
Journal of the Arkansas Academy of Science

Volume 67 Article 6

2013

Trajectory Generation for Stair Ascent Walking
using Rayleigh Oscillator
T. Afzal
University of Arkansas at Little Rock, txafzal@ualr.edu

Andrew B. Wright
University of Arkansas at Little Rock

Kamran Iqbal
University of Arkansas at Little Rock

Follow this and additional works at: http://scholarworks.uark.edu/jaas

Part of the Electro-Mechanical Systems Commons, and the Systems Engineering and
Multidisciplinary Design Optimization Commons

This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to
read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior
permission from the publisher or the author.
This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy
of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Afzal, T.; Wright, Andrew B.; and Iqbal, Kamran (2013) "Trajectory Generation for Stair Ascent Walking using Rayleigh Oscillator,"
Journal of the Arkansas Academy of Science: Vol. 67 , Article 6.
Available at: http://scholarworks.uark.edu/jaas/vol67/iss1/6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UARK

https://core.ac.uk/display/84121746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.uark.edu/jaas?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol67%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/jaas/vol67?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol67%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/jaas/vol67/iss1/6?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol67%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/jaas?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol67%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/298?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol67%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol67%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/221?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol67%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/jaas/vol67/iss1/6?utm_source=scholarworks.uark.edu%2Fjaas%2Fvol67%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


Journal of the Arkansas Academy of Science, Vol. 67, 2013
22

Trajectory Generation for Stair Ascent Walking using Rayleigh Oscillator

T. Afzal, A.B. Wright and K. Iqbal

Department of Systems Engineering, 2801 S. University Ave, University of Arkansas at Little Rock, Little Rock, 72204, Arkansas.

Correspondence: txafzal@ualr.edu

Running Title: Trajectory Generation for Stair Ascent Walking using Rayleigh Oscillator

Abstract

This paper describes a trajectory generation
technique for stair-ascent walking. The knee, hip and
ankle joint trajectory during stair ascent are generated
using mutually coupled, nonlinear oscillators. The
parameters of the oscillators are tuned using the
harmonic balance method, which converts the nonlinear
differential equations to a set of algebraic equations.
Fourier analysis of data generated by stair-ascent
walking is performed to extract the amplitude and the
phase of the dominant frequency components for each
joint trajectory. The solution for the oscillator is
assumed to be a sinusoidal wave and then by harmonic
balance method the parameters of the oscillator are
found. Each oscillator is responsible for generating a
single frequency component with a specific phase and
amplitude. The complete trajectory is obtained by
summing the output of the oscillators that are relevant to
one joint and the coupling maintains the phase
relationship between the oscillators.

Introduction

Central Pattern Generators (CPG) consist of a group
of neurons located in the spinal cord having the
capability to generate sequences of cyclic excitation
without feedback from the neuromusculoskeletal system
and without the generation of control signals from the
brain. The evidence of the existence of CPGs in humans
and other vertebrates for cyclic motion generation such
as walking or running has led to the notion of using
neural oscillators for trajectory generation for the cyclic
movements (Duysens et al. 1998).

Numerous research groups are investigating the
behavior of CPGs in locomotion. The studies involve
the application of CPG in bipedal, quadruple, hexapod
and other n-paired leg animals. Bipedal locomotion
contains numerous gait patterns such as walking,
running and hopping.

Bay and Hemami (1987) used a Van der Pol (VDP)
oscillator to generate various periodic wave patterns.

Their thorough discussion on the properties of coupled
oscillators with 3 nodes has shown that the oscillators
can produce walking gait trajectories for the bipedal
case, but they have not compared the CPG generated
trajectories with the actual bipedal walking trajectories.

Zielinska (1996) investigated the application of a
Van der Pol oscillator for bipedal level ground walking
trajectory generation using oscillators with 4 nodes and
provides a detailed account of the parameter changes
that are required to change gait patterns. In addition,
comparisons of the CPG generated trajectories with the
natural bipedal walking trajectories were made. The
results show differences in the CPG generated and
natural gait trajectories. It is suggested that the addition
of ankle joint angles should enable the generation of a
more precise gait patterns.

Collins and Richmond (1994) have compared three
different oscillator models: the Stein neuronal model,
the VDP oscillator model, and the FitzHugh-Nagumo
model. They demonstrated that a CPG model of coupled
oscillators with 4 nodes can produce oscillation patterns
corresponding to three common quadruped gaits – walk,
trot and bound; however, their oscillators were only
used for inter-limb control on a quadruped machine.

Liu et al. (2000) incorporate the ankle in the CPG
network and use a fully connected ring network of VDP
oscillators to generate trajectories of the hip, knee and
ankle joints for one leg.

Dutra et al. (2003) and Pina Filho et al. (2005,
2009) propose a methodology to generate trajectories
for level ground walking using the VDP, Rayleigh
oscillator and a hybrid oscillator (combination of VDP
and Rayleigh oscillator). They considered the simplest
walking model that performs movement in the sagittal
plane. The model has articulation at the hip joint and the
knee joints. To solve the oscillator equations they have
assumed the type of solution and determined the
parameter values by substitution.

Nandi et al. (2009) used a Rayleigh oscillator to
generate trajectories for the knee joint for level ground
walking and applied it to an active knee prosthetic
device. Their formulation was similar to Pina Filho et al.
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(2005).
The ankle joint plays a vital role in executing

movements that are performed against the action of
gravity such as slope walking, jumping or even running.
Reiner et al. (2002) conclude that the ankle, knee and
hip joint all contribute positive power during stair ascent
and descent (Fig. 1). It is important to generate
trajectory for the ankle joint as it is applicable for
bipedal robots and active ankle prosthesis for amputees.

Most CPGs to date have mainly focused on
generating joint trajectories for level ground walking;
however, traversing stairs or slopes are common
activities that must be performed by active prostheses
and walking robots. During stair climbing the
trajectories of the hip, knee and ankle joint are different
from level ground walking (Fig. 2).

Materials and Methods

Bipedal gaits as well as the trajectories of the
articulated joints during various gaits are periodic. As
any periodic signal can be written as a sum of sine and
cosine terms, by applying Fourier analysis to the
trajectories of knee, hip and ankle joints the amplitude
and relative phase of the dominant frequency
component present in each trajectory can be determined.
Data provided by Reiner (2002) was analyzed for the
time-dependent trajectories of hip, knee and ankle joints
for stair climbing (Fig. 2).

From the power spectrum of these data (Fig. 3) the
dominant frequencies at 1 Hz, 2 Hz and 3Hz can be seen.
For accurate extraction of frequencies a hanning
window was used. The trajectories of the joints can be
assumed to be a combination of these dominant
frequencies. Thus each trajectory can be expressed as a
sum of sinusoidal waves.

(1)

where represents the kth joint angle, An is the
amplitude and is the phase of the nth frequency
component.

Table 1 show the amplitude and phase relationship
of the dominant frequency components for the ankle
knee and hip joint.

(a)

(b)

(c)
Figure 1. Joint powers during stair ascent and level ground walking.
(a) Hip power. (b) Knee power. (c) Ankle power. (Data obtained
from Reiner et al. 2002)
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(a)

(b)

(c)

Figure 2. (a) Hip, (b) knee and (c) ankle trajectories. Level ground
walking and stair ascent. (Data obtained from Reiner et al. 2002).

(a)

(b)

(c)

Figure 3. Power spectrum of trajectories. Peaks are visible at 1 Hz,
2 Hz and 3 Hz (fundamental frequency 1 Hz).
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Table 1: Trajectories relative phase and amplitude

Joint
Amplitude

A
Phase

(rad)
Frequency

(Hz)

Hip
30 0.1 1
4 1 2

-1.2 0.5 3

Knee
43 0.4292 1
11 2.3292 2
6 -2.4708 3

Ankle
14 -0.76 1

5 -5.1 2

4.5 -3.1 3

Rayleigh Oscillator

The oscillator model to be used for generating
trajectories is the Rayleigh oscillator model introduced
by British mathematical physicist Lord Rayleigh. The
equation is of the form:

(2)

The equation of Rayleigh oscillator used in the
analyses is of the form:

(3)

where Eiw, qiw and diw are the parameters of the Rayleigh
equation and cijw and cjointir are the coupling
coefficients of oscillator with the same frequency and
oscillators with different frequency respectively.

Computing the first and second derivatives of
equation (1), inserting the solution in equation (3) and
applying the method of harmonic balance the values of
the oscillator parameters and are obtained
(equation (4)-(5)). By choosing appropriate values of
the other parameters and the trajectory

can be computed.

(4)

(5)

Table 2: Parameters of the Rayleigh oscillator

Parameters
E11 = 0.05
E12 = 0.05
E13 = 0.1

E21 = 0.3
E22 = 0.05
E23 = 0.2

E31 = 0.2
E32 = 0.5
E33 = 0.2

c121=0.005
c131=0.005725
c211=-0.05
c231=-0.03
c311=-0.03
c321=0.018

c122=-0.06
c132=0.015
c212=0.8
c232=-0.1
c312=-0.12
c322=0.0052

c123=0.0
c133=0.0
c213=0.0
c233=0.0
c313=0.0
c323=0.0

ch12=0.00
ch13=0.00
ch21=0.015
ch23=0.015
ch31=0.00
ch32=0.00

ck12=0.001
ck13=0.001
ck21=0.0001
ck23=0.0001
ck31=0.00
ck32=0.0

ca12=0.001
ca13=0.001
ca21=0.0
ca23=0.0
ca31=0.0
ca32=0.0

Coupling Scheme

The coupling between the oscillators is shown in
Figure 4. As three dominant frequency components
constitute the trajectory, each joint is composed of three
mutually coupled oscillators; each oscillator is
responsible for generating one frequency component
with the relative phase and magnitude. The output
trajectory is a sum of all the oscillator outputs relevant
to the joint.

Figure 4. Oscillator coupling scheme for the bipedal case

Results

The gait patterns generated from the Rayleigh
oscillators are shown in Figures 5, 6 and 7. The results
were obtained by using the parameters in Table 1,
calculating the oscillator parameters from equations 4
and 5 and then implementing equation 3 in Matlab. The
values of the coupling parameters were obtained

Hip

Knee

Ankle
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experimentally. The oscillator generated trajectories
have been compared with the experimental data and we
find approximate errors in the hip and ankle trajectories
to be less than 5 degrees from 70-100 seconds of the
trajectory plot. The knee trajectory also follows closely
to the actual trajectory; however, a higher error between
15-20 degrees is found.

From the results it can be seen for the trajectories
that over a period of 100 seconds the oscillator is
successfully generating oscillations similar to reference
trajectories.

(a)

(b)

Figure 5. (a) Hip trajectory (b) Error.

Conclusion

Coupled non-linear Rayleigh oscillators were used
to generate trajectories for the hip, knee and ankle joints
for stair ascent walking. Fourier analysis of stair ascent

data was done to extract the phase and amplitude of the
dominant frequency components and the parameters of
the Rayleigh oscillator were computed assuming a
periodic solution and applying the method of harmonic
balance. The results suggest that mutually coupled
Rayleigh oscillators can be used to generate trajectories
for the hip, knee and ankle joints for stair ascent
walking.

(a)

(b)

Figure 6. (a) Knee trajectory (b) Error.

Future Work

In this study the data analyzed was for a constant
stair height with an inclination angle of 30 degrees. This
is a standard angle of inclination implemented at public
places. The varying stair inclination angles were not
considered in this work. For trajectories from different
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inclination angles the Rayleigh oscillator is capable of
generating those trajectories as the two parameters that
vary for different trajectories are the amplitude and
phase and the oscillator equations takes into account
both of these parameters.

The next task is to investigate the transition between
level ground and stair ascent walking. This is important
as we do come across various walking paths in our daily
activities especially frequent use of stairs and slopes at
homes and at work places.

(a)

(b)

Figure 7. (a) Ankle trajectory (b) Error.

Once the transition is identified the Rayleigh
oscillator would be tuned in such a manner that it has
the capability to generate trajectories for both level
ground walking Pina Filho et al. (2009) and stair ascent
walking with instantaneous switching as required. This

would require designing an adaptive Rayleigh oscillator.
The adaptive mechanism would update the parameters
of the oscillator to account for the transition from level
ground to stair ascent walking.
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