1970] for a general discussion). 

40
 Damages or losses,  B AL e , is measured in units of commodity x , defined by 

      0 0 0
; 0, ; ,B A A B B A A Bx e x e e e I          . The loss function is strictly in-

creasing and concave (from convexity of preferences B ). 
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Figure 3.4 Liability rules in the exchange economy 

If B’s entitlement is protected by a negligence rule, mapping to liability for A if Ae c  

under a rigorous rule or if 
Ae c  under a lenient rule, A has the option to move along 

the vertical dashed line from 
0
  until 

c
  or in 

c
 , respectively, followed by a “hori-

zontal jump” from point 
c
  or 

c
 , respectively, to  0BI   (reflecting the dichotomiz-

ing nature of negligence rules).
41

 A forces a move to 
c
  and 

c
 , respectively.

42
 If legal-

ly permissible, parties can negotiate from 
c
  and 

c
 . Under zero transaction-cost 

“Coasian” bargaining, they reach an efficient point in  c

PEC S   or  c

PEC S  , 

                                                                                                                         
 Let the set of legal facts be given by  0,E e . The global rule of strict liability, 

:sr E  , is defined by    0
;A B A

sr e x e  . 

41
 A global negligence rule :cr E   is defined by  

 
 0

0 if 

;  if 

A

A

s B A A

e c
r e

x e e c

 
 



. 

42
 Compare Sections IV.4, V.2, and V.4. 
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respectively.
43

 If parties do not negotiate (and in the absence of markets in the externali-

ty), efficiency under negligence rule protection requires a rule defined by 
PEc c , deter-

mined by the intersection of the vertical dashed line and the Pareto-set. ■ 

Remark 3.3 The identification of A as a tortfeasor, in Example 3.4, may be arbi-

trary (a key insight from Coasian style analysis). The analysis is symmetric if B 

is identified as the tortfeasor.
44

 Irrespective of whose initial entitlement is pro-

tected, additional methods include property rules and put-options (see, generally, 

Ayres [2005], Example II.5.1, and Remark II.5.1).  

The slection of liability regime under Coase theorem assumptions, corresponds to 

a choice between different culmination outcomes in 
PES  from initial entitlement 

assignments \
e

PES S . In contrast to Example 3.3 concerning PI-moves, Ex-

ample 3.4 illustrates that a choice between liability protection of entitlements 

based on the PE criterion concerns income distribution (see also Parts IV–V). 

Arguably, coerced income-shifting selection of entitlement protection belongs in 

legislatures.
45

 As opposed to courts, legislatures have access to a wide set of in-

struments that can be used to compensate adverse income effects (compare the 

                                                 
43

 Arrow [1970] considers the possibility of competitive markets in externalities (imply-

ing transition to PES  via the Walrasian correspondence), illustrating the relationship be-

tween the externality notion and market and property right structures. 

44
 In symmetric situations (agents are just as likely to produce as be affected by externali-

ties), arguments for PE as a legitimate design criterion in courts are strengthened (see the 

discussion of reciprocal situations in Kaplow & Shavell [2002:100–154]). 

45
 This is not a descriptive statement. Parisi [1992] for a comprehensive study of court 

developed liability regimes. 
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controllability results, discussed above). There are also inherent problems regard-

ing identification of externalities.
46

 

3.2 Legal politics II: strategic environments (rules v. discretion) 

A basic corollary of the general controllability properties discussed in Section 3.1 

is that, over time, discretion dominates rule bound policy: flexible instruments 

use can replicate any asserted optimal rule and react optimally to unforeseen cir-

cumstances (rule gaps or insufficient state sensitivity in the Ayres & Gertner 

[1989:92] sense).
47

 However, if instruments are implemented in strategic envi-

ronments, the conceptual framework changes fundamentally. 

The theory of games sets the stage for analysis. Generally formulated, a 

game is defined by a set of players  1,...,i I , each choosing a strategy 
i  from 

a set of possible strategies,  i i , the notation expressing the possibility of 

strategy-sets, depending on the the I i  other players’ strategies, 
i 
. The de-

scription is completed by defining payoff-functions :i i iu    . Strategies 

are elements in appropriately defined spaces, and correspond to complete contin-

                                                 
46

 “There is one deep problem in the interpretation of externalities which can only be sig-

naled here. What aspects of others’ behavior do we consider as affecting a utility func-

tion? If we take a hard-boiled revealed preference attitude, then if an individual expends 

resources in supporting legislation regulating another’s behavior , it must be assumed that 

that behavior affects his utility. Yet in the cases that students of criminal law call “crimes 

without victims,” such as homosexuality or drug-taking, there is no direct relation be-

tween the parties. Do we have to extend the concept of externality to all matters that an 

individual cares about? Or, in the spirit of John Stuart Mill, is there a second-order value 

judgment which excludes some of these preferences from the formation of social policy 

as being illegitimate infringements of individual freedom?” Arrow [1970:16]. 

47
 See e.g. Fischer [1990]. 
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gent plans (algorithms), describing what a player does in any possible situation 

throughout the game, as defined by physical and legal-institutional constraints.
48

  

Let a policy implementing agency’s strategy-space be denoted 
 . The 

next two examples illustrate the change in perspective on “legal politics” arising 

from strategic considerations. 

Example 3.5 (commitment in an extensive form game). In the Figure 3.5 two-stage dy-

namic game (of complete and perfect information), a first-moving agent considers sink-

ing irreversible investments in a jurisdiction. The agent’s strategy set is  ,i i , i  and 

i  denoting investment and no investment, respectively. If investment is undertaken, a 

policy implementing agency has a choice between levying “low” or “high” capital taxes 

as defined by  ,    , say. Payoffs are as illustrated below: 

 

Figure 3.5 Implementation of legal instruments in a strategic environment 

Rationality dictates the backward induction equilibrium ,i  : the agent realizes that 

the agency has an incentive to choose high taxes  , given investment i . The corre-

sponding  0,0  outcome is Pareto-dominated by outcome  1,1  corresponding to strate-

gy-profile ,i  . Because the choice of   at the second stage is incentive incompati-

                                                 
48

 A detailed discussion is not attempted (but see Section IV.2). Maulinvaud [1985:150–

83] provides a general introduction (see Gibbons [1992] and Mas-Colell, Whinston & 

Green [1995] on non-cooperative theory). 

 

i  

 0,0
i

 

  

 1,1
  

 1,2  
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ble, the  1,1  outcome is not supportable as an equilibrium. However, if the agency cred-

ibly could limit its strategy-set from  ,    , to   , a PI move is ensured (cor-

responding to a Figure 3.2 move from \ PES S  to PES  in utility-space). ■ 

In parametric environments, a reduction in the set of admissible instruments   

would (weakly) impair the agent’s ability to implement policy. In strategic envi-

ronments, focus shifts from selection of instruments to design of institutions ca-

pable of implementing preferred strategic equilbria. Law, partly constituting the 

game structure, defines or shape strategy sets and payoff functions. If the power-

conferring norm ' : 'n X   is such that '  in effect (credibly) maps to 

 
', '

!
x 

 , an improved equilibrium is obtained. In this case, law functions as a 

commitment mechanism. 

The next, paradigmatic example combines game-and control-theoretic 

dimensions.  

Example 3.6 (monetary policy and strategic delegation). A stripped version of the “work-

horse model” used in political economics, is given by the following equations:
49

 

   

         
2 2

|

, * * , *

REy E I

E L y E y y y E



  

   

    

 

   

    

. (3.3) 

The first equation is the demand side,   inflation,   base money growth rate, and the 

stochastic variable   demand shocks. The second equation is the supply side, y  output 

growth,   a stochastic parameter for non-inflationary output growth,  | REE I  private 

sector inflation growth expectations, and   supply side shocks.   E L   is the govern-

                                                 
49

 The model is from Persson & Tabellini [1999]. Focus in the summary discussion is on 

the strategic issues and trade-offs in regime designs, not on the economic model content. 
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ment loss function. All stochastic variables are i.i.d.’s:  , , ,0,0E      and the 

covariance matrix given by    2 2 2, , diag , ,Var         . 

 The sequential structure is as follows: At time 

0t   the government chooses policy-regime (RE); 

1t     is realized and observed by the government and private sector; 

2t   private sector expectation  | REE I  is formed, conditioned on   and 

RE; 

3t     and   are realized and observed by the private sector and govern-

ment; and 

4t   the government chooses instrument   . 

Crucially, private sector expectations are formed rationally at 2t , conditioned on the in-

formation available, as expressed by the information set 
REI . The policy regime—the 

legal rule defining downstream use of instrument   at 4t —is fully known when expec-

tations are formed. The private sector also has complete information about the model 

(3.3) and the stochastic structure of , ,   . 

Assume that the rule for instrument use is designed depending on the whole vec-

tor , ,    (in Example II.3.4 terminology, a complete state contingent rule, CSC). The 

optimal rule (among the class of linear ones) turns out to be 

  1
, , *CSC r 


      


    , giving first-best equilibrium values ,CSC CSCy .

50
 Due 

to the strategic environment, the rule  CSC   dominates discretion. However, given the 

expectations  |
CSC

E I  formed at 2t , the shocks ,   realized at 3t , evaluated at 4t : 

   
    |

, ,

, 2 * 0
CSC

E ICSC CSC

d
L y y

d



  

  
 

    . (3.4) 

                                                 
50

 Persson & Tabellini [1999] provide explicit solutions ,CSC CSCy . 
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Equation (3.4), means that that the government, at 4t , has an incentive to deviate from 

the announced rule,  CSC   (the derivative is non-zero with probability one): the rule is 

dynamically inconsistent. If the private sector believes that instruments will be set ex post 

optimally (discretionary, D), selection of D  at 4t , in equilibrium gives 

  1
* *D y v 


    


     , with equilibrium values ,D Dy  (expectations are 

formed conditioned on 
D

I ).
51

 The lack of ability to commit to  CSC   is costly, as ex-

pressed by the difference: 

        2
2 2, , *D D CSC CSCE L y E L y y        . 

It may be possible to commit fully to a simpler, partially state contingent (PSC) rule 

 PSC  . Conditioned on e.g. ,  , and expectations formed based on 
 PSC

I
 

, the opti-

mal (linear) rule is given by  , *PSC r       , and the corresponding equilibrium 

,PSC PSCy .
52

 

 However, equilibrium under PSC  and D  cannot be ranked unconditionally: 

         2 2
2 2 2

1
, , *PSC PSC D DE L y E L y y

 
     


     . (3.5) 

Based on the tradeoffs between (fully committed) rules and discretion expressed in (3.5), 

Flood & Isard [1989] suggest an optimal combination of a rule bound and discretionary 

regime: use of a  PSC   under “normal circumstances” and under large, costly shocks 

                                                 
51

 Persson & Tabellini [1999] provide explicit solutions ,D Dy . 

52
 Persson & Tabellini [1999] provide explicit solutions ,PSC PSCy .The PSC rule is also 

incentive incompatible (   
     |

, ,

, 2 * 0
PSC

E IPSC PSC

d
L y y

d



  

   
 

      with proba-

bility one). If the problem of credibility can be solved,  CSC   dominates  PSC   (a di-

rect consequence of solving a free versus constrained minimization problem). 
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that the  PSC   does not accommodate (  ), activation of an exit clause and discretion-

ary instrument use.
53

 ■ 

It has been illustrated that mechanisms limiting discretion may improve the abil-

ity to implement (democratically elected) policies in strategic environments. The 

ideas illustrated in Examle 3.6 have influenced actual institutions.
54

  

Design of system-based legal commitment mechanisms concern power-

conferring norms 
'' X

Y

X


 .
55

 As explicated in Example 3.5 (and in reference 

to Section 2), under “normal circumstances” 'nX X  the legal system fully 

commits to a (dynamically inconsistent) partially state-contingent rule 

(     supp ' | '
n PSCX

x r   ), and in “extraordinary circumstances”, 

'\e nX X X , switches to a discretionary regime,  supp ' | '
e

X

YX
x   . 

Commitment is only possible if: 

 it is credible that 'n  is not changed over the relevant time span, and 

 it can be verified that '  is followed. 

                                                 
53

 In the present example, the design concerns subsets    , ,     for the shocks   

that are costly under PSC , cf. (3.5).  

54
 Arguably, Bank of England (BoE) is a leading example. A simple (transparent) partial-

ly stage contingent rule is delegated to the relatively independent BoE as a method to 

obtain commitment to the rule The Bank of England Act gives BoE full operational inde-

pendence, while the Treasury specifies targets (Sec. 10–12). The Treasury can only in-

struct BoE regarding monetary policy instruments if “required in the public interest and 

by extreme economic circumstances” (Sec. 19(1)), see Cranston [1998]. Nordén [2002] 

uses the logics of a strategic delegation regime with a discretionary exit clause to suggest 

interpretations de lege lata of the Norwegian Central Bank Act. 

55
 For private sector agents, contracts and arbitrational mechanisms are essential for re-

laxing incentive constraints, and may be thought of as transforming the pay-off structure 

in Figure 4.1. A profound literature cannot be discussed here (see Watson [2002] for an 

introduction). Government contracts are problematic as commitment devices due to the 

difficulties in enforcing rights against sovereign states and constitutional prohibitions of 

limitations on future legislation (Hermalin, Katz & Craswell [2007:127]). 
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The first bullet point concerns commitment to the legal regime. Strategic delega-

tion regimes may be defined in ordinary legislation, in international conventions, 

or at the constitutional level, reflecting different costs of regime change. In this 

regard, hierarchical structure of legal norms, maintained by independent courts 

and arbitrational panels, help constituting commitment mechanisms (see Re-

mark 2.2).
56

 

The second bullet point concerns the mapping ' : ' X
Y

n X


  (partition-

ing of 'X  into 
nX  and 

eX ) and (simultaneously) the choice X

PSC Yr   (key-

words: observability and transparency). Both bullet points presume that enacted 

norms are interpreted in a stable and predictable manner, including—if applica-

ble—in downstream courts. It concerns the structure of meta-norms and the legal 

system understood as an institution. 

Remark 3.4 Even in strategic settings, where logical arguments can be made for 

constraints on legislative power, the use of commitment mechanisms raises chal-

lenging questions. Fischer [1990:1181] warns against irreversible designs based 

on stylized theories.
57

  

Remark 3.5 In dynamic systems (Remark 3.2), so-called model consistent expec-

tations are introduced by partitioning  s t  into subsets of “forward” and “prede-

                                                 
56

 However, courts are traditionally reluctant to intervene in governmental inter-branch 

disputes (see Ferejohn & Pasquino [2004]). 

 International courts and tribunals can constitute valuable commitment mecha-

nisms. In this context, however, independence and efficiency takes on important addi-

tional dimensions as demonstrated by Posner & Yoo [2005]. 

57
 Rigid constitutions and substantive judicial review are controversial (see Merryman & 

Pérez-Perdomo [2007:134–60] on the historical development, including direct access to 

review and increasing use of international instruments). La Porta et al. [2004] argues that 

it is a predictor of economic and political freedom. Elster [2013:282] argues that courts 

should not screen decisions of properly elected and organized legislatures on substantive 

grounds. 
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termined” state variables. The forward variables are allowed discontinuous 

moves at points in time 
It , when new information ( I ) about parameter paths 

(
t ) become available, ensuring that the resumed continuous solution trajectory 

leads to a stationary point as t  . Through the forward variables, (probabil-

ity weighted) information about future shifts in 
t  influence current states.

58
 In 

particular, it gives a framework for analyzing the impact of expected changes in 

law, lex futura.
59

  

                                                 
58

 The methodology “leads to notions of stability and to solution theory that is different 

than much of that in the natural sciences” (Brock & Malliaris [1989:263]). In terms of the 

Section IV.1 equilibrium correspondence, solution discontinuity at It  avoids chaos (un-

der continuity, perturbation of system parameters would have lead to explosive develop-

ment, see the Section I.1 reference to Ekeland [1988] and Buiter [1984] on linear sys-

tems). 

59
 In fact, it has been suggested that law expected to be promulgated, should count as a 

formal source (Tvarnø & Nielsen [2014:268], discussing EU-directives awaiting imple-

mentation). Similarly, some dimensions of courts’ transnational engagement (as advocat-

ed e.g. by Jackson [2010]), may challenge legal systems’ institutional ability to function 

as commitment mechanisms. 



   

 

 

 

PART SEVEN 

EPISTEMIC UNCERTAINTY 

Equation Section 1 

1 Introduction 

In Parts II and III, conditioning source complexes ls LS  and facts x X  are 

exogenously given. Parts IV and V endogenize facts and establish an equilibrium 

correspondence from ordered pairs of (mixed) abstract norms and decision mech-

anisms to the set of solutions, *: X

Yx X  (also reflected in Part VI law-

in-force notions). In all situations, judges were assumed to observe variables cor-

rectly. This assumption is now relaxed with respect to ordinary facts, x X . 

Judges’ observations of these facts will have a systematic component and an er-

ror term, representing epistemic uncertainty. Norm application in mechanisms 

M   leads to confluence of legal and epistemic uncertainty that systematical-

ly affect probability distributions over legal consequences. Section 2 starts with 

an analysis of 1M , which a “doubly” stochastic environment is not an identity 

transformation. Adding epistemic uncertainty further accentuates the question of 

decision mechanism evaluation. Section 3 suggests a definition, enables mecha-

nism comparison, in terms of error generation. In this perspective, Section 4 ana-

lyzes the impact of mechanism size and super-majority rules under joint legal and 

epistemic uncertainty. Section 5 evaluates the impact of separation of decisions 

on law and facts, and it includes a discussion of optimal design. 
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Equation Section (Next) 

2 Epistemic competence and 1M -transformation 

A judge observes conditional fact x   x ,   denoting a stochastic varia-

ble, interpreted as an error term, independent of the actual or “true” state x X .
1
 

The error term has cdf  F t , with expectation   0F E


   , and variance 

 2 2E   . These assumptions define the judge’s epistemic competence.
2
 

Remark2.1 The law and economics literature considers (pure) epistemic uncer-

tainty (situations in which an independent criterion for a correct decision exist). It 

includes Shavell [1987] Sec. 4.A.3.1 and Diamond [1974].  

In Example II.2.1,  ,S

X

Fg
 

 , the abstract legal standard is defined by the sto-

chastic variable S  with cdf  SF t , liability ( ) occurring iff S x . The norm is 

given by      | 1 ; ; ,S Sx X x X
g x F x F x

 
     . With a stochastic fact x , lia-

bility is concluded in 1M  iff S  x . It follows: 

Proposition 2.1 If  ,S

X

Fg
 

 , liability occurring iff S  x , with 

x  x , the error term   having cdf F  and the legal standard stochas-

tic variable S  having cdf SF , the 1M  transformed norm  1 ,

Xg
 

  is 

given by: 

                                                 
1
 The reservation regarding “true” concerns situations in which an external criterion for 

occurrence of a phenomenon and/or classification does not exists (individuation and sys-

tem aspects of norms make this relevant: output from one non-determinative norm may 

be input to another). 

2
 The Parts III through VI analyses correspond to situations where judges never make 

factual mistakes (
2 0   or cdf    0F t F t  , the discontinuity at 0t   corresponding 

to a jump from 0 to 1 (see Example II.3.2). 
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      1 | 1 ; ; ,S Sx X x X
g x F x F x   

     , (2.1) 

with     1S SF x F s x dF     . 

Proof. The liability component in (2.1),      1 |g x P S P S      x   SF x , is 

obtained by conditioning on S :  P S  x  | SP S S s dF   x    1 ; SF s x dF  x
 

  1 SF s x dF   .
3
 ◄ 

To focus conceptual issues, it is assumed that legal and epistemic uncertainty can 

be described by normal distributions. In addition to considerable analytical sim-

plifications compared to (2.1), it leads to instructive comparative statics that will 

be demonstrated to have (approximate) relevance, for all underlying distribu-

tions. Hence, let  2 2; ,S S SF t      denote the cdf from  2 2,S SN    . 

Proposition 2.2 If the legal standard and error distributions are independ-

ent and normal,  2,S SS N    and  20,N   , 

                  
 

   

1

2 2 2 2

|

1 ; , , ; , ; ,

x X

S S S S S S
x X

g x

F x F x        



 


 

    
        (2.2) 

with a strictly increasing cdf  2 2; ,S S SF t     , symmetric around the 

median equal to mode and expectation  1 2 21
2
; ,S S S SF s   

  , and 

strictly convex on  , S  and strictly concave on  ,S  . 

                                                 
3
  ;F t x

x
 is the cdf of x  and given by  F t x   (      ; |F t x P t x P t x    

x
x ). 

Alternatively, it can be conditioned on x . 
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Proof. Because the sum of independent normal variables is normal,   SE S    , 

  2 2

Svar S      ,  2 2,S SS N       (Bartoszyński & Niewiadomska-

Bugaj [1996], Theorem 9.10.3.). From normality,  1 2 21
2
; ,S S S SF s   

   .
4
 See Exam-

ple IV.2.2 regarding the cdf first and second order derivatives, 'SF  , ''SF  . ◄ 

Norm-based uncertainty is measured by 2

S  and epistemic uncertainty by 2

 :  

Proposition 2.3 Legal uncertainty 2

S  and epistemic uncertainty 2

  im-

pact liability probability  2

1 2| ; , Sg x      positively if Sx   and 

negatively if Sx  . The impact is measured by: 

   2 2 2 2 2 2

1 1

2 2 2 23

| ; , , | ; , ,

1 1
exp

22 2

S S S S S

S S

S S

g x g x

x x

  

 

       

 

    

       

    
    
     

. 

 

Figure 2.1 Impact of increased legal or epistemic uncertainty on liability probability in 

1M  under normality assumptions 

                                                 
4
 Normal distributions are unbounded, uni-modal, symmetric, and have median and mean 

equal to the mode. (Equality of the median and mean applies to all symmetric distribu-

tions.) 

   2 2

1 | ; ,S S Sg x F x     

1  

,x t0  

 2 2

S   

 1 1
2S SF  

   

1
2

X
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Proof.    2 2 2 2

1 | ; , , ; ,S S S S S
t x

g x F t s      


   . The event S x   is equivalent to 

the event      
1 1

2 2 2 2

S S S SS x       
 

      . Because the left hand side 

standardized normal variable is distributed  0,1N  (has cdf  
1
21

2

z

z e d








  

5
), 

 2 2; ,S S SF x s      
1

2 2

S Sx   
 

    
 

. Hence, given x X , from Lebniz’s 

formula for differentiation of integrals
6
, 

    2 2

12 2 2 2
2

2 2 2 23

; , ; , 1

2 2

S

S

x

S S S S S S S

S S

F x s F x s x
e 



     

 

    

    

 
 

  
    

    
  

  
. ◄ 

Figure 2.1 illustrates curvature properties of the liability probability component 

   2 2 2 2

1 | ; , , ; ,S S S S Sg x F t s         , under Proposition 2.2 normality as-

sumptions. The cdf is unbounded and strictly increasing, with convex and con-

cave regions, as described in Proposition 2.2. The dotted line illustrates the effect 

of increased legal or epistemic uncertainty. A more lenient standard (a higher 

S ) can be represented in the figure by a negative vertical shift of the cdf curve.
7
 

Equation Chapter (Next) Section 3 

                                                 
5
 Bartoszyński & Niewiadomska-Bugaj [1996], Theorem 9.10.1. 

6
 Bartle [1976], Theorem 31.8. 

7
 The shift is given by S  impacts liability probability negatively globally on X  and is 

given by 

 
    2 2

12 2 2 2
21

2 2

| ; , , ; , 1

2

S

S

x

S S S S S

S s S

g x F x s
e 



    



    

    

  
  

   
   

  
  

, 

see the proof of Proposition 2.3. 
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3 Evaluative criteria for decision mechanisms under joint legal and 

epistemic uncertainty 

Part III demonstrates that abstract norms  ,S

X

Fg
 

  are systematically trans-

formed in mechanisms M  . Adding a second layer of uncertainty—as illus-

trated in Section 2—further accentuates questions about mechanism evaluation. 

However, an independent criterion is not readily available, with respect to legal 

variables (with respect to x , the external benchmark is given by state x X ). 

However, Table I.1 suggests using the outcome in large majority mechanisms, as 

a benchmark for the correct decision regarding legal variables, using 2 1mM   or 

2 1

T

mM  .
8
 

From the Condorcet theorem (Section III.2) and Proposition III.6.1.iii, 

the benchmark transformation of  ,S

X

Fg
 

  is given by: 

      
 

 

 

1 1
2

1 1
2

1 1
2

1 1
,2 1 ,2 1 2 2

1,0; ,

lim | lim | , ; ,

0,1; ,

S S

x F

T

F m F m x Fx X x Xm m

x F

g x g x









    



  



     

  


. (3.1) 

Based on the asymptotic argument, the benchmark partitions X  into a region of 

no liability X  and liability X   by: 

 
  

  

1 1
2

1 1
2

\

S

S

X x X x F

X X X x X x F

 

  

  

   
, (3.2) 

                                                 
8
 The mechanisms are functionally equivalent, see Remark III.6.C. In legal hierarchies, 

ultimate decisions on (pure) law are typically made in large collectives under majority 

rule. Remarkably, in the absence of effective double jeopardy protection, majority rules 

also apply to criminal procedure, even if mixed questions of law and fact (liability) is 

determined under super-majority rules in downstream courts or juries. 

 In the case of multi-dimensional norms (Examples II.2.2 and III.4.1), the defini-

tion arguably should reflect outcome-based voting, not premise-based regimes (see 

Nordén [2015]). 
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respectively. In the context of adverse decisions, the state of no liability ( ) may 

be defined as a null hypothesis 0H , and Type I errors as rejection of 0H  if 

x X  . The alternative hypothesis AH  denotes liability. Correspondingly, 

Type II errors may be defined as not rejecting 0H  if x X  .
9
 

Table 3.1 Decision matrix 

0

0

  state state

   decision
type II error

  

decision
type I error

 

x X x X

not reject H

reject H

  





 

By calculating the liability probability in finite, real world mechanisms M  , 

the distribution of errors is obtained globally on X X X   . Let  ,iF t  de-

note the error term cdf characterizing judge i. In completing Table 3.1, genera-

tion of Type I and II errors depends on: 

 the abstract legal standard, as defined by  ,S

X

Fg
 

  (hence, implicitly 

on the meta-level factors 
 ,

, X

LSls LS
 

  ); 

 judges’ epistemic competencies, as given by   , 1

n

i i
F t 

; 

 the actual state x X  ( *x X ); and 

 the parameters defining M  . 

The next two sections investigate these dependencies. 

                                                 
9
 On hypothesis testing in scientific contexts (with analogues to law), see Larsen & 

Marx [1986:286–304]. 
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Remark 3.1 In case of a normal standard distribution  2,S SS N   , X  is parti-

tioned into  X X   by  1 21
2
; ,S S S SF   . It follows directly from Proposi-

tion 2.3, that increased legal and/or epistemic uncertainty (as measured by 2

S  

and 2

 ) in the single-judge contexts, implies a global increase in Type I errors 

on X  and a global increase in Type II errors on X  , see Figure 2.1. and 4.1.  

Remark 3.2 Criminal procedure typically involves lay judges and jurors selected 

from lists representative of larger populations. They determine liability in bifur-

cated trials. Their general verdict is protected by double jeopardy rules. In such 

contexts, a representative perspective on agency and mechanism legitimacy 

seems pertinent. As suggested in Nordén [2015], it motivates an adjustment in 

the analytical framework: Norms, envisioned as incomplete at points or in re-

gions of X , are completed by properly sampled adjudicators entitled to their 

own (representative) judgments.
10

 Specializing Arrovian axioms to dichotomous 

situations, Kenneth O. May demonstrated that majority rule is the only method 

satisfying anonymity (all individuals are given equal weight in the aggregation), 

neutrality (equal treatment of the outcomes), and monotonicity (more support for 

an outcome cannot imperil its election).
11

 The majority decision over  ,  , in 

the population of potential adjudicators, may, therefore, be defined as the 

                                                 
10

 Kornhauser & Sager [1986] distinguish between several purposes that may be imputed 

to legal decision mechanisms, including representation. Even stratified randomization is 

used (Elster [1989:96–98]). In this context, a properly sampled adjudicator convicts with 

a probability equal to the population fraction (see Bartoszyński & Niewiadomska-

Bugaj [1996], Theorem 9.6.1, on sampling without replacement from large populations). 

In norm-theoretical terms, the substantive norm should be considered power-conferring. 

11
 The axioms give necessary and sufficient conditions. See Moulin [1988], Theo-

rem 11.1, for particularly apt formulations (indifference between alternatives is not per-

mitted). 
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benchmark against which actual (finite) mechanisms can be measured. On a more 

profane level, invoking Beccaria’s legality principle (Section I.1), it should be 

added that substantive criminal law itself is promulgated through representative 

majority-voting mechanisms.
12

 This benchmark may also be motivated by “mod-

est objectivity” as suggested for the legal domain by Coleman & Leiter [1993], 

and which is analogous to the notion of “closed impartiality” in Sen [2009].
13

  

Equation Section (Next) 

4  ;v n
M -transformations and Type I and II errors 

In panels, errors  
1

n

i i



 are assumed to be i.i.d.’s from  F t . That is, judges are 

assumed to have the same (homogenous) epistemic competence and to make de-

cisions on facts, independently of each other, conditioned on facts revealed in the 

formal legal proceedings.
14

 

                                                 
12

 Kelsen [1955:25] remarks: “The principle of majority, the greatest possible approxima-

tion to the idea of freedom in political reality, presupposes as an essential condition the 

principle of equality. [---] This synthesis of freedom and equality is at the basis of the 

democratic idea concerning the relationship between the social order (as the collective 

will) and the individual will, between the subject and the object of domination […].” 

In reference to H. L. A. Hart and John Austin, Thomas & Pollack [1992:8] point 

out that “the sovereign in a democracy is ultimately the electorate. [---] a jury is simply a 

sample of the larger universe of the electorate, and a jury verdict can be compared to the 

result the electorate would have reached had it judged the case.” They call it a “broad 

positive conception of guilt” in contradistinction to procedural truth concepts. Note that 

in some recent constitutions, referenda (“direct democracy”) are given legal status 

(Merryman & Pérez-Perdomo [2007:25]). 

13
 Under “ideal epistemic conditions” for legal judgments Coleman & Leiter [1993:629–

32] suggest the majority outcome among all judges as defining the right outcome. Their 

form of “legal cognitivism” does not imply imposition of external truths to normative 

questions. Arrow [2012], requiring positive association between unrestricted individual 

values (universal domain) and social choice, contrasts his approach to “idealistic posi-

tions” (including some interpretations of the Condorcet theorem), see esp. pp. 28–30, 81–

86, and 96–97. Although stressing law application as a form of cognition, 

Heckscher [1892] rejects judges tracking independent truths (Remark 5.1). 

14
 If judges are randomly allocated to the mechanisms from sufficiently large reference 

populations, uniform competences equal to the population average follow from the sam-

pling method. Independence arguably is a fair trial component paralleling assumptions 

made with respect to legal variables (Section I.2). 
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Remark 4.1.A Remark III.6.1.C implies that results developed for 
 ;v n

M  also 

apply to 
 

,
;

T
v n

M  .  

Remark 4.1.B A large literature considers collective decision-making under 

(pure) epistemic uncertainty, combining social choice, team theory (see 

Nitzan 2010), and reliablilty theory (see Boland [1989] and Arnold, Balakrishnan 

& Nagaraja [2008]). Extensions to logical aggregation theory include List [2005] 

and Bovens & Rabonowicz [2006], who discuss outcome versus premise-based 

protocols. Hecksher [1892] also contains many insights (see Remark 5.1).  

Proposition 4.1 Let  ,S

X

Fg
 

  and judges vote on  ,Y    in 

 ;v n
M  under default 0H  , individually concluding liability iff 

S x   x , S  with cdf SF  and   with cdf F . Under independence: 

            
           

           

; ; ;

; ; ;

type I error | , |

type II error | , | 1

Sv n v n v n
x x

Sv n v n v n
x x

P x M g x H F x

P x M g x H F x





 

 


 


 

  

   
, (4.1) 

with SF   defined in (2.1) and    ;v n
H   defined in Proposition III.2.1. 

Proof. The proposition proof follows from Propositions 2.1 and III.2.1. ◄ 

While Part III’s “outer” aggregation results can be applied without specific dis-

tributional assumptions, this and the next section proceed on the basis of the 

Proposition 2.2 normality assumptions. The liability component    ;
|

v n
g x  is 

focused without loss of generality (        ; ;
| 1 |

v n v n
g x g x    ). Qualitatively, 

the transformed norm curvature properties    1 | : 0,1g x X  , illustrated in 

Figure 2.1, are preserved in majority mechanisms and, to a large extent, in super-
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majority mechanisms. This is due to the properties of the outer aggregation func-

tion      ;
: 0,1 0,1

v n
H   discussed Section III.2. 

Proposition 4.2 Under Proposition 2.2 normality assumptions, the strictly 

increasing functions: 

(i)      ;
| : 0,1

v n
g X    is strictly convex on X  and strictly concave 

on   1 2 21
1
; , ,v

S S Sn
X F      

 
  


.  

(ii)    2 1 | : 0,1mg X     is strictly convex on X  and strictly concave 

on X  . 

Proof. 
     ;

| : 0,1
v n

g X    is defined by the composite function 

   ;
: 0,1Sv n

H F X  .  2 2; ,S S SF t      is strictly convex on  , S X   and 

 2 2 1
2

; ,S S S SF         (Proposition 2.2). From Proposition III.2.2, 
   ;v n

H   is strictly 

increasing and strictly convex to the point of inflection 0,F 
  , which covers the range of 

SF   on  , S   because      1

2
1 1 S SF v n F       . A strictly increasing 

convex transformation of a strictly convex function is strictly convex (Sydsæter [1981], 

Theorem 5.14.iv and Note 1), hence 
 ; Sv n

H F   is strictly convex on  , S X  . 

Similarly,  SF    is strictly concave on  ,S  , and    ;v n
H   is a strictly increasing, 

strictly concave function on ,1F 
   (Proposition III.2.2). On 

  1 2 21
1
; , ,v

S S Sn
F X    

 
   


, 
 ; Sv n

H F   is a strictly increasing and strictly concave 

transformation of a strictly concave function, and, hence, strictly concave 
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(Sydsæter [1981], Theorem 5.14.iv ). In majority mechanisms 2 1mM  , the inflection point 

is 1
2

F  , hence the region of concavity extends to X 
.
15

 ◄ 

The impact of size on errors is easily described in the context of majority mecha-

nisms: 

Proposition 4.3. In 2 1mM   , increasing size m implies that: 

(i) Type I error probability falls monotonically globally on  \ SX   

and is equal to 1
2  for all m  if Sx  ; and 

(ii) Type II error probability falls monotonically globally on X  . 

Proof. Because  2 2 1
2

; ,S S SF x       if Sx  ,  2 2 1
2

; ,S S S SF         and 

 2 2 1
2

; ,S S SF x       if Sx  , the proposition follows from Proposition 4.1 and the 

Condorcet theorem (Section III.2). ◄ 

Increasing the requirement v  for rejection of 0H  for a fixed mechanism size n , 

shifts the graph of    ;
|

v n
g   down for all x X  (fewer terms are added in 

        2 2

;
; , 1

n
i n i

S S S S Sv n
i v

n
H F x F F

i
     



  



 
            

 
 ). It follows directly 

from Proposition 4.1 that an increase in v , for a given size n , protects against 

Type I error probability globally on X , at the cost of a higher Type II error 

probability globally on X  . 

                                                 
15

 The proof can be used to establish strict convexity of the Example III.2.1 liability com-

ponent    3,3
|g x  globally on X  and strict convexity of    2,3

|g x —and more gen-

erally of  2 1 |mg x  —on   1 1
2

, SF X    and strict concavity on   1 1
2

,SF X    

given a linear cdf as given by the uniform distributions (see Example III.6.1): linear func-

tions are both convex and concave. 
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Increasing both n  and v  in a way that ensures a super-majority rule is 

still in place, creates a mix of effects. As illustrated in Table III.2.1, it tends to 

protect against Type I errors globally on X  and to protect against Type II errors 

towards the upper part of X  , at the cost of increased Type II error probability 

on initial parts of X   (see Figure 4.1). However, generalizations can be made in 

larger mechanisms. A q -rule (
;nq q

M
    

, see Section III.2) implies increasing v  

and n , in such a way that the ratios v n  and inflection points    1 1v n   are 

stabilized. 

 

Figure 4.1 Type I and II error probabilities generated by 1M  and 
 ;v n

M  (legal and epis-

temic uncertainty from normal distributions) 

Proposition 4.4 Assume a q-rule 1
2

q   and a sufficiently large n. It fol-

lows that    2 2

, :,
| ; , , ,S SS nq nnq n

g x F x q n 
  

        
   , the cdf approx-

imately from: 

 
 

  
1 2 2

2
1 2 2 2 2

1
; , ,

; , ; ,
S S S

S S S S S S

q q
N F q

n f F q
 

   

  
     






 

 
 

 
   
  

. 

 2 2; ,S S SF t      

1  

,x t  0 S  

1
2

X 

    2 2

;
; ,S S Sv n

H F t      

X 

I  

II  
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Remark 4.2 The proposition does not require normality of the underlying sub-

stantive norm distribution, but its cdf must be continuous around  1

SF q




, and q  

in the support of SF   (the assumptions are satisfied under Proposition 2.2 nor-

mality assumptions).  

Proof. By Remark III.6.1.C, the composite  
;

: 0,1Snq n
H F X    

  can be considered 

as if resulting fom i.i.d.s from  SF t  in ,
;

T
nq n

M 
    

 corresponding to the central order 

statistic  
:nq n

S 
  

 . It has cdf     , : ; SS nq n nq n
F t H F t          

 .
16

  , :S nq n
F t

   
 is approx-

imately from    

  
2

1

11 ,
S S

q q

S
n f F q

N F q
 

 
 



  
 

 
 
 

, see Proposition III.6.2 and Remark III.6.2. ◄ 

Remark 4.3 Under Proposition 2.2 normality assumptions and 2 1n m  , 1
2

q  , 

 1 2 21
2
; ,S S S SF     

    and    
1

2 2 2 2; , 2S S S S Sf         



   
  

. 

Hence,  2 2

, 1:2 1 ; ,S m m S SF t        is approximately from 
 
 

2 2

,
2 2 1

S

SN
m

  

 
 
 
 

. 

The fixed mean and reduction of variance from increased size m  corroborate the 

second order stochastic dominance characterization, in Proposition III.7.4.  

The following is an immediate consequence of Proposition 4.4: 

Proposition 4.5 Increasing the size of 
;nq q

M
    

 and 1
2

q   fixed reduces 

Type I error probability, globally on X , and reduces Type II error 

                                                 
16

 This distribution is complex (and non-normal) even when drawn from underlying nor-

mal populations (Arnold Balakrishnan & Nagaraja [2008:86–94]). 
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probability on   1 2 2; , ,S S SF q X    

    . In the interim region, 

  1 2 2, ; ,S S S SF q X     

    the Type II error probability increases. 

Proof. The Proposition follows directly from the fact that the asymptotic distribution in 

Proposition 4.4 is normal, and that expectation  1

SF q



  is independent of size, while the 

variance is falling in n . The effect on error probabilities, therefore, follows from Propo-

sition 2.3. ◄ 

Remark 4.4. In the majority case, 1
2

q  , and  1 1
2S SF  

  . In this case, the inter-

im interval collapses and a global reduction of error probabilites on 

X X X    result,  

An increased super-majority requirement q  for a given mechanism size n  from 

Proposition 4.4 works through two channels (dropping the function parameters 

2 2,S S     for notational simplicity): (i) q   impacts the mean as measured by: 

      
1

1 1' 0S S SF q f F q  


 

    .
17

 (4.2) 

Equation (4.2) measures the horizontal shift in the graph of  
;

|
nq n

g x
    

  at 

 1

SF q




. Hence, an increase in q , ceteris paribus, contributes to a global de-

crease of Type I error probability on X , and a global increase of Type II error 

probability on X  . The horizontal shift at the expectation is independent of 

                                                 
17

 The identity   1

S SF F q q 



    implies     1 1' ' 1S S SF F q F q  

 

    , hence 

       
1 1

1 1 1' 'S S S S SF q F F q f F q    

 
  

    
    
   

, which is strictly positive under Prop-

osition III.6.2 assumptions. 
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mechanism size n. (ii) Letting    1N q q q   denote the variance numerator, 

q   impacts the distribution variance as measured by: 

 

 

  

         

  

2
1

2
1 1

4
1

1

' 2 '

S S

S S S S

S S

q q

q n f F q

N q f F q N q f F q

n f F q

 

   

 



 

 

   



 

 
  

 
   

  

  
 

 
 

 (4.3) 

 N q  is a strictly concave function with a global maximum at 1
2

q  , with 

 1 1
2 4

N   and    0 1 0N N  . Hence, the impact of a marginal increase in q  

on the variance numerator is zero, if 1
2

q   and negative if 1
2

q  . 

In majority mechanisms, a marginal increase in q  (from 1
2 ) has no effect 

on the variance term because  
1
2

' 0
q

N q

  and   

1
2

1'S S
q

f F q 



 


 

 ' 0S Sf    . Hence, from (i) it can be concluded that a small increase in q  

leads to a global reduction in Type I error probability globally on X  and a 

global reduction of Type I error probability globally on X  , for all parameter 

constellations  2 2, ,S S    . The horizontal shift at S  is measured by 

        
1
2

1 1
1 2 2 2 2; , 2S S S S S S S

q

f F q f          
 



  


    , thus it is in-

creasing in legal and epistemic variance. 

In super-majority mechanisms 
;nq n

M
    

, it is difficult to predict the total 

effect of an increase in q , for a fixed mechanism size n , due to ambiguous ef-

fects on the variance, as seen in (4.3): If 1
2

q  ,  1

S SF q 

  , hence 
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  1' 0S Sf F q 



   , contributes to a positive effect on the variance. But 

 ' 0N q  . 

The total effect on liability probability of an increase in q , for a given 

mechanism size n , includes the effect on expectation (i) and variance (ii). It is 

given by the vertical shift of  2 2

,
| ; ,S Snq n

g x   
    

   on X ; 

   2 2 2 2

, , :
| ; , ; ,S Snq n S SS nq n

g x F x

q q

 
              

    


 
. 

Define: 

 

       
1
2

2 2

1 2 2 1 2 2

; , ,

; , ; ,

S S

S S S S S S S

x q

n f F q x F q N q



    

   

     
 

  



      

, 

and let q  denote the partial derivative of   w.r.t. q . It follows (dropping the 

parameters in the statement): 

Proposition 4.6 In 
;nq n

M
    

, increasing the (super-)majority requirement 

1
2

q  , for a fixed size n , has the following (approximate) effect on lia-

bility probability: 

A) 
     

2 21
2

2 2

; , ,, 2 21

2

| ; ,
; , ,

S S
S S qnq n

q S S

g x
e x q

q


     



  
   

     
  

 


, 

  
  
  

 

 
    

1
2

1

1 1

1

' '
1

2

S S

q S S S

S S

f F q N q
n N q f F q x F q

N qf F q

 

  

 




    

  

 

   
     
    

B) In the majority case ( 1
2

q  ), 2q n    and 

 
 

 
2 2

21
2

;
S

n
Sx x

  
 


  , giving 
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     
 

2 2

1
2

2 12 2

22 1 ;2 1
2

| ; ,
2 1 0

S

S

m
x

S Sm q m

q

g x
m e

q




   



  


 

      



  
   


 

on  X X X   . 

Proof. The event  
:nq n

S x
  

   is equivalent to the event (function arguments 

2 2,S S     dropped) 

   
 

  

 
 

  

 
1 1

1 1
:

1 1
;

S S S S

Snq n S

q q q q

n f F q n f F q

S F q F q
x q

   

 
 



 
   

 
   

 

  
  . 

From Proposition 4.4 and Bartoszyński & Niewiadomska-Bugaj [1996], Theorem 9.10.1, 

the event has probability (  denoting the cdf of the standard normal): 

  
  1

2
;

1

2
;

x q

x q e d
 


 




   . 

From Lebniz’s formula for differentiation of integrals:
18

 

      
1
2

;1

2

;
;

x q

q

x q
e x q

q












. 

 ;q x q  is given by: 

         
                

1
2

31
2 2

1 1 1

1 1 1 11

2

' '

' '

S S S S

S S S S S S

n f F q F q F q N q

f F q F q N q f F q F q N q N q

   

     





  

   

    

     

   

        

 

Using      
1

1 1'S S SF q f F q  


 

    and rearranging gives 

    
  
  

 

 
    

1
2

1

1 1

1

' '
; 1

2

S S

q S S S

S S

f F q N q
x q n N q f F q x F q

N qf F q

 

  

 




    

  

 

   
     
    

. 

At 1
2

q  ,  1 1
2S SF  

  ,    1
2

' ' 0S SN f    , and  1 1
2 4

N  , giving  1
2

;q x  and 

 1
2

;x  in the proposition. ◄ 

                                                 
18

 Bartle [1976], Theorem 31.8. 



249 

 

It follows that the majority mechanism vertical shift (reduction in liability proba-

bility), at the expectation Sx  , is independent of 2

S  and 2

  and is larger the 

larger the mechanism. Otherwise, the liability probability impact is a complex 

function of size and the parameters describing uncertainty. The impact, however, 

is—as observed above—a global reduction of the probability of Type I errors on 

X  and a global increase in the probability of Type II errors on X  . 

In super-majority mechanisms, the discussion of Table III.2.1 suggests 

that it should be possible to demonstrate a negative sign in Proposition 6.4.A, in 

regions of X  sufficiently close to the lower boundary, and a positive sign in 

regions in X  , sufficiently far from S . 

Equation Section (Next) 

5 Separation of collective decisions on law and facts 

Section 4 assumes that each judge in  ;v n
M  observes conditioning facts and 

makes a decision regarding liability, based on the legal standard concluding lia-

bility ( ) iff S x   x . In the context of collectives, it is relevant to investi-

gate effects of separating decisions on law and facts. The separation can take 

many forms. Vertical separation takes place in legal hierarchies, with pure legal 

questions finally determined at higher echelons. Horizontal separation takes 

place between courts and juries, especially in civil law.
19

 Horizontal separation 

may also take place in judicial panels, which sequentially split legal and factual 

determinations. 

                                                 
19

 In criminal law, however, protection of the general verdict prohibits separation of law 

and fact (see LaFave, Israel & King [2004] Sec. 24.10. Double jeopardy rules constrain 

vertical separation. However, there are many variants over these themes, law-fact separa-

tion often a fuzzy notion even from a descriptive point of view. 
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It is assumed that adverse decisions with respect to law are made in 

,
;

T
S Sv n

M 
 
 

 and with respect to facts in ,
;

T
v n

M 
 
 

x x
, see Section III.6. Both classes 

of mechanisms, ceteris paribus, prioritize 0H  (a default state of no liability,  ). 

The resulting combined mechanisms are denoted , ,
; ;

T T
S Sv n v n

M  
   
   

x x
. The corre-

sponding majority mechanisms 
2 1S

T

m
M


 and 

2 1

T

m
M

x , ceteris paribus, treat 0H  and 

AH  symmetrically. Combined majority mechanisms are denoted 
2 1 2 1S

T

m m
M

  x . 

The mechanisms are evaluated from an ex ante perspective. Judges vote inde-

pendently in and across mechanisms, both with respect to law and facts, reflect-

ing normative commitments (Section I.2) and the assumptions about epistemic 

competence discussed in Sections 2 and 4. 

In , ,
; ;

T T
S Sv n v n

M  
   
   

x x
, 0H  is rejected iff 

: 1:S Sv n n v n
S

 
 x x xx , or, 

: 1:S Sv n n v n
S x

 
 x x x . The transformed standard 

:S Sv n
S  is composed of i.i.d.’s from 

 2; ,S SF t    and has cdf     2

;
; ,S S Sv n

H F t   .
20

 Similarly, the transformed error 

term 
1:n v n


 x x x  is composed of i.i.d.’s from  2;0,F t  , with cdf 

         2 2

1; ;
;0, 1 1 ;0,

n v n v n
H F t H F t    

 
   .

21
 However, it is complex to 

derive  : 1:S Sv n n v n
P S x

 
 x x x  , ,

; ;
|T T

S Sv n v n
g x 
   
   

 
x x

, even under Proposition 

2.2 normality assumptions. Hence, the analysis is limited to mechanisms suffi-

ciently large to allow approximation from asymptotic theory.
22

 Let  1
2
,1Sq   

                                                 
20

 See Proposition III.6.1.i. 

21
 See Proposition III.6.ii and Proposition III.3.2. 

22
 The requirements on Sn ( Sm ) and nx ( mx ) for accuracy depend on the structure of the 

underlying population distributions. 
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and  1
2

0,q x . The parameter values correspond to q-rules, which refer to laws 

and facts, respectively. 

Proposition 5.1 In 
, ,

; ;
T T

S S Sn q n n q n

M  
      
      

x x x
, transformation of abstract 

norm  ,S

X

Fg g
 

   gives: 

     , ,

; ;

| 1 , ; ,T T
S S S x Xn q n n q n

x X

g x x x 
      

       

    
x x x

 

with cdf  2 2; , , , ; ,S S

S Sx q n q n    x x  approximately from: 

     

  

 

  
2 2

1 1

1 11 1 ,
S S

S S
S S

q q q qS

S
n f F q n f F q

N F q F q
 


 

  

   
      

 
   

 

x x

x x

x . 

Proof. Following the Proposition 4.4 proof strategy, the cdf of 
:S S Sn q n

S
 
 

 is approximately 

   

  
2

1

11 ,
S S

S S
S S

q qS

S
n f F q

N F q




 
  

 
  
 

 and 
:n q n


 
 

x x x  approximately    

  
2

1

11 ,
q q

n f F q

N F q
 






 
  

 
  
 

x x

x x

x
. As a 

linear combination of (approximately) normal variables, 
: :S S Sn q n n q n

S 
   
   

 x x x  is (approxi-

mately)      

  

 

  
2 2

1 1

1 11 1 ,
S S

S S
S S

q q q qS

S
n f F q n f F q

N F q F q
 


 

  

   
      

 
   

 

x x

x x

x
 (Bartoszyński & 

Niewiadomska-Bugaj [1996], Theorem 9.10.2). ◄ 

Discussion. Focusing on the liability components in direct and combined mecha-

nisms,  
;

|
nq n

g x
    

  and  , ,

; ;

|T T
S S Sn q n n q n

g x 
      
      


x x x

 respectively, it follows 

from Propositions 4.4 and 5.1 that all majority mechanisms have the same expec-

tation component. If 1
2

Sq q q  x
, 2 1n m  :      1 1 11 1 1

2 2 2S SF F F 

  

    

S . The variance components are given by  
2 2

2 2 1
S

m
  


 and  

2 2

2 2 1 2 1

S

Sm m

 

 
 x , re-

spectively. Hence, separation of decisions on law and fact is neutral, if 
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Sm m m x . Increasing the size of any mechanism (mechanism component) 

m , Sm  or mx  reduces variance, and, therefore, by Proposition 2.3 globally re-

duces Type I error probability on X  and globally reduces Type II error proba-

bility on X  . To the extent that separation effectively means commitment to 

smaller mechanisms, more errors will be generated, unless it can be designed to 

the specifics of the legal and epistemic uncertainties: 

Example 5.1 (mechanism design under joint legal and epistemic uncertainty). Consider 

the problem of minimizing  
2 2

2 2 1 2 1

S

Sm m

 

 
 x  with respect to Sm  and mx  subject to the 

constraint Sm m m x . In sufficiently large mechanisms, Sm  and mx  can be taken as 

continuous variables. The minimization problem is convex
23

 and has necessary condition 

(the constraint is binding): 

2 1 2 1

S

Sm m

 


 x
. 

It implies that an optimal mechanism 
2 * 1 2 * 1S

T

m m
M

  x  (satisfying the constraint 

* *Sm m m x ) has the design: 

  

  

1
* 2 1

2

1
* 2 1

2

S

S

S

S

S

m m

m m









 
 

 
 


      


   
   

x

. 

It follows that a mechanism globally minimizing Type I error probability globally on X 
 

and Type II error probability globally on X 
 has the relative size of the two mechanisms 

depend on standard-deviations: 

                                                 
23

 To minimize the variance equals minimizing  
2 2

2 1 2 1

S

Sm m

 

 
 x . The minimand is the sum 

of two convex functions, hence itself convex (Sydsæter [1981], Theorem 5.14.i and 

Note 1). 
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  
  

2 1*

* 2 1

S
S

S

mm

m m





 

 

 


 
x

. 

If the solution cannot be conditioned on standard deviation information, that is, S   , 

1

2
* *Sm m m x

. This mechanism is functionally equivalent to the “direct” mechanism 

 1
2

2 1m
M


. It follows that the optimal combined mechanism, under incomplete infor-

mation, is dominated by any direct mechanism 2 ' 1mM   with 1

2
'm m . ■ 

The Example 5.1 type of analysis can varied and be much refined (for example, 

errors caused by legal and epistemic uncertainty might not be given equal 

weight), but it points to problematic aspects of splitting a pool of decision makers 

into sub-groups in the absence of specific information.
24

  

In 
, ,

; ;
T T

S S Sn q n n q n

M  
      
      

x x x
 with 1

2

Sq   or 1
2

q x
, protection against 

Type I error probability is ensured through the expectation component 

   1 1S

SF q F q

  x  both by  1 S

S SF q    and  1 0F q

 x , pushing down the 

liability probability globally on X , at the cost of higher Type II error probabil-

ity globally on X  . Hence, increasing component sizes (
Sn  or nx

), for a given a 

constellation  ,Sq qx , also decreases variance, and, hence, from normality and 

Propositions 2.3 and 4.5, ceteris paribus, reduces Type I error probability global-

ly on X  and Type II error probability globally on 

    1 1 ,S

SF q F q X X

     x , at the cost of higher Type II error probability 

in the interim region     1 1, S

S SF q F q X    x
. 

                                                 
24

 See Boland [1989], Theorem 7, on direct and indirect majority systems and, more gen-

erally, Nitzan [2010] part III on mechanism design under epistemic uncertainty. 
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A detailed comparison of composite and joint mechanisms is complicat-

ed by the mixed effect on variance from a change in q , Sq , and qx  (Proposition 

4.6.A). Limiting the discussion to the case of a marginal increase in q  and Sq  

from 1
2  and a marginal decrease in qx  from 1

2 , variance term effects are elimi-

nated. In this case, the  
,

|
nq n

g 
    

  graph shifts to the right as, measured by 

 
1
2

1 2 2' 2S Sq
F q   

 
  . Similarly,  , ,

; ;

|T T
S S Sn q n n q n

g  
      
      


x x x

 shifts to 

the right, as measured by    
1
2

1 1' '
S

S

S
q q

F q F q

 

 


x

x
 

2 22 2S     2 22 S     . These shifts imply a global reduction 

of Type I error on X  and an increase in Type II error on X  , sufficiently far 

from S . 

Remark 5.1 Heckscher [1892], in discussing the classical rule, argues that a court 

will not use a an aggregator such as the mean, because it contradicts the purpose 

of finding a collective meaning (according to the rule, equal to at least one of the 

individual judgments). If, on the other hand, the main purpose of the collective 

were to track an independent truth (“det Sande”), the minority should have an 

impact on the outcome (see Remark III.1.1).  

Remark 5.2 If courts use the mean for factual aggregation, liability is concluded 

iff 
:S Sv n n

S  xx , or, 
:S Sv n n

S x x , 1

1

n

in in
 


 

x

x x . With  
1

n

i i




x

 i.i.d.’s from 

 2;0;F t  , 
n
 x  has the exact distribution  1

20,N n 


  
x . Due to the complex 

distribution of the order statistic 
:Sv n

S , even under normality assumptions (Ar-

nold, Balakrishnan & Nagaraja [2008:86-94] and Section III.6 above), the analy-
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sis must be based on approximations (or simulations). It should be noted that (for 

large nx
) 2 1m   has a lower variance than 1:2 1m m   . Because both are have ex-

pected values equal to 0F
  , the former is a more efficient estimator of epis-

temic uncertainty.
25

  

To determine error generation, it is important to study the distribution of cases 

over X X  . This is a question with many interesting dimensions. Equilibri-

um analysis is relevant and should include case costs.
26

 In criminal procedure, 

case screening is essential.
27

 

 

                                                 
25

    
1 2

2 1var 2 1m m  


   ;    
1 2

1:2 1 2
var 2 1m m m

 


    . On efficiency, see 

Bartoszyński & Niewiadomska-Bugaj [1996] in and at Definition 12.5.2. 

26
 For studies endogenizing the stream of cases, see Borchrevink [2011] with further ref-

erences. 

27
 See Posner [1990:216]. 
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PART EIGHT 

EXTENSIONS 

1 Further applications 

It has been demonstrated that norm structures and distributions over final out-

comes under (joint) legal and epistemic uncertainty vary systematically with 

mechanisms M  . Part VII suggests that large mechanisms have positive ef-

fects on Type I and II error distributions. The notions of mean-preserving risk 

reduction and second-order stochastic dominance, which characterize the mecha-

nisms in Section III.7, suggest that large panels are valuable to risk-averse agents 

(see also the shrinking contract zones from increasing arbitration panels in Sec-

tion IV.2). However, instead of establishing large, one-shot mechanisms, many 

jurisdictions have built elaborate, hierarchical authority structures that typically 

are jus cogens before a claim has materialized (see Damaška [1986], contrasting 

bureaucratic and coordinate structures). Fuzzy law-fact distinctions and discre-

tionary trial structuring (Section III.5) imply uncertainty regarding which mecha-

nism applies. Lack of an effective vertical stopping rule, combined with compul-

sory fee-shifting (“English”) rules, arguably compounds risk, adversely affecting 

risk-averse agents’ access to court.
1
 

                                                 
1
 The notion and terminology of a stopping rule is inspired by Urfalino [2010]. Access 

difficulties may be further compounded by prohibition of contingent fee contracts be-

tween litigants and their representatives. These are complex questions (with many dimen-

sions, including parties’ incentives and risk spreading through markets for claims) that 

have been intensively studied in the context of coordinate systems (see Prichard [1988]). 
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 Hansmann [1996] points out that intrinsic difficulties concerning collec-

tive decision-making is a main determinant of how enterprises are structured. 

Because these institutions are exposed to the forces of market selection, they are 

suggested to be important models to study (although they have received much 

less attention than the heavily scrutinized political institutions). This idea seems 

transferable to legal decision mechanisms; arbitrational mechanisms, in contrast 

to courts, are exposed to competitive forces. Characteristically, decisions are fi-

nal, barring procedural errors. 

These fundamental design questions warrant further analyses (under joint 

legal and epistemic uncertainty). 

 Several references have been made to the essential role of contracts, in-

cluding corporate forms, collective agreements, and international conventions. 

An integration of modern contract (incentive) theory, with the judicial panel 

analysis, would likely be rewarding.
2
 

The equilibrium analyses presume that agents have complete information 

about legal sources, the structure of meta-norms, and the decision mechanism in 

place. The informational burden and discretionary elements in mechanism selec-

tion accentuate a relaxation of these assumptions.
3
 

Norms are (locally) represented as prospects. The complexities involved 

in norm combinations and norm transformations may mean that optimizing 

                                                                                                                         
The American Bar Association approved contingent fees in its 1908 Canon of Ethics 

(Yeazell [2001]). 
2
 As noted by Bolton & Dewatripont [2005:3], enforcement mechanisms play an implicit 

role in the theory. 

Hierarchical courts systems may also be analyzed as incentive structures. Cabril-

lo & Fitzpatrick [2008:9] note that “judicial institutions have hidden behind the notion of 

independence or the singular nature of the service they provide, to shield themselves from 

the organizational analysis that other institutions are commonly submitted to.”  

3
 In this context, it may be relevant that the norm representations (pure or mixed, abstract 

or transformed) have similarities to information structures, see Remark II.2.1. 
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agents do not consider compound and reduced simple prospects as equivalent for 

cognitive reasons. This makes insights from prospect theory relevant, since that 

theory treats perception errors in a systematic way.
4
 

2 Framework extensions 

The analysis of (joint) legal and epistemic uncertainty assumes homogenous, ep-

istemic competencies and a single-dimensional substantive norm, defined over a 

dichotomous outcome space. Extensions of the framework to multi-dimensional 

norms and to sequential decision-making more generally, are relevant.
5
 Exten-

sions should include consideration of group agency.
6
 

 Judges have been assumed not to vote on complete norms (based on the 

notion that they apply the law). Constitutional courts may, however, generate 

decisions, ,
M X

Yx g X  , and even rule on norms in abstraction from indi-

vidual cases, 
M X

Yg  , challenging such notions as independence (She-

treet [1985:636]), legitimacy, and doctrines such as res judicata. Further analysis 

is merited. 

 Experimental studies suggest that so-called hindsight bias is a systematic 

problem for decision-makers, who evaluate ex ante precaution with access to ex 

post adverse outcome information. The tendency is for decision-makers to inflate 

the probability of an adverse outcome.
7
 Procedural law measures have been sug-

                                                 
4
 See, generally, Wakker [2010]. 

5
 See List [2005] and Bovens & Rabonowicz [2006] on epistemic uncertainty in complex 

situations. 

6
 See Nordén [2015] and, more generally, List & Pettit [2011]. 

7
 The tendency is present even if decision makers are informed about the bias’ typical 

presence. See Christensen-Szalanski & Willham [1991] and LaBine & LaBine [1996]. 
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gested to alleviate this problem (including bifurcation). Such issues deserve close 

attention (under joint legal and epistemic uncertainty).
8
 

The possibility that judges form preferences for norms arises naturally 

from discretion (power-conferring norms), as illustrated in Examples VI.3.1–2. 

However, it is a complex notion, studied by Kornhauser [1992a,1992b] and 

Landa & Lax [2009]. Noting that Lax [2007] defines the case space as a hyper-

cube (each case dimension is coded in  0,1 ), and that X

Y
 is a so-called mixture 

space (see Kreps [1988] Theorem 5.11), merging of the present probabilistic rep-

resentation of norms with these analyses might simplify the representation of 

preference orderings.  

It may also be observed that, given the preferences related to the set of 

consequences  0,Y L  in Example VI.3.2, Judge 1 and Judge 3, when voting 

on doctrinal factor dimensions in the construction of what Landa & Lax [2009] 

call the collegial factor rule, have an incentive to misrepresent their preferences. 

Even though the judges are envisioned as committed to not voting strategically 

(Section I.2), it is germane to design robust mechanisms. In lieu of paradoxes and 

asymmetric information, such questions are challenging, both positively and 

normatively.
9
 

 

                                                 
8
 See LaBine & Labine [1996:514] and more generally Fienberg [1989:10–15] (which 

includes recommendations for legal education). 

9
 See generally Nizan [2010], who discusses situations when decision makers have differ-

ing preferences, and situations where agents have the same preferences but differ in deci-

sional capabilities in uncertain environments. 



  

 

 

 

PART NINE 

CONCLUSIONS 

Courts are obliged to decide cases from pools of cases they do not control, typi-

cally in all-or-nothing fashion. As described by the Panel on Statistical Assess-

ments as Evidence in the Courts, if courts are no longer affiliated with philosoph-

ical determinism, they are likely to under-communicate uncertainty as arbitrators 

of individual cases.
1
 Hindsight bias, or creeping determinism, may well affect 

doctrinal studies of law that reconstruct norm patterns, based on previous case 

dispositions (norms in the extensive sense).
2
 However, as Bishop Hoadly points 

out:
3
 

Nay whoever hath an absolute authority to interpret any written or spoken laws 

it is he who is the lawgiver to all intents and purposes and not the person who 

first wrote or spake them. 

                                                 
1
 “In every society with a formal legal system, the adjudicative power rests its authority 

on the assumption that it will do justice. To the extent that this assumption is open to 

question, the legitimacy of the entire regime may be called into question [---] Certainty, 

and even the appearance of certainty, are important in law” (Fienberg [1989:139]). In 

civil law jurisdictions, and even in constitutional courts, it is still the prevailing norm or 

rule to suppress uncertainty in reaching a decision, not admitting concurring or dissenting 

opinions (Section I.1). 

2
 “When we attempt to understand past events, we implicitly test the hypotheses or rules 

we use to both interpret and anticipate the world around us. If, in hindsight, we systemat-

ically underestimate the surprises which the past held and holds for us, we are subjecting 

those hypotheses to inordinately weak tests and, presumably, finding little reason to 

change them. Thus, the very outcome knowledge which give us the feeling that we un-

derstand the past was all about may prevent us from learning anything from it” 

Fischoff [1975:298–99]. 

3
 Quoted from Hart [1961:137]. 
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If legal sources do not determine outcomes uniquely (or epistemic uncertainty is 

present), court design affects the pattern of decisions, accentuating U.S. Supreme 

Court Justice Robert Jackson’s observation that “[w]e are not final because we 

are infallible, but we are infallible only because we are final.”
4
 

This work has endeavored to demonstrate that formal representation of 

norms enables the study of fallible final lawgivers. Whatever the specific as-

sumptions, it is conjectured that functional (repercussion) analysis of law will 

follow the lines suggested by the Part I epigraph quotes and, thus, concerns ab-

stract patterns of law. To the extent that the representations preserve essential 

properties of the phenomena studied, new insights are gained.
5
 Explicit formula-

tion of assumptions facilitates critique and opens the study of law to contribu-

tions from other disciplines, hopefully advancing a cumulative legal theory. 

Functional analyses contribute to the enterprise Ackerman [1984] calls “lawyer-

ing in the active state.” It seems a worthwhile enterprise, given the interests at 

stake. Democratically determined policies are promulgated through norms main-

tained by decision mechanisms that are used across large classes of cases and that 

affect, not only the parties directly involved, but also society at large. 

                                                 
4
 Quoted from James, Hazard & Leubsdorf [2001:361]. 

5
 See Cohen & Nagel [1964], esp. pp. 371–75. 
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APPENDICES  

A.1 Simulation results 

Table A.1 reports simulation results that are discussed in Section IV.5: Equilibri-

um solutions  2 1;m x   are obtained for  0,1, ,9m  and  0,x e , with 

eL e ,  ,S U e x e x  , and    expp x x   (compare Figure IV.5.4). The 

w-variables correspond to inputs x , ( w010  equals 0.10,x   w010  equals 

0.11x  , etc.; wexp  equals x e ). 

The solutions, and values reported in Tables III.4.1, III.7.1–3, and IV.5.1, 

were calculated using Portable TROLL (Intex Solutions, Inc.). 

Table A.1 Equilibrium precaution investments 

 

m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9

w010 2, 8183 2, 8107 2, 7996 2, 7917 2, 7860 2, 7815 2, 7779 2, 7749 2, 7724 2, 7702

w011 2, 8283 2, 8190 2, 8065 2, 7979 2, 7916 2, 7867 2, 7828 2, 7796 2, 7769 2, 7745

w012 2, 8383 2, 8271 2, 8133 2, 8039 2, 7971 2, 7919 2, 7877 2, 7842 2, 7813 2, 7787

w013 2, 8483 2, 8350 2, 8198 2, 8097 2, 8025 2, 7969 2, 7924 2, 7887 2, 7856 2, 7829

w014 2, 8583 2, 8427 2, 8262 2, 8154 2, 8077 2, 8018 2, 7970 2, 7931 2, 7898 2, 7869

w015 2, 8683 2, 8502 2, 8324 2, 8210 2, 8128 2, 8065 2, 8015 2, 7974 2, 7939 2, 7909

w016 2, 8783 2, 8575 2, 8385 2, 8264 2, 8178 2, 8112 2, 8059 2, 8016 2, 7979 2, 7948

w017 2, 8883 2, 8646 2, 8444 2, 8316 2, 8226 2, 8157 2, 8102 2, 8057 2, 8019 2, 7986

w018 2, 8983 2, 8714 2, 8501 2, 8368 2, 8273 2, 8202 2, 8144 2, 8097 2, 8057 2, 8023

w019 2, 9083 2, 8781 2, 8556 2, 8417 2, 8320 2, 8245 2, 8186 2, 8137 2, 8095 2, 8059

w020 2, 9183 2, 8845 2, 8610 2, 8466 2, 8365 2, 8288 2, 8226 2, 8175 2, 8132 2, 8095

w021 2, 9283 2, 8906 2, 8662 2, 8513 2, 8409 2, 8329 2, 8265 2, 8213 2, 8169 2, 8130

w022 2, 9383 2, 8966 2, 8712 2, 8559 2, 8451 2, 8369 2, 8304 2, 8250 2, 8204 2, 8165

w023 2, 9483 2, 9023 2, 8761 2, 8604 2, 8493 2, 8409 2, 8342 2, 8286 2, 8239 2, 8199

w024 2, 9583 2, 9077 2, 8808 2, 8647 2, 8534 2, 8448 2, 8379 2, 8322 2, 8273 2, 8232

w025 2, 9683 2, 9130 2, 8854 2, 8689 2, 8574 2, 8485 2, 8415 2, 8356 2, 8307 2, 8264

w026 2, 9783 2, 9179 2, 8898 2, 8730 2, 8612 2, 8522 2, 8450 2, 8391 2, 8340 2, 8296

w027 2, 9883 2, 9227 2, 8941 2, 8770 2, 8650 2, 8558 2, 8485 2, 8424 2, 8372 2, 8328

w028 2, 9983 2, 9272 2, 8982 2, 8809 2, 8687 2, 8593 2, 8519 2, 8457 2, 8404 2, 8358

w029 3, 0083 2, 9314 2, 9021 2, 8846 2, 8722 2, 8628 2, 8552 2, 8489 2, 8435 2, 8389

w030 3, 0183 2, 9354 2, 9059 2, 8882 2, 8757 2, 8661 2, 8584 2, 8520 2, 8465 2, 8418

w031 3, 0283 2, 9392 2, 9096 2, 8918 2, 8791 2, 8694 2, 8616 2, 8551 2, 8495 2, 8447

w032 3, 0383 2, 9427 2, 9131 2, 8952 2, 8824 2, 8726 2, 8647 2, 8581 2, 8525 2, 8476

w033 3, 0483 2, 9459 2, 9164 2, 8985 2, 8856 2, 8757 2, 8677 2, 8610 2, 8553 2, 8504

w034 3, 0583 2, 9490 2, 9197 2, 9016 2, 8887 2, 8787 2, 8706 2, 8639 2, 8581 2, 8531

w035 3, 0683 2, 9518 2, 9227 2, 9047 2, 8917 2, 8817 2, 8735 2, 8667 2, 8609 2, 8558

w036 3, 0625 2, 9543 2, 9256 2, 9077 2, 8947 2, 8846 2, 8763 2, 8695 2, 8636 2, 8585

w037 3, 0535 2, 9567 2, 9284 2, 9105 2, 8975 2, 8874 2, 8791 2, 8722 2, 8662 2, 8611

w038 3, 0448 2, 9588 2, 9311 2, 9133 2, 9003 2, 8901 2, 8818 2, 8748 2, 8688 2, 8636

w039 3, 0363 2, 9607 2, 9336 2, 9159 2, 9029 2, 8928 2, 8844 2, 8774 2, 8714 2, 8661

w040 3, 0279 2, 9623 2, 9359 2, 9185 2, 9055 2, 8953 2, 8870 2, 8799 2, 8739 2, 8686
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w041 3, 0198 2, 9637 2, 9381 2, 9209 2, 9081 2, 8979 2, 8895 2, 8824 2, 8763 2, 8710

w042 3, 0118 2, 9650 2, 9402 2, 9233 2, 9105 2, 9003 2, 8919 2, 8848 2, 8787 2, 8733

w043 3, 0039 2, 9660 2, 9422 2, 9255 2, 9128 2, 9027 2, 8943 2, 8872 2, 8810 2, 8756

w044 2, 9963 2, 9668 2, 9440 2, 9277 2, 9151 2, 9050 2, 8966 2, 8895 2, 8833 2, 8779

w045 2, 9888 2, 9674 2, 9457 2, 9297 2, 9173 2, 9072 2, 8989 2, 8917 2, 8856 2, 8801

w046 2, 9814 2, 9679 2, 9473 2, 9317 2, 9194 2, 9094 2, 9011 2, 8939 2, 8878 2, 8823

w047 2, 9742 2, 9681 2, 9488 2, 9335 2, 9214 2, 9115 2, 9032 2, 8961 2, 8899 2, 8844

w048 2, 9671 2, 9682 2, 9501 2, 9353 2, 9234 2, 9136 2, 9053 2, 8982 2, 8920 2, 8865

w049 2, 9601 2, 9681 2, 9513 2, 9370 2, 9252 2, 9155 2, 9073 2, 9002 2, 8940 2, 8886

w050 2, 9533 2, 9678 2, 9524 2, 9385 2, 9270 2, 9174 2, 9093 2, 9022 2, 8960 2, 8906

w051 2, 9466 2, 9673 2, 9534 2, 9400 2, 9288 2, 9193 2, 9112 2, 9042 2, 8980 2, 8925

w052 2, 9401 2, 9667 2, 9543 2, 9414 2, 9304 2, 9211 2, 9130 2, 9061 2, 8999 2, 8944

w053 2, 9336 2, 9660 2, 9550 2, 9428 2, 9320 2, 9228 2, 9148 2, 9079 2, 9018 2, 8963

w054 2, 9273 2, 9651 2, 9557 2, 9440 2, 9335 2, 9245 2, 9166 2, 9097 2, 9036 2, 8982

w055 2, 9210 2, 9640 2, 9562 2, 9451 2, 9350 2, 9261 2, 9183 2, 9114 2, 9054 2, 9000

w056 2, 9149 2, 9629 2, 9566 2, 9462 2, 9363 2, 9276 2, 9199 2, 9131 2, 9071 2, 9017

w057 2, 9089 2, 9616 2, 9569 2, 9472 2, 9376 2, 9291 2, 9215 2, 9148 2, 9088 2, 9034

w058 2, 9030 2, 9601 2, 9572 2, 9481 2, 9389 2, 9305 2, 9231 2, 9164 2, 9105 2, 9051

w059 2, 8972 2, 9586 2, 9573 2, 9489 2, 9400 2, 9319 2, 9245 2, 9180 2, 9121 2, 9067

w060 2, 8914 2, 9570 2, 9573 2, 9496 2, 9412 2, 9332 2, 9260 2, 9195 2, 9136 2, 9083

w061 2, 8858 2, 9552 2, 9572 2, 9503 2, 9422 2, 9344 2, 9274 2, 9210 2, 9152 2, 9099

w062 2, 8803 2, 9534 2, 9571 2, 9509 2, 9432 2, 9356 2, 9287 2, 9224 2, 9166 2, 9114

w063 2, 8748 2, 9514 2, 9568 2, 9514 2, 9441 2, 9368 2, 9300 2, 9238 2, 9181 2, 9129

w064 2, 8694 2, 9494 2, 9565 2, 9518 2, 9449 2, 9379 2, 9312 2, 9251 2, 9195 2, 9144

w065 2, 8641 2, 9473 2, 9561 2, 9522 2, 9457 2, 9389 2, 9324 2, 9264 2, 9209 2, 9158

w066 2, 8589 2, 9451 2, 9556 2, 9525 2, 9464 2, 9399 2, 9335 2, 9276 2, 9222 2, 9171

w067 2, 8538 2, 9428 2, 9550 2, 9527 2, 9471 2, 9408 2, 9346 2, 9288 2, 9235 2, 9185

w068 2, 8487 2, 9405 2, 9543 2, 9529 2, 9477 2, 9417 2, 9357 2, 9300 2, 9247 2, 9198

w069 2, 8438 2, 9381 2, 9536 2, 9529 2, 9482 2, 9425 2, 9367 2, 9311 2, 9259 2, 9211

w070 2, 8389 2, 9356 2, 9528 2, 9530 2, 9487 2, 9433 2, 9376 2, 9322 2, 9271 2, 9223

w071 2, 8340 2, 9331 2, 9519 2, 9529 2, 9491 2, 9440 2, 9385 2, 9333 2, 9282 2, 9235

w072 2, 8293 2, 9305 2, 9509 2, 9528 2, 9495 2, 9446 2, 9394 2, 9343 2, 9293 2, 9247

w073 2, 8246 2, 9279 2, 9499 2, 9526 2, 9498 2, 9453 2, 9402 2, 9352 2, 9304 2, 9258

w074 2, 8199 2, 9252 2, 9488 2, 9524 2, 9501 2, 9458 2, 9410 2, 9361 2, 9314 2, 9269

w075 2, 8154 2, 9225 2, 9476 2, 9521 2, 9503 2, 9464 2, 9417 2, 9370 2, 9324 2, 9280

w076 2, 8109 2, 9198 2, 9464 2, 9517 2, 9504 2, 9468 2, 9424 2, 9379 2, 9333 2, 9290

w077 2, 8064 2, 9170 2, 9452 2, 9513 2, 9505 2, 9473 2, 9431 2, 9387 2, 9342 2, 9300

w078 2, 8020 2, 9142 2, 9438 2, 9509 2, 9506 2, 9476 2, 9437 2, 9394 2, 9351 2, 9309

w079 2, 7977 2, 9114 2, 9424 2, 9503 2, 9506 2, 9480 2, 9443 2, 9401 2, 9360 2, 9319

w080 2, 7934 2, 9085 2, 9410 2, 9498 2, 9505 2, 9483 2, 9448 2, 9408 2, 9368 2, 9328

w081 2, 7892 2, 9056 2, 9395 2, 9491 2, 9504 2, 9485 2, 9453 2, 9415 2, 9376 2, 9336

w082 2, 7850 2, 9027 2, 9380 2, 9485 2, 9503 2, 9487 2, 9457 2, 9421 2, 9383 2, 9345

w083 2, 7809 2, 8998 2, 9364 2, 9477 2, 9501 2, 9489 2, 9461 2, 9427 2, 9390 2, 9353

w084 2, 7769 2, 8968 2, 9347 2, 9469 2, 9499 2, 9490 2, 9465 2, 9432 2, 9397 2, 9361

w085 2, 7729 2, 8939 2, 9331 2, 9461 2, 9496 2, 9491 2, 9468 2, 9437 2, 9403 2, 9368

w086 2, 7689 2, 8909 2, 9313 2, 9452 2, 9493 2, 9491 2, 9471 2, 9442 2, 9409 2, 9375

w087 2, 7650 2, 8879 2, 9296 2, 9443 2, 9489 2, 9491 2, 9474 2, 9446 2, 9415 2, 9382

w088 2, 7612 2, 8849 2, 9278 2, 9434 2, 9485 2, 9491 2, 9476 2, 9451 2, 9421 2, 9389

w089 2, 7574 2, 8820 2, 9260 2, 9424 2, 9480 2, 9490 2, 9477 2, 9454 2, 9426 2, 9395

w090 2, 7536 2, 8790 2, 9241 2, 9413 2, 9475 2, 9489 2, 9479 2, 9458 2, 9431 2, 9401

w091 2, 7499 2, 8760 2, 9222 2, 9402 2, 9470 2, 9487 2, 9480 2, 9461 2, 9435 2, 9407

w092 2, 7462 2, 8730 2, 9203 2, 9391 2, 9464 2, 9485 2, 9481 2, 9463 2, 9439 2, 9412

w093 2, 7426 2, 8700 2, 9183 2, 9379 2, 9458 2, 9483 2, 9481 2, 9466 2, 9443 2, 9417

w094 2, 7390 2, 8669 2, 9163 2, 9367 2, 9451 2, 9480 2, 9481 2, 9468 2, 9447 2, 9422

w095 2, 7354 2, 8639 2, 9143 2, 9355 2, 9444 2, 9477 2, 9481 2, 9470 2, 9450 2, 9426

w096 2, 7319 2, 8610 2, 9123 2, 9342 2, 9437 2, 9473 2, 9480 2, 9471 2, 9453 2, 9431

w097 2, 7285 2, 8580 2, 9102 2, 9329 2, 9429 2, 9470 2, 9479 2, 9472 2, 9456 2, 9435

w098 2, 7250 2, 8550 2, 9081 2, 9316 2, 9421 2, 9466 2, 9478 2, 9473 2, 9458 2, 9438

w099 2, 7216 2, 8520 2, 9060 2, 9302 2, 9413 2, 9461 2, 9476 2, 9473 2, 9461 2, 9442

w100 2, 7183 2, 8490 2, 9039 2, 9288 2, 9404 2, 9456 2, 9474 2, 9474 2, 9462 2, 9445
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w101 2, 7150 2, 8461 2, 9018 2, 9274 2, 9396 2, 9451 2, 9472 2, 9474 2, 9464 2, 9448

w102 2, 7117 2, 8431 2, 8996 2, 9259 2, 9386 2, 9446 2, 9470 2, 9473 2, 9465 2, 9451

w103 2, 7084 2, 8402 2, 8974 2, 9244 2, 9377 2, 9440 2, 9467 2, 9473 2, 9466 2, 9453

w104 2, 7052 2, 8372 2, 8952 2, 9229 2, 9367 2, 9434 2, 9464 2, 9472 2, 9467 2, 9455

w105 2, 7021 2, 8343 2, 8930 2, 9214 2, 9357 2, 9428 2, 9460 2, 9471 2, 9468 2, 9457

w106 2, 6989 2, 8314 2, 8908 2, 9198 2, 9346 2, 9421 2, 9456 2, 9469 2, 9468 2, 9459

w107 2, 6958 2, 8285 2, 8886 2, 9183 2, 9335 2, 9414 2, 9452 2, 9467 2, 9468 2, 9460

w108 2, 6927 2, 8256 2, 8863 2, 9166 2, 9324 2, 9407 2, 9448 2, 9465 2, 9468 2, 9461

w109 2, 6897 2, 8227 2, 8841 2, 9150 2, 9313 2, 9400 2, 9444 2, 9463 2, 9467 2, 9462

w110 2, 6867 2, 8199 2, 8818 2, 9134 2, 9301 2, 9392 2, 9439 2, 9460 2, 9467 2, 9463

w111 2, 6837 2, 8170 2, 8796 2, 9117 2, 9290 2, 9384 2, 9434 2, 9458 2, 9466 2, 9463

w112 2, 6808 2, 8142 2, 8773 2, 9100 2, 9278 2, 9376 2, 9428 2, 9455 2, 9464 2, 9464

w113 2, 6778 2, 8114 2, 8750 2, 9083 2, 9265 2, 9367 2, 9423 2, 9451 2, 9463 2, 9464

w114 2, 6750 2, 8086 2, 8727 2, 9066 2, 9253 2, 9358 2, 9417 2, 9448 2, 9461 2, 9463

w115 2, 6721 2, 8058 2, 8704 2, 9048 2, 9240 2, 9349 2, 9411 2, 9444 2, 9459 2, 9463

w116 2, 6693 2, 8030 2, 8681 2, 9031 2, 9227 2, 9340 2, 9405 2, 9440 2, 9457 2, 9462

w117 2, 6665 2, 8003 2, 8658 2, 9013 2, 9214 2, 9331 2, 9398 2, 9436 2, 9455 2, 9461

w118 2, 6637 2, 7975 2, 8635 2, 8995 2, 9201 2, 9321 2, 9391 2, 9431 2, 9452 2, 9460

w119 2, 6609 2, 7948 2, 8612 2, 8977 2, 9187 2, 9311 2, 9384 2, 9427 2, 9449 2, 9459

w120 2, 6582 2, 7921 2, 8589 2, 8959 2, 9174 2, 9301 2, 9377 2, 9422 2, 9446 2, 9457

w121 2, 6555 2, 7894 2, 8566 2, 8941 2, 9160 2, 9291 2, 9370 2, 9416 2, 9443 2, 9456

w122 2, 6528 2, 7867 2, 8543 2, 8923 2, 9146 2, 9280 2, 9362 2, 9411 2, 9439 2, 9454

w123 2, 6502 2, 7840 2, 8520 2, 8904 2, 9131 2, 9269 2, 9354 2, 9406 2, 9436 2, 9452

w124 2, 6476 2, 7814 2, 8497 2, 8886 2, 9117 2, 9258 2, 9346 2, 9400 2, 9432 2, 9449

w125 2, 6450 2, 7788 2, 8474 2, 8867 2, 9102 2, 9247 2, 9338 2, 9394 2, 9428 2, 9447

w126 2, 6424 2, 7761 2, 8452 2, 8849 2, 9088 2, 9236 2, 9329 2, 9388 2, 9423 2, 9444

w127 2, 6399 2, 7735 2, 8429 2, 8830 2, 9073 2, 9224 2, 9320 2, 9381 2, 9419 2, 9441

w128 2, 6373 2, 7710 2, 8406 2, 8811 2, 9058 2, 9213 2, 9311 2, 9375 2, 9414 2, 9438

w129 2, 6348 2, 7684 2, 8383 2, 8792 2, 9043 2, 9201 2, 9302 2, 9368 2, 9409 2, 9434

w130 2, 6324 2, 7659 2, 8360 2, 8773 2, 9027 2, 9189 2, 9293 2, 9361 2, 9404 2, 9431

w131 2, 6299 2, 7633 2, 8337 2, 8754 2, 9012 2, 9177 2, 9284 2, 9354 2, 9399 2, 9427

w132 2, 6275 2, 7608 2, 8315 2, 8735 2, 8997 2, 9164 2, 9274 2, 9346 2, 9393 2, 9423

w133 2, 6251 2, 7583 2, 8292 2, 8716 2, 8981 2, 9152 2, 9264 2, 9339 2, 9388 2, 9419

w134 2, 6227 2, 7558 2, 8269 2, 8696 2, 8965 2, 9139 2, 9254 2, 9331 2, 9382 2, 9415

w135 2, 6203 2, 7534 2, 8247 2, 8677 2, 8949 2, 9127 2, 9244 2, 9323 2, 9376 2, 9411

w136 2, 6179 2, 7509 2, 8224 2, 8658 2, 8933 2, 9114 2, 9234 2, 9315 2, 9370 2, 9406

w137 2, 6156 2, 7485 2, 8202 2, 8639 2, 8917 2, 9101 2, 9224 2, 9307 2, 9363 2, 9401

w138 2, 6133 2, 7461 2, 8180 2, 8619 2, 8901 2, 9088 2, 9213 2, 9299 2, 9357 2, 9396

w139 2, 6110 2, 7437 2, 8157 2, 8600 2, 8885 2, 9074 2, 9202 2, 9290 2, 9350 2, 9391

w140 2, 6088 2, 7413 2, 8135 2, 8581 2, 8869 2, 9061 2, 9192 2, 9281 2, 9343 2, 9386

w141 2, 6065 2, 7389 2, 8113 2, 8561 2, 8853 2, 9048 2, 9181 2, 9273 2, 9336 2, 9380

w142 2, 6043 2, 7365 2, 8091 2, 8542 2, 8836 2, 9034 2, 9169 2, 9264 2, 9329 2, 9375

w143 2, 6021 2, 7342 2, 8069 2, 8522 2, 8820 2, 9020 2, 9158 2, 9254 2, 9322 2, 9369

w144 2, 5999 2, 7319 2, 8047 2, 8503 2, 8803 2, 9006 2, 9147 2, 9245 2, 9314 2, 9363

w145 2, 5977 2, 7296 2, 8025 2, 8484 2, 8786 2, 8992 2, 9135 2, 9236 2, 9307 2, 9357

w146 2, 5955 2, 7273 2, 8003 2, 8464 2, 8770 2, 8978 2, 9124 2, 9226 2, 9299 2, 9351

w147 2, 5934 2, 7250 2, 7982 2, 8445 2, 8753 2, 8964 2, 9112 2, 9217 2, 9291 2, 9345

w148 2, 5913 2, 7228 2, 7960 2, 8425 2, 8736 2, 8950 2, 9100 2, 9207 2, 9283 2, 9338

w149 2, 5892 2, 7205 2, 7938 2, 8406 2, 8720 2, 8936 2, 9088 2, 9197 2, 9275 2, 9332

w150 2, 5871 2, 7183 2, 7917 2, 8387 2, 8703 2, 8922 2, 9076 2, 9187 2, 9267 2, 9325

w151 2, 5850 2, 7161 2, 7896 2, 8367 2, 8686 2, 8907 2, 9064 2, 9177 2, 9258 2, 9318

w152 2, 5830 2, 7139 2, 7875 2, 8348 2, 8669 2, 8893 2, 9052 2, 9166 2, 9250 2, 9311

w153 2, 5809 2, 7117 2, 7853 2, 8329 2, 8652 2, 8878 2, 9039 2, 9156 2, 9241 2, 9304

w154 2, 5789 2, 7095 2, 7832 2, 8310 2, 8635 2, 8863 2, 9027 2, 9145 2, 9232 2, 9297

w155 2, 5769 2, 7074 2, 7811 2, 8290 2, 8618 2, 8849 2, 9014 2, 9135 2, 9223 2, 9289

w156 2, 5749 2, 7052 2, 7791 2, 8271 2, 8601 2, 8834 2, 9002 2, 9124 2, 9214 2, 9282

w157 2, 5730 2, 7031 2, 7770 2, 8252 2, 8584 2, 8819 2, 8989 2, 9113 2, 9205 2, 9274

w158 2, 5710 2, 7010 2, 7749 2, 8233 2, 8567 2, 8804 2, 8976 2, 9102 2, 9196 2, 9266

w159 2, 5691 2, 6989 2, 7729 2, 8214 2, 8550 2, 8789 2, 8963 2, 9091 2, 9187 2, 9258

w160 2, 5671 2, 6968 2, 7708 2, 8195 2, 8533 2, 8774 2, 8950 2, 9080 2, 9177 2, 9250
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w161 2, 5652 2, 6947 2, 7688 2, 8176 2, 8516 2, 8759 2, 8937 2, 9069 2, 9168 2, 9242

w162 2, 5633 2, 6927 2, 7667 2, 8157 2, 8499 2, 8744 2, 8924 2, 9057 2, 9158 2, 9234

w163 2, 5615 2, 6906 2, 7647 2, 8138 2, 8482 2, 8729 2, 8911 2, 9046 2, 9148 2, 9226

w164 2, 5596 2, 6886 2, 7627 2, 8119 2, 8464 2, 8714 2, 8897 2, 9035 2, 9138 2, 9217

w165 2, 5577 2, 6866 2, 7607 2, 8100 2, 8447 2, 8699 2, 8884 2, 9023 2, 9128 2, 9209

w166 2, 5559 2, 6846 2, 7587 2, 8082 2, 8430 2, 8683 2, 8871 2, 9011 2, 9118 2, 9200

w167 2, 5541 2, 6826 2, 7567 2, 8063 2, 8413 2, 8668 2, 8857 2, 9000 2, 9108 2, 9191

w168 2, 5523 2, 6806 2, 7548 2, 8044 2, 8396 2, 8653 2, 8844 2, 8988 2, 9098 2, 9182

w169 2, 5505 2, 6786 2, 7528 2, 8026 2, 8379 2, 8638 2, 8830 2, 8976 2, 9087 2, 9173

w170 2, 5487 2, 6767 2, 7509 2, 8007 2, 8362 2, 8622 2, 8817 2, 8964 2, 9077 2, 9164

w171 2, 5469 2, 6747 2, 7489 2, 7989 2, 8345 2, 8607 2, 8803 2, 8952 2, 9066 2, 9155

w172 2, 5452 2, 6728 2, 7470 2, 7970 2, 8328 2, 8591 2, 8789 2, 8940 2, 9056 2, 9146

w173 2, 5434 2, 6709 2, 7451 2, 7952 2, 8311 2, 8576 2, 8775 2, 8928 2, 9045 2, 9137

w174 2, 5417 2, 6690 2, 7431 2, 7934 2, 8294 2, 8561 2, 8762 2, 8915 2, 9034 2, 9127

w175 2, 5400 2, 6671 2, 7412 2, 7915 2, 8277 2, 8545 2, 8748 2, 8903 2, 9024 2, 9118

w176 2, 5382 2, 6652 2, 7394 2, 7897 2, 8260 2, 8530 2, 8734 2, 8891 2, 9013 2, 9108

w177 2, 5365 2, 6634 2, 7375 2, 7879 2, 8243 2, 8514 2, 8720 2, 8878 2, 9002 2, 9098

w178 2, 5349 2, 6615 2, 7356 2, 7861 2, 8226 2, 8499 2, 8706 2, 8866 2, 8991 2, 9089

w179 2, 5332 2, 6597 2, 7337 2, 7843 2, 8210 2, 8484 2, 8692 2, 8854 2, 8980 2, 9079

w180 2, 5315 2, 6579 2, 7319 2, 7825 2, 8193 2, 8468 2, 8678 2, 8841 2, 8968 2, 9069

w181 2, 5299 2, 6560 2, 7300 2, 7807 2, 8176 2, 8453 2, 8664 2, 8828 2, 8957 2, 9059

w182 2, 5282 2, 6542 2, 7282 2, 7789 2, 8159 2, 8437 2, 8650 2, 8816 2, 8946 2, 9049

w183 2, 5266 2, 6524 2, 7264 2, 7772 2, 8143 2, 8422 2, 8636 2, 8803 2, 8934 2, 9039

w184 2, 5250 2, 6507 2, 7246 2, 7754 2, 8126 2, 8406 2, 8622 2, 8790 2, 8923 2, 9029

w185 2, 5234 2, 6489 2, 7228 2, 7736 2, 8109 2, 8391 2, 8608 2, 8778 2, 8912 2, 9018

w186 2, 5218 2, 6471 2, 7210 2, 7719 2, 8093 2, 8375 2, 8594 2, 8765 2, 8900 2, 9008

w187 2, 5202 2, 6454 2, 7192 2, 7701 2, 8076 2, 8360 2, 8580 2, 8752 2, 8889 2, 8998

w188 2, 5187 2, 6436 2, 7174 2, 7684 2, 8059 2, 8345 2, 8566 2, 8739 2, 8877 2, 8987

w189 2, 5171 2, 6419 2, 7156 2, 7667 2, 8043 2, 8329 2, 8551 2, 8726 2, 8865 2, 8977

w190 2, 5156 2, 6402 2, 7139 2, 7649 2, 8026 2, 8314 2, 8537 2, 8713 2, 8854 2, 8966

w191 2, 5140 2, 6385 2, 7121 2, 7632 2, 8010 2, 8298 2, 8523 2, 8700 2, 8842 2, 8956

w192 2, 5125 2, 6368 2, 7104 2, 7615 2, 7994 2, 8283 2, 8509 2, 8687 2, 8830 2, 8945

w193 2, 5110 2, 6351 2, 7086 2, 7598 2, 7977 2, 8268 2, 8495 2, 8674 2, 8818 2, 8934

w194 2, 5095 2, 6334 2, 7069 2, 7581 2, 7961 2, 8252 2, 8480 2, 8661 2, 8806 2, 8924

w195 2, 5080 2, 6318 2, 7052 2, 7564 2, 7945 2, 8237 2, 8466 2, 8648 2, 8794 2, 8913

w196 2, 5065 2, 6301 2, 7035 2, 7547 2, 7929 2, 8222 2, 8452 2, 8635 2, 8782 2, 8902

w197 2, 5050 2, 6285 2, 7018 2, 7531 2, 7912 2, 8207 2, 8438 2, 8622 2, 8770 2, 8891

w198 2, 5035 2, 6268 2, 7001 2, 7514 2, 7896 2, 8191 2, 8424 2, 8609 2, 8758 2, 8880

w199 2, 5021 2, 6252 2, 6984 2, 7497 2, 7880 2, 8176 2, 8409 2, 8596 2, 8746 2, 8869

w200 2, 5006 2, 6236 2, 6968 2, 7481 2, 7864 2, 8161 2, 8395 2, 8583 2, 8734 2, 8858

w201 2, 4992 2, 6220 2, 6951 2, 7464 2, 7848 2, 8146 2, 8381 2, 8570 2, 8722 2, 8847

w202 2, 4978 2, 6204 2, 6935 2, 7448 2, 7832 2, 8131 2, 8367 2, 8556 2, 8710 2, 8836

w203 2, 4963 2, 6188 2, 6918 2, 7431 2, 7817 2, 8116 2, 8353 2, 8543 2, 8698 2, 8825

w204 2, 4949 2, 6172 2, 6902 2, 7415 2, 7801 2, 8101 2, 8339 2, 8530 2, 8686 2, 8813

w205 2, 4935 2, 6156 2, 6886 2, 7399 2, 7785 2, 8086 2, 8324 2, 8517 2, 8674 2, 8802

w206 2, 4921 2, 6141 2, 6869 2, 7383 2, 7769 2, 8070 2, 8310 2, 8504 2, 8661 2, 8791

w207 2, 4908 2, 6125 2, 6853 2, 7367 2, 7754 2, 8055 2, 8296 2, 8490 2, 8649 2, 8780

w208 2, 4894 2, 6110 2, 6837 2, 7351 2, 7738 2, 8041 2, 8282 2, 8477 2, 8637 2, 8768

w209 2, 4880 2, 6095 2, 6821 2, 7335 2, 7722 2, 8026 2, 8268 2, 8464 2, 8625 2, 8757

w210 2, 4867 2, 6079 2, 6806 2, 7319 2, 7707 2, 8011 2, 8254 2, 8451 2, 8612 2, 8746

w211 2, 4853 2, 6064 2, 6790 2, 7303 2, 7691 2, 7996 2, 8240 2, 8438 2, 8600 2, 8734

w212 2, 4840 2, 6049 2, 6774 2, 7287 2, 7676 2, 7981 2, 8226 2, 8424 2, 8588 2, 8723

w213 2, 4826 2, 6034 2, 6759 2, 7272 2, 7661 2, 7966 2, 8211 2, 8411 2, 8575 2, 8711

w214 2, 4813 2, 6019 2, 6743 2, 7256 2, 7645 2, 7952 2, 8197 2, 8398 2, 8563 2, 8700

w215 2, 4800 2, 6005 2, 6728 2, 7240 2, 7630 2, 7937 2, 8183 2, 8385 2, 8550 2, 8688

w216 2, 4787 2, 5990 2, 6712 2, 7225 2, 7615 2, 7922 2, 8169 2, 8371 2, 8538 2, 8677

w217 2, 4774 2, 5975 2, 6697 2, 7210 2, 7600 2, 7907 2, 8155 2, 8358 2, 8526 2, 8665

w218 2, 4761 2, 5961 2, 6682 2, 7194 2, 7585 2, 7893 2, 8142 2, 8345 2, 8513 2, 8654

w219 2, 4748 2, 5946 2, 6667 2, 7179 2, 7570 2, 7878 2, 8128 2, 8332 2, 8501 2, 8642

w220 2, 4735 2, 5932 2, 6652 2, 7164 2, 7555 2, 7864 2, 8114 2, 8319 2, 8489 2, 8630
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A.2 Abstract mixed power-conferring norms 

Consider the power-conferring norms 
'

1 2' , ' X
Y

X 


  illustrated in Figure A.2 

and locally (locally) defined by: 

w221 2, 4723 2, 5918 2, 6637 2, 7149 2, 7540 2, 7849 2, 8100 2, 8305 2, 8476 2, 8619

w222 2, 4710 2, 5903 2, 6622 2, 7134 2, 7525 2, 7835 2, 8086 2, 8292 2, 8464 2, 8607

w223 2, 4697 2, 5889 2, 6607 2, 7119 2, 7510 2, 7820 2, 8072 2, 8279 2, 8451 2, 8596

w224 2, 4685 2, 5875 2, 6592 2, 7104 2, 7495 2, 7806 2, 8058 2, 8266 2, 8439 2, 8584

w225 2, 4673 2, 5861 2, 6578 2, 7089 2, 7481 2, 7792 2, 8044 2, 8253 2, 8426 2, 8572

w226 2, 4660 2, 5847 2, 6563 2, 7074 2, 7466 2, 7777 2, 8031 2, 8240 2, 8414 2, 8561

w227 2, 4648 2, 5833 2, 6548 2, 7059 2, 7451 2, 7763 2, 8017 2, 8227 2, 8402 2, 8549

w228 2, 4636 2, 5820 2, 6534 2, 7045 2, 7437 2, 7749 2, 8003 2, 8214 2, 8389 2, 8537

w229 2, 4624 2, 5806 2, 6520 2, 7030 2, 7422 2, 7735 2, 7990 2, 8200 2, 8377 2, 8525

w230 2, 4612 2, 5792 2, 6505 2, 7016 2, 7408 2, 7721 2, 7976 2, 8187 2, 8364 2, 8514

w231 2, 4600 2, 5779 2, 6491 2, 7001 2, 7393 2, 7707 2, 7962 2, 8174 2, 8352 2, 8502

w232 2, 4588 2, 5765 2, 6477 2, 6987 2, 7379 2, 7693 2, 7949 2, 8161 2, 8340 2, 8490

w233 2, 4576 2, 5752 2, 6463 2, 6972 2, 7365 2, 7679 2, 7935 2, 8148 2, 8327 2, 8479

w234 2, 4564 2, 5739 2, 6449 2, 6958 2, 7351 2, 7665 2, 7922 2, 8135 2, 8315 2, 8467

w235 2, 4553 2, 5725 2, 6435 2, 6944 2, 7336 2, 7651 2, 7908 2, 8122 2, 8302 2, 8455

w236 2, 4541 2, 5712 2, 6421 2, 6930 2, 7322 2, 7637 2, 7895 2, 8109 2, 8290 2, 8443

w237 2, 4529 2, 5699 2, 6407 2, 6916 2, 7308 2, 7623 2, 7881 2, 8096 2, 8278 2, 8432

w238 2, 4518 2, 5686 2, 6394 2, 6902 2, 7294 2, 7609 2, 7868 2, 8084 2, 8265 2, 8420

w239 2, 4507 2, 5673 2, 6380 2, 6888 2, 7280 2, 7595 2, 7854 2, 8071 2, 8253 2, 8408

w240 2, 4495 2, 5660 2, 6366 2, 6874 2, 7266 2, 7582 2, 7841 2, 8058 2, 8241 2, 8396

w241 2, 4484 2, 5647 2, 6353 2, 6860 2, 7253 2, 7568 2, 7828 2, 8045 2, 8228 2, 8385

w242 2, 4473 2, 5635 2, 6339 2, 6846 2, 7239 2, 7554 2, 7815 2, 8032 2, 8216 2, 8373

w243 2, 4462 2, 5622 2, 6326 2, 6833 2, 7225 2, 7541 2, 7801 2, 8019 2, 8204 2, 8361

w244 2, 4450 2, 5609 2, 6313 2, 6819 2, 7211 2, 7527 2, 7788 2, 8007 2, 8191 2, 8349

w245 2, 4439 2, 5597 2, 6299 2, 6805 2, 7198 2, 7514 2, 7775 2, 7994 2, 8179 2, 8338

w246 2, 4428 2, 5584 2, 6286 2, 6792 2, 7184 2, 7500 2, 7762 2, 7981 2, 8167 2, 8326

w247 2, 4417 2, 5572 2, 6273 2, 6778 2, 7171 2, 7487 2, 7749 2, 7968 2, 8155 2, 8314

w248 2, 4407 2, 5559 2, 6260 2, 6765 2, 7157 2, 7474 2, 7736 2, 7956 2, 8142 2, 8303

w249 2, 4396 2, 5547 2, 6247 2, 6752 2, 7144 2, 7460 2, 7723 2, 7943 2, 8130 2, 8291

w250 2, 4385 2, 5535 2, 6234 2, 6738 2, 7130 2, 7447 2, 7710 2, 7930 2, 8118 2, 8279

w251 2, 4374 2, 5523 2, 6221 2, 6725 2, 7117 2, 7434 2, 7697 2, 7918 2, 8106 2, 8267

w252 2, 4364 2, 5511 2, 6208 2, 6712 2, 7104 2, 7421 2, 7684 2, 7905 2, 8094 2, 8256

w253 2, 4353 2, 5498 2, 6195 2, 6699 2, 7091 2, 7408 2, 7671 2, 7893 2, 8082 2, 8244

w254 2, 4343 2, 5486 2, 6183 2, 6686 2, 7077 2, 7395 2, 7658 2, 7880 2, 8069 2, 8232

w255 2, 4332 2, 5475 2, 6170 2, 6673 2, 7064 2, 7382 2, 7645 2, 7868 2, 8057 2, 8221

w256 2, 4322 2, 5463 2, 6157 2, 6660 2, 7051 2, 7369 2, 7632 2, 7855 2, 8045 2, 8209

w257 2, 4312 2, 5451 2, 6145 2, 6647 2, 7038 2, 7356 2, 7620 2, 7843 2, 8033 2, 8197

w258 2, 4301 2, 5439 2, 6132 2, 6634 2, 7025 2, 7343 2, 7607 2, 7830 2, 8021 2, 8186

w259 2, 4291 2, 5427 2, 6120 2, 6621 2, 7012 2, 7330 2, 7594 2, 7818 2, 8009 2, 8174

w260 2, 4281 2, 5416 2, 6108 2, 6609 2, 7000 2, 7317 2, 7582 2, 7806 2, 7997 2, 8163

w261 2, 4271 2, 5404 2, 6095 2, 6596 2, 6987 2, 7304 2, 7569 2, 7793 2, 7985 2, 8151

w262 2, 4261 2, 5393 2, 6083 2, 6583 2, 6974 2, 7292 2, 7556 2, 7781 2, 7973 2, 8140

w263 2, 4251 2, 5381 2, 6071 2, 6571 2, 6961 2, 7279 2, 7544 2, 7769 2, 7961 2, 8128

w264 2, 4241 2, 5370 2, 6059 2, 6558 2, 6949 2, 7266 2, 7531 2, 7756 2, 7949 2, 8116

w265 2, 4231 2, 5358 2, 6047 2, 6546 2, 6936 2, 7254 2, 7519 2, 7744 2, 7938 2, 8105

w266 2, 4221 2, 5347 2, 6035 2, 6534 2, 6923 2, 7241 2, 7507 2, 7732 2, 7926 2, 8093

w267 2, 4211 2, 5336 2, 6023 2, 6521 2, 6911 2, 7229 2, 7494 2, 7720 2, 7914 2, 8082

w268 2, 4201 2, 5325 2, 6011 2, 6509 2, 6899 2, 7216 2, 7482 2, 7708 2, 7902 2, 8070

w269 2, 4192 2, 5313 2, 5999 2, 6497 2, 6886 2, 7204 2, 7470 2, 7696 2, 7890 2, 8059

w270 2, 4182 2, 5302 2, 5987 2, 6484 2, 6874 2, 7191 2, 7457 2, 7684 2, 7878 2, 8048

w271 2, 4172 2, 5291 2, 5976 2, 6472 2, 6861 2, 7179 2, 7445 2, 7672 2, 7867 2, 8036

wexp 2, 4164 2, 5282 2, 5966 2, 6462 2, 6851 2, 7169 2, 7435 2, 7662 2, 7857 2, 8027
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respectively. The mixed power-conferring norm  1 2' ' 1 '       is (local-

ly) given by: 
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and also illustrated in Figure A2. Its support is given by a union of family of sets, 

     
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1 2
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x x x

g g g g g g g

      

  
. 

 

Figure A.2 Convex combinations of power-conferring norms 
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A.3 Transformed power-conferring norms 

If power-conferring norms are directly maintained by courts, and if 

 # supp ' | ' 2x   , all binary transformation results in Part III apply. For ex-

ample, consider the abstract power-conferring norm '' X
Y

X


  illustrated in 

Figure VI.2.1. At 'x : 

           ' ' '' | ' 1 ' , | ' , ' , | ' ; , ,k k k k k k kx g g x g g x g g g     . 

It follows from Proposition III.2.1 and III.2.3.B that in  ;v n
M  the norm is trans-

formed to: 

               ' ' '; ;
1 ' , | ' , ' , | ' ; , ,k k k k k k kv n v n

H g g x H g g x g g g  . 

More generally, the competence span is transformed by collective mechanisms in 

all situations where the abstract power-conferring norm is non-degenerate (all 

 1' ' X
Y

x  


 ).

1
 The same remarks apply to transformation of abstract mixed 

power-conferring norms. 

If the number sets in the support is larger than two, acute problems arise: 

sets cannot be ordered according to the classical rule. As illustrated in Exam-

ple VI.3.1, the impact of Arrow-type impossibility seems inevitable. 

 

 

                                                 
1
 In the case of majority mechanisms, the “fixed point”    1

' 2
' ' : ' , | 'k kx X g g x   is 

mapped to the same probability distribution for all m  because  1 1
2 1 2 2mh    (Proposi-

tion III.2.2). 
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