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Abstract 

The shape of two-dimensional materials plays a significant role on their chemical and 

physical properties. Two-dimensional materials are basic meshes that are formed by mesh points 

(vertices)  given by atomic positions, and connecting lines (edges) between points given by 

chemical bonds. Therefore the study of local shape and geometry of two-dimensional materials is 

a fundamental prerequisite to investigate physical and chemical properties.  Hereby the use of 

discrete geometry to discuss the shape of two-dimensional materials is initiated. 

The local geometry of a surface embodied in 3D space is determined using four invariant 

numbers from the metric and curvature tensors which indicates how much the surface is 

stretched and curved under a deformation as compared to a reference pre-deformed 

conformation. 

Many different disciplines advance theories on conformal two-dimensional materials by 

relying on continuum mechanics and fitting continuum surfaces to the shape of conformal two-

dimensional materials. However two-dimensional materials are inherently discrete. The 

continuum models are only applicable when the size of two-dimensional materials is 

significantly large and the deformation is less than a few percent. In this research, the knowledge 

of discrete differential geometry was used to tell the local shape of conformal two-dimensional 

materials. Three kind of two-dimensional materials are discussed: 1) one atom thickness 

structures such as graphene and hexagonal boron nitride; 2) high and low buckled 2D meshes 

like stanene, leadene, aluminum phosphate; and, 3) multi layer 2D materials such as Bi2Se3 and 

WSe2. The lattice structures of these materials were created by designing a mechanical model - 

the mechanical model was devised in the form of a Gaussian bump and density-functional theory 

was used to inform the local height; and, the local geometries are also discussed.  
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Introduction 

Imagine one can read the newspaper headlines on a cup at breakfast time, watch a TV screen 

installed on the wall which has thickness less than that of paper, use a cell phone less than a 

millimeter thick and much faster compared to current cell phones. These are only potential 

electronic applications of a recently discovered class of materials that are one atom thick. The 

new materials may change these ideas to reality one day.  Graphene, a one atom thick sheet of 

carbon, is the most famous 2D material [1]. Being relatively transparent to light and possessing a 

high electric conductivity [2], graphene can be used in conjunction with other materials to make 

solar voltaic panels. Such extremely thin and flexible solar voltaic panels can cover the walls of a 

building, the surface of a car, or surface of light post to create homemade or civic solar energy. 

Touch-screen electronic devices such as cell phones are another application. Instead of glass, 

graphene can be deposited on layers of plastic. One can expect to have flexible touch screen cell 

phones in the near future. Since graphene’s mechanical strength is almost one hundred times 

higher than steel’s, the device will be nearly unbreakable. In addition, carbon is naturally 

abundant which paves the way for production of graphene-based devices with low cost. 

Graphene’s high resistance to salty ionic body solutions can be added to its extraordinary 

flexibility and strength features, which allures biomedical scientists to use on implants in body 

tissues. High electric conductivity of graphene allows it to be added to the neurons which are 

cells in charge of transferring signals to muscles and brain. Imagine a transistor made of 

graphene implanted to transfer signals through damaged parts of spinal cord to undamaged parts. 

This application would allow disabled persons to recover their health and be able to use their 

damaged organ. But there are more 2D materials beyond graphene with unique properties too. 

Induced mechanical strain on 2D materials can change their electronic and mechanical properties 
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significantly. Therefore, the study of mechanical strain and deformation of 2D materials in 

general is a promising step towards a new generation of opto-electronic devices. 

 Most 2D materials have unique properties that depend on their shape. These changes in 

shape can be induced by a mechanical deformation or any other change in the lattice structure, 

such as atomistic defects. Therefore, the shape of 2D materials is an important feature which 

should be investigated in detail. In this research a new model for characterizing the shape of 2D 

materials is built. Shape, or geometry, is usually thought of to occur within a continuum but 

given that 2D materials are made of (discrete) atoms and atomistic bonds connecting atoms 

together, it is not accurate to fit any continuum model to their shape [2]. Fortunately, a 

mathematical tool known as discrete differential geometry is already known and it can be applied 

to tell the shape of 2D materials [3, 4], as it is shown for the first time in this Master’s thesis.  
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2D Materials History and Impact 

Graphene was the first 2D material exfoliated in 2004 [5]. However, long before that there 

were different theories and efforts to investigate the possibility of their existence. Work on 

graphene can be traced to the 19th century during which many chemists were working on 

graphene oxide [6]. The German chemist, Schafhaeutl [7, 8], added alkali metals between the 

layers of graphite and then exfoliated graphite using different acids such as nitric and sulfuric 

acids [6]. This effort was historically important because the layers of graphite retain their 

structure, but the distance between layers is increased. In 1968, Mermin supported the ideas of 

Peierls and Landau [9] made thirty years before and presented his theory expressing the idea that 

it is not possible to have stable 2D crystalline materials [10].  In 1986, Boehm suggested to use 

the term of graphene for a 2D crystalline made of carbon as a building block of graphite [11]. 

Finally, in 2004 Novoselov and coworkers exfoliated graphite mechanically [5]. In the ensuing 

10 years, other 2D crystals were synthesized and investigated [12]. The ideas of this thesis are 

introduced with the use of grapheme. 

1.1 Lattice Structure of Graphene 

Graphene is a single atomic layer of carbon with a hexagonal lattice. The unit cell of 

graphene consists of two atoms (A and B) and has a diamond shape which is shown in Figure 1. 

This unit cell is duplicated along the two lattice vectors in creating an unextended 2D crystal. 

The lattice constant a is equal to equal to 0.246 nm, and the unit vectors of this hexagonal lattice 

are: 

a1 = �
√3
2

,
1
2

, 0� × a      ,          a2 = �
√3
2

,−
1
2

, 0� × a. 
(Equation 1) 
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Graphene has a reciprocal lattice constant equal to 4π
√3

a. The reciprocal lattice vectors are 

calculated as a function of the primitive lattice vectors satisfying 

The reciprocal lattice vectors thus are: 

 

Figure 1 shows the graphene structure and the lattice vectors. 

1.2 Electronic Properties of Graphene and other Dirac Materials 

Dirac equation is mainly used to predict the behavior of fundamental particles such as quarks 

and neutrinos [13]. However, recently it is also used to describe some materials known as Dirac 

materials [14]. Dirac materials have a cone-shaped band structure at low energy ( ~0.2 eV) around 

the Fermi energy induced by the symmetries of π-electrons on the hexagonal lattice. The free 

electrons in metals behave like massive particles and obey Schrodinger equation ( E ∝ k2, where E 

ai. bj = 2πδij  (i, j = 1,2). (Equation 2) 

b1 = �
2√3π

3a
 ,
2π
a

  , 0�    ,     b2 = �
2√3π

3a
 ,−  

2π
a

  , 0�. 
(Equation 3) 

Figure 1. Graphene structure and unit cell. 

 

Unit cell 
A B 

a1 

a2 
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is energy and k is crystal momentum) and their energy versus momentum is a quadratic equation. 

In contrast, Dirac electrons have a linear dependency of energy on momentum and they behave 

like massless fermions E ∝ 𝛔𝛔.𝐤𝐤, where 𝛔𝛔 is Pauli matrix in vector form. Most of massless fermions 

are neutral; however, electrons in Dirac materials are charged massless particles and can be easily 

influenced by external magnetic or electric fields (this is known as field effect). This unique 

property has a great potential to be exploited in future electronic applications such as single 

molecule gas detection, transistors, integrated circuits, ultra capacitors, and bio devices. 

1.3 Other 2D Materials 

Based on the bulk material used to create 2D materials, they can be classified into two main 

classes: 1) Van der Waals 2D materials and, 2) layered ionic solids. Van der Waals 2D materials 

are the most common form [15]. These materials are created by mechanical or chemical exfoliation 

of their bulk material. The bulk of these materials are stacked layers arranged with van der Waals 

forces (hence their name) [11].The examples of these kind of 2D materials are graphene which is 

one layer of graphite, hexagonal boron nitride[16], and phosphorene[17], which is one layer of 

black phosphorus. Graphene and phosphorene have strong covalent bonds between atoms in one 

layer.  The atomic bonds in each layer can also be ionic. Due to weak van der Waals interaction 

between layers, these solids can be easily exfoliated. Metals (M) such as titanium, zirconium, 

hafnium, vanadium, niobium, and tantalum with chalcogens (elements in group six of the periodic 

table) — mostly sulfide, tellurium and selenium (usually labeled X) — are the most common and 

studied form of other van der Waals 2D materials with chemical formula MX2. MoS2 [18], TiSe2 

and WSe2 are examples of this type.  
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The second class of 2D materials is called layered ionic solids [19]. The atoms in a single 

layer of these materials are bond together with strong electrostatic bonds. Most of these 2D 

materials are metallic oxides, for instance TiO2, WO3, MnO2 and Ni (OH)2. 

1.4 Properties of 2D Materials 

 In 2D materials, electrons are confined in a surface rather than a 3D space. The interaction 

between layers of bulk materials plays a significant role in their electronic and optical properties 

[20]. By confining interactions to two dimensions, new electronic behavior is observed (such as 

Hall effects) which has made researchers optimistic to exploit these properties and make new 

electronic devices. Another difference of 2D materials compared to bulk 3D materials is the effect 

of shape and stacking on their properties. For example, the properties of a single layer of graphene 

are different from those of 2 layers and they are still different from 3 layers of graphene stacked 

together [21]. By stacking more layers of graphene together the properties are similar to the bulk 

form which is graphite. Even relative stacking angles play a role in electronic properties17. 

Deformation also changes the properties. For instance, strain changes the properties by altering the 

orbital hybridization [1].  

The other important feature of 2D materials is their high surface-to-volume ratio. In 2D materials 

there are numerous atoms that are considered surface atoms. Therefore 2D materials are 

membranes exposed to their environment and very sensitive to changes in such environment. 

Consequently, 2D materials are potentially good materials for sensing [22].   
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Geometry of 2D Materials 

1.5 Deformation in 2D Materials 

In the previous section it was mentioned that the shape of 2D materials alters their properties. 

Graphene is the most popular 2D material and the subject of extensive research. Much research 

has also been done on graphene and the effect of strain in electronic properties [4, 23]. Graphene 

is amenable to external forces and, with a very high Young’s modulus, can withstand up to 30 

percent strain [24]. In addition to these unique properties are influenced by external exerted strain 

[4, 23, 25].The possibility of modifying the electronic properties by applying a strain pattern has 

triggered extensive research and novel ideas on the issue. Two-dimensional materials accept 

deformation that increase bonds by up to 20% before mechanical failure (fracture); this level of 

deformation is unheard of in 3D form of these (bulk) materials. 

 The change in crystal lattice of graphene can be classified into four ways [25]: 

1- Strain changes the distance between atoms and, consequently, the shape of chemical 

orbitals changes. 

2- Modifying the distance between nearest neighbor atoms leads to change in sub-lattices 

and hopping parameter [25] therefore non-diagonal elements in Dirac equation will 

change. This effect is similar to inducing a gauge field on the lattice [25]. 

3- By substituting hexagons in the lattice with pentagons and heptagons one can exert 

large deformations in which pentagons add convex deformation and heptagons adds 

concave deformation to the graphene changes [3].  

4- Deformation on graphene membrane changes the distance between π and σ orbitals 

which causes overlapping and hybridizing of these orbitals [3].  
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These generic observations apply (with some exceptions and modifications) to other 2D 

materials. 

1.6 Lack of Accuracy of Continuum Mechanics for 2D Materials 

In the existing theories, explaining the deformation of 2D materials tends to consider them 

as continuous membranes. That is, a continuous deformation field 𝐮𝐮𝛂𝛂(ξ1, ξ2), in two dependent 

directions ξ1 and  ξ2, is considered. In thin plate elasticity theory [2, 26] the deformation field can 

be expressed as a strain field in the following way: 

uαβ =
∂uβ
∂ξα

∂uα
∂ξβ

+
∂uβ
∂ξα

∂uα
∂ξβ

+
∂z
∂ξα

∂z
∂ξβ

 
 (Equation 4) 

in which z is the deformation normal to the membrane[4], and α,β are integers between 1 and 2. 

The local geometry of a surface embodied in 3D space is determined using four invariant 

numbers from the metric and curvature tensors, which indicates how much the surface is 

stretched and curved under a deformation compared to a reference unreformed conformation. 

Appropriate invariants are: 1) the trace of metric tensor; 2) the determinant of metric tensor; 3) 

the product of principal curvature, which is called the Gaussian curvature; and, 4) the sum of the 

two principal curvatures (the mean curvature). These concepts and parameters are discussed in 

following pages. 

Within the continuum frameworks the mechanics of the membrane and its geometry are 

dynamically related by (thin plate first order continuum elasticity theory):  

gαβ = δαβ + 2uαβ  ,    kαβ = n� . ∂gα
∂ξβ

 , (Equation 5) 
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in which gαβ is the metric tensor, which describes how the local vicinity is stretched with respect 

to a “reference” metric for an undeformed body, δαβ. The curvature tensor, kαβ, tells us the local 

curvature at a given point and gα = (ξ1, ξ2) is the tangent field to the membrane at any given 

point. The local normal to the 2D continuum manifold is shown by n� and it can be found by: 

g
→
ξ1

×
g
→
ξ2

�
g
→
ξ1

×
g
→
ξ2
�
 

 

(Equation 6) 

More on the continuum geometry will be covered later. The main point here is that the 

continuum theory applies to slow and homogeneous deformations. Thus, deformations observed 

in practice, for instance, the formation of ripples in 2D materials, may not be properly described 

by first-order continuum mechanics. These limitations require researchers to study an exact 

method for discussing the geometry of 2D crystals directly from atoms [4, 27]. The exact method 

used to tell shape introduced here is a recent mathematical language known as discrete 

differential geometry [3, 4, 28].  

1.7 Discrete Geometry Framework 

2D materials can be easily embedded into 3D space. The surface of these 2D materials is 

not a continuum because these structures are created by discrete points (atoms) and lines 

(chemical bonds). A path on the lattice can be considered as a sequence of vectors which creates 

a multi-broken line, and the surface can be considered as a collection of many finite hexagonal 

planes, therefore the surface of 2D materials surface is discrete. Consequently, it becomes 

interesting to investigate if there are exact alternative, precise, concepts to determine the shape.  
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1.7.1 Differential Geometry Concepts 

In this section essential concepts of differential geometry are discussed. 

Curvature and curvature tensor: Consider a curve in 2D space  y = f(x). The first information 

known about the shape of the curve is the tangent line to each point. The local tangent line is 

given by the first derivative of the curve.  The second piece of information of the curve is its 

local curvature which is related to the second derivatives. In a 2D space this two parameters are 

sufficient to know the local shape of the curve.  

Curvature is the reciprocal of the radius of an osculating circle on a given point as shown 

in Figure 2.  

Therefore, the curvature k at point M is given by:  

In 3D space the shape of the curve needs another component called torsion. Consider a curve =

f(t) : 

• T the tangent vector in each point is defined as 𝐓𝐓 = d𝐫𝐫
ds

. 

k = 1
R
 . (Equation 7) 

Figure 2. Osculating circle and tangent line. 

 

Y=f(X) 
O R 

Tangent line 
𝑛𝑛
→ 

X 

Y 

M 
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• N is the normal vector to the curve in each point and it is defined by: 𝐍𝐍 = 𝐑𝐑 × d𝐓𝐓
ds

. 

• B is the cross product of tangent vector and Normal vectors: 𝐓𝐓 × 𝐁𝐁. 

Where s is length of the curve f(t), and R is the radius of osculating circle. These three vectors 

(T, N, and B) build a useful local frame to discuss curves in 3D.  

Curvature of a surface embedded in space: Unlike the curvature discussed in previous section, 

the curvature of surfaces is not a single scalar value because, by looking at Figure 3, there are 

infinite numbers of circles that are tangential to the surface at any given point. In this situation, 

the maximum and minimum curvature of all osculating circle on a point are called principal 

curvatures in that point. Said another way, the curvature on a surface in 3D space is a tensor with 

two principal eigenvalues known as the principal curvatures. The two circles are defined taking 

extreme radii. The invert of these two (principal) radii are known as principal curvatures (k1 =

1
r1

, k2 = 1
r2

). The two principal curvatures are related to the mean curvature (H) and the 

Gaussian curvature (K) by a simple formula [29]: 

Figure 3. Different osculating circles tangent to a saddle surface in one point. 
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k1 = H −�H2 − K   ,    k2 = H + �H2 − K (Equation 8) 

By having four parameters — The Gaussian curvature, K, the mean curvature, H, the 

determinant, and the trace of metric tensor (Equation 5) — the geometry of a continuum 2D 

surface can be determined. 

First fundamental form and metric tensor: For surface with equation M = f�x(u, v)�  , y(u, v),

h(u, v)), then, the metric tensor of this surface is written as [29]:  

gij = �E F
F E� = �

∂f
∂u

. ∂f
∂u

∂f
∂u

. ∂f
∂v

∂f
∂v

. ∂f
∂u

∂f
∂v

. ∂f
∂v

�. 
(Equation 9) 

This tensor is called a metric tensor because it is related to calculating distances on a curve 

constrained to the surface. From this definition, a differential curve length on the surface can be 

written as:  

ds2 = Edu2 + 2Fdudv + Gdv2. (Equation 10) 

For example, in a Cartesian Euclidean system:  

ds2 = 𝐝𝐝𝐝𝐝2 + 𝐝𝐝𝐝𝐝2. (Equation 11) 

That means, two vectors  du, dv are orthogonal so F=0, and  𝐝𝐝𝐝𝐝,𝐝𝐝𝐝𝐝  are of unit length so E=G=1, 

and, therefore the metric tensor can be easily computed by: 

gij = �1 0
0 1�. (Equation 12) 

Analytical Gaussian curvature: Suppose the surface has a function S = f(x, y, z(x, y)). The 

Gaussian curvature can be computed by Equation 13: 
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K =
zxxzyy − zxy2

�1 + zx2 + zy2�
2 . 

(Equation 13) 

Curvature for a Gaussian bell: Using this equation Gaussian curvature of a Gaussian bump is 

calculated. It is easier to deal with the Gaussian bump in cylindrical coordinates. The Gaussian 

and the mean curvatures are calculated below [4]:  

z(r) = Aexp (−
r2

2σ2
 ) ,  

(Equation 14) 

zr =
−rA
σ2

exp (−
r2

2σ2
 ) 

(Equation 15) 

zrr =
−r2A
σ4

exp (−
r2

2σ2
 ) +

A
σ2

exp (−
r2

2σ2
 ) 

(Equation 16) 

k1 =
zrr

(1 + zr2)
3
2

     ,     k2 =
zr

r�1 + zr2
 (Equation 17) 

K = k1k2 =
zrrzr

r(1 + zr2)2 (Equation 18) 

H =
1
2

(k1 +   k2) =
1
2
�

zrr
(1 + zr2)

3
2

   +
zr

r�1 + zr2
� 

(Equation 19) 

 

in which A and σ are constants, r is the distance from the origin (middle of the Gaussian bump), 

k1 and k2 are principal curvatures, K is the Gaussian curvature and H is the mean curvature. 

Analytical Gaussian curvature (K) of the previously mentioned Gaussian bump is calculated 

using Equations 18 and 19 for A = 10 Å and σ = 15 Å. and shown in Figure 4.  
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Analytical mean curvature (H) of the Gaussian bump is calculated and shown in Figure 5. 

Figure 4.  Analytical Gaussian curvature of a Gaussian bump. 

 

 

 

Figure 5. Analytical mean curvature for a Gaussian bump. 
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Gaussian curvature: Instead of using two principal curvatures as two significant parameters in 

discussing shapes, the Gaussian (K) and mean curvatures (H) can be used. The Gaussian 

curvature is the product of the two principal curvatures. The Gaussian curvature divides surfaces 

into three classes. These three classes are shown in Figure 6 and discussed in the following.  

surfaces with positive Gaussian curvature, such as a sphere, Figure 6(a); 

•  surfaces with zero Gaussian curvature which is caused by one principal curvature going 

to zero (examples of these surfaces are planes, cones and cylinders) Figure 6(b); and, 

• surfaces with negative Gaussian curvature where one principal curvature is negative and 

the other one is positive (an example of this kind is a saddle surface or a “pringles potato 

chip”), Figure 6(c). 

Mean curvature: The mean curvature (H) is the average of the two principal curvatures on a 

surface. From algebra, the sum of principal eigen-values of a matrix is the equal the trace of the 

matrix. The trace of the matrix can be added to calculate the mean curvature.  

Figure 6. Surface with (a) positive, (b) negative and (c) zero Gaussian curvature. 

 

(a) 

(b) (c) 
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Geodesic:  In a planar surface, the shortest path between two points is a straight line connecting 

them. A geodesic is a concept that generalizes this idea to curved surfaces (manifolds). Earlier, 

geodesy was used to measure the shortest path between two points on the Earth.  On a circle, the 

shortest distance between two points is the smaller arc that is part of the great circle on the 

surface that connects the two points. By looking at this in Figure 7, it may be understood that the 

local curvature in each point of the great circle is parallel to the surface of the sphere. In other 

more complex surfaces, the geodesics are defined as the shortest path between two points, and 

the local curvature in each point of the curve is parallel to the normal vector on that point. 

Geodesic curvature: The curvature of a curve that is restricted to a 2D surface can be divided 

into two components. One component is parallel to the normal of the surface which is equal to 

the curvature of geodesic curvature going through that point, and the second component is 

tangent to the surface (as in a finite boundary). The component that is normal to the surface is 

called geodesic curvature, for instance in a sphere the geodesic curvature is equal to the 

curvature of the great circle on the sphere. 

Figure 7. Geodesic curve on different surfaces. 
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Departing altogether from this view of surfaces as continuum objects, the discrete 

character of atomistic surfaces is discussed next. 

1.7.2 Discrete Differential Geometry Concepts 

Angle defect: The sum of all angles is equal 360 degrees on a plane, but if one vertex moves to 

the third direction, the summation is not 360 degrees anymore. Figure 8 depicts a Bucky ball 

which represents C60. The sum of shown angles in closed path on the Figure is not 360 degrees. 

And the deviation from 360 degrees is precisely the angle defect. 

Voronoi tessellations: A Voronoi tessellation is a method for subdividing a plane with many 

vertices into spaces. Around each vertex, the locus of all points that are closer to the central 

vertices is sought. The total subdividing spaces are called Voronoi tessellations (this concept is 

known as Wigner-Seits unit cells in condensed matter physics) [30, 31]. The vertices are called 

: 

Figure 8. Buckyball; the sum of all internal angles of a pentagon embedded on a surface deviates 
from 360 degrees (scales in angstroms). 
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seeds, and the lines joining seeds are called edges (for this work, seeds will be atomic positions, 

and edges will be covalent bonds). The two example of a Voronoi tessellation are presented in 

Figure 9. Delaunay finding is another concept in triangulation in which the space is subdivided 

into triangles in which none of the vertices locates in the circumcircle of other triangles. This 

triangulation optimizes the angles of triangles to avoid skinny triangles that have acute angles. 

 

Gauss Bonnet theorem and the Gaussian curvature: One of the fundamental theorems of 

discrete differential geometry which relates the Gaussian curvature to the geodesic curvature, the 

discrete area of surface, and to the number of significant defects in the topology, is the classic 

Gauss-Bonnet theorem:  

�KdA
A

+ � kgds
∂A

−�αi

n

1

= 2πℵ(A), 
 

(Equation 20) 

Figure 9. Delaunay triangulation and Veronoi tessellation for an effective surface in Gauss-
Bonnet theory [31]. 

Voronoi: Delaunay: 
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in which K is the Gaussian curvature, A is the area of the discrete surface, kg is the geodesic 

curvature which is the trajectory of curvature in the tangent plane. αi is the external angle 

between various curves that create the boundary of the surface A.   ℵ(A)is the Euler number and 

it refers to the number of major defects in the surface. For a surface without any hole  ℵ(A) is 1, 

and for a torus ℵ(A) is equal to 2. The Gauss- Bonnet theorem in a boundary-free surface yields 

an equation which gives us the Gaussian curvature on a discrete surface. As indicated in Figure 

10, many lines are creating the boundaries of discrete surface A, and because the geodesic 

curvature kg of lines is zero, the second term in the left side of the Equation 20 is zero.  

Moreover for a polyhedra the sum of external angles is equal to the sum of interior angles 

between edges that connect central point to the neighbor atoms. Therefore, the Gauss- Bonnet 

theorem for a polyhedra with six sides reduces to: 

2π − Kp = �θi

6

i=1

 
 

(Equation 21) 

n 

Figure 10. Six vertices, one out of plane. Edges and angles that are needed to find discrete 
curvature [26]. 

αi 

Pi 

Pi+1 Pi-1 

P 
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In which Kp is the dimensionless angle defect. To compute Gaussian curvature, Kp should be 

divided by the area of the Voronoi unit cell Ap. Voronoi area is locus of points that their distance 

to the center point p is less than the distance to any other points. For graphene, silicone, 

hexagonal boron nitride, and blue phosphorus, this geometry is depicted in the Figure 11, 

Therefore:  

KD =
Kp

Ap
, 

(Equation 21) 

where “D” stands for discrete. Note that KD has units of  1
L2

 with L standing for length, as it 

should. 

Discrete approach to calculate Gaussian and mean curvatures: Many more in depth 

approaches are presented in literature [32]. In the following some of those methods are 

presented. 

The popular method of estimating Gaussian curvature is using angle defect. Refering to Figure 

10 the angle defect can be presented as: 

Figure 11. Atoms required to calculate Gaussian and mean curvature for hexagonal lattices. 
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2π −�θi
i

 (Equation 22) 

And the Gaussian curvature can be estimated as a fraction of this angle defect. 

K = (2π − ∑ θii ) × 1
F
 , (Equation 23) 

where K is the Gaussian curvature and F is a parameter related to area. Different approaches are 

used to estimate F. In Figure 10, point P is surrounded by neighbor points P1, P2, … , Pi. The angle 

between Pi, P, and Pi+1 is showed as  θi, and the area of the triangle PiPPi+1 is shown as Ai. 

Formula1: A popular method is to estimate F with the sum of areas of all triangles with the form 

of PiPPi+1divided by 3[33]. 

K = 3 ×
2π − ∑ θii

∑  Ai
 

(Equation 24) 

Formula 2: Another method is to estimate parameter F in equation (23) with Sp which is 

calculated as: 

Sp = �
1

4sinθi
�ηi. ηi+1 −

cosθi
2

(ηi2 + ηi+12 )� 
(Equation 25) 

Parameter Sp is called module of mesh at Point P.  

Formula 3: By modifying the first approximation given by Equation (23) a more accurate 

estimate for Gaussian curvature: 

K =
2π − ∑ θii

1
2
∑  Ai −

1
8
∑ cot (θi) × di2

 
(Equation 26) 

Where di2 represents the square of the distance between Pand Pi. 

Formula 4: There is another formula which is based on Voronoi areas. 
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K =
2π − ∑ θii

AM(p) , 
(Equation 27) 

where, AM(p) is the Voronoi area. The area of triangles created by edges from point p to pican 

be approximated by Voronoi area.  

Formula 5: All of the formulas presented before are applicable to polyhedrals with at least 6 

edges, which means the Gaussian curvature has to be written based on the position of 6 vertex 

around it. The formula 28-29, converges the curvature for at least 5 vertices:  

K =
2π − ∑γi − 2�Sp − A� × H2

2A − Sp
 . 

(Equation 28) 

Here:  

A = �
1

4 sin γi
�
ηiηi+1

2
(1 − cos 2φi cos 2φi+1)

−
cos γi

4
(ηi2sin2φi − ηi+12 sin2φi+1)� , 

(Equation 29) 

In which η,φ, γ are angles and shown in Figure 10.  

Mean curvature: the discrete mean curvature is a vector. Suppose vi is the location of the point 

i on the surface A depicted in Figure 10 and vp is the location of central atom p, then one can 

calculate the edge which connects these two points together, ei = vi − vp, and by considering 

ni,i+1 as the normal vector to edges ei and ei+1, the mean curvature can be computed as the 

following equation: 

HD = �
ei × �ni,i+1 − ni,i−1�

4Ap

6

i=1

 
(Equation 30) 
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Mean curvature calculation: the mean curvature can also be obtained by a popular formula 

presented and proved by Xu, and Pinlkall [32, 34]. 

H = 2�
∑(cotαi + cot δi)ei
∑(cotαi + cot δi)ηi2

�, 
(Equation 31) 

 in which αi, δi, ηi2, ei are shown in Figure 10. Nevertheless the Equation 27 were used on this 

work. 

Trace and determinant of metric tensor: the metric tensor can be computed as an inner (“dot”) 

product of lattice vectors, the determinant of the metric tensor is an indication of the stretch 

between bonds. The trace of the metric tensor which is the sum of eigenvalues can be easily 

computed by adding up the main diagonal elements. 

1.8 Metric Computation for Different Lattices 

A metric must be positive-definite (gαα = 0) and symmetric �gαβ = gβα�. The metric of 

2D lattice with only one layer like graphene, are computed by a “dot” product of lattice vectors. 

Consider a1 and a2 are two lattice vectors the metric tensor is found as: 

gαβ = �
a1. a1 a1. a2
a2. a1 a2. a2�, (Equation 32) 

which satisfies the two properties of a metric indicated above. 

For other lattices which has a thickness more than one atom, like black phosphorus, AlP 

and Bi2Se3, in addition to these two lattice vectors another vector which has a component normal 

to these two vectors and with the length equal to the thickness d was considered. The metric 

tensor for these lattice structures is thus: 
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gαβ = �
a1. a1 a1. a2 a1. d
a2. a1 a2. a2 a2. d
a1. d a2. d d. d

� 
(Equation 33) 

in which  a1 and a2 are lattice vectors and d is thickness.  
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Discrete Curvature and Metric  Calculation for Various Lattices 

The discrete geometry has been introduced in previous sections; it will now be applied to 2D 

materials. Since there are structural differences among unit cells for different 2D materials (i.e., 

hexagonal versus square or rectangular unit cells) changing the neighboring vertices from which 

local Gaussian and mean curvatures are obtained was required. Therefore, for each of these 2D 

materials mentioned in previous section, certain points were defined to calculate curvature. 

Hexagonal Lattice: For computing the Gaussian and mean curvature in each point of the 

hexagonal lattice like graphene and hexagonal boron nitride at least six neighbor atoms are 

needed [32]. Trying to tell the curvature based on only nearest neighbors in hexagonal unit cells 

is not possible because each atom in the hexagonal lattice only has three nearest neighbors. 

Therefore the second nearest neighbors should be used. For hexagonal structures six second 

nearest neighbors shown in Figure 11 were used, and by computing edges, triangle areas, and 

angle between the Gaussian and mean curvature were obtained using Equations 27 and 30. 

Square lattice as in aluminum phosphide:  At least six neighboring atoms are needed to carry 

out the discrete computation. For this structure, eight second nearest neighbors were used as 

shown in Figure 12.  

Curvature computation for multi-layer 2D materials: The number and position of atoms that 

were used to calculate the Gaussian and mean curvature for multi-layered materials are similar to 

single-layer materials, because curvature were calculated based on the central layer.  

Curvature computation in the presence of defects: Defects make it necessary to generalize the 

model to discuss shape. For example, atomistic defects are made by replacing hexagonal shapes 

with heptagons and pentagons. Pentagons induce positive Gaussian curvature to the structure, 

25 
 



while heptagons load negative Gaussian curvature to the structure. The number of nearest 

neighbors that are used to compute the curvature, depends on heptagonal or pentagonal defects. 

Defects and required vertices to calculate curvature are shown in Figure 13. 

 

 

 

 

  

Figure 13. Required atoms for calculating Gaussian and mean curvature in presence of 
defects in a hexagonal lattice [4]. 

(c) Heptagon 
defect 

(a) Defect free 
neighborhood 

(b) Pentagon 
defect 

Figure 12. Atoms required to calculate Gaussian and mean curvature for a square lattice. 
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Building Structural Models: 

In the following, a novel method for discussing the geometry of 2D materials is applied. 

This was done for different structural lattices, such as hexagonal ones with non-zero thickness, 

square and other peculiar lattices, such as black phosphorus.  

The first step for studying the geometry of 2D crystals is building their structures under a 

deformation. This should require a mechanical model that informs the atoms where to go as a 

deformation is enforced. This mechanical model can have different degrees of precision, and it 

could be directly informed by density-functional theory (DFT). 

The study of 2D materials is only ten-years old. Full-scale DFT calculations are out of the 

question, and reliable force fields are yet to be crafted for many of the 2D materials that were 

studied here. This, however, should not stop the determination of fundamental frameworks to 

inquire about shape. 

A mechanical model was devised for the deformation that was calculated from density-

functional theory. The deformation is based upon a model with a number of approximations. The 

materials were stretched in the 2D-plane, and the final atomic positions were recorded upon 

relaxations. Poisson law states that an in-plane elongation will lead to an out-of-plane contraction 

of magnitude σ (this is usually known as Poisson ratio). The contraction is reported in the second 

row on Tables 1-5; the equilibrium values are shown by bold font in the tables. This information 

was used to build a rudimentary mechanical model. 

 The 2D materials were adopted to the shape of the Gaussian bell discussed on page 13 

which means, the z-position for each atom increases by z as given in Equation 14. This simplifies 

direct contrast between the predictions of continuum and discrete geometrical theories. 
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For material with non-zero thickness (WSe2, Bi2Se3, silicene, AlP, black phosphorus), 

upper layers must contract their relative height because the material stretches when conforming 

to the Gaussian bump. The amount of stretching is extracted from the average increase of the 

local lattice vectors upon deformation via a linear fit from data in Tables 1-5. 

The reference unit cell parameters such as lattice vectors, basis vectors and lattice 

constants were computed by DFT structural relaxations. The structural relaxation was performed 

using VASP software. The reference planar configuration of atoms were built by using structural 

parameters found from VASP calculation. The resulting structural models are shown in the 

following sections. 

1.9 Hexagonal Boron-Nitride 

 Hexagonal boron-nitride (HBN) shown in Figure 14, is a structure that consists of boron 

and nitrogen atoms at A and B sub-lattices, respectively. The structure of bulk HBN is similar to 

graphite. Multiple layers of HBN are stacked together with weak ionic interaction between 

Figure 14. Hexagonal boron nitride lattice (units in angstroms). 
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layers, while boron atoms are joint to nitrogen by covalent bonds. HBN has a large 

semiconducting band gap equal to 5.5 eV.  

Structural parameters: In each HBN unit cell there are two atoms. The positions of these atoms 

are given below by basis vectors which are shown in Equations 33-36. The lattice vectors of HBN 

are similar to those of graphene. Lattice vectors in angstroms are shown by v and atomic basis in 

a lattice are depicted by  b.  

𝐯𝐯1 = ( 2.34,   − 4.05 ,        0.00 ), (Equation 33) 

𝐯𝐯2 = (2.34, 4.05,         0.00  ), (Equation 34) 

𝐛𝐛1 = (0.00,         0.00,   − 0.43 ),  (Equation 35) 

 𝐛𝐛2 = (2.34,    1.35,              0.43), (Equation 36) 

 

Applying Deformation to the Planar Structure: For calculation of geometrical parameter a 

deformed membrane is needed. As was previously discussed, a known Gaussian deformation is 

enforced on atoms. The new atomic coordinates have a different height compared to planar 

Figure 15. Gaussian deformation applied to hexagonal boron nitride (units in angstroms). 
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structure which is shown in Figure 15. For local curvature computation in each point, the 

coordinates of six nearest vertices were used as shown in Figure 11. 

1.10 Low-Buckled Silicene 

  The structure of low-buckled silicene is hexagonal, however, on any other sub-lattice, 

atoms are shifted (i.e., they “buckle out of plane”) in the third direction. The structure is shown 

in the Figure 16.  

The lattice vectors and atomic position of this material were calculated by structural 

relaxation. The data is presented in the following equations. 

𝐯𝐯𝟏𝟏 = ( 2.34,      4.05,        0.00),  (Equation 37) 

𝐯𝐯𝟐𝟐 = (2.34   − 4.05        0.00), (Equation 38) 

𝐛𝐛𝟏𝟏 = (0.00       0.00      − 0.43) ,  (Equation 39) 

 𝐛𝐛𝟐𝟐 = (2.34       1.35         0.43), (Equation 40) 

 

Figure 16. Low buckled silicene structure (units in angstroms). 
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1.11 Aluminum Phosphate 

 AlP has a buckled square lattice. The middle layer consists of Al atoms with P atoms 

joined below and down the middle layer.  The relaxed structural parameters, lattice vectors, and 

basis vectors is presented in following equations (in angstroms): 

𝐯𝐯𝟏𝟏 = ( 3.95,     0.00,        0.00),  (Equation 41) 

𝐯𝐯𝟐𝟐 = (0.00,     3.95,         0.00), (Equation 42) 

𝐛𝐛𝟏𝟏 = (0.00,    0.00,          0.00),  (Equation 43) 

 𝐛𝐛𝟐𝟐 = (1.97,    1.97,         0.00), (Equation 44) 

𝐛𝐛𝟑𝟑 = (0.00,    1.97,          1.35), (Equation 45) 

𝐛𝐛𝟒𝟒 = (1.97,    0.00,     − 1.35), (Equation 46) 

 

As discussed before, any deformation exerted on AlP lattice will cause a change in actual 

thickness of the 2D material. This thickness which can be defined by the distance between the 

two outer layers can be found as a function of lattice constant. By performing relaxation in a unit 

cell and changing the lattice constant, the optimum thickness was computed and given in Table 

1. 

Table 1. Thickness results from VASP for AlP. 

Lattice constant (Å) 3.25 3.45 3.65 3.95 4.05 4.25 4.45 4.85 5.25 

Thickness (Å) 1.61 1.55 1.49 1.35 1.31 1.19 1.03 0.407 0.0014 
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 Table 1 was used to compute the thickness change after applying Gaussian deformation 

field. The change in thickness reflects the dimensional change due to stretching. 

The shape of the AlP lattice is shown below from different views.  

 

1.12 Bismuth Selenide 

Bismuth selenide consists of three layers of Se and two layers of Bi (each unit cell of this 

material has five atoms). By performing structural relaxation, equilibrium lattice and basis 

vectors were calculated (in angstroms): 

 

𝐯𝐯𝟏𝟏 = (0.866,         0.50,       0.00), (Equation 47) 

𝐯𝐯𝟐𝟐 = (0.86, −0.5, 0.00), (Equation 48) 

Figure 17. AlP with buckled square lattice is shown from different views (units in angstroms). 
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𝐛𝐛𝟏𝟏 = (4.78,           0.00,         8.10) atomic type: Se (Equation 49) 

𝐛𝐛𝟐𝟐 = (0.00,            0.00,       9.71)   atomic type: Bi (Equation 50) 

𝐛𝐛𝟑𝟑 = (2.39,             0.00,       11.6) atomic type: Se (Equation 51) 

𝐛𝐛𝟒𝟒 = (4.78 ,            0.00,       13.6)  atomic type: Bi (Equation 52) 

𝐛𝐛𝟓𝟓 = (0.00   ,         0.00,         15.2) atomic type: Se (Equation 53) 

The planar structure of this five-layer 2D material is shown in Figure 19.  

Deforming Bi2Se3: The height of Gaussian bump was still 10 Å and σ = 15 Å. The shape of the 

deformed patch is shown in Figure 19. 

 

Figure 18. Bi2Se3 a 2D material with five atomic layers shown from three views (units in angstroms). 
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Criteria of thickness reduction: The change in thickness of five layers computed using 

structural relaxation based on different lattice constants are presented in the Table 2. The relaxed 

thickness is also shown in bold. 

Table 2. Thickness results from VASP for Bi2Se3 

Lattice constant (Å) 3.94 3.99 4.04 4.09 4.14 4.19 4.29 4.34 4.39 4.49 4.54 

Thickness (Å) 7.48 7.38 7.28 7.18 7.08 6.99 6.79 6.69 6.59 6.37 6.26 

 

 

Figure 19. Gaussian deformation applied to Bi2Se3. Different colors show different layers (units in 
angstroms). 
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The thickness change in each layer are presented in Figure 20. 

1.13 Lead 

The structure of lead in a unit cell is also relaxed and lattice vector, basic vector, and lattice 

constant were computed (units in angstrom). 

a1 = 3.604 A°, (Equation 54) 

𝐯𝐯𝟏𝟏 = (1.80, −3.12,    0.00), (Equation 55) 

𝐯𝐯𝟐𝟐 = (1.80,     3.12,     0.00), (Equation 56) 

𝐛𝐛𝟏𝟏 =   (0.00, 0.00,      0.00), (Equation 57) 

𝐛𝐛𝟐𝟐 = (1.80, 1.03, 2.74). (Equation 58) 

Figure 20. Optimum height reduction in a patch of Bi2Se3 in different layers (units in angstroms). 
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Similar to other multilayer 2D materials, by exerting deformation to the structure of 2D 

lead, change in the thickness of the crystal was expected. This change in thickness was a function 

of lattice constant and is presented in Table 3. 

Table 3. Thickness for Lead after an isotropic elongation. 

Lattice constant (Å) 3.60 3.78 3.99 4.21 4.39 4.61 4.89 5.07 5.29 

Thickness (Å)  2.52 2.40 2.29 2.20 1.97 1.67 1.65 1.64 1.63 

 

The planar structure of Leadene is shown in Figure 21. 

1.14 Tungsten Diselenide 

 This 2D material has three layers which consists of two layers of selenium sandwiching 

a single layer of tungsten in the middle. By doing a structural relaxation, the optimal basis 

vectors were calculated. Each unit cell of this material has three atoms (units in angstroms). 

Figure 21. Leadene, a 2D material with two atomic layers, is shown from three views (units in 
angstroms). 
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𝐯𝐯𝟏𝟏 = (1.66, −2.87,        0.00), (Equation 59) 

𝐯𝐯𝟐𝟐 = (1.66,      2.87,         0.00), (Equation 60) 

𝐛𝐛𝟏𝟏 = (0.00 ,   0.00,          0.00), (Equation 61) 

𝐛𝐛𝟐𝟐 = (1.66,    0.959,       1.70), (Equation 62) 

𝐛𝐛𝟑𝟑 = (1.66 ,   0.959,    − 1.70). (Equation 63) 

The planar structure of WSe2 is shown in Figure 22: 

Thicknesses computed by structural relaxation based on different lattice constants are 

presented in Table 4; the optimum thickness is in bold. 

Table 4. Thickness results from structural relaxation of WSe2 

Lattice constant (Å) 3.12 3.22 3.32 3.42 3.52 3.62 3.72 3.82 3.92 

Thickness (Å) 3.56 3.48 3.40 3.33 3.26 3.20 3.15 3.10 3.04 

 

Figure 22. WSe2, a 2D material with three atomic layers, is shown from three views (units in 
angstroms). 
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1.15 Phosphorene 

 Phosphorus has many different allotropes with different colors. Red, blue, violet and white 

are some of these allotropes [35]. Among them, black phosphorus has captured researchers’ 

interest recently [36-39]. In 1960, researchers proved that bulk black phosphorus has a high 

carrier mobility and band gap [40].The band gap of bulk black phosphorus is about 0.31 to 0.36 

eV. Similar to graphene which is exfoliated from graphite, one layer of black phosphorus can be 

mechanically exfoliated. The monolayer sheet is called phosphorene. Black phosphorus is the 

most stable allotrope of phosphorus [40].  Black phosphorus has a direct band gap ranging from 

0.6 to 2 eV [37] depending upon the number of layers which makes it a potential material for 

high speed electronic devices. This property allures scientists to tune the band gap of black 

phosphorus by changing the number of the layers and use this material for different electronic 

and optic applications. 

In addition to favorable band gap observed in multilayer black phosphorus, high mobility 

for holes, up to 1000 cm2V−1s−1, has been observed.  

Phosphorus is a very reactive material, especially in the air where it tends to react with 

oxygen. Therefore, researchers face a real challenge in using black phosphorus as an optical and 

electric material. However, many works have been reported in which field effect transistors are 

created by capping black phosphorus with a material called PMMA [37].  

Black phosphorus structure: 

Each unit cell consists of four atoms of phosphorus shown in Figure 23 with different 

colors. Equations 67-70 give the position of atoms in a cell (basis vectors). The two lattice 
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vectors of phosphorene after relaxation and also the lattice constants are shown by Equations 65 

and 66 (units in angstroms). 

a1 = 3.30, a2 = 4.61, (Equation 64) 

𝐯𝐯𝟏𝟏 = (3.30,      0.00,        0.00), (Equation 65) 

𝐯𝐯𝟏𝟏 = (0.00,       4.61,         0.00), (Equation 66) 

𝐛𝐛𝟏𝟏 = (−1.65, −1.90 , −1.05), (Equation 67) 

𝐛𝐛𝟐𝟐 = (0.00,−0.415,   − 1.05), (Equation 68) 

𝐛𝐛𝟑𝟑 = (0.00,    0.415,        1.05), (Equation 69) 

𝐛𝐛𝟒𝟒 = (1.65,      1.90,         1.05), (Equation 70) 

In Table 5, the change in thickness of a black phosphorus 2D layer is shown against 

isotropic changes in lattice constants. 

Table 5. Thickness for isotropic increase in lattice constant. 

Lattice constant (Å) 3.25 3.26 3.27 3.29 3.30 3.32 3.35 3.55 3.75 

Thickness (Å) 2.11 2.11 2.10 2.10 2.10 2.09 2.08 2.02 1.94 
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The lattice structure of black phosphorus is shown in Figure 23. 

  

 

Figure 23. One layer of black phosphorus (phosphorene) from different views (units in 
angstroms). 
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Results and Discussion 

1.16 Curvature Computation Results for Different Lattices 

By following the various themes mentioned for different lattice structure, the local 

Gaussian and mean curvature of different 2D materials were computed.  

Figures 24-28 show the Gaussian and mean curvature versus the distance to the center of 

the membrane. The curvature Figures show that since the deformation is identical for all 

materials, the curvature for all materials are identical regardless of their atomistic composition 

and shape, as expected for conformal deformations. 
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Figure 24. The Gaussian and mean curvature for Bi2Se3. (a)  Mean curvatures graphed vs. 
distance to the center; and, (b) the Gaussian curvature graphed vs. distance to the center. 
The solid line is an analytical prediction of the Gaussians and mean curvature.  
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(b) Bi2Se3 Gaussian curvature under hypothetical. 
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(b) WSe2 Gaussian curvature under hypothetical. 
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Figure 25. The Gaussian and mean curvature for WSe2. (a)  Mean curvatures graphed vs. 
distance to the center; and, (b) the Gaussian curvature graphed vs. distance to the center. The 
solid line is an analytical prediction of the Gaussians and mean curvature. 
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(b) HBN Gaussian curvature under hypothetical. 
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Figure 26. The Gaussian and mean curvature for HBN. (a)  Mean curvatures graphed vs. 
distance to the center; and, (b) the Gaussian curvature graphed vs. distance to the center. 
The solid line is an analytical prediction of the Gaussians and mean curvature. 
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(a) Silicene mean curvature under hypothetical 

 

Distance from center in Ǻ. 
0  10  20   30     40       50        60         70          80           90     

(b) Silicene Gaussian curvature under hypothetical. 
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Figure 27.The Gaussian and mean curvature for silicene. (a)  Mean curvatures graphed vs. 
distance to the center; and, (b) the Gaussian curvature graphed vs. distance to the center. The 
solid line is an analytical prediction of the Gaussians and mean curvature. 
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(b) Stanene Gaussian curvature under hypothetical. 
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Figure 28. The Gaussian and mean curvature for high buckled stanene. (a)  Mean curvatures 
graphed vs. distance to the center; and, (b) the Gaussian curvature graphed vs. distance to the 
center. The solid line is an analytical prediction of the Gaussians and mean curvature. 
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1.17 Metric Results for Various Lattices 

The metric calculation for hexagonal boron nitride and bismuth selenide are presented 

here. The rest of structures had similar results and are not presented here.  

Hexagonal BN 

Bi2Se3  

Figure 29. Left side: determinant of the metric tensor, right side: trace of metric tensor for 
hexagonal boron nitride (scales in Angstroms). 

Figure 30.  Left side: Determinant of the metric tensor, right side:  trace of metric tensor for 
hexagonal Bi2Se3 (scales in Angstroms). 
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1.18 Conclusion:  

Two-dimensional materials are materials with numerous unique properties. Compared to 

their bulk form, 2D materials have higher aspect ratio which makes them suitable for devices 

which needs large surface to volume ratios. Another difference of 2D materials with their bulk 

form is the dependency of properties on their shapes. In literature, many researchers have tried to 

explore the geometry and the effect of shape on chemical and electronic properties of 2D 

materials by applying known thin plate theories [41-46]. However, these theories are only 

applicable for large patch of atoms and under small deformation regimes. In most cases, the 

deformation of 2D materials in significantly large and the properties can be changed (and 

consequently tuned) when the deformation is more than 20 percent. In these circumstances, the 

use of continuum theories to investigate the shape of 2D materials is questionable.  

  In this research, a discrete method was presented to investigate the local geometry of 2D 

materials without relying on continuum approximation and thin plate theory. In fact, the discrete 

nature of 2D materials especially in nano-structures require researchers to rely on discrete 

methods rather than fitting continuum surfaces to deformed membranes. The four invariants of 

geometry of 2D materials were calculated. The results show that the calculation of discrete 

curvature using the method presented in this research agree very well with analytical results for 

both the Gaussian and mean curvature when the structure of materials are changed. The method 

was also generalized for structural defects, for example, when pentagon and heptagon were 

inserted in the structure of a hexagonal lattice.  

The Gaussian and mean calculation using this method was stable as six or more than six 

vertices were used to calculate the curvatures. However, there are some methods to extract 
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curvature even for five vertices. These methods may be helpful for unknown structures that have 

only five nearest neighbors. 

The metric tensor was also computed using the dot product of lattice vectors (metric 

tensor which shows how much the membrane is stretched compared to pre-deformed 

membrane). However, further research on the metric is needed when the membrane goes to the 

third dimension as in Bi2Se3 and black phosphorus.  
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Appendix A: Description of Research for Popular Publication 

Title: Characterizing shape of 2D materials. 

A new framework  is developed to characterize the shape of graphene and other 2D 

materials in  Dr. Barraza Lopez research group. Mehrshad Mehboudi is a Micro E-P strudent and 

a member of this group who has contributed to these developements. 

2D materials are a class of materials that are very thin and their witdh and length are huge 

compared to their thickness. Most of these materials  have only one to few atoms in thickness.  

For a long time scientists believed that these 2D materials are not stable in the environment, 

however in 2004 two scentists synthesized one the first 2D materials made of carbon (Later on 

they won physics nobel prize for their discovery). Very soon numerous types of 2D materials 

made of different elements were synthesized. There is a fact about these materials that has made 

researchers hopeful to make new devices using these materials. The properties these materials 

are extremely dependent on their shape. That means if someone stretch a patch of graphene its 

ability to conduct electricity, would changes. Therfore all researchers know that the shape of 2D 

materials are important and they should conduct more resurch on this subject. In this master 

thesis we implement a branch of geometry called discrete differential geometry to discuss the 

important parameter using which we can discuss the shape of 2D material.  

There are four parameter in discrete geometry that are important in telling the shape of a 2D 

material. Two parameter comes from curvature which shows how much the material is bended. 

And two parameters comes from metric which show how much the material is stretched in 

different direction. In this thesis we calculated the mentioned shape parameters and compared it 
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with some known values for known mathematical function and realized that the method is quite 

accurate and useful. 
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Appendix B: Executive Summary of Newly Created Intellectual Property 

The intellectual property created in this research: 

1- The estimation of discrete curvature and metric to 2D structures such as single atom layer 

crystals, two layer buckled crystals, and multi-layer 2D materials. 

2- Several MATLAB codes for calculating curvature, metric and building structures. 
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Appendix C: Potential Patent and Commercialization Aspects of listed Intellectual 

Property Items 

 

C.1 Patentability of Intellectual Property (Could Each Item be Patented) 

1- Not Patentable. 

C.2 Commercialization Prospects (Should Each Item Be Patented) 

The discrete geometry framework could not be patented as a commercialized product.  

The code also cannot be patented as a commercialized product.  

 

C.3 Possible Prior Disclosure of IP 

The local geometry framework is being published so it is disclosed to the public. The 

MATLAB codes are not disclosed to the public and it is only available in the research group. The 

code can be shared if direct interest arises. 
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Appendix D: Broader Impact of Research 

D.1 Applicability of Research Methods to Other Problems 

The discrete method to discuss the geometry of 2D materials can be applied to all 2D crystals to 

discuss the local shape of these crystals. The method also can be used in any research that relates 

the local geometry to the properties of 2D materials.  

D.2 Impact of Research Results on U.S. and Global Society 

The method could be used to discuss the shape of 2D crystals accurately compared to current 

continuum methods, and down the road will be useful to correlate the properties of 2D crystals to 

their shape.  

D.3 Impact of Research Results on the Environment. 

Not foreseeable. 
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Apendix E: Microsoft Project for MS MicroEP Degree Plan. 

 

 

  

 
 



 

 

Appendix F: Identification of All Software Used in Research and Thesis Generation 

Computer #1: 
Model Number: Dell Dimension 8300 
Serial Number:  
Location: Kimpel 240 
Owner: Dr. Barraza Lopez 

Software #1:  
Name: Apache open-office  
Free License: Downloaded by Mehrshad Mehboudi 

Software #2:  
Name: MATLAB 2013 
Purchased by: Salvador Barraza Lopez 

Software #3:  
Name: Adobe Acrobat Professional 10.0 
Purchased by: UA 

Software #4 
Name: Jmol 
Free License: Downloaded by Mehrshad Mehboudi 

Software #4:  
Name: VMD  
Free License: Downloaded by Mehrshad Mehboudi 

 
Computer #2:  

Model Number: Dell  
Serial Number:  
Location: Kimpel 240 
Owner: Dr. Barraza Lopez 

Software #1:  
Name: Linux Ubuntu   
Free License: Downloaded by Mehrshad Mehboudi 

Software #2: VASP 
Name: Apache open-office  
Free License: Downloaded Salvador Barraza-Lopez 
 

Computer #2:  Mullin library computers 
Software #1:  

Name: Matlab 2013  
Purchased by: UA  

  
Software #2:  

Name: Microsoft Office 
Purchased by: UA  

Software #3:  
Name: Adobe Acrobat readers 
Purchased by: UA  
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Appendix G: All Publications Published, Submitted and Planned 

1- Pacheco Sanjuan, A. A., Mehboudi, M., Harriss, E. O., Terrones, H., & Barraza-Lopez, S. 
“Quantitative Chemistry and the Discrete Geometry of Conformal Atom-Thin 
Crystals. ACS nano,” 8(2), 1136-1146. (2014).  

2- Mehboudi, M., Utt, K., Terrones, H., Pacheco, A., Harriss, E., & Barraza-Lopez, S. “Atom-
based geometrical fingerprinting of conformal two-dimensional materials”. Physical Letter 
Review. To be submitted in December, 2014.  
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