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Abstract

We provide a-priori L1 bounds for classical positive solutions of semi-
linear elliptic systems in bounded convex domains when the nonlinearities
are below the power functions v

p and u

q for any (p, q) lying on the critical
Sobolev hyperbola. Our proof combines moving planes method and Rellich-
Pohozaev type identities for systems. Our analysis widens the known ranges
of nonlinearities for which classical positive solutions of semilinear elliptic
systems are a priori bounded.

Using these a priori bounds, and local and global bifurcation techniques,
we prove the existence of positive solutions for a corresponding parametrized
semilinear elliptic system.
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1. Introduction

We consider the following semilinear elliptic system
8

>

>

>

>

>

<

>

>

>

>

>

:

��u =
v

p

⇥

ln(e+ v)
⇤

↵

, in ⌦,

��v =
u

q

⇥

ln(e+ u)
⇤

�

, in ⌦,

u = 0, v = 0 on @⌦,

(1.1)

where ⌦ ⇢ RN , N � 3, is a bounded, convex domain with a smooth boundary
@⌦ (at least of class C

3), and 1 < p, q < 1, ↵, � > 0. The purpose of this
paper is to establish a-priori estimates for positive classical solutions of (1.1)
and subsequently prove an existence result for the parametrized version for
the system. By a positive classical solution of (1.1), we mean (u, v) that
satisfies (1.1) and both components are positive. Let us mention that when
the exponents ↵ = � = 0, we have the system

8

>

<

>

:

��u = v

p

, in ⌦,

��v = u

q

, in ⌦,

u = 0, v = 0 on @⌦,

(1.2)

that is usually referred to as the Lane-Emden system. This problem arises in
modeling spatial phenomena in a variety of biological and chemical problems.
Naturally positive solutions of system (1.2) is of particular interest, and there
have been a significant studies of positive solutions of (1.2) where ⌦ is either
a bounded, smooth subset of RN , a half space, or the entire space RN , see
[2, 3, 5, 9, 11, 15, 17, 30, 31, 33, 37, 38, 40] and references therein.

It is known that the pair of exponents (p, q) plays a crucial role in the
questions of existence and nonexistence of positive solutions of (1.2). For
instance, it has been shown that on a bounded smooth star-shaped domain
⌦ ⇢ RN , the (Sobolev) hyperbola

1

p+ 1
+

1

q + 1
=

N � 2

N

(1.3)

is precisely the dividing curve on the pq-plane between existence and nonex-
istence of positive solutions of (1.2), see [9, 30, 31].

In [9], the authors established a-priori estimates and proved the existence
of positive solutions of (1.2) when (p, q) is subcritical (i.e. (p, q) lies below
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the critical Sobolev hyperbola), that is,
1

p+ 1
+

1

q + 1
>

N � 2

N

. Moreover,

in [30], the author proved that if (p, q) is critical (i.e. (p, q) lies on critical
Sobolev hyperbola) or supercritical (i.e. (p, q) lies above the critical Sobolev

hyperbola), namely if
1

p+ 1
+

1

q + 1
 N � 2

N

then (1.2) has no positive

solution.

However, when ⌦ = RN , it has been conjectured that the hyperbola
(1.3) is also the dividing curve between existence and nonexistence for (1.2).
The conjecture has been completely proved for radial positive solutions (see
e.g. [30, 36]), that is, if (p, q) is subcritical then there are no radial positive
classical solution to (1.2), see [30] (for p > 1, q > 1) and it has been extended
in [36] for the case p > 0 and q > 0. Furthermore, if (p, q) is critical or
supercritical, system (1.2) does admit (bounded) positive radial solutions
(see e.g. [30, 36]). But the question for the more general case, i.e. without
assuming radial symmetry has not been completely answered yet. Partial
answers are known for nonexistence of positive entire solutions of (1.2) when
the pair of exponents are subcritical, for example, it has been proved the
nonexistence in certain space dimensions [30, 38] or in certain subregions,
below the critical hyperbola in the (p, q)�plane, (see e.g. [5, 38]). For ⌦ =
RN

+ (i.e. the half space), we refer to [2] for the study of nonexistence of
positive solutions. These nonexistence results in RN or RN

+ allow to prove a-
priori bounds for positive solutions of semilinear elliptic equations in bounded
domains via the blow-up method (see e.g. [21, 2, 40]).

In the present paper, we use the method of moving planes and the Rellich-
Pohazev identity for systems to establish the a-priori L1 bounds when the
pair of exponents (p, q) lies on the critical Sobolev hyperbola (1.3) and ↵, � >

2

N � 2
, and then subsequently prove an existence result for the parametrized

version for the system, see system (1.6) below. We shall point out that
our nonlinearities are not pure powers, they are below the powers functions
v

p and u

q. Problems of type (1.1) has been considered by several authors,
we refer to [16, 10]. In [16, Theorem 1.3] the authors study the existence of
solutions of (1.1) when the pair of exponents (p, q) lies on the critical Sobolev

hyperbola (1.3) and ↵ < 0, � >

q + 1

p+ 1
|↵|, that is, one nonlinearity is above

the power function. Whereas in [10, Theorem 2.7] the authors study related
nonlinearities when the pair of exponents (p, q) lies below the critical Sobolev
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hyperbola (1.3), using variational approaches.

Throughout this paper we assume that ⌦ ⇢ RN is a smooth bounded,
convex domain. The hypothesis on convexity of the domain is needed in
order to establish a priori bounds in a neighborhood of the boundary, via the
moving planes method, see Lemma 2.1. This idea was introduced in [15] for
scalar equations. In [39, Lemma 4.3] the author develop the moving planes
method for systems assuming that both nonlinearities are nondecreasing and
do not depend explicitly on the spatial variable x.

For general bounded domains, not necessarily convex, de Figueiredo, Li-
ons and Nussbaum [15] applied the moving planes method on the Kelvin
transform in order to avoid the di�culty of an empty cap (see [20, 6] for
details and the definition of a cap). In that situation, it turns out that the
(transformed) nonlinearity depends on the spatial variable x. Then, they
obtained a priori bounds in a neighborhood of the boundary for classical
positive solutions of scalar equations on non-convex domains. To the best
of our knowledge, the moving planes method for systems is not yet devel-
oped for nonlinearities depending also on the variable x. Hence, we focus on
convex domains.

We now state our main results.

Theorem 1.1. (a-priori L1 bounds)

Suppose that p, q > 1, ↵, � >

2

N � 2
, and

1

p+ 1
+

1

q + 1
=

N � 2

N

, (1.4)

and assume that

min

⇢

p

↵

,

q

�

�

� max
t�0



t

(e+ t) ln(e+ t)

�

. (1.5)

Then there exists a uniform constant C, depending only on ⌦ and p, q, ↵, �
but not on (u, v), such that

kuk
L

1(⌦)  C, and kvk
L

1(⌦)  C,

for all positive solutions (u, v) of (1.1).
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Remark 1.2. Observe that condition (1.4) relates the exponents p and q to
the Sobolev hyperbola, and condition (1.5) ensures that our nonlinearities are
nondecreasing since it will be needed in the proof.

Notice that

max
t�0



t

(e+ t) ln(e+ t)

�

=
e

e+ t

⇤ ,

where t

⇤ is the solution of the logarithmic equation e ln(e+ t) = t.

In the next theorem, we take up on the existence of positive solutions for
the parametrized version of the elliptic system (1.1).

Theorem 1.3. (Existence)
Consider the biparameter elliptic system
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>

>

>

>

>

<

>

>

>

>

>

:

��u = � v +
v

p

⇥

ln(e+ v)
⇤

↵

, in ⌦,

��v = µu+
u

q

⇥

ln(e+ u)
⇤

�

, in ⌦,

u = 0, v = 0 on @⌦,

(1.6)

where the exponents p, q,↵, � are as defined in Theorem 1.1, and the param-
eters � and µ are non-negative real parameters.

Then (1.6) has a positive solution (u, v) if and only if �µ < �

2
1, where

�1 is the principal eigenvalue associated with the linear eigenvalue problem
with homogeneous Dirichlet boundary conditions ��� = �� in ⌦; � =
0 on @⌦.

The proof is based on local bifurcation techniques [12], combined with
global bifurcation theorem [13, 24, 35], and the a-priori estimates obtained
therein. From the seminal works of Crandall and Rabinowitz, see [12, 35],
there are a significant amount of references on bifurcation theory. Let us
mention Alexander and Antman’s Theorem [1] on global multiparameter bi-
furcation techniques, looking for a change of fixed point index, and providing
a manifold of solutions of topological dimension at least the number of param-
eters, [25] on local multiparameter bifurcation techniques on elliptic systems,
[18, 24, 25, 26, 27, 28, 29] on combination of local and global multiparameter
bifurcation techniques on elliptic systems, and [19] on the multiparameter
bifurcation for the p-laplacian.
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Before we take up on the study of system (1.1), let us briefly explain why
we are interested in the nonlinearities of type (1.1) by recalling some known
facts about a priori bounds of positive solutions of the scalar equation

(

��u = f(u), in ⌦,

u = 0, on @⌦.
(1.7)

From the classical literature, see the well known results of Gidas and Spruck
in [21] and Figueiredo, Lions and Nussbaum in [15], there are recent advances
in this area, see [6]. The results in [21] depend heavily on the blow up
method which requires f to be essentially of the form f(x, s) = h(x)sp with
p 2 (1, N+2

N�2) and h(x) continuous and strictly positive. In [15], using the
moving plane method [20], and Rellich-Pohozaev identities [32], the authors
show the existence of a-priori L1 bounds for classical positive solutions of
equation (1.7) when the nonlinearity f is assumed to satisfy

lim inf
s!+1

✓F (s)� sf(s)

s

2
f(s)2/N

� 0, for some ✓ 2 [0, 2?),

where F (s) :=
R

s

0 f(t) dt. They conjecture that this condition is not necessary,
but it is essential in proving their result. It can be seen that for f1(s) =
s

2⇤�1
/ ln(2 + s)↵ with ↵ > 0

lim inf
s!+1

✓F1(s)� sf1(s)

s

2
f1(s)2/N

= �1, for any ✓ 2 [0, 2?),

where F1(s) :=
R

s

0 f1(t) dt. In [6] the authors prove the existence of a-priori

bounds when f(s) = s

N+2
N�2

/ ln(2 + s)↵, with ↵ > 2/(N � 2), see [6, Corollary
2.2]. Combining a priori bounds with degree theory, they obtain existence

results for parametrized versions with f = f(�, u) = �u + u

N+2
N�2

/ ln(2 + u)↵,
see [7, 8].

In view of this recent advance, it is natural to ask whether it is possible
to obtain the corresponding results for systems. In this paper, we extend
the results of [6] from scalar equations to systems. The existence of a-priori
bounds for the system (1.1) is proved as much as in the same lines of [6], that
is, using the Rellich-Pohozaev identity and the method of moving planes as
in [9], combined with Morrey’s Theorem. The moving planes method is used
to obtain L

1 bounds in a neighborhood of the boundary for classical positive
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solutions of (1.1), whereas the Rellich-Pohozaev identity is used to get two
bounded integrals in ⌦. Furthermore, Morrey’s Theorem is used to estimate
the radius R , (R0), of a ball where the function u , (v), exceeds half of its L1

bound (see fig 1), allowing us to reach a contradiction on the lower bounds
of the above integrals.

Figure 1: Let u be a solution of (1.1), we plot u(x), its L

1
norm, and the estimate of the

radius R such that u(x) � kuk1
2

for all x 2 B(x0, R), where x0 is such that u(x0) = kuk1.

This paper is organized as follows. In Section 2, we state some preliminary
and known results that are needed for the proof of our main results, which
include the moving plane method, and an extension of Rellich-Pohozaev type
identity for systems. Section 3 is devoted to the proofs of Theorem 1.1 and
Theorem 1.3.

2. Preliminaries and known Results

In this Section, we state two lemmas that are relevant in order to obtain
the a priori estimates. The first lemma provides L1 a priori bounds for any
positive solution of (1.1) in a neighborhood of the boundary, see [15]. The
hypothesis of convexity of the domain is needed in order to establish these
a priori bounds in a neighborhood of the boundary. Whereas the second
lemma provides a Rellich-Pohozaev-Mitidieri type identity, see [30].

Lemma 2.1. Let (u, v) be a positive classical solution of the system (1.1).
Assume that the hypotheses of Theorem 1.1 are satisfied, then there exists a

7



constant � > 0 depending only on ⌦ and not on p, q, ↵, � or (u, v), and a
constant C depending only on ⌦ and p, q, ↵, � but not on (u, v), such that

max
⌦\⌦�

u  C and max
⌦\⌦�

v  C (2.1)

where ⌦
�

:= {x 2 ⌦ : d(x, @⌦) > �}.

The proof is done in a similar way as step 2 in the proof of Theorem 1.1
in [15], using the moving planes method for systems [39, Lemma 4.3]. See
also step 1 and 2 in the proof of Theorem 2.1 in [9].

Lemma 2.2. (Rellich-Pohozaev-Mitidieri type identity)
Let u and v be in C

2(⌦̄), where ⌦ is a C

1 domain in RN , and u = v = 0 on
@⌦. Then

Z

⌦

�u (x ·rv) +�v (x ·ru) = (N � 2)

Z

⌦

(ru ·rv) +

Z

@⌦

@u

@n

(x ·rv)

+

Z

@⌦

@v

@n

(x ·ru)�
Z

@⌦

(ru,rv) (x · n),

where n denotes the exterior normal, and (x · n) denotes the inner product.

For the proof we refer to [30].

3. Proof of main results

In this section we prove Theorem 1.1 and Theorem 1.3. The proof of
Theorem 1.1 (L1 a-priori bounds) is based on a version for systems of moving
planes arguments [39] and an extension of Rellich-Pohozaev type identity
[30], combined with Morrey’s Theorem. Whereas the proof of Theorem 1.3
(existence of positive solutions for the parametrized system) is based on the
local and global bifurcation techniques [12, 13, 14, 24, 35] and the a-priori
estimates obtained therein.
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3.1. Proof of of Theorem 1.1

Let ✓ 2 (0, 1) be such that

1

p+ 1
= ✓

N � 2

N

and
1

q + 1
= (1� ✓)

N � 2

N

(3.1)

which is possible by (1.4).

Set F (t) :=

Z

t

0

f(s) ds and G(t) :=

Z

t

0

g(s) ds, where

f(s) =
s

p

⇥

ln(e+ s)
⇤

↵

, g(s) =
s

q

⇥

ln(e+ s)
⇤

�

, (3.2)

Integrating by parts and taking into account (3.1) we have that

F (t)� ✓

✓

N � 2

N

◆

t f(t) =
↵

p+ 1

Z

t

0

s

p+1

ln(e+ s)↵+1

ds

e+ s

, (3.3)

Likewise

G(t)� (1� ✓)

✓

N � 2

N

◆

t g(t) =
�

q + 1

Z

t

0

s

q+1

ln(e+ s)�+1

ds

e+ s

. (3.4)

Now, if we set W (s, t) := F (t) + G(s) then W

s

= g(s) and W

t

= f(t).
Therefore, for solutions u > 0 and v > 0 of (1.1),

Z

⌦

� [�u (x ·rv) + �v (x ·ru)] =

Z

⌦

X

j

x

j

✓

@W

@v

@v

j

@x

j

+
@W

@u

@u

j

@x

j

◆

=

Z

⌦

X

j

x

j

@W

@x

j

= �N

Z

⌦

W +

Z

⌦

div(W ~x)

= �N

Z

⌦

[F (v) +G(u)] +

Z

@⌦

(x · n) W (u, v),

and
Z

⌦

rurv = (1� ✓)

Z

⌦

ug(u) + ✓

Z

⌦

vf(v).
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Applying Lemma 2.2 (Pohozaev-Rellich-Mitidieri type identity) we get
that

N

Z

⌦

[F (v) +G(u)]� (N � 2)

Z

⌦

[✓ v f(v) + (1� ✓) u g(u)]

=

Z

@⌦

(x · n) W (u, v)�
Z

@⌦

(ru ·rv) (x · n)

+

Z

@⌦

@u

@n

(x ·rv) +

Z

@⌦

@v

@n

(x ·ru).

(3.5)

It follows from (2.1) and de Giorgi-Nash type Theorems for systems, see [23,
Theorem 3.1, p. 397] that

k(u, v)k
C

0,↵(⌦�/8\⌦7�/8)  C, for any ↵ 2 (0, 1),

where ⌦
t

:= {x 2 ⌦ : d(x, @⌦) > t}, and k(u, v)k := kuk+ kvk.
Using Schauder interior estimates, see [22, Theorem 6.2]

k(u, v)k
C

2,↵(⌦�/4\⌦3�/4)  C.

Finally, combining L

p estimates with Schauder boundary estimates, see [4,
22, 23]

k(u, v)k
W

2,p(⌦\⌦�/2)  C, for any p 2 (1,1).

By the Sobolev embedding for p > N , we have that there exists two constants
C, � > 0 independent of u such that

k(u, v)k
C

1,↵(⌦\⌦�)  C, for any ↵ 2 (0, 1). (3.6)

Therefore, it follows from (3.5) and (3.6) that
�

�

�

�

N

Z

⌦

[F (v) +G(u)]� (N � 2)

Z

⌦

[✓ v f(v) + (1� ✓) u g(u)]

�

�

�

�

 C. (3.7)

Using (3.3), (3.4), and (3.7), we obtain that

�

�

�

�

↵

p+ 1

Z

⌦

 

Z

v(x)

0

s

p+1

ln(e+ s)↵+1

ds

e+ s

!

dx

+
�

q + 1

Z

⌦

 

Z

u(x)

0

s

q+1

ln(e+ s)�+1

ds

e+ s

!

dx

�

�

�

�

�

 C.

(3.8)
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Moreover,

lim
t!1

Z

t

0

✓

1

ln(e+ s)

◆

↵+1
s

p+1

e+ s

ds

t

p+1

ln(e+ t)↵+1

=
1

p+ 1
,

and

lim
t!1

Z

t

0

✓

1

ln(e+ s)

◆

�+1
s

q+1

e+ s

ds

t

q+1

ln(e+ t)�+1

=
1

q + 1
.

Therefore, for any " > 0 there exists a constant t
"

such that if t > t

"

then

1

p+ 1
� " <

Z

t

0

✓

1

ln(e+ s)

◆

↵+1
s

p+1

e+ s

ds

t

p+1

ln(e+ t)↵+1

,

and

1

q + 1
� " <

Z

t

0

✓

1

ln(e+ s)

◆

�+1
s

q+1

e+ s

ds

t

q+1

ln(e+ t)�+1

.

Let us choose " = 1
2 min

n

1
p+1 ,

1
q+1

o

, then there exists a constant C > 0

such that for any t > 0

t

p+1

ln(e+ t)↵+1
 C

 

1 +

Z

t

0

✓

1

ln(e+ s)

◆

↵+1
s

p+1

e+ s

ds

!

,

and

t

q+1

ln(e+ t)�+1
 C

 

1 +

Z

t

0

✓

1

ln(e+ s)

◆

�+1
s

q+1

e+ s

ds

!

.
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Hence, applying the above inequalities for any v(x) and u(x) solving (1.1)
respectively, integrating in ⌦ and using (3.8), we have that

�

�

�

�

Z

⌦

v

p+1

ln(e+ v)↵+1
+

Z

⌦

u

q+1

ln(e+ u)�+1

�

�

�

�

 C.

This implies that

Z

⌦

vf(v)

ln(e+ v)
=

Z

⌦

v

p+1

ln(e+ v)↵+1
 C,

Z

⌦

ug(u)

ln(e+ u)
=

Z

⌦

u

q+1

ln(e+ u)�+1
 C.

(3.9)

As pointed out in Remark 1.2, condition (1.5) ensures that f and g are
nondecreasing.

Now, let us fix r, r

0 2 (N2 , N) such that r � 1 +
1

p

and r

0 � 1 +
1

q

.

Then using (3.9) and the fact that f and g are nondecreasing for kvk1 large
enough, we get that

Z

⌦

|f(v)|r =
Z

⌦

v

pr

ln(e+ v)↵r

=

Z

⌦

v

pr�p�1

ln(e+ v)↵(r�1)�1

v

p+1

ln(e+ v)↵+1

 C

kvkpr�(p+1)
1

ln(e+ kvk1)↵(r�1)�1

= C

✓

kvkp1
ln(e+ kvk1)↵

◆

r�1� 1
p 1

ln(e+ kvk1)
↵
p�1

,

and similarly

Z

⌦

|g(u)|r0  C

✓

kukq1
ln(e+ kuk1)�

◆

r

0�1� 1
q 1

ln(e+ kuk1)
�
q �1

. (3.10)

By the regularity of elliptic equations (see [22, 23]) it follows that

kuk
W

2,r(⌦)  C

✓

kvkp1
ln(e+ kvk1)↵

◆1� 1
r�

1
rp 1

ln(e+ kvk1)
↵
pr�

1
r

,

12



kvk
W

2,r0 (⌦)  C

✓

kukq1
ln(e+ kuk1)�

◆1� 1
r0�

1
r0q 1

ln(e+ kuk1)
�
qr0�

1
r0
.

From the Sobolev embeddings, for
1

r

⇤ =
1

r

� 1

N

with r

⇤
> N , and

1

r

0⇤ =

1

r

0 �
1

N

with r

0⇤
> N , we have

kuk
W

1,r⇤ (⌦)  C

✓

kvkp1
ln(e+ kvk1)↵

◆1� 1
r�

1
rp 1

ln(e+ kvk1)
↵
pr�

1
r

, (3.11)

kvk
W

1,r
0⇤ (⌦)

 C

✓

kukp1
ln(e+ kuk1)�

◆1� 1
r0�

1
r0p 1

ln(e+ kuk1)
�
qr0�

1
r0
. (3.12)

From Morrey’s Theorem, (see [4, Corollary 9.14]), there exists a constant
C that only depends on ⌦, r and N such that 8 x1, x2 2 ⌦

�

�

�

u(x1)� u(x2)
�

�

�

 C|x1 � x2|1�N/r

⇤kuk
W

1,r⇤ (⌦). (3.13)

Hence, for all x 2 B(x1, R) ⇢ ⌦
�

�

�

u(x1)� u(x)
�

�

�

 C R

2�N
r kuk

W

2,r(⌦). (3.14)

Similarly, there exists a constant C only dependent on ⌦, r0 and N such that
8 x0

1, x
0
2 2 ⌦

�

�

�

v(x0
1)� v(x0

2)
�

�

�

 C|x0
1 � x

0
2|1�N/r

0⇤kvk
W

1,r0⇤ (⌦). (3.15)

Hence, for all x 2 B(x0
1, R

0) ⇢ ⌦
�

�

�

v(x0
1)� v(x)

�

�

�

 C (R0)2�
N
r0 kvk

W

2,r0 (⌦). (3.16)

For now on, we shall argue by contradiction. Assume that there is a
sequence of classical positive solutions {(u

k

, v

k

)} to the equation (1.1) such
that

lim
k!1

k(u
k

, v

k

)k = 1, where k · k := k · k1.

Observe that from (3.11) and (3.12) it follows that {u
k

} is bounded if
and only if that the sequence {v

k

} is bounded. Hence, the unboundedness

13



of the sequence {(u
k

, v

k

)} implies that both sequences {u
k

} and {v
k

} are
unbounded.

Therefore

lim
k!1

k(u
k

, v

k

)k = 1 =) lim
k!1

ku
k

k = 1 and lim
k!1

kv
k

k = 1.

From (2.1), we have that there exist C, � > 0 such that

max
⌦\⌦�

u

k

 C and max
⌦\⌦�

v

k

 C. (3.17)

Let x
k

, x

0
k

2 ⌦
�

be such that

u

k

(x
k

) = max
⌦�

u

k

= max
⌦

u

k

,

and
v

k

(x0
k

) = max
⌦�

v

k

= max
⌦

v

k

,

By taking a subsequence if needed, we may assume that there exist x0, x
0
0 2

⌦
�

such that

lim
k!1

x

k

= x0 2 ⌦
�

, and d0 := dist(x0, @⌦) � � > 0. (3.18)

lim
k!1

x

0
k

= x

0
0 2 ⌦

�

, and d

0
0 := dist(x0

0, @⌦) � � > 0. (3.19)

Let us choose R

k

and R

0
k

such that B
k

= B(x
k

, R

k

) ⇢ ⌦, B0
k

= B(x0
k

, R

0
k

) ⇢
⌦, and

u

k

(x) � 1

2
ku

k

k 8x 2 B

k

, and v

k

(x) � 1

2
kv

k

k 8x 2 B

0
k

,

moreover, there exist y
k

2 @B

k

and y

0
k

2 @B

0
k

such that

u

k

(y
k

) =
1

2
ku

k

k, v

k

(y0
k

) =
1

2
kv

k

k. (3.20)

Let us denote by

m

k

:= min
[kvkk/2,kvkk]

f, M

k

:= max
[0,kvkk]

f,

m

0
k

:= min
[kukk/2,kukk]

g, M

0
k

:= max
[0,kukk]

g.

(3.21)

14



Since f and g are increasing for all s, see (1.2), we have

m

k

= f(kv
k

k/2), M

k

= f(kv
k

k) = kv
k

kp

ln(e+ kv
k

k)↵ ,

m

0
k

= g(ku
k

k/2), M

0
k

= g(ku
k

k) = ku
k

kq

ln(e+ ku
k

k)� .
(3.22)

Moreover, there exists a constant C > 0 such that

m

k

M

k

� C,

m

0
k

M

0
k

� C. (3.23)

Using (3.10) we obtain

✓

Z

⌦

|f(v
k

)|r
◆1/r

 C

✓

kv
k

kp

ln(e+ kv
k

k)↵

◆1� 1
r�

1
pr 1

ln(e+ kv
k

k)
↵
pr�

1
r

= CM

1� 1
r�

1
pr

k

1

ln(e+ kv
k

k)
↵
pr�

1
r

✓

Z

⌦

|g(u
k

)|r0
◆1/r0

 C

✓

ku
k

kq

ln(e+ kuk1)�

◆1� 1
r0�

1
qr0 1

ln(e+ ku
k

k)
�
qr0�

1
r0

= C (M 0
k

)1�
1
r0�

1
qr0

1

ln(e+ ku
k

k)
�
qr0�

1
r0
.

It follows from elliptic regularity, see (3.11) and (3.12), that

ku
k

k
W

2,r(⌦)  CM

1� 1
r�

1
rp

k

1

ln(e+ kv
k

k)
↵
pr�

1
r

(3.24)

kv
k

k
W

2,r0 (⌦)  C (M 0
k

)
01� 1

r0�
1

r0q
1

ln(e+ ku
k

k)
�
qr0�

1
r0

(3.25)

Using Morrey’s Theorem, (3.24) and (3.25), we get

�

�

�

u

k

(x)� u

k

(x
k

)
�

�

�

 C

R

2�N
r

k

M

1� 1
r�

1
rp

k

ln(e+ kv
k

k)
↵
pr�

1
r

, for any x 2 B

k

, (3.26)
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and
�

�

�

v

k

(x)� v

k

(x
k

)
�

�

�

 C

(R0
k

)2�
N
r0 (M 0

k

)1�
1
r0�

1
r0q

ln(e+ ku
k

k)
�
qr0�

1
r0

, for any x 2 B

0
k

. (3.27)

Taking x = y

k

in the inequality (3.26) and from (3.20) we obtain

C R

2�N
r

k

M

1� 1
r�

1
rp

k

1

ln(e+ kv
k

k)
↵
pr�

1
r

�
�

�

�

u

k

(y
k

)� u

k

(x
k

)
�

�

�

=
1

2
ku

k

k,

hence,

R

2�N
r

k

� C

ku
k

k

M

1� 1
r�

1
rp

k

ln(e+ kv
k

k)
↵
pr�

1
r
. (3.28)

Similarly,

(R0
k

)2�
N
r0 � C

kv
k

k
(M 0

k

)1�
1
r0�

1
qr0

ln(e+ ku
k

k)
�
qr0�

1
r0
. (3.29)

Now, using (3.9), (3.29) and since definition of m
k

, we have that

C �
Z

⌦

v

k

f(v
k

)

ln(e+ v

k

)
�
Z

B

0
k

v

k

f(v
k

)

ln(e+ v

k

)
� C kv

k

k m

k

ln(e+ kv
k

k)(R
0
k

)N

� C kv
k

k m

k

ln(e+ kv
k

k)

 

kv
k

k
(M 0

k

)1�
1
r0�

1
qr0

ln(e+ ku
k

k)
�
qr0�

1
r0

!

1
2
N � 1

r0

= C

kv
k

k
ln(e+ kv

k

k)
m

k

M

0
k

 

kv
k

k
(M 0

k

)1�
2
N � 1

qr0
ln(e+ ku

k

k)
�
qr0�

1
r0

!

1
2
N � 1

r0

.

(3.30)

Similarly,

C �
Z

⌦

u

k

g(u
k

)

ln(e+ u

k

)
�
Z

Bk

u

k

g(u
k

)

ln(e+ u

k

)
� C ku

k

k m

0
k

ln(e+ ku
k

k)(Rk

)N

� C ku
k

k m

0
k

ln(e+ ku
k

k)

0

@

ku
k

k

M

1� 1
r�

1
pr

k

ln(e+ kv
k

k)
↵
pr�

1
r

1

A

1
k2
N � 1

r

= C

ku
k

k
ln(e+ ku

k

k)
m

0
k

M

k

0

@

ku
k

k

M

1� 2
N � 1

pr

k

ln(e+ kv
k

k)
↵
pr�

1
r

1

A

1
2
N � 1

r

.

(3.31)
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Multiplying both inequalities (3.30) and (3.31), using the definitions of m
k

,
m

0
k

, M
k

and M

0
k

, and also taking into account (3.23), we have that

C � ku
k

ka kv
k

kb ln(e+ ku
k

k)c ln(e+ kv
k

k)d, (3.32)

where

a := 1 +
1

2
N

� 1
r

�
q(1� 2

N

)� 1
r

0

2
N

� 1
r

0
, b := 1 +

1
2
N

� 1
r

0
�

p(1� 2
N

)� 1
r

2
N

� 1
r

,

c := �1 +
�(1� 2

N

� 1
r

0
q

) + �

r

0
q

� 1
r

0

2
N

� 1
r

0
, d := �1 +

↵(1� 2
N

� 1
rp

) + ↵

rp

� 1
r

2
N

� 1
r

.

straightforward calculations lead to

a =
1

2
N

� 1
r

�
q(N�2

N

)� 2
N

2
N

� 1
r

0
, b =

1
2
N

� 1
r

0
�

p(N�2
N

)� 2
N

2
N

� 1
r

,

c =
�(1� 2

N

)� 2
N

2
N

� 1
r

0
, d =

↵(1� 2
N

)� 2
N

2
N

� 1
r

.

Observe that

a = 0 () 2

N

� 1

r

0 =

✓

2

N

� 1

r

◆

q

✓

N � 2

N

◆

� 2

N

�

=

✓

2

N

� 1

r

◆

(q + 1)
N � 2

N

� 1

�

=

✓

2

N

� 1

r

◆

1

1� ✓

� 1

�

=

✓

2

N

� 1

r

◆

q + 1

p+ 1
.

Fix a small �0 > 0 to be specified later. Let us choose r such that
2

N

� 1

r

= �0 > 0. Next, let us choose r

0 such that
2

N

� 1

r

0 = �0
q + 1

p+ 1
.

Taking �0 =
1

2
min

⇢

1

N

,

✓

p+ 1

q + 1

◆

1

N

�

> 0, then r, r

0 2 (N2 , N) and satisfy

the inequalities r > 1 +
1

p

, r0 > 1 +
1

q

, as required, and a = 0.
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With similar calculations as above, we get that b = 0 if and only if
2

N

� 1

r

=

✓

2

N

� 1

r

0

◆

p+ 1

q + 1
, which holds if and only if a = 0.

Since by assumption ↵ >

2

N � 2
and � >

2

N � 2
, one can see that c > 0

and d > 0.
Taking the limit as k ! 1, we get that the right-hand side of inequality

(3.32) goes to 1, which leads to a contradiction. ⇤

3.2. Proof of Theorem 1.3

The proof is divided in two parts. We first prove that if there exists a
positive solution

�

(�, µ), (u, v)
�

of equation (1.6) with �, µ � 0, then �µ < �

2
1.

In the second part, we prove the converse.

Part I. Assume that there exists a positive solution
�

(�, µ), (u, v)
�

of equa-
tion (1.6), and that �, µ � 0. Let �1 > 0 be the principal eigenfunction
associated to �1 and normalized in the L

2(⌦) norm, multiplying each equa-
tion of (1.6) by �1, and integrating by parts on ⌦, it yields that

�1

Z

⌦

u�1 = �

Z

⌦

v�1 +

Z

⌦

f(v)�1

�1

Z

⌦

v�1 = µ

Z

⌦

u�1 +

Z

⌦

g(u)�1.

Multiplying the first equation by �1, the second equation by � and adding
both equations we deduce

(�21 � �µ)

Z

⌦

u�1 =

Z

⌦

[�1f(v) + �g(u)]�1 > 0.

Thus, �µ < �

2
1.

Part II. Assume that �, µ � 0 and �µ < �

2
1, we will prove that there is a

positive solution (u, v) of (1.6). The proof is divided in three steps. In step
1, we reformulate problem (1.6) in abstract (operators) setting. In step 2, we
fix one parameter, say, � = �0 > 0 and choosing µ as bifurcation parameter,
we use Crandall-Rabinowitz’s Theorem to prove that when

p
�0µ = �1 there

is a bifurcation phenomena from the trivial solution to positive solution. In
step 3 we use the global bifurcation result stated by Rabinowitz [35] and

18



completed by Dancer [13], (see also [14, 24]), to prove that for any (�, µ)
satisfying �µ < �

2
1, with �, µ � 0, equation (1.6) has at least one positive

solution. We conclude with a remark on the fact that varying � we obtain
a whole curve of non-isolated bifurcation points, and using Alexander and
Antman’s result [1], we can deduce that in a neighborhood of that curve,
there is a bifurcating two-dimensional surface of nontrivial solution pairs
�

(�, µ), (u, v)
�

of equation (1.6).

Step1. We start by reformulating problem (1.6).
Let f and g be the extension of f and g, defined by

f(t) =
|t|p

⇥

ln(e+ |t|)
⇤

↵

, g(s) =
|s|q

⇥

ln(e+ |s|)
⇤

�

, for s, t  0, (3.33)

and denote by F (w) :=

✓

f(v)
g(u)

◆

. Then (1.6) can be extended to non-

positive and changing sign solutions and can be rewritten

��w = Aw + F (w), in ⌦, w =

✓

0
0

◆

on @⌦, (3.34)

where A :=

✓

0 �

µ 0

◆

, w :=

✓

u

v

◆

, and any positive solution (u, v) of

(3.34) is a positive solution of (1.6) and conversely.
Following the same ideas used in the proof of Theorem 1.1, it can be

easily checked that for any [a, b]⇥ [c, d] ⇢ R2
+, there exists a constant C > 0

such that any positive solution (u, v) of equation (3.34) satisfy

kuk
L

1(⌦)  C, kvk
L

1(⌦)  C, 8 (�, µ) 2 [a, b]⇥ [c, d]. (3.35)

Assume that �, µ > 0 and consider the Jordan canonical form of the
matrix A, we can decompose A = P

�1
JP , where

J =

✓ p
�µ 0
0 �

p
�µ

◆

, P =
1

2

✓ p

µ

�

1
�
p

µ

�

1

◆

, P

�1 =

 

q

�

µ

�
q

�

µ

1 1

!

.

(3.36)
Multiplying (3.34) by P on the left and denoting by z = Pw, we obtain

��z = Jz +G(z), in ⌦, z =

✓

0
0

◆

on @⌦, (3.37)
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where G(z) := PF (w) = PF (P�1
z).

Step 2. We check that the conditions of Crandall-Rabinowitz’s Theorem [12]
are satisfied. Fix � = �0 > 0, and choose µ as the bifurcation parameter.
Let � 2 (0, 1), define E2 = {u 2 C

2,�(⌦) : u = 0 on @⌦} equipped with its
standard norm, E2 is a Banach space. Set E0 = C

�(⌦), define the following
operators F : R⇥ (E2)2 ! (C�(⌦))2 by

F (µ,w) := ��w �
✓

0 �0

µ 0

◆

w � F (w),

L0w := D(u,v)F (µ0, 0)w = ��w �
✓

0 �0

µ0 0

◆

w,

L1w := D

µ,(u,v)F (µ0, 0)w =

✓

0
�v.

◆

, where w =

✓

u

v

◆

.

Set µ0 = �

2
1

�0
, and P0 = P (�0, µ0). Observe that w 2 N(L0) (where N(L0)

is the kernel of L0) if and only if z = P0w 2 N

✓

���
✓

�1 0
0 ��1

◆◆

=

span

✓

�1

0

◆�

. Therefore, N(L0) = span

✓

�0�1

�1�1

◆�

.

Now, we claim that L1(N(L0)) 6⇢ R(L0) where R(L0) is the range of L0.

Indeed, assume that there exist w 2 N(L0) and  =

✓

 1

 2.

◆

2 D(L0) such

that L1 w = L0  or equivalently, by definition of L0 and L1,

�� �
✓

0 �0

µ0 0

◆

 = a

✓

0
��1�1

◆

, for some a 2 R. (3.38)

Multiplying (3.38) on the left by P0, and denoting by ' = P0 =

✓

'1

'2.

◆

,

we obtain

��'�
✓

�1 0
0 ��1

◆

' = �a�1

2

✓

�1

�1

◆

. (3.39)

Multiplying the first (component) equation by �1, integrating on ⌦, and
applying Green’s formulae we obtain

0 =

Z

⌦

(��'1 � �1'1)�1 = �a�1

2

Z

⌦

�

2
1.
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Therefore a = 0. Hence, the hypotheses of Crandall Rabinowitz theorem are

satisfied. Thus, there exists a neighborhood of
⇣

�

2
1

�0
, (0, 0)

⌘

in R⇥ (E2)2, and

continuous functions µ(s), w̃(s), s 2 (�✏, ✏), such that µ(0) = µ0, w̃(0) =
✓

0
0

◆

, w̃ =

✓

w̃1

w̃2

◆

, with
R

⌦ w̃

i

�1 = 0, and the only nontrivial solutions

of (1.6) for � = �0 fixed, are
✓

µ(s), s

✓

�0�1

�1�1

◆

+ s w̃(s)

◆

.

Observe that for s > 0 small enough, w =

✓

u

v

◆

satisfy u > 0, v > 0,

@u

@n

< 0, @v

@n

< 0 on @⌦, hence �0µ < �

2
1.

Step 3. Now, we use the global bifurcation Theorem as stated by Rabinowitz
[35] and as completed by Dancer [13]. Let (��)�1 denote the inverse of (��)
with homogeneous Dirichlet boundary conditions. It follows from Schauder
estimates that (��)�1 maps bounded subsets of E0 into bounded subsets
of E2, which in turn are relatively compact in E0. Thus, (��)�1 : E0 ! E0

is compact.
Observe that, fixed points of the operator (��)�1 [J(.)+G(.)] corresponds

to fixed points of the operator (��)�1 [A(.) + F (.)], that is,

z = (��)�1 [Jz +G(z)] () w = (��)�1 [Aw + F (w)].

Let us keep fixed � = �0 > 0, and allow µ to vary. It follows from Ra-
binowitz’s global bifurcation Theorem [35, Theorem 1.3] that there is a con-

tinuum of solutions, emanating from the trivial solution at (�, µ) =
�

�0,
�

2
1

�0

�

,

which is either unbounded, or meets another bifurcation point from the trivial
solution. Let

C
�0 :=

n

�

(�0, µ), (u�0,µ, v�0,µ)
�

2 R2 ⇥
�

C

�(⌦)
�2
o

be the continuum emanating from the trivial solution at µ = µ0 = �

2
1

�0
and

solving (1.6) for � = �0 fixed. By elliptic regularity, it is known that C
�0 ⇢

R2 ⇥
�

C

2,�(⌦)
�2
.

Considering the positive cone P := {u 2 C

1,�(⌦) : u > 0, in ⌦, @u

@n

<

0, on @⌦}, let us denote by C+
�0

:= C
�0 \ R2 ⇥ (P)2 6= ;. Since the clas-

sical positive solutions are a priori bounded, see (3.35), we have that C+
�0

\
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⇣

{�0}⇥
h

0, �
2
1

�0

⌘

⇥
�

C

�(⌦)
�2
⌘

is bounded. Assume that there exists µ = µ

⇤ 2
h

0, �
2
1

�0

⌘

such that
�

(�0, µ⇤), (u⇤
, v

⇤)
�

2 C+
�0

\ C+
�0
, then either (u⇤

, v

⇤) = (0, 0)

or u

⇤ � 0, v⇤ � 0 in ⌦, @u

⇤

@n

 0, @v
⇤

@n

 0 on @⌦, with (u⇤
, v

⇤) 6= (0, 0). If
(u⇤

, v

⇤) = (0, 0) then
�

(�0, µ⇤), (u⇤
, v

⇤)
�

is a bifurcation point from the triv-
ial solution to positive solutions. Due to the unique bifurcation point from

the trivial solution to positive solutions at � = �0 is attained at µ = �

2
1

�0
,

if (u⇤
, v

⇤) = (0, 0) then we reach a contradiction. On the other hand, if
u

⇤ � 0, v⇤ � 0 in ⌦, (u⇤
, v

⇤) 6= (0, 0), from the Maximum Principle, and the
Hopf Maximum Principle u⇤

> 0, v⇤ > 0 in ⌦, and @u

⇤

@n

⇤ < 0, @v

@n

< 0, therefore
�

(�0, µ⇤), (u⇤
, v

⇤)
�

2 C+
�0
, which contradicts the hypothesis.⇤

Remark 3.1. Let us mention that when moving � we obtain a whole curve of
non-isolated bifurcation points. If S denote the closure of the set of nontrivial
solutions pairs

�

(�, µ), w
�

of (3.34), and F denote the set of bifurcation
points of (3.34) from the trivial solution. We proved in Step 2 that the set

F1 :=

⇢✓

⇣

�,

�

2
1

�

⌘

, (0, 0)

◆

: � > 0

�

is a set of bifurcation points of (3.34) from the trivial solution. All points
in F1 are non-isolated bifurcation points. Using Alexander and Antman’s
result [1], we can deduce that in a neighborhood of that curve, there is a
bifurcating two-dimensional surface of nontrivial solution pairs

�

(�, µ), (u, v)
�

of equation (1.6).
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