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ISOMETRIC EXTENSIONS OF ZERO ENTROPY Zd LOOSELY
BERNOULLI TRANSFORMATIONS

AIMEE S. A. JOHNSON AND AYŞE A. ŞAHİN

Abstract. In this paper we discuss loosely Bernoulli for Zd actions. In par-
ticular, we prove that extensions of zero entropy, ergodic, loosely Bernoulli Zd

actions are also loosely Bernoulli.

1. Introduction and summary of results

In one dimension, a zero entropy transformation is loosely Bernoulli (LB) if
there is one name up to the f metric. Intuitively, in one dimension this metric
measures the proportion of indices between two names which can be matched in an
order preserving way. In higher dimensions, the f metric measures how the relative
configuration of the indices in the d-dimensional names are related. It is nontrivial
to extend results to higher dimensions, due to the more complicated geometry of
the definition of LB.

Many of the basic properties of one dimensional LB transformations are estab-
lished in [5]. In [2] we proved that certain rank 1 Zd actions are LB. The arguments
used the inherent geometry of the orbits of these actions. In this paper we develop
a more general “nesting” machinery than was needed in [2].

The paper is organized as follows. In section 2 we remind the reader of the higher
dimensional definition of f . We also define a new matching condition and discuss
its relationship to the f metric. In particular, the results in this section provide
some insight into the geometry of an f -small permutation.

In section 3 we define properties of processes which appear weaker than LB, and
prove that they are in fact equivalent to LB. This section contains the core of the
new higher dimensional machinery.

In the final two sections we use our machinery to prove that k point and isometric
extensions of ergodic, measure preserving and zero entropy LB Zd actions are LB.
Some of the arguments we provide are parallel to those in [5], but we include them
to show that they can be carried through with the higher dimensional machinery.
We do not assume any familiarity on the part of the reader with the results in [5].
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1330 AIMEE S. A. JOHNSON AND AYŞE A. ŞAHİN

2. The f-metric and matching names

Let (X,A, µ) be a Lebesgue probability space. Take T to be an ergodic, zero
entropy Zd action on (X,A, µ). We can think of T as being generated by d commut-
ing measure preserving one dimensional transformations on X , {T~e1 , ..., T~ed

}, where
the set {~e1, . . . , ~ed} is the standard basis for Zd. Then T~v(x) = T v1

~e1
◦ · · · ◦ T vd

~ed
(x),

where ~v = (v1, . . . , vd). We call (X,A, µ), T a Zd-dynamical system. Often we will
simply write (X, T ).

For n ∈ N, let Bn = {~v ∈ Zd : 0 ≤ vi < n, 1 ≤ i ≤ d}. We define the ε-interior of
Bn to be the collection of indices in Bn which are at least a distance εn from the
boundary of Bn. For a vector ~v ∈ Zd, we set ||~v|| =max {|vi| : 1 ≤ i ≤ d}.

For n1 < n we define partitions of Bn into n1-grids. For the first grid, imagine
horizontal and vertical lines in Bn drawn at the multiples of n1, starting at ~0. More
formally, let

r~0 = {(k1n1, k2n1, ..., kdn1) : 0 ≤ ki ≤
[

n

n1

]
, i = 1, ..., d}

and set R~0 = {Bn1 + ~u : ~u ∈ r~0} ∩ Bn. We will call R~0 an n1-grid of Bn, the
translates of Bn1 will be called the grid boxes, and the vectors ~u ∈ r~0 will be called
the base points of the grid. We obtain all the n1-grids of Bn by translating the grid
R~0 by all vectors ~v ∈ Bn1 . We set R~v = (R~0 +~v)∩Bn and note that r~v = r~0 +~v is
the set of base points of the grid R~v. If C ⊂ Bn, we say R~v ∩C is an n1-grid of C,
for any ~v ∈ Bn1 .

Let P be a measurable, finite partition on X with label set {p1, ..., ph}. (T, P ) is
then the usual process associated with T and the partition P . For each x we define
its Pn-name to be Pn(x) : Bn → P by Pn(x)(~v) = i if T~v(x) ∈ pi. To simplify our
notation we will call an atom of

∨
~v∈Bn

T~vP of positive measure an n-name. The
index ~0 in an n-name will be called the base point of the name.

We start with π : Bn → Bn, a permutation of the indices in Bn, and define a
size for this permutation. This idea is defined and extended in [1] and [4].

Definition 2.1. Let π : Bn → Bn be a permutation of the indices of Bn. We say
π is of size ε, denoted by m(π) < ε, if there exists a subset S of Bn satisfying

1. |S| > (1− ε)|Bn|, where |S| is the cardinality of the set S,
2. ||π~u − π~v − (~u− ~v)|| < ε||~u− ~v|| for every ~u,~v ∈ S.

S is said to be the ε-set of π.

Definition 2.2. Given two Pn-names η and ξ, we define the fn-distance between
them to be fn(η, ξ) = inf {ε > 0 : there exists a permutation π of Bn such that

(i) m(π) < ε,
(ii) d(η ◦ π, ξ) < ε}.

Here d(·, ·) denotes the Hamming metric which simply gives the proportion of lo-
cations of Bn on which the two names disagree.

Informally, we will think of π as rearranging the name η to make it d close to the
name ξ, and we will often refer to π as acting on a name instead of the (technically
correct) set of indices.

We now define what appears to be a matching condition with a more rigid
geometric requirement. We will show that in fact this matching requirement is
closely related to f matching.
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Definition 2.3. For ε > 0, N ∈ N, and 0 < c < 1, two atoms ω, ω′ ∈ ∨
~m∈Bn

T~mP

are said to be (ε, N, c) matchable if there exist a permutation π : Bn → Bn and a
set S of indices in Bn with the following properties:

1. |S| > (1− ε)|Bn|.
2. S is the disjoint union of N -blocks, call them

⋃k
i=1 BN + ~vi.

3. π moves all the indices in S by a vector ~v, (possibly ~v = ~0), small enough in
magnitude that i + ~v ∈ Bn for all i ∈ S.

4. π moves the N blocks in S by additional amounts which can vary for each
block, but are always less in magnitude than εn.

5. In ω ◦ π, a subset of the N -blocks is matched perfectly with N -blocks in ω′.
Denote these matched blocks by Gi, i = 1, . . . , m. Then |⋃m

i=1 Gi| > c|Bn|.
This set will be called the matched set G of π.

6. For ~u,~v ∈ S, we have ‖π(~u)− π(~v)− (~u − ~v)‖ < ε‖~u− ~v‖.
Such a permutation π will be called an (ε, N, c) permutation, or an (ε, N, c) match.
The set S will still be called the ε-set of π.

Note that if ω and ω′ are (ε, N, c) matchable, then f(ω, ω′) < 1 − c. It is also
true that f closeness implies matchability in the above sense. To make this claim
precise, we will use two facts about the geometry of a small permutation. First, if
m(π) < ε, then 1

ε -blocks in the ε-set of π must be moved rigidly by π. The next
fact requires a little more work, and the proof can be found in [4]:

Lemma 2.4 (Geometric Lemma). Given ε > 0, there is a δ > 0 such that for all
permutations π : Bn → Bn with m(π) < δ, for all ~v in the δ-set of π,

‖π(~v)− ~v‖ < εn.

These two facts together yield that if two n-names are f -close enough then they
are matchable.

Lemma 2.5. For all ε > 0 and N ∈ N, there exist a δ > 0 and an integer n1 > 0
such that for all n ≥ n1, if ω, ω′ ∈ ∨

~v∈Bn
T~vP and f(ω, ω′) < δ, then ω and ω′ are

(ε, N, 1− ε) matchable.

Proof. Let ε and N be given. Pick δ1 > 0 satisfying Lemma 2.4 with this ε. Let
δ = min{δ1,

ε
4Nd } and n1 > 2dN

ε . Pick n ≥ n1 and suppose that ω, ω′ are n-names
with f(ω, ω′) < δ. Let π : Bn → Bn be a permutation such that m(π) < δ and
d(ω ◦ π, ω′) < δ. We will show that π satisfies the requirements of Definition 2.3.

If nd ≤ 1
δ , then π is the identity permutation and the result holds trivially. So

suppose n is such that nd > 1
δ . To find the set S required in Definition 2.3, we

will use the portion of the δ-set of π which can be easily divided into N -blocks.
To find this, first let S1 be the δ-set of π and note that the number of indices in
Bn which are not is S1 or not matched by π is less than 2δ|Bn|. Then divide Bn

into N -blocks, starting with the base point of the box, and let S be the union of
those N -blocks which are completely contained in S1 and completely matched by
π. Thus |S| ≥ |Bn| − 2δ|Bn|Nd − dNnd−1, so |S| > (1− ε)|Bn|.

We also have that every 1
δ -block in S, so by our choice of δ every N -block in S, is

moved rigidly by π and matched perfectly to an N -block in ω′. From the geometric
lemma we are guaranteed that ∀~v ∈ S, ‖π(~v)−~v‖ < εn, so each N -block in S must
be translated by some vector whose magnitude is less than εn. Thus conditions 1,
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2, and 4 of Definition 2.3 are satisfied, and condition 3 is vacuously satisfied with
~v = ~0.

In this case the matched set of π is all of S, which is in the form
⋃

Gi by
construction, and condition 5 is satisfied with c = 1− ε.

Finally, for condition 6, note that S ⊂ S1, so for every pair ~u,~v ∈ S1 we have
‖π~u − π~v − (~u − ~v)‖ < δ‖~u − ~v‖ < ε‖~u − ~v‖. All the conditions of (ε, N, 1 − ε)
matchability are thus satisfied.

3. The Loosely Bernoulli Property for Zero Entropy Zd
Actions

Intuitively, a zero entropy loosely Bernoulli process has one name up to f . For-
mally,

Definition 3.1. A zero entropy, ergodic process (T, P ) is loosely Bernoulli (LB)
iff for any ε > 0 there exists an integer Nε such that for any n ≥ Nε there is a set
W ⊂ ∨

~v∈Bn
T~vP such that µ(W ) > 1− ε and, for ω and ω′ in W ,

fn(ω, ω′) < ε.

Definition 3.2. We say (X,A, µ), T is LB if for every partition P of X , (T, P ) is
LB.

Note that to show (X,A, µ), T is LB it suffices to show that the process (T, P )
is LB for P a generating partition for T .

In the remainder of the section, we will define progressively weaker matching
conditions which are in fact equivalent to LB. We will first state the new conditions
and defer the proofs of the theorems to the end of the section.

Definition 3.3 (The Matching Condition). A zero entropy process (T, P ) is said
to satisfy the matching condition if there is a c > 0 such that for all ε > 0 and
N ∈ N there is an integer n1 > 0 such that for all integers n ≥ n1, there is a set of
n-names W with µW > 1− ε and ∀ω, ω′ ∈ W , ω and ω′ are (ε, N, c) matchable.

If a process satisfies the matching condition then it is LB because, as the following
result shows, once we can match a positive proportion of most names, we can keep
matching.

Theorem 3.4. If (T, P ) is a zero entropy, ergodic, Zd process satisfying the match-
ing condition, then (T, P ) is LB.

We can, in fact, prove that a process with an even weaker matching property is
LB.

Definition 3.5 (The Friendship Condition). A zero entropy process (T, P ) is said
to satisfy the friendship condition if there exist numbers c1, c2 > 0 such that for all
ε > 0 and N ∈ N there is an integer n1 > 0 such that for all n ≥ n1 there is a set
of n-names W with µW > 1− ε and for all ω ∈ W there is a set F (ω) of n-names,
with µ(F (ω)) ≥ c2, and for all ω′ ∈ F (ω) we have that ω and ω′ are (ε, N, c1)
matchable.

We can show that a process satisfying the friendship condition is LB by arguing
that if each name has a set of friends, then by sacrificing a little friendliness, we
can find a large set of names which are all friendly with each other.

Theorem 3.6. If (T, P ) is a zero entropy, ergodic, Zd process satisfying the friend-
ship condition, then (T, P ) satisfies the matching condition.
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Corollary 3.7. Let (T, P ) be a zero entropy, ergodic, Zd process satisfying the
friendship condition. Then (T, P ) is LB.

With these new results in place, showing that a process is LB will only require
verifying that Definition 3.5 is satisfied.

3.1. Proof of Theorem 3.4. Fix ε > 0. We will show that Definition 3.1 is
satisfied with this ε. By hypothesis, we know that there exists a number c > 0
satisfying the matching condition (Definition 3.3). If c > 1− ε, then since (ε, N, c)
matchability of two n-names ω, ω′ implies f(ω, ω′) < 1− c < ε, we are done.

Now suppose c < 1− ε. It suffices to show that we can find an n2 such that for
every n ≥ n2 there is a set W of n-names with measure larger than 1 − ε, and all
the atoms in W are (ε, N, c1) matchable, with

c1 = c +
1
2
c(1− c).

For, if this is the case, we can keep matching until, at some stage k, ck > 1− ε.
Apply the matching condition with ε2

100d and arbitrary N ∈ N to obtain an
integer n1 and a set W1 of n1-names all of which are ( ε2

100d , N, c) matchable and for
which

N

n1
<

ε

4d
, and µW1 > 1− ε2

100d
.(1)

Take N2 ∈ N such that

n1

N2
<

ε2

2d · 4d
.(2)

Apply the matching condition to ε2

100 and N2 and apply the ergodic theorem to W1

to obtain an integer n2 so that for all n ≥ n2, we can find a set W2 of n-names all
of which are ( ε2

100 , N2, c) matchable,

µW2 > 1− ε2

50
,(3)

and

for all x ∈ W2
|~v ∈ Bn : T~nx ∈ W1|

|Bn| > 1− ε2

50
.(4)

Take ω, ω′ ∈ W2 and let π1 : Bn → Bn be an ( ε2

100 , N2, c) permutation. Let S1

be the ε2

100 -set of π1. Consider now ω ◦ π1 and ω′. We wish to match a subset of
the indices left unmatched by π1.

We first compute the proportion of unmatched indices of ω ◦ π1 which
(i) lie in an N2 block from S1,
(ii) are in W1, and
(iii) are such that the n1-block based at that index is completely contained inside

the unmatched N2 block to which the index belongs.
By condition 1 of Definition 2.3, equation (4), and the fact that there are at least

εnd unmatched indices, the above conditions eliminate a set of indices of cardinality
less than

ε2

100
nd +

ε2

50
nd + (dn1N

d−1
2 )(# of unmatched N2 blocks) <

ε

10
nd.
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Similarly, we can assume that all but an ε
10 proportion of the unmatched indices in

ω′ will also satisfy conditions (i), (ii) and (iii).
Consider the set {r~v : ~v ∈ Bn1} of base points of all n1-grids of Bn. For each

~v ∈ Bn1 , let r~v be that portion of r~v which is contained in the unmatched indices.
Since

⋃
~v∈Bn1

r~v is the entire collection of unmatched indices, we can find an n1-grid
of the unmatched part of Bn such that all but ε

5 of the base points of the grid boxes
for both ω◦π and ω′ satisfy conditions (i), (ii) and (iii). Fix this grid superimposed
on both ω ◦ π1 and ω′, and call a grid box with such a base point a good grid box.
For a pair of good grid boxes in the same location in the two names, apply the
( ε2

100d , N, c) match guaranteed by the definition of W1. Let π be the permutation
obtained by first applying π1, followed by the individual permutations applied to
good n1-grid boxes.

We now show that π is an (ε, N, c1) permutation. Note that the jth good grid box
comes with an ε2

100d -set S(j) and a matched set Gj consisting of matched N -blocks.
The ε-set S of π will consist of all the indices in S1 except for

1. those who lie in an n1-grid box which is not entirely contained in an N2 box,
and

2. those which are in a good grid box but
• do not belong to S(j), or
• are in an N -block which is not contained in the ε

4d -interior of its grid box.

This removes a set of indices with cardinality less than

dn1N
d−1
2 (# unmatched N2 blocks)

+ (
ε2

100d
nd

1 +
ε

4d
nd

1 + 2dNnd−1
1 )(# good grid boxes),

which by equations (1) and (2) is less than εnd. Then |S| > (1−ε)|Bn|, so condition
1 of Definition 2.3 is satisfied.

Since, without loss of generality, we can assume N2 and n1 are multiples of N ,
condition 2 is satisfied.

Condition 3 is satisfied because the indices in S are also in S1, the ε2

100 -set of π1,
and we use for ~v the vector from π1.

Note that condition 4 is automatically satisfied for the N2 blocks moved by π1.
The bad n1-grid boxes have no additional translation applied to them. Consider
now the N -blocks in the good n1-grid boxes. In addition to the translation by π1,
which is in magnitude less than ε2

100n, these may have been moved again by π. In
particular, considering conditions 3 and 4 of Definition 2.3, their individual match
will have possibly moved each by additional vectors of magnitude < 2ε2

50dn1. This is
a total displacement of size less than εn.

For condition 5 we define the matched set G of π to be the following collection
of N boxes:

(i) the matched set of π1, i.e. the N2 blocks matched by π1, and
(ii) the N -blocks in Gj ∩ S.

The collection of indices satisfying (i) is by hypothesis larger than cnd. For (ii),
note that the Gj were such that each |Gj | > cnd

1. In restricting to S, we throw away
less than 2d ε

4dnd
1 + 2dNnd−1

1 indices in each good n1-grid box in order to consider
only those N blocks entirely contained in the ε

4d -interior of the n1-grid box. This is
less than ε of each good n1-grid box. So we have included at least (c−ε) proportion
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of each good grid box in the matched set of π. Thus of the part left unmatched by
π1 we have matched a proportion no less than

(c− ε)(proportion of unmatched indices of ω ◦ π1 in good grid boxes).

Now we count the number of unmatched indices of ω ◦ π1 in good grid boxes.
An index not in a good grid box either is not in the grid we are considering, or is
in a bad grid box. This is a set of indices of cardinality less than

2dn1n
d−1 + 2d(2n1 + N2)d−1n1(number of matched N2 boxes)

+ (number of bad base points)nd
1.

Using equation (2), the fact that there are at least εnd unmatched indices, and
our previous calculations about bad base points in the grid, we have that this is
a proportion less than ε

2 + ε
5 of the unmatched indices. Thus the proportion of

unmatched indices of ω ◦ π1 in good grid boxes is at least 1− 7ε
10 .

Putting this all together, we have matched an additional proportion of at least
(c − ε)(1 − 7

10ε). For small enough ε, this is larger than 1
2c. So after applying

the permutation π, we have matched at least c + 1
2c(1 − c) = c1 proportion of the

indices, satisfying condition 5 of (ε, N, c1) matchability.
Finally, we show that condition 6 is satisfied. Note that every ~u,~v in S (the ε-set

of π) is in S1, the ε2

100 -set of π1. In particular, if ~u and ~v are both only moved by
π1, then condition 6 holds automatically.

The only difficulty then arises if one or both of ~u and ~v in S have been moved
by an individual n1-permutation. Suppose ~u is such an index. There are several
cases to consider:

(i) ~v lies in an N2 box matched by π1, or
(ii) ~v lies in a different n1-box from ~u, or
(iii) ~v lies in the same n1-box as ~u.

In cases (i) and (ii) we will use the fact that for such a ~u,~v,

‖~u− ~v‖ >
ε

4d
n1.(5)

In case (i) note that π(~v) = π1(~v), so

‖~u− ~v − (π~u − π~v)‖ ≤ ‖~u− ~v − (π1~u− π1~v)‖ + ‖π1~u− π1~v − (π2π1~u− π1~v)‖,
where π2 is the ( ε2

100d , N, c)-permutation which affects ~u. Since ~u and ~v are in S1,
the first term is less than ε2

100‖~u−~v‖. Note that condition 1 of Definition 2.3 implies
that the magnitude of the vector in condition 3 is less than ε2

100dn1. So by conditions
3 and 4 combined, π2 will have moved ~u by less than ε2

50dn1. Now by equation (5)
we have

‖~u− ~v − (π~u− π~v)‖ <
ε2

100
‖~u− ~v‖+

4ε

50
‖~u− ~v‖ < ε‖~u− ~v‖.

In case (ii),

‖~u− ~v − (π~u− π~v)‖ ≤ 4ε2

100d
n1,

because of conditions 3 and 4 of ε2

100d -matchability. Again by equation (5) we have

‖~u− ~v − (π~u− π~v)‖ ≤ ε‖~u− ~v‖.
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In case (iii), by construction ~u and ~v will lie in the ε2

100d -set of the same n1-
permutation. Hence condition 6 holds, and we are done.

3.2. Proof of Theorem 3.6. Let c1 and c2 be the constants from Definition 3.5,
and pick c < c1 · c2. We will show that the matching condition is satisfied with
this c. The proof of the result for a given ε, N is divided into three parts. First
we define the set W , then for a pair ω, ω′ ∈ W , we define a permutation πω, and
finally we show that πω is an (ε, N, c)-permutation.

Start by finding nonzero ε1, ε2 such that c = (c1 − ε1)(c2 − ε2), and then set
γ = min{ 1

d ε, ε1,
1
d ε2}. Apply the friendship condition with γ2

100 and an arbitrary N
to find an integer n0 large enough that

N

n0
<

γ

16
(6)

and there exists a set Wn0 of n0-names with µ(Wn0) > 1 − γ2

100 such that every
ω ∈ Wn0 has a set of friends, F (ω).

Now apply the pointwise ergodic theorem to obtain an integer n1 large enough
that there is a set Un1 of n1-names with

µ(Un1) > 1− γ

100
and for all x ∈ Un1 and all n0-names ω,

|~v ∈ Bn1 : T~vx ∈ ω|
|Bn1 |

∈
(

µ(ω)− γ

100
, µ(ω) +

γ

100

)
.

Applying the ergodic theorem again, we obtain n2 such that for n ≥ n2 there is
a set of n-names W with µ(W ) ≥ 1− γ

50 , such that for x ∈ W we have

|~v ∈ Bn : T~vx ∈ Un1 |
|Bn| > 1− γ

50
and

|~v ∈ Bn : T~vx ∈ Wn0 |
|Bn| > 1− γ

50
.

Now take n > n2 such that

d(n1 + 3n0)
n

<
γ

100
,(7)

and consider the set W as described above. We will show that W satisfies the
statement of the theorem.

Take ω, ω′ ∈ W . We will now construct an (ε, N, c)-permutation for this pair.
Consider those indices in ω which lie in Bn−(n1+2n0). Note that by equation (7)

we have
|Bn−(n1+2n0)|

|Bn| > 1− γ

100
.(8)

Hence the proportion of Bn−(n1+2n0) in ω which is not in Wn0 must be less than
γ
25 .

Now consider all R~v with ~v ∈ Bn0 , the n0-grids of Bn−(n1+2n0), and their base
points r~v. Since Bn−(n1+2n0) =

⋃
~v∈Bn0

r~v, there must be a grid with all but γ
25 of

its base points in Wn0 .
Fix this grid R~v, and draw the identical grid on ω′. Note that

|R~v| > |Bn| − d(3n0 + n1)nd−1.(9)
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Using this with (7) and the properties of W , we have that in ω′ the proportion of
indices in this grid which are not locations of Un1 is less than γ

25 . Thus there is a
vector ~r ∈ Bn0 such that for at least

1− (
γ

25
+

γ

25
) = 1− 2γ

25
(10)

of the grid boxes:
1. in ω′ this location is an occurrence of Un1 , and
2. in ω this is a location in an n0-grid box whose base point is an occurrence of

Wn0 .
Call such an n0-grid box in ω a “good” box, and call the n1-name in ω′ in location
~r its associated n1-name. For a good grid box its associated n1-name is at least
c1− γ

100 full of its friends. Thus one location in Bn1 , say ~m, is such that for c1− γ
100

of the good boxes, the location ~m +~r in its associated n1-name is the base point of
a friend. Let G be this subset of good boxes in ω. Then by equations (7),(9) and
(10) we have

|G| > (c1 − γ)|Bn|.(11)

Finally we can define πω . First define π1 : Bn → Bn by π1(~v) = ~v + ~r + ~m
for ~v ∈ Bn−(n0+n1). The indices in the edges of Bn which are dislocated by the
translation will be moved by π1 to arbitrary indices vacated by the translation.
Notice that after applying π1 to ω, the n0-names in G are lined up with a friend in
ω′. Now define πω : Bn → Bn by first applying π1 and then, on the n0-names in G,
applying the permutation given by the ( γ2

100 , N, c2) matchability of the two friends.
We now show that πω is the permutation that satisfies (ε, N, c) matchability.

Recall that G consists of n0-grid boxes in ω which line up with friends after applying
π1. Each such n0-name has a γ2

100 -set Si which is the union of N -boxes, and |Si| >
(1 − γ2

100 )|Bn0 |. Let S̃i be the union of those N -boxes which lie entirely in the γ
16

interior of Bn0 . We have thus eliminated at most 2d( γ
16n0 + N)nd−1

0 indices from
Si, which by (6) is less than dγ

4 nd
0. Thus |S̃i| > (1 − γ2

100 − dγ
4 )|Bn0 |. Now set S to

be the union of these S̃i plus the n0-boxes of the grid not in G. Then by the above
calculation, equation (8), and our choice of γ, we have |S| > (1− ε)|Bn|. This gives
us condition 1 of Definition 2.3.

Now take ~u,~v ∈ S. If ~u,~v lie in the same n0-box, by construction

‖π(~u)− π(~v)− (~u− ~v)‖ <
γ2

100
‖~u− ~v‖ < ε‖~u− ~v‖.

Otherwise, suppose ~u,~v are from distinct n0-boxes. If both are n0-boxes not in G,
then

‖π(~u)− π(~v)− (~u− ~v)‖ = 0.

If at least one n0-box is in G, we have from ( γ2

100 , N, c2) matchability that
‖π(~u) − π(~v) − (~u − ~v)‖ < 2 γ2

100n0. Because we are only considering the γ
16 in-

terior of the n0-boxes in G, we also have ‖~u− ~v‖ ≥ γ
16n0. So

‖π(~u)− π(~v)− (~u− ~v)‖ < ε‖~u− ~v‖,
and condition 6 is satisfied.

Without loss of generality we can assume n0 is a multiple of N , and thus condition
2 is also satisfied.
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Next notice that all the indices in S were first shifted by the vector ~m + ~r
satisfying ‖~m + ~r‖ < n0 + n1. Since S is contained in the subbox of Bn which is a
distance n0 + n1 from the edge of Bn, condition 3 of Definition 2.3 is satisfied.

The permutation π further moves the N -boxes found in G by amounts given by
the ( γ2

100 , N, c2) matchability of their respective n0-boxes. Their total translation
is thus less than n0 + γ2

100n0, which by (7) and our choice of γ is less than εn, as
required for condition 4.

Recall that Si was the γ2

100 -set of a good box and S̃i ⊂ Si was the subset of Si

of N -blocks which were entirely in the γ
16 -interior of Bn0 . Let

⋃
Gi be the union

of those N -blocks in all the S̃i’s which were matched perfectly by the ( γ2

100 , N, c2)
matchability. Then |⋃ Gi| > (c2 − dγ

4 )|G|, and hence, by (11) and our choice of γ,
|⋃ Gi| > (c2 − dγ

4 )(c1 − γ)|Bn| > c|Bn|.
Since conditions 1 through 6 of Definition 2.3 are satisfied, we have that ω, ω′ ∈

Ŵ are (ε, N, c) matchable, as wanted.

4. k point extensions

Let k ≥ 2 be an integer. To define a k-point extension of the ergodic, zero entropy
Zd action (X, µ, T ) we let {c1, . . . , ck} denote the discrete space with k points.
We think of each ci as representing a different color. Let X = X × {c1, . . . , ck},
A = A× 2{c1,...,ck}, and µ(A× {c}) = 1

kµ(A), where A ∈ A and c ∈ {c1, . . . , ck}.
Let Sk denote the symmetric group on k symbols. Let h : X × Zd → Sk be a

measurable T cocycle. So for every ~m,~n ∈ Zd we have

h(x, ~m + ~n) = h(x, ~m) ◦ h(T~m(x), ~n).

We can then define a Zd-action {T h
~v } in the following way:

T h
~v (x, c) = (T~v(x), h~v(x)c).

For any such extension, if T has zero entropy then T h also has zero entropy. If
P1 is a generating partition for T , then P = P1 ∨ {{c1}, . . . , {ck}} is a generating
partition for T h. We call it the extension of P1. For the remainder of this section
we fix P1, a generating partition for T , and set P as above.

For 1 ≤ i ≤ d we denote the measurable functions h : X × {~ei} by hi. We say
the extension (X,A, µ), T h is trivial if hi is constant for every i.

In this section we will first show that if (T h, P ) is an ergodic trivial extension of
a zero entropy LB system, then (T h, P ) is LB. We will then prove the result for a
non-trivial k-point extension by reducing the argument to the trivial case.

Theorem 4.1. If T is an ergodic, zero entropy and LB Zd action, and T h is an
ergodic trivial k-point extension of T , then T h is LB.

Proof. Let P be the extension of a generating partition of T . Since P is a generating
partition for T h, by Corollary 3.7 it suffices to show that (T h, P ) satisfies the
friendship condition. We will show that (T h, P ) satisfies Definition 3.5 with c1 =
c2 = 1

2k .
Let 0 < ε < 1

2k and N ∈ N be fixed. Find δ < ε and n1 ∈ N satisfying Lemma
2.5. Since (X, T ) is LB, we can assume n1 is such that for every n > n1 and δ-a.e.
n-names ω and ω′, fn(ω, ω′) < δ. Let this set of atoms be the set Wn, and put
Wn = {ω : ω is an extension of ω ∈ Wn}. For ω ∈ Wn, we will construct a set
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F (ω). We will do this by showing that every other atom in Wn has an extension
which belongs to F (ω). This will be done by first finding the proposed extension,
showing that the collection of such things has sufficient measure, and then showing
that indeed such extensions can be matched to ω.

So fix ω, an extension of ω, and let ω′ be another point in Wn. By Lemma 2.5
we have that ω, ω′ are (ε, N, 1− ε) matchable. Let π be the permutation satisfying
the matchability conditions.

Consider G, the matched set of π. Say G =
⋃

Gi, where each Gi is a matched
N -block. Denote their counterparts in ω′ by {G′

i} and the corresponding colored
boxes in ω by {Gi}. We know that ω′ has exactly k extensions and the color at every
index is different in different extensions. Call the extensions ω′

j for j = 1, . . . , k.
We denote the corresponding colorings of G′

i by G
′
i,j .

Look at the color at the lower left hand corner of box Gi in ω. In one of the
G
′
i,j , the color at the lower left hand corner must be the same as in Gi; hence the

entire N -box must have the same coloring as in Gi. This is true for every i, so
there is a j ∈ {1, . . . , k} such that for at least 1

k of the boxes Gi, π matches Gi

perfectly with G
′
i,j in ω′

j . Call such an extension of ω′ a good extension, and set
F (ω) = {ω′ ∈ Wn : ω′ is a good extension of ω′ ∈ Wn}.

By the argument above it is clear that

µ(F (ω)) ≥ 1
k
µ(W n) >

1
k

(1− δ) >
1
k
− ε

k
>

1
2k

,

as desired.
We now want to show that, for ω′ ∈ F (ω), ω and ω′ are (ε, N, 1

2k ) matchable.
Let S and π be as defined by the matchability on the base space, so all condi-

tions of Definition 2.3 except condition 5 are automatically satisfied. To see that
condition 5 holds, note that the indices in G, the matched set of π applied to the
extension, is a subset of the indices in G, the original matched set. Our earlier
argument shows that

|G| ≥ 1
k
|G| > 1

k
(1− ε)|Bn|,

so condition 5 is satisfied with c = 1
2k .

Theorem 4.2. If T is an ergodic, zero entropy and LB Zd action, and T h is an
ergodic k-point extension of T , then T h is LB.

Proof. Let P1 be a generating partition for T , and for 1 ≤ i ≤ d let Ei =
{h−1

~ei
(σ)}σ∈Sk

. The partition P2 = P1 ∨E1 ∨ . . .∨Ed is also a measurable, generat-
ing partition for T ; hence its extension P is generating for T h. Since T is LB, then
(T, P2) is also LB.

Note that with the partition P , every P2-name ω has exactly k extensions, the
color at every index is different for different extensions, and knowing the color of
one index determines the color of a whole box. In fact, with this partition we can
treat the extension as though it were a trivial extension. The argument now follows
as in the proof of Theorem 4.1.

5. Isometric extensions

In this section we let (C, ρ) be a compact, homogeneous metric space and G be
the group of all isometries of C. Note that G is then a compact group [3]. Let m be
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the G-invariant measure on C, and (X, µ, T ) a free, measure preserving, ergodic,
zero entropy Zd action. Suppose h : X × Zd → G is a measurable T cocycle.
Namely, for all ~n, ~m ∈ Zd we have that

h(x, ~n + ~m) = h(x, ~n) ◦ h(T~nx, ~m).(12)

If for ~n ∈ Zd we define T h : X × C → X × C by

T h
~n (x, c) = (T~nx, h(x, ~n)(c)),

then by equation (12), T h will be a measure preserving Zd action on (X×C, µ×m).
T h will have the same entropy as T [3]. We will refer to T h as a compact group
extension of T .

Theorem 5.1. Let (X, µ, T ) be a free, ergodic and measure preserving, zero en-
tropy, and LB Zd action. Let (C, ρ) be a compact, homogeneous metric space and
G be the group of all isometries of C. Let h : X × Zd → G be a T cocycle, and
suppose T h is an ergodic isometric extension of T . Then T h is LB.

Proof. Let T and h be as above. We abbreviate hi(x) = h(x,~ei) for each dimension
1 ≤ i ≤ d. Denote µ × m by µ̂. Take a partition P of X which is a generating
partition for T , and a partition Q on C such that the topological boundary of Q
has measure zero, and such that P × Q is a generating partition for T h. We now
show that (T h, P × Q) is LB. Since T is zero entropy so is T h. Thus we need to
prove that (T h, P ×Q) satisfies Definition 3.1.

We will do two simplifications: we will approximate Q by a simpler partition R,
and we will approximate each hi by a step function. The outline of the proof is
as follows. We will initially use the partition R and a weakened sense of matching
of PL × R names to find modified friends for a large set of atoms, where PL is
a refinement of P to be determined later and where we will later make the term
“modified friends” precise. We will then use our previous machinery to proceed
to a large set of atoms all of which are modified friends, and then to conclude a
modified form of LB. Finally, we will remove this modification and prove that T h

is LB.
Fix ε > 0 and N ∈ N. Suppose R is a partition of the space C into r elements,

and label the sets of R initially in arbitrary order by {R1, R2, . . . , Rr}. Let

d1 = min
i∈{1,...,r}

{diam(Ri)}, d2 = max
i∈{1,...,r}

{diam(Ri)},
β1 = min

i∈{1,...,r}
{m(Ri)}, β2 = max

i∈{1,...,r}
{m(Ri)}.

For the alphabet of the partition R, construct a labeling scheme so that by reading
the label assigned to set Ri we can identify all sets Rj such that

ρ(Ri, Rj) ≤ 2d2.(13)

We will say that two sets Ri, Rj which satisfy (13) are adjacent.
Let

ε1 < min
{

ε

12Nd
,

d2

Nd

}
(14)

and choose L > 0 so large that there are functions h̃i : X → G such that
1. if ω ∈ ∨

~v∈BL
T~vP , then h̃i(x) = gi for every x ∈ ω, 1 ≤ i ≤ d, and

2. for ε1-almost every x ∈ X , ρ(hi(x), h̃i(x)) < ε1, 1 ≤ i ≤ d.
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We will now use the partition PL =
∨

~v∈BL
T~vP instead of P . Since PL is a

refinement of P , P L×Q is also a generating partition for T h and it suffices to show
LB for this partition.

Let B = {x : ρ(hi(x), h̃i(x)) > ε1 for some 1 ≤ i ≤ d}. Then µ(B) < ε1.
Applying loosely Bernoulli and the ergodic theorem to the base, we obtain n > 0

and a set of atoms Wn such that

µ(Wn) > 1− ε

3
,(15)

ω, ω′ ∈ Wn are
(

ε

3
, N, 1− ε

3

)
matchable,(16)

and the set H = {x : |~v ∈ Bn : T~vx ∈ B|/|Bn| < 2ε1} has measure

µH > 1− ε2

18
β1

4β2
.(17)

Next, consider the atoms of Wn. We will call an atom ω “good” if

µ(ω ∩Hc) <
1
4

β1

β2

ε

6
µ(ω).(18)

Consider only those atoms in Wn which are good, and still call this new set Wn.
Then

µ(Wn) > 1− ε

3
− ε

3
.(19)

Fix an atom ω from Wn and consider all the PL ×R, n-names which have ω as
their PL label. We call these the extension atoms of ω. We want to consider only
those extension atoms which are substantially covered by the set H×C. We define
an extension-atom ω̂ to be “bad” if µ̂

(
ω̂∩ (Hc×C)

)
> 1

2 µ̂(ω̂). Since every ω ∈ Wn

is a good atom in the base space, we have that for a fixed good base atom ω, the
measure of all the bad extension atoms of ω is less than ε

3µ(ω).
Let Ŵn =

⋃
ω∈Wn

{ω̂ : ω̂ is a good extension of ω}. Then

µ(Ŵn) > (1 − ε

3
)(1 − ε

3
− ε

3
) > (1− ε).

For the rest of our work with P L × R names we will modify our notion of
matching. Let ω̂ and ω̂′ be two PL×R names. We will say that the R-labels i and
j at any index ~v in ω̂ and ω̂′ agree if equation (13) is satisfied for this Ri and Rj .

We now fix ω̂ ∈ Ŵn and let ω be its PL labeling. We will find a set of friends
for ω̂ with this new notion of matchability. Consider any atom ω′ in Wn. By our
construction of Wn we know that there is an ( ε

3 , N, 1 − ε
3 ) match π : Bn → Bn

between ω and ω′. Thus we know most of the indices of ω can be divided into
N -blocks so that π matches most of these blocks perfectly to N -blocks in ω′.

By our construction of Wn, we know we can find x ∈ ω and x′ ∈ ω′ such that
x, x′ ∈ H . We wish to remove from consideration those matched N -blocks which,
in the orbit of either x or x′, contain an occurrence of the set B. By the definition
of H we know that there are less than 2ε1n

d occurrences of B in either block of the
orbit; hence we will have thrown away at most 4ε1n

d N -blocks. By equation (14)
this is a set of indices of proportion less than ε

3 of an n-name.
Call the first lexicographic index of any N -box its base point. Consider one of

the remaining N -boxes in ω̂, and suppose the R-labeling at ~v, its base point, is i.
We claim the following: of the extension atoms of ω′ which lie in Ŵn, those which
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see the R-label i at index ~π(v) have measure at least β1
2 and at most β2

2 . To see
why, note that at least β1 and at most β2 of the set of all extension atoms of ω′ have
R-label i at index π(~v). Of the set of points in this collection of extension atoms, at
most β2µ(ω′ ∩Hc) are in Hc ×C. We are considering only those extensions which
are at least half covered by H , so we remove from consideration a collection of atoms
of measure at most 2× β2µ(ω′ ∩Hc), which is less than 2β2

1
4

β1
β2

εµ(ω′). This leaves
us with a collection of extension atoms of measure at least β1µ(ω′) − β1

2 εµ(ω′) >
β1
2 µ(ω′).

So, for each such base point ~v in ω, and for any other ω′ ∈ Wn, at least β1
2 µ(ω′)

of the extension atoms of ω′ have R-labels at π(~v) which agree with the R-label ~v

in ω. Thus for at least β1
4 µ(ω′) of the extensions of ω′, the R-label must agree with

ω̂ at the base point of at least β1
4 of the remaining N -boxes of ω.

Take these extensions over all atoms ω′ ∈ Wn, and call this set F̂ (ω̂). Note that
by the above calculation and condition (19) we have

µ(F̂ (ω̂)) >
β1

4
µ(Wn) >

β1

4
(1− ε) >

β1

8
.(20)

We now argue that for all ω̂′ ∈ F̂ (ω̂), ω̂ and ω̂′ are friends in the modified sense
of matching. Fix ω̂′ ∈ F̂ (ω̂) and consider an N -box in ω̂ ◦ π for which the PL-label
agrees with the N -box at the same location in ω̂′ and the R-label at ~v and π(~v)
(the respective base points of the N boxes) is the same. Let x and x′ be as before.

Since the PL-labels of the N -boxes agree, the points x and x′ visit the same PL

elements in those pieces of their orbit. Hence for every ~m = (m1, ..., md) ∈ BN and
i = 1, . . . , d we have

h̃i(T~v+~mx) = h̃i(T π(~v)+~mx′).(21)

Recall that we are only considering N -blocks which don’t contain an occurrence of
B in either orbit. Further, by our choice of L we have, for each ~m = (m1, · · · , md) ∈
BN ,

(22) |h(T~vx, ~m)− h̃1(T~vx)− ...− h̃1(T~v+m1~e1+...+md−1~ed−1x)

− ...− h̃d(T~v+m1~e1+...+(md−1)~edx)| ≤ ε1dN,

and the same is true for x′. So for any ~m ∈ BN the difference in the rotations given
by h(x, ~m +~v) and h(x′, ~m+π(~v)) cannot differ by more than 2ε1dN . By equation
(14) this is less than d2. So, if the R-label at ~v and π(~v) is the same in ω̂ and ω̂′,
then the R-labels at ~v + ~m in ω̂ and π(~v) + ~m in ω̂′ must match in the modified
sense. Hence, the R-label of the entire N -block in ω̂ ◦π must match in the modified
sense that in ω̂′.

Thus, in the modified sense, we have ( ε
3 , N, β1

4 (1− ε
3 − ε

3 )) matchability between
ω̂ and ω̂′, and T h satisfies a modified friendship condition with c1 = c2 = β1

8 . We
can argue, as in Corollary 3.7, that this will yield a modified version of LB.

We now argue that (T h, P ×Q) satisfies Definition 3.1.
Fix ε > 0. By our above comments and a modified version of Lemma 2.5 we

know we can find m > 0 such that for all n > m there is a set Ŵn of PL×R atoms
with µ̂Wn > 1 − ε

2 , and all ω̂, ω̂′ ∈ Ŵn are (modified) fn-close enough that they
are ( ε

2 , N, 1− ε
2 ) modified matchable.

Suppose that the partition R was constructed so that β2 in our above discussion
was small enough that if A is the collection of sets in R which either intersect the
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boundary of Q or lie adjacent to a set which intersects the boundary of Q, then A
has measure less than ε

8Nd . Let

Ĉ =
{

(x, θ) :
|~v ∈ Bn : T h

~v (x, θ) ∈ X ×A|
|Bn| <

ε

4Nd

}
,

and using the ergodic theorem assume m is large enough so that, for all n > m,
µ̂Ĉ > 1− ε

2 . Now throw away from Ŵn any atom ω̂ for which µ̂(ω̂ ∩ Ĉ) = 0. Call
the remaining set Ŵn, and note that µ̂Ŵn > 1− ε.

Fix ω̂ and ω̂′ in Ŵn, and (x, θ) ∈ ω̂ and (x′, θ′) ∈ ω̂′ such that (x, θ), (x′, θ′) ∈ Ĉ.
By the definition of C we know that by throwing away at most ε

2Nd |Bn| N -boxes,
we can guarantee that each modified matched N -box does not visit a set from the
collection A along the orbit of x and x′. Note that this eliminates a set of indices
< ε

2 |Bn|.
On the remaining N -blocks it now follows that each R-set corresponds to a

unique element of the partition Q. Hence we can, in a well defined manner, erase
the R-labels and replace them by Q labels. Further, by equation (13) any two
sets whose labels agree in the modified sense and do not belong to A must lie in
the same Q element. Hence, on the remaining N -boxes in ω̂ and ω̂′, the modified
R-label match translates to an actual Q-label match.

It follows then that the (PL, Q) names are ( ε
2 , N, 1 − ε) matchable. Hence

fn(ω̂, ω̂′) < ε, and we are done.
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