
Swarthmore College Swarthmore College 

Works Works 

Mathematics & Statistics Faculty Works Mathematics & Statistics 

1-1-2008 

Hermit Points On A Box Hermit Points On A Box 

R. Hess 

Charles M. Grinstead 
Swarthmore College, cgrinst1@swarthmore.edu 

M. Grinstead 

Deborah J. Bergstrand 
Swarthmore College, dbergst1@swarthmore.edu 

This work is brought to you for free and open access by . It has been accepted for inclusion in Mathematics & 
Statistics Faculty Works by an authorized administrator of Works. For more information, please contact 
myworks@swarthmore.edu. 

Follow this and additional works at: https://works.swarthmore.edu/fac-math-stat 

 Part of the Mathematics Commons 

Let us know how access to these works benefits you 

 

Recommended Citation Recommended Citation 
R. Hess, Charles M. Grinstead, M. Grinstead, and Deborah J. Bergstrand. (2008). "Hermit Points On A Box". 
College Mathematics Journal. Volume 39, Issue 1. 12-23. 
https://works.swarthmore.edu/fac-math-stat/132 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Works

https://core.ac.uk/display/84122059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://works.swarthmore.edu/?utm_source=works.swarthmore.edu%2Ffac-math-stat%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://works.swarthmore.edu/fac-math-stat?utm_source=works.swarthmore.edu%2Ffac-math-stat%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://works.swarthmore.edu/math-stat?utm_source=works.swarthmore.edu%2Ffac-math-stat%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://works.swarthmore.edu/fac-math-stat?utm_source=works.swarthmore.edu%2Ffac-math-stat%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=works.swarthmore.edu%2Ffac-math-stat%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://forms.gle/4MB8mE2GywC5965J8
mailto:myworks@swarthmore.edu


 
Hermit Points on a Box
Author(s): Richard Hess, Charles Grinstead, Marshall Grinstead and  Deborah Bergstrand
Source: The College Mathematics Journal, Vol. 39, No. 1 (Jan., 2008), pp. 12-23
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/27646562
Accessed: 19-10-2016 15:27 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access
to The College Mathematics Journal

This content downloaded from 130.58.65.20 on Wed, 19 Oct 2016 15:27:09 UTC
All use subject to http://about.jstor.org/terms



 Hermit Points on a Box
 Richard Hess, Charles Grinstead, Marshall Grinstead, and
 Deborah Bergstrand

 Richard Hess (rihess@cox.net) has a BS in physics from
 Caltech (1962) and a PhD in physics from Cal, Berkeley
 (1966). He spent a technical and management career at
 Logicon, Inc., retiring as a vice president in 1993. He has
 an avid interest in recreational mathematics, problem
 solving, and mechanical puzzles. He is also a lifelong
 tennis player and tennis fan, often travelling to enjoy grand
 slam tennis tournaments.

 Charles Grinstead (cgrinstl @cc.swarthmore.edu)
 received his BA from Pomona College in 1974 and his PhD
 from UCLA in 1978. He has taught at Swarthmore College
 since 1981. His mathematical interests include probability,
 combinatorics, and number theory. He is the co-author
 (with J. Laurie Snell) of an on-line probability book. His
 non-mathematical pursuits include hiking and tennis.

 Marshall Grinstead (mstead@caltech.edu) was a student
 at Strath Haven High School in Wallingford PA when this
 paper was begun. He is currently at Caltech, where he is
 majoring in party construction and beverage procurement
 with a minor in mechanical engineering. When he is not
 studying, he enjoys badminton and windsurfing.

 Deb Bergstrand (dbergstl @swarthmore.edu) received
 her BS in 1975 from Allegheny College in Meadville, PA,
 and her PhD from the University of Illinois at Chicago in
 1980. After many years at Williams College, she now
 teaches at Swarthmore. She has done research in graph
 theory and enjoys pedagogical writing as well as teaching
 workshops in mathematics. Off the job, she loves opera,
 gardening, and being a mom.

 Once upon a time, a mathematician named Herman decided to leave the hustle and
 bustle of Earth and become a hermit on Bachs, a newly-discovered asteroid. This as
 teroid had been named for the famous composer and his sons by a music-loving as
 tronomer. Its shape was that of a giant rectangular parallelepiped (see Figure 1). One
 can imagine Herman's surprise when, upon arriving, he discovered that another her
 mit, also named Herman and also a mathematician, had already taken up residence on
 this world. To avoid confusion, in what follows we will refer to these two hermits as
 Hesse and Melville (in the obvious order).

 Being hermits, they decided to build their huts as far from one another as possible.
 As we do on Earth, they took the distance between two points on Bachs to be the length
 of the shortest path between them on the surface. Thus, they wanted to find two points
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 Figure 1. The asteroid Bachs.

 on the asteroid that were farthest apart. We will refer to such pairs of points as hermit
 points.

 At first glance, the obvious answer would seem to be that Hesse and Melville should
 live at antipodal corners of Bachs (two corners are antipodal if they lie on a line that
 contains the center of Bachs). However, it turns out that antipodal corners are not
 always hermit points. Consider, for example, the case where the edge lengths of Bachs
 are 1, 1, and 2 miles (see Figure 2). A path between a pair of antipodal corners that
 lies on two adjacent 1x2 faces has length >/8 miles, so this is an upper bound on the
 distance between these points (there may be another path that is shorter). Now let P
 and Q be center points on opposite lxl faces. To get from P to Q we must travel at
 least 1/2 mile to leave P's face, at least 2 miles to get to ?'s face, and then at least 1/2

 mile more to reach ?, for a total distance of at least 3 miles. Thus the distance from P
 to Q is clearly greater than the distance between antipodal corners.

 Figure 2. A 1 x 1 x 2 box.

 Hesse and Melville found all pairs of hermit points for all rectangular paral
 lelepipeds. They transmitted to us their solution and a proof of its correctness. We
 thank them for giving us permission to publish their results.

 Similar problems have been studied for over a hundred years [7]. According to
 Singmaster [7], Dudeney posed the Spider and Fly Problem in 1932. In this problem,
 a spider and a fly are on different walls of a rectangular room with given dimensions.
 The problem is to determine the shortest path along the walls from the spider to the
 fly. Kotani's Ant Problem is a generalization of this; it asks for the point farthest from
 a corner of a 1 x a x b box, for general a and b. Knuth [4] asked for the pair of points
 that are farthest apart on a 1 x 1 x 2 box. This problem, for general boxes, has been
 explored and partially solved by Bottomley [1] and Hess [3]. Bottomley's website
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 gives a solution along with great graphics and interactive applets, but does not prove
 that the solution is correct.

 Hesse and Melville thought of their problem in the following way: Assume that the
 huts are on two specified faces of the asteroid, with coordinates (xh, yh) and (xm, ym)
 (these coordinates are rectangular, and are relative to the faces on which the huts sit).
 For each such pair of points, calculate the lengths of all possible paths between them,
 and decide which one is the shortest; this shortest length is the distance between the
 two points. Finally, maximize the distance over the set of all pairs of points. Thought
 of in this way, this is a maximization problem involving four variables.

 The hermits were ecstatic to learn of the following result of Vilcu [8], which an
 swered a question posed by Propp [5].

 Theorem 1. Let S be a convex surface with a center of symmetry O. If the points
 x and y on S are as far apart as possible, then they are antipodal, that is, symmetric
 through O.

 This result immediately reduces the problem to one involving only two variables,
 because once Hesse's hut is placed, they knew that Melville's hut must be placed at the
 antipodal point, so they needed only to calculate the distance to this antipodal point.
 Because they wanted to solve the problem for general parallelepipeds, the problem has
 three parameters, namely the edge lengths of the parallelepiped, in addition to the two
 variables. It is easy to see how to reduce the number of parameters by one; simply
 divide all three by the smallest edge length. Thus, they assumed that Bachs had edge
 lengths 1, a, and b, with 1 < a < b. In what follows, we will call such a box a standard
 box.

 Determining distances
 A geodesic between two points on a surface is a path between the two points whose
 length equals the distance between the two points. Hesse noted that on any rectangular
 box, any section of a geodesic that lies on just one face will be a straight line.

 Melville noted that if the box is unfolded in the right way, the geodesic will be a
 straight line in the plane. To see why this is true, consider a geodesic that passes from
 one face to another. If we flatten these two faces into the plane, and the geodesic is not
 a straight line on the flattened faces, then we can make the path shorter by straightening
 it out. Thus, given a geodesic, we can travel along it, flattening into the plane the faces

 we encounter. There are many ways to unfold a box, however, so care is required to
 determine an unfolding that yields a geodesic.

 After playing with many different models of their asteroid, Hesse conjectured that
 the hermit points always lie on the smallest faces, that is, the a x 1 faces. (In an incred
 ible coincidence, when working on this problem here on Earth, the first author made
 exactly the same conjecture!) When Melville heard this conjecture, he went off onto a
 corner to think about it.

 Melville realized that he could determine the distance between antipodal corners,
 and he could show that pairs of antipodal points on faces other than the smallest ones
 were closer to one another than this distance. This shows that either pairs of antipodal
 corners are hermit points or else the pairs of hermit points lie in the interiors of the
 smallest faces. We now give his proofs of these facts.

 Lemma 1. The squared distance between antipodal corners on a standard box is
 (a+l)2 + 62.
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 Proof. If we begin at a corner of the box and proceed towards the antipodal corner
 along a geodesic, then this geodesic goes along a face (allowing the possibility that the
 geodesic lies on an edge of this face). At the point where the geodesic leaves this first
 face, the antipodal corner is in view along a face. Thus, the geodesic must proceed in a
 straight line towards the antipodal corner. For this reason, geodesies between antipodal
 corners can be realized by proceeding on exactly two faces. Figure 3 shows the three
 possible geodesies between arbitrary antipodal corners P and Q. They have squared
 lengths ia + l)2 + b1, ib + l)2 + a2, and ia + b)2 + l2. Since we have assumed 1 <
 a < b, the first value is the minimum.

 Figure 3. Possible geodesies between antipodal corners.

 Theorem 2. Pairs of hermit points on a box always lie on the smallest faces.

 Proof Let P and Q be antipodal points that lie in the interiors of the a x b faces.
 Figure 4 shows a path from P to Q with squared distance equal to ia + l)2 + t2, where
 t < b. By Lemma 1, P and Q are not as far apart as pairs of antipodal corners and thus
 are not hermit points. An analogous argument applies for points on the 1 x b face.

 P

 Figure 4. Antipodes on large faces are not hermit points.

 We now know that all pairs of hermit points lie on the 1 x a faces. By symmetry we
 need only consider points P in the lower left quadrant of one face. The next challenge
 is to find the actual distance between such a point P and its antipode Q. Figure 5
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 presents a schematic way to consider all possible geodesies from P to Q. There are
 twenty-eight copies of Q that correspond to paths crossing no more than six faces of
 the box. Two copies of Q are labelled as Q\ and Q2, and these will be used below.
 Only one lxl? and a x b face are shown, but their images can be imagined to realize
 any path from P to Q that crosses six or fewer faces. Numerous elementary arguments,
 examples of which will be given later in this section, allow us to reduce the twenty
 eight paths to only five possible geodesies, none of which crosses six faces.

 1 a 1

 02

 1 a 1

 ?l

 Figure 5. Schematic drawing suggesting all 28 paths between two antipodal points.

 Figure 6. A five-face path.

 In Figure 6, we show the path from P to Q\, together with the faces it crosses. This
 figure should be compared with Figure 7, which shows a "path" from P to Q2. In the
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 latter case, the path does not exist, because the straight line from P to Q2 "misses" the
 fifth face. All four 3-face paths in Figure 5 clearly exist. By a simple comparison of
 slopes it is not hard to show that all eight 4-face paths exist as well. Five-face paths are
 trickier. There are boxes with pairs of hermit points that have 5-face geodesic paths as
 suggested by Figure 5. We will show that in this case, a 4-face geodesic also exists.
 Thus we need not be concerned that the 5-face geodesic may not really exist.

 Figure 7. A path that doesn't exist.

 Now we get down to the business of calculating distances. Working with Figure
 5, we define a coordinate system with the origin at the lower left corner of the a x 1
 face containing Pix, y). Note that 0 < x < a/2 and 0 < y < 1/2. The twenty-eight
 squared distances between P and each copy of Q can then be written analytically. By
 symmetry, each squared distance occurs twice on the list, which reduces the total to
 fourteen. Further elementary comparisons reduce the list to five:

 Si = ib + 2x)2 + i\+o)2
 S2 = ib + x + y)2 + (1 + a - x - y)2
 S3 = ib + a)2 + il-2y)2
 SA = ia + \)2 + ib + 2y)2
 S5 = ia- 2x)2 + ib + l)2.

 Here are some sample arguments for eliminating the other nine squared distances.
 Remember that for given a, b,x, and y we want the smallest squared distance. One of
 the 6-face paths has squared distance ia + b + \ ? x ? y)2 + (2 + 2a ? x ? y)2. If
 we compare this expression to S2, we see that S2 is always smaller, so the given 6-face
 path cannot be a geodesic.

 One of the 5-face paths has squared distance equal to ia -\- b + \ ? x ? y)2 +
 (?x ? y)2. If we subtract S2 from this, we are left with 2Z?(1 ? 2y + a ? 2x), which
 is always non-negative because of the constraints on x and y. Thus, if this 5-face path
 is a geodesic, then it has the same length as S2, which corresponds to a 4-face path, so
 this 5-face path can be ignored.

 Arguments such as these can be used to show that the squared distance between
 antipodal points P = ix, y) and Q on a standard box will always be one of the five
 values above. Note also that when both x and y are nonzero, S\ and S4 correspond to
 5-face paths, S2 corresponds to a 4-face path, and S3 and S5 correspond to 3-face paths.
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 Finding the hermit points
 For fixed a and b, we can find the hermit points in the following way:

 1. Let P(x, y) be in the lower left quadrant of an a x 1 face (so 0 < x < a/2 and
 0 < y < 1/2), and let Q be the antipode of P.

 2. Find the smallest value of Si, S2, S3, S4, and S5, thereby finding the squared
 distance between P and Q.

 3. Vary x and y to maximize the squared distance between P and Q.

 By computing partial derivatives for each squared distance, it is easy to check that
 none achieves a maximum in the interior of the lower left quadrant. Thus, the max
 imum distance can occur only for P on the boundary of the quadrant or at interior
 points where at least two of the five squared distances are equal.

 To help us visualize further how each squared distance behaves as x and y vary,
 consider a box with a = 1.4 and b = 1.6. Figure 8 shows the lower left quadrant of
 the a x 1 face. Lines are drawn showing where each of Si, S2, S3, S4, and S5 has its

 Figure 8. Curves showing minima and some intersections of squared distances.
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 minima. Also plotted are the curves where Si = S4, S2 = S3, and S2 = S5, the signifi
 cance of which will be clear shortly. These three curves have the following forms:

 Si = S4 : x = y
 S2 = S3 : y2 - y(b + 1 - a + 2x) + x(a + 1 - b - x) + ab - a = 0
 S2 = S5 : j2 + y(b - a - 1 + 2x) + jc(ft + a - 1 - jc) - b + a = 0.

 Notice also that at x = y = 0, Si = S2 = S4.
 Now we imagine ourselves in the quadrant at a point P(x, y) whose distance to its

 antipode is S? for some i. We make a small change in our position in order to increase
 the value of S?. Because no S? has a local maximum inside the quadrant, this will
 always be possible until we run into a curve where S? = S7 for some j ^= i or until
 we reach the boundary of the quadrant. Specifically, we start at the upper right corner
 where x = a/2 and y = 1/2. At this point, S5 is never larger than the other squared
 distances, so it gives a geodesic from P to its antipode. S5 can be increased by moving
 left along the top edge. Because y remains constant and x is decreasing, this motion
 decreases Si and S2 while leaving S3 and S4 unchanged. We move along the top edge
 until we reach the point where S2 = S5 (point A in Figure 9). It is straightforward to
 show that throughout this motion, Si and S4 will remain greater than S5, if the 5-face
 paths corresponding to these squared distances even exist. Thus at point A we have
 y = 1/2, and we solve S2 = S5 for x to get

 a + b - J(a + b)2 - 2b + 2a - 1
 X =-2-'

 and the squared distance simplifies to

 S = 3b2 + a2 + lab + 2a- 2by/{a + b)2-2b + 2a-\ . (1)

 Figure 9. The triple point.
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 For certain values of a and b, S3 will be less than or equal to S2 at point A. This
 occurs when

 b y/b4 + 2b3 + b2-2b-l-b3 a <-Tz---.

 We let fib) denote the expression on the right. If the above inequality holds, we move
 down along the curve S2 ? S5 as long as S3 increases, stopping at the point B where
 S2 = S3 = S5. Figure 9 shows such a case, with a = 1.05, b = 1.6, and B marking the
 point of triple intersection. We call B a triple point. It is straightforward to show that
 B lies above the line y = x, the line where Si = S4. Above this line Si < S4, so we
 just check that S2 (= S5) is still smaller than Si, allowing us to ignore both Si and S4
 at the triple point.

 If the line where S2 is a minimum goes through the quadrant, it is also necessary to
 check whether S2 is larger at (0,0) than at A or B. First we look at A. When a > fib),
 S2 at A is given by the expression S in (1) above. (If a < fib), then only B need be
 considered.) At (0, 0), S2 equals (1 + a)2 + b2. We compare these two distances and
 find that S2 is larger at the corner than at the point A if a > b ? 1/2 + l/(4&). The
 example in Figure 9 is just such a case, with the hermit points occurring at (0, 0).

 Before we move on to comparisons with the triple point B, it will help to look at
 some more examples. Figure 10 shows several plots, each for fixed values of a and b.
 Each plot shows the squared distance for points (jc, y) in the quadrant, so the highest
 point on the surface corresponds to the hermit point.

 Figure 10. Sample hermit points.
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 Figure 10(a) shows that for a = 1.03 and b = 1.2, the hennit point is clearly at the
 corner of the box. Figure 10(b) shows that when we keep a = 1.03 but increase b to
 1.4, the hermit point still appears to be at the corner, though in this case the triple point
 is also visible. Figure 10(c) shows that increasing b further to 1.5 gives us the hermit
 point at the triple point. Finally, Figure 10(d) shows that for a = 1.2 and b = 1.6, the
 hermit point occurs at point A along the upper boundary of the quadrant.

 To find the coordinates of B, we set the three squared distances S2, S3, and S5 equal,
 obtaining the following fourth-degree equation

 16jc4 + I6x3(b - 2a) + 4x2(5a2 - Sab + 2b + 1)

 + 4x(2b2 - lab2 + 4a2b + b - a - 3ab - a3)

 + (b2 - 2ab3 + 2b3 - 2ab + 3a2b2 - 4ab2 - 2a3b + 4a2b) = 0.

 While one can solve this quartic using a computer, the results are too scary to give here
 explicitly.

 We know that at B, we have S = S5 = S2 = S3. As pointed out earlier, we need to
 compare S2 at B with S2 at the corner (x = y = 0). The point with the larger squared
 distance will be the hermit point in the quadrant. We first find the value of x that makes
 S5 at B equal to S2 at the corner. Evaluating S5 for this x, we set the result equal to S3
 and solve for y. The results are

 a - *j2a + a2 - 2b , l-y/l+2a- 2ab x =- and y = -. 2 2

 Finally, we substitute x and y into S2 and subtract the value of S5 from the result. The
 values of a and b for which the distances at the triple point B and the corner are equal
 are those for which

 -a - y/2a +a2 - 2Z?Vl + 2a - 2ab + b(^2a + a2 - 2b + Vl + 2a - 2ab) = 0.

 This curve thus defines the boundary between between those standard boxes with her
 mit points at the corners and those standard boxes with hermit points at the triple
 points.

 Figure 11 summarizes our analysis, showing how the general solution separates into
 three cases. Values of a and b determine a point (a, b) in the plot. Because a < b, the
 point will lie on or above the line a = b. If the point lies in the region labeled V, then a
 standard box will have eight hermit points at the corners of the box (hence the label V
 for vertices). In region C the standard box will have four hermit points at the centerline
 points (previously labeled A) at distance x from the unit edge on the a x 1 face where

 a + b - J(a + b)2 - 2b -f 2a - 1 x = -.
 2

 In region F the standard box will have eight hermit points on the a x 1 face at points
 determined by the fourth-degree equation given previously. We note that for points
 along the left boundary of region F, where a = 1, boxes will have hermit points along
 the 1 x 1 diagonal at distance x = y from both edges, where x and y have the much
 more accessible form

 1 -b + <s/b2 - 1
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 1.1 1.2 1.3 1.4 1.5

 Figure 11. Regions corresponding to different hermit points locations for the 1 x a x b box.

 The three boundary curves in Figure 11 meet at the common point ia,b), where

 1 + (271 + 6V633)1/3 + (271 - 6V633)1/3 1 a = - ~ 1.119458
 12

 and

 6+(324+12V633)1/3 + (324-12X/633)1/3 ^ AA?** b = - ^ 1.446645.
 12

 These values are roots of the equations

 4a3 - a2 - 3a - 1 = 0 and 4Z?3 - 6??2 + b - 1 = 0.

 All of the boxes corresponding to points (a, b) lying on the VF-boundary in Figure
 11 have eight pairs of hermit points (except at the right-hand endpoint of this boundary,

 where some of these pairs coalesce). For example, the point (a,b) = (1, y/2) lies on
 the VF-boundary. The box corresponding to these values is a 1 x 1 x \?2 box with
 eight pairs of hermit points (four pairs of antipodal corners and four pairs of triple
 points). The triple points lie on the diagonals of the lxl face, at a distance of \[2 ? 1
 from the closest corner. The hermit points on this box are at distance \/6 from their
 antipodes. Figure 12 shows the squared distances from points on the lxl face to their
 antipodes; the eight hermit points are clearly visible.

 We end with a question that we believe to be unsolved. Given a tetrahedron in
 R3, find the pair of points on its surface that are farthest apart. The solution of this
 problem will involve different techniques from the ones employed in this paper, due
 to the paucity of right angles on the surface of a general tetrahedron. If the reader has
 an interest in pursuing this question (as some of the present authors are doing), we
 point out that Schoenberg [6] found necessary and sufficient conditions for a set of six
 positive real numbers to be the edge lengths of a tetrahedron.
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 ._- " X\0-2

 ^ A J^L ^^H \o-6
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 O

 Figure 12. Squared distances on the lxl face of the 1 x 1 x \/2 box.
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 Teaching Tip: An Introduction to eix without Series

 James Tanton (jamestanton@stmarksschool.org), St. Mark's School,
 Southborough, MA 01772

 When introducing the exponential function (see the article by Byungchul Cha in the
 September 2007 issue, pp. 288-296) as the solution of the initial value problem

 dy ? = y withj(O) = 1, dx

 tantalize your students with this:
 Since both y = elx and y = cos x 4- i sinx are solutions to the initial value problem

 dy ? = iy with y(0) = 1, dx

 does this mean they are equal? And so does ein = ?1?
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