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Abstract

In this work, we report a relation between the
kinetic energy of random motions of the corresponding
host galaxies and spiral arm pitch angles (Mdynσ

2 - P),
(M*σ

2 - P) where Mdyn is the bulge dynamical mass, M*

is bulge stellar mass, and σ is the velocity dispersion of 
the host galaxy bulge. We measured the spiral arm
pitch angle (P) for a sample of Spitzer/IRAC 3.6-µm
images of 54 spiral galaxies, estimated by using a 2D
Fast Fourier Transform decomposition technique
(2DFFT). We selected a sample of nearly face-on
spiral galaxies and used IRAF ellipse to determine the
ellipticity and major-axis position angle in order to
deproject the images to face-on, and using a 2D Fast
Fourier Transform decomposition technique, we
determined the spiral arm pitch angles. We estimated
the kinetic energy of random motions of the
corresponding host galaxies (Mdynσ

2, M*σ
2) by using

Mdyn, M*, and σ, where the stellar velocity 
dispersion (σ) of the bulge was taken from the 
literature. We determined the bulge dynamical mass
(Mdyn) using the virial theorem, and the bulge stellar
mass (M*) was estimated by using the bulge 3.6-μm 
luminosity with the appropriate stellar mass-to-light
ratio (M/L).

Introduction

It is becoming apparent that the energy output from
supermassive black holes (BH) at galaxy centers plays
a important role within the formation and evolution of
galaxies (Pastorini et al. 2007). Over the past 15 years,
one of the most important advances and the most
fascinating discoveries was that galaxies typically
contain supermassive black holes at their centers, on
the order of millions to billions of solar masses
(Heckman and Kauffmann 2011).

SMBH mass is an important parameter for us to
understand nuclear energy mechanics and the
formation and evolution of SMBHs and their host
galaxies (Rees 1984, Tremaine et al. 2002). Nowadays
astrophysicists believe that the energy released by
growing SMBHs plays an important role in shaping the
properties of the structure of galaxies (Benson and
Bower 2010, Fabian 2012). The co-evolution of
galaxies and SMBHs is now widely accepted although
many details on how this coexistence works are still
understudied (Heckman et al. 2004). Therefore, we
cannot understand how galaxies formed and evolved
without understanding the co-evolution of galaxies and
SMBHs.

In light of the increasing evidence derived from
scientific research that indicates that the mass of
SMBHs are tightly related to the properties of their
host galaxy bulges, it seems obvious that SMBHs play
an important role in galaxy formation.

Most galaxy bulges contain a central supermassive
black hole whose mass strongly correlates with stellar
velocity dispersion (σ*) within the effective radius (re)
(Ferrarese and Merritt 2000, Gebhardt et al. 2000,
Tremaine et al. 2002) with the bulge luminosity or
spheroid luminosity of the galaxy (Lbul) (Kormendy
and Richstone 1995, Magorrian et al. 1998, Marconi &
Hunt 2003, Häring and Rix 2004, Gültekin et al. 2009),
with the bulge mass (Mbulge) (Magorrian et al. 1998,
MH03, Häring and Rix 2004, hereafter HR04), and
circular velocity (Ferrarese 2002), with the galaxy light
concentration (Graham et al. 2001), the dark matter
halo (Ferrarese 2002), with the effective radius
(Marconi and Hunt 2003), the Sersic index (Graham
and Driver 2007), with the gravitational binding energy
and gravitational potential (Aller and Richstone 2007),
combination of bulge velocity dispersion, effective
radius and/or intensity (Aller and Richstone 2007),
with the radio core length (Cao and Jiang 2002), and
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the inner core radius (Lauer et al. 2007a). Using more
sophisticated techniques of measuring the bulge
luminosity or dynamical modeling of the host galaxy
such as two-dimensional image decompositions (e.g.,
McLure and Dunlop 2001, Wandel 2002, Hüring and
Rix 2004, Hu 2009, Sani et al. 2011), produces a
tighter correlation between SMBHs and the host
galaxy.

The results of Hopkins et al. (2007) and Marulli et
al. (2008) provide evidence for a hypothesis that bulge
of galaxy and SMBHs do not form and evolve
independently. Furthermore, Feoli and Mancini (2009)
explained the relation Mbul- σ2 by using a plausible
physical interpretation that resembles the H–R
diagram, where they indicate that certain properties of
SMBHs at the centers of galaxies, such as entropy, can
increase with time or at most remain the same, but do
not decrease. Therefore MBH depends on the age of the
galaxy.

Several previous studies have tested the
MBH−Mbulσ2 relation using several independent galaxy
samples, with clear positive results, and therefore the
MBH−Mbulσ2 relation can be used as an indirect 
measurement of the SMBH mass in the center of
galaxies (Feoli and Mele 2005,2007, Feoli and Mancini
2009, Mancini and Feoli 2012).

Previous work has found that central SMBH mass
is strongly related with spiral arm pitch angle of its
host galaxy (Seigar et al. 2008, Davis et al. 2012,
Berrier et al. 2013). Pitch angle is the angle between a
line tangent to the arm in a spiral galaxy at a given
radius and a line tangent to a circle at the same radius.
The degree of twist of the spiral arms is a
characterization of the pitch angle, where the galaxies
with small and large pitch angles have tightly wound
spiral arms and open arms respectively (Kennicutt
1981, Ma 2001, Savchenko and Reshetnikov 2011).
The measurement of spiral arm pitch angle gives a
measure of how tightly the spiral arms of a galaxy are
wound. Since the creation of a morphological
classification scheme of galaxies by Hubble (1926),
authors have competed to investigate the wide
correlation of the spiral and morphological type of the
observed galaxies (e.g., Kennicutt 1981).

Seigar et al. (2006) and Davis et al. (2012)
concluded that pitch angle does not depend measurably
on the waveband of the image. Instead, they found
consistency between pitch angles of the same galaxy
measured both in the B-band and in a near-IR
waveband by using a 2D fast Fourier transform
(2DFFT) analysis and assuming logarithmic spirals.

The objective of this work is to analyze the cited

scaling relationships that involve bulge properties
(MBH −Mbulσ

2, MBH −Mbul, Mbulσ
2− P and Mbul− P) in 

images of 41 spiral galaxies observed using the Spitzer
Space Telescope at 3.6-μm. 

Materials and Methods

Sample
Our sample in this research consists of a total of 41

spiral galaxies observed with the Spitzer Space
Telescope at 3.6µm. The main requirement to estimate
the kinetic energy of random motions of the
corresponding host galaxies (Mdσ

2 & M*σ
2) is an

estimate of the bulge mass and the stellar velocity
dispersion. We have measured both the bulge
dynamical mass and the bulge stellar by applying the
isothermal model (Hu 2009, Sani et al. 2011) and the
calibration by Oh et al. (2008) respectively. The
central velocity dispersion of the galaxy hosts were
obtained from the literature (see Table 1 at the end of
this manuscript).

Our sample consists of Hubble types ranging from
Sa to Sc for which it is possible to measure pitch angle
for each galaxy. We derived an inclination (ranging
from 25 to 65 degrees) by using ellipticity values of the
outer 3.6-µm isophotes, which were determined with
ELLIPSE in IRAF1. Seigar et al. (2005, 2008) noted
that the largest source of error in estimating P
presumably comes from this determination of radial
range, although P can also have a variance as large as
10% for galaxies with large inclinations (>60) (Block
et al. 1999)

In this paper, some of the galaxies had spiral arm
pitch angles which had been previously determined by
our research group using B- and K- band images
(Seigar et al 2006, Davis et al 2012). The remaining
spiral arm pitch angles were measured using
Spitzer/IRAC 3.6-µm images of 41 galaxies using a
two-dimensional fast Fourier transformation (Schröder
et al. 1994), assuming logarithmic spirals. In this study,
we have considered a consistent sample of 41 spiral
galaxies, which consists of 27 barred galaxies, 14 non-
barred galaxies, 31 AGN-host galaxies, 10 non-AGN
galaxies, 10 galaxies with classical bulges, and 31
galaxies with pseudo-bulges.

1 1IRAF is distributed by the National Optical Astronomy
Observatories, which is operated by the Associated Universities for
Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.
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Measurement of the dynamical bulge mass:
The bulge dynamical mass Mdyn is estimated using

the virial theorem, i.e., the virial bulge mass (Hu 2009,
Marconi and Hunt 2003, Sani et al. 2011) given by:

Mdyn = kReσ
2/G………….....................(1)

Where k is in general a function of the Sérsic index
n (Sani et al. 2011, Jun and Im 2008), we follow the
method of Cappellari et al (2006) and use k=5 and this
can then be used to estimate an accurate value of Mdyn,
where σ, and Re are the host-galaxy bulge velocity
dispersion and the bulge effective radius respectively,
and G is the gravitational constant.

Measurement the stellar mass (M*) from the 3.6 μm 
M/L ratio:

Bell and de Jong (2001) estimated the stellar mass-
to-light (M/L or γ) ratio of disk galaxies by using 
relation between optical colors (e.g., B−R, B−V) and 
the near-infrared

Previous studies of optical colors of the disk of
galaxies do not provide the γ values for the 
Spitzer/IRAC bands, so we cannot use them here.
Therefore we will use a new relation to obtain γ in the 
3.6-μm Spitzer/IRAC.  This relationship is between γK

and γ in the 3.6-μm waveband was reported by Oh et 
al. (2008):

            γ3.6 = B3.6 x γK + A3.6…….....….(2)

Where A3.6 = -0.05 and B3.6 = 0.92

And a relation between the (γK) and optical colors: 

log10(γ
K) = bK x Optical Color + aK..(3)

Where aK and bK are coefficients for the relation
between γK and optical colors given in Bell and de
Jong (2001).

By combining Equation (2) with Equation (3),
adopting 20% solar metallicity (Miller and Hodge
1996), optical colors given in Bell and de Jong (2001)
and a scaled Salpeter IMF2 cutting off the stars less
massive than ~0.35Mʘ (Bell and de Jong 2001), we
calculated the 3.6 µm M/L ratio.

2
The initial stellar mass function

Measurement the bulge luminosity (Lbulge):
The method to measure the bulge luminosity in this

work is based on a two-dimensional (bulge - bar - disk)
decomposition program (Laurikainen et al 2005),
which we used to decompose Spitzer/IRAC 3.6-µm
images of spiral galaxies into a bulge and disk model.
From the resulting bulge model, we determined bulge
luminosity at 3.6-μm for the sample of 41 spiral 
galaxies. In this method, we used an exponential
function to describe the disk:

Id(r) = Iodexp[-(r/hr)],

Where Iod is the central surface density of the disk, hr is
the exponential scalength of the disk, and r is distance
from the galaxy center. The bulge is described by a
Sersic function:

Ib(rb) = I0bexp[-(rb/hb)
β] ,

Where Iob is the central surface density of the bulge, hb

is the scale parameter of the bulge, and β=1/n. The 
half-light radius (effective radius), re, of the bulge is
obtained by converting hb,

re = (bn)
nhb

Where the value of bn is a proportionality constant
defined such that Γ(2n) = 2γ(2n,bn). Γ and γ are the 
complete and incomplete gamma functions,
respectively. We use the approximation bn ≈ 2.17nb − 
0.355 (Fisher and Drory 2010).

The bars and ovals (when present) are estimated by
using a Ferrers or a Sersic function:

Ibar(rbar) = I0bar(1- (rbar/abar)
2)n

bar
+0.5 , rbar< abar

Ibar(rbar) = 0 , rbar > abar

Where I0bar is the central surface brightness of the
bar, abar is the bar major axis, and nbar is the exponent of
the bar model defining the shape of the bar radial 
profile.  

The orientation parameters were estimated using
Spitzer/IRAC 3.6-µm images of 53 galaxies with MBH

estimates. These images were used to measure the
minor-to-major axis ratio (q = b/a), effective radii (Re),
the radial profiles of the isophotal major-axis position 
angles (φ), and the estimated inclinations of the disk 
using the mean values in the outer parts of the disks
(Laurikainen et al. 2005). We first removed foreground 
stars and masked out all point sources from the Spitzer
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3.6-μm images by using SExtractor (Bertin and 
Arnouts 1996), then  the surface brightness profiles 
were derived using the ELLIPSE routine in IRAF
(Jedrzejewski 1987, Laurikainen et al. 2005).

Results and Discussion

Table 1 (see end of manuscript) lists the bulge
stellar mass, spiral arm pitch angle, the SMBH masses,
bulge dynamical mass, bulge stellar mass, and the
kinetic energy of random motions of the dynamical and
stellar bulge respectively.

From the virial theorem and the stellar mass-to-
light ratios, we derived the dynamical bulge mass and
stellar bulge mass respectively. Also, from the flux
density, we have determined model-based bulge
luminosities. Absolute magnitudes were calculated
from apparent magnitudes using the distance moduli,
and known redshifts.

In this paper, the relations that we studied can be
written in the following forms:

log10 MBH = b + mlog10 x (5)

log10 Mbulσ
2

= b + mlog10 x (6)

log10 Mbul = b + mlog10 x (7)

Where b and m are the intercept and the slope of the
relation, x is a parameter of the bulge or spiral arm
pitch angle.

Equations (5, 6, 7) can be used to predict the
values of MBH, Mbulσ

2, Mbul in other galaxies once we
know the value of x. We have to perform an ordinary
linear regression of MBH, Mbulσ

2, Mbul, on x for the
considered galaxies, for which we already know both
the quantities.

Figures 1 and 2 show the SMBH masses as a
function of Mdynσ

2 and M*σ
2, for 41 galaxies

respectively. We found that the Pearson's linear
correlation coefficients for a correlation between MBH-
Mdynσ2 and MBH-M*σ

2 relationship are 0.79, and 0.80
respectively, whereas the slopes of these relationships
are 0.59, and 0.58 respectively. Thus, there is no
significant difference between the MBH-Mbulσ

2 relation
and the MBH-Mbulσ

2 relation.
The fitting results of MBH-Mbulσ

2 correlations are
presented in Table 3. Our work in this part, has
confirmed the results of Feoli and Mele (2005,2007),
Feoli and Mancini (2009), and Mancini and Feoli
(2012) who also suggested the existence of a strong
relationship between the masses of the SMBHs and the

kinetic energy of random motions of its host spiral
galaxies.

Figure 1. SMBH masses from (MBH-σ) relation as a function of the 
Mdynσ

2. The cyan solid line is the fit to all spiral galaxies.

Figure 2. SMBH masses from (MBH-σ) relation as a function of the 
Msσ

2. The cyan solid line is the fit to all spiral galaxies.

Figure 3 presents the MBH-P relation, where P is
obtained by using a 2D Fast Fourier Transform
decomposition technique (2DFFT). Using the MBH-P
relation to study SMBH masses, we can be fairly
confident that for galaxies with bulges the pitch angle
of the spiral arms should correlate well to the SMBH
mass at center of the galaxies. The fitting result of
MBH-P correlation is presented in Table 3.

This relation is consistent with that presented in
Seigar et al. (2008) and virtually identical in slope:

Log10 MBH=(8.44 ± 0.1) - (0.07 ± 0.005) P

We also compared our results with the previous
work. Our correlation is consistent with that given by
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Seigar et al (2008) for 41 spiral galaxies, but is larger
than Berrier et al. (2013). It may be reflective of
differences in the data used by Seigar et al. (2008) and
Berrier et al. (2013). However, our results confirm the
existence of a relationship between spiral arm pitch
angle and SMBH mass as originally presented by
Seigar et al. (2008) and Berrier et al. (2013).

Figure 3. The SMBH mass from (MBH-σ) relation as a function of 
the pitch angle of spiral arm (P). The cyan solid line is the fit to all
spiral galaxies.

Figures 4 and 5 show the SMBH masses as a
function of Mdyn and Ms for all of our spiral galaxy
bulges, where the masses were obtained by using
equations (1) and (2). The fitting results of MBH-Mbul

correlations are presented in Table 3.
From Figures 4 and 5, we can draw two

conclusions: the best fitting line for MBH - Ms and MBH

- Md relations, which are shown in Tables 2 and 3. In
these figures, containing data on galaxies with both
classical bulges and pseudo-bulges, we note that
galaxies with both types of bulges follow independent
relations although some of the galaxies do harbor an
intermediate bulge type, located between the relations
of two type of bulge, and this reflects the mixed nature
of their bulge properties. The different black hole-
bulge relations obeyed by the two types of bulge are
emphasized in Figures 4 and 5.

We found Pearson's linear correlation coefficients
for a correlation between SMBH and Mdyn, M* are
0.79, and 0.80 respectively, whereas the slope of the
MBH - Md and MBH − Ms relation are 0.76 and 1.01
respectively, which means there is a slight difference
between values from both relations, because the
difference in M*/Md ratio may be related to the mass
contribution from the dark matter (Lauer et al. 2007b).
In this work, we assumed that dynamical mass of
bulges is dominated by the stellar mass, with a

negligible contribution of dark matter and gas (Drory
et al. 2004, Padmanabhan et al. 2004).

Figure 4. The SMBH mass from (MBH-σ) relation as a function of 
the bulge dynamical mass. The cyan solid line is the fit to all spiral
galaxies.

Figure 5. The SMBH mass from (MBH-σ) relation as a function of 
the bulge stellar mass. The solid line is the fit to all spiral galaxies.

The fitting results are plotted in Figures 6 and 7,
where we present the Mdyn - P and M* - P relations for
41 spiral galaxies respectively. We found that Mdyn and
M* correlate well with P (we find a correlation
coefficient of 0.74, and 0.77 with a significance of
99.99%, and 98.4% respectively).

This is a moderate correlation. The fitting results
of Mbul– P correlations are presented in Table 3.

Recent studies have begun to discover the
importance of the SMBHs in the evolution, or co-
evolution, of their host galaxies (e.g., Magorrian et al.
1998, Gebhardt et al. 2000, Marconi and Hunt 2003,
Springel et al. 2005, Hopkins et al. 2007, Rosario et al.
2010, Treuthardt et al. 2012).
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Also, a recently discovered important relation
between the spiral arm pitch angle of a galaxy and the
SMBH mass, the M–P relation was presented by Seigar
et al. (2008), whereas Feoli and Mancini (2009) found
the relation between Mbulσ

2 and SMBH mass.

Figure 6. The bulge dynamical masses as a function the spiral arm
pitch angle. The solid line is the fit to all spiral galaxies

Figure 7. The bulge stellar masses as a function the spiral arm pitch
angle. The solid line is the fit to all spiral galaxies.

In Figures 8 and 9 we show the bulge (dynamical
and stellar) kinetic energy of random motions as a
function of the spiral arm pitch angle for 41 spiral
galaxies. Mdynσ

2 and M*σ
2 correlate with P (we find a

correlation coefficient of 0.74, and 0.79 with a
significance of 99.9%, and 99.7% respectively). It is
evident that there is a moderate correlation relating
Mbulσ

2 with P. The fitting results of MBH-Mbulσ
2

correlations are presented in Table 3. In Table 4, we
compare the fits of our relationship with the previous
studies.

Figure 8. The kinetic energy of random motions for bulge
dynamical mass as a function the spiral arm pitch angle. The solid
line is the fit to all spiral galaxies

Figure 9. The kinetic energy of random motions for bulge
dynamical mass as a function the spiral arm pitch angle. The solid
line is the fit to all spiral galaxies.

Conclusion

In this study, we presented the bulge dynamical
and stellar masses in 35 spiral galaxies, estimated by
applying the isothermal model and the calibration by
Oh et al. (2008) respectively. Furthermore, we found
the kinetic energy of random motions of the
corresponding host galaxies using Mdynσ

2 and Ms*σ
2.

We have obtained the best-fit lines of four scaling
relations. Among them, we found that Mdyn - P, M* -
P, Mdynσ

2 - P, and M*σ
2– P have a linear correlation

coefficient 8.23, 7.56, 7.78, and 7.29 respectively. In
other words, both the stellar and dynamical masses of
bulges correlate well with spiral arm pitch angle.
Furthermore, the kinetic energies of random motions in
the bulge (whether determined from stellar or
dynamical mass) correlates well with pitch angle too.

30

Journal of the Arkansas Academy of Science, Vol. 68 [2014], Art. 7

http://scholarworks.uark.edu/jaas/vol68/iss1/7



A Relation between Pitch Angle and Kinetic Energy in Spiral Galaxies

Journal of the Arkansas Academy of Science, Vol. 68, 2014
31

Hence, pitch angle is a good instrument to determine
indirect measurements of the dynamical bulge mass,

stellar bulge mass, and the kinetic energy (dynamical
and stellar) of random motions in bulges.

Table 1. Estimated Galaxy Parameters.

Name
(1)

Leda
Type (2)

σ (km/sec) 
(3)

P (deg.)
(4)

SMBH
(MBH-σ) (6) 

Mdyn(M )
(7)

Ms(M )
(8)

Mdynσ
2

(9)
Msσ

2

(10)
Circinus Sb 75(1) 26.7 6.418±0.1 9.67±0.190 9.72±0.17 3.87±0.19 3.883±0.13

IC 2560 SBb 137(1) 16.3 7.469±0.2 11±0.047 10.7±0.23 5.732±0.075 5.433±0.023

NGC 224 Sb 160±8 (2) 8.5±1.3 7.794±0.23 10.6±0.071 10.7±0.08 5.458±0.238 5.568±0.035

NGC 613 Sbc 125.3±18.9 (3) 23.68±1.77 7.309±0.2 10.1±0.035 10.4±0.08 4.755±0.083 5.055±0.071

NGC 1022 SBa 99 (4) 19.83±3.6 6.902±0.3 10.1±0.170 10.1±0.14 4.541±0.036 4.541±0.047

NGC 1068 Sb 151±7 (5) 17.3±2.2 7.639±0.05 10.4±0.11 11.2±0.15 5.217±0.36 6.017±0.035

NGC 1097 SBb 150 (6) 16.7±2.62 7.627±0.18 10.6±0.094 10.8±0.047 5.402±0.048 5.602±0.065

NGC 1300 Sbc 218±10 (7) 12.7±1.8 7.568±0.17 10.5±0.085 10.6±0.031 5.272±0.047 5.372±0.094

NGC 1350 Sab 120.91±2.08 (8)* 20.57±5.38 7.251±0.04 10.3±0.13 10.4±0.142 4.924±0.094 5.024±0.058

NGC 1353 Sb 83 (9) 36.6±5.4 6.594±0.13 9.11±0.73 9.43±0.057 3.394±0.085 3.728±0.083

NGC 1357 Sab 121±14 (10) 16.16±3.48 7.252±0.03 10.1±0.023 10.3±0.067 4.726±0.032 4.925±0.059

NGC 1365 Sb 151±20 (11) 15.4±2.4 7.639±0.07 10.3±0.025 10.4±0.045 5.105±0.17 5.217±0.027

NGC 1398 SBab 216±20 (12) 6.2±2 8.264±0.08 10.8±0.023 10.9±0.013 5.928±0.037 6.028±0.058

NGC 1433 SBab 84±9 (13) 25.82±3.79 6.615±0.05 9.5±0.034 10.2±0.043 3.798±0.046 4.508±0.07

NGC 1566 SABb 100±10 (14) 21.31±4.78 6.919±0.07 9.6±0.032 9.77±0.037 4.056±0.048 4.221±0.083

NGC 1672 Sb 130.8±2.09 (8)* 18.2±14.07 7.388±0.14 10.1±0.057 9.93±0.046 4.793±0.094 4.623±0.036

NGC 1808 Sa 148 (9) 23.65±7.77 7.601±0.11 9.89±0.053 10.2±0.083 4.23±0.035 4.991±0.025

NGC 2442 Sbc 140.74±2.18 (8)* 14.95±4.2 7.516±0.12 10.5±0.032 10.4±0.048 5.256±0.032 5.153±0.015

NGC 3031 Sab 143±7 (7) 15.4±8.6 7.544±0.04 10.7±0.046 10.9±0.085 5.576±0.328 5.664±0.01

NGC 3227 SABa 128±13 (7) 12.9±9 7.35±0.16 10.9±0.065 10.7±0.074 5.574±0.043 5.3744±0.15

NGC 3368 SABa 122±28 (7) 14±1.4 7.267±0.06 10.5±0.037 10.8±0.034 5.122±0.11 5.422±0.047

NGC 3511 SABc 93.56±2.04 (8)* 28.21±2.27 6.803±0.07 9.51±0.13 9.58±0.019 3.902±0.042 3.972±0.096

NGC 3521 SABb 130.5±7.1 (15) 21.86±6.34 7.384±0.05 10.3±0.071 10.4±0.045 4.981±0.094 5.081±0.073

NGC 3673 Sb 117.45±2.07 (8)* 19.34±4.38 7.2±0.011 10.3±0.083 10.3±0.13 4.899±0.240 4.899±0.084

NGC 3783 SBab 95±10 (16) 22.73±2.58 6.83±0.021 9.31±0.032 9.42±0.094 3.725±0.075 3.835±0.35

NGC 3887 Sbc 102.01±2.05 (8)* 24.4±2.6 6.954±0.04 9.75±0.084 9.63±0.038 4.227±0.023 4.107±0.051

NGC 4030 Sbc 122.43±2.1 (8)* 19.8±3.2 7.544±0.06 10.7±0.082 10.9±0.084 5.335±0.046 5.535±0.037

NGC 4151 SABa 156±8 (7) 11.8±1.8 7.696±0.07 10.3±0.071 10.5±0.036 5.146±0.048 5.346±0.072

NGC 4258 SABb 146±15 (7) 7.7±4.2 7.58±0.012 10.8±0.18 11.2±0.074 5.588±0.041 5.988±0.084
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Columns: (1) galaxy name. (2) Hubble type taken from the Hyper-Leda catalogue. (3) Velocity dispersion in km/s, Velocity
dispersion references: (1) Hu 2009 (2) Lucey et al. 1997 (3) Beifior et al. 2009 (4) Garcia-Burillo et al. 2003 (5) Gültekin et al.
2009 (6) Davies 2009 (7) Sani 2011 (8) Ferrarese 2002 (9) Douglas 1995 (10) Lauer 2007 (11) Oliva 1995 (12) Whitmore 1985
(13) Buta 2011 (14) Nelson 1995 (15) Ho et al. 2009 (16) Greene et al. 2006 (17) Idiart et al. 1996 (18) Bower et al. 1993 (19)
Benttoni et al. 1997 (20) Lake 1986. (5) Spiral arm pitch angle (P). Most of (P) taken from Berrier et al. (2013), and Davis et al.
(2012). The spiral arm pitch angle given for M31, MW, and NGC 4945 are taken from Braun (1991), and Levine et al. (2006)
respectively. (6) log(MBH/M ) calculated by using MBH-σ  relation. (7) dynamical bulge mass. (8) Stellar bulge mass. (9) The
kinetic energy for dynamical bulge mass (Mdynσ

2 ). (10) the kinetic energy for stellar bulge mass (Mdynσ
2 ).

Table 2. Regression results for log M•= b+ mlogx with the sample consisting of 41 spiral galaxies

Relation b m r

MBH - Md -0.46 ± 0.04 0.76 ±0.06 0.84, 100%

MBH – Ms -0.57 ± 0.07 0.76 ±0.09 0.81, 100%

MBH - P 8.37 ± 0.65 -0.05 ± 0.004 -0.82, 99.25%

MBH – Md σ
2 4.41 ± 0.03 0.59 ± 0.05 0.87, 100%

MBH – Msσ
2 4.38 ± 0.04 0.58± 0.03 0.85, 100%

Md - P 11.4 ± 0.15 -0.06 ± 0.005 -0.82, 99.24%

Ms - P 11.41 ± 0.32 -0.05 ± 0.002 0.75, 98.95%

Md σ
2- P 6.59 ± 0.43 -0.09 ± 0.005 -0.77, 99.06

Ms σ
2-P 6.58 ± 0.049 -0.08 ± 0.007 0.72, 98.79%

Table 1. Estimated Galaxy Parameters. continued

NGC 4462 SBab 146±8 (17) 17.2±5.42 7.579±0.02 10.6±0.074 10.7±0.25 5.388±0.026 5.485±0.081

NGC 4594 Sa 240±12 (7) 6.1 8.448±0.01 11.4±0.092 11.3±0,049 6.6104±0.07 6.5104±0.07

NGC 4699 SABb 215±10 (18) 6.2±2.2(1) 8.256±0.05 10.7±0.067 10.8±0.024 5.824±0.053 5.924±0.053

NGC 5054 Sbc 104.48±2.05 (8)* 25.57±3.73 6.996±0.06 9.9±0.13 10.2±0.036 4.398±0.012 4.698±0.071

NGC 5055 Sbc 101±5 (15) 14.9±6.9 6.937±0.08 9.84±0.037 9.95±0.054 4.308±0.036 4.418±0.043

NGC 6300 SBb 94±5 (3) 24.3±3.8 6.811±0.05 9.82±0.046 10±0.053 4.226±0.073 4.406±0.068

NGC 6744 SABb 112±25 (19) 21.28±3.8 7.117±0.07 10.3±0.19 10.3±0.059 4.858±0.093 4.858±0.091

NGC 6902 SBab 145.86±2.1 (8)* 13.71±2.3 7.578±0.04 10.6±0.084 10.67±0.05 5.387±0.073 5.457±0.035

NGC 7213 Sa 185±20 (17) 7.05±0.28 7.993±0.03 11±0.048 10.9±0.046 5.994±0.087 5.894±0.064

NGC 7531 SABb 108.7±5.6 (9) 18.31±9.09 7.065±0.09 10.2±0.083 10.2±0.059 4.722±0.072 4.752±0.021

NGC 7582 SBab 137±20 (7) 14.7±7.44 7.469±0.09 10.7±0.086 10.9±0.057 5.433±0.097 5.613±0.082

NGC 7727 SABa 181±10 (20) 15.94±6.39 7.955±0.07 10.9±0.064 11.1±0.049 5.875±0.058 6.075±0.079
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Table 3. Scaling relation for log M•= b + mlogx with the sample of 41 spiral galaxies

Relation

MBH - Md log10 MBH = (-0.46±0.04) + (0.76 ± 0.06) log10 (Mdyn)

MBH – Ms log10 MBH = (-0.57±0.07) + (0.76±0.09) log10 (Ms)

MBH - P log10 MBH = (8.37±0.65) – (0.05 ± 0.004) P

MBH – Md σ
2 log10 MBH = (4.41±0.03) + (0.59 ±0.05) log10 (Mdynσ

2)

MBH – Ms σ
2 log10 MBH = (4.38±0.04) + (0.58±0.03) log10 (Ms σ

2)

Md - P log10 Md = (11.4±0.15) – (0.06±0.005) P

Ms - P log10 Ms = (11.41±0.32) – (0.05±0.002) P

Md σ
2- P log10 Mdynσ

2 = (6.58±0.43) – (0.09±0.005) P

Ms σ
2-P log10 Msσ

2 = (16.13±0.43) – (0.08±0.007) P

Table 4. Comparisons with previous studies

Relation a b r References

MBH - Md -1.64 ± 2.55
-9.01 ± 1.96
-1.05 ±2.00

0.87 ±0.25
1.58 ± 0.10
0.81 ± 0.2

0.68
Benedetto et al. 2013

MBH - P 8.21 ± 0.16
8.44 ± 0.10

-0.062 ± 0.009
-0.076 ± 0.005

-0.81, 99.7%
-0.91, 99.99%

Berrier et al. 2013
Seigar et al. 2008

MBH – Md σ
2 4.55 ± 0.8

2.36 ± 0.62
4.88 ± 0.56

0.75 ± 0.22
1.37 ± 0.17
0.66 ± 0.16

0.68 Benedetto et al. 2013
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