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Abstract

Hardware accelerators are capable of achieving significant performance improvement. But design-

ing hardware accelerators lacks the flexibility and the productivity. Combining hardware acceler-

ators with multiprocessor system-on-chip (MPSoC) is an alternative way to balance the flexibility,

the productivity, and the performance. However, without appropriate programming model it is still

a challenge to achieve parallelism on a hybrid (MPSoC) with with both general-purpose processors

and dedicated accelerators. Besides, increasing computation demands with limited power budget

require more energy-efficient design without performance degradation in embedded systems and

mobile computing platforms. Reconfigurable computing with emerging storage technologies is an

alternative to enable the optimization of both performance and power consumption.

In this work, we present a hybrid OpenCL-like (HOpenCL) parallel computing framework on

FPGAs. The hybrid hardware platform as well as both the hardware and software kernels can be

generated through this an automatic design flow. In addition, the OpenCL-like programming model

is exploited to combine software and hardware kernels running on the unified hardware platform.

By using the partial reconfiguration technique, a dynamic reconfiguration scheme is presented to

optimize performance without losing the programmable flexibility.

Our results show that our automatic design flow can not only significantly minimize the de-

velopment time, but also gain about 11 times speedup compared with pure software parallel im-

plementation. When partial reconfiguration is enable to conduct dynamic scheduling, the overall

performance speedup of our mixed micro benchmarks is around 5.2 times.
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Chapter 1

Introduction

As mobile devices (e.g., mobile phones, tablets, and wearable computers) become pervasive, new

demands and challenges emerge in this field [15]. On the one hand, most mobile devices are

powered by batteries, which provide a quite tight power budget for carrying out the computation

on them. On the other hand, more and more highly computation-intensive applications (e.g., image

processing, high-definition games) are deployed on mobile devices. It becomes critical to provide

a solution that can achieve both high performance and energy efficient for mobile devices, and in

a broader range, the embedded systems.

On one hand, state-of-the-art Field-Programmable Gate Arrays (FPGAs) are capable of hosting

multiple general-purpose processors as well as specified hardware logic on a single chip, which

makes it a promising alternative for or an addition to mobile computing. With the help of ad-

vanced EDK tools, software designers without rich experience on hardware design can build a

workable embedded system-on-chip (SoC) with either single or multiple processors on an FPGA

board within minutes. But the potential of hardware acceleration is far from being fully utilized

because the performance of general-purpose processors is typically much worse than the hardware

acceleration logic. Although hardware designers can design dedicated hardware accelerators by

using hardware description languages (HDLs), designing hardware accelerators is still full of chal-

lenges when it comes to debugging, optimizing, and integrating. High-level synthesis (HLS) [17] is

an alternative way to achieve the balance between costs and performance gains. C/C++ codes with

necessary optimization and constrain parameters can be directly synthesized into RTL codes. In

addition, appropriate interfaces are automatically generated to connect with external buses. How-

ever, there is still a huge gap between using hardware accelerators and software programs when

putting them together into a unified framework by leveraging appropriate programming models

and system structures.
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Figure 1.1: Execution time of matrix multiplication by using software and hardware kernels for
different input sizes.

On the other hand, software running as executable files can be re-loaded between memories

without disturb the current system. However, hardware running on FPGAs are pre-programmed

into SRAM storing the bitstream files. Usually, changing what runs on an FPGA will results

in the terminating of current system. Thanks to the recent partial reconfiguration techniques in

modern FPGAs, parts of FPGA logics can be re-programmed by loading corresponding bitstream

files to these parts. In this way, the FPGA can be partially re-programmed without reseting the

whole chip. By using partial reconfiguration techniques, designers can dynamically load different

hardware accelerators that co-operating with software running on the same chip.

In this work, we propose our hybrid parallel computing framework [5] to support dynamic

task-level scheduling between general-purpose processors and dedicated hardware accelerators to

achieve the optimization of both performance and scalability consumption without losing the pro-

grammable flexibility [6]. As a motivating example, we examine the application of matrix multipli-

cation running on our hybrid platform. In the matrix multiplication C = A×B , both A and B are
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square matrices and of the same size. Each matrix element is a 32-bit floating-point number. Hard-

ware implementation with partial reconfiguration enabled and software implementation are tested,

respectively. Execution time of two implementations varies among different input sizes as shown

in Figure 1.1. When dealing with small input sizes, the advantages of hardware acceleration are

hidden due to the partial reconfiguration overhead. However, as the input size increases, hardware

implementation starts outperforming software. Regarding the performance, this observation pro-

vides the trade-off between hardware and software implementations when both implementations

are available for scheduling.

1.1 Thesis Contributions and Organization

This thesis explores the methodologies to optimize both performance and scalability of

a hybrid parallel computing framework. Detailed implementation of this framework is

discussed. An automatic design flow and hybrid parallel programming model are pro-

posed for easily using this framework. We examined the performance and scalability of

our framework. Furthermore, by conducting different micro benchmarks, partial recon-

figuration techniques and task-level scheduling algorithms are exploited to optimize both

performance and scalability.

The major contributions of this work are as follows:

• A hybrid parallel computing framework is proposed. The parallel programming model on

the framework leverages many features from OpenCL. The kernel programs can be compiled

into software kernels and hardware ones with heterogeneous computation resources.

• An automatic generation flows to help designer build the customized hybrid hardware plat-

form. A unified design flow to automatically generate both software and hardware kernels

running on the same hardware platform. In addition, the corresponding SDK projects are

built and compiled.

3



• An OpenCL-like programming model to unify hybrid kernels (i.e., hardware kernels and

software kernels) to carry out execution under a specially designed multiprocessor system-

on-chip (MPSoC).

• Extending partial reconfiguration techniques on this co-design platform, hardware kernels

for different applications can be re-loaded into FPGA by scheduling algorithms to achieve

the optimization of performance and flexibility.

This thesis fully demonstrates the hardware architecture, and programming model of a hybrid

parallel computing framework. Methodologies and experimental results are discussed to show the

optimization of both performance and scalability on our system. Chapter 2 provides some back-

ground information and discusses related work on OpenCL-like programming model for Multi-

processor system-on-chips (MPSoCs). In Chapter 3, system design will be introduced with details

into four different aspects: memory model, hardware architecture, an automatic design flow, and

corresponding parallel programming model. Chapter 4 discusses the experimental methodologies

and results. Firstly, the scalability and performance of our hybrid parallel computing framework

is tested and discussed. Then, we explore different micro benchmarks running on our hybrid par-

allel computation system. Partial reconfiguration techniques, as well as the dynamic scheduling

methods, is enabled to further improve the performance and flexibility. Finally, chapter 5 provides

conclusions and directions for future work.

4



Chapter 2

Background and Related Work

2.1 OpenCL on FPGAs

In our work, we leverage an OpenCL-like programming model for high-level software and hard-

ware kernels design. OpenCL [9] is a framework to design parallel applications on various compu-

tation resources (CPU, GPU, and FPGA). Programming using OpenCL consists of two steps. The

first step is to define a computing platform on which the application will execute. In OpenCL’s

term a platform consists of one host processor and multiple compute devices. The second step is

to assign the computation tasks to each compute device and specify the dependencies among them

through the explicit data transfer between these tasks. The information of both platform and the

corresponding data affinity and parallelism is explicitly presented and easily extracted in OpenCL

framework.

Due to the appealing feature of OpenCL in terms of architecture representation, it has been

adopted in many related work to define the multicore architecture. In [11] a direct implementation

of OpenCL framework on Xilinx FPGA is presented. The OpenRCL machine consists of an array

or processing elements, their on-board local memory, and an off-chip global memory. This work

is generalized in the following work “MARC” [10]. In MARC (Many-core Approach to Reconfig-

urable Computing) an application is mapped to the MARC template, which consists of one control

processor and 48 algorithmic processing cores. These 48 processing cores can be parameterized to

fit the application requirements. The MARC approach is similar to the approach presented in [16],

in which the authors develop a tool kit for embedded designers, including compiler, mapper, de-

signers. The FlexCL approach proposed in [4] is used to configure the parameters of the open-

source MicroBlaze-Lite software processor based on the application description. Chin and Chow

introduced a memory infrastructure for FPGAs designed for OpenCL style computation [3]. An

Aggregating Memory Controller is implemented in hardware and aims to maximize bandwidth to
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external, large, high-latency, high-bandwidth memories by finding the minimal number of external

memory burst requests from a vector of requests.

RAMPSoC is a framework for generating an MPSoC system composed of multiple micropro-

cessors and hardware accelerators for executing an algorithm [7]. An alternative to RAMPSoC

is introduced in [12], which allows the runtime reconfiguration of heterogeneous processor cores

with a finer granularity. In [8] OpenCL is used to design application-specific processors. Given

an application written in OpenCL, an application-specific processor is generated to execute the

application. In [14], the SOpenCL architectural synthesis tool is presented. The SOpenCL tool

takes an OpenCL application and maps it to a custom designed hardware circuit. In this sense, it is

still one variant of C-to-gate compiler, which is not the goal of this work. This approach is gener-

alized in [13]. A similar approach is proposed in [2] in which OpenCL kernels are translated into

CatapultC code for high-level synthesis. Altera has introduced its own OpenCL SDK [1]. Starting

with OpenCL as an input, the SDK generates the host executable and the hardware accelerators

that carry out the computation.
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Chapter 3

Hybrid System Design

We exploit a hybrid parallel programming model that is similar with the OpenCL. In this work, we

call our hybrid system HOpenCL (Hybrid OpenCL). In this chapter, system design will be intro-

duced with details into four different aspects: memory model, hardware architecture, an automatic

design flow, and corresponding parallel programming model. A two-level memory hierarchy with

both distributed and shared memories is leveraged by HOpenCL. Besides, dedicated DMA mod-

ules are used for fast data movement. In hardware architecture part, three different approaches are

discussed. Using the automatic tools following the design flow, both hardware platform architec-

ture, and software executable files can be generated to run on FPGAs. At last, designers can use

the hybrid parallel programming model to write both software and hardware kernels.

3.1 Memory Model

The current OpenCL specification is heavily influenced by GPU programming. In OpenCL a plat-

form consists of one host processor and several compute devices, each of which contains multiple

compute units. A single compute unit is comprised of multiple processing elements. An OpenCL

function, called “kernel”, is assigned to one compute device during the runtime. A kernel function

is implemented as a grid of work-items, each of which can be considered as a thread. The work-

items in a grid are broken into work-groups, each of which is scheduled to execute on a compute

unit. Every work-item is physically executed on a processing element. Through this mapping

of compute device↔kernel, compute unit↔work-group, processing element↔work-item, the data

parallelism in an application is explicitly expressed. On the HOpenCL platform, a kernel can run

on either general-purpose processors or hardware accelerators. Then the kernel is called software

kernel or hardware kernel, respectively.

Figure 3.1 demonstrates the memory model in HOpenCL in which all Group Computation

7
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Figure 3.1: Memory model in HOpenCL.

Units (GCUs) combiningly form a compute device. Similar to OpenCL, each processor in the

GCU has its own private memory. All processors in one GCU share the same local memory. Global

memory is visible to all GCUs. Global host processor is used to coordinate kernel execution, data

movement, and arguments passing. Different from OpenCL, a specified local host processor in

each GCU is assigned to coordinate data movement and work-group execution. Each GCU is also

assigned with a local direct memory access (DMA), which is in charge of transferring block data

from the local memory to the global memory and vice versa to avoid frequent bus requests to the

global memory. DMA can be called only once by the local host at the beginning of the execution

of each work-group of work-items to avoid redundant data movement. In stead of having two

separate global memories for the host and the compute device respectively in OpenCL, there is a

union global memory shared by both the global host and all GCUs in HOpenCL. The advantage

8



of a single global memory is to eliminate memory copies between the two global memories in

OpenCL. Data requests to global memory are further optimized using cache.

3.2 Platform Architecture

From the first approach to the last one, new features are added to improve the performance and pro-

ductivity of HOpenCL system. In the first approach, all computation resources consist of general-

purpose processors. Software kernels running on processors are executable files generated from

kernel programs. In the second approach, besides general-purpose processors, dedicated hardware

accelerators (namely, hardware kernels) are also responsible for computation tasks. In the last ap-

proach, feature of partial reconfiguration (PR) in FPGAs are used for dynamically scheduling. PR

regions can be downloaded with different hardware kernels.

Figure 3.2 shows the structure of the basic HOpenCL hardware platform and the components

inside each GCU, respectively. There are two levels of AXI buses, local bus and global bus,

connecting local devices and global devices, respectively. Besides AXI buses, AXI-Stream is used

to conduct operations that are not memory-mapped. Since AXI-Stream is a simple point-to-point

connection, it does not waste AXI interconnection resources and increases no arbitration time.

Inside each GCU, the local host is a general-purpose processor. Other slaves can be configured as

either hardware accelerators for hardware kernels or general-purpose processors running software

kernels.

3.2.1 First Approach: General-purpose Processors

In the first approach, we only have general-purpose processors as computation resources. In other

words, there are no hardware kernels assigned into GCUs. Including the local host, software

kernels are running on general-purpose processors as executable files. There are two types of hosts:

global host and local host. When receiving a task, global host divided the problem space into small

size of chunks. Each chunk will be allocated to each GCU. After gaining necessary information

from global host, each local will coordinating detailed execution inside each GCU. Smaller data

9
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Figure 3.2: System Architecture with General-purpose Processors.

items are dispatched to each slaves inside GCUs. Besides scheduling execution, local host also

take part in computation. In other words, global host is responsible for coordinating execution

across GCUs, and local host for dispatching data items inside GCUs. We have local supported

IPs inside each GCU to provide accurate functionality. Important components with corresponding

principles are discussed as follows.

Global Scheduler: Global scheduler provides a pair of numbers to map tasks on each GCU.

Similar to OpenCL where a problem space is divided into many N-dimension work-groups, HOpenCL

can support up to 2-D group size. Before proceeding to a new group, the local host will request

a new group ID from the group ID generator, and assign it to each slave in its GCU. Since the

number of GCUs is limited, the number of groups may exceed the number of GCUs when a large

problem space is divided into many groups. Global scheduler will assign every group to each GCU

10



following the principle of first-come, first-served (FCFS).

Group Number Allocator: In application developers’ view, all GCUs are symmetrical. Every

GCU runs the same kernel program. However, in terms of hardware abstraction, every GCU needs

to identify itself. In this case, a unique group number will be assigned by the group number

allocator to each GCU. This number is received by the local host to achieve two objectives. The

first one is to identify local-owned devices including DMA, local memory, and others that cannot

be shared by other GCUs. The second one is to switch local daemon programs when there are

hardware kernels running in the current group.

Global Status Memory: Global status memory (GSMem) stores a few synchronized signals

and global shared information. Specifically, when trying to notify GCUs to start running kernels,

the global host will write a trigger value to the associated locations in GSMem. Daemon programs

running on local hosts will be polling these signals before executing kernels. In addition the global

host will write kernel arguments, which need to be passed to each GCU, into the GSMem.

Local Scheduler: Within every GCU, each slave processor can request a 2-D local ID from

the local scheduler after a task is assigned to a slave. HOpenCL supports up to two-dimensional

problem size. Every ID request will be queued into the local scheduler with the principle of FCFS.

In other word, every slave in one GCU has the equal opportunity to get a local ID. Those slaves

running faster will get more IDs than those slower slaves.

Figure 3.3 shows the detailed implementation of schedulers (including both local and global

schedulers). The inputs of schedulers are connected with different PEs through AXI-Stream bus.

For local schedulers, PEs are considered as all slaves in each GCUs. Besides, all local hosts

among GCUs are required to connect with global scheduler. PEs will send their own core IDs to

schedulers. The round-robin arbitration is done inside AXI-Stream interconnection. Based on the

order of core IDs storing in FIFO. ID Generator generates pairs of IDs to associating PEs.

Core Number Allocator: Since the local host does more jobs than other slaves, the local host

needs to identify itself from others. Furthermore, once there are hardware kernels running in the

current group, hardware accelerators and general-purpose processors will be identified with the

11



AX
I-S

tre
am

 In
te

rc
on

ne
ct

io
n

ID
GeneratorFIFO

.

.

.

FIFO

FIFO

FIFO

FIFO

FIFO

Scheduler

FIFO

FIFO
FIFO

FIFO

..

.

One pair of IDs

One pair of IDs

PE 0

PE 1

PE 2

PE 3

PE N

x
y

x
y

Figure 3.3: Detailed Structures of Scheduler.

core number allocated by the core number allocator.

Local Status Memory: Local status memory (LSMem) stores group running information. Since

each DMA operation can only be carried out once for each work-group of work-items, after each

DMA operation the local host will register this operation in LSMem to avoid executing it again.

When noticing that the group ID generator FIFO is empty, the local host will write a value in

LSMem to notify other slaves that all work-items in the current work-group have been finished.

Barrier: Barrier provides a hardware synchronization mechanism within each GCU. When a

barrier request is received by a barrier from any work-item in one group, other work-items cannot

get the released signals from this barrier until they all send the barrier requests to the barrier. Once

the released signals are obtained by work-items, they will continue proceeding.

3.2.2 Second Approach: Hybrid Accelerators

Although programming with general-purpose processors are easy, in most cases, the demands for

high performance are not met by using general-purpose processors. In this approach, in order to

improve the overall performance, we added dedicated hardware kernels co-operating with soft-

ware kernels. Figure 3.4 demonstrated how hybrid accelerators are organized with original design.
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Besides hardware kernels, functionalities of all components in the first approach are the same in

the second one. In this way, input and output ports of hardware kernels are designed to keep

compatible with general-purpose processors in the first design.

Table 3.1 lists all the port on hardware kernels. Port data is used to store computation outputs

of hardware kernels to memory, and retrieve data from memory. It is connected with local bus.

Other ports are connected with local supported IPs to provide functionalities of software APIs.

3.2.3 Third Approach: Enabling Partial Reconfiguration

Partial reconfiguration in FPGAs is used to dynamically downloading bitstream files for parts of

areas on FPGA without reseting the whole FPGA chip. In this work, in order to provide flexibility
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Table 3.1: Input and Output Ports of Hardware Kernels.
Ports Type Direction
data AXI-Full Master Input & Output

barrierOut AXI-Stream Output
barrierIn AXI-Stream Input
coreNum AXI-Stream Input
localID0 AXI-Stream Input
localID1 AXI-Stream Input

groupNum AXI-Stream Input

of running different hardware kernels during run-time without programming FPGA chip again,

PR is enabled with supported software and hardware features. As figure 3.5 shows, gray color

block are configured as PR regions, as well as hardware kernels. Since software kernels run on

executable files that can redirected to different memory locations, there is no need to add PR

features on software kernels. Every hardware kernel in all GCUs has its own specified PR region

on FPGAs. In other word, each hardware kernel of every location will have its own downloadable

bitstream file.

The third approach is the extended version of the second one. Besides PR regions for hardware

kernels, a separate ICAP module is connected to the global bus. This IP is vendor-provided to

retrieve bitstream data from AXI bus to partially program FPGAs. Global host will be responsible

for scheduling which bitstream is used to download for current task.

3.3 Automatic Design Flow

Figure 3.6 demonstrates hardware design and software design flow, respectively. Currently, auto-

matic design flow can only support approach one. Hardware configuration, including the number

of GCUs, the size of local memory, and the configuration of hardware kernels, will be given as the

input of the TCL scrip generator. Hardware platform is independent with software programming.

In other words, how you configure the hardware platform mainly depends on the available hard-

ware resources on the target FPGAs. Once the hardware platform is generated, the local scheduler
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Figure 3.5: System Architecture Enabling Partial Reconfiguration.

as well as the global scheduler will try their best to maximize the performance of the applications

running on the platform. Combining hardware platform, HOpenCL hardware IPs, and hardware

kernels, the platform bitstream will be generated.

Kernel programs can be either translated into hardware kernel IP by using Vivado HLS tools,

or into ELF files by using MicroBlaza compiler. Configuration headers include all configurations

for both hardware and software libraries. Memory offsets of polling signals, mutex variables, and

shared configurable values storing in LSMem and GSMem will be listed into configuration headers.

Although hardware and software libraries showing in Table 3.2 are the same, the implementation of

hardware libraries in HLS source codes will be much different from software libraries. Figure 3.7

shows how barriers are implemented in hardware kernel programs. Since there are no buffers

15



Hardware TCL 
Generation Tool

Platform 
Specifics

Xilinx Vivado

Host 
Program

Software
Libraries

Host 
ELF

Slave 
ELF

Hardware 
Platform 
Bitstream

FPGA 
Device

Kernel 
Program

Hardware
Libraries

 Vivado High-
level Synthesis

Software
Kernel

Hardware
Kernel

Hardware
Kernel IPs

Configuration 
Headers

Supported
Hardware IPs

Kernel2HLS 
Translator

Vivado SDK 
Generating & 

Compiling Tool

Download 
Tool

Hardware Design Flow Software Design Flow

Figure 3.6: Automatic Design Flow for Both Hardware and Software Sides.

16



Table 3.2: Our software and hardware libraries compared to OpenCL ones.
Execution

OpenCL
Our Versions

Scope Software Libs Hardware Libs

Kernel

get local id() getLocalID() getLocalID()
get gourp id() getGroupID() getGroupID()
get global id() getGlobalID() getGlobalID()
get local size() getLocalSize() getLocalSize()

− getKernelArg() getKernelArg()
barrier() barrier() barrier()
− simpleDMA() simpleDMA()

Host

− setLocalSize() −
− setGroupSize() −

clSetKernelArg() setKernelArg() −
− KernelStart() −
− KernelFinish() −

unsigned int bIn;
*barrierOut = BarrierID;
bIn = *barrierIn;
if (bIn == BarrierID) {

//Execution body after barrier operation;
}

Figure 3.7: Barrier implementation in hardware kernel.

between barrier IP and hardware kernels, reading data from AXI-stream will be blocked until the

barrier IP releases the current barrier. The IF statement guarantees that HLS will not optimize the

following statements; otherwise, barrier operations will not work correctly. The implicit translation

is done by Kernel2HLS Translator.

3.3.1 Automatic Tools

With the help of our automatic design tools, by only giving system specifics, and corresponding

kernel and host programs, designers can (1) generate hardware platform, (2) generate software

kernels by building and compiling SDK projects, and (3) generate hardware kernels by converting

kernel programs into HLS source files. Xilinx 7-series FPGA devices are supported in our tools.

As shown at the top of Figure 3.6, platform specifics, kernel programs, and host programs are
17



given to our automatic design flow as input. Platform specifics are used to build the hybrid hard-

ware platform. Kernel programs can be compiled into either hardware kernel IPs (i.e., hardware

accelerators) or software kernels running on MicroBlazes. Host program is compiled to ELF file

running on the global host processor. We write four scripts (including hardware platform building

tool, hardware kernel IP generation tool, SDK generation tool, and download tool) to link different

parts as a complete automatic design flow. The following shows an example to demonstrate how

our automatic design flow works.

(1) First of all, if we want to add hardware kernels to the platform, we need to generate the

hardware kernel IP from the kernel program that is written by designers in software style. If we do

not want to add hardware kernels this step can be ignored.

./kernel_generate.py Convolution

Convolution is the kernel name that is the same with the top function name in HLS tools. As

showing in Figure 3.6 hardware libraries will be added into kernel program. Table 3.2 shows some

of our core library functions for both hardware and software sides. (2) Then we can build the

hybrid platform.

./platform_build.py Convolution 5 4 3

Hardware kernel IP of Convolution will be added into the hybrid platform. The arguments are

the number of GCUs, the number of MicroBlazes per GCU, and the number of hardware kernels

per GCU, respectively. A hybrid hardware platform that is similar to Figure 3.5, as well as the

bitstream file, will be built after running the above script. (3) Next, we need to build SDK projects

and compile them for software kernels and host programs.

./SDK_compile.py 0 Convolution 5 4

In this step, lscript.ld files of all MicroBlazes (including global host, and local slaves) will be

modified to correct memory locations for each section in ELF files. (4) Finally, platform bitstream

and ELF files will be combined together by the following command to be downloaded to FPGA

devices.

./download.py 0 Convolution 5 4
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Since all slaves (including local hosts) in each GCU are identical to each other, we can either build

only one ELF file that runs on all slaves or different ELF files for different slaves. Argument 0 in

the above two commands stands for the former option and 1 for the later one.

3.4 Hybrid Parallel Programming Model

In this section, the hybrid parallel programming model will be introduced. We exploit the similar

way as OpenCL does to dispatch and divide problem spaces into fine-grained data elements. As

discussed in Section 3.1, In OpenCL a platform consists of one host processor and several compute

devices, each of which contains multiple compute units. A single compute unit is comprised

of multiple processing elements. An OpenCL function, called “kernel”, is assigned to compute

devices during the runtime. A kernel function be considered as a thread running on each processing

element. The work-items in a grid are broken into work-groups, each of which is scheduled to

execute on a compute unit. Every work-item is physically executed on a processing element. The

data parallelism in an application is explicitly expressed.

On the software side, users need to write OpenCL-flavor kernels and host programs with the as-

sociated APIs shown in Table 3.2. HOpenCL provides essential functions inherited from OpenCL.

Different from OpenCL that provides an explicit method to manage kernel queue and context,

HOpenCL users have to arrange kernel execution manually.

3.4.1 Problem Mapping

Figure 3.8 shows how the problem space of the matrix multiplication is divided into groups and

scheduled to GCUs. The whole problem space (i.e., the 2-D output array) is divided into groups.

The numbers of groups along the two dimensions are called the group size. The numbers of

elements along the two dimensions of the group are called the local size. In this way, each item

in a group stands for one element of the output matrix. Once a group is assigned to one GCU, all

slave processors work together to compute all element in the group.
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void singel_hardware_kernel(
volatile unsigned int *data ,
volatile unsigned int *barrierIn ,
volatile unsigned int *barrierOut ,
volatile unsigned int *coreNum ,
volatile unsigned int *localID0 ,
volatile unsigned int *localID1 ,
volatile unsigned int *groupNum
) {

#pragma HLS INTERFACE ap_ctrl_none port=return
#pragma HLS INTERFACE m_axi port=data
#pragma HLS INTERFACE axis port=barrierIn
#pragma HLS INTERFACE axis port=barrierOut
#pragma HLS INTERFACE axis port=coreNum
#pragma HLS INTERFACE axis port=localID0
#pragma HLS INTERFACE axis port=localID1
#pragma HLS INTERFACE axis port=groupNum
}

Figure 3.9: Hardware kernel interface.

3.4.2 Kernel Programming

HOpenCL also supports hardware kernel design in Vivado HLS with the associated HOpenCL

hardware libraries. Hardware kernels are executed on hardware accelerators. Kernel program

similar to software kernels can be converted into hardware design by HLS tool. The differences

between software kernels and hardware kernels lie in the hardware interfaces and the HLS design

principles. Figure 3.9 shows the compatible hardware interfaces with HOpenCL platform defining

in Vivado HLS. An AXI master interface is used to request data from buses. Six AXI-stream inter-

faces are included to communicate with the local host and other functional HOpenCL hardware IPs

(i.e., barrier, local scheduler, and core number allocator). When applying hardware kernels, at least

one general-purpose processor will serve as the local host in each GCU to coordinate group exe-

cution. Since HLS intends to unitize parallelism features to optimize kernel program, sequential

statements need to be handled carefully.

Figure 3.10 demonstrates a kernel program of matrix multiplication with the option to enable

DMA. Without DMA, requests of data read and write will be arbitrated through two levels of

buses: the local bus and the global bus. When DMA is enabled, data that are consecutive in

global memory and are accessed by the processors in each GCU can be moved to local memory

to reduce bus requests. There are two implicit barrier operations in isCurrKernelFinish() and
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#define _SLAVE_
#define DMA
#include "../HCL/hcl.h"
int main () {

initCore();
float *arrayA = (float *)getKernelArg (0);
float *arrayB = (float *)getKernelArg (1);
float *arrayC = (float *)getKernelArg (2);
unsigned int A1 = getKernelArg (3);
unsigned int B1 = getKernelArg (4);
unsigned int localSize0 = getLocalSize (0);
while (!isCurrKernelFinish()) {
unsigned int groupID0 = getGroupID (0);
unsigned int groupID1 = getGroupID (1);
while (!isCurrGroupFinish()) {

unsigned int localID0 = getLocalID (0);
unsigned int localID1 = getLocalID (1);
unsigned int globalID0 = getGlobalID (0);
unsigned int globalID1 = getGlobalID (1);
int i;
float sum = 0f;

#ifdef DMA
float *localArrayA=(float *)LocalMem.BaseAddress;
simpleDMA (0,

(u32)((u32 *)arrayA+globalID0*A1),
(u32)((u32 *)localArrayA),
localSize0*A1);

//Execution body with local memory
#else

//Execution body without local memory
#endif

arrayC[B1*globalID0+globalID1]=sum;
}

}
cleanupSlave();
return 0;

}

Figure 3.10: Sample kernel code with DMA mode.
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#define _HOST_
#include "../HCL/hcl.h"
#include "malloc.h"
int main () {

initCore();
int A0 = 512;
int A1 = 256;
int B0 = 256;
int B1 = 512;
float *arrayA = (float *)malloc(A0*A1*sizeof(float));
float *arrayB = (float *)malloc(B0*B1*sizeof(float));
float *arrayC = (float *)malloc(A0*B1*sizeof(float));
setLocalSize (16,16);
setGroupSize (32,32);
setKernelArg(0,(unsigned int)arrayA);
setKernelArg(1,(unsigned int)arrayB);
setKernelArg(2,(unsigned int)arrayC);
setKernelArg(3,(unsigned int)A1);
setKernelArg(4,(unsigned int)B1);
kernelStart();
kernelFinish();
return 0;

}

Figure 3.11: Sample host code.

simpleDMA(). Before proceeding to get new group IDs, the local host obtains the group IDs from

the group scheduler, and then assigns them to other slaves later, before every slave in one group

can continue running. In simpleDMA(), firstly, the local host registers DMA number in LSMem

to guarantee the one-time DMA operation in the same work-group. This will avoid redundant data

movement when the slaves try to get new local IDs. Before the local host finishes DMA operations,

all slaves cannot release barriers.

3.4.3 Host Programming

Figure 3.11 shows a sample of how host transfers global shared data to GCUs and manages kernel

execution. At the beginning, the global host needs to request a block of memory in the global

memory. Since in HOpenCL the compute device and the global host share the same memory

space, shared data (i.e., arrayA, and arrayB) will not be moved between memories. The addresses

of shared data is passed to GCUs through setKernelArg(), and getKernelArg(). At last, the global

host will trigger all GCUs to start and wait to return until all GCUs finish the current kernel.
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Chapter 4

Experiments and Results

In this chapter, we discuss the experimental methodologies and results. In Phase One, the scalabil-

ity and performance of our hybrid parallel computing framework without partial reconfiguration

is tested and discussed. Then, we enable the partial reconfiguration techniques, and explore the

approaches to dynamically schedule the hardware kernels between different micro benchmarks.

4.1 Phase One: Performance and Scalability

In this section, we use the matrix multiplication for experimental analysis to demonstrate the po-

tential of our HOpenCL platform. We take the hardware architectures from the first and the second

approaches describing in Section 3.2.1, and Section 3.2.2. Experiments are conducted by using

Vivado 2014.2 with the corresponding Vivado HLS on Xilinx ZC705 board. Hardware platform

configuration is shown in Table 4.1. Through the AXI bus, the global bus is connected to the global

memory that runs at 533 MHz. The hardware platform itself is driven by a 100 MHz clock. The

inputs of our benchmark are two 512×512 matrices. Table 4.2 lists the configurations of the host

and the kernel programs. Five different local sizes, i.e., 2×2, 4×4, 8×8, 16×16, and 32×32, are

tested. We also test the effect of the DMA by enabling or disabling it. Inside each GCU, the com-

putation can be handled by either general-purpose processors or hardware accelerators. Further

the number of GCUs can vary from 1 to 6. With the different number of GCUs, local sizes, DMA

modes, and kernel types, we conduct the tests on total 120 combinations.

Figure 4.1 shows the FPGA resource utilization under 12 configurations. A and B stands for

using MicroBlazes and hardware kernels as slave processors, respectively. Compared with Mi-

croBlazes, hardware kernels consume slightly fewer registers, LUTs, and BRAMs than MicroB-

lazes. Since hardware kernels are fully customized accelerators, more DSPs are used in order to

maximize the performance by parallelizing computation.
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Table 4.1: HOpenCL Hardware platform configurations
Platform GCUs Slaves

Global Mem 512MB Local Mem 64KB Private Mem 16KB∗

GSMem 8KB LSMem 8KB
Types

MicroBlaze or
# of GCUs 1 to 6 # of processors† 4 Hardware kernels

Scheduler Policy FCFS Scheduler Policy FCFS Connection AXI Master and
Host Type MicroBlaze ID FIFO Depth 64 Ports AXI Stream‡

∗When using MicroBlaze, private memory is shared by data and instructions. When using hardware kernels,
private memory is implicit since HLS will allocate storage space based on the source code of hardware kernels.

†Including the local host the slaves. The slave can be either general-purpose processor (for software kernel) or
hardware accelerator (for hardware kernel).

‡Total eleven AXI-Stream ports are configured on the local host processor, including seven slave ports and 4
master ports. A pair of slave and master AXI-Stream ports are connected to the hardware barrier, three master ports
are used to transfer group number to the other three slaves in current GCU. Severn slave ports are connected to
hardware IPs. Since other slaves are not connected with group scheduler, they only have five slave ports and one
master port.

The scalability of our HOpenCL platform is expressed in Figure 4.2. For every number of

GCUs, we measure the speedup for all five different local sizes with DMA enabled. The slave pro-

cessors can be either MicroBlazes or hardware accelerators. When general-purpose processors are

used as slaves, all 3 slaves plus the local host carry out the computation. On the other hand, when

the hardware accelerators are implemented as the slaves, only the 3 hardware accelerators carry

out the computation because they are much faster than the local host for the matrix multiplication.

When the number of GCUs is fewer than 4, the speedup of both software and hardware kernels

grows linearly as the number of GCUs increases. When the number of GCUs reaches 4 and above,

the performance gains deviate from the linear projection. This trend is more obvious for hardware

kernels. This deviation is due to the change of dominant factors that decide the performance of the

system. The total execution time of the matrix multiplication benchmark consists of the compu-

tation time, the data movement overheads (when DMA is enabled), and the delay of bus requests.

When there are less than 4 GCUs, the dominant factor of the total performance is the computation

time spent by the processors. Since we use two-level buses with multiple memory hierarchies,

the number of memory requests to the global memory are decreased by two AXI interconnec-

tions. Besides, the frequency of programmable logic (i.e., 100 MHz) is configured much lower
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Figure 4.1: Programmable resource utilization under different configurations

Table 4.2: Software configurations in the matrix multiplication benchmark
Configure Host Program Configurations Kernel Program Configurations

No.∗ Local Size Group Size DMA Modes Kernel Types

1 2×2 256×256 Enabled or Disabled Hardware or Software
2 4×4 128×128 Enabled or Disabled Hardware or Software
3 8×8 64×64 Enabled or Disabled Hardware or Software
4 16×16 32×32 Enabled or Disabled Hardware or Software
5 32×32 16×16 Enabled or Disabled Hardware or Software

∗Every configuration has one local size with the corresponding group size, as well as two possible DMA modes
and two possible kernel types. We test every configuration on 6 different GCU numbers ranging from 1 to 6.
Therefore, 2×2×5×6=120 combinations are tested.

than that of the DDR interface (i.e., 533 MHz). It is difficult for the system to fully unitize the

memory bandwidth when there are a few GCUs. However, when the number of GCUs increases,

the dominant factor becomes the delay of bus requests. Hardware kernels are more likely to reach

the maximum memory bandwidth. This is because dedicate hardware accelerators are better op-

timized for the data flows in the given tasks, and thus have more intensive memory accesses than

the general-purpose processors.

Table 4.3 extracts parts of results from Figure 4.2 where the local size is configured as 16×16

to demonstrate the speedup by enabling DMA with hardware kernels. Before starting new group
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(b) Hardware accelerators as slaves.

Figure 4.2: Scalability by using MicroBlazes and hardware accelerators.

execution, a block of consecutive data with the size of 512×16 from the first matrix will be fetched

into the local memory from the global memory. No matter DMA is enabled or not, speedup by

using hardware kernels is around 11 times. Speedup by using DMA in hardware kernels is slightly

higher than that in software kernels. Hardware kernels are more sensitive with the distance of

targeted memory than general-purpose processors since they usually have more intensive memory

requests.

In order to further compare the performance potential of our hybrid platform, we conduct

the same experiment of matrix multiplication on one of hard ARM cores built on Zynq device.

The ARM core is connected to the on-chip memory (OCM) through two-level caches that are

enabled in our experiment and runs at 667 MHz. The execution time is 15.24s. Since inputs and

outputs are all located in OCM, there is no further optimization for memory accesses. Comparing

with DMA enabled software kernel implementation from Table 4.3, we can conclude that the
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Table 4.3: Performance results with the local size of 16×16 (unit: s)
# of Software Kernel Hardware Kernel Hardware Speedup

GCUs w/o DMA w/ DMA Speedup w/o DMA w/ DMA Speedup w/o DMA w/ DMA

1 44.32 36.12 1.23 3.94 3.07 1.28 11.25 11.75
2 23.20 18.54 1.25 2.02 1.60 1.26 11.49 11.58
3 14.91 12.33 1.21 1.35 1.07 1.26 11.04 11.52
4 11.87 9.30 1.28 1.08 0.83 1.30 10.99 11.20
5 9.12 7.28 1.25 0.83 0.65 1.27 10.99 11.20
6 8.02 6.64 1.21 0.74 0.57 1.29 10.84 11.65

performance of one ARM core is equivalent to 2 and 3 GCUs. When comparing with hardware

kernel implementation, one ARM core performs much worse than a single GCU.

4.2 Phase Two: Multiple Kernel Scheduling

In Phase two, we propose a scheduling algorithm to dynamically reconfigure hardware kernels. As

the motivation discussed in Chapter 1, one application with different input sizes running on either

software kernels or hardware kernels will have different performance. When input sizes are small,

the performance of hardware kernels will be hidden from the overheads of partial reconfiguration.

4.2.1 Dynamic Partial Reconfiguration

4.2.1.1 Profiling

The scheduling program runs on the global host. Based on the given application and its input

sizes, the global host decides which scheme is used to implement this application. We propose two

different schemes including:

1. Pure Software Kernels (SW): Application runs on general-purpose processors without any

acceleration from hardware.

2. Pure Hardware Kernels (HK): Application runs on hardware kernels after its bitstream is

downloaded into corresponding PR regions.
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#define _HOST_
//Include software libraries
#include "../HCL/hcl.h"
void app_implementation(type scheme) {

if (isPR(scheme))
do_PR(app_type);

{
//Allocate global memory

}
setLocalSize (...);
setGroupSize (...);
setKernelArg (0,...);
kernelStart();
kernelFinish();

}
int main () {

//Initial global host
initCore();
while (!isFinish()) {

get_app_task(app_type ,app_size);
scheme = check_lookup_table(app_type ,app_size);
app_implementation(scheme);

}
return 0;

}

Figure 4.3: Pseudocode of the basic scheduling algorithm.

Downloading hardware kernels into PR regions is handled by the global host. In our current

work, the execution time cannot be fetched during runtime. Therefore, an off-line evaluation of

each application with different input sizes is performed. A lookup table saved on the global host

will record the execution time with its corresponding scheme of each benchmark with different

input sizes after the off-line evaluation. We propose two scheduling algorithms as follows.

4.2.1.2 Basic Scheduling (BS)

Pseudocode of basic scheduling is provided in Figure 4.3. Before continuing to the next task, ap-

plication type and input sizes are fetched from execution queue. Lookup table stores the execution

time resulted in from one of the following three scenarios: (1) Running on general-purpose pro-

cessors as SW scheme; (2) Reconfiguring PR regions with corresponding hardware kernels, and

running as HK scheme; the execution time (including PR time and kernel execution time) is calcu-

lated by running different schemes. After checking with lookup table, the scenario resulting in the

minimum execution time will be chosen to load.
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check_lookup_table() {
if (isMatchCurrApp()) {
//Get minimal value from scheme 1,2,3

}
else {
//Get minimal value from scheme 1,2

}
}

Figure 4.4: Pseudocode of check lookup table in the enhanced scheduling algorithm.

4.2.1.3 Enhanced Scheduling (EH)

In basic scheduling, when two adjacent kernel programs are running, the corresponding PR regions

will be downloaded twice. With enhanced scheduling, some PR overheads can be avoided. In case

where the next task and the previous task share the same application and hardware kernel scheme

(HK), there is no need to perform the PR again. The current task can run as hardware kernel

without reconfiguring the PR region. In enhanced scheduling, besides the two scenarios in basic

scheduling, another scenario should be added to achieve the minimum execution time: kernels

running as (3) HK without reconfiguring PR regions. Function check lookup table need to be

modified as Figure 4.4 shows.

4.2.2 Micro Benchmarks

We evaluate three micro benchmarks listed as follows:

Matrix Multiplication: Two two-dimensional floating-point square matrices are used as the

input data, and one 2D matrix will be computed as the output result. Different input sizes are

examined.

Convolution: We preform a one-dimensional convolution. The input data is an integer array

with different lengths. The filter size is always of 128 elements.

Pre-scan: Addition is used as the operation. Input linear arrays are tested with different sizes.

The output array has the same length as the input array. Each element of the output array is the

sum of previous elements of the input array.

Each benchmark has two versions: the software one, the hardware one. Experiments are con-
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Table 4.4: Hybrid hardware platform configurations
Platform GCUs Slaves

GlobalMem 1GB LocalMem 64KB PrivateMem 16KB∗

PR Enabled Yes DMA Enabled Yes
Types

MicroBlaze and
# of GCUs 4 # of processors† 4 Hardware kernels

Scheduler Policy FCFS Scheduler Policy FCFS PR
Three PR regions

Frequency 100MHz # of PR Regions 6 Features

∗When using MicroBlaze, private memory is shared by data and instructions. When using hardware kernels,
private memory is implicit since HLS will allocate storage space based on the source code of hardware kernels.

†Including the local host and the slaves. The slave can be either general-purpose processor (for software kernel)
or hardware accelerator (for hardware kernel).

Table 4.5: Hardware resource utilization of the default platform (4 MicoBlazes in one GCU, and
totally 4 GCUs)

Resources Usage Available Percentage of Utilization

Slice LUTs 101058 203800 49.59%
Slice Register 84830 407600 20.81%

Memory 219 445 49.21%
DSPs 111 840 13.21%

ducted by using Vivado 2014.2 with the corresponding Vivado HLS tools. Xilinx Kintex-7 is

chosen as the FPGA platform. Hardware platform configuration is shown in Table 4.4. The default

hardware configuration consists of 4 GCUs. Each GCU has four MicroBlazes, of which one is

used as local host, and the other three are normal slaves. In addition, there are totally three PR

regions assembled into each GCU. The resource utilization of default platform without any PR

regions is shown in Table 4.5.

There are 3 physical PR regions in one GCU on the platform we use to compare various

scheduling algorithms in later text. Totally there are 12 PR regions for 4 GCUs. Table 4.6 shows

the size of one PR region, which is larger than the actual need of three hardware kernels. The extra

resources in PR regions provide room for future extension. The size of bitstream for one PR region

is 378 KB. PR is performed by the ICAP IP core and the Global Host processor through global

bus. The time to implement one PR region is 0.14 s. In other words, the overhead to implement 12

PR regions is 0.14×12 = 1.68 s.
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Table 4.6: Resource utilization of Partial reconfiguration and hardware kernels
Slice LUTs % Slice Registers % DSPs % Memory %

Matrix 1393 40.97% 1506 31.38% 20 50% 0 0%
Prescan 1205 35.44% 1062 22.13% 4 10% 0 0%

Convolution 1083 31.86% 978 20.38% 6 15% 0 0%
PR Region 3400∗ − 4800 − 40 − 0 −

∗The total number consists of 350 SLICELs, and 250 SLICEMs with 2400 LUTs as logic and 1000 LUTs as
memory, respectively.

Table 4.7: Configurations of execution queue with micro benchmarks.
Micro Benchmarks # of Input Sizes # of Tasks # of Task per Input Size

Matrix Multiplication 6∗ 60 10
Prescan 6† 60 10

Convolution 6‡ 60 10

∗6 input sizes are 16*16, 32*32, 64*64, 128*128, 256*256, and 512*512.
†6 input sizes are 1K, 2K, 4K, 8K, 16K, and 32K.
‡6 input sizes are 64K, 128K, 256K, 512K, 1M, and 2M.

4.2.3 Evaluation Methodology

For the micro benchmarks discussed in Section 4.2.2, we generate an execution queue with size of

180, i.e., using 180 tasks to evaluate the performance of the proposed scheduling algorithms on our

system. As Table 4.7 shows, each of three micro benchmarks own 60 tasks in the execution queue,

and every input size has 10 tasks. The order of tasks in the execution queue is generated randomly.

We present static and dynamic scheduling techniques to show the optimization of energy and per-

formance of our dynamic partial reconfiguration algorithms. In static scheduling, all tasks in the

execution queue run on only SW, and HK schemes as the evaluation baselines. When tasks running

on hardware kernels, the RP is always carried out by default. The results using basic scheduling

(BS) and enhanced scheduling (EH) are compared with the results using static scheduling. In the

Ideal scheduling, all PR overheads are ignored when different applications are switched. We use

execution time in Section 4.2.1 as the metric to evaluate the overall performance after all tasks are

finished.
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Figure 4.5: Comparison of results following various scheduling algorithms.

4.2.4 Results

As showing in Figure 4.5, enhanced scheduling performs better than basic scheduling. Differences

between SW and BS mainly result from the advantages for hardware kernels to address large in-

put data sizes. From EH to Ideal, the PR overheads are ignored when different applications are

switched. When handling small input data size, software implementation has slightly advantages

over hardware one with PR enabled. Therefore, BS performances better than HK.
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Chapter 5

Conclusion

Hardware accelerators are capable of achieving higher performance than general-purpose proces-

sors. However, designing dedicated hardware accelerators usually lacks the productivity and the

flexibility compared with programming on general-purpose processors. Multiprocessor system-

on-chip (MPSoC) incorporating software cores are designed to express parallelism lying within

applications to achieve higher performance. In this work we present a prototype of a unified

OpenCL-flavor parallel programming model to combine both software and hardware kernels into

our hybrid multiprocessor system-on-chip with multiple memory hierarchies. In addition, we pro-

pose the corresponding automatic design flow by generating software and hardware kernels. With

the HOpenCL hardware and software libraries, as well as the compatible hardware interfaces,

users do not need to re-write separate hardware kernels when applying hardware accelerators into

the system.

Further, we extend our hybrid co-design computing framework to support dynamic partial re-

configuration and correponding scheduling methods for different hardware kernels. With the help

of partial reconfiguration on FPGAs, dynamic profiling and scheduling algorithms are proposed

for allocating computation resources. Experiments are carefully conducted on the Xilinx Kintex-7

platform.

We use matrix multiplication as our benchmark to examine the potential of our hybrid system

in the first and the second approaches in terms of performance, scalability, and productivity. Two

512×512 matrixes as input are given to the kernel. From host side, various local sizes with the

associated group sizes are tested. For each option of local size, we generate both hardware and

software kernels with DMA either enabled or disabled. The results show that using hardware

kernels reaches more than 10 times speedup compared with the software kernels. DMA can help

improve the performance by∼25%. Our prototype platform also demonstrates a good performance
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scalability when the number of group computation units (GCUs) increases from 1 to 6 until it

becomes a memory bound problem. Compared with the hard ARM core on the Zynq 7045 device,

we find that the performance of one ARM core is equivalent to 2 or 3 GCUs with software kernel

implementations. On the other hand, a single GCU with hardware kernel implementation is 5 times

faster than the ARM core.

Using the hardware architecture in the third approach, we fully implemented three micro bench-

marks using both software kernels and hardware ones. With different input sizes and applications,

an execution queue on hybrid platform is generated. Totally 180 tasks in the queue are executed.

The results shows that with dynamic scheduling, the performance is 5.2 times better than the one

using purely software implementations.

5.1 Future Work

In this section, the future work will be discussed in two aspects: performance and extensibility.

We would like to maximize the performance in terms of hardware and software kernels. Also, we

would like to improve the framework as it can be easier to use.

5.1.1 Performance

1. Optimizing hardware kernel design. Although hardware kernels are designed by HLS tools.

However, the performance of hardware kernels can be further improved by optimizing HLS

source codes.

2. Improving performance of partial reconfiguration. The performance of PR is mainly limited

by the performance of AXI bus, as well as the vendor-designed ICAP modules. Xilinx pro-

vides the wrapper of ICAP which can be connected to the AXI bus. However, this wrapper

can only transfer bitstream files in AXI-lite mode. We would like to enable burst mode, and

pipelined transferring to replace the original ICAP wrapper.

3. Mixed kernel running. Current HOpenCL system can only run the same kernel programs
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at one time no matter software or hardware kernels. Scheduling mechanism by enabling

execution of mixed kernel programs should be focused on.

4. Better scalability interconnection networks. The scalability of current system is limited by

the number of GCUs and the frequency of system bus. However, as the number of GCUs

increase, the scalability will be worse even increasing the frequency of system bus. In the

future, we would like to utilize network-on-chip (NoC) with better scalability into our frame-

work.

5.1.2 Extensibility

1. Supporting more OpenCL APIs. At this moment, we only support a limited set of original

OpenCL APIs on our HOpenCL platform. We plan to support more OpenCL APIs in the

future development.

2. OS migration. HOpenCL runs as a standalone framework. This single framework is limited

by the compiler, as well as the library supports. We intend to migrate the current framework

into an OS supported system. In this way, the new system can support much larger PR

bitsream files.

3. Accepting more general kernel programs. Software kernel programs are converted into hard-

ware kernel programs (namely, HSL codes) through kernel2HLS Translator. However, cur-

rent translator cannot accept all kinds of kernel programs. Besides, the synthesized HLS

codes cannot be fully guaranteed to run as expected.
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