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PECCI CoDE (PYTHON™ ESTIMATION FOR CARBON CONCENTRATION AND
ISOTOPES) FOR CALCULATING THE CONCENTRATION AND STABLE CARBON ISOTOPIC
CoMPOSITION OF DISSOLVED INORGANIC CARBON (DIC) IN PRECIPITATION FOR
NORTHWESTERN ARKANSAS
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PECCI code (Python™ Estimation for Carbon Concentration and Isotopes) for Calculating the
Concentration and Stable Carbon Isotopic Composition of Dissolved Inorganic Carbon (DIC) in
Precipitation for northwestern Arkansas

Katherine J. Knierim® and Phillip D. Hays?

IEnvironmental Dynamics Program, University of Arkansas,
2Department of Geosciences, University of Arkansas

In karst settings, hydrograph separations using isotopic tracers are commonly and effectively used to
guantify the proportions of rain rapidly delivered to springs along fractures and conduits during storm
events. Dissolved inorganic carbon (DIC) is an effective, non-conservative tracer for use in hydrograph
separations of karst waters because of the ubiquitous nature of carbon in the sources of waters to caves
and springs and unique concentrations and isotopic compositions of carbon inputs. DIC concentration
and isotopic composition (63C-DIC) in rain are typically calculated based on atmospheric carbon dioxide
(CO,) using equilibrium carbonate reactions and stable carbon isotope fractionation values. As
atmospheric CO, changes, traditional assumptions applied in attaining calculated values can result in
error, and better estimates of rain DIC are needed. The concentration and isotopic composition of rain
DIC in the karst of northwestern Arkansas was calculated using Python™ programming language based on
local atmospheric CO; and rain pH data from 2011 to 2013. Python™ provides an open-source code and
rapid means to complete iterative calculations, and the PECCI code (Python™ Estimation for Carbon
Concentration and Isotopes) can be used for rain DIC calculations in other areas. Measured northwestern
Arkansas atmospheric CO; had a median concentration of 397.7 +4.3 ppm and increased slightly over
three years and median 8'3C-CO, was -8.5 +0.4 %o. Rain samples exhibited a median pH of 5.6 +0.4.
Calculated rain DIC ranged from 0.17 to 0.34 mg/L and 8"3C-DIC ranged from -8.5%o to -8.2%0 between 5
and 30 °C. At an average annual temperature of 14.6 °C, rain DIC was calculated to be 0.25 mg/L and §3C-
DIC was -8.34 %o.. Although the variations in DIC are small, the concentration and isotopic composition of
end-member sources in hydrograph separations controls the final hydrologic budget calculations. The
PECCI code can be modified to calculate rain DIC for other study sites or time periods.
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Introduction

Mixing models that quantify source-water
contributions to karst spring flow can better
constrain pollutant flux, providing a means to
mitigate contamination in vulnerable karst
recharge zones (Doctor et al., 2006; Trcek et al.,
2006). The mixing models—or hydrograph
separations—when applied across a storm event
use geochemical tracers (e.g., specific
conductance or chloride) or isotopic tracers (e.g.,
52H-H,0, 60-H,0, or §3C-DIC) to quantify the
proportion of rain delivered by various
groundwater pathways to streams or springs
during storm events (Lee and Krothe, 2001; Klaus
and McDonnell, 2013; Knierim et al.,, 2013).
Source-water contributions moving along quick-
flow pathways convey pollutants in an
unattenuated form into the subsurface and are
the focus of many studies (Mahler and Garner,
2009; Lee and Krothe, 2001; Tréek et al., 2006).
Features such as sinkholes, losing-stream
segments, and dissolution-enlarged conduits are
defining elements in karst (Ford and Williams,
2007), and allow rain and surface water to
rapidly enter the subsurface, thus contributing
to the quick-flow component of a storm event
(Lee and Krothe, 2001). Although preferential
groundwater flow paths allow for rapid
infiltration, pre-event water stored in the
recharge zone can contribute substantial
volumes (>50 %) to storm-flow discharge (Doctor
et al., 2006; Lee and Krothe, 2001; Mahler and
Garner, 2009; Trcek et al., 2006; Knierim et al.,
2013). Pre-event water may be further
separated into vadose, epikarst, or phreatic
water contributions in karst aquifers and
includes pathways where water movement is
slow relative to groundwater flow rates
observed along preferential flow paths (Lee and
Krothe, 2003; Knierim et al., 2013). The soil and
epikarst can be important zones for
biogeochemical processing of nutrients and
bacteria that may otherwise enter the karst
aquifer with little to no attenuation (Peterson et
al.,, 2002; Winston, 2006; Laincz, 2014), so
understanding the volume of water stored in
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these zones is important for developing karst
hydrologic budgets.

Dissolved inorganic carbon (DIC) is a useful, non-
conservative tracer for karst waters because of
the ubiquitous nature of carbon in the sources of
water to caves and springs (Doctor et al., 2006;
Knierim et al., 2013). When non-conservative
tracers are used in mixing models, the isotopic
composition and concentration of the species
must be accounted for because the isotopic
composition reflects the solute dissolved in
water, but not the water itself (Lee and Krothe,
2001). The amount of inorganically derived
carbon in karst depends on pH, temperature,
and the relative openness of the system for
continuing input of carbon dioxide (CO,)
(Fairchild et al., 2006; Clark and Fritz, 1997). DIC
concentration and isotopic composition (83C-
DIC) can be calculated for a solution with a
known pH and temperature in equilibrium with
a gaseous CO; reservoir (Clark and Fritz, 1997).
DIC concentration and 8'3C-DIC in precipitation
are typically calculated based on atmospheric
CO; using equilibrium carbonate reactions and
stable carbon isotope fractionation values (Clark
and Fritz, 1997; Lee and Krothe, 2001; Das et al.,
2005), although one study has directly measured
DICin rain (Gorka et al., 2011).

Accurate end-member compositions are critical
for generating representative hydrograph
separations (Klaus and McDonnell, 2013), and
rain (representative of event water or quick
flow) often constitutes one of the end-member
sources to storm-event flow in karst aquifers
(Knierim et al.,, 2013; Lee and Krothe, 2001;
Mahler and Garner, 2009). Atmospheric CO,
varies over time (Forster et al., 2007) and space
(Wei et al., 2014), so DIC in rainfall must also
show concentration and isotopic variability.
Constraining the variability of end-member
sources can be one of the more difficult
challenges for calculating hydrologic budgets
using hydrograph separations (Kendall et al.,
2001; Klaus and McDonnell, 2013); therefore,
better estimates of rain DIC are needed. The
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concentration and isotopic composition of rain
DIC in the karst of northwestern Arkansas was
calculated in Python™ programming language
using the PECCI code, or Python™ Estimation of
Carbon Concentration and Isotopes, based on
atmospheric CO; and rain pH data from 2011 to
2013. Python™ provides an open-source code
and rapid means to complete iterative carbonate
geochemistry calculations, and the PECCI code
can be used for rain DIC calculations in other
areas.

Study Site

Northwestern Arkansas is situated in the Ozark
Plateaus Physiographic Province (Ozarks), which
is one of the major karst areas in the world
(Weary and Doctor, 2014) and includes inter-
bedded clastic and carbonate lithologies on
three gently dipping plateaus (Adamski et al.,
1995). Karst features such as sinkholes, caves,
springs, and losing-stream segments are
common in the Ozarks because of the secondary
porosity developed in Paleozoic carbonate units.
Northwestern Arkansas is part of the humid
climate karst (Weary and Doctor, 2014) and
receives an average 109 cm of precipitation
annually (Adamski et al., 1995). Rainfall tends to
follow a bimodal distribution, with precipitation
peaking in May (13.8 cm/month) and September
(10.5 cm/month) (Knierim et al., in press).
Surface temperature ranged from -6.3 to 29.7 °C
from January 1895 to December 2012, with a
median temperature of 14.6 °C (National
Oceanic Atmospheric Administration, 2013).

Methods

Data Acquisition

Atmospheric CO; and rain pH data were
obtained from sites near northwestern Arkansas
to calculate the concentration and isotopic
composition of DIC in rain using equilibrium
carbonate reactions and stable isotope enrich-
ment values. CO concentration and &'3C-CO,
data were obtained from the National Oceanic

4

and Atmospheric Administration’s (NOAA) Earth
System Research Laboratory for the Southern
Great Plains, Oklahoma (SGP) site (National
Oceanic Atmospheric Administration, 2014c,
2014b), which is approximately 300 km west of
northwestern Arkansas. Monthly CO, concen-
tration data were from 2011 to 2013 and
monthly §'3C-CO, data were from 2012 to 2013.
Rain chemistry data were obtained from NOAA’s
National Trends Network for the Fayetteville,
Arkansas (AR27) site and monthly laboratory pH
values were from 2011 to 2013 (National
Atmospheric Deposition Program, 2014).

Carbonate Geochemistry

Equilibrium dissolved carbonate species concen-
trations can be calculated when gaseous CO,,
pH, and temperature are known (Clark and Fritz,
1997; Dreybrodt, 1988). DIC includes the total
amount of inorganic carbon dissolved in a
solution (Dreybrodt, 1988):

DIC = C; = H,CO% + HCO3 + COZ™ 1

where H,COs" includes dissolved CO; (COzaq)
and carbonic acid (H,CO3), HCOs is bicarbonate,
and COs* is carbonate. Atmospheric CO,
dissolves in rain to yield the H,COs"species, and
under equilibrium conditions H,COs" is defined
by the equation:

H,C03; = 107PKco, x pCoO, 2

where pKco, is a temperature-dependent
equilibrium constant (Table 1) (Plummer and
Busenberg, 1982) and pCO; is the partial
pressure of gaseous CO; in atmospheres. H,CO3"
disassociates in water to form HCOs5', and under
equilibrium conditions HCOs is defined by the

equation:

HCO; = 107P%1 X H,CO3 szCO; 3
H

where pK; is a temperature-dependent

equilibrium constant (Table 1) (Plummer and

Busenberg, 1982) and H+ is the concentration of

hydrogen ions in solution, as defined by pH.

Knierim and Hays, 2014
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HCOs™ disassociates in water to form COs%, and
under equilibrium conditions CO3* is defined by
the equation:

—pKsy _
coz = 10 Hcho3
where pK; is a temperature-dependent
equilibrium constant (Table 1) (Plummer and
Busenberg, 1982). In Equations 2 through 4,
chemical activity was assumed to equal the
concentration of a species because the activity
coefficient approaches 1 for very dilute solutions
(Dreybrodt, 1988), such as precipitation.
Equations 1 through 4 were encoded using
Python™ and used to calculate the concentration
of DIC in rain and the proportion of carbonate
species, as controlled by pH.

Isotopic fractionation occurs for each carbonate
speciation step when CO; dissolves in water,
hydrates into H,COs", and dissociates into
HCOs and COs*; each resultant carbonate
species has an empirically derived, temperature-
dependent enrichment factor, or € (Table 1)
(Clark and Fritz, 1997). For each carbonate
species pair, where a carbon-isotope exchange is
possible, € describes the difference in isotopic
compositions between species, and a gross
enrichment factor can be used to sum the total
result of these exchanges. The gross fraction-

ation between aqueous DIC and gaseous CO;
(e™Coicco,(e) is dependent on the proportion of

carbonate species in solution and defined by the
following equation (Clark and Fritz, 1997,
Peyraube et al., 2013):

13 _ (.3
€°CpIc—Coyq) = (5 Cco,(aq—co, X

H,CO;5 HCO3
2 3/DIC) + (513CH603—602 X 3/DIC) +

co3~
(5136112603—602 x °73 /DIC) >

Equation 5 was encoded using Python™ and
applied to calculate the isotopic composition of
DIC in rain, as controlled by the proportion of
carbonate species calculated using Equations 2
through 4.

Data Analysis

The concentration of DIC in rain was calculated
using Equations 1 through 4, incorporating pH of
rain from AR27, atmospheric CO, concentration
from SGP, and temperature-dependent
carbonate equilibrium constants (Table 1).
Median values for CO, concentration and rain pH
were used in the calculations. The 6*C-DIC in
rain was calculated using Equation 5,
incorporating the isotopic composition of
atmospheric CO, from SGP, and temperature-

Table 1. Carbonate equilibrium constants and stable carbon isotope enrichment values.

Temperature Temperature  €3Ccosaqr €3Chcoz-  €3Ccos-
(°C)* pKecoz  pKi pK2  pKsp (°C)** oo oo oo
0 1.11 6.58 10.63 8.38 0 -1.2 10.9 114
5 1.19 6.52 10.55 8.39 5 -1.2 10.2 9.8
10 1.27 6.46 1049 8.41 10 -1.1 9.6 9.2
15 1.34 6.42 10.43 8.43 15 -1.1 9.0 8.6
20 1.41 6.38 10.38 8.45 20 -1.1 8.5 8.1
25 1.47 6.35 10.33 8.48 25 -1.1 7.9 7.6
30 1.52 6.33 10.29 8.51 35 -1.0 6.9 6.6
45 1.67 6.29 10.20 8.62 50 -1.0 5.5 5.2
60 1.78 6.29 10.14 8.76 75 -0.9 3.3 3.2

* Carbonate equilibrium constants from (Plummer and Busenberg 1982)

**Carbon isotope enrichment values from (Clark and Fritz 1997)

Knierim and Hays, 2014
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dependent isotopic enrichment values (Table 1).
The median 8'C-CO, value was used in the
calculations. Calculations were completed in
five-degree temperature increments from 5 to
30 °C based on the range of temperatures
observed in northwestern Arkansas (National
Oceanic Atmospheric Administration, 2013). The
PECCI code can be found in the Appendix.

Results and Discussion

Atmospheric CO,

Atmospheric CO, in northeastern Oklahoma
ranged from 386.9 to 404.6 ppm (Table 2) with
a median concentration of 397.7 +4.3 ppm
between January 2011 and December 2013 (Fig.
1), exhibiting a slight increase and over time (Fig.
2). Atmospheric §'*C-CO; ranged from -10.0%o
to -8.2%o (Table 3) with a median value of -8.5
10.4 %o between January 2011 and December
2012 (Fig. 3). Globally, the concentration of
atmospheric CO, is increasing and 63C-CO,
values are decreasing over time due to
anthropogenic fossil fuel combustion and land-
use changes (Forster et al., 2007). These global
relations can be observed in the CO, data from
SGP; CO; increased by 4 ppm over three years
(Fig. 2) and 6'3C-CO, decreased by 1 %o over two
years (Fig. 4). In the absence of direct
measurements of alkalinity or DIC, atmospheric
CO; concentration is required to calculate DIC in
rain (Eqn. 2), so changes in atmospheric CO;
concentration over time (Forster et al., 2007)
and space (Wei et al.,, 2014) need to be taken
into account. Additionally, when using DIC as an
isotopic tracer, local 63C-CO, values should be
used because atmospheric CO; isotopic
compositions also vary globally (National
Oceanic Atmospheric Administration, 2014a).
Direct measurement of DIC in precipitation has
shown that atmospheric CO, and DIC in
precipitation may not always be in equilibrium
(Gérka et al.,, 2011), but constraining local
variations in CO, concentration and isotopic
composition should provide a better estimate of
rain DIC than using global values.

6

Table 2. Atmospheric CO; concentration from
Southern Great Plains, Oklahoma (SGP).

Date CO; Date O,

(ppm) (ppm)

Jan. 2011  400.75 Jul. 2012 394.22
Feb.2011 400.21 Aug.2012 393.91
Mar. 2011  399.46 Sep. 2012  396.54
Apr.2011 398.64 Oct. 2012  398.83
May. 2011  394.33 Nov. 2012  400.50
Jun. 2011 391.01 Dec. 2012  403.37

Jul.2011  395.48 Jan. 2013  404.15
Aug.2011 394.19 Feb.2013  404.62
Sep. 2011  386.87 Mar. 2013  403.94
Oct. 2011 389.81 Apr.2013  400.52
Nov. 2011  396.72 May. 2013 399.04
Dec. 2011 397.84 Jun. 2013  397.63
Jan. 2012  398.13 Jul. 2013 394.69
Feb. 2012  398.95 Aug.2013  392.45
Mar. 2012  395.29 Sep.2013 394.31
Apr.2012 391.67 Oct. 2013  398.51
May. 2012  394.10 Nov. 2013  402.08
Jun. 2012  396.10 Dec. 2013  404.57

Note: Data from National Oceanic Atmospheric Administration
(2014a)

Table 3. Atmospheric CO; isotopic composition
from Southern Great Plains, Oklahoma (SGP).

53¢c-co, 53¢c-co,
Date (%o) Date (%o)

Jan. 2011 -8.81 Jan. 2012 -8.63
Feb. 2011 -8.81 Feb. 2012 -8.56
Mar. 2011 -8.76 Mar. 2012 -8.44
Apr. 2011 -8.63 Apr. 2012 -8.32
May. 2011 -8.59 May. 2012 -8.38
Jun. 2011 -8.51 Jun. 2012 -8.48

Jul. 2011 -8.33 Jul. 2012 -8.40
Aug. 2011 -8.20 Aug. 2012 -8.29
Sep. 2011 -8.19 Sep. 2012 -8.32
Oct. 2011 -8.26 Oct. 2012 -8.66
Nov. 2011 -8.49 Nov. 2012 -9.37
Dec. 2011 -8.65 Dec. 2012 -9.96

Note: Data from National Oceanic Atmospheric Administration
(2014b)

Knierim and Hays, 2014
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Figure 1. Histogram of atmospheric CO; concentration at Southern Great Plains, Oklahoma from 2011 to
2012.
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Figure 2. Atmospheric CO; concentration at Southern Great Plains, Oklahoma over time.
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Figure 3. Histogram of atmospheric CO; isotopic composition at Southern Great Plains, Oklahoma from
2012 to 2013.

-8.0
-8.5 1
<
s
ON
-9.0 -
Q
(&)
()
"o
-9.5
'1 0 . 0 T T T T T T T
N N N o
& & Q XV Q¥ N &
O O S O O O O
@ w“& %eQ 5@‘\ \S‘S %eQ N
Years

Figure 4. Atmospheric CO; isotopic composition at Southern Great Plains, Oklahoma over time.
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Rain pH

Laboratory pH values from rain samples ranged
from 4.9 to 6.4 (Table 4) and had a median value
of 5.6 £ 0.4 between 2011 and 2013 (Fig. 5). pH
values varied among storm events, but did not
show a trend through time (Fig. 6). The pH
values for precipitation from northwestern
Arkansas were slightly acidic because of the
exchange of atmospheric CO,, NOx, and SO, with
falling rain drops. Most of the measured
precipitation pH values at AR27 were below 6.4
(Fig. 5), and for pH values up to 6.4, DIC will be
dominated by H,COs" (Clark and Fritz, 1997).
The isotopic enrichment factors are much larger
between HCOs or COs* and gaseous CO,
compared to H,COs" and gaseous CO, (Table 1);
therefore, even small proportions of HCOs in
precipitation (as controlled by pH) need to be
accounted for to properly weight the gross

Table 4. Rain pH data from Fayetteville,
Arkansas (AR27).

Date pH Date pH
Jan. 2011 6.05 Jul. 2012 6.22
Feb. 2011 6.44 Aug. 2012 --
Mar. 2011 5.79 Sep. 2012 5.78
Apr.2011 6.02 Oct. 2012 --

May. 2011 5.99 Nov. 2012 --
Jun. 2011 4.92 Dec. 2012 --
Jul.2011 5.14 Jan. 2013  6.00
Aug. 2011  5.06 Feb.2013 5.50
Sep. 2011 5.10 Mar. 2013 5.84
Oct. 2011 5.12 Apr.2013  5.87
Nov. 2011 5.36 May. 2013 5.71
Dec. 2011 5.23 Jun.2013  5.67
Jan. 2012 5.51 Jul. 2013  5.43
Feb.2012 5.40 Aug. 2013 5.50
Mar. 2012 5.92 Sep.2013 5.15
Apr.2012 5.73 Oct. 2013  5.59
May. 2012  6.36 Nov. 2013  5.32
Jun.2012 5.57 Dec. 2013 5.30

‘--“ means data not available
Note: Data from National Atmospheric Deposition Program
(2014)

9

isotopic enrichment between DIC and CO,. For
example, if CO, concentration is 400 ppm and
613C-C02 is -8.0 %o, at rain pH of 6.0, 813CD|c.coz
will be 1.7 %o at 25 °C, which results in §*3C-DIC
of -6.3 %o. If CO; concentration and isotopic
composition are held constant, at rain pH of 4.5,
€3Cpic.co2 will be -1.0 %o, which results in 8*3C-
DIC of -9.0 %o.. Rain DIC isotopic composition can
vary significantly from pH values of 4 to 7,
because of the change in fractionation between
gaseous CO, and H,COs" to HCOs at the critical
pH value of 6.4 (Clark and Fritz, 1997).
Additionally, an end-member rain DIC compo-
sition that varies by 2.7 %o, such as in this
example, will affect subsequent mixing model
calculations and the final hydrograph separation.

DIC in Rain

Carbonate equilibrium constants are temper-
ature dependent, so the concentration of DIC
between 5 and 30°C varied following the
equation:

DIC = 143 x107%T%2 — 119 x 1072T +
3.97 x 107! 6

where T is temperature in °C, and DIC was
converted to mg/L using molar weights.
Calculated DIC in rain for northwestern Arkansas
ranged from 0.17 to 0.34 mg/L between 5 and
30°C (Fig. 7). The proportions of carbonate
species in DIC is controlled by pH and
temperature (Clark and Fritz, 1997) and, for
example, at a median value of 5.6 and 25°C,
H,COs" constituted 86% of DIC.

Isotopic  enrichment between DIC and
atmospheric CO; also varied with temperature

and was defined by the equation:

813CD1C—C02(9) = —3.86 X 10_4T2 + 2.36 X
1072T — 1.04 x 1071 7

e'®Cpic—co,, ranged from 0.0 (no fraction-
ation) to 0.3 %o between 5 and 30 °C (Fig. 8).

Knierim and Hays, 2014
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Figure 5. Histogram of rain pH at Fayetteville, Arkansas.
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Figure 6. Rain pH at Fayetteville, Arkansas over time.
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Figure 7. DIC concentration in rain for northwestern Arkansas.
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Figure 8. Isotopic enrichment between DIC in rain and atmospheric CO; for northwestern Arkansas.
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Fractionations between dissolved carbonate
species and gaseous CO, were weighted based
on the proportion of each species in DIC,
following Equation 5 (Clark and Fritz, 1997,
Peyraube et al., 2013). The weighted, gross
fractionation provided a more accurate estimate
of 813C-DIC, because if all the DIC was assumed
to be H,COs3", then the enrichment would be
closer to 1 %o (Lee and Krothe, 2001).

Using €'*Cpic—co,,, (Fig. 8) and the median
value of §3C-CO; at SGP (Fig. 3), the theoretical
isotopic composition of DIC in rain was defined
by the equation:

813C —DIC = —3.86 X 1074T?% + 2.36 X
1072T — 8.60 8

The isotopic composition of DIC ranged from
-8.5%0 to -8.2%0 between 5 and 30 °C (Fig. 9).
Based on global trends in atmospheric CO;
(Forster et al.,, 2007), DIC concentration is
predicted to increase and §'3C-DIC will become
lighter, if temperature and pH are held constant.
But, because of the nature of the carbon cycle
through the atmosphere, hydrosphere, and
geosphere, rain pH and temperature will also
likely change in the future. Therefore,
geochemical and isotopic balances of rain DIC
will need to account for the changing variables of
temperature, pH, and CO,.

Perhaps the most difficult aspect to constrain
when calculating DIC concentration and isotopic
composition in rain is temperature because (1)
equilibrium carbonate constants and carbon
isotope enrichment factors are temperature
dependent and (2) temperature varies greatly in
the temperate mid-latitudes, such as north-
western Arkansas. Additionally, what is the
temperature of precipitation and does that

12

temperature have any relation with surface air
temperature? Air temperature depends on the
environmental lapse rate and varies with
altitude (Aguado and Burt, 2004). Condensation
in the atmosphere in the mid-latitudes forms as
ice crystals, so the type of precipitation that falls
to the ground is controlled by surface air
temperature (Aguado and Burt, 2004), but the
relation between surface temperature and
precipitation temperature is controlled by a
complex set of thermodynamic relations not
fully explored here. In an urban precipitation
study, rain DIC formed in ambient air
temperatures, but not in equilibrium with
atmospheric CO, (Gorka et al., 2011). Therefore,
completing the DIC calculations over the range
of temperatures observed at a specific study site
provides a means to quantify how temperature
controls DIC concentration and §'*C-DIC of rain.

From 5 to 30°C, calculated DIC concentration
varied by 0.2 mg/L and §*3C-DIC by 0.3 %.. Based
on the small variation in DIC over the range of
temperatures observed in  northwestern
Arkansas, and using the median temperature of
14.6 °C, rain DIC was calculated to be 0.25 mg/L
and 8BC-DIC was -8.34 %o. Although these
variations are small, the concentration and
isotopic composition of end-member sources in
hydrograph separations controls the final
hydrologic budget calculations (Doctor et al.,
2006; Lee and Krothe, 2001). Additionally, rain
DIC was calculated for a single atmospheric CO,
concentration, §3C-CO, composition, and rain
pH value for data sets over two to three years.
The PECCI code can be modified to calculate DIC
concentration and isotopic composition for rain
events on a weekly basis (based on the available
CO, data), allowing more detailed calculations
over time. The PECCI code can also be modified
to calculate rain DIC for other study sites.
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Figure 9. Isotopic composition of rain DIC for northwestern Arkansas.
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Appendix. The PECCI code calculates the DIC concentration and §'3C-DIC composition of precipitation
using atmospheric CO; concentration, atmospheric §3C-CO, composition, and rain pH data. This code
can be used in Python™ programming language. Notes for users are designated by a pound sign, “#”,
and bold font.

#This loads the necessary functions for Python
from scipy.stats import linregress

from scipy.stats import pearsonr

from scipy.stats import ttest_ind

from scipy.stats.distributions import t

import numpy as np

from pandas import *

import pandas as pd

#First, the constants for carbonate equilibrium reactions (Fetter, 2001) and stable carbon isotope
#equilibrium enrichment values (Clark and Fritz, 1997) are defined

#See Table 1 for the carbonate equilibria used in this program

#Convert Table 1 to a text file to load into the program or use relevant thermodynamic equations
c_constants = loadtxt('Rain_Code/CarbonConstants.csv',skiprows=2, delimiter='",')

temp_c = c_constants|[:,0]

pKCO2 = c_constants(:,1]

pK1 = c_constants|[:,2]

pK2 = c_constants|:,3]

temp_e = c_constants|:,5]

eH2C03 = c_constants[:,6]

eHCO3 = c_constants|:,7]

eC0O3 = c_constants[:,8]

print c_constants

#This is the input file with Temperature, KCO2, K1, K2, and KSP(calcite) from Fetter (2001) and
#Temperature, eH2C03, eHCO3, eCO3 from Clark and Fritz (1997)

#Next, the regressions for carbonate equilibria are calculated relative to temperature in degrees
#Celsius.

#Equations and plot for KCO2

coeff _KCO2 = polyfit(temp_c, pKCO2, 2)
model_KCO2 = polyld(coeff KCO2)
model_KCO2(temp_c)

xlim([-10,701])

ylim([1.0,1.8])

plot(temp_c, pKCO2, 'ko')

plot(temp_c, model_KCO2(temp_c), 'k")
xlabel(r'Temperature ($\degreeSC)',fontsize=14)
ylabel(r'pKS_{C02}$', fontsize=14)

print "Coefficients for pKCO2 equation", coeff _KCO2
savefig("pKCO2_constant.png")

KCO2_a = coeff_KCO2[0]
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KCO2_b = coeff KCO2[1]
KCO2_c = coeff KCO2[2]

#Equations and plot for K1

coeff_K1 = polyfit(temp_c, pK1, 2)

model_K1 = polyld(coeff_K1)
model_K1(temp_c)

plot(temp_c, pK1, 'ko')

plot(temp_c, model _K1(temp_c),'k')
xlim([-10,70])

xlabel(r'Temperature ($\degree$SC)',fontsize=14)
ylabel('pKS_{1}$', fontsize=14)

print "Coefficients for pK1 equation", coeff K1
savefig("pK1_constant.png")

K1_a = coeff K1[0]
K1 b =coeff K1[1]
K1 _c=coeff _K1[2]

#Equations and plot for K2

coeff K2 = polyfit(temp_c, pK2, 2)

model_K2 = polyld(coeff K2)
model_K2(temp_c)

plot(temp_c, pK2, 'ko")

plot(temp_c, model_K2(temp_c),'k')
xlim([-10,701])

xlabel(r'Temperature ($\degreeSC)',fontsize=14)
ylabel('pKS_{2}$', fontsize=14)

print "Coefficients for pK2 equation", coeff K2
savefig("pK2_constant.png")

K2_a = coeff K2[0]
K2_b = coeff_K2[1]
K2_c=coeff_K2[2]

#Equations and plot for eH2CO3 (enrichment value for H2C03-C02(gas))
slope_H2CO3, intercept_H2CO3, r_ H2CO3, p_H2CO3, stderr_H2CO3 = linregress(temp_e, e++++H2CO3)
y_lin_H2CO3 = slope_H2CO3*temp_e+intercept_H2CO3
plot(temp_e,y_lin_H2CO3, 'k')

plot(temp_e, eH2CO3, 'ko')

ylim([-1.25, -0.85])

xlim([-10,801])

xlabel(r'Temperature ($\degreeSC)',fontsize=14)
ylabel(ur'S\epsilon*{13}C_{CO_2(aq)-CO_2(g)} (\u2030)$', fontsize=15)
print 'Slope =', slope_H2C0O3

print 'Intercept =', intercept_H2CO3

print 'RA2 =', r_H2CO3**2.
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print 'p =', p_H2CO3
print 'stderr =', stderr_H2CO3
savefig("eH2C0O3.png")

#Equations and plot for eHCO3 (enrichment value for HCO3-CO2(gas))
slope_HCO3, intercept_HCO3, r_HCO3, p_HCO3, stderr_HCO3 = linregress(temp_e, eHCO3)
y_lin_HCO3 = slope_HCO3*temp_e+intercept_HCO3
plot(temp_e,y_lin_HCO3,'k")

plot(temp_e, eHCO3, 'ko')

ylim([2,12])

xlim([-10,80])

xlabel(r'Temperature ($\degree$SC)',fontsize=14)
ylabel(ur'S\epsilon*{13}C_{HCO_3-CO_2(g)} (\u2030)S', fontsize=15)
print 'Slope =', slope_HCO3

print 'Intercept =', intercept_HCO3

print 'RA2 =', r_HCO3**2.

print 'p =', p_HCO3

print 'stderr =', stderr_HCO3

tight_layout()

savefig("eHCO3.png")

#Equations and plot for eCO3 (enrichment value for CO3-CO2(gas))
slope_CO3, intercept_CO3, r_CO3, p_CO03, stderr_CO3 = linregress(temp_e, eCO3)
y_lin_CO3 = slope_CO3*temp_e+intercept_CO3
plot(temp_e,y_lin_C03,'k")

plot(temp_e, eCO3, 'ko')

xlim([-10,801])

xlabel(r'Temperature ($\degreeSC)',fontsize=14)
ylabel(ur'S\epsilon*{13}C_{CO_3-CO_2(g)} (\u2030)S', fontsize=15)
print 'Slope =', slope_CO3

print 'Intercept =', intercept_CO3

print 'RA2 =', r_CO3**2,

print 'p =', p_CO3

print 'stderr =', stderr_CO3

tight_layout()

savefig("eCO3.png")

#Next, load d13C-CO2 isotopic data. These data are from NOAA's Earth Systems Research Laboratory
#at: http://www.esrl.noaa.gov/gmd/dv/data/?site=SGP&parameter_name=C13%252FC12%2Bin%2B
#Carbon%2BDioxide

#Data are from 2011 to 2012

#For an example, see Table 3

#Convert Table 3 to a text file, or load your own data into the program

SGP_13C02 = loadtxt('Rain_Code/SGP_CO2_isodata.txt',skiprows=1, dtype="str')

SGP_13C02_data = array(SGP_13C02[:,3], dtype = 'float’)

print SGP_13C02_data
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#Calculate the mean, median, and range of values for the data.
#The median isotopic composition (SGP_13C02_med) is what will be used in subsequent calculations
SGP_13C02_mean = SGP_13C02_data.mean()

SGP_13C02_std = SGP_13C02_data.std(ddof=1)
SGP_13C02_med = median(SGP_13C0O2_data)

SGP_13C02_min = min(SGP_13C02_data)

SGP_13C02_max = max(SGP_13C02_data)

print 'SGP 13C-CO2 mean ="', SGP_13C0O2_mean

print 'SGP 13C-CO2 median ="', SGP_13C02_med

print 'SGP 13C-CO2 standard deviation ="', SGP_13C0O2_std

print 'SGP 13C-CO2 minimum =', SGP_13C02_min

print 'SGP 13C-CO2 maximum =', SGP_13C0O2_max

#This creates a histogram of the d13C-CO2 data
hist(SGP_13C02_data, bins=10, facecolor='w')
xplot_med_SGP13CO2 = array([SGP_13C02_med,SGP_13C0O2_med])
yplot_13CO2 = array([0,10])
plot(xplot_med SGP13C02, yplot_13C02, 'k--')
legend(['Median'], 'upper left', frameon=False)
xlabel(ur'S\delta*{13}C-CO_2 (\u2030)S', fontsize = 16)
ylabel('Number of months', fontsize = 14)
tight_layout()
savefig("SGP_13CCO2_hist.png")
iso_CO2_SGP =read_csv('Rain_Code\SGP_CO2_isodata.txt',
delim_whitespace=True,
index_col=0,
parse_dates=[[1,2]])
iso_C0O2_SGP_data =iso_C0O2_SGP["d13C_C02"]
iso_CO2_SGP_data.plot(style="k'")
xlabel("Years", fontsize=13)
ylabel(ur'S\delta*{13}C-CO_2 (\u2030)S', fontsize=16)
tight_layout()
savefig("SGP_13CCO2_time.png")

#Next, load CO2 concentration data. These data are from NOAA's Earth Systems Research Laboratory
#at: http://www.esrl.noaa.gov/gmd/dv/data/?parameter_name=Carbon%2BDioxide&site=SGP
#Data are from 2011 to 2013

#For an example, see Table 2

#Convert Table 2 to a text file, or load your own data into the program

SGP_CO2 = loadtxt('Rain_Code\SGP_CO2_concdata.txt', skiprows=1, dtype='str’)

SGP_CO2_data = array(SGP_CO02[:,3], dtype = 'float')

print SGP_CO2_data

#Calculate the mean, median, and range of values for the data. The median concentration
(SGP_C0O2_med) is what will be used in subsequent calculations

SGP_CO2_mean = SGP_C0O2_data.mean()

SGP_C02_std = SGP_CO02_data.std(ddof=1)

19 Knierim and Hays, 2014



ARKANSAS WATER RESOURCES CENTER | MSC PUBLICATION 370
UNIVERSITY OF ARKANSAS | FUNDED BY US GEOLOGICAL SURVEY

SGP_CO2_med = median(SGP_CO2_data)
SGP_CO2_min = min(SGP_CO2_data)
SGP_CO2_max = max(SGP_CO2_data)

print 'SGP CO2 mean ="', SGP_CO2_mean

print 'SGP CO2 median ="', SGP_CO2_med

print 'SGP CO2 standard deviation ="', SGP_CO2_std
print 'SGP CO2 minimum =', SGP_C0O2_min

print 'SGP CO2 maximum =', SGP_C0O2_max

#This creates a histogram of the CO2 data
hist(SGP_CO2_data, bins=10, facecolor='w')
xplot_med_SGPCO2 = array([SGP_CO2_med,SGP_CO2_med])
xplot_mean_SGPCO2 = array([SGP_CO2_mean,SGP_C0O2_mean])
yplot_CO2 = array([0,10])
plot(xplot_med SGPCO2, yplot_CO2, 'k--')
legend(['Median'], 'upper left', frameon=False)
xlabel(r'COS_2S (ppm)', fontsize = 15)
ylabel("Number of months", fontsize = 14)
savefig("SGP_CO2_hist.png")
CO2_SGP =read_csv('Rain_Code\SGP_CO2_concdata.txt',
delim_whitespace=True,
index_col=0,
parse_dates=[[1,2]])
CO2_SGP_data = CO2_SGP["C0O2"]
CO2_SGP_data.plot(style="k")
xlabel("Years", fontsize=13)
ylabel(r"COS_2S (ppm)", fontsize=13)
savefig("SGP_CO2_time.png")

#To convert between CO2 in ppm and CO2 in atm (assuming the total atmospheric volume is 1 atm):
#Note that this is the CO2 concentration used for calculating the concentration of DIC in rain.
CO2_med_atm = SGP_C0O2_med*10**-6

print 'Median CO2 Concentration (atm):', CO2_med_atm

#Next, load the rain pH data. These data are from the NOAA National Atmospheric Deposition
#Program's NTN data set

#For an example, see Table 4

#Convert Table 4 to a text file, or load your own data into the program

AR27_pH = loadtxt('Rain_Code/AR27_pHdata.txt',skiprows=1, dtype='str’)

AR27_pH_data = array(AR27_pH[:,3], dtype = 'float’)

print AR27_pH_data

#Calculate the mean, median, and range of pH data
AR27_pH_mean = AR27_pH_data.mean()
AR27_pH_std = AR27_pH_data.std(ddof=1)
AR27_pH_med = median(AR27_pH_data)
AR27_pH_min = min(AR27_pH_data)
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AR27_pH_max = max(AR27_pH_data)

print "Mean of Monthly Lab pH", AR27_pH_mean

print "Median of Monthly Lab pH", AR27_pH_med

print "Standard Deviation of Monthly Lab pH", AR27_pH_std
print "Minimum of Monthly Lab pH", AR27_pH_min

print "Maximum of Monthly Lab pH", AR27_pH_max

#This creates a histogram of the pH data
hist(AR27_pH_data, bins=10, facecolor='w')
xlabel("pH", fontsize = 14)
xplot_med_pH = array([AR27_pH_med,AR27_pH_med])
yplot_pH = array([0,6])
plot(xplot_med_pH, yplot_pH, 'k--')
ylabel("Number of months", fontsize=14)
legend(['Median'], 'upper right', frameon=False)
savefig("AR27_pH_hist.png")
AR27 _pH =read_csv('Rain_Code\AR27_pHdata.txt',
delim_whitespace=True,
index_col=0,
parse_dates=[[1,2]])
AR27 pH_data = AR27_pH["pH"]
AR27_pH_data.plot(style="k')
xlabel("Years", fontsize=13)
ylabel("pH", fontsize=13)
savefig("AR27_pH_time.png")

#To convert pH to concentration of hydrogren ions:

#Note that this is the hydrogen ion concentration used to calculate the proportion of carbon species in
#DIC.

H = 10%*(-1*AR27_pH_med)

print 'Hydrogen lon Concentration of Rain:', H

#Next, build the variables for the carbonate equilibrium reactions. This code starts at 5 degrees
#Celsius and continues in 5 degree increments to 30 degrees Celsius.

#Code for carbonate equilibria at 5 degrees Celsius:
pKCO2_5 = KCO2_a*5**2 + KCO2_b*5+KCO2_c

pK1 5=K1 a*5**2 + K1 b*5+K1 c

pK2 5=K1 a*5**2 + K2 b*5+K2 c

print "pKCO2 at 5 degrees Celsius", pKCO2_5

print "pK1 at 5 degrees Celsius", pK1_5

print "pK2 at 5 degrees Celsius", pK2_5
cacid_5=10**(-1*pKCO2_5) * CO2_med_atm

bicarb_5 = 10**(-1*pK1_5)*(cacid_5/H)
carb_5=10**(-1*pK2_5)*(bicarb_5/H)

print "Molar concentration of carbonic acid at 5 C =", cacid_5
print "Molar concentration of bicarbonate at 5 C =", bicarb_5
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print "Molar concentration of carbonate at 5 C=", carb_5

#Note that carbonate makes up a small fraction of DIC; carbonate can be ignored from the code at the
range of pH found in most natural rain water. But, for completion the full carbonate reactions are
shown.

DIC_5 = cacid_5+bicarb_5+carb_5

DIC_5_mg =DIC_5*12*1000

print "Molar DICat 5 C=", DIC_5

print "DIC (mg/L) at5C=", DIC_5_mg

ecacid_5 = slope_H2CO3*5+intercept_H2CO3

ebicarb_5 = slope_ HCO3*5+intercept_HCO3

ecarb_5 =slope_CO3*5+intercept_CO3

print 'lsotopic fractionation H2CO3-CO2(g) at 5 C =', ecacid_5

print 'Isotopic fractionation HCO3-CO2(g) at 5 C =', ebicarb_5

print 'Isotopic fractionation CO3-CO2(g) at 5 C =', ecarb_5

eDIC_5 = ecacid_5*cacid_5/DIC_5 + ebicarb_5*bicarb_5/DIC_5 + ecarb_5*carb_5/DIC_5

print 'Gross Isotopic fractionation DIC-CO2(g) at 5 C=', eDIC_5

#Code for carbonate equilibria at 10 degrees Celsius:
pKCO2_10 =KCO2_a*10**2 + KCO2_b*10+KCO2 c

pK1 10=K1_a*10**2 + K1_b*10+K1 c

pK2 10 =K1 _a*10**2 + K2_b*10+K2 ¢

print "pKCO2 at 10 degrees Celsius", pKCO2_10

print "pK1 at 10 degrees Celsius", pK1_10

print "pK2 at 10 degrees Celsius", pk2_10
cacid_10=10**(-1*pKC0O2_10) * CO2_med_atm

bicarb_10 = 10**(-1*pK1_10)*(cacid_10/H)

carb_10 = 10**(-1*pK2_10)*(bicarb_10/H)

print "Molar concentration of carbonic acid at 10 C =", cacid_10
print "Molar concentration of bicarbonate at 10 C =", bicarb_10
print "Molar concentration of carbonate at 10 C =", carb_10
DIC_10 = cacid_10+bicarb_10+carb_10

DIC_10_mg = DIC_10*12*1000

print "Molar DIC at 10 C=", DIC_10

print "DIC (mg/L) at 10 C =", DIC_10_mg

ecacid_10 = slope_H2C0O3*10+intercept_H2CO3

ebicarb_10 = slope_HCO3*10+intercept_HCO3

ecarb_10 =slope_CO3*10 + intercept_CO3

print 'Isotopic fractionation H2CO3-C0O2(g) at 10 C =', ecacid_10
print 'Isotopic fractionation HCO3-CO2(g) at 10 C =', ebicarb_10
print 'Isotopic fractionation CO3-CO2(g) at 10 C =', ecarb_10
eDIC_10 = ecacid_10*cacid_10/DIC_10 + ebicarb_10*bicarb_10/DIC_10 + ecarb_10*carb_10/DIC_10
print 'Isotopic fractionation DIC-CO2(g) at 10 C=', eDIC_10

#Code for carbonate equilibria at 15 degrees Celsius:
pKCO2_15=KCO2_a*15**2 + KCO2_b*15+KCO2_c
pK1_15=K1_a*15%*2 + K1_b*15+K1_c
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pK2_15=K1 _a*15**2 + K2_b*15+K2 ¢

print "pKCO2 at 15 degrees Celsius", pKCO2_15
print "pK1 at 15 degrees Celsius", pK1_15

print "pK2 at 15 degrees Celsius", pK2_15
cacid_15=10**(-1*pKC0O2_15) * CO2_med_atm
bicarb_15 = 10**(-1*pK1_15)*(cacid_15/H)
carb_15 = 10**(-1*pK2_15)*(bicarb_15/H)

print "Molar concentration of carbonic acid at 15 C =", cacid_15
print "Molar concentration of bicarbonate at 15 C =", bicarb_15

print "Molar concentration of carbonate at 15 C =", carb_15
DIC_15 = cacid_15+bicarb_15+carb_15

DIC_15_mg = DIC_15*12*1000

print "Molar DIC at 15 C=", DIC_15

print "DIC (mg/L) at 15 C =", DIC_15_mg

ecacid_15 =slope_H2C0O3*15+intercept_H2CO3
ebicarb_15 = slope_HCO3*15+intercept_HCO3

ecarb_15 =slope_CO3*15 + intercept_CO3

print 'Isotopic fractionation H2CO3-C0O2(g) at 15 C =', ecacid_15
print 'Isotopic fractionation HCO3-CO2(g) at 15 C =', ebicarb_15

print 'Isotopic fractionation CO3-CO2(g) at 15 C =', ecarb_15

eDIC_15 = ecacid_15*cacid_15/DIC_15 + ebicarb_15*bicarb_15/DIC_15 + ecarb_15*carb_15/DIC_15

print 'Isotopic fractionation DIC-CO2(g) at 15 C =', eDIC_15

#Code for carbonate equilibria at 20 degrees Celsius:
pKCO2_20 = KCO2_a*20**2 + KCO2_b*20+KCO2_c
pK1 20 =K1_a*20**2 + K1_b*20+K1_c
pK2_20=K1_a*20**2 + K2_b*20+K2_c

print "pKCO2 at 20 degrees Celsius",pKC0O2_20

print "pK1 at 20 degrees Celsius", pK1_20

print "pK2 at 20 degrees Celsius", pK2_20
cacid_20=10**(-1*pKCO2_20) * CO2_med_atm
bicarb_20 = 10**(-1*pK1_20)*(cacid_20/H)

carb_20 = 10**(-1*pK2_20)*(bicarb_20/H)

print "Molar concentration of carbonic acid at 20 C =", cacid_20
print "Molar concentration of bicarbonate at 20 C =", bicarb_20

print "Molar concentration of carbonate at 20 C=", carb_20
DIC_20 = cacid_20+bicarb_20+carb_20

DIC_20_mg = DIC_20*12*1000

print "Molar DIC at 20 C =", DIC_20

print "DIC at 20 C (mg/L) =", DIC_20_mg

ecacid_20 = slope_H2C0O3*20+intercept_H2CO3
ebicarb_20 = slope_HCO3*20+intercept_HCO3

ecarb_20 = slope_C03*20 + intercept_CO3

print 'Isotopic fractionation H2CO3-C0O2(g) at 20 C =', ecacid_20
print 'Isotopic fractionation HCO3-CO2(g) at 20 C =', ebicarb_20

print 'Isotopic fractionation CO3-CO2(g) at 20 C =', ecarb_20

eDIC_20 = ecacid_20*cacid_20/DIC_20 + ebicarb_20*bicarb_20/DIC_20 + ecarb_20*carb_20/DIC_20
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print 'Isotopic fractionation DIC-CO2(g) at 20 C=', eDIC_20

#Code for carbonate equilibria at 25 degrees Celsius:
pKCO2_25 = KCO2_a*25**2 + KCO2_b*25+KCO2_c

pK1 25=K1_a*25**2 + K1_b*25+K1_c
pK2_25=K1_a*25**2 + K2_b*25+K2_c

print "pKCO2 at 25 degrees Celsius",pKCO2_25
print "pK1 at 25 degrees Celsius", pK1_25

print "pK2 at 25 degrees Celsius", pK2_25
cacid_25=10**(-1*pKCO2_25) * CO2_med_atm
bicarb_25 = 10**(-1*pK1_25)*(cacid_25/H)
carb_25=10**(-1*pK2_25)*(bicarb_25/H)

print "Molar concentration of carbonic acid at 25 C =", cacid_25
print "Molar concentration of bicarbonate at 25 C =", bicarb_25
print "Molar concentration of carbonate at 25 C=", carb_20

DIC_25 = cacid_25+bicarb_25+carb_25
DIC_25_mg = DIC_25*12*1000

print "Molar DIC at 25 C =", DIC_25

print "DIC at 25 C (mg/L)", DIC_25_mg
ecacid_25 = slope_H2C0O3*25+intercept_ H2CO3
ebicarb_25 = slope_HCO3*25+intercept_HCO3
ecarb_25 =slope_CO03*25 + intercept_CO3

print 'Isotopic fractionation H2CO3-C0O2(g) at 25 C =', ecacid_25
print 'Isotopic fractionation HCO3-CO2(g) at 25 C =', ebicarb_25
print 'Isotopic fractionation CO3-CO2(g) at 25 C =', ecarb_25

eDIC_25 = ecacid_25*cacid_25/DIC_25 + ebicarb_25*bicarb_25/DIC_25 + ecarb_25*carb_25/DIC_25

print 'Isotopic fractionation DIC-CO2(g) at 25 C =', eDIC_25

#Code for carbonate equilibria at 30 degrees Celsius:
pKCO2_30 =KCO2_a*30**2 + KCO2_b*30+KCO2_c

pK1_30 = K1_a*30**2 + K1_b*30+K1_c

pK2_30 = K1_a*30**2 + K2_b*30+K2_c

print "pKCO2 at 30 degrees Celsius", pKCO2_30
print "pK1 at 30 degrees Celsius", pK1_30

print "pK2 at 30 degrees Celsius", pK2_30
cacid_30=10**(-1*pKCO2_30) * CO2_med_atm
bicarb_30 = 10**(-1*pK1_30)*(cacid_30/H)
carb_30 = 10**(-1*pK2_30)*(bicarb_30/H)

print "Molar concentration of carbonic acid at 30 C =", cacid_30
print "Molar concentration of bicarbonate at 30 C =", bicarb_30
print "Molar concentration of carbonate at 30 C =", carb_30

DIC_30 = cacid_30+bicarb_30+carb_30
DIC_30_mg = DIC_30*12*1000

print "Molar DIC at 30 C =", DIC_30

print "DIC at 30 C (mg/L)", DIC_30_mg
ecacid_30 = slope_H2C03*30+intercept_H2CO3
ebicarb_30 = slope_HCO3*30+intercept_HCO3
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ecarb_30 =slope_CO03*30 + intercept_CO3

print 'Isotopic fractionation H2C0O3-C0O2(g) at 30 C =', ecacid_30

print 'Isotopic fractionation HCO3-CO2(g) at 30 C =', ebicarb_30

print 'Isotopic fractionation CO3-CO2(g) at 30 C =', ecarb_30

eDIC_30 = ecacid_30*cacid_30/DIC_30 + ebicarb_30*bicarb_30/DIC_30 + ecarb_30*carb_30/DIC_30
print 'Isotopic fractionation DIC-CO2(g) at 30 C=', eDIC_30

#This portion of the code combines the calculated DIC concentrations and eDIC-CO2 fractionations
#into a new table

temps = array([5,10,15,20,25,30])

DIC_temps = array([DIC_5_mg, DIC_10_mg, DIC_15_mg, DIC_20_mg, DIC_25_mg, DIC_30_mg])
eDIC_temps = array([eDIC_5, eDIC_10, eDIC_15, eDIC_20, eDIC_25, eDIC_30])

print temps

print DIC_temps

print eDIC_temps

#This portion of the code uses the eDIC-CO2 fractionation values to calculate the final d13C-DIC
#composition of rain water from 5 to 30 C

eDIC_CO2 =eDIC_temps + SGP_13C0O2_med

print eDIC_CO2

#DIC concentration varies with temperature
#The code will output a figure of temperature vs DIC concentration
coeff_DIC = polyfit(temps, DIC_temps, 2)
model_DIC = polyld(coeff_DIC)
model_DIC(temps)

plot(temps, DIC_temps, 'ko')

plot(temps, model_DIC(temps), 'k')

print "Coefficients for DIC", coeff DIC
xlabel(r'Temperature ($\degree$SC)',fontsize=13)
ylabel("DIC (mg/L)", fontsize=13)

xlim(0,35)

ylim(0.1,0.4)

savefig("rainDICvstemp.png")

#lsotopic fractionation between DIC and gaseous CO2 also varies with temperature
#The code will output a figure of temperature vs e13C-CO2-DIC enrichment
model_eDIC = polyld(coeff_eDIC)

model_eDIC(temps)

plot(temps, eDIC_temps, 'ko')

plot(temps, model_eDIC(temps), 'k')

print "Coefficients for eDIC", coeff_eDIC

xlabel(r'Temperature ($\degreeSC)',fontsize=13)
ylabel(ur'S\epsilon*{13}C_{DIC-CO_2(g)} (\u2030)$', fontsize=14)

xlim(0,35)

ylim(-.05,0.30)

tight_layout()
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savefig("raineDICvstemp.png")

#DIC isotopic composition (d13C-DIC) also varies with temperature
#The code will output a figure of temperature vs d13C-DIC composition
coeff_eDIC_CO2 = polyfit(temps, eDIC_CO2, 2)

model_eDIC_CO2 = polyld(coeff_eDIC_CO2)
model_eDIC_CO2(temps)

plot(temps, eDIC_CO2, 'ko")

plot(temps, model_eDIC_CO2(temps), 'k')

print "Coefficients for eDIC-CO2", coeff_eDIC_CO2
xlabel(r'Temperature ($\degreeSC)',fontsize=13)
ylabel(ur'S\delta*{13}C-DIC (\u2030)$', fontsize=14)

xlim(0,35)

tight_layout()

savefig("raineDIC_CO2.png")
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