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New York Journal of Mathematics
New York J. Math. 21 (2015) 1371–1387.

Speedups and orbit equivalence of finite
extensions of ergodic Zd-actions

Aimee S. A. Johnson and David M. McClendon

Abstract. We classify n-point extensions of ergodic Zd-actions up to
relative orbit equivalence and establish criteria under which one n-point
extension of an ergodic Zd-action can be sped up to be relatively iso-
morphic to an n-point extension of another ergodic Zd-action. Both
results are characterized in terms of an algebraic object associated to
each n-point extension which is a conjugacy class of subgroups of the
symmetric group on n elements.
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1. Introduction

In a 1985 paper of Arnoux, Ornstein, and Weiss [AOW], it is shown that
for any two measure-preserving transformations (X,X , µ, T ) and (Y,Y, ν, S)
where T is ergodic and S is aperiodic, then one can find a measurable
function p : X → N such that, by setting T (x) = T p(x)(x), (X,X , µ, T ) is
isomorphic to (Y,Y, ν, S). In other words, it is always possible to “speed
up” one such transformation to “look like” another. This idea was extended
in [BBF] to both group and n-point extensions. In this paper Babichev,
Burton, and Fieldsteel showed that for extensions by a locally compact,
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second countable group, the function p can be taken to be measurable with
respect to a factor. They also consider n-point extensions of the form

U : X × {1, . . . , n} → X × {1, . . . , n}
where Un(x, i) = (Tnx, σ(x, n)(i)) and σ : X×Z→ Sn, the symmetric group
on n elements. They use a conjugacy class of subgroups of Sn associated to
each such U , originally studied by Mackey [M] and Zimmer [Z1], and use it
to characterize which n-point extensions one can relatively speed up to look
like another.

Classifications of n-point extensions up to relative equivalence has been
performed in other contexts as well. Finite extensions of Bernoulli shifts are
classified up to factor isomorphism in [R] and n-point extensions of ergodic
automorphisms are classified up to factor orbit equivalence in [G]. The
latter work characterizes those which are factor orbit equivalent by defining
something called the “G-interchange property”.

The works mentioned above concern dynamical systems generated by a
single transformation, i.e., actions of Z. It is thus natural to ask what
happens when one generalizes to a Zd-action. In this paper we consider the
questions of when one can “speed up” one n-point extension of a Zd-action
to “look like” another, and when two n-point extensions of Zd-actions are
relatively orbit equivalent. As noted in [JM], it is not clear what “speed
up” means when there is no “up”. As we will define more explicitly below,
we will take this to mean that the measurable function p is now a function
from X to (Zd)d, and that each coordinate pi of p can be taken so that
pi : X → C where C is a cone-like region in Zd. We will call this a C-
speedup, and if p is measurable with respect to a factor, we will call the
C-speedup “relative”.

A crucial step in understanding which n-point extensions are orbit equiv-
alent and which ones we can speed up to look like others involves associating

to each n-point extension T̃ an algebraic object we call gp(T̃). This is done
in Section 3, and it relates the conjugacy class of subgroups of Sn used in
[BBF] to the G-interchange property used in [G]. We show the following:

Theorem 1.1. Let (X,X , µ,T) be an ergodic Zd1-action and let (Y,Y, ν,S)
be an ergodic Zd2-action. Suppose these actions have respective n-point ex-

tensions T̃ and S̃. Then S̃ is relatively orbit equivalent to T̃ if and only if

gp(S̃) = gp(T̃).

Theorem 1.2. Let (X,X , µ,T) and (Y,Y, ν,S) be ergodic Zd-actions with

respective n-point extensions T̃ and S̃. Given any cone C, there is a relative

C-speedup of T̃ which is relatively isomorphic to S̃ exactly when for each

GT ∈ gp(T̃), there exists GS ∈ gp(S̃) such that GS ⊆ GT .

We begin by providing necessary background definitions and results in

Section 2. The definition and properties of gp(T̃) are given in Section 3,
along with results on orbit equivalence and the proof of Theorem 1.1. The



SPEEDUPS OF FINITE EXTENSIONS OF ERGODIC Zd-ACTIONS 1373

proof of Theorem 1.2 is given in Section 4, and we conclude in Section 5

with some examples that explore the relationship between gp(T̃) and gp(T̃v)

where T̃v is a subaction of T̃.

2. Background and definitions

2.1. Zd-actions. Let X be a Lebesgue probability space with measure µ.
Given d commuting, invertible, measurable, measure-preserving transforma-
tions T1, T2, . . . , Td of X, the collection {Tj} generates a Zd-action T on X.

In particular, given vector v = (v1, . . . , vd) ∈ Zd we write Tv for the trans-
formation T v11 ◦T

v2
2 ◦· · ·◦T

vd
d : X → X. The Zd-action T is said to be ergodic

if the only sets invariant under every Tv,v ∈ Zd, are of zero or full measure,
and is called totally ergodic if for every v ∈ Zd, v 6= 0, the transformation
Tv is ergodic.

2.2. Finite extensions. Let [n] = {1, 2, 3, . . . , n}; let 2[n] denote the power
set of [n] and let δn be uniform counting measure on [n]. Throughout this
paper, Sn denotes the symmetric group on n letters.

Definition 2.1. Let (X,X , µ,T) be a measure-preserving (m.p.) Zd-action.
A finite or n-point extension of (X,X , µ,T) is another Zd m.p. system

(X × [n],X × 2[n], µ× δn, T̃)

defined by setting T̃v(x, i) = (Tv(x), σ(x,v)i) where σ : X × Zd → Sn is a
measurable function satisfying

(2.1) σ(x,v + w) = σ(Tv(x),w)σ(x,v) ∀v,w ∈ Zd, a.e. x ∈ X.

The function σ is called the cocycle of T̃, and Equation (2.1) above is called
the cocycle equation.

2.3. Group extensions. Let G be a locally compact, second countable
group; let λ be Haar measure on G (λ need not be finite).

Definition 2.2. Let (X,X , µ,T) be a measure-preserving (m.p.) Zd-action.
A G-extension of (X,X , µ,T) is another Zd m.p. system

(X ×G,X × G, µ× λ,Tσ)

defined by setting

Tσ
v(x, g) = (Tv(x), σ(x,v)g)

for each v ∈ Zd, where σ : X × Zd → G is a measurable function satisfying
(2.1). The Zd-action T is then referred to as the base or base factor of Tσ.

In fact, a locally compact, second-countable group G admits an ergodic
G-extension if and only if G is amenable [H], [Z2].
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Definition 2.3. Let T̃ be an n-point extension of T with cocycle σ. Then
the Sn-extension of T, Tσ : X × Sn → X × Sn, defined by

Tσ
v(x, g) = (Tv(x), σ(x,v)g)

is called the full extension or Sn-extension associated to T̃.

In the setting of either a finite extension or G-extension, we can also define
a cocycle on the orbit relation of T, which is again labelled σ: if z = Tv(x)
for some v ∈ Zd, we set σ(x, z) = σ(x,v).

In this paper we use the symbol σ to refer to most of our cocycles and
when necessary, distinguish between the cocycles for different actions with
subscripts (i.e., σT is the cocycle associated to an n-point or Sn-extension
of T).

2.4. Iterates and speedups. We define a filled cone C to be any open,
connected subset of Rd whose boundary is contained in d distinct hyper-
planes passing through the origin. For example, the interior of the first
quadrant is a filled cone in R2, and the set of points (x, y, z) satisfying
x > 0, y > x and z > y is a filled cone in R3. A cone is the intersection of
a filled cone with (Zd − {0}). In particular, notice the zero vector does not
belong to any cone.

Given a Zd-action (X,X , µ,T), an iterate of T is an element of the full
group of T. In other words, it is a 1−1, measurable and measure-preserving
function R : X → X given by R(x) = Tk(x)(x) for some measurable function

k : X → Zd. The function k is called the iterate function (of R). If the
iterate function of R takes values in a cone C, then we call R a C-iterate.

Definition 2.4. Given two Zd−actions (Z,Z, ζ,U) and (Z,Z, ζ,U), and
given a cone C, we say U is a C-speedup (or just speedup) of U if there
is a measurable map p = (p1, . . . ,pd) : Z → Cd such that the iterates
Up1 , . . . ,Upd commute and generate U, i.e., Uej = Upj for each j. p is

called the speedup function of U.

As we mentioned in Section 1, the word “speedup” is used in analogy to
the 1-dimensional results from [AOW] and [BBF].

If we are considering a finite extension T̃ or group extension Tσ, then a
relative speedup of such an action is a speedup whose speedup function is
measurable with respect to the base factor.

2.5. Orbit equivalence. Suppose we are given a Zd1-action (X,X , µ,T)
and a Zd2-action (Y,Y, ν,S). We say T and S are orbit equivalent if there is
an isomorphism φ of the measure spaces (X,X , µ) and (Y,Y, ν) which pre-
serves orbits, i.e., if x2 = Tv(x1) for some v ∈ Zd1 , then φ(x2) = Sw(φ(x1))
for some w ∈ Zd2 (and similarly for φ−1).

Two finite extensions are called relatively orbit equivalent if they are orbit
equivalent via a map Φ which is measurable with respect to the base factors,
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i.e., for all measurable B ∈ Y, Φ−1(B × [n]) = A× [n] a.s. for some A ∈ X .
Similarly, two group extensions by G are called relatively orbit equivalent
if they are orbit equivalent via Φ such that for all measurable B ∈ Y,
Φ−1(B ×G) = A×G a.s. for some A ∈ X .

Dye [D1, D2] proved that any ergodic action of Zd is orbit equivalent to
any ergodic action of Z, and later Fieldsteel [F] proved a relative version
of Dye’s theorem, showing that any two group extensions by a compact
group are relatively orbit equivalent. In 1987 Gerber [G] proved that two
n-point extensions of ergodic Z-actions are orbit equivalent if they have the
“G-interchange property” for the same group G; in this paper we show how
the Gerber result naturally extends to Zd-actions.

2.6. Isomorphisms. Let (X,X , µ,T) and (Y,Y, ν,S) be two measure-pre-
serving Zd-actions with respective G-extensions Tσ and Sσ. We say Sσ and
Tσ are G-isomorphic if there is a measure space isomorphism

Φ : (X ×G,X × G, µ× λ)→ (Y ×G,Y × G, ν × λ)

that intertwines the dynamics (i.e., Φ ◦ Tσ
v = Sσv ◦ Φ a.s. for each v ∈ Zd)

and is measurable with respect to the base factors. Equivalently, this means
the base transformations are isomorphic via some isomorphism φ, and that
the cocycles are cohomologous after the spaces are identified by φ, i.e.,

(2.2) Φ(x, g) = (φ(x), α(x)g)

where φ is an isomorphism from (X,X , µ,T) to (Y,Y, ν,S) and α : X → G
is measurable. The α in the previous sentence is called the transfer function
relating the cocycles. In particular, if Tσ is G-isomorphic to Sσ by the map
Φ described above, then the cocycle σS must satisfy

σS(φ(x),v) = α(Tvx)σT(x,v)α(x)−1.

Motivated by this fact, if Tσ is a G-extension of a Zd action and α : X → G
is any measurable function, we define the skewing of σ by α to be the cocycle

σα(x,v) = α(Tvx)σ(x,v)α(x)−1

and remark that Tσ is G−isomorphic to T(σα) (the “skewing of Tσ by α”)
by the map (x, g) 7→ (x, α(x)g).

We can also talk about relative isomorphisms of finite extensions: given
measure-preserving Zd-actions (X,X , µ,T) and (Y,Y, ν,S) with respective

n-point extensions T̃ and S̃, we say T̃ and S̃ are relatively isomorphic if there
is a measure space isomorphism Φ : X × [n] → Y × [n] which intertwines
the dynamics and is measurable with respect to the base factors. The map
Φ is called a relative isomorphism. Equivalently, this means there is an
isomorphism φ from (X,T) to (X,S) and a measurable transfer function
α : X → Sn such that

(2.3) Φ(x, i) = (φ(x), α(x)i).
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In this paper we will need to convert between maps on X×Sn and maps on
X × [n]. Toward that end, we establish the following notation:

Definition 2.5. Given a function Φ : X × [n] → Y × [n] of the form
Φ(x, i) = (φ(x), α(x)i) where φ : X → Y and α : X → Sn, define Φ∗ to be
the function

Φ∗ : X × Sn → Y × Sn
given by Φ∗(x, g) = (φ(x), α(x)g).

Given a function Φ : X×Sn → Y ×Sn of the form Φ(x, g) = (φ(x), α(x)g)
where φ : X → Y and α : X → Sn, define Φ∗ to be the function

Φ∗ : X × [n]→ Y × [n]

given by Φ∗(x, i) = (φ(x), α(x)i).
In either of these settings we call Φ∗ or Φ∗ the associated map of Φ.

In light of the characterizations of G- and relative isomorphisms given in
(2.2) and (2.3), we see that an associated map of a relative isomorphism is a
relative isomorphism (and record this observation in the following lemma).

Lemma 2.6. Let (X,X , µ,T) and (Y,Y, ν,S) be Zd-actions with respective

n-point extensions T̃, S̃ whose full extensions are Tσ and Sσ.

(1) If Φ : X × [n]→ Y × [n] is a relative isomorphism between T̃ and S̃,
then Φ∗ : X × Sn → Y × Sn is an Sn-isomorphism between Tσ and
Sσ.

(2) If Φ : X × Sn → Y × Sn is an Sn-isomorphism between Tσ and Sσ,

then Φ∗ : X × [n] → Y × [n] is a relative isomorphism between T̃

and S̃.

The following theorem, proven in [JM], makes use of a G-isomorphism to
relate two G-extensions under certain assumptions:

Theorem 2.7. Fix a locally compact, second countable group G and a neigh-
borhood U ⊆ G of the identity element of G. Let (X,X , µ,T) and (Y,Y, ν,S)
be measure-preserving Zd-actions with (Y,Y, ν,S) aperiodic. Let Tσ be an
ergodic G-extension of T and Sσ be a G−extension of S. Let C ⊆ Zd be
any cone.

Then there is a relative C-speedup T
σ

of Tσ, such that T
σ

is G-isomorphic
to Sσ via a G-isomorphism whose transfer function α takes values in U al-
most surely.

In dimension one, a result of [N] states that when the speedup function p
is integrable, then the entropies of T and T p satisfy h(T p) = (

∫
p du)h(T ).

How this statement generalizes to higher dimensions is an open question.
The proof of Theorem 2.7 in [JM] can be straightforwardly adapted to

give the following more general result, which we will use in Section 4:
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Theorem 2.8. Fix a locally compact, second countable group G and a neigh-
borhood U ⊆ G of the identity element of G. Let (X,X , µ,T) and (Y,Y, ν,S)
be measure-preserving actions of Zd1 and Zd2, respectively, with (Y,Y, ν,S)
aperiodic. Let Tσ be an ergodic G-extension of T and Sσ be a G−extension
of S. Let C ⊆ Zd1 be any cone.

Then there are d2 commuting C-iterates T
σ
1 , . . . , T

σ
d2 of Tσ which generate

a Zd2-action T
σ

such that T
σ

is G-isomorphic to Sσ via a G-isomorphism
whose transfer function α takes values in U almost surely.

3. An algebraic invariant associated to orbit equivalence of
finite extensions

In this section, we describe an algebraic invariant of a finite extension
originally studied in [M] and [Z1] and independently discovered in [R]. First,
observe the following, which is part of Theorem 3.25 in [Gl]:

Theorem 3.1. Let G be a compact group and let Tσ be a G-extension of
an ergodic Zd-action (X,X , µ,T). Then there is a subgroup G ⊆ G and a

G-extension Tσ′
of T, such that:

(1) Tσ′
is G-isomorphic to Tσ, via a G-isomorphism of the form

(x, g) 7→ (x, α(x)g).

(2) X ×G is an ergodic component of Tσ′
.

Moreover, the set of G with this property is a conjugacy class of subgroups
of G.

In our setting, we call this conjugacy class the “interchange class” because
this machinery relates to what Gerber called the “G-interchange property”
in [G]. More precisely:

Definition 3.2. Let (X,X , µ,T) be an ergodic Zd-action and let T̃ be an
n-point extension of T whose full Sn-extension is Tσ. The interchange class

of T̃, denoted gp(T̃), is the conjugacy class of subgroups G of Sn such that
Tσ is Sn-isomorphic to an Sn-extension of T with ergodic component X×G.

We remark that gp(T̃) depends only on the orbit relation of T and the
cocycle σ (see Proposition 3.6 below). As such, in [BBF] this object was
denoted gp(T, σ). We use slightly different notation because in this paper,
we are most interested in the application of this object to n-point extensions.

The next theorem provides an equivalent characterization of the inter-
change class, generalizing the description in [G] to classify finite extensions
of ergodic Z-actions up to relative orbit equivalence.

Theorem 3.3. Let (X,X , µ,T) be an ergodic Zd-action, and let σ : X →
Sn be a cocycle. Let Tσ and T̃ be the Sn- and n-point extensions of T
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determined by σ. Let G ⊆ Sn. Then G ∈ gp(T̃) if and only if Tσ is G-
isomorphic to another Sn-extension SσS of some ergodic action (Y,Y, ν,S)
satisfying the following conditions:

(1) For every v ∈ Zd, σS(y,v) ∈ G a.s.
(2) For any g ∈ G and any sets A and B of equal positive measure in

Y , there is an iterate R of S, given by iterate function k, such that
R(A) = B and for almost every y ∈ A, σS(y,k) = g.

Proof. (⇒): Suppose G ⊆ Sn where X×G is an ergodic component of Tσ′
,

some Sn-extension of T which is G-isomorphic to Tσ. Note that since X×G
is invariant under Tσ′

, for a.e. x ∈ X and v ∈ Zd, we have that σ′(x,v)
must be in G. If we take g ∈ G and A,B ⊆ X with µ(A) = µ(B) > 0, then

by the ergodicity of Tσ′
on X × G, there is an iterate R of Tσ′

mapping
A×{id} to B×{g} (see Lemma 3.3 of [JM]). Thus the equivalent condition
is satisfied with Y = X, S = T, σS = σ′, and this R.

(⇐): Let SσS be an Sn-extension of (Y,Y, ν,S) which is Sn-isomorphic to
Tσ and satisfies (1) and (2) with respect to G. By (1), Y × G is invariant
under SσS and by (2), Y × G has no nontrivial invariant subsets. Let Φ1

be a Sn-isomorphism from (X × G,Tσ) to (Y × G,SσS); this isomorphism
(since it is a Sn-isomorphism) has the form

Φ1(x, g) = (φ1(x), β1(x)g)

for suitable functions φ1 and β1. Now define Φ2 : Y × Sn → X × Sn by

Φ2(y, g) = (φ−11 (y), g);

this is a Sn-isomorphism between SσS and some other Sn-extension Tσ′
of

T. Observe that Φ2(Y ×G) = X×G is an ergodic component of Tσ′
, and the

composition Φ2 ◦Φ1 gives a Sn-isomorphism from Tσ to Tσ′
as desired. �

We remark also that for any G ∈ gp(T̃), the action of Sn on the set of
right cosets G\Sn is the Mackey range of the cocycle σ (see Section 3.5 of
[Gl] for a definition of the Mackey range).

The following two results will be used when studying examples con-
structed in Section 5.

Proposition 3.4. T̃ is ergodic if and only if there is some G ∈ gp(T̃) which

is transitive if and only if every G ∈ gp(T̃) is transitive.

Proof. Suppose T̃, the n-point extension of T, is ergodic. Let G ∈ gp(T̃).

By Theorem 3.3 and Lemma 2.6, T̃ is relatively isomorphic to some S̃ whose

full extension SσS satisfies (1) and (2) of Theorem 3.3. But then S̃ is also
ergodic, so given sets A×{i} and B×{j}, there is an iterate R with iterate
function k such that R(A×{i}) intersects B×{j}. That is, for a nontrivial
set of y ∈ A, (Sk(y)y, σS(y,k(y)) i) ∈ B×{j}, i.e., σS(y,k(y)) i = j. But by
(1) of Theorem 3.3, σS(y,k(y)) ∈ G, so for every pair i, j ∈ [n], there is an
element of G that sends i to j and thus this G is transitive.
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It remains to show that if there is G ∈ gp(T̃) that is transitive, then

T̃ is ergodic. Suppose there exists G ∈ gp(T̃) which is transitive. By

Theorem 3.3 and Lemma 2.6, T̃ is relatively isomorphic to some S̃, which
has a full extension SσS satisfying (1) and (2) of Theorem 3.3. We first show

that S̃ is ergodic: suppose not, but rather that it has a nontrivial, nonproper
invariant subset. Then we can find A × {i} in this invariant subset and
B × {j} outside it, where ν(A) = ν(B) > 0. Since G is transitive, there
exists g ∈ G which maps i to j. By (2) we can find an iterate that takes A
to B and iterate function k with σS(y,k(y)) = g for a.e. x ∈ A. But then

this iterate maps A×{i} to B×{j}, a contradiction. Thus S̃ is ergodic and

by isomorphism, so is T̃. �

Proposition 3.5. Let (X,X , µ,T) be an ergodic Zd-action. Let T̃ be an

n-point extension of T and fix v ∈ Zd. Then for each G ∈ gp(T̃), there

exists H ∈ gp(T̃v) such that H is a subgroup of G.

Proof. Let G ∈ gp(T̃). Then by the definition of interchange class, the full

extension Tσ is Sn-isomorphic to another Sn-extension Tσ′
which has X×G

as an ergodic component. This Sn-isomorphism induces an Sn-isomorphism
between Tσ

v and Tσ′
v . Applying Theorem 3.1 to the system (X × G,Tσ′

v ),

we find a subgroup H ⊆ G which satisfies H ∈ gp(T̃v). �

The next result allows us to convert the results of [G] to actions of Zd (in
fact, the next three results hold for the actions of any amenable group, not
just Zd):

Proposition 3.6. Suppose (X,X , µ,T) and (Y,Y, ν,S) are orbit equivalent
actions of Zd1 and Zd2, respectively, where the orbit equivalence is given
by φ : X → Y . Then if σT : X → Sn is a cocycle for T, the function
σS : Y → Sn defined by

σS(y,v) = σT(φ−1(y), φ−1(Sv(y)))

is a cocycle, and if T̃ and S̃ are the n-point extensions determined by σT
and σS, we have gp(T̃) = gp(S̃).

Proof. That σS satisfies the cocycle equation is clear. To show gp(T̃) =

gp(S̃), suppose G ∈ gp(T̃). By definition, there is a measurable transfer
function α : X → Sn such that X × G is an ergodic component of (X ×
Sn,T

(σα)).

Let β = α◦φ−1 and consider the system (Y ×Sn,S(σβ)): note this system
is Sn-isomorphic to (Y ×Sn,Sσ). Now note that Φ : X×Sn → Y ×Sn defined

by Φ(x, g) = (φ(x), g) is a relative orbit equivalence between T(σα) and S(σβ).
Since orbit equivalences preserve ergodic components, and because X × G
is an ergodic component of T(σα), we have that Φ(X × G) = Y × G is an

ergodic component of S(σβ). Thus G ∈ gp(S̃) and therefore gp(T̃) ⊆ gp(S̃).
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A symmetric argument shows the reverse inclusion and establishes the
theorem. �

Proposition 3.7. Let (X,X , µ,T) be any ergodic Zd-action. Given any
subgroup G of Sn, there is a cocycle σ : X → Sn for T so that the n-point

extension T̃ determined by σ satisfies G ∈ gp(T̃).

Proof. Let (GZ, S) be the full shift with alphabet G. Define a cocycle
σS : GZ × Z→ G by

σS(x, n) = xn−1 · · ·x1x0
where concatenation indicates the group operation. Letting S̃ be the n-point

extension of S defined by this cocycle, we have G ∈ gp(S̃) by the proposition
on page 34 of [G]. By Dye’s theorem, S is orbit equivalent (via some map
φ : GZ → X) to T. Now define σT : X × Zd → Sn setting

σT(x,v) = σS(φ−1(x), φ−1(Tv(x))).

By Proposition 3.6, σT is a cocycle with gp(T̃) = gp(S̃) 3 G. �

The next result is the first theorem mentioned in the introduction (The-
orem 1.1).

Theorem 3.8. Let (X,X , µ,T) be an ergodic Zd1-action and let (Y,Y, ν,S)
be an ergodic Zd2-action. Suppose these actions have respective n-point ex-

tensions T̃ and S̃. Then S̃ is relatively orbit equivalent to T̃ if and only if

gp(S̃) = gp(T̃).

Proof. T and S are orbit equivalent to Z-actions T ′ and S′, respectively,
via maps φT and φS . Let

σ′T (x′, n) = σT(φ−1T (x′), φ−1T (T ′n(x′)))

and let T̃ ′ be the n-point extension of T ′ given by σ′ (and define S̃′ similarly).

T̃ and S̃ are relatively orbit equivalent if and only if T̃ ′ and S̃′ are relatively

orbit equivalent if and only if gp(T̃ ′) = gp(S̃′) (by [G]) if and only if gp(T̃) =

gp(S̃) (by Proposition 3.6). �

4. Speedups and relative isomorphisms

In this section we want to consider ergodic n-point extensions of two Zd-
actions, and ask when one can be “sped up” to “look like” the other. This
will generalize Theorem 2 of [BBF].

Recall that given an ergodic Z-action f : X → X and a subset A ⊆ X, it
is well known how to induce an action fA : A → A. We begin this section
with the following preliminary lemma, which modifies the above notion to
our situation.
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Lemma 4.1. Let (X,X , µ,T) be an ergodic Zd-action and let G be a sub-
group of Sn. Let Tσ be an ergodic G-extension of (X,X , µ,T). Given any
cone C and any subgroup H ⊆ G, there is a relative C-iterate of Tσ which
has X ×H as an ergodic component.

Proof. This result is obtained by speeding up the original G-extension Tσ

and then picking a particular iterate of this speedup. First, let

(Y ×G,Y × G, ν × λ,Sσ)

be any totally ergodic Zd G-extension. By Theorem 2.7, there is a relative

C-speedup T
σ

of Tσ which is G-isomorphic to Sσ.
Second, let v = e1 (the first element of the standard basis of Rd), and

consider the ergodic transformation
(
T
σ)

v
. Construct the first return time

map of
(
T
σ)

v
to X ×H, i.e., let j : X ×H → N be defined by

j(x, h) = min
{
i ∈ N :

(
T
σ)
iv

(x, h) ∈ X ×H
}
.

In fact, j depends only on x (and we therefore subsequently write j(x)
instead of j(x, h)), because for any (x, h) ∈ X ×H and any i ∈ N, we have(

T
σ)
iv

(x, h) ∈ X ×H ⇔ σ(x, iv)h ∈ H ⇔ σ(x, iv) ∈ H

(since H is a subgroup) and this last condition depends on x but not on h.
To complete this second step, define R to the C-iterate given by

R(x, h) =
(
T
σ)
j(x)v

(x, h).

Composing the speedup functions from these two steps, the transformation
R is the relative C-speedup of Tσ, as desired. �

The following result is the main result of our paper; it includes Theo-
rem 1.2 as mentioned in the introduction in the case where d1 = d2.

Theorem 4.2. Let (X,X , µ,T) and (Y,Y, ν,S) be ergodic actions of Zd1
and Zd2, respectively, with respective n-point extensions T̃ and S̃. Then, the
following are equivalent:

(1) Given any cone C, there are d2 commuting C-iterates of T̃ which

generate a Zd2-action relatively isomorphic to S̃.

(2) For some cone C, there are d2 commuting C-iterates of T̃ which

generate a Zd2-action relatively isomorphic to S̃.

(3) Given any GT ∈ gp(T̃), there exists GS ∈ gp(S̃) such that GS ⊆ GT .

(4) For some GT ∈ gp(T̃), there exists GS ∈ gp(S̃) such that GS ⊆ GT .

Proof. (1) ⇒ (2) is obvious; we will first show (2) ⇒ (3). We know by

assumption that there are d2 relative C-iterates of T̃ which generate a Zd2-

action relatively isomorphic to S̃; let p1, . . . ,pd2 be the associated iterate
functions of these iterates (see Section 2.4). Note that by Lemma 2.6, the
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Zd-action T
σ

generated by the C-iterates of Tσ given by the same iterate
functions p1, . . . ,pd2 is Sn-isomorphic to Sσ.

Now let GT ∈ gp(T̃). By Definition 3.2, there is an Sn-extension Tσ′
, Sn-

isomorphic to Tσ, which has X ×GT as an ergodic component. Again use
the same iterate functions p1, . . . ,pd2 to yield d2 commuting C-iterates of

Tσ′
which generate a Zd2 action of Tσ′

, denoted T
σ′

, which is Sn-isomorphic

to T
σ
.

Composing these two isomorphisms gives a Sn-isomorphism between T
σ′

and Sσ.

Next, note that X × GT is an invariant set for T
σ′

and therefore by
applying Theorem 3.1, we obtain a subgroup of GT , which we denote by GS ,

such that T
σ′

is Sn-isomorphic to another Sn-extension which has ergodic
component X ×GS . Composing these isomorphisms, we get that Sσ is Sn-
isomorphic to an Sn-extension satisfying (1) and (2) of Theorem 3.3 and

thus GS ∈ gp(S̃), as desired.
Note that (3)⇒ (4) is obvious, so it only remains to show (4)⇒ (1). For

this, let C be a cone. By assumption, there is some GT ∈ gp(T̃) for which

there exists GS ∈ gp(S̃) with GS ⊆ GT . By the definition of interchange

class, Tσ is Sn-isomorphic to Tσ′
which has X×GT as an ergodic component

and Sσ is Sn-isomorphic to Sσ
′

which has X×GS as an ergodic component.
Consider Tσ′

restricted to this ergodic component X × GT . By Lem-
ma 4.1 we can find a C-iterate R of Tσ′

(R is an action of Z), which has
X × GS as an ergodic component. We can now use Theorem 2.8, applied
to the restriction of R to X ×GS , to yield a relative C-speedup of R (this

speedup is a Zd2-action) which is GS-isomorphic to Sσ
′
. Composing the two

speedup functions, we have a C-speedup of Tσ′
which is GS-isomorphic to

Sσ
′
. Using the same speedup function yields a C-speedup of T̃ which by

Lemma 2.6 is relatively isomorphic to S̃, as desired. �

5. Relationship between the interchange classes of a
Zd-action and its generators

In this section we examine the (lack of) relationship between the inter-
change class of an n-point extension of a Zd-action and the interchange
classes of its generators and directions. First, the following result demon-
strates that the interchange class of a Zd-action cannot be discerned by

looking at the interchange classes of its generators. Recall that gp(T̃v) is
only defined when Tv is ergodic; we therefore consider only totally ergodic
actions in the next two results.

Proposition 5.1. For any totally ergodic Z2-action T, there exist two 4-

point extensions T̃ and T̃′ such that gp(T̃(1,0)) = gp(T̃′(1,0)) and gp(T̃(0,1)) =

gp(T̃′(0,1)) but gp(T̃) 6= gp(T̃′).
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Proof. Define cocycles σ, σ′ : X × Z2 → S4 by setting

σ(x, (v1, v2)) = (12)v1+v2 ;

σ′(x, (v1, v2)) = (12)v1(34)v2

for all x ∈ X (i.e., σ and σ′ depend only on v = (v1, v2) and not on x). Let

T̃ and T̃′ be the respective 4-point extensions of T. Note that

〈(12)〉 ∈ gp(T̃(1,0)) and 〈(12)〉 ∈ gp(T̃′(1,0)).

By Theorem 3.1 this means gp(T̃(1,0)) and gp(T̃′(1,0)) are the same conjugacy

class of subgroups of Sn, i.e., gp(T̃(1,0)) = gp(T̃′(1,0)).

Next, note that

〈(12)〉 ∈ gp(T̃(0,1)) and 〈(34)〉 ∈ gp(T̃′(0,1));

since 〈(12)〉 and 〈(34)〉 are conjugate subgroups, Theorem 3.1 again says

that gp(T̃(0,1)) = gp(T̃′(0,1)).

However,

〈(12)〉 ∈ gp(T̃) while 〈(12), (34)〉 ∈ gp(T̃′).

As 〈(12)〉 is a subgroup of S4 of order two and 〈(12), (34)〉 is a subgroup of

S4 of order four, gp(T̃) 6= gp(T̃′). �

Applying Theorems 3.8 and 4.2 to the two extensions described in the
previous proposition, we see:

Corollary 5.2. For any totally ergodic Z2-action T, there exist two 4-point

extensions T̃ and T̃′ such that:

(1) Each generator of T̃ is relatively orbit equivalent to the corresponding

generator of T̃′, and each generator can be relatively sped up to obtain

a relatively isomorphic copy of the respective generator of T̃′, but

(2) T̃ is not relatively orbit equivalent to T̃′, and for any cone C ⊆ Z2,

there is no relative C-speedup of T̃ which is relatively isomorphic to

T̃′.

We now move to an example illustrating the reverse situation, i.e., when
the interchange classes of the Z2-actions coincide but the properties of the
directions of those actions are quite different. We first build an example

that, similar to T̃′ above, shows how different the interchange class for the
action can be from the interchange classes of its generators.

Lemma 5.3. There exists an ergodic Z2-action (X,X , µ,T) which has an

ergodic 2-point extension T̃ such that gp(T̃(1,0)) = gp(T̃(0,1)) = {id}, but

gp(T̃) = S2.
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Proof. Let X = {0, 1}Z2 × [2]. Then X is a 2-point extension of the full
shift on two symbols (i.e., the base space in this example is itself a 2-point
extension). Let Σ be the usual two-dimensional shift map, and define T to
be the Z2-action

T(v1,v2)(x, i) =
(
Σ(v1,v2)x, (12)v1+v2i

)
.

In other words, this action is defined via a cocycle that only depends on the
vector (v1, v2) and not on x. The cocycle satisfies the cocycle condition and
thus the two-dimensional action T is well-defined. Note that although this
action T is ergodic, and its generators T(1,0) and T(0,1) are both ergodic,
there are other subactions of T which are not.

Next define a 2-point extension of (X,T) via the cocycle

σ ((x, i), (v1, v2)) = σ(v1, v2) = (12)v1 .

The cocycle σ also satisfies the cocycle condition and thus yields the action

T̃ on the space X̃ = X × [2]. We note that

T̃(1,0) ((x, i), j ) =
(
(Σ(1,0)x, (12)i), (12)j

)
and

T̃(0,1) ((x, i), j ) =
(
(Σ(0,1)x, (12)i), j

)
.

The space X̃ can be divided into four disjoint sets D11, D12, D21 and D22

where

Dij =
(
{0, 1}Z2 × {i}

)
× {j}.

Observe that the set D11∪D22 is an invariant set for T̃(1,0) while D11∪D21 is

an invariant set for T̃(0,1), showing that these two actions are not ergodic. By
Proposition 3.4, their interchange classes must contain only non-transitive

subgroups of S2. Therefore gp(T̃(1,0)) and gp(T̃(0,1)) each consists only of
the trivial subgroup {id}.

However, we can see that T̃ is ergodic as follows: let Ã and B̃ be nontrivial

subsets of X × [2]. We can then find nontrivial subsets A, B ⊆ {0, 1}Z2
and

i1, i2, j1, j2 such that (A× i1) × {j1} ⊆ A and (B × i2) × {j2} ⊆ B. If

j1 = j2, we use the structure of {0, 1}Z2
to find (0, k), where k is even if

i1 = i2 and odd otherwise, such that Σ(0,k)A intersects B nontrivially. This

is turn tells us that T̃(0,k)Ã intersects B̃ nontrivially. If j1 6= j2, we again

use the structure of {0, 1}Z2
to find (1, k), where k + 1 is even if i1 = i2

and odd otherwise, so that Σ(1,k)A intersects B nontrivially. Again this

tells us that T̃(1,k)Ã intersects B̃ nontrivially. Thus T̃ is ergodic and by

Proposition 3.4, gp(T̃) is a conjugacy class of transitive subgroups of S2, so

gp(T̃) = {S2}. �

We now use this example, along with one constructed in the proposi-
tion below, to show that it is possible for the relationship between two
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2-dimensional actions to be quite different than the relationship between
their respective generators.

Proposition 5.4. There exist two Z2-actions (X,X , µ,T) and (Y,Y, ν,S)

with respective 2-point extensions T̃ and S̃ such that:

(1) T̃ and S̃ are relatively orbit equivalent and there is a relative speedup

of T̃ which is relatively isomorphic to S̃; but

(2) given any v ∈ Z2 and any w 6= (0, 0) in Z2, T̃v is not relatively orbit

equivalent to S̃w, and, for any cone C, there is no relative C-speedup

of T̃v which is relatively isomorphic to S̃w.

Proof. S̃ will be defined as a 2-point extension of a Z2 subshift of finite
type: first, let Ω = S2 × S2 = {id, (12)}2 and define π1, π2 : Ω → S2 to
be projection onto the first and second coordinate, respectively. Next, let

Y ⊆ ΩZ2
be the set of 2-dimensional infinite arrays {yv : v ∈ Z2} of symbols

in Ω which satisfy, for every v = (v1, v2) ∈ Zd,
(5.1) π2(yv+(1,0))π1(yv) = π1(yv+(0,1))π2(yv).

This set Y is invariant under the 2-dimensional shift S, and in fact S pre-
serves a measure ν on Y which can be informally described as follows: to
specify a point y = {y(i,j)}(i,j)∈Z2 ∈ Y , start by taking an i.i.d. sequence of
S2-valued random variables, each uniform on S2. Think of this sequence as
giving the values of y(i,0) where i ranges over Z. Now, independent of this
sequence, for each i ∈ Z take another sequence of i.i.d. random variables,
where each random variable is again uniform on S2, and think of this se-
quence as giving the values of y(i,j) where j ranges over Z. Note that the
sequences associated to different i’s are chosen independently of one another.
The coordinates of y so chosen determine the remaining coordinates using
(5.1). To define ν, let the measure of any cylinder be the probability that a
point y so chosen lies in that cylinder.

Note that under ν, knowing the coordinates at a single index (or even
a finite set of indices) of some y ∈ Y does not affect the coordinates of y
that are some distance away, so cylinder sets in Y that are “sufficiently far
apart” are independent. It follows that (Y,Y, ν,S) is totally ergodic.

Now define a cocycle σ : Y × Zd → S2 by setting

σ(y, (v1, v2)) = π2(y(v1,v2−1))π2(y(v1,v2−2)) · · ·π2(y(v1,0))π1(y(v1−1,0)) · · ·
· · ·π1(y(2,0))π1(y(1,0))π1(y(0,0)).

By the definition of Y , this σ satisfies the cocycle condition and therefore

determines a 2-point extension S̃ of S. Fix any w = (w1, w2) ∈ Zd with w 6=
(0, 0). One can show, using the independence property of ν and the definition

of σ, that S̃w is ergodic. Thus by Proposition 3.4 we have gp(S̃w) = {S2}.
It follows that S̃ is also ergodic and gp(S̃) = {S2} as well.

Let T̃ be the system from Lemma 5.3. In that result we saw that gp(T̃) =
{S2}, so by Theorems 3.8 and 4.2 we obtain statement (1) of the proposition.
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Now let v,w ∈ Z2 with w 6= (0, 0). We have already said gp(S̃w) = {S2}.
To verify statement (2) of this proposition, we consider two cases: when
v1 + v2 is even and v1 + v2 is odd. First, assume v1 + v2 is even. Then

T(v1,v2)(x, i) =
(
Σ(v1,v2)x, (12)v1+v2i

)
=
(
Σ(v1,v2)x, i

)
and we see that the action T(v1,v2) has, for instance, {0, 1}Z2 × {1} as an
invariant set and thus is not ergodic. Since Sw is ergodic, it is clear that the
two base actions Tv and Sw are not orbit equivalent and that no speedup of

Tv is isomorphic to Sw. It then follows that T̃v and S̃w cannot be relatively

orbit equivalent, nor is there a speedup of T̃v relatively isomorphic to S̃w,
yielding statement (2) of the proposition for this case.

Next we assume v1 + v2 is odd. Then

T(v1,v2)(x, i) =
(
Σ(v1,v2)x, (12)v1+v2i

)
=
(
Σ(v1,v2)x, (12)i

)
This action is ergodic and we proceed to compute gp(T̃v). We again look
at two cases: when v1 is even and when v1 is odd. In the first case we have

T̃(v1,v2) ((x, i), j) =
((

Σ(v1,v2)x, (12)v1+v2i
)
, j
)

=
((

Σ(v1,v2)x, (12)i
)
, j
)

and, similar to how we argued for T̃(0,1) in Lemma 5.3, we see that D11∪D21

is an invariant set for T̃v. Thus T̃v is not ergodic and gp(T̃v) = {id}. On
the other hand, if v1 is odd we have

T̃(v1,v2) ((x, i), j) =
((

Σ(v1,v2)x, (12)v1+v2i
)
, (12)j

)
=
((

Σ(v1,v2)x, (12)i
)
, (12)j

)
and, again similar to how we argued for T̃(1,0) in Lemma 5.3, we see that

D11 ∪D22 is an invariant set for T̃v. Again we have T̃v is not ergodic and

therefore gp(T̃v) = {id}.
In all cases we have gp(T̃v) = {id} while gp(S̃w) = {S2}. Theorem 3.8

then tells us that T̃v and S̃w are not relatively orbit equivalent. We use

Theorem 4.2 to show that it is not possible to find a relative speedup of T̃v

which is relatively isomorphic to S̃w, yielding statement (2) of the proposi-
tion, as wanted. �
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