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INTRODUCTION

The purpose of this study was to make a quantitative evaluation
of several estimation procedures commonly applied to nonlinear models.
Though the set of methods considered here is by no means complete,
for example we have omitted Bayesian procedures, we feel that we
have included those which are most commonly used. The general
approach was to start with a model involving known parameters,
generate artificial data by adding random errors to the expected values
given by the model, and proceed to estimate the parameters by each
of the procedures. By using the inherent speed of a modern digital
computer for all computations, we were able to generate many sets
of data based on the same model and thus were able to study quan-
titatively the average behavior of the various estimation procedures.

ESTIMATION PROCEDURES

In what follows, we shall suppose that statistically independent
responses y±> ?2' '"*y

n are measured at specified times *^« t
2. •••> *

n
respectively. In order to have a specific model to work with, suppose
it is also known that ¦ t

i
exp(-Bt

i
) =

t^ where E denotes the ex-
pected value operator. How shall we estimate the unknown para-
meters A and B? In the following development, assume that all
summations are over all n observations.

Nonlinear Least Squares (Modified Gauss-Newton)

We may argue that the i'th observation 3^ may be expressed as
= -

i
+ e
iwhere »

iis a random error inherent in making the observa-
tion with E(ei ) = o and var (e^ = a 2. Formally, the least squares esti-

mates of A and B are those values, say A and B, at which
Q(A,3) = = [(y. - f.)2 (1)

attains its minimum. Finding the location of this minimum, of course,
poses the major computational problem.

Typically we will argue that these estimates must solve

°-
2

=!=^- -*<)w*-o (2)

hence, we proceed to their values by an iteration of the form
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M = P*] " Yirl P1] (3)

where the elements of the matrix H are

3c.-, . 3
2
f. 3f. 3f.

*!¦ ¦•t- 1^ -K»i_- Vndt -lair
3q

? 3 f< /3f• \ 2
(i*)

and all summations are over I= 1, 2, . . ., n. The well known
Newton-Raphson iteration takes the form of (3) with v = 1 and H as
shown. Hartley (1961) has recently suggested a modified Gauss-Newton

3 t

procedure in which all terms of the form £( y. _
f.) __J. are dropped

from (4) and v is chosen to minimize Q(A,B) in the interval o<v<l. We
have used this latter procedure in the work that follows.

Linearized
—

Unweighted Least Squares

Many references would suggest linearizing the model by a
logarithmic transformation to obtain E<ln 7;)

= a in t. - Bt
iapproximate-

ly. Assuming an additive error •£ with this model, then estimates A*,
B* are obtained by minimizing q*(a,b) = [(e*)2 = [(in y.

- a in t. + bi^)2,
i.e. solve the normal equations

A*lIn2 tj
-B»Itj In t±

= [(in t.)(lny
±
)

-A»[t
iIn t

i
+ B«£tj = -[t._ In y. (5)

Solving a set of linear equations of this type is an elementary exercise
and thus leads to the popularity of this approach.

Linearized
—

Weighted Least Squares

Is there an intermediate procedure? The Gauss-Markov theorem
suggests that for the linearized model ln y

±
= A ln t

i
- Btt

+ e£, the best
linear estimates of A and B, say a

+
and b

+
/ ar e obtained by minimizing

Q*(A,3) = Iv..(e»)2 = JVdn y.
-

A Int. + Bt^)
2, i.e. solve

k*lvt In2 t
i
-

B
+5;w
i
t
i

In ti
= lv±

(in t.)(k y.)

-A
+
Iw.tiIn t. + B

+[Wit
2 = -^tj In y. [6)

where the weights are proportional to [vardn y.)]"1. Since in y
t

is
a nonlinear transformation, we can only approximate its variance. If
E(y) = C and we subject y to the transformation z = T(y), then a com-
monly used approximation is var(z)

-
var[T(y)] = var(y)[T'(C)]2 /

cf- ao

(1952). In our case, E(y.) = f^ ,varfy^ = a2, and T(yi)
= ln y±

SO that
var(ln y.) = a2/f.2

approximate |y |f follows that
v±

-
[vartln y^T1" t*/°\= [t* exp(-Bti

)]2/o^ (T)
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The obvious problem now in trying to solve (6) is that the weights
given in (7) involve the unknowns A and B. Hence, we will need to

iterate to the solution of (6), i.e. set "j ¦ 1or »j
•

y2 and solve (6),

re-evaluate the wi using these solutions and resolve (6), etc. until
convergence.

ERROR DISTRIBUTIONS

Even though the above estimation procedures are distribution free
in the sense that they may be used whatever the functional form of the
error distribution, it is not evident what effect varying error distributions
willhave on the properties of the estimates of A and B. To examine
this, we generated random errors from the following three probability
distributions, each properly scaled so that

Ev'a) = 0 and var(e) = 1 (3)

In each case, we assumed the existence of a sequence u
i'

U
2' . • •

of independent random numbers arising from a rectangular distribution
on the (0, 1) interval. The power residue method, cf. I.B.AA. (1959),
which we used, provides an easy means for generating such a sequence
on the digital computer.

Rectangular

If u
i> u2. ... is as defined above and e j

= 2l/^ (u
j

" 1/2), then
e
±i

e
2 > ... is a sequence of independent rectangular random numbers

satisfying conditions (8) and with density function 6(e ) = (2/J)"1 on the
interval (-/3,/J) .

Normal

If ui» U2
•• • • is as defined above and we set

1IP
e = (-2 In U )

'
cos 2irU

J J J*-^

e
J+1

= (-2 la Uj)1/2 sin 2t,U
j+1

Box and AAuller (1958) show that e±y e2 > ... is a sequence of inde-
pendent, normally distributed random numbers satisfying conditions (8)
with density function g(e ) ={2n)~1/2 exp(-e

2
/2) on (-», -)•

Pearson Type III

If U}. u
2
, , js defined as above and

e
k

= -(1Q )"1/2I1
''

1-'Jio( k_i)+i
)-(lo>1/2. then e

i'e2«.. . is a sequence

of independent random numbers satisfying conditions (8) and having
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a Pearson Type IIIdensity function (gamma) defined by
,, [1O1/2 e-HO}9 exp[-(lO

1/g
e+lQ]g(e) = =^

10
'

9!

on the interval (-io1/2, »).

Notice that the rectangular distribution might correspond to a
situation where extreme outliers have been brought in closer to the
mean, i.e. the Wisorization procedure, while the Pearson Type III
corresponds to a skewed distribution of errors.

Measures of Efficiency

In order to compare the methods of estimation, we shall need a
quantitative measure of their behavior. An obvious approach is to

compare their bias and error mean squares.

Suppose t is an estimator of some parameter t. Then if E (*)
-

t + &t, dt js called the bias in T. If dt
= o, then t is said to be an

unbiased estimator of t. In any case, E(T) provides a mean value for
the estimator.

The error mean square (EMS) for ? is defined by

EMS(t) = E[(t
-

t)2 ] = var(t) + d
2

If the bias d
t

= o, then the EAAS(t) and variance of t are identical. In
any case, EMS provides a measure of dispersion of the estimator.

If we want to use mean value and EMS as a basis for comparing
the estimation procedures then we need estimates of these two expres-
sions for our various estimators of A and B. This is where the Monte
Carlo approach enters in. Suppose from known values of A and B we

generate m independent sets of data which give rise to m independent
estimates A

i» A2» ""'*m °f A and m independent estimates s;, b^, ...b_»,»

of B. It may be shown that the following are consistent estimators:
n
5" A./m for A + d
i=l 1 A

n
I i./m for B + (L

i-1 1
(9)

I IJL
-

A)2/:.: for EMS(A)
i=l x
m p
I (3 -

Br/m for EMS(S)
i=l 1

These four functions, calculated for each of the estimation procedures,
form the basis of the numerical comparisons which follow.

Numerical Results

Two forms of the model y±
= t* exp(-Bti

) + e± were generated by

varying A and B. Expected values of y for various settings of t are
given in Table 1 for each form of the model. Model 1 corresponds to
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near completion of a full growth-decay cycle. Model 2 is essentially
pure growth with only slight decay in the last measurements.

Tables 2 and 3 give estimates of the mean values and EMS's
calculated from equations (9) for each of the estimation procedures.
In these results, m = 1000 corresponding to the number of data sets

which were generated from each of the error distributions previously
described. With respect to the Monte Carlo procedure, from an inspec-
tion of the sequence of these estimates, as m-<-iooo , it appears that
the figures given in tables are correct except possibly for some instability
in the last digit shown.

Examination of tables 2 and 3 yields some interesting conclusions.
All of the procedures yield essentially unbiased estimates for A and B
regardless of the error distribution used or the model specified. We feel
that the discrepancies which appear between E(A) and A or E(B) and B
in some cases can be largely accounted for by the fact that we stopped
with m = 1000 data sets rather than, say m = 100,000 or more.
There was no indication as m-iooo that any of the sequences of
estimates was converging to a parameter other than that specified by
the model.

Striking differences do appear, however, in comparing the EMS
among methods. In every case both the linearized-weighted and Gauss-
Newton procedures yield estimates of both A and B with considerably
smaller EMS than the corresponding estimates by the linearized-un-
weighted procedure —

in some cases by more than an order of magni-
tude. Equally remarkable is the fact that the linearized-weighted pro-
cedure and the Gauss-Newton yielded estimates with essentially identical
EMS's, i.e. the procedure of using a linearized model and empirically
calculated weights apparently is quite a good competitor with the
Gauss-Newton iteration, particularly when we consider the extra effort
required by the latter procedure. Certainly our results lend evidence
to the argument that one should not simply ignore the disturbance in
variance structure which occurs when subjecting data to nonlinear
transformations.

Extensions

Several extensions to these methods are immediately evident.
Though we had some theoretical basis for using the weights defined by

(7), Box (1957) has suggested using weights of the form v = [E(y.)]r

where r as well as the unknowns of the model are involved in the
iteration. He had made no quantitative study of the behavior of the
resulting estimates at the time of this writing.

Looking again at (7), we notice that a^ = var(y. ) appears in the

denominator of the v^. In the foregoing work, we were not concerned
with a. since we constructed our error distributions such that ai

=ifor

all i. On the other hand with real data, one cannot always assume

91

Journal of the Arkansas Academy of Science, Vol. 21 [1967], Art. 18

Published by Arkansas Academy of Science, 1967



92

Arkansas Academy of Science Proceedings

that these variances are all constant and, in fact, it may be evident
that they are not. What should be done? Though Box's (op. cit.)
procedure may have merit here, we want to suggest an alternative.
Following the steps of the linearized-weighted procedure, at each stage

of the iteration, set°i
= [y

±
- tiexp(-Bt

i
)] in (7) where A and B are the

current estimates of A and B. This should have the effect of gradually
reducing the influence of outliers and/or aberrant data points and more
heavily weighting those observations which are quite consistent with
the model. Regrettably, we cannot give a quantitative evaluation of
this suggestion at present.
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Table I. Expected values of observations for various t and under two
parameter settings.

t Model 1 Model 2
A=4, B-O.5 A=5, B=O.5

2 5.886 11.77
3 18.07 54.22
4 34.65 138.6
5 51.30 256.5
6 64.52 387.1
7 72.50 507.5
8 75.02 600.2
9 72.89 656.0

10 67.38 673.8
11 59.83 658.2
12 51.40
13 42.94
14 35.03
15 28.00
16 21.98
17 17.00
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Table 2. Mean values and EMS for estimators of A=4 and B=0.5
(Model 1)

RECTANGULAR ERRORS
Method E(A) EMS(A) E(B) EMS(3)

Linearized-unweighted 3.998 7.16x10 .1*997 3.26x10

Linearized-weighted l».000 2.16x10" .1*999 1.13xlO~ 5

Modified Gauss-Newton 3.999 2.16x10" .5000 1.13xlO"5

NORMAL ERRORS
Method E(A) EMS(A) E(B) EMS(B)

Linearized-unweighted 3.998 7.30x10 .1*995 3.3l*xlO~5

Linearized-weighted U.000 2.08x10" .1*999 l.lOxlO"5

Modified Gauss-Newton 3.999 2.07x10 .!*999 l.lOxlO"5

PEARSON TYPE IIIERRORS

Method E(A) EMS(A) E(B) EMS(3)

Linearized-unweighted U.000 6.8OX1O"
1*

.5000 3.09xl0" 5

Linearized-weighted l*.000 2.05X10"
1*

.5002 1.09xl0"5

Modified Gauss-Hewton l*.000 2.07x10" .5002 l.lOxlO"5

Table 3. Mean values and EMS for estimators of A=5 and B=0.5
(Model 2)

RECTANGULAR ERRORS
.Method E(A) EMS(A) E(B) EMS(S)

Linearized-unweighted U.999 5.**7xlO~ .1*993 6.13>:1O" 5

Linearize i-weighted 5.000 l.lUxlO"5 .5000 6.66x10"^
.Modified Gauss-Newton 5.000 l.lUxlO"5 .5000 6.66xlO~T

NORMAL ERRORS
Method E(A) EMS(A) E(B) EMS(B)

Linearized-unwei^hted 1*.999 5.6?xlO" .1*998 3.25xlO~ 5

Linea.-i^ed-weiRhted 5.000 l.O7xlO"5 .5000 6.22xlO"T

Modified Gauss-Newton 5.000 1.07xl0~ 5 .5000 6.21x10"'''
PEARSON TYPE IIIERRORS

Method E(A) EMS(A) E(B) EMS(B)

Linearized-unweighted U.999 5.25x10 .U998 3.OlxlO"5

Linearized-weighted 5.000 l.O8xlO~5
.5000 6.63xlO~ T

Modified Gauss-Newton 5.000 l.O8xlO"5 .5000 6.26xl0"7
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