Respiration Rates of Two Midge Species at Different Temperatures

George L. Harp
Arkansas State University
Robert S. Campbell
University of Missouri

Follow this and additional works at: http://scholarworks.uark.edu/jaas
Part of the Entomology Commons

Recommended Citation

Harp, George L. and Campbell, Robert S. (1973) "Respiration Rates of Two Midge Species at Different Temperatures," Journal of the Arkansas Academy of Science: Vol. 27 , Article 18.
Available at: http://scholarworks.uark.edu/jaas/vol27/iss1/18

Respiration Rates of Two Midge Species at Different Temperatures

GEORGE L. HARP
Division of Biological Sciences, Arkansas State University, State University, Arkansas 72467

ROBERT S. CAMPBELL
Department of Biology, University of Missouri at Columbia, Columbia, Missouri 65201

Abstract

Respiration values for Chironomus n . sp. ranged from $0.11 \mathrm{~mm}^{3} \mathrm{O}_{2} / \mathrm{mg} / \mathrm{hr}$ at 5 C to 0.44 $\mathrm{mm}^{\prime} \mathrm{O}_{2} / \mathrm{gm} / \mathrm{hr}$ at 25 C . The range for Chaoborus punctipennis was from 0.15 $\mathrm{mm}^{\prime} \mathrm{O}_{2} / \mathrm{mg} / \mathrm{hr}$ at 5 C to $0.56 \mathrm{~mm}^{\prime} \mathrm{O}_{2} / \mathrm{mg} / \mathrm{hr}$ at 25 C . These low respiratory rates allow the two species to withstand low oxygen tensions for extended periods of time. Reflecting this ability, both species attained their greatest numerical and biomass values in the profundal regionsof three strip-mine lakes whose lower waters become oxygen depleted during thermal stratification.

INTRODUCTION

Respiration accounts for most of the energy losses between trophic levels (Odum, 1959). Smalley (1960) determined that 63.3% of the energy assimilated by grasshoppers in a salt marsh was released through respiration. Teal (1957) reported the fraction of assimilated energy which various macroinvertebrates transform to heat ranges from 12 to 84%, with a mean value of 71% for the entire community.

Respiration values define the influence of oxygen content of the water on distribution of macroinvertebrates. Kasatkina (1960) reported respiratory values of 1.54 and $1.24 \mathrm{~mm}^{3}$ $0, / \mathrm{mg}$ live $\mathrm{wt} / \mathrm{hr}$ for stream inhabitants Cricotopus bicinctus (Meigen) and C. sylvestris (Fabr.), respectively, at 20 C . Tanytarsus characterizes the oxygen-rich oligotrophic lake and has a respiratory rate of $0.52 \mathrm{~mm}{ }^{\prime} \quad 0_{2} / \mathrm{mg} / \mathrm{hr}$ at 17 C (Walshe, 1947). Tendipes plumosus (L.), which characterizes the oxygen-poor eutrophic type lake, may have a respiratory rate as low as $0.12-0.19 \mathrm{~mm}^{\prime} \quad \mathrm{O}_{2} / \mathrm{mg} / \mathrm{hr}$ (Harnisch, 1930). Between these extremes, other midge larvae characterize additional lake types, as Stictochironomus lakes and Sergentia lakes (Ruttner, 1966). Hence, investigation of the rates of respiration of benthic macroinvertebrates can provide important information concerning the oxygen economy and production of a lake.

The purpose of this study was to measure rates of respiration at different temperatures in Chaoborus punctipennis (Say) and Chironomus n. sp.

METHODS

Organisms were acclimated at the experimental temperature for 24 hr prior to determinations. Seventeen measurements for each species were distributed as follows: for Chironomus n . sp., four replicates at 5.9 C , four at 12.5 C , five at 13.5 C , and four at 24 C ; for Chaoborus punctipennis, four replicates at 6.7 C. three at 10 C , five at 14.8 C , three at 19 C , and two at 24 C . Each replicate of $100-150$ individuals was placed in a 100 -ce syringe filled with lake water (Ewer, 1941). The chironomids were first removed from their tubes. The oxygen content of the water before and after incubation was measured by the azide modification of the Winkler method (APHA, 1960). After the initial oxygen determination, the syringes were placed in lighted incubators at various temperatures from 6 to 24 C for 2-3 hours, a period of time long enough for a measurable
change in oxygen to occur but not sufficiently long to lower oxygen tension detrimentally. During the experimental runs, temperature fluctuation did not exceed $=1 \mathrm{C}$ of the stated value. The syringes were rotated periodically to insure equal distribution of oxygen. After the final oxygen determination, the organisms were removed and weighed. Oxygen consumption was converted to calories by the average oxycaloric coefficient of Ivlev (1934), $3.38 \mathrm{cal} / \mathrm{mg}_{2}$.

RESULTS

The rates of respiration for both C. n. sp. and C. punctipennis were shown to increase exponentially with increased temperature (Fig. 1). The respiratory rate of Chaoborus was greater than that of Chironomus at all temperatures and differed by a factor of 1.3 at 24 C .

Figure 1. Rates of respiration for Chironomus n. sp. and Chaoborus punctipennis at various temperatures, expressed as $\mathrm{cal} / \mathrm{cal} / \mathrm{month}$. The curves were drawn by inspection.

DISCUSSION

The rates of respiration determined for Chironomus n. sp. and C. punctipennis fall at the lower end of the range reported in the literature for other benthic fauna (Berg et al., 1962; Kasatkina, 1960; Teal, 1957). Walshe-Maetz (1953) reported that respiratory values for T. plumosus could be erroneously high if the larvae were out of their tubes and the level of dissolved oxygen fell below 25% saturation. As the dissolved oxygen values in this study were never so low this potential source of error can be ignored.

At a given temperature the higher respiratory rates are characteristic of species which require well oxygenated water (Walshe, 1947). Those species with lower respiratory rates can withstand lower oxygen tensions for protracted periods of time (Harnisch, 1930; Walshe, 1950). Chironomus n. sp. and C. punctipennis are of the latter group.

The two midge species were collected from three coal strip-mine lakes in central Missouri. Chironomus n. sp. was the only midge present in Lake $\mathrm{A}_{3}, \mathrm{pH} 3.2-4.1$. It formed 93.6, 98.1 , and 99.7% by number and $46.4,68.8$, and 99.1% by weight of the total benthos at $0.25,1.5$, and 4.0 m (deepest), respectively. The major factor determining the dominance of this species is its tolerance to mineral acidity (Harp and Campbell, 1967). However, within the lake its relative abundance at various depths coincided more nearly with the degree of oxygen depletion during thermal stratification (Campbell and Lind, 1969).

Chaoborus punctipennis was the major benthic species in the two alkaline lakes. In Lake B ($\mathrm{pH} 6.3-7.8$) it formed 0.7, 17.1, and 90.7% by number and $0,0.3$, and 54.2% by weight of the total benthos at $0.25,2$, and 5 m , respectively. In Lake D (pH $6.6-7.4$) it formed $0.1,2.3$, and 78.8% by number and $0,0.1$, and 37.2% by weight of the total benthos at $0.25,2$, and 4 m , respectively. Dissolved oxygen concentrations and patterns of the two alkaline lakes were those of similar dimictic temperate lakes.

The large numerical and biomass standing crops established by the two midge species in the three coal strip-mine lakes are the result of a combination of factors. Chironomus n. sp. is one of the few benthic forms that can withstand mineral acid environments such as Lake A, (Harp and Campbell, 1967). Relatively few benthic forms have respiratory rates as low as those found for Chironomus n. sp. and Chaoborus punctipennis (Kasatkina, 1960; Walshe, 1950). Given the conditions, in the presence of reduced predation (e.g. fish) and reduced competition (e.g. other benthic fauna), the two midge species are able to increase their populations greatly.

A final consideration is the expression of respiration values in energy units. The study of community metabolism is one means of making a functional analysis of an ecosystem. Respiration is the major pathway of energy transformation between trophic levels. Energy units are preferable to biomass units in such studies because there is recirculation of matter in the ecosystem and because the rates of turnover are so different for different sizes and species of organisms (Teal, 1957), Further, at least in terms of energy flow, in a comparison of respiration values expressed as $\mathrm{mm}^{\prime} 0_{2} / \mathrm{mg}$, one must assume a similar energy value for each species per unit biomass. Unfortunately, this is far from the actual situation. For these reasons respiration values expressed in energy units, rare in the literature to date, will be of greatest value in future community metabolism studies.

ACKNOWLEDGMENTS

The Missouri Cooperative Fishery Unit and the Missouri Cooperative Wildlife Research Unit contributed the use of vehicles, research equipment, and facilities. The investigation was supported in part by Research Grant Number WP-00379, Division of Research and Training Grants. Federal Water Pollution Control Administration, U. S. Department of the Interior.

LITERATURE CITED

AMERICAN PUBLIC HEALTH ASSOCIATION. 1960. Standard methods for the examination of water and waste-water. 11 th ed. APHA, New York. 626 p.
BERG, K., P. M. JONASSON, and K. W. OCKLEMANN. 1962. The respiration of some animals from the profundal zone of a lake. Hydrobiologia 19(1):1-39.
CAMPBELL, R. S., and O. T. LIND. 1969. Water quality and aging of strip-mine lakes. J. Water Pollution Control Federation November:1943-1955.
EWER, R. F. 1941. On the function of haemoglobin in Chironomus. J. Experimental Biology 18:197-205.

HARNISCH, O. 1930. Respiration physiology of the chironomid larvae which carry hemoglobin (in German). Wiss. Biol. Abt. C. Zeitschr. Vergleish 5^{2} Physiol. 11(2):285-309.
HARP, G. L., and R. S. CAMPBELL. 1967. The distribution of Tendipes plumosus (Linne) in mineral acid water. Limnology and Oceanography 12(2):260-263.
IVELV, V. S. 1934. Eine Mikromethode zur Bestimmung des Kaloriengehalts von Nahrstoffen. Biochem. Ztschr. 275:49-55.
KASATKINA, M. N. 1960. Relation between weight and rate of gas exchange in ecologically different species of chironomids. Doklady Adad. Nauk SSSR (Biological Science Section Transl.) 135(1/6):865-867, from 135(1):182-184.
ODUM, E. P. 1959. Fundamentals of ecology. 2nd ed. Saunders, Philadelphia. 546 p.

RUTTNER, F. 1966. Fundamentals of limnology (English transl.). Univ. Toronto Press. 295 p.
SMALLEY. A. E. 1960. Energy flow of a salt marsh grasshopper population. Ecology 41(4):672-677.

TEAL, J. M. 1957. Community metabolism in a temperate cold spring. Ecological Monographs 27:283-302.
WALSHE, B. M. 1947. The function of haemoglobin in Tanytarsus (Chironomidae). J. Experimental Biology 24:343-351.

WALSHE, B. M. 1950. The function of haemoglobin in Chironomus plumosus under natural conditions. J. Experimental Biology 27:73.

WALSHE-MAETZ. B. M. 1953. Le metabolisme de Chironomus plumosus dans des conditions naturelles. Physiol. Comp. e. Ecologia 111:135-154.

