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We consider reaction–diffusion equations under nonlinear boundary conditions where
the nonlinearities are asymptotically linear at infinity and depend on a parameter.
We prove that, as the parameter crosses some critical values, a resonance-type
phenomenon provides solutions that bifurcate from infinity. We characterize the
bifurcated branches when they are sub- or supercritical. We obtain both
Landesman–Lazer-type conditions that guarantee the existence of solutions in the
resonant case and an anti-maximum principle.

Keywords: Steklov eigenvalues; elliptic equations; nonlinear boundary conditions;
bifurcation

2010 Mathematics subject classification: Primary 35j66

1. Introduction

Consider the following nonlinear elliptic problem with nonlinear boundary condi-
tions:

−∆u + u = λm(x)u + f(λ, x, u) in Ω,

∂u

∂ν
= λρ(x)u + g(λ, x, u) on ∂Ω,

⎫⎬
⎭ (1.1)

where Ω is a bounded domain in R
N (N � 2) with smooth boundary, ∂/∂ν := ν ·∇

is the (unit) outer normal derivative, the parameter λ ∈ R, the weight functions
m, ρ � 0, (m, ρ) �= (0, 0) and the functions f and g are sublinear at infinity.

Problems with nonlinear boundary conditions have recently attracted consider-
able attention. In this paper we analyse the bifurcation induced by nonlinearities
in both the differential equation and the boundary condition. The existence of
solutions of nonlinear problems when the nonlinearity is in the differential equa-
tion and the boundary condition is Dirichlet has been widely studied using (among
other techniques) bifurcation theory (see, for example, [4]). However, problems with
nonlinear boundary conditions have been less widely studied. For the Laplace oper-
ator with nonlinear boundary conditions see, for example, [5–7, 9, 17, 19] and the
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650 N. Mavinga and R. Pardo

references therein. Mavinga [17] studied a problem with a nonlinear boundary con-
dition from a variational point of view. Observe that in (1.1) we are dealing with
two nonlinear terms that may also depend on the parameter λ. Our interest is in
analysing the interplay between both nonlinearities. One of the main differences
from problems with only one nonlinearity, either in the interior or at the boundary,
is the regularity results (see theorem 2.4).

We study some possible bifurcations of branches of solutions as the parameter λ
varies. More specifically, we are interested in characterizing a bifurcation from infin-
ity phenomenon, which localizes points in the parameter space where the branch
of solutions becomes unbounded. We obtain sufficient conditions for having sub-
critical (on the left) or supercritical (on the right) bifurcations. Consequently, we
also obtain the bifurcation nature of some classical results, such as the Landesman–
Lazer-type condition for the existence of solutions in the resonant case [15], and
the anti-maximum principle [4, 10]. We see that the bifurcation point of view also
allows us to obtain a local maximum principle for some classes of strongly resonant
problems.

Throughout this paper we shall assume that the nonlinearities f and g are sub-
linear at infinity with respect to the variable u, i.e.

|f(λ, x, s)| = o(|s|), |g(λ, x, s)| = o(|s|) as |s| → ∞.

Hence, the nonlinearities in the interior and on the boundary are both asymptoti-
cally linear at infinity, since the dominant term for large values of |u| is the linear
term. Observe that problem (1.1) can be cast as a perturbation of the eigenvalue
problem

−∆u + u = µm(x)u in Ω,

∂u

∂ν
= µρ(x)u on ∂Ω.

⎫⎬
⎭ (1.2)

We say that µ is a generalized eigenvalue if the linear problem (1.2) has a non-
trivial solution. Note that the eigenvalue problem (1.2) includes as special cases
the weighted Steklov eigenproblem (when m ≡ 0 and ρ �≡ 0) and the weighted
Neumann eigenproblem (when ρ ≡ 0 and m �≡ 0).

In [17, theorem 2.1] the existence of a sequence of real eigenvalues µn := µn(m, ρ)
of (1.2) such that µn → ∞ as n → ∞ is proved, and each eigenvalue has a finite-
dimensional eigenspace. The eigenfunctions φn corresponding to these eigenvalues
form a complete orthonormal family in the (proper) subspace of H1(Ω). Moreover,
the first eigenvalue, µ1, is simple, its associated eigenfunction, φ1, is strictly positive
(or strictly negative) in Ω and the following inequality holds:

µ1

( ∫
Ω

m(x)u2 +
∫

∂Ω

ρ(x)u2
)

�
∫

Ω

|∇u|2 +
∫

Ω

u2 for all u ∈ H1(Ω), (1.3)

where µ1 > 0 is the least eigenvalue for (1.2).
Observe that when f = g = 0 the problem (1.1) becomes the linear problem

(1.2). If the parameter λ is not a generalized eigenvalue, then the only solution is
the trivial one. On the other hand, if the parameter λ is a generalized eigenvalue
µn := µn(m, ρ) of (1.2), then (1.1) (with f = g = 0) has infinitely many solu-
tions. Indeed, any multiple of the eigenfunction φn is a solution. This phenomenon
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Bifurcation and reaction–diffusion equations 651

can be seen as the existence of an unbounded branch of solutions for λ = µn.
Bifurcation theory from infinity analyses how this unbounded branch of solutions
is perturbed in the sublinear case, when the parameter λ approaches a generalized
eigenvalue.

The aim of this paper is to analyse some possible bifurcations of (weak) solutions
as the parameter λ varies. By a (weak) solution, we mean a solution u ∈ H1(Ω)
such that∫

Ω

∇u∇v +
∫

Ω

uv = λ

[ ∫
Ω

m(x)uv +
∫

∂Ω

ρ(x)uv

]
+

∫
Ω

f(λ, x, u)v +
∫

∂Ω

g(λ, x, u)v

(1.4)
for all v ∈ H1(Ω).

The paper is organized as follows. In § 2, we formulate the nonlinear problem
(1.1) as a fixed-point problem in certain spaces, and use the tools of nonlinear
functional analysis to prove the existence of solutions for all values of λ ∈ R except
for the generalized eigenvalues. In § 3, we show the existence of unbounded branches
of solutions bifurcating from the generalized eigenvalues of odd multiplicity. The
proof is based on the global bifurcation results of Rabinowitz [20, 21] (see also
[5–7]). Section 4 is devoted to the sub- and supercritical bifurcations from infinity.
Moreover, in § 5, we prove the existence of solutions for the problem at resonance
under Landesman–Lazer-type conditions. Finally, § 6, we analyse an anti-maximum
principle.

2. Non-resonance and fixed-point problems

In this section, we prove the existence of a weak solution of (1.1) for all λ ∈ R \
{µi}i. We transform (1.1) into an equivalent fixed-point problem in C0(Ω̄), and
use compactness results, the Schaefer fixed-point theorem and regularity results to
show that a weak solution of (1.1) also belongs to Cα(Ω̄). One advantage of this
technique is that it allows us to obtain more information on the resolvent operator
of the linear problem associated with problem (1.1); that is, for any compact set
of λ far from the generalized eigenvalues, the norm of the resolvent operator is
uniformly bounded in some appropriate spaces.

We assume that (m, ρ) ∈ L∞(Ω) × L∞(∂Ω) and that m and ρ satisfy the follow-
ing condition:

m(x) � 0 almost everywhere (a.e.) on Ω and ρ(x) � 0 a.e. on ∂Ω

such that
∫

Ω

m(x) dx +
∫

∂Ω

ρ(x) dx �= 0. (2.1)

(We stress the fact that the weight-functions m and ρ may vanish on subsets of
positive measure.)

The (nonlinear) perturbations f : R×Ω ×R → R and g : R×∂Ω ×R → R satisfy
the following conditions.

(C1) f and g are Carathéodory functions (i.e. measurable in x, and continuous
with respect to (λ, u) ∈ R × R).
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652 N. Mavinga and R. Pardo

(C2) There exist h1 ∈ Lr(Ω) and h2 ∈ Lr′
(∂Ω) (with r > 1

2N and r′ > N −1) and
continuous functions Λ1, Λ2 : R → R

+ and U1,U2 : R → R
+ such that

|f(λ, x, s)| � Λ1(λ)h1(x)U1(s) for all (λ, x, s) ∈ R × Ω × R.

|g(λ, x, s)| � Λ2(λ)h2(x)U2(s) for all (λ, x, s) ∈ R × ∂Ω × R.

We shall also assume the following conditions on the functions U1 and U2:

(C3) lim|s|→∞ U1(s)/s = 0 and lim|s|→∞ U2(s)/s = 0.

Note that condition (C3) is satisfied in particular if f, g : R × Ω̄ × R → R are
continuous, and

lim
|s|→∞

f(λ, x, s)
s

= 0, lim
|s|→∞

g(λ, x, s)
s

= 0

uniformly for a.e. x ∈ ∂Ω and λ on bounded intervals.
The following theorem states the existence of solutions for the non-resonance

problem.

Theorem 2.1. Suppose that f and g satisfy (C1)–(C3). Then, for all λ ∈ R\{µi}i,
there exists at least one solution of problem (1.1). Moreover, for each compact set
K ⊂ R \ {µi}i, there exists a constant C = C(K) such that any solution of (1.1) is
bounded in C0(Ω̄) by C.

Before proving theorem 2.1, we first state and prove some relevant auxiliary
results.

Consider first the linear problem

−∆u + u = a(x) in Ω,

∂u

∂ν
= b(x) on ∂Ω.

⎫⎬
⎭ (2.2)

It is well known (see [12, p. 75]; [14, p. 162]; [18, p. 255]) that if a ∈ Lq(Ω) with
q > 1, then there exists a unique solution u1 ∈ W 2,q(Ω) for the following problem:

−∆u1 + u1 = a in Ω,

∂u1

∂ν
= 0 on ∂Ω.

⎫⎬
⎭ (2.3)

We define the operator
A : Dom(A) → Lq(Ω)

by
A := −∆ + I,

where

Dom(A) :=
{

u ∈ W 2,q(Ω) :
∂u

∂ν
= 0

}
.

It follows from the estimates in [14, p. 162] and [18, p. 255] that

‖u1‖W 2,q(Ω) � C‖a‖Lq(Ω) and u1 = A−1(a) ∈ W 2,q(Ω).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210516000251
Downloaded from https://www.cambridge.org/core. Swarthmore College Library, on 28 Jul 2017 at 18:41:53, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210516000251
https://www.cambridge.org/core


Bifurcation and reaction–diffusion equations 653

Moreover, the operator A has an associated scale of interpolation–extrapolation
spaces and, in particular, for each p > 1, we have that A : W 1,p(Ω) → W−1,p(Ω) is
an isomorphism.

On the other hand, we use the boundary trace imbedding theorem,

i : W 1,p(Ω) ↪→ Lq(∂Ω) for any p > 1 with 1 � q � Np − p

N − p
,

which is continuous, and compact for 1 � q < (Np−p)/(N −p) (see [1, p. 164]; [13,
p. 344]), and the dual of the linear map i,

i∗ : (Lq(∂Ω))∗ → (W 1,p(Ω))∗,

to get the embedding Lq∗
(∂Ω) ↪→ W−1,p∗

(Ω), where (Lq(∂Ω))∗ = Lq∗
(∂Ω) with

1/q∗ + 1/q = 1, and (W 1,p(Ω))∗ = W−1,p∗
(Ω) with 1/p∗ + 1/p = 1. Therefore,

choosing any q′ � 1, we get the embedding Lq′
(∂Ω) ↪→ W−1,p(Ω), which is contin-

uous for p∗ � Nq∗/(N − 1) and compact for p∗ < Nq∗/(N − 1).
It follows that, for b ∈ Lq′

(∂Ω) with q′ � 1, the unique solution, u2, of

−∆u2 + u2 = 0 in Ω,

∂u2

∂ν
= b on ∂Ω.

⎫⎬
⎭ (2.4)

is in W 1,p(Ω) and ‖u2‖W 1,p(Ω) � C‖b‖Lq′ (∂Ω).
Using embedding theorems, we get that, for every (a, b) ∈ Lq(Ω)×Lq′

(∂Ω) with
q > 1 and q′ � 1, the linear problem (2.2) has a unique solution u ∈ W 1,p(Ω) given
by u = u1 + u2, where

p =

⎧⎪⎪⎨
⎪⎪⎩

min
{

qN

N − q
,

q′N

N − 1

}
for 1 < q < N,

q′N

N − 1
for q � N.

(2.5)

Now, define the resolvent operator S0 by

S0(a, b) := (u, Γu),

where Γu represents the trace of u. Note that, whenever q < 1
2N or q′ < N − 1,

p = min
{

qN

N − q
,

q′N

N − 1

}
< N.

On the other hand, if q > 1
2N and q′ > N − 1, then p > N , and by Sobolev

embeddings theorems we have that W 1,p(Ω) is embedded in Cα(Ω̄) with α <
1 − N/p. Moreover, for each u ∈ Cα(Ω̄) with 0 � α < 1, the trace Γu ∈ Cα(∂Ω)
(and therefore, if needed, each u ∈ Cα(Ω̄)) can be rewritten as (u, Γu) ∈ Cα(Ω̄) ×
Cα(∂Ω).

In what follows, we shall show that any weak solution u ∈ H1(Ω) of the nonlinear
equation (1.1) lies in fact in Cα(Ω̄). To accomplish this, we shall need several
regularity results of the associated linear problem (2.2). The following lemma states
the regularity of the solution of the linear problem.
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654 N. Mavinga and R. Pardo

Lemma 2.2. If N � 2 and a ∈ Lq(Ω), b ∈ Lq′
(∂Ω) with q > 1 and q′ � 1, then the

linear problem (2.2) has a unique solution u ∈ W 1,p(Ω) satisfying

‖u‖W 1,p(Ω) � C(‖a‖Lq(Ω) + ‖b‖Lq′ (∂Ω)), (2.6)

where (2.5) holds.
In particular, we have the following.

(i) If q < 1
2N or q′ < N − 1 (which implies 1 � p < N), then u ∈ Lp′

(Ω),
Γu ∈ Lp′′

(∂Ω) for all (p′, p′′) ∈ [1, Np/(N − p)] × [1, (N − 1)p/(N − p)].
Moreover, the map S0 : Lq(Ω) × Lq′

(∂Ω) → Lp′
(Ω) × Lp′′

(∂Ω) is continuous
for all (p′, p′′) ∈ [1, Np/(N − p)] × [1, (N − 1)p/(N − p)], and compact for all
(p′, p′′) ∈ [1, Np/(N − p)) × [1, (N − 1)p/(N − p)).

(ii) If q = 1
2N and q′ � N − 1 (or q � 1

2N and q′ = N − 1), which in both
cases imply p = N , then u ∈ Lp′

(Ω) and Γu ∈ Lp′
(∂Ω) for any p′ � 1.

Moreover, the map S0 : Lq(Ω) × Lq′
(∂Ω) → Lp′

(Ω) × Lp′
(∂Ω) is continuous

and compact for 1 � p′ < ∞.

(iii) If q > 1
2N and q′ > N − 1 (which implies p > N), then u ∈ Cα(Ω̄) with

‖u‖Cα(Ω̄) � C(‖a‖Lq(Ω) + ‖b‖Lq′ (∂Ω)),

where 0 < α � 1−(N/p). Moreover, the map S0 : Lq(Ω)×Lq′
(∂Ω) → Cα(Ω̄)×

Cα(∂Ω), with 0 < α < 1 − (N/p), is continuous and compact.

Proof. The existence, uniqueness and the estimate (2.6) are proved in a similar
way as in [2, 5, 14, 19]. To prove (i), we use the fact that if 1 � p < N , then
W 1,p(Ω) is compactly embedded in Lp′

(Ω) with 1 � p′ < Np/(N − p). Moreover,
if u ∈ W 1,p(Ω), then Γu ∈ W 1−1/p,p(∂Ω) (see [8, p. 315]), which is also compactly
embedded in Lp′′

(∂Ω) with 1 � p′′ < (N − 1)p/(N − p). Similarly, one can use the
Sobolev compact embedding theorem to prove (ii) and (iii).

The next corollary is a technical result that will be used for the regularity of
a weak solution. Keeping the notation of the above lemma, we analyse where the
minimum defining p is attained (see (2.5)).

Corollary 2.3. Assume that N � 2, and let (a, b) satisfy the conditions

|a(x)| � h1(x)w1(x), |b(x)| � h2(x)w2(x),

where h1 ∈ Lr(Ω), w1 ∈ Ls(Ω), h2 ∈ Lr′
(∂Ω), w2 ∈ Ls′

(∂Ω) with r > 1
2N , s > 1,

r′ > N − 1 and s′ � 1.
Let

1
q

=
1
r

+
1
s

and
1
q′ =

1
r′ +

1
s′ ,

where (2.5) holds.
Assume that p < N , then the following hold.

(i) If p = qN/(N − q), then q < 1
2N and S0(a, b) ∈ Ls+δ(Ω) × Lp′′

(∂Ω) with

δ = s

(
2
N

− 1
r

)(
1
q

− 2
N

)−1

> 0 and p′′ =
(N − 1)p
N − p

.
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Bifurcation and reaction–diffusion equations 655

(ii) If p = q′N/(N − 1), then q′ < N − 1 and S0(a, b) ∈ Lp′
(Ω)×Ls′+δ′

(∂Ω) with

δ′ = s′
(

1
N − 1

− 1
r′

)(
1
q′ − 1

N − 1

)−1

> 0 and p′ =
Np

N − p
.

(iii) Furthermore, in any case ‖S0(a, b)‖ � C(‖w1‖Ls(Ω) + ‖w2‖Ls′ (∂Ω)).

Proof.
(i) Suppose that p = qN/(N − q). Since, by assumption, p < N , one can see clearly
that q < 1

2N . From lemma 2.2, u ∈ Lp′
(Ω) for p′ = Np/(N − p). Now, we need to

prove that there exists δ > 0 such that p′ � s + δ. Indeed, by the definitions of p′,
p, q and taking into account that r > 1

2N , we have that

1
p′ =

1
p

− 1
N

=
1
q

− 2
N

=
1
r

+
1
s

− 2
N

<
1
s
.

Choosing δ = p′ − s > 0, a direct calculation shows that

δ = s

(
2
N

− 1
r

)(
1
q

− 2
N

)−1

.

(ii) Suppose that p = q′N/(N −1). Since p < N , one can see clearly that q′ < N −1.
From lemma 2.2, Γu ∈ Lp′′

(∂Ω) for p′′ = (N − 1)p/(N − p). We need to prove that
there exists δ′ > 0 such that p′′ � s′ + δ′. By the definitions of p′′, p, q′ and taking
into account that r′ > N − 1, we have that

1
p′′ =

N

(N − 1)p
− 1

N − 1
=

1
q′ − 1

N − 1
=

1
r′ +

1
s′ − 1

N − 1
<

1
s′ .

Choosing δ′ = p′′ − s′ > 0, a direct calculation shows that

δ′ = s′
(

1
N − 1

− 1
r′

)(
1
q′ − 1

N − 1

)−1

.

(iii) This is a consequence of lemma 2.2 (see (2.6)) and the Hölder inequality.

Now, we analyse the regularity result and prove that any weak solution u ∈
H1(Ω) is in fact in Cα(Ω̄) for some for 0 < α < 1. The following result is one of the
main differences from the problem with only one nonlinearity, either at the interior
or at the boundary. It is a non-standard bootstrap argument. As in corollary 2.3
(see (2.6) and (2.5)), the regularity of a solution depends on the minimum of both
the interior and the boundary regularities.

Theorem 2.4. Assume that conditions (C1)–(C3) hold. For any M > 0, if u ∈
H1(Ω) is a solution of the nonlinear problem (1.1) for some |λ| � M , then

‖u‖Cα(Ω̄) � C(1 + ‖u‖Ls(Ω) + ‖Γu‖Ls′ (∂Ω)) (2.7)

for some positive α < 1, where C = C(M), s = 2N/(N −2), s′ = 2(N −1)/(N −2).

Proof. The proof is based on a four-step regularizing procedure.
In step 1 we start the procedure, letting p, q, q′ initially be as in lemma 2.2;

these will be made more precise later, in terms of the regularity of the nonlinear
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656 N. Mavinga and R. Pardo

terms. Next we distinguish different cases of lemma 2.2. In step 2 we consider the
q > 1

2N and q′ > N − 1 case by using lemma 2.2(iii). In step 3, when q = 1
2N

and q′ � N − 1 (or q � 1
2N and q′ = N − 1), we use lemma 2.2(ii). In step 4

we consider the case when q < 1
2N and q′ < N − 1, invoking lemma 2.2(i). In

turn, this step is divided into several parts. In part (a) we initialize the bootstrap
argument. Part (b) is divided into two further sub-parts. We first distinguish where
the minimum defining p is attained (see (2.5)). We then consider the case where
the minimum defining p lies on the regularity of the ‘interior’ term, in other words
p = qN/(N − q) � q′N/(N − 1). We then consider the minimum defining p, which
lies on the regularity of the ‘boundary’ term, which means p = q′N/(N − 1) �
qN/(N − q). We prove that, in any case, this minimum can be ‘raised’ at most in
the combination of those two sub-parts. In part (c) we iterate this procedure for
q = qi < 1

2N or q′ = q′
j < N − 1, i, j � 0. This part in turn is also divided into two

sub-parts: we consider first the case where qi < 1
2N for i � 0, and then the case

where q′
j < N − 1 for j � 0. We conclude that, in a finite number of iterations,

which may be different for the nonlinearity at the interior and the nonlinearity at
the boundary, the corresponding qi0 � 1

2N , and also q′
j0

� N − 1. This situation
corresponds to the case treated in step 3, which ends the proof.

Now, let us carry out the procedure.

Step 1. Using conditions (C1)–(C3) and the fact that |λ| � M , we have that
|λm(x)u+f(λ, x, u)| � C1(1+h1(x))(1+ |u(x)|) and |λρ(x)u+g(λ, x, u)| � C2(1+
h2(x))(1 + |u(x)|), where C1 and C2 are constants independent of u. Therefore,

−∆u + u = a(x) in Ω,

∂u

∂ν
= b(x) on ∂Ω,

with |a(x)| � C1(1 + h1(x))(1 + |u(x)|) and |b(x)| � C2(1 + h2(x))(1 + |u(x)|).
By conditions (C2), 1 + h1(x) ∈ Lr(Ω) and 1 + h2(x) ∈ Lr′

(∂Ω) with r > 1
2N

and r′ > N − 1. Since u ∈ H1(Ω), we have u ∈ Ls(Ω) and Γu ∈ Ls′
(∂Ω) with

s = 2N/(N − 2) and s′ = 2(N − 1)/(N − 2). From Hölder’s inequality, (a, b) ∈
Lq(Ω) × Lq′

(∂Ω) with

1
q

=
1
r

+
1
s

and
1
q′ =

1
r′ +

1
s′ .

Step 2. From lemma 2.2(iii), we have that if q > 1
2N and q′ > N − 1, then

u ∈ Cα(Ω̄) with

‖u‖Cα(Ω̄) � C(‖a‖Lq(Ω) + ‖b‖Lq′ (∂Ω))

� C(1 + ‖u‖Ls(Ω) + ‖Γu‖Ls′ (∂Ω)),

which completes this step of the proof.

Step 3. If q = 1
2N and q′ � N −1 (or q � 1

2N and q′ = N −1), from lemma 2.2(ii)
we obtain that (u, Γu) = S0(a, b) ∈ Lp′

(Ω) × Lp′
(∂Ω) for any p′ ∈ [1,∞). Conse-

quently, (a, b) ∈ Lr−ε(Ω) × Lr′−ε(∂Ω) with r − ε > 1
2N and r′ − ε > N − 1, and,

finally, from lemma 2.2(iii) we deduce that u ∈ Cα(Ω̄), which ends this step of the
proof.
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Step 4. Assume that q < 1
2N or q′ < N − 1. Then, from lemma 2.2(i), we deduce

that u ∈ W 1,p(Ω) and

(u, Γu) = S0(a, b) ∈ Lp′
(Ω) × Lp′′

(∂Ω),

where p′ = Np/(N − p) and p′′ = (N − 1)p/(N − p) with p = min{qN/(N −
q), q′N/(N − 1)} < N .

(a) Let us define s0 = s, q0 = q, s′
0 = s′, q′

0 = q′, p00 = p, p′
00 = p′ and p′′

00 = p′′.
With this notation,

p00 = min
{

q0N

N − q0
,

q′
0N

N − 1

}
< N.

Let us define, in a general setting, u ∈ W 1,pij (Ω) and

(u, Γu) = S0(a, b) ∈ Lp′
ij (Ω) × Lp′′

ij (∂Ω),

where

pij = min
{

qiN

N − qi
,

q′
jN

N − 1

}
for 1 < qi < N, pij =

q′
jN

N − 1
for qi � N,

and if pij < N ,

p′
i,j =

Npi,j

N − pi,j
and p′′

i,j =
(N − 1)pi,j

N − pi,j
for i, j = 0, 1, . . . .

(b) Assume qi < 1
2N or q′

j < N − 1 (which implies 1 � pij < N) throughout
part (b). We shall prove, in at most two iterations, that u ∈ W 1,pi+1,j+1(Ω) with
pi+1,j+1 > pi,j .

(1) Assume that pij = qiN/(N − qi). Then, from corollary 2.3(i) it follows that
u ∈ Lsi+1(Ω) with si+1 = si + δi, and

δi = si

(
2
N

− 1
r

)(
1
qi

− 2
N

)−1

> 0.

Therefore, (a, b) ∈ Lqi+1(Ω) × Lq′
j (∂Ω) with

1
qi+1

=
1
r

+
1

si+1

and qi+1 > qi. Moreover, from lemma 2.2, u ∈ W 1,pi+1,j (Ω).

If qi+1 � 1
2N and q′

j < N − 1, then pi+1,j = q′
jN/(N − 1) < N and we shall

skip to part (2).

On the other hand, if qi+1 < 1
2N , then pi+1,j < N and, moreover, (u, Γu) =

S0(a, b) ∈ Lp′
i+1,j (Ω) × Lp′′

i+1,j (∂Ω).

To conclude this sub-step, we can assert that u ∈ W 1,pi+1,j (Ω), with pi+1,j �
pij . Moreover,

if
qiN

N − qi
<

q′
jN

N − 1
, then pi+1,j > pij , (2.8)
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658 N. Mavinga and R. Pardo

and

if
qiN

N − qi
=

q′
jN

N − 1
,

then pij = pi+1,j =
q′
jN

N − 1
<

qi+1N

N − qi+1
and pi+1,j < N. (2.9)

The situation in (2.9) is treated in (2), where we shall prove that pi+1,j+1 >
pi+1,j .

(2) Assume that pij = q′
jN/N − 1. Then, from corollary 2.3(ii) it follows that

Γu ∈ Ls′
j+1(∂Ω) with s′

j+1 = s′
j + δ′

j and

δ′
j = s′

j

(
1

N − 1
− 1

r′

)(
1
q′
j

− 1
N − 1

)−1

> 0.

Therefore, (a, b) ∈ Lqi(Ω) × Lq′
j+1(∂Ω) with

1
q′
j+1

=
1
r′ +

1
s′

j+1
and q′

j+1 > q′
j .

Moreover, from lemma 2.2, u ∈ W 1,pi,j+1(Ω).

If q′
j+1 < N − 1, then pi,j+1 < N , and, moreover, S0(a, b) ∈ Lp′

i,j+1(Ω) ×
Lp′′

i,j+1(∂Ω). Consequently, u ∈ W 1,pi,j+1(Ω), with pi,j+1 � pij . Moreover,

if
q′
jN

N − 1
<

qiN

N − qi
, then pi,j+1 > pij , (2.10)

and

if
q′
jN

N − 1
=

qiN

N − qi
,

then pij = pi,j+1 =
qiN

N − qi
<

q′
j+1N

N − 1
and pi,j+1 < N. (2.11)

If (2.11) holds, we return to sub-step (1) for pi,j+1 and observe that pi+1,j+1 >
pi,j+1 (see (2.8)).

Summarizing, in (1) and (2) of part (b) we check where the minimum defining
p = pij = min{qiN/(N − qi), q′

jN/(N − 1)} is attained, and then we prove that, in
any case, this minimum can be raised at most in the combination of both (1) and
(2), proving that u ∈ W 1,pi+1,j+1(Ω) with pi+1,j+1 > pi,j .

(c) Iterating this procedure, we shall prove that, in a finite number of steps, we get

(a, b) ∈ Lqi0 (Ω) × Lq′
j0 (∂Ω) with qi0 � 1

2N and q′
j0 � N − 1. (2.12)

(1) To ascertain (2.12) when qi < 1
2N , let us set

1
si

=
1
qi

− 1
r
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and define

δi = si

(
2
N

− 1
r

)(
1
qi

− 2
N

)−1

> 0, si+1 = si + δi,
1

qi+1
=

1
r

+
1

si+1
.

Observe that si+1 > si and qi+1 > qi.

Consider the sequence {qi} with qi < 1
2N . If {qi} is a infinite set (observe

that {qi}i is an increasing sequence and 1 < qi < 1
2N for all i ∈ N), then

there exists limi→∞ qi =: q∞, and 1 < q∞ � 1
2N .

Moreover, {si}i is an increasing sequence, and, by definition,

1
si

=
1
qi

− 1
r

> 0.

Therefore, there exists

lim
i→∞

1
si

=
1

q∞
− 1

r
� 2

N
− 1

r
> 0.

Consequently, there exists limi→∞ si =: s∞, and

1 <
r

r − 1
� s∞ �

(
2
N

− 1
r

)−1

< ∞. (2.13)

Also, by definition, δi = si+1 − si. Then, there exists limi→∞ δi = 0. Let us
set δ∞ = limi→∞ δi = 0.

If q∞ < 1
2N , then, by definition,

δ∞ = s∞

(
2
N

− 1
r

)(
1

q∞
− 2

N

)−1

> 0,

which contradicts δ∞ = 0. Then, necessarily, q∞ = 1
2N .

Now, using the definition of δi we can write

si = δi

(
1
qi

− 2
N

)(
2
N

− 1
r

)−1

→ 0 as i → ∞,

which again contradicts (2.13). Consequently, {qi} is a finite set (for example,
{q0, q1, . . . , qi0−1}), and qi0 � 1

2N , completing this part of the proof.

(2) On the other hand, assume q′
j < N − 1. Let us set

1
s′

j

=
1
q′
j

− 1
r′

and define

δ′
j = s′

j

(
1

N − 1
− 1

r′

)(
1
q′
j

− 1
N − 1

)−1

> 0, s′
j+1 = s′

j + δ′
j ,

1
q′
j+1

=
1
r′ +

1
s′

j+1
.
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Observe that s′
j+1 > s′

j and q′
j+1 > q′

j . Let us consider the sequence {q′
j},

when q′
j < N − 1. If {q′

j} is an infinite sequence, we observe that {q′
j}j is

increasing, and q′
j < N − 1 for all j ∈ N. Then there exists limj→∞ q′

j =: q′
∞,

and 1 < q′
∞ � N − 1.

Moreover, {s′
j}j is an increasing sequence, and, by definition,

1
s′

j

=
1
q′
j

− 1
r′ .

Therefore, there exists

lim
j→∞

1
s′

j

=
1

q′
∞

− 1
r′ � 2

N
− 1

r
> 0.

Consequently, there exists limj→∞ s′
j =: s′

∞, and

1 <
r′

r′ − 1
� s′

∞ � 1
1/(N − 1) − 1/r′ < ∞. (2.14)

Also by definition, δ′
j = s′

j+1 − s′
j . Thus, there exists limj→∞ δ′

j = 0. Let us
set δ′

∞ = limj→∞ δ′
j = 0.

We proceed as before. If q′
∞ < N − 1, then, by definition,

δ′
∞ = s∞

(
1

N − 1
− 1

r′

)(
1

q′
∞

− 1
N − 1

)−1

> 0,

which is a contradiction, so q′
∞ = N − 1. Now, from the definition of δ′

j we
can write

s′
j = δ′

j

(
1
q′
j

− 1
N − 1

)(
1

N − 1
− 1

r

)−1

→ 0 as j → ∞,

which contradicts (2.14). Consequently, {q′
j} is a finite set, for example,

{q′
0, q

′
1, . . . , q

′
j0−1}, and q′

j0
� N − 1, ending this part of the proof.

Combining sub-steps (1) and (2) of (c), we achieve (2.12), which, combined with
step 3, completes the proof.

In the next lemmas, we derive some spectral properties of the resolvent operator
S0 in L2(Ω)×L2(∂Ω). Throughout this paper, we shall consider the inner product
on L2(Ω) × L2(∂Ω) defined by

〈(u, v), (w, z)〉 :=
∫

Ω

uw +
∫

∂Ω

vz. (2.15)

Lemma 2.5. The resolvent operator S0 : L2(Ω) × L2(∂Ω) → L2(Ω) × L2(∂Ω) is a
linear, self-adjoint, positive and compact operator. If we denote its eigenvalues by
{τi}, then τi = 1/µi(1, 1), where µi = µi(m, ρ) are the generalized eigenvalues.

Proof. Let ai ∈ L2(Ω) and bi ∈ L2(∂Ω), and let vi be the corresponding solution
of −∆vi + vi = ai, ∂vi/∂ν = bi with i = 1, 2. The linearity of S0 follows from the
definition of the resolvent operator and the linearity of the trace operator.
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By a weak formulation of the problem, we have that

〈(a1, b1), S0(a2, b2)〉 = 〈(a1, b1), (v2, Γv2)〉

=
∫

Ω

a1v2 +
∫

∂Ω

b1Γv2 =
∫

Ω

∇v1∇v2 +
∫

Ω

v1v2

=
∫

Ω

a2v1 +
∫

∂Ω

b2Γv1 = 〈S0(a1, b1), (a2, b2)〉,

which implies that S0 is self-adjoint.
Moreover, by the maximum principle, S0 is a positive operator in the sense that

if a, b � 0, then u � 0, where (u, Γu) = S0(a, b) (see [3]). The compactness of S0
follows from lemma 2.2.

Lemma 2.6. For any λ ∈ R with λ �∈ {µi}i, define the operator Sλ : L2(Ω) ×
L2(∂Ω) → L2(Ω) × L2(∂Ω) by Sλ(a, b) := (u, Γu), where u ∈ H1(Ω) is the unique
solution of

−∆u + u = λm(x)u + a(x) in Ω,

∂u

∂ν
= λρ(x)u + b(x) on ∂Ω.

⎫⎬
⎭ (2.16)

Then Sλ is self-adjoint, continuous and compact. Moreover, if q > 1
2N and q′ >

N − 1, then Sλ : Lq(Ω) × Lq′
(∂Ω) → C0(Ω̄) × C0(∂Ω) is continuous and compact

and, for any compact set K ⊂ R \ {µi}, the norm of Sλ : Lq(Ω) × Lq′
(∂Ω) →

C0(Ω̄) × C0(∂Ω) is uniformly bounded for λ ∈ K. Also, ‖Sλ‖ → ∞ as λ → µi for
some i.

Proof. Observe that Sλ(a, b) = (u, Γu) = S0(λm(x)u + a, λρ(x)u + b).
Hence,

Sλ(a, b) = (u, Γu)
= λS0(m(x)u, ρu) + S0(a, b)
= λS0 ◦ Θ(u, Γu) + S0(a, b), (2.17)

where the map Θ : L2(Ω) × L2(∂Ω) → L2(Ω) × L2(∂Ω) is defined as Θ(u, Γu) =
(m(x)u, ρ(x)u).

Hence,
(u, Γu) − λS0 ◦ Θ(u, Γu) = S0(a, b)

or, equivalently,
(I − λS0 ◦ Θ)(u, Γu) = S0(a, b).

Then,
(I − λS0 ◦ Θ)Sλ(a, b) = S0(a, b).

Since λ �∈ {µi}i, it follows from the Fredholm alternative theorem that I − λS0 ◦ Θ
is invertible. Thus,

Sλ = (I − λS0 ◦ Θ)−1 ◦ S0.

Using the properties of S0 in lemma 2.5, we can now prove this lemma.
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Note that u ∈ H1(Ω) is a solution of (1.1) if and only if (u, Γu) is a fixed point
of

(u, Γu) = λS0 ◦ Θ(u, Γu) + S0(f(λ, ·, u), g(λ, ·, Γu))
= Sλ(f(λ, ·, u), g(λ, ·, Γu)). (2.18)

The following lemma concerns an a priori estimate that is needed later.

Lemma 2.7. Assume that (C1)–(C3) hold. Then the Nemytskii operator

N : C0(Ω̄) × C0(∂Ω) → Lr(Ω) × Lr′
(∂Ω)

given by N (u, Γu) = (f(λ, ·, u), g(λ, ·, Γu))

with r > 1
2N and r′ > N − 1 is well defined and continuous. Moreover, for each

M > 0 and ε > 0, there exists a constant C = C(ε, M) such that

‖f(λ, ·, u)‖Lr(Ω) + ‖g(λ, ·, Γu)‖Lr′ (∂Ω) � ε‖u‖C0(Ω̄) + C (2.19)

for all u ∈ C0(Ω̄), |λ| � M .
In particular, the map C0(Ω̄) × C0(∂Ω) � (u, Γu) → Sλ(f(λ, ·, u), g(λ, ·, Γu)) ∈

C0(Ω̄) × C0(∂Ω) is continuous and compact for all λ ∈ R \ {µi}.

Proof. It follows from the bounds of f and g in condition (C1) that the map N is
well defined. The continuity follows from the continuity of f and g with respect to
the last variable, the bounds of f , g given by (C2) and the dominated convergence
theorem. The inequality (2.19) follows from (C3), which implies that for each ε > 0
we have the inequality |Ui(s)| � εs + C for i = 1, 2 and some constant C = C(ε),
and the fact that the function Λ(λ) is continuous.

Now, we are ready to prove the existence of solutions for the non-resonance
problem.

Proof of theorem 2.1. Consider the compact set K ⊂ R\{µi}. By lemma 2.6, there
exists a constant C̃ = C̃(K) such that the norm of Sλ : Lr(Ω)×Lr′

(∂Ω) → C0(Ω̄)×
C0(∂Ω) is bounded by C̃ for all λ ∈ K. Now, we shall show that the conditions of
the Schaefer fixed-point theorem are satisfied. Let δ ∈ [0, 1] and (u, Γu) ∈ C0(Ω̄)×
C0(∂Ω) be such that

(u, Γu) = δSλ(f(λ, ·, u), g(λ, ·, Γu)) (2.20)

for some λ ∈ K. By lemma 2.7, we have that the map

C0(Ω̄) × C0(∂Ω) � (u, Γu) → Sλ(f(λ, ·, u), g(λ, ·, Γu)) ∈ C0(Ω̄) × C0(∂Ω)

is continuous and compact for λ ∈ K. We now need to show that (u, Γu) is bounded
in C0(Ω̄) × C0(∂Ω). It follows from (2.20) and lemma 2.6 that

‖(u, Γu)‖C0(Ω̄)×C0(∂Ω) � C̃‖(f(λ, ·, u), g(λ, ·, Γu))‖Lr(Ω)×Lr′ (∂Ω).

Using (2.19), we get that

‖(u, Γu)‖C0(Ω̄)×C0(∂Ω) � C̃[ε‖u‖C0(Ω̄) + C(ε, K)].
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Choosing ε small enough such that 1−C̃ε � 1
2 , we get that ‖(u, Γu)‖C0(Ω̄)×C0(∂Ω) �

2C̃C. Hence, (u, Γu) is bounded in C0(Ω) × C0(∂Ω) independently of δ. Then,
by the Schaefer fixed point theorem (see [11]), the operator C0(Ω̄) × C0(∂Ω) �
(u, Γu) → Sλ(f(λ, ·, u), g(λ, ·, Γu)) ∈ C0(Ω̄) × C0(∂Ω) has a fixed point (u, Γu) ∈
C0(Ω̄) × C0(∂Ω). Due to lemmas 2.7 and 2.2(iii), we have that u ∈ Cα(Ω̄). Equiv-
alently, (1.1) has at least one solution u ∈ Cα(Ω̄). The proof is complete.

3. Unbounded branches of solutions

In this section, we use the global bifurcation results of Rabinowitz [20,21] to show
the existence of unbounded branches of solutions bifurcating from generalized eigen-
values of odd multiplicity. From theorem 2.1 and lemma 2.6 we know that, when the
value of λ is bounded away from the generalized eigenvalues, solutions of (1.1) are
bounded uniformly in λ and, furthermore, the norm of the resolvent operator of the
linear problem associated with (1.1) blows up to infinity when λ approaches a gen-
eralized eigenvalue. So, we can expect the existence of branches of solutions that
diverge to infinity in a certain norm when the parameter tends to a generalized
eigenvalue. We shall first analyse some necessary conditions for having solutions
blowing up in the C0(Ω̄) norm.

Proposition 3.1. Let {λn} be a convergent sequence of real numbers for which
there exist the corresponding solutions un of (1.1) with ‖un‖C0(Ω̄) → ∞ as n → ∞.
Then there exists a generalized eigenvalue µi such that λn → µi and, for any
subsequence of {un}, there exists a subsequence {unk

} such that
unk

‖unk
‖C0(Ω̄)

→ φi in Cβ(Ω̄)

for some β > 0, where φi is an eigenfunction associated with the eigenvalue µi.

Proof. Let vn := un/‖un‖C0(Ω̄). By the a priori estimate (2.7) and the fact that
‖un‖C0(Ω̄) → ∞ we have that ‖vn‖Cα(Ω̄) is bounded by a constant C that is inde-
pendent of n. It follows from the compact embedding of Cα(Ω̄) into Cβ(Ω̄) for
0 < β < α that there exists a subsequence {vnk

} of the sequence {vn} such that
vnk

→ φ in Cβ(Ω̄). Since ‖vnk
‖C0(Ω̄) = 1, we have that ‖φ‖C0(Ω̄) = 1. Hence,

φ �≡ 0. Observe that vnk
is a weak solution of the equation

−∆vnk
+ vnk

= λnk
m(x)vnk

+
f(λ, x, unk

)
‖unk

‖C0(Ω̄)
in Ω,

∂vnk

∂ν
= λnk

ρ(x)vnk
+

g(λ, x, unk
)

‖unk
‖C0(Ω̄)

on ∂Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

From (2.19) it follows that

f(λ, x, unk
)

‖unk
‖C0(Ω̄)

→ 0 in Lr(Ω)

and
g(λ, x, unk

)
‖unk

‖C0(Ω̄)
→ 0 in Lr′

(∂Ω)

as nk → ∞.
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664 N. Mavinga and R. Pardo

Using the weak formulation of (3.1) and passing to the limit, and also taking into
account the fact that λn → µ with µ ∈ R and vnk

→ φ, we obtain that φ is a weak
solution of the equation

−∆u + u = µm(x)u in Ω,

∂u

∂ν
= µρ(x)u on ∂Ω.

⎫⎬
⎭ (3.2)

Since φ �≡ 0, it follows that µ is a generalized eigenvalue and φ is its corresponding
eigenfunction. The proof is complete.

Corollary 3.2. Assume that the hypotheses of proposition 3.1 are satisfied.
If un � 0 for all n, then λn → µ1 and the sequence un/‖un‖C0(Ω̄) → φ1 in Cβ(Ω̄),

where φ1 > 0 is the normalized eigenfunction associated with the first generalized
eigenvalue µ1.

Proof. From proposition 3.1, we get that any possible convergent subsequence
un/‖un‖C0(Ω̄) → φi for some i ∈ N with ‖φi‖ = 1. Since un � 0, we have that
φi � 0. From [17], we know that µ1 is the only generalized eigenvalue that is simple,
so its corresponding eigenfunction does not change sign. Therefore, φi = φ1.

Now, we shall show that any generalized eigenvalue µ of odd multiplicity is a
bifurcation point from infinity, that is, there exists a sequence (λn, un) ∈ R×H1(Ω)
of solutions of (1.1) such that λn → µ and that ‖un‖C0(Ω̄) → ∞.

Theorem 3.3. Assume that the nonlinearities f and g satisfy the conditions (C1)–
(C3). If µ is a generalized eigenvalue of odd multiplicity, then the set of solutions of
(1.1), which we denote by T , possesses an unbounded component, D, which meets
(µ,∞) ∈ R × C(Ω). Moreover, if Λ ⊂ R is an interval such that Λ ∩ {µi}∞

i=1 = {µ}
and M = Λ × {u ∈ C(Ω̄) : u is bounded away from 0}, then either

(i) D\M is bounded in R×C(Ω̄), in which case D\M meets the set {(λ, 0) : λ ∈
R} at (λ0, 0) such that f(λ0, ·, 0) = g(λ0, ·, 0) = 0, or

(ii) D \ M is unbounded.

If (ii) holds and D \ M has a bounded projection on R, then D \ M meets (µ̂,∞),
where µ �= µ̂ ∈ {µi}i; that is, D \ M meets another bifurcation point from infinity.

Proof. From (2.17) and (2.18), we see that (1.1) is equivalent to the fixed-point
problem

(u, Γu) = λS0 ◦ Θ(u, Γu) + S0(f(λ, ·, u), g(λ, ·, Γu)), (3.3)

where S0 is the solution operator of (2.2). In order to apply [21, theorem 1.6], we
need to verify the following:

(a) S0(f(λ, ·, u), g(λ, ·, Γu)) = o(‖u‖C0(Ω̄)) at u → ∞ uniformly on bounded λ
intervals;

(b) the map (λ, u) → ‖u‖2S0(f(λ, ·, u/‖u‖2), g(λ, ·, Γu/‖u‖2)), where ‖ · ‖ :=
‖ · ‖C0(Ω̄), is compact.
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To verify (a), we first observe that if u ∈ C(Ω̄), then, by lemma 2.7, we have that
(f(λ, ·, u), g(λ, ·, Γu)) ∈ Lr(Ω) × Lr′

(∂Ω) with r > 1
2N and r′ > N − 1. Therefore,

it follows from lemmas 2.2 and 2.7 that

‖S0(f(λ, ·, u), g(λ, ·, Γu))‖
‖u‖ �

C‖(f(λ, ·, u), g(λ, ·, Γu))‖Lr(Ω)×Lr′ (∂Ω)

‖u‖

� C

(
ε +

Cε

‖u‖

)
. (3.4)

Therefore, (3.4) yields S0(f(λ, ·, u), g(λ, ·, Γu)) = o(‖u‖C(Ω̄)) at u → ∞ uniformly
on bounded λ intervals.

To verify (b), it suffices to show that T (Λ, Bδ) is relatively compact in C(Ω̄)
for some δ > 0, where Bδ = {u ∈ C(Ω̄) : ‖u‖ � δ}. Pick δ > 0 very small and let
u ∈ Bδ. Considering w = u/‖u‖2, it follows that ‖w‖ � 1/δ. Setting ε = 1 in (2.19),
we have that

‖(f(λ, ·, u), g(λ, ·, Γu))‖Lr(Ω)×Lr′ (∂Ω)

‖u‖ � C,

where C is a constant depending on λ and δ. Hence,

‖u‖2‖(f(λ, ·, u), g(λ, ·, Γu))‖Lr(Ω)×Lr′ (∂Ω) � C‖u‖ � Cδ.

Using the compactness on S0 in lemma 2.2, we get that

T (λ, u) = ‖u‖2S0(f(λ, ·, u/‖u‖2), g(λ, ·, Γu/‖u‖2))

is compact.

In the next corollary, we obtain a stronger result in the case of the simple eigen-
value µ1. The result below implies the existence of branches of positive and negative
solutions bifurcating from infinity.

Corollary 3.4. Let µ1 be the simple first generalized eigenvalue. Then the un-
bounded component D can be decomposed into two subcontinua D+ and D− and
there exists a neighbourhood O ⊂ M of (µ1,∞) such that (λ, u) ∈ D+(D−) ∩ O
and (λ, u) �= (µ1,∞) implies (λ, u) = (λ, αφ1 + v), where α > 0(α < 0) and
|λ−µ1| = o(1), ‖v‖ = o(|α|) at |α| = ∞, and φ1 is the eigenfunction corresponding
to the first eigenvalue µ1.

Proof. One can use similar arguments to those in [21, corollary 1.8].

4. Subcritical and supercritical bifurcations from infinity

In this section, we shall focus on the type of bifurcation that occurs at the bifurca-
tion point by providing conditions in which we have a sub- or supercritical bifurca-
tion. Consider the problem

−∆u + u = λm(x)u + f(λ, x, u) in Ω,

∂u

∂ν
= λρ(x)u + g(λ, x, u) on ∂Ω,

⎫⎪⎬
⎪⎭ (4.1)
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where µ is a generalized eigenvalue, and (m, ρ) ∈ C0(Ω) × C0,1(∂Ω). Observe that,
since (m, ρ) ∈ C0(Ω)×C0,1(∂Ω), we have that φ1 > 0 in Ω̄ (see, for example, [16]).

We begin by defining the sub- and supercritical bifurcations.

Definition 4.1. A bifurcation from infinity at µi is said to be subcritical (respec-
tively, supercritical) if there exists a neighbourhood V of (µi,∞) such that every
(non-trivial) solution (λ, u) ∈ V of (4.1) satisfies λ < µi (respectively, λ > µi).

Now, let us first analyse the behaviour of solutions when we know that the solu-
tion blows up in the C0(Ω̄) norm. Consider a sequence λn for which the correspond-
ing solutions un of (1.1) are such that λn → µ1 and ‖un‖C0(Ω̄) → ∞ as n → ∞.
Since, for each n ∈ N, un is a weak solution of (1.1), we have that

(µ1 − λn)
[ ∫

Ω

m(x)unφ1 +
∫

∂Ω

ρ(x)unφ1

]

=
∫

Ω

f(λn, x, un)φ1 +
∫

∂Ω

g(λn, x, un)φ1. (4.2)

Note that, near the bifurcation point of positive solutions, the sum of the two inte-
grals on the left-hand side of (4.2) becomes positive. Indeed, let vn = un/‖un‖C0(Ω̄).
It follows from proposition 3.1 that vn → φ1.

Now,∫
Ω

m(x)unφ1 +
∫

∂Ω

ρ(x)unφ1 = ‖un‖C0(Ω̄)

[ ∫
Ω

m(x)vnφ1 +
∫

∂Ω

ρ(x)vnφ1

]
.

Taking the limit as n → ∞, we get that∫
Ω

m(x)vnφ1 +
∫

∂Ω

ρ(x)vnφ1 →
∫

Ω

m(x)φ2
1 +

∫
∂Ω

ρ(x)φ2
1 > 0. (4.3)

Note that the sum of the last two integrals is positive because of conditions on the
weight functions m and ρ and the fact that the eigenfunction associated with the
first eigenvalue µ1, φ1 > 0.

Therefore, the sign of µ1−λn is dictated by the asymptotic behaviour of the non-
linearities f and g. We have the following additional conditions on the nonlinearities
f and g.

(C4) There exists γ ∈ R such that

F̄+(x) := lim sup
(s,λ)→(+∞,µ)

f(λ, x, s)
sγ

, Ḡ+(x) := lim sup
(s,λ)→(+∞,µ)

g(λ, x, s)
sγ

,

F+(x) := lim inf
(s,λ)→(+∞,µ)

f(λ, x, s)
sγ

, G+(x) := lim sup
(s,λ)→(+∞,µ)

g(λ, x, s)
sγ

,

F̄−(x) := lim sup
(s,λ)→(−∞,µ)

f(λ, x, s)
sγ

, Ḡ−(x) := lim sup
(s,λ)→(−∞,µ)

g(λ, x, s)
sγ

,

F−(x) := lim sup
(s,λ)→(−∞,µ)

f(λ, x, s)
sγ

, G−(x) := lim sup
(s,λ)→(−∞,µ)

g(λ, x, s)
sγ

,

with F−, F̄−, F+, F̄+ ∈ L1(Ω) and G−, Ḡ−, G+, Ḡ+ ∈ L1(∂Ω).
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Remark 4.2.

(i) Note that F̄±, F±, Ḡ± and G± also depend on γ and the generalized eigen-
value µ.

(ii) Since f satisfies condition (C2), if γ � 1, we have that F± = G± = 0.

Theorem 4.3 (subcritical bifurcation from infinity at the first eigenvalue).
Assume that conditions (C1)–(C3) hold and suppose that there exists γ < 1 such
that (C4) holds. If
∫

Ω

F+φ1+γ +
∫

∂Ω

G+φ1+γ > 0
(

respectively,

∫
Ω

F̄−φ1+γ +
∫

∂Ω

Ḡ−φ1+γ < 0
)

,

(4.4)
then the bifurcation from infinity of positive solutions (respectively, negative solu-
tions) at µ1 is subcritical. Moreover, if
∫

Ω

F̄+φ1+γ +
∫

∂Ω

Ḡ+φ1+γ < 0
(

respectively,

∫
Ω

F−φ1+γ +
∫

∂Ω

G−φ1+γ > 0
)

,

(4.5)
then the bifurcation from infinity of positive solutions (respectively, negative solu-
tions) at µ1 is supercritical.

In order to prove this theorem, we need the following auxiliary result.

Lemma 4.4. Suppose that the nonlinearities satisfy conditions (C1)–(C3). Let λn

be a sequence such that λn → µ1 as n → ∞ and let the corresponding solutions un

of (1.1) be such that ‖un‖C(Ω̄) → ∞ as n → ∞. Then

(i) if un > 0, we have
∫

Ω
F+φ1+γ +

∫
∂Ω

G+φ1+γ∫
Ω

m(x)φ2 +
∫

∂Ω
ρ(x)φ2 � lim inf

n→∞

µ1 − λn

‖un‖γ−1
C(Ω̄)

� lim sup
n→∞

µ1 − λn

‖un‖γ−1
C(Ω̄)

�
∫

Ω
F̄+φ1+γ +

∫
∂Ω

Ḡ+φ1+γ∫
Ω

m(x)φ2 +
∫

∂Ω
ρ(x)φ2 , (4.6)

(ii) if un < 0, we have

−(
∫

Ω
F̄+φ1+γ +

∫
∂Ω

Ḡ+φ1+γ)∫
Ω

m(x)φ2 +
∫

∂Ω
ρ(x)φ2 � lim inf

n→∞

µ1 − λn

‖un‖γ−1
C(Ω̄)

� lim sup
n→∞

µ1 − λn

‖un‖γ−1
C(Ω̄)

�
−(

∫
Ω

F+φ1+γ +
∫

∂Ω
G+φ1+γ)∫

Ω
m(x)φ2 +

∫
∂Ω

ρ(x)φ2 . (4.7)
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Proof. We shall just prove (i), as (ii) can be shown in a similar way. From propo-
sition 3.1, there exists a subsequence of un (that we again denote by un) such
that

vn =
un

‖un‖C0(Ω̄)
→ φ1 in Cβ(Ω̄).

It follows by the weak definition of un that

(µ1 −λn)
[ ∫

Ω

m(x)unφ1 +
∫

∂Ω

ρ(x)unφ1

]
=

∫
Ω

f(λn, x, un)φ1 +
∫

∂Ω

g(λn, x, un)φ1.

(4.8)
Note that ∫

Ω

f(λn, x, un)φ1 = ‖un‖γ

∫
Ω

f(λn, x, un)
uγ

n

(
un

‖un‖

)γ

φ1.

Using Fatou’s lemma and the fact that vn → φ1 and φ1 > 0, we have that

lim inf
n→∞

∫
Ω

f(λn, x, un)
uγ

n

(
un

‖un‖

)γ

φ1 �
∫

Ω

lim inf
n→∞

[
f(λn, x, un)

uγ
n

(
un

‖un‖

)γ]
φ1

�
∫

Ω

F+φ1+γ .

Similarly,
∫

∂Ω

g(λn, x, un)φ1 = ‖un‖γ

∫
∂Ω

g(λn, x, un)
uγ

n

(
un

‖un‖

)γ

φ1.

Hence,

lim inf
n→∞

∫
∂Ω

g(λn, x, un)
uγ

n

(
un

‖un‖

)γ

φ1 �
∫

∂Ω

G+φ1+γ .

Dividing (4.8) by ‖un‖γ , taking the limit and thanks to (4.3), we obtain that

lim inf
n→∞

µ1 − λn

‖un‖γ−1 �
∫

Ω
F+φ1+γ +

∫
∂Ω

G+φ1+γ∫
Ω

m(x)φ2
1 +

∫
∂Ω

ρ(x)φ2
1

.

So, the first inequality in (4.6) is proved. The third inequality is proved similarly, and
the second inequality follows from the properties of limits. The proof is complete.

Proof of theorem 4.3. From lemma 4.4 and (4.4) we have that µ1 > λn for every
n. Similarly, lemma 4.4 and (4.5) imply that µ1 < λn for every n. The proof is
complete.

5. Resonance problem

In this section we are concerned with the resonance problem

−∆u + u = µ1m(x)u + f(x, u) in Ω,

∂u

∂ν
= µ1ρ(x)u + g(x, u) on ∂Ω,

⎫⎬
⎭ (5.1)
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where µ1 is the first generalized eigenvalue. Consider the following one-parameter
family of problems:

−∆u + u = λm(x)u + f(x, u) in Ω,

∂u

∂ν
= λρ(x)u + g(x, u) on ∂Ω.

⎫⎬
⎭ (5.2)

As we shall see, the behaviour of the possible bifurcations from infinity at λ = µ1
in (5.2) determines the existence of a solution of (5.1). First, observe that every
possible bifurcation from infinity at µ1 is subcritical (respectively, supercritical) if
and only if there exists ε > 0 and M > 0 such that, for every solution (λ, u) of
(5.2), if λ ∈ (µ1, µ1 + ε), then ‖u‖C0(Ω̄) < M (respectively, if λ ∈ (µ1 − ε, µ1), then
‖u‖C0(Ω̄) < M).

Theorem 5.1 (existence for the resonance problem). Consider the nonlinear prob-
lem (5.2) and suppose that the hypotheses of theorem 4.3 are satisfied. Assume also
that every possible bifurcation from infinity at µ1 in (5.2) is subcritical or every
possible bifurcation from infinity at µ1 in (5.2) is supercritical. Then there exists at
least one solution of (5.1).

Proof. We shall prove that there exist (λn, un) solutions of problem (5.2) with
λn → µ1 such that ‖un‖C0(Ω̄) < M . This follows from the fact that any possible
bifurcation from infinity must be either subcritical or supercritical. From theo-
rem 2.1 we know that, for any small ε > 0, (5.2) has at least one solution for all
λ ∈ (σ − ε, σ + ε) \ {µ1}. Assume that every possible bifurcation from infinity at
µ1 is subcritical. It then follows that there exists a constant M such that, for any
λn > µ1 with λn → µ1, ‖un‖C0(Ω̄) < M . It follows from theorem 2.4 that un is
uniformly bounded in Cα(Ω̄). Since Cα(Ω̄) is compactly embedded in Cβ(Ω̄), there
exists a subsequence of {un} (that we again denote by {un}) such that un → u in
Cβ(Ω̄). Using similar arguments to those in the proof of proposition 3.1, we get
that u is a solution for (5.2) with λ = µ1. This completes the proof.

Based on results in theorem 4.3, we can deduce some consequences of theorem 5.1.

Corollary 5.2. Suppose that one of the following Landesman–Lazer-type condi-
tions is satisfied:∫

Ω

F+φ1+γ +
∫

∂Ω

G+φ1+γ > 0
(

respectively,

∫
Ω

F̄−φ1+γ +
∫

∂Ω

Ḡ−φ1+γ < 0
)

,

∫
Ω

F̄+φ1+γ +
∫

∂Ω

Ḡ+φ1+γ < 0
(

respectively,

∫
Ω

F−φ1+γ +
∫

∂Ω

G−φ1+γ > 0
)

.

Then there exists at least one solution to (5.1).

6. Results of anti-maximum-principle type

In this section, we show the anti-maximum principle for the following linear prob-
lem:

−∆u + u = λm(x)u + f(x) in Ω,

∂u

∂ν
= λρ(x)u + g(x) on ∂Ω.

⎫⎬
⎭ (6.1)
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Clement and Peletier [10] and Arcoya and Gámez [4] proved the anti-maximum
principle for elliptic problems with Dirichlet boundary condition, where the param-
eter λ is only in the differential equation in the interior. Arrieta et al . [5] proved
the anti-maximum principle for the inhomogeneous linear Steklov problem, that is,
the parameter λ is only on the boundary. Now, we shall prove the anti-maximum
principle for problem (6.1), where the parameter λ is in the differential equation
both in the interior and on the boundary.

Theorem 6.1. Let (m, ρ) ∈ C0(Ω)×C0,1(∂Ω) and let m and ρ satisfy the following
condition:

m(x) > 0 a.e. on Ω and ρ(x) > 0 a.e. on ∂Ω. (6.2)

For every (f, g) ∈ Lr(Ω) × Lr′
(∂Ω) with r > N and r > N − 1, there exists

ε = ε(f, g) such that

(i) if ∫
Ω

fφ1 +
∫

∂Ω

gφ1 > 0,

then every solution (λ, u) of (6.1) satisfies

(a) u > 0 in Ω if µ1 − ε < λ < µ1,

(b) u < 0 in Ω if µ1 < λ < µ1 + ε,

(ii) if ∫
Ω

fφ1 +
∫

∂Ω

gφ1 = 0,

then every solution (λ, u) of (6.1) with λ �= µ1 changes sign on ∂Ω and
consequently in Ω.

Proof. (i) The Fredholm alternative theorem implies that the linear problem (6.1)
has no solutions for λ = µ1, and a unique solution if λ is not an eigenvalue of (1.2).
Moreover, from theorem 3.3 λ = µ1 is a bifurcation point from infinity, and from
theorem 4.3 the bifurcation from infinity of positive solutions is subcritical, that is,
there exists ε = ε(f, g) such that, for every solution (λ, u) of (6.1) with λ → µ1,
‖u‖ ≈ ∞ and u > 0, we have µ1 − ε < λ < µ1. Furthermore, the bifurcation from
infinity of negative solutions is supercritical, that is, there exists ε = ε(f, g) such
that, for every solution (λ, u) of (6.1) with λ → µ1, ‖u‖ ≈ ∞ and u < 0, we have
µ1 < λ < µ1 + ε.

(ii) We first observe that (6.2) implies that m and ρ do not vanish simultaneously,
and that either m or ρ is positive on subset of positive measure. To prove (ii), it
suffices to multiply (6.1) by the eigenfunction φ1 and integrate by parts to get

(λ − µ1)
( ∫

Ω

m(x)uφ1 +
∫

∂Ω

ρ(x)uφ1

)
= 0.

Note that since the function m is continuous and the function ρ is Lipschitz we have
that φ1 > 0 in Ω̄ (see, for example, [16]). Now, since φ1 > 0 in Ω̄ and condition
(6.2) holds, we conclude that u changes sign in Ω.
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