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ABSTRACT 

Past studies have shown that the avian vasotocin 4 receptor (VT4R), homologous to the mammalian 

arginine vasopressin receptor 1a (V1aR/AVPR1A) is involved in immobilization stress. It was not known, 

however, whether the receptor is also associated with osmotic stress, and if so, what brain regions may 

be involved. Four treatment groups of chicks were used for the study. One group was subjected to 1h 

immobilization stress and two groups were administered intraperitoneal injection of 3 M NaCl or 0.15 M 

NaCl. One additional group served as controls. After 1 h, blood samples were taken for the determination 

of plasma levels of arginine vasotocin and corticosterone by radioimmunoassay. Chick brains were 

sampled for immunohistochemistry utilizing an antibody, anti-VT4R, and for real time RT-PCR. Plasma 

corticosterone (CORT) concentrations were significantly increased in the immobilized group (p < 0.01) 

and hypertonic saline group (p < 0.01) compared with controls. Plasma arginine vasotocin (AVT) 

concentrations were significantly increased (p < 0.01) in hypertonic saline birds and immobilized birds 

compared with controls. Intense staining of the VT4R in the organum vasculosum of the lamina terminalis 

(OVLT) and subseptal organ (SSO) of both treatment groups showed marked morphological changes 

compared to controls. AT1AR mRNA, TRPV1 mRNA, and VT4R mRNA levels were increased in SSO in 

hypertonic saline birds, while these genes were increased in OVLT in acute immobilization stressed birds. 

The CRH-R1 mRNA genes were decreased in hypertonic saline birds, while increased in acute 

immobilization stressed birds. These results strongly suggest that physical stress affect the vasotocinergic 

system in the SSO to regulate the water balance through VT4R, while psychogenic stress causes change 

in VT4R expressed in the OVLT for the classical activation of the HPA. Taken together, results provide 

evidence that both osmotic challenge and psychological stress affect the vasotocinergic system via the 

VT4R in two avian sensory circumventricular organs.  

Key Words: vasopressin receptor (V1aR), subfornical organ, organum vasculosum of lamina terminalis. 

 

 

 



 

 

ACKNOWLEDGEMENTS 

I am thankful to Dr Kuenzel who granted me the opportunity to learn the fundamentals of research. I 

appreciated his teaching and hands-on training all along my Master program as well as his fruitful advice. 

I cannot thank enough Dr Kang who pushed and taught me the sense of responsibility and independence. 

I am grateful to Gurueswar Nagarajan and Megan Hamilton for their ongoing support during my training. I 

would like to thank all my committee members who honor me by accepting to judge my research work.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

DEDICATION 

I dedicate this work to Jesus Christ for his blessings during my stay in the USA. . I also dedicate this 

thesis to Aman Desire Emmanuel, Aman Leslie Mariane, Akassi Rachel, and Benande Molme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TABLE OF CONTENTS 

INTRODUCTION.………………………………………………………………………………1 

CHAPTER  I - Review of Literature………………………………………………………...10 

1. Arginine vasopressin (AVP)/ Arginine vasotocin (AVT)…………………………...10

1.1. Structure and synthesis of AVP/AVT…………………………………………………..10 

1.2. Functions of AVP/AVT…………………………………………………………………...11 

2. Arginine vasopressin (AVP)/ Arginine vasotocin (AVT) receptors…………….…12

2.1. Structure of VT4R/V1aR or recent adopted acronym AVPR1A……………………..12 

2.2. Functions of V1aR/AVPR1A ……………………………………………………………13 

2.3. Antagonists of VT4R/V1aR ……………………………………………………………..14 

3. Signal transduction pathways (Second messenger systems)……………………1 4

4. Regulation of stress………………………………………………………………………1 7

4.1. Physical and psychological stressors and their mechanisms…………….…….……17 

4.2. Implications of CVOs in water intake regulation………………………......................19 

5. Circumventricular organs (CVOs)………………………………………….…………..20

5.1. Characteristic features of CVOs……………………………………………….………..20 

5.2. Organum vasculosum of the lamina terminalis (OVLT)…………………………..….23 

5.3. Subseptal organ (SSO)/ Subfornical organ (SFO)……………………………….......27 

6. Arginine vasopressin/AVT control of osmoregulation……………………………. 29

7. Hypothesis…………………………………………………………………………………29



8. References………………………………………………………………………………....3 0

CHAPETR  II - Structural and Functional Analyses of the Circumventricular Organs 

 (CVOs) in Chicken Brain …………………………………………..……45 

1. Introduction…………………………………………………………………………….…4 5

2. Materials and Methods…………………………………………………………….……46

2.1. Animals……………………………………………………………………………….….46 

2.2. Radioimmunoassay of corticosterone…………………………………………….….46 

2.3. Radioimmunoassay of arginine vasotocin………………………………….….…….47 

2.4. Immunohistochemistry ……………………………………………………….….…….47 

2.5. Treatment Groups of Birds and Sampling Procedure for Gene Expression ….…79 

2.6. Statistical analysis……………………………………………………………………...52 

3. Results………………………………………………………………………………….....52

3.1. Plasma corticosterone and arginine vasotocin concentrations…………………....53 

3.2. Anatomy of the OVLT/SSO in the Avian Brain………………………………….…...54 

3.3. Structural Analyses of the OVLT/SSO…………………………………………….….55 

3.4. Functional Analyses of SSO/OVLT…………………………………………………...56 

4. Discussion…………………………………………………………….…………………..58

5. References…………………………………………………………………..…………….6 3

6. Tables/Figures ………………………………………………………………..………….68



CONCLUSION………………………………………………………………………………79 



1 

 

INTRODUCTION 

 In the terminology utilized by Dr. Selye, stress describes an animal's defense mechanisms, and 

thus, a stress stimulus (stressor) as any situation that elicits defense responses (Selye, 1963). The 

integration of the autonomic nervous system and the hypothalamo-pituitary-adrenal axis (HPA) are 

activated in response to stress. The activation of the sympathetic nervous system in response to stress 

results in reflex-like "alarm" or "emergency" reaction or "fight or flight" responses (Cannon, 1929). This 

neurogenic system, consisting of postganglionic neurons and the adrenal medulla, causes the release of 

catecholamines: norepinephrine and epinephrine (adrenaline) as a result of acute stressors (Sturkie and 

Lin, 1968; Edens and Siegel, 1975; Siegel, 1980). In addition, the neural input and the blood-borne stimuli 

from various stressors activate another system that responds to a stressor over a more prolonged time 

span. That system involves a neuroendocrine response and results in the production of hormones whose 

actions persist for much longer periods of time. Specifically, the neuroendocrine system comprises 

parvocellular neurons releasing arginine vasotocin (AVT) and corticotropin releasing-hormone (CRH) from 

the paraventricular nucleus (PVN) of the hypothalamus (Ganong, 1963). The production of the CRH from 

the hypothalamus stimulates the anterior pituitary gland to produce and secrete adrenocorticotropin 

(ACTH) into the bloodstream.  In turn, adrenocorticotropin stimulates the release of steroid hormones, 

particularly corticosterone in birds (Nagra et al., 1963; Holmes and Philips 1976, Siegel et al., 1980) and 

rodents (de Roos, 1960) or cortisol (in humans and other mammalian species) (Heftmann and Mosettig, 

1970) from the adrenal cortex in mammals.  In birds, the interrenal tissue, arranged in cords (each cord 

composed of a double row of adrenocortical cells) releases the stress hormone. Corticosterone, 

synthesized from cholesterol in the steroidogenic pathway, is the major glucocorticoid in birds and in 

rodents (Hanukoglu, 1992). It is high in stressed birds' plasma subjected to different types of physical 

stressors such as osmotic stressors (Ludwig et al., 1994; Fitts et al., 2004) and psychological stressors 

including immobilization or restraint (Koolhaas et al., 1999; Kuenzel and Jurkevich, 2010; Selvam et al., 

2013). The hypothalamo-pituitary-adrenal (HPA) axis is responsible for the adaptation mechanism of 

animals or birds to various stressors described by Selye as the adaptation syndrome (Selye, 1963). In 

non-mammalian vertebrates, arginine vasotocin, homologous to mammalian arginine vasopressin and 
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CRH are major secretagogues of adrenocorticotropic hormone (ACTH) from the anterior pituitary (Castro 

et al., 1986; Cornett et al., 2013). Previous studies have shown that AVT potentiates the action of CRH on 

ACTH, and therefore, AVT and CRH are synergistic in in their effect on plasma corticosterone that may 

involve the potentiation of the signal transduction pathway of CRH (Kuenzel and Jurkevich, 2010; Cornett 

et al., 2013). The effects of AVP/AVT and CRH are mediated by their interactions with seven 

transmembrane G-protein-coupled receptors (GPCR) (Birnhaumer, 2000; Gimpl and Fahrenholz, 2001; 

Mikhailova et al., 2007; Cornett et al., 2013). 

 In mammals, AVP, a nona-peptide, has been shown to have three receptors subtypes, namely, 

V1aR, V1bR, and V2R (Lolait et al., 1992; Morel et al., 1992; Sugimoto et al., 1994). This neuropeptide 

essentially exerts a vasoconstrictive action on vascular smooth muscle cells (Morel et al., 1992), 

stimulates the HPA axis (Ostrowski et al., 1994; Sugimoto et al., 1994), and has an antidiuretic effect in 

the kidneys (Lolait et al., 1992). In addition, the mammalian V1aR is expressed in gonadotropes of the 

anterior pituitary affects release of gonadotropins. The V1aR is also found in vascular smooth muscle 

cells, in liver, and throughout the brain including three circumventricular organs, specifically the pineal 

gland, choroid plexus, and area postrema (Morel et al., 1992; Orcel et al., 2002). In contrast, the V1bR is 

predominantly found in corticotrophs of the anterior pituitary and mediates the action of AVP on ACTH 

release (Antoni, 1993; Sugimoto et al., 1994). The vasopressin V1bR is also expressed in the brain, 

including the hippocampus, hypothalamus, and amygdala (Young et al., 2006).  The vasopressin receptor 

subtype 2 (V2R) is located in the kidney, where it regulates water reabsorption (Birnkaumer et al., 1992; 

Lolait et al., 1992). Furthermore, arginine vasopressin acts through the V1a and V1b receptors and is 

mediated by the phospholipase C/protein kinase C Ca2+ signaling pathway, while its action through the 

V2R is mediated through the adenylate cyclase / Protein kinase A cAMP signaling pathway (Liu and 

Wess, 1996). 

 In contrast, at least four vasotocin receptor subtypes have been identified in non-mammalian 

vertebrates (Ocampo et al., 2012; Yamaguchi et al., 2012). The avian AVT receptors are of major interest 

in the present study. They were originally named according to their time sequence of discovery: vasotocin 

receptor one (VT1R), vasotocin receptor two (VT2R), vasotocin receptor three (VT3R), and vasotocin 
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receptor four (VT4R). Their gene and their amino acid sequence data have strongly suggested which 

vasotocin receptors are homologous to the appropriate receptor in the vertebrate vasotocin/vasopressin 

receptor family (Table 1). Recently, the V2R in fish  has been subdivided into two subtypes: V2aR 

(homologous to the conventional mammalian V2R) but uniquely stimulates the calcium signaling pathway 

rather than the cAMP pathway, and the V2bR (homologous to avian VT1R) maintaining the more 

ancestral calcium pathway (Tan et al., 2000; Ocampo et al., 2012; Yamaguchi et al., 2012). 

Table 1:  Avian AVT receptors, their proposed homologous fish and mammalian receptors and their 

receptor functions. 

Avian AVT 
receptor 

subtypes 

Teleost fish 
AVT/IT 

receptor 
subtypes  

Mammalian 
AVP/OT 

Subtype 
receptor 
homolog  

AVT  

functions 

 in birds 

AVP  

functions  

in mammals 

AVT   

functions 

 in teleost fish 

VT1R (14)  

- 

V2bR (15) 

V2aR (11,15) 

       - 

V2R (9) 

Oviposition 

- 

- 

Water balance  

Osmoregulation 

Osmoregulation 

VT2R (2,3,5) V1a-2R (6,7) V1bR (8) ACTH 
release 

ACTH release Reproduction 
behavior 

VT3R  (2,4) OTR (9) OTR (1) Egg laying Milk ejection, 
parturition 

           - 

VT4R (13) V1a-1R (6) V1aR (10,12) ACTH 
release 

Blood pressure 
regulation, 
glycogenolysis, 
reproduction,  

Reproductive 
behavior, Vision, 
Olfaction 

Adan et al., 1995 (1); Baeyens and Cornett, 2006 (2); Cornett et al., 2003 (3); Gubrij et al., 2005 (4); 
Jurkevich et al., 2005 (5); Kline et al., 2011 (6); Lema et al., 2010 (7); Lolait et al., 1995 (8); Maybauer et 
al., 2008 (9); Ostrowski et al., 1992 (10); Ocampo et al., 2012 (11) ; Orcel et al., 2002 (12); Selvam et al., 
2013 (13); Tan et al., 2000 (14); Yamaguchi et al., 2012 (15). 

Recent studies have shown that vasotocin receptor two (VT2R/V1bR) and vasotocin receptor four 

(VT4R/V1aR) are expressed in the corticotrophs of the anterior pituitary and mediated the release of 

ACTH in response to acute immobilization stress in chicken (Jurkevich et al., 2005,. 2008; Cornett et al., 

2013; Kuenzel et al., 2013; Selvam et al., 2013). Like the mammalian V1aR, Selvam et al., (2014). These 

studies have discovered that the VT4R is highly expressed throughout the brain including all ten 
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circumventricular organs in the avian brain. Two of the avian CVOs, the organum vasculosum of the 

lamina terminalis (OVLT) and the subseptal organ (SSO)/ the subfornical organ in mammals (SFO), have 

shown high levels of VT4R/V1aR immunoreactivity suggesting that the chicken VT4R may be associated 

with osmoregulation. The typical vertebrate CVO usually displays specialized ependymal cells, has an 

incomplete blood-brain barrier, contains cerebrospinal fluid (CSF)-contacting neurons, and is located 

adjacent to the ventricles of the brain (Vigh, 1973). Mammals have less than ten, usually eight CVOs, 

three of which are regarded as sensory:  the subfornical organ, homologous of avian subseptal organ, 

organum vasculosum of the lamina terminalis, and area postrema (APa). Several studies have confirmed 

that the SFO and the OVLT are involved in drinking behavior and osmoregulation through the action of 

angiotensin II on AVP/AVT release in mammals (McKinley et al., 1992; McKinley et al, 1998) and in birds 

(Gerstberger et al., 1987; Simon-Oppermann et al., 1988; Simon et al., 1992). The recent VT4R has been 

identified in chickens; however, very little data about its function is documented except for its involvement 

in psychogenic stress. Therefore, the objective of the study was to test the possible function of the VT4R 

within the OVLT and the SSO with regard to osmoregulation in the chicken. Experiments were, therefore, 

designed to test whether or not a physical stressor, hyperosmotic saline, would affect the 

immunohistochemistry or gene expression of VT4R located in the OVLT and/or the SSO.    
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CHAPTER I - Review of Literature 

1. Arginine vasopressin (AVP)/ Arginine vasotocin ( AVT)  

1.1. Structure and synthesis of AVP/AVT 

 Arginine vasotocin (AVT) in non-mammalian vertebrates is homologous to mammalian arginine 

vasopressin (AVP). Arginine vasotocin is a highly conserved nona-peptide (9 amino acids). It contains a 

ring-like structure created by disulfide bonds between cysteine residues at positions 1 and 6. Arginine 

vasotocin differs from AVP by only one amino acid at the position 3 where isoleucine (Ile) in AVT is 

substituted for Phe in AVP (Acher and Chauvet, 1995; Goldstein, 2006) (Fig 1). 

 

                                       1         2         3         4        5         6          7          8         9 

     Vasotocin               Cys      Tyr      Ile       Gln     Asn     Cys      Pro      Arg       Gly  

    Vasopressin            Cys      Tyr      Phe    Gln     Asn     Cys      Pro      Arg       Gly 

Fig. 1 . Amino acid sequences of the avian and mammalian AVT/AVP (Goldstein, 2006). 

 Arginine vasotocin or arginine vasopressin is synthesized in the magnocellular neurons of the 

paraventricular nucleus (PVN) and the supraoptic nucleus (SON), and parvocellular neurons in the PVN. 

In mammals, AVP is derived from a precursor preproarginine vasopressin consisting of the following 

structural sequence: signal peptide - vasopressin - neurophysin II - glycopeptide or copeptin (Acher et al., 

1955; Brownstein, 1980; Acher and Chauvet, 1995; De Bree et al., 2003), while the non- mammalian AVT 

precursor, preproarginine vasotocin, has two linked stuctures, AVT and neurophysin II, without any 

glycopeptide (Acher and Chauvet, 1995).  Arginine vasotocin/arginine vasopressin precursors are 

packaged in secretory granules of both hypothalamic PVN and SON neurons. Therefore, it is cleaved to 

generate AVT/AVP during its transport from the PVN and the SON in the posterior pituitary 

(neurohypophysis) where it is released into the bloodstream to regulate the salt and the fluid balance 

(Rinaman et al., 1995). The arginine vasotocin/ arginine vasopressin synthesis and release are 

significantly induced by a physical stress such as an osmotic stimulation (an increased or a decreased 
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plasma hyperosmolarity or a hypovolemia) (Falke, 1991). The cleavage of the AVT/AVP precursor is 

mediated by the ordered actions of these enzymes: dibasic endopeptidase, carboxypeptidase, 

peptidylglycine monooxygenase, and alpha-amidating lyase. The arginine vasopressin/ arginine vasotocin 

is carried into the caudal region of the posterior pituitary gland where it is released into the bloodstream. 

A second source of the arginine vasopressin in mammals (Gillies et al., 1982) or the arginine vasotocin in 

birds (Mikhailova et al., 2007; Cornett et al., 2013; Kuenzel et al., 2013) originates from parvocellular 

neurons in the PVN where it can potentiate the corticotrophin releasing hormone (CRH) effect.  Both 

parvocellular AVT neurons and CRH neurons terminate in the median eminence and bind to receptors on 

anterior pituitary corticotrophs, and, thereby, activating the hypothalamic-pituitary-adrenal axis (HPA) 

(Carsia et al., 1986; Familari et al., 1989). 

1.2. Functions of AVP/AVT 

1.2.1. Role of AVP/AVT in the central nervous syste m 

 In mammals, arginine vasopressin, located in the central nervous system or the brain, plays a 

variety of physiological functions, including drinking behavior (de Arruda Camargo et al., 2003), learning 

and memory process (de Wied, 1997; Everts and Koolhaas, 1999 ) , social recognition (Everts and 

Koolhaas, 1999; Bielsky and Young, 2004), sexual behavior (Gash and Boer, 1987), aggression 

(Goodson and Bass, 2001), anxiety (Everts and Koolhaas, 1999), depression, and stress response 

(Familari et al., 1989). In birds, AVT is known to modulate several behaviors, including vocalization or 

singing (Maney et al., 1997; Goodson, 1998), sexual behavior (Kihlstrom and Danninge, 1972; Jurkevich 

and Grossmann, 2003), aggression (Goodson, 1998), and stress response (Carsia et al., 1986; Kuenzel 

and Jurkevich, 2010; Kuenzel et al., 2013; Kang and Kuenzel,  2014). 

1.2. 2. Peripheral effects of AVP/AVT 

The circulating AVP/AVT mainly regulates water homeostasis, maintains body blood pressure, and 

activates ACTH release induced by the stress in mammals (Grantham and Burg, 1966; Lolait et al., 1992; 

Morel et al., 1992; Sugimoto et al., 1994) and in birds (Gerstberger et al., 1984; Simon-Oppermann, 1984; 

Hughes, 2003) respectively. Indeed, AVP/AVT is primarily known as the anti-diuretic hormone (ADH) 
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causing the water absorption in collecting ducts of the kidney to create the hyperosmotic urine in 

mammals (Grantham and Burg, 1966). However, it is involved a complex osmoregulation system which 

includes the kidney, the gastrointestinal system, and the salt glands in birds (Gerstberger et al., 1984; 

Hughes, 2003). The increase in plasma osmolarity such as water deprivation (Koike et al., 1977; Árnason 

et al., 1986) or hypertonic saline infusion (Koike et al., 1979) appears to be the principal stimulus for AVT 

release from the posterior pituitary gland. For example, an increase of the AVT synthesis has been 

correlated with an increased gene expression of the AVT mRNA in the hypothalamic paraventricular 

nucleus and the supraoptic nucleus in birds (Chaturvedi et al., 1997). In other words, any osmotic stress 

results in the activation of the AVT magnocellular neurons in the PVN and the SON synthesizing the AVT, 

which is releasing from the posterior pituitary gland directly into the bloodstream to restore water balance 

in birds (Chaturvedi et al., 1997). 

2. Arginine vasopressin (AVP)/Arginine vasotocin (A VT) Receptors  

 Different subtypes of AVP/AVT and oxytocin (OT)/Mesotocin (MT) receptors have been identified 

among species. The new classification of these subtypes is based on phylogenetic analyses, and their 

respective functions of all mammalian and avian AVP/AVT subtype receptors are summarized in the    

table 1.  

 2.1. Structure of VT4R/V1aR or recent adopted acron ym AVPR1A 

              The mammalian vasopressin subtype 1a receptor (V1aR or AVPR1A) belongs to the guanine 

protein-coupled receptor (GCPR) family. This class of receptor consists of 7 hydrophobic transmembrane 

alpha helices joined by three extracellular and three intracellular loops, an extracellular N-terminal region, 

and an intracytoplasmic C-terminal region (Barberis et al., 1998). The binding sites for the ligand are 

significantly expressed in the conserved extracellular loops 1 and 2 (Sharif and Hanley, 1992). The 

vasopressin subtype 1a receptor is located on the chromosome 12 and contains 394 amino acids. This 

receptor is characterized by two major features: 3 N-glycosylation on the asparagine (Asn) are present on 

the extracellular domains (Asn 14 and Asn 27 on N-terminal; Asn 198 in second extracellular loop) and 3 

disulfide bonds (one between cysteine (Cys) residues in the second and third extracellular loop; two on 

Cys residues within C-terminal domain (Thibonnier et al., 1994; Oychinnikov et al., 1998; Robert and 

Clauser, 2005). The N-glycosylated sites on the V1aR modulate its receptor expression level at the 

extracellular domain region, and, therefore, are required for normal receptor expression as well as for the 
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efficient protein folding. In contrast, this N-glycosylation is not involved in the ligand (AVP/AVT) 

recognition for the intracellular pathway activation (Hawtin et al., 2001). Moreover, the disulfide bonds are 

required for the correct folding of the V1aR. All major features on the mammalian V1aR suggest that the 

structure of this receptor has been well-established among different mammalian species in a number of 

studies. However, the structure of the chicken VT4R is 419 amino acids in length, shares 69% similarity 

with the V1aR of mammals and not well studied (Baeyens and Cornett, 2006; Jayanthi et al., 2013). 

Jayanthi et al. (2014) have recently discovered binding site similarities with the well-established V1aR 

using three-dimensional molecular modeling studies of the VT4R. 2.2. Functions of V1aR/AVPR1A  

 In mammals, specifically, the V1aR is abundantly found in a variety of specific regions of the brain 

and in diverse peripheral organs suggesting that it may possess multiple functions. Several mammalian 

studies have established both central and peripheral functions of the V1aR. It plays a major role in the 

cardiovascular system and influences the arterial blood pressure. Importantly, this receptor mediates the 

vasocontrictive effects of AVP, resulting in an increased blood pressure in response to any systemic 

decrease in blood pressure (Johnston, 1985; Knepper, 2000; Lange, 2007). More specifically, the binding 

of the AVP to the V1aR induces the activation of the phospholipase C (PLC) pathway leading to the 

release of Ca2+ into the vascular smooth muscle cells. Thus, the pathway provides Ca2+ required for the 

contraction of blood vessels. The V1aR also mediates the effects of the AVP in the liver (glycogenolysis) 

and the platelets (aggregation). In addition, the V1aR mRNA, highly expressed in brain including three 

circumventricular organs (choroid plexus, area postrema, and subfornical organ), is consistent with the 

possible role of the arginine vasopressin V1aR in the central control of the osmoregulation (Schultz et al., 

1977; Katusic et al., 1984; Ostrowski et al., 1994). Additionally, the V1aR mediates diverse behavioral 

effects in mammals, including social recognition (Bielsky and Young 2005), avoidance behavior (Kovacs 

et al., 1979), social memory and learning process (Dantzer et al., 1988; de Wied et al., 1993), anxiety 

(Caldwell et al., 2008), fear (Viviani and Stoop, 2008), locomotion (Tsunematsu et al., 2008), aggressive 

and maternal behavior (Nephew and Bridges, 2008), and pair bonding (Walum et al., 2008). The 

vasopressin V1a receptor was found in gonadotropes of the anterior pituitary gland, thereby could 

modulate the reproductive function (Orcel et al., 2002). The mammalian V1aR was not located on 

corticoptrophs. In contrast, the chicken VT4R/V1aR is highly expressed on corticotrophs and shown to be 

involved in psychological stress (Kuenzel, 2013; Selvam et al., 2013; Kang and Kuenzel, 2014). In the 
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mammalian pituitary gland, vasopressin through the V1bR is known to be involved in the neuroendocrine 

hypothalamo-pituitary adrenal axis in response to stress (Antoni, 1993; Sugimoto et al., 1994). The V1aR 

controls major behavioral functions and may shut off or decrease the gonadal function with a continued 

stress. Since the V1aR is associated with several physiological roles in mammals, it makes sense to 

explore other possible effects of the avian VT4R rather than a restraint stress, and an obvious one is the 

osmoregulation due to the presence of the VT4R/V1aR in CVOs associated with water balance.      

2.3. Antagonists of VT4R/V1aR 

The AVP in mammals regulates many essential functions through the V1aR centrally and 

peripherally. The functions of V1aR are summarized in the table 1 and 2.2 of the literature review.  

Because of the important and extensive roles of the vasopressin system in humans and other mammals, 

different antagonists of the V1aR have been developed for therapeutic purposes. The V1aR antagonists 

have been subdivided into two major classes based upon their specificity: (1) selective V1aR antagonists 

including SR49059 (Serradeil et al., 1993), OPC-21268 (Yamamura et al., 1991) and (2) relatively non-

selective antagonists of the V1aR, known as mixed antagonists such as Manning compound (V1aR/OTR) 

[Manning et al., 2008], YM087 (V1aR/V2R) [Gieldon et al., 2001] , and JTV-605 (V1aR/V2) [Serradeil et 

al., 2001]. Because of their high stability and specificity, SR49059 and OPC-21268 are considered as the 

most efficacious antagonists. Of relevance, several mammalian V1aR antagonists such SR49059, OPC-

21268, and YM-087 show a high binding affinity for the chicken VT4R (Jayanthi et al., 2014). Moreover, 

Jayanthi et al. (2014) have recently identified a number of VT4R antagonists that reduce POMC hnRNA 

expression in the primary avian pituitary cell cultures following a stimulation of a cocktail of CRH/AVT 

neuropeptides. Note that POMC is a useful indicator of the ACTH activation.  Each of the four following 

blockers (SR-49059, H-6722, OPC-21268, and H-5350) reduced the expression of the POMC hrRNA by 

55%, 44%, 39%, 35% when applied, respectively, to the culture system. To date, SR49059 is the most 

potent selective antagonist of the avian V1aR due to its high binding affinity and its significant attenuation 

of the poultry pituitary POMC expression. 

3. Signal transduction pathways (Second messenger systems)



Arginine vasopressin exerts its physiological action by binding to a specific extracellular domain in

a transmembrane region of a distinct AVP subtype receptor, and, thus, leading to

signal transduction pathway for its stimu

subtype 2 receptor (V2R), highly expressed in kidney

stimulates the adenylate cyclase caus

Handler, 1967; Liu and Wess, 1996) that

of AVP (Figure 2). 

Fig. 2:  Diagram depicting the signal transduction a

the AVP to mammalian the V2R (homologous to chicken VT1R) monitoring the antidiuretic effects of

AVP in the kidney. AC: adenylate cyclase, GPCR: Guanine

Arginine vasopressin exerts its physiological action by binding to a specific extracellular domain in

distinct AVP subtype receptor, and, thus, leading to a change in a particular

stimulation or its inhibition. The mammalian arginine vasop

highly expressed in kidney, activates a Gs subunit of the G protein, which

causing the production of the cAMP/protein kinase A (Orloff

Handler, 1967; Liu and Wess, 1996) that is required as second messengers to mediate antidiuretic effects

icting the signal transduction adenylate cyclase/cAMP pathway upon the binding of

V2R (homologous to chicken VT1R) monitoring the antidiuretic effects of

AVP in the kidney. AC: adenylate cyclase, GPCR: Guanine-protein-coupled receptor, G
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Arginine vasopressin exerts its physiological action by binding to a specific extracellular domain in 

a change in a particular 

inhibition. The mammalian arginine vasopressin 

G protein, which 

kinase A (Orloff and 

is required as second messengers to mediate antidiuretic effects 

denylate cyclase/cAMP pathway upon the binding of 

V2R (homologous to chicken VT1R) monitoring the antidiuretic effects of the 

coupled receptor, Gα (α): G-protein 
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subunit alpha; Gᵧᵧ: G-protein subunits gamma beta, AVP: arginine vasopressin, V2R: arginine 

vasopressin subtype 2 receptor (https://www.rpi.edu). 

In addition, the arginine vasopressin subtype 1b receptor (V1bR) expressed in the anterior 

pituitary and the subtype 1a receptor (V1aR) located on smooth blood vessels mediate AVP actions 

through phospholipase C pathways (Fig. 3) (Morel et al., 1992). Similar to the mammalian V1aR, the 

avian vasotocin subtype 4 receptor (VT4R) mediates AVT effects through the calcium pathway (Ocampo 

et al., 2012; Yamaguchi et al., 2012). Subsequently, the binding of the arginine vasopressin with the 

V1aR activates Gq, subunit of the G protein, and, then, stimulates the phospholipase C (PLC). The 

phospholipase C hydrolyses phosphotidyl inositol 4, 5 bi-phosphate (PIP2) into inositol 1, 4, 5-

triphosphate (IP3) and diaglycerol (DAG) (Thibonnier et al., 1996). Second messengers (IP3 and DAG) 

cause the Ca2+ increase in the cytosol. The inositol 1,4,5-triphosphate binds to the inositol 1,4,5-

triphosphate receptor (IP3-R) located on the endoplasmic reticulum (ER) to release the Ca2+ leading to 

activation of the calcium-calmodulin complex, while the DAG affects  the protein kinase C to produce 

cytosolic Ca2+ through voltage-gated Ca2+ channels. High concentrations of the Ca2+ results in the 

vasoconstriction of the vascular smooth muscle cell (Lange et al., 2008). However, a striking new finding 

among non-mammalian AVT receptors involves the classification of the avian VT1R among the vertebrate 

family of vasotocin receptors. Molecular phylogenetic and functional analyses have recently categorized 

the mammalian V2R into V2aR and V2bR (Table 1). The V2aR, the conventional mammalian V2R, is 

primarily associated with the adenylate cyclase/cAMP pathway. In contrast, V2bR, present in all other 

classes of vertebrates and homologous to chicken VT1R, switches its signal mechanism to mediate the 

PLC/Ca2+ pathway rather than the cAMP pathway (Ocampo et al., 2012; Yamaguchi et al., 2012).  The 

finding suggests that the cAMP signal transduction pathway for this particular receptor subtype may be 

unique to mammals. 
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Fig. 3:  Diagram showing the signal transduction PLC/Ca2+ pathway of the mammalian V1aR 

(homologous to chicken VT4R) mediating the major AVP functions (Lange et al., 2008). 

4. Regulation of Stress

4.1. Physical and psychological stressors and their mechanisms 

Magnocellular neurons in the brain are stimulated by physical stressors such as osmotic stimuli, 

while psychological stressors are thought to stimulate parvocellular neurons in both mammals and avian 

species (Bourque, 2008; Ulrich-Lai and Hermann, 2009).  

 Additionally, magnocellular AVP/AVT-neurons of the PVN and the SON are thought to be 

uniquely responsive to physical stressors, particularly those affecting osmolality changes (dehydration, 

hemorrhage, hyperosmotic saline, food deprivation). These changes cause the activation of the 

hypothalamo-posterior pituitary system (figure 4) to release the AVP into the bloodstream in mammals 
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(Ludwig et al., 1994; Fitts et al., 2004) or the AVT in birds (Ruch et al., 1975; Goto et al., 1986; Stallone 

and Braun, 1986; Simon-Oppermann et al., 1988). The circulating AVP/AVT primarily exerts: (1) its 

vasoconstrictive effects on smooth muscle cells through the mammalian V1aR; (2) its antidiuretic actions 

on the kidney via the V2R in mammals or possibly the VT1R in chickens. Furthermore, the parvocellular 

AVP/AVT-neurons of the PVN primarily react to other types of stressors called psychological stressors or 

emotional stressors including immobilization or restraint in mammals (Antoni, 1993; Sugimoto et al., 1994) 

and birds (Hermann, 1993; Kuenzel and Jurkevich, 2010). Upon the activation of the parvocellular 

neurons of the PVN by  the neural input generated by psychological stressors,  the classic hypothalamo-

pituitary adrenal axis (Fig. 4) is activated  in the following sequence: (1) release of AVP/AVT and CRH 

from hypothalamic neurons  into the median eminence and their transport via the portal capillary system 

to  the anterior pituitary gland, (2) binding of the neuropeptides to their respective receptors located on 

corticotrophs with the subsequent release of the ACTH from the anterior pituitary gland into the 

bloodstream, and (3) binding of the ACTH to receptors on cells of  the adrenal cortex  (mammals) or the 

interrenal tissue (birds) that stimulate the production of the cortisol in some mammals (Wiegand and 

Price, 1980; Familari et al., 1989; Kempainen et al., 1993) and the corticosterone in birds and rodents 

(Carsia et al., 1986; Romero et al., 1998; Kuenzel and Jurkevich, 2010), known as the primary stress 

hormone. Data have shown that the AVP/AVT can potentiate the neuroendocrine effect of CRH in 

mammals (Swanson and Kuypers, 1980; Gillies et al., 1982) and birds (Mikhailova et al., 2007; Kuenzel 

and Jurkevich, 2010; Cornett al., 2013). In other words, the corticotropin releasing factor (CRH) (Figure 4) 

stimulates the ACTH release from the anterior pituitary gland through the CRH-R1in birds or the CHR-

R1and the CRH-R2 in mammals. In addition, the AVP/AVT (Fig. 4) also affects the release of the ACTH 

from the avian anterior pituitary gland via VT2R/V1bR and VT4R/V1aR (Jurkevich et al., 2005,. 2008; 

Kuenzel et al., 2013; Kang and Kuenzel, 2014). The adrenocorticotropic hormone is carried via the 

peripheral circulation to increase the glucocorticoid release from the adrenals into the bloodstream.  As a 

result, glucocorticoids affect physiological functions of diverse organs, including the reproductive system, 

the digestive system, the cardiovascular system, the immune system, and the brain. Although the high 

plasma corticosterone levels are controlled by negative feedback mechanisms on the HPA axis to 



maintain corticosterone/cortisol plasma levels within the physiolog

1992; Barden et al., 1995) and birds (Carsia et al., 1986).

Fig. 4:  Two major response stress pathways: hypothalamo

hypothalamo-posterior pituitary system. AVT (arginine vas

CRH (corticotropin-releasing hormone), SON (supraoptic nucleus), PVN (paraventricular nucleus).

(Adapted from Cornett et al., 2013) 

4.2. Implication of CVOs in water intake regulation

Several studies in mammals

or receptors for angiotensin II located in the SFO, a CVO, regulate water intake (Gerstberger et al., 1987;

Vivas et al., 1990). Both avian and mammalian studies have also reported that

specific CVOs that, in turn, have established

(Iovino and Steardo, 1984; Philips, 1987). The end result is

system (neural axis, NHS), and/or the

discovery in our laboratory showed immunoreactive VT4R/V1aR within the same CVOs, OVLT and SSO,

corticosterone/cortisol plasma levels within the physiological range of mammals (Dallman et al.,

1992; Barden et al., 1995) and birds (Carsia et al., 1986). 

Two major response stress pathways: hypothalamo-anterior pituitary-adrenal gland axis and

posterior pituitary system. AVT (arginine vasotocin), ACTH (adrenocorticotropic hormone),

releasing hormone), SON (supraoptic nucleus), PVN (paraventricular nucleus).

 

4.2. Implication of CVOs in water intake regulation  

Several studies in mammals and birds have established that particular cells having binding sites

or receptors for angiotensin II located in the SFO, a CVO, regulate water intake (Gerstberger et al., 1987;

Both avian and mammalian studies have also reported that stressful inputs can affect

specific CVOs that, in turn, have established to send connections to the hypothalamic PVN and SON

(Iovino and Steardo, 1984; Philips, 1987). The end result is the activation of the neurohypophyseal

the neuroendocrine hypothalamo-pituitary-adrenal (HPA) axis. A recent

showed immunoreactive VT4R/V1aR within the same CVOs, OVLT and SSO,
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or receptors for angiotensin II located in the SFO, a CVO, regulate water intake (Gerstberger et al., 1987; 
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to the hypothalamic PVN and SON 

activation of the neurohypophyseal 

adrenal (HPA) axis. A recent 

showed immunoreactive VT4R/V1aR within the same CVOs, OVLT and SSO, 
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associated with the regulation of the drinking behavior (Selvam et al., 2014). The finding was unique for 

the VT4R/V1aR suggesting, perhaps, a functional role of the VT4R/ V1aR in the osmotic balance. 

5. Circumventricular Organs (CVOs)

5.1. Characteristic features of CVOs 

In mammals, eight or less CVOs have been identified in the brain. They are differentiated into 

secretory structures, including neural and intermediate lobes of the pituitary gland, median eminence 

(ME), subcommissural organ (SCO), and pineal gland (PIN). Sensory CVOs include organum vasculosum 

of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (APa). There is also a 

specialized secretory CVO known as the choroid plexus (PC) located within the lateral, third, and fourth 

ventricles. The choroid plexus is responsible for the production of the cerebrospinal fluid (Petrov et al., 

1994; Duvernoy and Risold, 2007).  

Unlike mammals, at least ten avian CVOs have been identified, including OVLT, SSO 

(homologous of SFO), APa, ME, PIN, PC, SCO, lateral septal organ (LSO), paraventricular organ (PVO), 

and subtrochlear organ (STO) (Fig. 5) (Kuenzel and van Tienhoven, 1982).  
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Fig. 5:  Sagittal view: Circumventricular organs in the avian brain. ME: Median eminence, SCO: 

subcommissural organ, P: pineal gland, OVLT: organum vasculosum of lamina terminalis, SFO: 

subfornical organ, APa: area postrema, LSO: lateral septal organ, PVO: paraventricular organ, STO: 

subtrochlear organ, PC: choroid plexus (not shown as it is lateral to this midline view of the chick brain). 

(Kuenzel and van Tienhoven, 1982). 

Most CVOs share the following general criteria: 

-  contain specialized ependymal cells;   

-  are rich in a vascular network of fenestrated capillaries that have an incomplete blood-brain barrier 

(BBB) (Leonhardt, 1980);  

- may have cerebrospinal fluid-contacting neurons  

- and are found adjacent to the ventricles within the brain (Vigh, 1971).  
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  A general function of CVOs is to provide communication between the peripheral organs and the 

brain through the blood and the cerebrospinal fluid (CSF) respectively. In fact, blood borne substances 

consisting of ions (sodium, potassium, calcium, chloride) and/or hormones (AVP/AVT, calcitonin, atrial 

natriuretic factor, angiotensin II) can access the brain from the blood by transport to the CSF by 

specialized neurons (Quirion et al., 1984; Rouleau et al., 1984; Patel et al., 1986; McKinley et al., 1990).  

Consequently, ions, hormones, and other molecules in the CSF can be monitored by osmoreceptors 

present in sensory CVOs. The best known example is the renin angiotensin system where circulating 

ANG II once it binds to the ANG II, AT1 receptor in the SFO mediates the water intake (Nishimura and 

Bailey, 1982; Nishimura et al., 1984). Thereafter, a secondary effect is the release of antidiuretic hormone 

(ADH/AVP), which is responsible for the water reabsorption at the level of the kidneys (Palkovitis, 1987; 

Johnson et al., 1992; Johnson and Gross, 1993). The osmosensitivity of osmoreceptors within sensory 

CVOs is critical to maintain water and salt balance homeostasis. Interestingly, any hyperosmotic stressor 

(hypertonic saline solution or injection) can be sensed by the OVLT and mediated through of the transient 

receptor potential vanilloid 1 (TRPV1) gene expressed in the OVLT. The transient receptor potential 

vanilloid 1 gene (TRPV1) detects an osmotic change at the molecular level (Ciura et al., 2011).  

Subsequently, the change in Trpv1 gene expression induces a physiological modification in cation 

channels located in OVLT neurons. Consequently, the hyperosmolarity exerts a mechanical effect on the 

cell shrinking that is detected (Ciura et al., 2011). The transient receptor potential vanilloid 1 gene 

appears to be a non-selective cation channel that is activated during hypertonicity-evoked shrinking of 

osmosensory neurons (Sharif-Naeini et al., 2006; Prager-Khoutorsky et al., 2014). As a result, the 

shrinkage of the neuronal cells within the OVLT compresses the microtubule system, making the 

microtubules push against TRPV1, and, therefore, directly opening the calcium channel (Andres and 

Göpfert, 2014; Prager-Khoutorsky et al., 2014). 
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5.2. Organum Vasculosum of the Lamina Terminalis (O VLT) 

5.2.1. Anatomy of OVLT 

 The organum vasculosum of the lamina terminalis is a highly variable structure among 

mammalian and avian species based upon capillary networks and its dorsal or posterior extension 

dependent upon a particular animal species (Duvernoy and Risold, 2007). 

 In mammals, the OVLT, part of the anteroventral third ventricle (AV3V) region, is reduced to a 

superficial capillary network located at the base of the third ventricle in small rodents, while the OVLT is 

more developed in the rabbit. Moreover, the anteroventral third ventricle region is a unique structure 

located in periventricular tissue between the anterior commissure (CA) and optic chiasma (OC) consisting 

of OVLT, preoptic periventricular area, and median preoptic nucleus (MnPO). The median preoptic 

nucleus is also known as the nucleus medianus of the medial preoptic area (NM; Brody and Johnson, 

1980). Morphologically, the OVLT appears as a triangular-like structure located at midline within the 

AV3V structure dorsal to optic chiasma and ventral to median preoptic nucleus (Figure 6). In other words, 

the OVLT, located at the anterior edge of the optic chiasma at the base of the brain, extends dorsally 

toward the anterior commissure; however, its dorsal direction is restricted to the suprachiasmatic region. 

Thus, the organum vasculosum of the lamina terminalis does not continue to the anterior commissure. 

The dorsal end of OVLT is strikingly unique in mammals and ends abruptly (Miselis, 1981; Thrasher and 

Keil, 1987). The median preoptic nucleus occurs dorsal to the OVLT. The median preoptic nucleus splits 

into two wings, and, thereby, making the dorsal boundary of the OVLT unclear anatomically in the rat and 

other mammals. To distinguish better the dorsal end of the OVLT from the beginning of the MnPO in 

mammals, immunohistochemistry using anti-calretinin has been used. The calretinin positive 

immunoreactivity helps to determine the dorsal boundary since it shows where the blood brain barrier is 

lacking (main feature of CVOs), and, thus, validating the presence of the OVLT. In contrast, the calretinin 

negative immunoreactivity above the dorsal limit suggests that the blood brain barrier is intact indicating 

the beginning of the MnPO (McKinley et al., 1997; McKinley et al., 1998). In addition, neural connections 

exist between the SFO and the AV3V area which strongly enables the identification of the AV3V (Fig. 6). 
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The median preoptic nucleus is involved in the water and the salt balance in mammals (Miselis et al., 

1979; Miselis, 1981; Saper and Levisohn, 1983; Johnson, 1985).          

    

Fig. 6:  Three dimensional sagittal view of the rat brain. The subfornical organ/subseptal organ lies in the 

anterior dorsal region of the third ventricle and contacts the dorsal part of MnPO. The median preoptic 

nucleus begins above the anterior commissure, moves in front of it and continues ventrally along the 

anterior border of the third ventricle just above the OVLT where it divides into two wings passing laterally 

and ventrally on either side of the OVLT. The anteroventral third ventricle (AV3V) includes the OVLT, 

MnPO, and periventricular nucleus (PeV) (not shown on this diagram) (Miselis, 1981).            

              In birds, the fenestrated capillary network accompanying the OVLT has a more extensive 

development. The organum vasculosum of the lamina terminalis, first appearing as triangular-like shape, 

is primarily located at the anterior edge of the optic chiasma at the base of the brain, ventromedial to the 

periventricular preoptic nucleus. It proceeds dorsally along the third ventricle, passes in front of the 

SSO 

AC 

MnPO 

OVLT  

OC 
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anterior commissure, and ends at the base of the nucleus of the hippocampal commissure (NHpC) where 

it ends directly dorsal to the anterior commissure (Kuenzel and Golden, 2006). Objectively, in mammals, 

two distinctive regions have been defined based on the rostral region of the third ventricle: (1) the anterior 

dorsal wall of the third ventricular region including the SFO and the anterior-ventral region for third 

ventricle (AV3V). The autoradiographic techniques using ANG II have identified ANG II binding sites in 

AV3V region, including OVLT, MnPO, and PeV in mammal (Fig. 6). Mammalian AV3V could be similar to 

avian AV3V. In contrast, several authors might mention neither ANG II binding sites in MnPO nor the 

possible presence of MnPO in ducks (Fig. 7) (Gerstberger et al., 1987; Simon et al., 1992, Natke et al., 

1996). As a result, the avian OVLT could be either different from the AV3V region or be part of the AV3V 

region. Surprisingly, Dellmann (1964) has reported the different portions of the OVLT on a sagittal view as 

follow: prechiasmatic section, thin and thick middle portion, subcommissural section, precommissural 

section, and supracommissural section. Furthermore, Korf (1984) has described that afferent connections 

to the avian PVN derived from the OVLT and the SSO. Subsequently, autoradiographic ANG II binding 

studies have identified the OVLT and the AV3V region. Both anatomical (Korf, 1984; Dellmann, 1964) and 

autoradiographic studies (Fig. 7) (Shigematsu et al., 1986; Gerstberger et al., 1987; Simon et al., 1992; 

Natke et al., 1996) have probably not mentioned the homolog to the MnPO in avian species. However, 

further studies should be done in avians to investigate whether or not they contain an equivalence of the 

mammalian MnPO. 
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Fig. 7:  Sagittal section of the chicken brain. ANGII labelling shows OVLT, SFO, and other brain 

structures. There is no structure showing the equivalent of the mammalian MnPO. The anteroventral third 

ventricle (AV3V) seems to have the OVLT and the PeV (not shown) (Natke et al., 1996) 

5.2.2. Function  

 The organum vasculosum of the lamina terminalis sends major projections to the magnocellular 

neurons of the PVN and the SON. Therefore, the pathway suggests one function of the OVLT, which 

mediates the release of the AVP/AVT into the bloodstream from the hypothalamo-posterior pituitary 

system to conserve body water as a result of physical stressors in mammals (Philips, 1987; Honda et al., 

1990; Armstrong, 1996) and in birds (Korf, 1984; Koike et al., 1979; Sharp et al., 1995). The organum 

vasculosum of the lamina terminalis also shows projections to the parvocellular neurons of the PVN 

causing the stimulation of the AVP/AVT and the CRH secretion which activate the hypothalamo-pituitary-

adrenal (HPA) axis resulting from various psychogenic stress threats in mammals (Saper and Levisohn, 

1983;). Additionally, immunohistochemical and autoradiographic studies have reported that the OVLT is 
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an osmoreceptive area containing mostly V1R, particularly V1aR  (Jurzak et al., 1995), as well as ANG II 

receptor subtype T1A involved in the control of any sodium imbalance and osmolality change to maintain 

bodily ion osmotic homeostasis (Gerstberger et al., 1987; Richard and Bourque, 1995; Lenkei et al., 

1997).  

5.3. Subseptal Organ (SSO)/ Subfornical Organ (SFO)  

5.3.1. Anatomy of subseptal Organ (SSO)/ subfornica l Organ (SFO) 

 The avian subseptal organ is homologous to the mammalian subfornical organ. The anterior 

border of the SFO/SSO varies based upon the avian species (Schmid, 1995). 

 In mammals, for example, the anterior extension of the rat SFO has a defined anatomical border. 

The rat SFO is located at the meeting point of the horn of the lateral ventricle with the third ventricle 

(Duvernoy and Risold, 2007). The point of the horn is located dorsal to anterior commissure and ventral 

to the fornix in mammalian species (Dellmann and Simpson, 1979). The subseptal organ moves 

posteriorly and protrudes slightly into the third ventricle resulting in a finger-like structure (Song K, 1992). 

The subfornical organ, similar to the OVLT, sends projections into the PVN and the SON (Miselis, 1981; 

Fitts et al., 2004).                                                                                      

 Unlike the mammalian SFO, the avian subseptal organ lacks the fornix. In duck and other avian 

species, the SSO does not have a clear anatomical anterior or lateral border, while it is in continuity with 

the nucleus of the hippocampal commissure and the anteroventral third ventricle region. Schmid (1994) 

has used functional studies with Evans blue, which stained the SSO devoid of blood brain barrier (BBB) 

to clarify the SSO boundaries in duck and its extension (broadwell and Sofroniew, 1993). He has found 

that Evans blue primarily stained around the large central blood vessel and its perivascular space which 

originates from the anterior commissure and passes posteriorly through the entire duck SSO. In addition, 

the stained Evans blue was seen dorsally to the roof of the third ventricle at the rostral or anterior end of 

the anterior commissure and dorsally and laterally from the central blood vessel. No Evans blue staining 

was observed neither in nucleus of the hippocampal commissure and the posterior part of anterior 
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commissure nor the nucleus of the hippocampal commissure and the end of the SSO. As a result, the 

absence of Evans blue staining in these regions, represented the anterior and lateral border of the SSO, 

suggested the leakiness of BBB in the SSO from the anterior commissure to the caudal end of SSO 

where SSO emerges with the plexus choroid (Schmid, 1994). Moreover, the chicken SSO has been 

described by the VT4R and the GnRH-1 terminal field immunoreactivities (Kuenzel and Golden, 2006; 

Selvam et al., 2014). On cross-sections, posteriorly, the OVLT changes position and continues at the 

base of the lateral septal region where it is located just below the nucleus of the hippocampal 

commissure. The organum vasculosum of the lamina terminalis location below the NHpC is known as the 

transition region between the OVLT and the SSO. The beginning of the SSO is medial and ventral to 

NHpC. As the SSO moves posteriorly, it shows intense dense VT4R immunoreactive glial cells around an 

increasing central chamber at the SSO dorsal region. At more posterior, the SSO has a finger-like 

projection from the roof of third ventricle into the third ventricle space containing the cerebrospinal fluid at 

the ventral SSO region. (Kuenzel and van Tienhoven, 1982; Kuenzel and Golden, 2006; Selvam et al., 

2014) 

5.3.2. Function of subseptal Organ (SSO)/ subfornical Organ (SFO) 

The subfornical organ plays a role in regulating water intake in mammals and birds. The 

subseptal Organ contains ANG II subtype 1 receptors (AT1R) which mediate changes in the behavior and 

the physiology of birds (Murphy et al., 1993; Kempf et al., 1996; Schᵧfer et al., 1996; Kempf et al., 1999) 

and mammals (Hohle et al., 1995; Lenkei et al., 1995; lenkei et al., 1997) to regulate the osmotic balance. 

Moreover, in rats, few V1aR labelled cells were found in the SFO, while high levels of the V1aR were 

expressed in the pineal gland, the choroid plexus, and the area postrema. The V1aR within the SFO 

mediates the effects of the AVP (Ostrowski et al., 1994). Similarly, novel avian VT4R/V1aR 

immunoreactivity has been shown present in the chicken SSO. Knowing that the SFO/SSO is involved in 

the AVP/AVT release from the hypothalamo-posterior pituitary system to regulate the water balance in 

both mammals and avian species (Iovino and Steardo, 1984; Jonhson et al., 1992), the avian VT4R/V1aR 

immunoreactivity within SSO is an additional evidence to examine this avian CVO to ascertain whether or 

not the evidence can be obtained to support its role in osmotic regulation. 
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6. Arginine vasopressin/AVT control of osmoregulation

Mammalian AVP and avian AVT are well known by their other name, antidiuretic hormone (ADH), 

because they regulate water and salt balance in the body (Goldstein, 2006). In fact, any increase in 

plasma osmolality results in a drinking behavior, and the kidneys respond by activating their antidiuretic 

function to restore the osmolality (Bourque, 2008). Water deprivation or hyperosmotic stimulus induces 

the activation of the renin-angiotensin system which triggers the release of ANG II (Nishimura et al., 1982;

Nishimura et al., 1984).  The angiotensin II, in turn, activates osmoreceptors such as ANG II type1 

receptor in the OVLT and the SSO neurons in mammals (Honda et al., 1987; Vivas et al., 1990; Richard 

and Bourque, 1995) and in birds (Kempf et al., 1996; Schᵧfer et al., 1996). Subsequently, the two CVOs 

send output signals to magnocellular neurons of the hypothalamic PVN and SON which synthesize the 

AVP/AVT. They are released from the posterior pituitary gland into the bloodstream (Stallone and Braun, 

1986; Ludwig et al., 1994; Fitts et al., 2004) to normalize plasma osmolality through the aquaporin 2 

channel located at collecting ducts of the kidney (Fitts et al., 2004; Yang et al., 2004; Starbuck and Fitts, 

1998). In mammals, the AVP exerts its action on the collecting ducts in the kidney to favor water 

reabsorption.  This results in hyperosmotic urine in response to hypertonic osmolality (Grantham and 

Burg, 1966). However, the osmoregulation in avian species appears more complex due to roles played 

not only by the kidney, but also the gastrointestinal tract and the salt glands (Hughes, 2003). 

7. Hypothesis

What is unknown is whether the VT4R present in the avian OVLT and SSO plays a role in water 

balance. It is hypothesized that the avian VT4R located in the OVLT and the SSO responds to physical 

stressors that affect osmotic homeostasis. 
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CHAPTER II - Structural and Functional Analyses of the CVOs in Chicken Brain 

1. Introduction

Recent studies have shown that vasotocin receptor two (VT2R/V1bR) and vasotocin receptor four 

(VT4R/V1aR) are expressed in corticotrophs of the anterior pituitary and mediated the release of ACTH in 

response to acute immobilization stress in chicken (Jurkevich et al., 2005., 2008; Cornett et al., 2013 ; 

Kuenzel et al., 2013 ; Selvam et al., 2013). Like the mammalian V1aR, Selvam et al (2014) have 

discovered that the VT4R is highly expressed throughout the brain including all ten circumventricular 

organs in the avian brain.  Since two of the avian CVOs, the organum vasculosum of the lamina 

terminalis (OVLT) and the subseptal organ (SSO)/ the subfornical organ in mammals (SFO), have shown 

high levels of VT4R/V1aR immunoreactivity  suggesting that the chicken VT4R may be associated with 

osmoregulation (Selvam et al., 2014).  Several studies have confirmed that the SFO and OVLT are 

involved in drinking behavior and osmoregulation in mammals (McKinley et al, 1998) and in birds 

(Gerstberger et al., 1987). The recent VT4R has been identified in chickens; however, very little data 

about its function is documented except for its involvement in psychogenic stress. To evaluate the 

possible function of the VT4R within the OVLT and SSO with regard to osmoregulation in chicken, 

experiments were, therefore, designed to test whether or not a physical stressor, hyperosmotic saline, 

would affect the immunocytochemistry and/or gene expression of VT4R located in the OVLT and/or SSO.  
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2. Materials and Methods

2.1. Animals 

Three-week old male chickens were housed in individual cages under a 16:8 hours light/dark 

cycle with lights on at 6:00 am. Birds were provided food and water ad libitum. Birds were randomly 

selected into 2 sets / four treatment groups (n=8/treatment).  The set 1 included acute controls (not 

handled) and acute immobilization stressed birds prevented from standing or moving their wings. They 

had water accessibility during 1 hour. The set 2 was composed of hypertonic saline (3.0 M NaCl) and 

isotonic saline (0.15 M NaCl). The birds of set 2 were injected intra-peritoneally (i.p) with either 3 M NaCl 

or .15 M NaCl at a dosage of 5 ml/kg. The birds were brought back to their cages for 1 hour without any 

water access. All animals used in this study were treated in accordance with protocols approved by the 

university of Arkansas Institutional Animal Care and Use Committee. 

2.2. Radioimmunoassay of corticosterone 

The blood samples were taken from the brachial vein in 3-week old male chickens subjected to 1 

h of acute immobilization stress (n=8), and 1 h of hyperosmotic stress (n=8). Blood samples were 

centrifuged at 3000 rpm for 20 mn at 4°C, and the p lasma samples were stored at - 20°C until assayed. 

Plasma corticosterone (CORT) concentrations were determined by radioimmunoassay (Madison et al., 

2008; Poudman and Opel, 1988). Briefly, plasma samples (200 µl) were first extracted with 2 ml of ethyl 

ether in borosilicate glass tubes (12 x 75 mm). All tubes were vortexed for 30 min at room temperature 

and the water-soluble fraction was separated in a methanol/dry ice bath. The liquid fraction of each 

sample was transferred to a new tube and dried at 37°C in an evaporator. Dried extracts were 

reconstituted with 400 µl of assay buffer (0.1 M PBSG, pH 7.0), vortexed for 5 min, and equilibrated 

overnight at 4°C. In duplicate assay procedure, 100  µl of anti-corticosterone purchased from Fitzgerald 

Comp (Concord, MA, USA) and 100 µl of  125I corticosterone tracer purchased from MP Biomedicals Inc. 

(Orangeburg, NY, USA) were added to each sample and standard tube and incubated for at least 24 

hours at 4°C . The bound anti-corticosterone was se parated from the unbound by precipitation using 

sheep anti-rabbit antibody purchased from MP Biomedicals Inc. (Orangeburg, NY, USA) and 6% of 
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polyethylene glycol. The supernatant of each sample and standard was discarded, dried, and read using 

Cobra Quantum gamma-counter. 

2.3. Radioimmunoassay of AVT 

Plasma arginine vasotocin (AVT) concentrations were estimated using a commercial 

radioimmunoassay kit (Phoenix Pharmaceuticals, Inc Burlingame, CA, USA). Briefly, plasma AVT 

samples were extracted using C-18 SEP- COLUMNS. Each C-18 SEP-COLUMN was placed on 15 ml 

centrifuge tube and equilibrated by buffer B (1ml) followed by buffer A (3 ml, 3 times).  Plasma samples (1 

ml) were acidified with 1 ml of buffer A. The acidified plasma solution was loaded to equilibrated C-18 

SEP- COLUMN. The acidified plasma passed through the column over variable time (30 mn to 4 hours 

depending on the presence or not of bubbles).The column was washed slowly with buffer A (3ml, twice) 

and discarded. The buffer B (3ml) was used to elute AVT from column and the eluted solution was dried 

in SpeedVac concentrator. The dried extract was reconstituted in 250 µl of RIA buffer and 100 µl x 2 of 

reconstituted samples and standards were assayed. In duplicate assay procedure, 100 µl of rabbit anti-

AVP antibody (the RIA for AVT in birds was developed using the high cross-reactivity of AVT with AVP 

raised in rabbits, Möhring et al., 1980) was added to samples and standards tubes and incubated for 16-

24 hours at 4°C. Then, the 125I AVP tracer (100 µl) was added to tubes and incubated for 16-24 hours at 

4°C. The free and bound AVT were separated using th e second antibody, goat anti-rabbit (100 µl), 

followed by normal rabbit serum (100 µl) and RIA buffer (500 µl). After the tubes were centrifuged at 3000 

rpm for 20 min at 4°C, the supernatant was removed by aspiration, and the precipitate was counted using 

gamma-counter.   

2.4. Immunohistochemistry 

 2.4.1. Tissue preparation 

Birds were anesthetized with an I.V injection of sodium pentobarbital (30 mg ml/kg). Each 

anesthetized bird was perfused through left heart ventricle and carotid arteries with 150 ml of ice cold 

heparinized PBS containing 0.1 M PBS with 0.1% sodium nitrite, pH 7.4 immediately followed by 250 ml 
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of freshly prepared, ice cold Zamboni's fixative solution, pH 7.4 containing 4% paraformaldehyde with 

15% picric acid in 0.1 M PBS buffer at pH 7.4. The brains were blocked in a stereotaxic instrument (Kopf 

Instrument, Tujunga, CA) and post-fixed in the same fixative overnight at 4°C. Blocked brains were 

cryoprotected in 30 % sucrose in 0.1 M PB at 4°C un til they sank, frozen in dry ice, wrapped in parafilm 

and aluminium foil, and stored at - 20°C until sect ioned. Blocked brains were embedded in Jung OCT 

medium (freezing media, Leica Microsystems, Wetzlar, Germany) and sectioned at 40 µm in a coronal 

plane on a cryostat (Leica CM 3050S,Leica Microsystems, Austin, TX, USA) between anterior and 

posterior planes of atlas plates A 8.8, to A 7.6 using an atlas of the chick brain (Kuenzel and Masson, 

1988). The A 8.8 stands for 8.8 mm anterior to the zero coordinate which was the centered ear bars of 

the stereotaxic instrument. Brain sections were collected on 24-well plates containing cryoprotective 

solution, sealed using parafilm, and kept at - 20°C . 

2.4.2. Bright field immunohistochemistry 

Free-floating sections were rinsed several changes (6 times x 10 min) of PBS at room 

temperature to remove cryoprotectant solution, incubated for 30 min (2X15min) in PBS containing 0.6% 

of hydrogen peroxidase (2 ml of 30% H2O2 in 98 ml of 0.02 M PBS) to suppress endogenous peroxidase 

activity and then permeabilized with 0.4% Triton X-100 in 0.02 M PBS for 15 min. Subsequently, sections 

were placed into 5% normal goat serum (NGS) in PBS with 0.1% sodium azide and 0.2% Triton X-100 for 

30 min to block non specific binding sites. The sections were  then incubated with rabbit antibody against 

chicken VT4R diluted 1:2500 in 0.02 M PBS containing 1%NGS, 0.4% Triton X-100 , and 0.1% sodium 

azide for overnight at 4°C on a belly dancer. Follo wing incubation, sections were rinsed in 6 times at 10 

min each and incubated with goat anti-rabbit biotinylated antibody (Vector Laboratories, Burlingame, CA, 

USA) diluted 1:500 in PBS with 0.2% Triton X-100 for 90 min at room temperature (RT). After 4 timed 

rinses at 10 min each, the sections were incubated with Vectastain Elite ABC peroxidase complex (Vector 

Laboratories) diluted 1:5 in PBS containing 0.1% crystallized bovine serum albumin (BSA), and 0.2% 

Triton X-100 for 90 min. The sections were rinsed 4 times at 10 min each in PBS, followed by 15 min-

rinse in 0.175 M sodium acetate buffer, pH 6.0 and immediately immunostained through glucose oxidase-

diamino benzidine-nickel method (Shu et al., 1988). After 5-7 min (up to 20 min), this reaction was 
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stopped by a short rinsing in 0.175 M sodium acetate buffer. Sections were immersed in PBS and distilled 

water, mounted on gelatin-coated glass slides, air-dried overnight and coverslipped with histomount 

(National Diagnostic, Atlanta, GA). 

2.5 Treatment Groups of Birds and Sampling Procedure for Gene Expression Involving two 

Circumventricular Organs 

2.5.1 Birds, treatments, sampling procedures 

The birds used for the gene expression experiment were subjected to the same treatments as 

described in 2.1 of material and methods with n=8 birds per treatment. Birds were killed by cervical 

dislocation, and their brains were removed from the skull, put into the 2-methylbutane, frozen in dry ice, 

and stored at - 80°C until sectioned procedure.  

2.5.2 Sectioning the OVLT and SSO for Gene Expression of Selected Genes 

Frozen chick brains were embedded in Jung OCT medium (freezing media, Leica Microsystems, 

Wetzlar, Germany) and sectioned at 200 µm in horizontal planes on a cryostat (Leica CM 3050S, Leica 

Microsystems, Austin, TX, USA) between anterior and posterior plans corresponding respectively A 8.8 

and A 8.2 for OVLT (Fig.1), A8.0 and A 7.6 for SSO and PVN (Fig.1) of chicken brain atlas (Kuenzel and 

Masson, 1988). Each brain section was collected in a 1.5 ml tube containing 100 ml of Trizol (Qiagen, 

Valencia, CA, USA) and kept at - 80°C. Each brain s ection had average size as follow: OVLT (Length (L) 

x width (w) x thickness (th); 2 mm x 1.5 mm x 0.2 mm respectively); SSO (1.5 mm x 1.5 mm x 0.2mm); 

PVN (2 mm x 1.5 mm x 0.2 mm). 



Fig. 1:  Schematic plates A8.8, A 8.4, and A 8.2 (Anterior region of the hypothalamus) of the chick brain

show the organum vasculosum of lamina terminalis (OVLT). The boxed

regions for the OVLT. Schematic plates A8.0, A 7.8, and A 7.6

hypothalamus. Just dorsal to the hypothalamus are the three upper boxed

dissected that included the subseptal organ (SSO). The lower three boxed

dissected that included the paraventricular nucleus (PVN) (Modified from Kuenzel and Masson, 1988).

Anterior 

Posterior 

Schematic plates A8.8, A 8.4, and A 8.2 (Anterior region of the hypothalamus) of the chick brain

show the organum vasculosum of lamina terminalis (OVLT). The boxed-in areas depict the dissected

the OVLT. Schematic plates A8.0, A 7.8, and A 7.6 show more posterior regi

Just dorsal to the hypothalamus are the three upper boxed-in areas showing the tissue

dissected that included the subseptal organ (SSO). The lower three boxed-in regions show the areas

included the paraventricular nucleus (PVN) (Modified from Kuenzel and Masson, 1988).
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Schematic plates A8.8, A 8.4, and A 8.2 (Anterior region of the hypothalamus) of the chick brain 

ict the dissected 

show more posterior regions of the chick 

in areas showing the tissue 

in regions show the areas 

included the paraventricular nucleus (PVN) (Modified from Kuenzel and Masson, 1988). 
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2.5.3 RNA isolation and two-step real-time quantitative RT-PCR 

Total RNA was extracted from each sectioned brain using Trizol® reagent (Life Technologies, 

Palo Alto, CA, USA) following the DNase I treatment (Invitrogen, Carlsbad, CA, USA) and purification by 

RNeasy Micro Kit (Qiagen, Valencia, CA, USA). The RNA quality and quantity were determined using 

agarose gel electrophoresis and Gen.5 Synergy HT (BioTek, Winooski, VT, USA). Single-stranded cDNA 

was synthesized from 2 µg total RNA using oligo d(T)16 primer and superscript III (Invitrogen, Carlsbad, 

CA, USA), as previously described (Kang et al, 2007; Kang et al., 2010; Selvam et al, 2013). The PCR 

primer pairs for VT4R and CRH-R1 were previously reported (Kang and Kuenzel, 2014, Selvam et al., 

2013). The specific oligonucleotide primers for AT1 and TRPV1 were designed by the PRIMERS3 

program (http://frodo.wi.mit.edu).The best primer pairs were selected from several pairs based on PCR 

product quality and lengths after electrophoresis on a 3 % agarose gel. A portion of 4 ul of cDNA was 

subjected to a quantitative real time RT- PCR using 7500 Real Time PCR system (Applied Biosystems 

LLC, Foster, CA, USA) with Power SYBR Green PCR Master Mix (Invitrogen Grand Island, NY, USA). 

Conditions of the real time qRT-PCR were 1 cycle at holding stage (50°C for 2 min, 95°C for 10 min), 4 0 

cycles; denaturation (at 95°C) for 60 s, annealing (at 58-60°C) for 30 s for AT1, TRPV1, and β-actin: 

58°C, for VT4R, CRH-R1, and GAPDH; 60°C, extending (at 72°C) for 3 min; holding stage (72°C for 10 

min). The NCBI accession numbers,  PCR product size and primer sequences used in the present study 

are: VT4R [NM001110438, 137 bp ( VT4R-F: 5-GGT TGC AGT GTT TTC AGA GTC G-3; VT4R-R: 5-

CAA GAT CCG CAC CGT CAA G-3)], CRH-R1 [NM_204321, 141 bp (CRH-R1-F: 5- 

CCCTGCCCCGAGTATTTCTA-3; CRH-R1-R: 5- CTTGCTCCTCTTCTCCTCACTG-3)], AT1 

[NC_006096.3 ; 138 bp (AT1-F: 5-CTGTTTCAGGAAGGCACAGT-3; AT1-R: 5-

TGCTGGCCACTGTTTTTAAT-3)], TRPV1[NC_006106.3 ; 131 bp (TRPV1-F: 5-

AAAGGCTGCCTGTTCATCAT-3; TRPV1-R: 5-TTGTCAGCTGTTTCCAGTGC-3)] GAPDH [NM204305, 

128 bp (GAPDH-F:5- CTTTGGCATTGTGGAGGGTC-3; GAPDH-R: 5-ACGCTGGGATGATGTTCTGG-

3)], β- actin [L08165, 158 bp (Actin-F: 5-CACAATGTACCCTGGCATTG-3; Actin-R: 5-

ACATCTGCTGGAAGGTGGAC-3)]. The chicken glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
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and β-actin gene were as internal controls. The fold change values for the stressed groups compared with 

controls were determined by the ∆∆CT method. 

2.6. Statistical analysis 

Statistical analyses were performed using software JMP® Pro 11.0 (SAS Institute Inc. Cary, NC). 

Differences among the four treatment groups (same sample size) were analyzed using one way analysis 

of variance (ANOVA). Pairwise comparisons between the groups were analyzed with Fisher’s least 

significant difference (LSD) test. Data from each group are expressed as Mean ± SEM. A probability level 

of p < 0.05 or p<0.01 was considered statistically significant. 

3. Results

In our laboratory, we showed that the vasotocin receptor, VT4R/V1aR, was found in glial cells in 

the CVOs of the avian brain and were particularly dense in the OVLT and the SSO/SFO.  Since 

vasopressin is also known as antidiuretic hormone, and AVT is homologous to vasopressin, we wished to 

test the hypothesis that the avian VT4R/V1aR within the OVLT and/or SSO functions in water balance or 

specifically osmotic balance. Our past studies have focused on examining psychological stress using 

immobilization as a model. Results have shown that the stress hormone, corticosterone, is significantly 

elevated following acute or chronic restraint stress, and four receptors associated with corticotrophs in the 

anterior pituitary are involved strongly suggesting that the classical hypothalamo-pituitary-adrenal axis 

was activated.  In our laboratory, we have previously not examined a physical stressor. Since 

osmoregulation and water balance primarily involve a physical stressor, we needed to select a means of 

disrupting the normal ionic balance in a bird, and first determine whether it was truly stressful.  If it was 

shown stressful, based upon elevated corticosterone levels, we would then utilize that procedure to 

examine whether it affected the anatomy and gene expression of the two CVOs. As controls, birds were 

either subjected to a psychological stressor, immobilization, treated with an isotonic solution that did not 

change the osmotic balance of their bodies or were not handled. 
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3.1. Plasma Corticosterone and Arginine Vasotocin Concentrations 

To determine the overall systemic effect of each stressor, blood samples were collected after 

1hour of acute immobilization stress or 1h following 3 M sodium chloride IP injections and assayed for 

corticosterone (CORT) and arginine vasotocin (AVT).  Results are shown in Fig. 2 and 3. 

 3.1.1. Plasma corticosterone concentrations  

Plasma levels of corticosterone were significantly different in the treatment group given 

hypertonic saline IP (p<0.05) and the group subjected to immobilization (p<0.01) compared to their 

respective controls. Plasma levels of corticosterone in acute immobilization birds (1.22 ± 0.26 ng/ml; 

mean ± SEM) showed a 5-fold increase compared to their controls (0.25 ± 0.041 ng/ml). Similarly, 

subjecting birds to a physical stressor, hypertonic saline administration resulted in a significant increase in 

their stress hormone levels. Specifically, a 9-fold increase of plasma corticosterone concentration was 

obtained in hypertonic birds (2.46 ± 0.56 ng/ml) compared to their respective controls, administered 

isotonic saline (0.27 ± 0.05 pg/ml; Fig. 2). Taken together, the hypertonic group displayed more than a 2-

fold increase in CORT than the other treatment group subjected to immobilization (Fig. 2). 

3.1.2. Plasma arginine vasotocin concentrations 

Figure 3 shows the plasma concentration of arginine vasotocin following 1hour of hypertonic 

saline administration or acute immobilization stress. Plasma AVT in the immobilized group (7.97 ± 0.95 

pg/ml) was significantly different (p < 0.01) from the acute control group (4.19 ± 0.59 pg/ml). The injection 

of 3.0 M NaCl of hypertonic saline to  birds was  a 2.9-fold higher level of plasma AVT concentration 

(17.06 ± 4.78 pg/ml) compared to its isotonic controls (5.89 ± 0.32 pg/ml).  

As a result, the brains of chicken having high corticosterone and arginine vasopressin were 

selected for determining the impact of hypertonic saline on the VT4R within SSO/OVLT using anti-VT4R 

for immunohistochemistry and then investigating gene expressions of interest expressed with real time 

RT-PCR to test our hypothesis.    
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3.2. Anatomy of the OVLT/SSO in the Avian Brain 

The distribution of the VT4R in the organum vasculosum of lamina terminalis and the subseptal 

organ was examined in coronal sections of the chick brain.  

 3.2.1. Organum Vasculosum of the Lamina Terminalis 

The organum vasculosum of the lamina terminalis begins at the anterior edge of the optic 

chiasma located at the base of the brain forming a triangular-like shape (Fig. 4A).  The structure 

continues dorsally along the third ventricle (Fig. 4B-4E), moves in front of the anterior commissure (Fig. 

4F), and ends at the base of the nucleus of the hippocampal commissure where it resides directly dorsal 

to the anterior commissure.  The organum vasculosum of the lamina terminalis having glia containing the 

avian V1aR contacting the cerebrospinal fluid in the rostral portion of the third ventricle  suggest strongly 

that this CVO can bind available arginine vasotocin within the cerebrospinal fluid and ,perhaps, respond 

to any changes in its concentration (Fig. 4D). 

3.2.2. Subseptal Organ 

The subseptal organ appears to begin immediately after the anterior commissure (Fig. 5A), continues 

posteriorly and dorsally (Fig. 5B-5E), and ends as a fingerlike form projecting into the third ventricle (Fig. 

5E, 5F). In other words, in figure 6 (5B-5D), the VT4R immunoreactive glial fibers in the anterior region of 

the SSO occurs around chambers containing CSF which increasingly enlarge as SSO continues 

posteriorly. The glial cells containing the avian VT4R have the capability of binding the circulating AVT in 

the CSF.  As it continues posteriorly, the SSO shows increased VT4R immunoreactivity particularly at the 

base of the NHpC where the head of the glia contact the chamber within the posterior SSO that contains 

the cerebrospinal fluid and their terminal processes form the fingerlike projection (Fig 5E, 5F) that enters 

the ventral portion of the third ventricle. Therefore, this structure has the components capable of binding 

the AVT within the CSF, and, perhaps, respond to changes in AVT levels within the third ventricle. 
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 3.3. Structural Analyses of the OVLT/SSO 

To test our hypothesis that the VT4R located in OVLT/SSO is associated with osmoregulation, we 

examined morphological changes of VT4R immunoreactive glial cells within OVLT/SSO following 1h of 3 

M sodium chloride compared to its isotonic control as well as a group subjected to immobilization and its 

respective control.  

3.3.1. Organum Vasculosum of Lamina Terminalis  

The VT4R immunoreactive ependymal cells were present within the OVLT of hypertonic saline and acute 

immobilization stress groups as well as their respective controls.  We are focused on the ventral region of 

the main triangular-like part of the OVLT attached to the brain parenchyma (Fig. 4D; boxed area on the 

brain in Fig. 6A, 6B, 8B). In the other words, we examined morphological changes that occurred under 

the chamber (not involved in our analysis) caused by the split between the main portion of the OVLT and 

the brain parenchyma. The organum vasculosum of lamina terminalis of both hypertonic saline (Fig. 6B, 

6D) and immobilization group (Fig. 8B, 8D) distinctly displayed curved immunostained VT4R glial 

processes. The head of curved immunoreactive VT4R glial processes originated either at the brain 

parenchyma or at the split between the proper OVLT and the brain parenchyma, moved down as curving 

manner in the third ventricle contacting the CSF compared to the controls (Fig. 6A, 8A). In control birds, 

the curving processes were not clearly observed; however, the head of immunoreactive VT4R glials also 

derived from the brain parenchyma and moved horizontally to the third ventricle. In addition, the marked 

change in orientation and the increased number of VT4R/V1aR immunoreactive glial processes in the 

hypertonic saline group (p<0.01) compared to their isotonic controls were observed (Fig. 7B). No 

significant change was observed in the acute immobilization group (Fig. 7A). 

3.3.2. Subseptal Organ 

The VT4R immunoreactive ependymal cells were present within the SSO of the hypertonic saline 

and acute immobilization stress groups as well as in their controls, respectively. Examining coronal 

sections revealed no significant morphological changes in the dorsal portion of the SSO where glial cells 
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appeared to surround chambers containing the CSF. However, significant changes were observed in the 

orientation of VT4R immunoreactive glial fibers contacting CSF in the mid-and ventral regions of the SSO. 

The head of glial processes originated from the third ventricle in the ventral region moved discontinuously 

to dorsal region of the SSO in association with horizontal compact bands of fibers in the hypertonic saline 

(Fig. 9B) and immobilization group (Fig. 9D) compared with their respective controls. The controls showed 

vertical and parallel orientation of VT4R immunoreactive glial fibers connecting ventral and dorsal regions 

of SSO without any visible horizontal fiber bands (Fig.12A, 12C). The organization of glial cells in 

compact bands in both experimental groups (Fig. 9B, 9D) rendered their quantification variable and 

inconsistent. Therefore, the quantification of immunoreactive glial processes or thicker bands was not 

completed in this CVO. 

3.4. Functional Analyses of SSO/OVLT 

In order to confirm the results from the immunohistochemical changes of VT4R immunoreactive within the 

OVLT/SSO in the experimental groups, particularly following the hyperosmotic, physical stressor, we 

isolated total mRNA from the OVLT/SSO in 3-week old male chicken preoptic regions for quantitative RT-

PCR to determine the VT4R gene expression and other relevant genes. We first checked the change of 

angiotensin II subtype 1A receptor mRNA (AT1AR mRNA) gene expression. It is known to mediate water 

regulation within the OVLT/SSO. Second, we tested the TRPV1 mRNA gene expression. It senses the 

hypertonicity caused by the shrinking of cells from a hyperosmotic, physical stressor such as the one 

used in our study. 

3.4.1 Angiotensin II Subtype 1A Receptor (AT1AR mRNA) mRNA Gene Expression in the SSO and 

OVLT 

Expression levels of AT1AR mRNA (ANG II subtype 1A receptor mRNA) were measured in the 

subseptal organ and the organum vasculosum of lamina terminalis of the 1h acute immobilization 

stressed  birds and following 1h of administration of hypertonic saline, designated as the hypertonic 

stressed group. The two treatment groups were compared to their respective controls (acute control; 

isotonic saline control). A significant increase of the AT1AR mRNA gene expression in the hypertonic 
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saline birds (95%, p=0.05) occurred compared to the isotonic saline controls in the SSO (Fig. 10A). No 

change in the AT1AR occurred; however, in the acute immobilization stressed birds compared to their 

controls (Fig. 10A). In contrast, within the OVLT, there was a significant increase of the AT1AR mRNA in 

the immobilized treatment group compared to its control while the hypertonic saline group displayed a 

significant decrease in gene expression compared to its isotonic saline controls.  In other words, in the 

OVLT, the AT1AR mRNA was increased (upregulated, 1.48-fold) in immobilized birds, while decreased 

(slightly downregulated) in hypertonic saline birds (Fig. 10B).  

3.4.2. Receptor Potential Vanilloid Type 1 mRNA (TRPV1mRNA) Gene Expression in the SSO/ 

OVLT  

To determine whether TRPV1 mRNA is associated with hypertonicity sensing in the chicken, we 

performed the RT-PCR from extracted SSO/OVLT tissues to examine TRPV1 mRNA change from either 

acute hypertonic saline injection or acute immobilization stress. The 1h hypertonic saline administration 

significantly increased TRPV1 mRNA levels (189 %, p=0.05) in the SSO (Fig. 11A) and significantly 

decreased TRPV1 mRNA expression levels (37%, p< 0.05) in the OVLT (Fig. 11B) compared to their 

respective controls. The Acute immobilization had no significant effect on TRPV1 mRNA change 

(p=0.6437) within the SSO compared to its controls (Fig. 11A). In contrast, acute immobilization stress 

significantly increased TRPV1 mRNA levels (116%, p<0.05) in the OVLT (Fig. 11B).  

3.4.3. Vasotocin subtype 4 receptor mRNA (VT4R mRNA) gene expression in SSO and OVLT 

Within the SSO, there was a significant increase of VT4R mRNA in the hypertonic saline group and 

acute immobilization stress group (19%, p=0.05; 39%, p=0.05 respectively) compared to their respective 

controls (Fig.12A). Within the OVLT, a significant increase of VT4R mRNA levels were observed in both 

injected hypertonic saline and immobilization birds (60%, p<0.05; 20%, p=0.05) compared to their 

respective controls (Fig. 12B). Both experimental groups showed upregulated VT4R mRNA levels; 

however, VT4R mRNA was more highly upregulated in the hypertonic saline birds compared to 

immobilized birds within the OVLT (Fig. 12B).   
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3.4.4. Corticotropin releasing hormone subtype 1 receptor mRNA (CRH-R1 mRNA) expression in 

paraventricular nucleus (PVN)   

The paraventricular nucleus contains CRH-R1 and has connections with both SSO/OVLT, so the study of 

CRH-R1 mRNA gene expression would assess the activation of the hypothalamo-neurohypophyseal 

system or of the hypothalamo-pituitary adrenal axis following hypertonic stress. The CRH-R1 mRNA 

levels were significantly increased and upregulated (64%, p<0.01) in immobilized birds compared to their 

controls, while CRH-R1 gene expression was significantly decreased (36%, p<0.01) in the hypertonic 

saline administered birds compared to their controls in the paraventricular nucleus (Fig.12C).  

4 Discussion 

4.1 Administration of hypertonic NaCl is an effective, physical stressor in broilers 

 Results of our study (Fig. 2 and 3) provide evidence that 3-week male chickens are more 

responsive to physical stress such as hypertonic saline than psychogenic stress, immobilization. In fact, 

hypertonic stimuli released more corticosterone (2-fold increase) and arginine vasotocin than acute 

immobilization stress. These results corroborate those observed by other studies (Nouwen et al., 1984; 

Harbuz and Lightman, 1989; Shibasaki et al., 1993). Data suggest that hypertonic saline is a highly 

effective and potent stimulator of plasma corticosterone secretion, and, therefore, the physical stressor 

likely affects the SSO/OVLT, the focused areas of our study. However, both stressors appear to have 

significant and specific effects on anatomical as well as gene expression changes in the two CVOs 

examined in this study. 

4.2 The structure and extent of the SSO and OVLT within the avian brain can be identified using an 

antibody to the VT4R/V1aR. 

 Examining coronal sections revealed VT4R-immunoreactive glial cells throughout the extent of 

the OVLT, one of the sensory brain CVOs. In the past, it has attracted attention because of its unusual 

characteristic position, in front of the beginning of the third ventricle and moving dorsally toward the 

anterior commissure and above it. This unique OVLT structure in chicken was first described by Dellmann 
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(1964).  Additional anatomical characteristics for this CVO in the chicken (Kuenzel and van Tienhoven, 

1982; Kuenzel and Masson, 1988; Kuenzel and Golden 2006; Selvam et al, 2014) and duck (Matsumura 

and Simon, 1990; Natke et al., 1996) brain have been provided.  The avian VT4R antibody, however, is 

most useful in defining the extent of the OVLT in the avian brain. Additionally, the VT4R immunoreactive 

glial cells found within the SSO, homologous to mammalian SFO, distinctly described the SSO 

morphology in the chicken. Our findings corroborate previous data in the chicken (Kuenzel and Golden, 

2006; Selvam et al, 2014), pigeon (Weindl and Sofroniew, 1982) and duck (Schmid, 1994). As a result, 

the immunohistochemistry using anti VT4R was positive and revealed the presence of immunostained-

VT4R glia throughout the SSO and the OVLT, particularly around  blood vessels and lining part of the 

third ventricle where the two CVOs resided, critical for the regulation of water balance in chicken in 

response to physical stressors of interest.  

4.3 Anatomical changes in specific regions of the OVLT and SSO occurred following physical and 

psychological stressors 

The present study shows significant immunohistochemical changes of the chicken VT4R 

immunostained glial fibers around the third ventricle within the SSO/OVLT following a physical stressor 

such as hypertonic saline and psychogenic stressor, including acute immobilization stress compared to 

their respective controls. The presence of chicken VT4R immunoreactivity changes noted around the third 

ventricle within the SSO/OVLT may suggest that the  chicken VT4R could bind AVT, and, thereby, 

sensing  any change in CSF concentrations resulting from plasma osmolarity changes imposed by a 

physical stressor. The V1aR results herein provide new data to support the functional role of angiotensin 

II regarding osmotic regulation based upon autoradiographic studies in mammals (Mendelsohn et al., 

1984; Simon-Oppermann and al., 1988; Oldfield et al., 1994) and birds (Gerstberger et al. 1987; Natke et 

al., 1996). Indeed, the circulating angiotensin II bind to the ANG II subtype 1 receptor within the 

SSO/OVLT to regulate water balance in response to any osmolarity change. The immunohistochemical 

changes of VT4R glial cells within the SSO/OVLT seem to have the same location pattern as the ANG II 

and could mediate AVT actions affecting osmoregulation in the chicken. In addition, in our study, the high 

plasma AVT levels in 3-week male chickens subjected to physical stress in association with marked 
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changes in glial VT4R immunoreactivity glial changes provide strong evidence that the VT4R within the 

OVLT and the SSO could be associated with osmotic stress.  Similarly, the psychological stressor, 

immobilization, affected a VT4R immunoreactive glial change in the SSO/OVLT. The chicken OVLT and 

SSO could also be associated with the classical HPA stress response involving the neuroendocrine 

system. In other words, anatomical changes within the SSO/OVLT, particularly in chicks given 

hyperosmotic saline have shown that the VT4R might be involved in avian osmoregulation. The functional 

study of VT4R gene and other genes related to water balance have provided additional evidence 

supporting our hypothesis that the OVLT and SSO appear to be involved in osmotic regulation. 

4.4 Real-time RT-PCR data support the functional rol e of the SSO in osmotic stress based upon 

significantly increased expression of the following genes: AT1aR , Trpv1 and the VT4R/V1aR  after 

an imposed hyperosmotic challenge       

In order to completely validate our hypothesis: determine whether or not a physical stressor, 

hyperosmotic saline, would affect the gene expression of VT4R located in the SSO, we performed RT-

PCR of genes involved in osmoregulation. Our results show that TRPV1 mRNA levels are highly 

increased in the SSO (Fig. 11A). This result is consistent with mammalian studies which have confirmed 

that the SSO is considered to be an osmosensor and has the receptors to initiate water intake (Johnson 

and Gross., 1993; Sladek and Johnson, 2013). Transient receptor potential vanilloid type 1 mRNA, an 

osmosensory transducer located within the both CVOs, might participate in hypertonicity sensing. In 

mammals, it has been shown to be responsive to hypertonic saline stimulation and to release AVP from 

magnocellular neurons in mammals (Sharif- Naeini et al, 2006; Liedtke, 2007; Cuiri et al, 2011; Sladek 

and Johnson, 2013). Thus, the up-regulated TRPV1 gene in our study shows that the gene is present in 

the SSO and responds following a physical stressor.  Moreover, in our study, acute hypertonic saline i.p 

injection and the acute immobilization stress have opposite effects on chicken CRH-R1 mRNA expression 

in the hypothalamic paraventricular nucleus (PVN) (Figure 12C). Our results are similar to previous 

reports utilizing mammals (Makino et al, 1999; Steckeler and Hosboert, 1999). The CRH-R1 receptors are 

found in the anterior pituitary gland of mammals and birds (Potter et al., 1994; De Groef et al., 2004; 

Kuenzel et al., 2013) and widely expressed in the central nervous system, including, amygdala, 
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hippocampus, lateral septal nucleus, the vasopressin/vasotocin-containing neurons in the supraoptic 

nucleus and the paraventricular nucleus (Potter et al., 1994; Imaki et al., 2001; De Groef et al., 2004) in 

mammals and birds. Moreover, several studies have identified neural connections between SSO and 

PVN, PVN and pituitary in mammals and birds (Miselis, 1981; Natke et al, 1996). Thus, the circulating 

ANG II act via the AT1AR located within the SSO (Figure 10A). The subseptal organ thereafter projects to 

PVN. Subsequently, parvocellular CRH neurons of PVN (Fig. 12C, upregulated PVN CRH-R1 mRNA by 

acute immobilization stress) activate the classical HPA axis, while magnocellular AVT neurons (Fig. 12C, 

downregulated PVN CRH-R1 mRNA by acute hypertonic saline injection) stimulate the HNS system for 

AVT release. Hence, the change of chicken CRH-R1 mRNA gene expression in an opposite direction in 

the PVN may suggest that CRH-R1 is involved in differential roles regarding osmoregulation as well as 

the classical stress pathway. 

Finally, our findings have shown that VT4R mRNA levels were increased in the SSO following 

hypertonic saline administration (Figure 12A). Previous studies have shown that the VT4R was present in 

corticotrophs of the anterior pituitary and downregulated in the cephalic lobe following psychogenic stress 

(immobilization) suggesting the VT4R is associated with the neuroendocrine HPA pathway (Selvam et al, 

2013). In contrast, its homologous, the mammalian V1aR has not been shown to be associated with the 

HPA pathway (Orcel et al., 2002). Therefore, the following data about effects of physical stress in our 

study: (1) anatomical change in VTR4 immunoreactivity within the SSO; (2) functional change of the 

AT1AR mRNA and TRPV1 mRNA within the SSO; (3) CRH-R1 mRNA changes in PVN; and (4) the 

unique functional change in VT4R mRNA expression in SSO strongly support the view that the avian 

VT4R/V1aR is involved in osmoregulation. The data strongly suggest that the VT4R/V1aR plays a major 

role in avian water balance.  
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4.5 Real-time RT- PCR data support the functional role of the OVLT in psychological stress based 

upon significantly increased expression of the following genes: AT1aR , Trpv1 and the VT4R/V1aR 

after an imposed immobilization stress 

Besides the stated hypothesis in our study, we examined the effect of psychological stress, 

immobilization stress on VT4R gene expression located in the OVLT. In our study, TRPV1 mRNA levels 

were highly upregulated in the OVLT (Fig. 11B) by the psychological stressor.  Our data support the role 

of the OVLT in psychogenic stress based upon the response of the three genes analyzed. The Data 

suggest that psychogenic stress activates an osmosensor detector gene within the OVLT. Further studies 

will be necessary to verify whether or not the TRPV1 functions as an osmosensor located in the OVLT 

and also plays a role in responding to acute immobilization, a psychological stressor. Additionally, the 

VT4R mRNA gene expression was shown to be moderately increased in the OVLT following acute 

immobilization stress (Fig. 12B). Selvam et al (2013) have provided anatomical and gene expression 

evidence of the VT4R operating within the classical HPA axis following immobilization stress. Thus, 

morphological change of VT4R immunoreactive glials cells within the OVLT, gene expression change of 

VT4R mRNA in OVLT, and the contrasting direction of CRH-R1mRNA in PVN provide evidence that the 

psychological stressor affects the avian VT4R located in the OVLT. Consequently, the chicken VT4R 

located in the OVLT appears to be associated with the neuroendocrine stress pathway (HPA) in response 

to immobilization stress. 
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6. Tables and figures  

 

 

 

Fig. 2:  Plasma corticosterone levels in response to 1h of acute immobilization stress and acute 

hypertonic saline administration compared to their respective controls. Different lower case letters show 

group means that are significantly different (p<0.05 or p<0.0

acute immobilization stress; IC, isotonic saline control; HS, acute hypertonic saline. (n=6 birds/group); 

Error bar: SEM (standard error of mean). 

 

 

 

 

 

Plasma corticosterone levels in response to 1h of acute immobilization stress and acute 

hypertonic saline administration compared to their respective controls. Different lower case letters show 

group means that are significantly different (p<0.05 or p<0.01). AC, acute immobilization control; AS, 

acute immobilization stress; IC, isotonic saline control; HS, acute hypertonic saline. (n=6 birds/group); 

: SEM (standard error of mean).  
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Plasma corticosterone levels in response to 1h of acute immobilization stress and acute 

hypertonic saline administration compared to their respective controls. Different lower case letters show 

1). AC, acute immobilization control; AS, 

acute immobilization stress; IC, isotonic saline control; HS, acute hypertonic saline. (n=6 birds/group); 



 

 

Fig. 3:  Plasma arginine vasotocin levels in response to 

hypertonic saline administration compared to their respective controls. Different lowercase letters show 

group means that are significantly different (p<0.01). AC, acute immobilization control; AS, acute 

immobilization stress; IC, isotonic saline control; HS, acute hypertonic saline. (n=5 birds/group); Error bar: 

SEM (standard error of mean). 

 

 

 

 

 

Plasma arginine vasotocin levels in response to 1h of acute immobilization stress and acute 

hypertonic saline administration compared to their respective controls. Different lowercase letters show 

group means that are significantly different (p<0.01). AC, acute immobilization control; AS, acute 

zation stress; IC, isotonic saline control; HS, acute hypertonic saline. (n=5 birds/group); Error bar: 
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1h of acute immobilization stress and acute 

hypertonic saline administration compared to their respective controls. Different lowercase letters show 

group means that are significantly different (p<0.01). AC, acute immobilization control; AS, acute 

zation stress; IC, isotonic saline control; HS, acute hypertonic saline. (n=5 birds/group); Error bar: 



       

 

 Fig. 4:  Immunostaining of glia for arginine vasotocin subtype 4 receptor (VT4R), homologous to the 

mammalian vasopressin 1a receptor (V1aR). 

terminalis (OVLT) at the base of the preoptic region.    

toward the anterior commissure (CA).

CA where it appears to end. Scale bar= 100 µm for

 

 

 

 

OVLT 

A 

D 

Immunostaining of glia for arginine vasotocin subtype 4 receptor (VT4R), homologous to the 

mammalian vasopressin 1a receptor (V1aR). A. shows beginning of organum vasculosum of lamina 

terminalis (OVLT) at the base of the preoptic region.    B-E. show progressive, dorsal movement of OVLT 

toward the anterior commissure (CA). F. the OVLT is shown in front of the CA and directly dorsal to the 

CA where it appears to end. Scale bar= 100 µm for A-F. 

 

 

B C 

E F 

CA 

70 

 

 

Immunostaining of glia for arginine vasotocin subtype 4 receptor (VT4R), homologous to the 

. shows beginning of organum vasculosum of lamina 

ressive, dorsal movement of OVLT 

the OVLT is shown in front of the CA and directly dorsal to the 

 



 

 

 

Fig. 5 : Immunostaining of glia for arginine vasotocin subtype 4 receptor (VT4R) in the subseptal organ 

(SSO) homologous to the mammalian subfornical organ. 

adjacent to the nucleus of the hippocampal commissure (NHpC) and dorsal to the midline region of the 

anterior commissure (CA). B-E. Posteriorly immunostaining for VT4R in glia becomes particularly dense 

around the chamber dorsal to the 3V. 

into the 3V. Scale bars for A-D=100 µm, E, F= 100

A 

NHpC

O 

D 

CA 

 

: Immunostaining of glia for arginine vasotocin subtype 4 receptor (VT4R) in the subseptal organ 

(SSO) homologous to the mammalian subfornical organ. A. Beginning of the SSO at the midline area 

adjacent to the nucleus of the hippocampal commissure (NHpC) and dorsal to the midline region of the 

. Posteriorly immunostaining for VT4R in glia becomes particularly dense 

chamber dorsal to the 3V. F. at its most caudal level, the SSO sends a finger

D=100 µm, E, F= 100 µm. 

3V 
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: Immunostaining of glia for arginine vasotocin subtype 4 receptor (VT4R) in the subseptal organ 

. Beginning of the SSO at the midline area 

adjacent to the nucleus of the hippocampal commissure (NHpC) and dorsal to the midline region of the 

. Posteriorly immunostaining for VT4R in glia becomes particularly dense 

at its most caudal level, the SSO sends a finger-like projection 

SSO 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6:  Immunohistochemical change within organum vasculosum of lamina terminalis (OVLT; box areas) 

following 1 h of hypertonic saline injection (

of OVLT in isotonic control (C) shows more horizontal 

parallel arrays of individual glial fibers in hypertonic saline (

10x. Scale bar: A, B= 100 µm; C, D= 100 µm.

A 

C 

3V 

Immunohistochemical change within organum vasculosum of lamina terminalis (OVLT; box areas) 

following 1 h of hypertonic saline injection (B) compared to isotonic saline control (A). High magnification 

) shows more horizontal orientation of bundles of glial fibers contrasting with 

parallel arrays of individual glial fibers in hypertonic saline (D). Glial fibers were quantified in 2 grids at 

A, B= 100 µm; C, D= 100 µm. 

B 

D 
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Immunohistochemical change within organum vasculosum of lamina terminalis (OVLT; box areas) 

). High magnification 

orientation of bundles of glial fibers contrasting with 

Glial fibers were quantified in 2 grids at 



 

Fig. 7:  Number of glial processes immunoreactive for VT4R/V1aR in 

immobilization group (A) and in the hypertonic treatment group (

Different lowercase letters show group means that are significantly d

immobilization control (n= 5 birds); AS, acute immobilization stress (n=4 birds); IC, isotonic saline control 

(n= 4 birds); HS, acute hypertonic saline (n= 4 birds). Error bar: SEM (standard error of mean). 
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Number of glial processes immunoreactive for VT4R/V1aR in the OVLT of the acute 

) and in the hypertonic treatment group (B) compared to their respective controls. 

Different lowercase letters show group means that are significantly different (p<0.05). AC, acute 

immobilization control (n= 5 birds); AS, acute immobilization stress (n=4 birds); IC, isotonic saline control 

(n= 4 birds); HS, acute hypertonic saline (n= 4 birds). Error bar: SEM (standard error of mean). 
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acute 

) compared to their respective controls. 

ifferent (p<0.05). AC, acute 

immobilization control (n= 5 birds); AS, acute immobilization stress (n=4 birds); IC, isotonic saline control 

(n= 4 birds); HS, acute hypertonic saline (n= 4 birds). Error bar: SEM (standard error of mean).  



 

Fig. 8:  Immunohistochemical change within OVLT following 1 h acute immobilization stress (

to immobilization control (A). High magnification of OVLT in immobilization control (

horizontal orientation of bundles of glial fibers 

acute immobilization (D). Glial fibers were quantified in 2 grids at 10x. Scale bar: A, B=100 µm; C, D=100 

µm. 

A 

C 

Immunohistochemical change within OVLT following 1 h acute immobilization stress (

). High magnification of OVLT in immobilization control (C) shows more 

horizontal orientation of bundles of glial fibers contrasting with parallel arrays of individual glial fibers in 

). Glial fibers were quantified in 2 grids at 10x. Scale bar: A, B=100 µm; C, D=100 

B 
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Immunohistochemical change within OVLT following 1 h acute immobilization stress (B) compared 

) shows more 

contrasting with parallel arrays of individual glial fibers in 

). Glial fibers were quantified in 2 grids at 10x. Scale bar: A, B=100 µm; C, D=100 
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Fig. 9 :   Immunohistochemical changes within SSO 

acute immobilization stress  (D) compared to their respective controls (isotonic saline,

immobilization control, C). Scale bar: 100 µm.                                                           
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V3 

:   Immunohistochemical changes within SSO following 1 h hypertonic saline injection

compared to their respective controls (isotonic saline, A

Scale bar: 100 µm.                                                             
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following 1 h hypertonic saline injection (B) and 1 h 

A; acute 



 

 

 

 

 

Fig. 10: Angiotensin 1 (AT1) receptor mRNA gene expression in the subseptal organ (SSO;

organum vasculosum of lamina terminalis (OVLT; 

hypertonic saline injection. Different lowercase letters show group means that are significantly different 

(p<0.01). AC, acute immobilization control (n=5 birds); AS, acute immobilization stress (n=6 birds

isotonic saline control (n=5 birds); HS, acute hypertonic saline (n= 6 birds). Error bar: SEM (standard 

error of mean). 

 

 

 

 

AT1/SSO

Angiotensin 1 (AT1) receptor mRNA gene expression in the subseptal organ (SSO;

organum vasculosum of lamina terminalis (OVLT; B) following 1 h of acute immobilization stress and 

hypertonic saline injection. Different lowercase letters show group means that are significantly different 

(p<0.01). AC, acute immobilization control (n=5 birds); AS, acute immobilization stress (n=6 birds

isotonic saline control (n=5 birds); HS, acute hypertonic saline (n= 6 birds). Error bar: SEM (standard 

AT1/SSO AT1/OVLT
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Angiotensin 1 (AT1) receptor mRNA gene expression in the subseptal organ (SSO; A) and 

) following 1 h of acute immobilization stress and 

hypertonic saline injection. Different lowercase letters show group means that are significantly different 

(p<0.01). AC, acute immobilization control (n=5 birds); AS, acute immobilization stress (n=6 birds); IC, 

isotonic saline control (n=5 birds); HS, acute hypertonic saline (n= 6 birds). Error bar: SEM (standard 

AT1/OVLT 



 

 

 

Fig. 11: Gene expression of TRPV1 mRNA in the subseptal organ (SSO; 

lamina terminalis (OVLT; B) following 1 h of acute immobilization stress and hypertonic saline injection. 

Different lowercase letters show group means that are significantly different (p<0.01). AC, acute 

immobilization control (n=5 birds); AS, acute im

(n=5 birds); HS, acute hypertonic saline (n= 6 birds). Error bar: SEM (standard error of mean).

 

 

 

 

 

TRPV1/SSO

Gene expression of TRPV1 mRNA in the subseptal organ (SSO; A) and organum vasculosum

) following 1 h of acute immobilization stress and hypertonic saline injection. 

Different lowercase letters show group means that are significantly different (p<0.01). AC, acute 

immobilization control (n=5 birds); AS, acute immobilization stress (n=6 birds); IC, isotonic saline control 

(n=5 birds); HS, acute hypertonic saline (n= 6 birds). Error bar: SEM (standard error of mean).

TRPV1/SSO TRPV1/OVLT
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) and organum vasculosum of 

) following 1 h of acute immobilization stress and hypertonic saline injection. 

Different lowercase letters show group means that are significantly different (p<0.01). AC, acute 

mobilization stress (n=6 birds); IC, isotonic saline control 

(n=5 birds); HS, acute hypertonic saline (n= 6 birds). Error bar: SEM (standard error of mean). 

TRPV1/OVLT 



 

 

 

 

 

Fig. 12:  Gene expression of the VT4R/V1aR in the subseptal organ (SSO; 

of lamina terminalis (OVLT; B) and, gene expression of corticotropin releasing hormone

R1) in paraventricular nucleus (PVN; 

injection. Different lowercase letters show group means that are significantly different (p<0.01). AC, acute 

immobilization control (n=5 birds); AS, acute immobilization stress (n=6 birds); IC, isotonic saline con

(n=5 birds); HS, acute hypertonic saline (n= 6 birds). Error bar: SE (standard error).

 

 

 

 

 

VT4R/SSO 

A 

Gene expression of the VT4R/V1aR in the subseptal organ (SSO; A) and organum vasculosum 

) and, gene expression of corticotropin releasing hormone

R1) in paraventricular nucleus (PVN; C) following 1 h of acute immobilization stress and hypertonic saline 

injection. Different lowercase letters show group means that are significantly different (p<0.01). AC, acute 

immobilization control (n=5 birds); AS, acute immobilization stress (n=6 birds); IC, isotonic saline con

(n=5 birds); HS, acute hypertonic saline (n= 6 birds). Error bar: SE (standard error). 

VT4R/OVLT CRH-
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) and organum vasculosum 

) and, gene expression of corticotropin releasing hormone-receptor 1 (CRH-

mmobilization stress and hypertonic saline 

injection. Different lowercase letters show group means that are significantly different (p<0.01). AC, acute 

immobilization control (n=5 birds); AS, acute immobilization stress (n=6 birds); IC, isotonic saline control 

-R1/PVN 
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CONCLUSION  

The levels of corticosterone and arginine vasotocin were more increased in the hypertonic saline groups 

showing that the physical stressor, hypertonic saline administration, was efficient, and, thus, probably 

would have desirable effects on VT4R immunoreactivity and on its gene expression within the SSO or 

OVLT. The physical and psychological stressors caused immunohistochemical changes of VT4R 

immunostained glial cells within SSO and OVLT. Those changes were more significant in the SSO and 

OVLT following physical stress. Gene expression of AT1AR, TRPV1, and VT4R were significantly 

increased in the SSO in response to physical stress. Significant changes of the gene expression were 

observed in the OVLT following psychological and physical stressors. The CRH-R1 mRNA gene 

expression in the PVN showed opposite directions: increased upon psychogenic stress, while decreased 

upon physical stress. These results strongly suggest that physical stress may affect the vasotocinergic 

system in SSO to regulate water balance through the VT4R, while psychogenic stress appears to affect 

the VT4R in the OVLT resulting in activation of the classical neuroendocrine HPA axis.  
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