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Letter

The Generation of Novelty: The Province of
Developmental Biology

In his op-ed piece, “Forty years a philosopher of biology: Why
EvoDevo makes me still excited about my subject,” Michael
Ruse (2006) presents a tamed version of EvoDevo which will
trouble no waters and which would integrate easily into the
existing framework of evolution proposed by the population
geneticists of the 1930s. In that paper, and even more explicitly
at the conference “The Making Up of Organisms” (Ecole Nor-
male Supérieure, Paris, June 8–10, 2006), Ruse opined that
natural selection alone has the power to create evolutionary
novelty. In both instances, he cited our 1996 paper (Gilbert
et al. 1996) and quoted the following paragraph from it:

The homologies of process within morphogenetic fields provides the
best evidence for evolution—just as skeletal and organ homologies
did earlier. Thus, the evidence for evolution is better than ever. The
role of natural selection in evolution, however, is seen to play less
an important role. It is merely a filter for unsuccessful morphologies
generated by development. Population genetics is destined to change
if it is not to become irrelevant to evolution as Newtonian mechanics
is to contemporary physics.

Strong words. But I would contend that the past decade
has proven those words remarkably accurate. Ruse, on the
other hand, declares them to be “hogwash.” “Hogwash” is a
technical term in American rural philosophy, meaning “I don’t
have the data, but I know it to be wrong.” Taking a leaf from
the Creationists’ instruction manual (e.g., Wells 2005), Ruse
then portrays the EvoDevo statement as being anti-Darwinian,
continuing, “I think that Charles Darwin himself would be
incredibly excited by the findings of EvoDevo—he was ever
fond of embryology—and argue that EvoDevo will comple-
ment natural selection, not contradict it.” Michael, the sup-
plementation of natural selection is precisely what EvoDevo
is trying to do. Take for instance the question of how novel-
ties of the arthropod body plan arose. Hughes and Kaufman
(2002) begin their study, “To answer this question by invok-

ing natural selection is correct—but insufficient. The fangs of a
centipede . . . and the claws of a lobster accord these organisms
a fitness advantage. However, the crux of the mystery is this:
From what developmental genetic changes did these novelties
arise in the first place?” Even in the 1996 paragraph quoted
above, we merely thought to give natural selection a less im-
portant role, not abandon it. Similarly, in all of my writings on
EvoDevo (e.g., Gilbert 2003, 2006), I have stressed the com-
plementary nature of the population-genetic approach and the
developmental-genetic approach. However, where we differ is
that I think that natural selection has to relinquish its claim
to being the sole (or even the major) mechanism for generat-
ing diversity. Natural selection oversteps its bounds when its
advocates claim that it both generates and selects variation.
Generating variation is the province of development.

The notion that natural selection could create variation ex-
ists because until recently the only genetics available to explain
evolution was population genetics. Genetics was (as Kettlewell
would claim), “Darwin’s missing evidence.” But both popu-
lation genetics and developmental genetics have to be recog-
nized. Darwin did not have a theory of variation. The genetics
of the 20th century gave an inkling of what might be involved.
Gray moths could become darkly peppered moths when ex-
posed for generations to a darkened habitat. Those moths that
had more cryptic coloration and could avoid predators survived
to mate and their descendents had the more protective wings.
Was natural selection creating novelty? Only by expanding the
definition of natural selection to include development. Muta-
tion and recombination were invoked as mechanisms by which
genes could be altered to generate evolutionary innovations.
But this really isn’t “natural selection,” it’s more of a general
statement about some unknown set of mechanisms active in
development.

Darwin (1859) realized that selection could not act upon
traits that had not yet appeared, noting that “characters may
have originated from quite secondary sources, independently
from natural selection.” He continued this line of reasoning
in his book on variation and domestication (Darwin 1883:
p. 282), where he admits, “the external conditions of life are
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Letter The Generation of Novelty

quite insignificant, in relationship to any particular variation,
in comparison with the organization and constitution of the
being which varies. We are thus driven to conclude that in
most cases the conditions of life play a subordinate part in
causing any particular modification.” At best natural selection
“creates” novelty by preparing a permissive environment for
it. Thus, if variant A is more likely to arise from variant B
than from variant C, then if the environment selects for B, the
appearance of A is more probable. But this says nothing about
the generation of A and why such generation is more likely
from B. The mechanisms allowing B (but not C) to give rise
to A are part of development (indeed, the “classic” area of
developmental constraints).

Developmental genetics now has such a theory of evo-
lutionary variation (reviewed in Carroll et al. 2005; Gilbert
2006). The tenets of these theories involve transcription factors
and paracrine factors, concepts that were unknown to Darwin
and to the architects of the Modern Synthesis. First, there are
two major preconditions for developmental alterations that can
generate morphological change. The first is gene duplication
wherein genes can make copies of themselves and the sis-
ter genes mutate independently to assume different functions.
Entire families of genes (Hox genes, globin genes, cadherin
genes, TGF-β genes) have been produced this way. The second
precondition is modularity. Modularity pervades development
(Raff 1996; Schlosser and Wagner 2004). This means that a
change can occur in one area of the body and need not affect
another. Indeed, one of the most important aspects of EvoDevo
is that not only are the anatomical units modular (such that
one part of the body can develop differently than the others),
but the DNA regions that form the enhancers of genes (telling
the gene when, where, and how much it can be transcribed) are
also modular. Thus, if a particular gene loses or gains a mod-
ular enhancer element, the organism containing that particular
enhancer allele will express that gene in different places or
at different times or different amounts than those organisms
retaining the original allele. These changes can cause different
morphologies to develop (Sucena and Stern 2000; Shapiro et
al. 2004; Maas and Fallon 2005). Modular units allow cer-
tain parts of the body to change without interfering with the
functions of other parts.

The importance of enhancer modularity in evolution has
been dramatically demonstrated in three-spine stickleback
fishes. Freshwater sticklebacks evolved from marine stick-
lebacks about 12,000 years ago, as the marine populations
colonized the newly formed freshwater lakes at the end of the
last ice age. The marine sticklebacks have a pelvic spine that
serves as protection against predation by other fish. It lacerates
the mouths of those fish who would try to eat it. The fresh-
water sticklebacks, however, do not have these pelvic spines.
This may be because they lack the predators that the marine
fish have and the predators of the freshwater sticklebacks are

invertebrates that capture them by grasping onto such spines.
Thus, the freshwater populations of this species have evolved
a pelvis without such lacerating appendages.

To determine which genes might be involved in this dif-
ference between marine and freshwater populations, David
Kingsley’s laboratory (Shapiro et al. 2004) mated individuals
from certain marine populations (with pelvic spines) and fresh-
water populations (without spines). The resulting offspring
were bred to each other and produced numerous progeny, some
of which had pelvic spines and some of which didn’t. Using
molecular markers that could identify specific regions of the
parental chromosomes, they found that nearly all the fish with
pelvic spines had a portion of chromosome 7 from the ma-
rine parent, while nearly all the fish that lacked pelvic spines
obtained this region from the freshwater parent. This genetic
region contained the gene-encoding transcription factor Pitx1.

When they compared the amino acid sequences of the
Pitx1 protein between marine and freshwater sticklebacks,
there were no differences. However, there was a critically im-
portant difference when they compared the expression patterns
of the Pitx1 gene between these species. In both species, Pitx1
was seen to be expressed in the precursors of the thymus, nose,
and sensory neurons. In the marine species, Pitx1 was also ex-
pressed in the pelvic region. But in the freshwater populations,
the pelvic expression of Pitx1 was absent or severely reduced.
Since the coding region of Pitx1 is not mutated (and since the
gene involved in the pelvic spine differences maps to the site
of the Pitx1 gene, and the difference between the freshwater
and marine species involves the expression of this gene at a
particular site), it is reasonable to conclude that the enhancer
region containing the information to express Pitx1 in the pelvic
area no longer functions in the freshwater fish. Thus, the mod-
ularity of the enhancer has enabled this particular expression
domain to be lost, and with it the loss of the pelvic spine. No
other function of Pitx1 had to be disturbed.

In addition to the two preconditions for evolution by
changing development, EvoDevo has also recognized four
mechanisms of bricolage which are responsible for produc-
ing these variations (Arthur 2004; Gilbert 2006):

– heterotopy (change in location)
– heterochrony (change in time)
– heterotypy (change in kind)
– heterometry (change in amount).

Although these mechanisms can be employed at any level of
development, I will focus on the level of transcription, since
investigations have focused on this area and because it is the
most gene-oriented. References to the papers here can be found
in Gilbert (2006).

Heterotopy of gene expression involves changing the types
of cells expressing a particular gene. Heterotopy of Fgf10
expression in the turtle dermis may explain the formation of
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the carapace (Cebra-Thomas et al. 2005). Gremlin expression
in the interdigital web of the duck hind limb (where it is not
seen in the chicken or mouse) goes a long way to explaining
how ducks got their webbed feet. Indeed, Gremlin inhibits
the signal for programmed cell death, and if Gremlin protein
is added to embryonic chick foot webbing, the chick foot
becomes webbed, too. The different expression patterns of
the Ubx and Abd genes between lobsters and shrimp explain
the divergence of the animals in our seafood platters, and the
difference in the epidermal expression of BMP2 and Shh genes
explains how feathers may have evolved from scales. Indeed,
the proximate cause of the Genesis curse against snakes is
the heterotopic expression of the Hoxc-6 gene during snake
embryonic development, where altered expression prevents
limb development.

Heterochrony of gene expression involves the timing of
gene expression. The origin of the vertebrate jaw comes, in
part, from heterochronic gene expression (Shigetani et al.
2002), as does the elongation of the bat digits necessary to
produce the wing (Sears et al. 2006). In this latter example, the
gene encoding the paracrine factor BMP2 is expressed in the
digital mesoderm for a longer period of time compared to that
of other mammals. Heterotypy concerns changing the actual
protein that is being made. Heterotypy of the gene encoding the
Ultrabithorax (Ubx) transcription factor may explain why in-
sects have just six legs, while other arthropod groups (think of
spiders, millipedes, centipedes, and shrimp) have many more.
The Distal-less gene in arthropods is essential for leg forma-
tion. Throughout most families of the arthropod lineage, Ubx
protein does not inhibit the Distal-less gene. However, in the
insect lineage, a mutation occurred in the Ubx gene wherein
the original 3′ end of the protein-coding region was replaced
by a group of nucleotides encoding a stretch of about ten
alanine residues. This polyalanine region functions as a re-
pressor of Distal-less transcription. When a shrimp Ubx gene
is experimentally modified to encode this polyalanine region,
it, too, represses the Distal-less gene. The ability of insect
Ubx protein to inhibit Distal-less thus appears to be the result
of a gain-of-function mutation that characterizes the insect
lineage.

Heterometry involves changing the amount of gene ex-
pression. Evolution only rarely proceeds by total loss of func-
tion. Rather, the alterations of the amount of function can give
different phenotypes. One way of providing such variations
is to alter the amount of gene transcription. Indeed, some of
the best examples of heterometry in action are Darwin’s cel-
ebrated finches. Systematists have shown that these species
evolved in a particular manner, with one of the major separa-
tions being between the cactus finches and the ground finches.
The ground finches have evolved deep, broad beaks that en-
able them to crack seeds open, whereas the cactus finches
have evolved narrow pointed beaks that allow them to probe

cactus flowers and fruits for insects and flower parts. Devel-
opmental research demonstrates that species differences in the
beak pattern are caused by changes in the growth of the neu-
ral crest-derived mesenchyme of the frontonasal process (i.e.,
those cells that form the facial bones). Abzhanov and his col-
leagues (2004) found a remarkable correlation between the
beak shape of the finches and timing and amount of BMP4 ex-
pression. No other paracrine factor showed such differences.
The expression of BMP4 in ground finches started earlier and
was much greater than the expression of BMP4 in cactus finch
beaks. In all cases, the BMP4 expression pattern correlated
with the broadness and deepness of the beak. Experimentally
adding BMP4 will deepen chick beaks.

Another example of heterometric variation involves the
evolution of the IL4 gene in human populations. Most of
human variation (both pathological and nonpathological) does
not come from changes in the structural genes. Rather it
arises from mutations in the regulatory regions of these genes
(Rockman and Wray 2002; Rockman et al. 2003). A single
base pair mutation in the enhancer of the IL4 gene creates
a new binding site for transcription factor NFAT, a more
rapid transcription of IL4 and higher levels of that protein.
Moreover, population genetic studies show that this regulatory
allele has been positively selected in particular populations
and not others. Having this allele appears to be advantageous
in those populations exposed to intestinal helminth parasites.
However, this is not an exonic mutation in the actual protein;
rather, it is an enhancer of the gene encoding this regulatory
protein.

Recent research in developmental biology has also shown
that in addition to producing new evolutionary variants, these
four mechanisms also explain such evolutionary phenomena
as parallel evolution (which has been used to justify the notion
that natural selection is itself “creative”). Comparative devel-
opmental studies of the insect eye (Oakley and Cunningham
2002), stickleback fish armor plates and spines (Colosimo et al.
2004, 2005), as well as avian and Drosophila pigment patterns
(Gompel et al. 2005; Mundy 2005) show that parallel evolu-
tion results from the independent recruitment of similar de-
velopmental pathways by different organisms. Thus, the loss
of the pelvic spines in other stickleback species appears to be
caused by independent losses of the Pitx1 expression domain
mentioned earlier (Colosimo et al. 2004). Instead of extrin-
sic selection pressures being thought to play a dominant role
in such phenomena, intrinsic developmental factors are now
seen to play a critical role in producing these parallel variations
(Hall 2003; Rudel and Sommer 2003; West-Eberhard 2003).1

What we see here is variation caused by developmental
mechanisms. I have emphasized those involving gene tran-
scription because these are the mechanisms closest to the genes
themselves. These four mechanisms each involve changes
in gene transcription during embryonic development. They
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each involve the signaling molecules whereby cell fates are
determined—transcription factors and paracrine factors. They
change the way the embryo is constructed and thereby change
the phenotype in ways that natural selection can then test. Nat-
ural selection alone generates neither novelty nor variation.
Development does. Natural selection can clear the area so that
these new variants can spread through a population, and it
can promote an environment permissive for such change. But
the motor of evolutionary innovation is not natural selection;
it is development. Biodiversity can be explained only when
population genetics and developmental biology complement
each other; but this can happen only if the proponents of nat-
ural selection allow developmental biology its proper place as
an explanatory agent. Darwin originated much of evolution-
ary theory; but he lacked a theory of variation. His colleague
Thomas Huxley (1878/1896) was more of an embryologist
than Darwin, and he intuited that variation must be caused by
inherited alterations of development. “Evolution is not a spec-
ulation but a fact;” he wrote, “and it takes place by epigenesis.”

Note
1. Indeed, in some of these papers (especially Colosimo et al. 2004, and 2005
and Rockman et al. 2003) one sees precisely the critical importance of the
population genetics of regulatory alleles, as mentioned in the paragraph that
so offended Ruse.
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