Journal of the Arkansas Academy of Science

Volume 23

Article 19

1969

Survey of the Helminth Parasites of Selected Game Fishes of Lake Fort Smith, Arkansas

David A. Becker University of Arkansas, Fayetteville

Walter C. Houghton Harrietta State Fish Hatchery

Follow this and additional works at: http://scholarworks.uark.edu/jaas
Part of the <u>Terrestrial and Aquatic Ecology Commons</u>, and the <u>Zoology Commons</u>

Recommended Citation

Becker, David A. and Houghton, Walter C. (1969) "Survey of the Helminth Parasites of Selected Game Fishes of Lake Fort Smith, Arkansas," *Journal of the Arkansas Academy of Science*: Vol. 23, Article 19. Available at: http://scholarworks.uark.edu/jaas/vol23/iss1/19

This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Arkansas Academy of Science Proceedings, Vol. 23, 1969

A SURVEY OF THE HELMINTH PARASITES OF SELECTED GAME FISHES OF LAKE FORT SMITH, ARKANSAS'

David A. Becker² and Walter C. Houghton³

INTRODUCTION

The only published study of the parasites of game fishes in Arkansas is that of Becker, Heard, and Holmes (1966) who limited their investigations to a pre-impoundment survey of the helminth and copepod parasites of the black basses of Beaver Reservoir in northwest Arkansas and samples of basses used in the stocking of Beaver Reservoir from hatcheries at Centerton, Hamilton, and Lonoke, Arkansas.

The present study thus attempts to extend this knowledge to other fishes and becomes only the second investigation of this nature to be conducted in Arkansas.

The primary purpose of the present study was to determine the species, number, and extent of parasitism of selected game fishes in Lake Fort Smith, Arkansas.

Lake Fort Smith was impounded in 1936 as a water supply for the city of Fort Smith. The lake is located on the southern slope of the Boston Mountains in Crawford County, about 28 mi northeast of the city of Fort Smith. The lake has a maximum depth of 63 ft and a surface area of 525 acres. The southern half of the lake is closest to the dam, and ranges in depth from 30 to 63 ft: the northern half is less than 30 ft deep with a greater portion less than 15 ft in depth. The watershed is covered primarily with an oak-hickory forest. The lake bottom is composed of silty materials washed into it from its watershed, small rocks, and shale fragments. There is little emergent vegetation along the shores except for weed beds along the north shore (Nelson, 1952; and Rorie, 1961).

MATERIALS AND METHODS

The fishes were collected from Lake Fort Smith from February to November, 1961, with the largest number taken during April, May, June, October, and November. The fishes were obtained by the following methods: 100 ft experimental nets with a mesh

¹Supported by the Arkansas Game and Fish Commission under the terms of Dingell-Johnson Project F-8-R.

^aAssistant Professor of Zoology, University of Arkansas 72701.

³Biologist-in-Charge, State Fish Hatchery, Harrietta, Michigan 49638.

Published by Arkansas Academy of Science, 1969

Helminth Parasites in Lake Fort Smith

size ranging from 1 to 3 in; application of Rotenone to a 7 acre section of the lake; a trap net; and fishing with rod and reel. After collection, the fishes were placed in a live box or packed in ice and brought directly to the laboratory for dissection.

The helminths were fixed, stained, and mounted according to Cable (1950 and 1958). Trematodes, cestodes, and acanthocephalans were fixed in alcohol-formalin-acetic acid at a temperature of 50 C. Trematodes and cestodes were stained with Delafield's hematoxylin; acanthocephalans with Ehrlich's acid hematoxylin. These helminths were cleared in Terpineoi and mounted in Permount.

After fixation in glycerine, small nematodes were mounted on slides in hardened varnish craters filled with liquified glycerine jelly and sealed with a cover glass and varnish. The larger nematodes were fixed in liquid glycerine, cleared in lactophenol, and identified in their glycerine storage solution.

RESULTS

Table 1 indicates that a total of 107 fishes was examined representing 10 species. Of these, 103 fishes or 96.3% were infected with at least two species of helminths. A total of at least 16 species of helminths was recovered. *Micropterus salmoides* was infected with more speices of helminths (11) than any of the other hosts examined. The average number of parasites per fish was 22.9, with *M. punctulatus* having the highest average number of parasites per fish (76).

Table 2 gives an indication of host specificity with each species of parasite. Camallanus oxycephalus appeared to be the least host specific, while Posthodiplostomum minimum and Leptorhynchoides thecatus had the highest host specificity. The largest number of one species of parasite per fish was Camallanus oxycephalus: 75 were recovered from one Pomoxis annularis or P. nigromaculatus. Of at least 16 species of parasites recovered, six species were found to infect 100% of their respective hosts examined.

DISCUSSION

None of the parasites recovered represented a human health hazard.

As fishes were not returned to the laboratory alive, it was impossible to make an accurate recovery or to properly prepare monogenetic trematodes for indentification.

The study of fish parasites is of value to the fisheries scientist, parasitologist, and sportsman because of the detrimental effects certain parasites may have on the fish population. These effects may be summarized as follows: stunting, emaciation, sterility, and http://scholarworks.uark.edu/jaas/vol23/iss1/19

TABLE 1

Host	mineu	Interna	Infected P	ci i ion	Parasites Found
Channel catfish Ictalurus punctatus (Rafinesque)	3	3	100	17.3	Crepidostomum sp., Alloglossidium corti, Coral- lobothrium fimbriatum
Yellow bullhead Ictalurus natalis (Le Sueur)	4	4	100	16.5	Crepidostomum sp., Alloglossidium corti, Coral- lobothrium giganteum, Neoechinorhynchus cylindratum
Black bullhead Ictalurus melas (Rafinesque)	1	1	100	3.0	Proteocephalus ambloplitis, Corallobothrium fimbriatum
Spotted bass Micropterus punctulatus (Rafinesque)	2	2	100	76.0	Proteocephalus ambloplitis, Camallanus oxycephalus, Neoechinorhynchus cylindratum
Largemouth bass Micropterus salmoides (Lacepede)	22	22	100	29.5	Monogenea, Clinostomum marginatum, Posthodiplo- stomum minimum, Pisciamphistoma stunkardi, Proteo- cephalus ambloplitis, Contracaecum spiculigerum, Camallanus oxycephalus, Spinitectus carolini, S. sp., Ncoechinorkynchus cylindratum, Lepto- rhynchoides thecatus
Warmouth Chaenobryttus gulosus (Cuvier)	21	19	90.5	5.4	Monogenea, Crepidostomum cornutum, Clinostomum marginatum, Pisciamphistoma stunkardi, Proteo- cephalus ambloplitis, Camallanus oxycephalus, Spinitectus carolini

TABLE 1 (Continued)							
Host				Ave. No. Per Fish			
Green sunfish Lepomis cyanellus Rafinesque	1	0	0	0			
Bluegill Lepomis macrochirus Rafinesque	21	20	95.2	23.0	Crepidostomum cornutum, Pisciamphistoma stunkardi, Proteocephalus ambloplitis, Camallanus oxycephalus Spinitectus carolini, S. sp., Neoechinorhynchus cylindratum		
Black crappie Pomoxis nigromaculati (Le Sueur)	10 us	10	100	45.0	Pisciamphistoma stunkardi, Contracaecum spicu- ligerum, Camallanus oxycephalus, Spinitectus carolini, S. sp		
White crappie Pomoxis annularis Rafinesque	22	22	100	12.9	Monogenea, Pisciamphistoma stunkardi, Camallanus oxychephalus, Spinitectus carolini, S. sp.		
Totals: 10 species of fish	107	103			At least 16 species of parasites		
Average infection rate			96.3	22.9			

113

http://scholarworks.uark.edu/jaas/vol23/iss1/19

Parasite Classification	Name of Parasite		Parasites Per Fish		
Trematoda					
Order Monogenea	Monogenea Carus, 1863	Chaenobryttus gulosus (21)	0-7	19.04	Gills
		Micropterus salmoides (22)	0-3	0.09	Gills
		Pomoxis annularis (22)	0-1	0.05	Gills
Order Digenea					
Family Allocreadiiae	(Osborn, 1903)	Chaenobryttus gulosus (21)	0-1	0.05	Intestine
		Lepomis macrochirus (21)	0-53	57.14	Intestine
		Ictalurus natalis (4)	0-3	25.00	Intestine
	1900	Ictalurus punctatus (3)	0-3	33.33	Intestine
Family Clinostomidae		Chaenobryttus gulosus (21)	0-1	0.05	Gills
		Micropterus salmoides (22)	0-7	0.09	Gills
Family Paramphi-					
stomidae	(Holl, 1929)	Chaenobryttus gulosus (21)	0-9	66.67	Intestine
		Lepomis macrochirus (21)	0-1	0.05	Intestine
		Micropterus salmoides (22)	0-2	13.63	Intestine
		Pomoxis annularis (22)	0-8	40.90	Intestine
		Pomoxis nigromaculatus (10)	0-1	20.00	Intestine
Family Plagiorchiidae	Alloglossidium corti	Ictalurus natalis (4)	0-22	75.00	Intestine
	(Lamont, 1921)	Ictalurus punctatus (3)	0-8	66.67	Intestine
Family Strigeidae	Posthodiplostomum minimum (MacCallum, 1921)	Micropterus salmoides (22)	0-14	0.09	Liver
Cestoda					
Order Proteocephalidea					
Family Proteocephal-					
idae	Corallobothrium fimbriatum	Ictalurus melas (1)	2	100.00	Intestine
	Essex, 1927	Ictalurus punctatus (3)	5-18	100.00	Intestine
	Corallobothrium giganteum Essex, 1927	Ictalurus natalis (4)	0-9	25.00	Intestine
	Proteocephalus ambloplitis	Chaenobryttus gulosus (21)	0-5	28.57	Mesentery of intestine
	(Leidy, 1887)	Ictalurus melas (1)	1	100.00	and stomach, intestine
		Lepomis macrochirus (21)	0-26	80.95	liver, ovary of all
		Micropterus punctulatus (2)	50-68	100.00	hosts
		Micropterus salmoides (22)	0-54	59.09	

TABLE 2

Published by Arkansas Academy of Science, 1969

114

114

Parasite Classification	Name of Parasite	Fish Host and Number Examined	Parasites Per Fish		Site in F	ish		
Nematoda Order Spiruridea								
Family Camallanidae	Camallanus oxycephalus	Chaenobryttus gulosus (21)	0-7	19.04	Intestine			
ranniy Camananidae	Ward & Magath, 1917	Lepomis macrochirus (21)	0-8	23.80	Intestine			
	mara a magaan, iori	Micropterus punctulatus (2)	0-7		Intestine			
		Micropterus salmoides (22)	0-46	36.36	Intestine			
		Pomoxis annularis (22)	0-75	77.27	Intestine			
		Pomozis nigromaculatus (10)		100.00	Intestine			
Family Rhabdochonidae	Spinitectus carolini	Chaenobryttus gulosus (21)	0-16	14.28	Stomach &	intestin		
	Holl, 1928	Lepomis macrochirus (21)	0-25	66.67	Stomach &			
		Micropterus salmoides (22)	0-6	18.18	Stomach &			
		Pomoxis annularis (22)	0-12	18.18	Stomach &			
		Pomoxis nigromaculatus (10)		10.00	Stomach &			
	Spinitectus sp. Fourment,	Lepomis macrochirus (21)	0-20	0.05	Stomach &			
	1883	Micropterus salmoides (22)	0-3	0.09	Stomach &			
		Pomoxis annularis (22)	0-15	0.05	Stomach &			
		Pomoxis nigromaculatus (10)	0-28	20.00	Stomach &	intestin		
Order Ascarididea								
Family Heterocheilidae	Contracaecum spiculigerum	Micropterus salmoides (22)	0-1	.05 M	05 Mesenteries of stor			
	(Rudolphi, 1809)	Pomoxis nigromaculatus (10)		10.00	and intestin			
Acanthocephala			-					
Order Echinorhynchidea								
Family Echinorhynch-								
idae	Leptorhynchoides thecatus (Linton, 1891)	Micropterus salmoides (22)	0-3	0.09	Intestine			
Order Neoechino-								
rhynchidea								
Family Neoechino-								
rhynchidae	Neoechinorhynchus cylin-	Ictalurus natalis (4)	0-1	25.00	Intestine			
	dratum (Van Cleave,	Lepomis macrochirus (21)	0-6	0.05	Intestine			
	1913)	Micropterus punctulatus (2)	5-22	100.00	Intestine			
		Micropterus salmoides (22)	0-62	81.81	Intestine			

TABLE 2 (Continued)

115

http://scholarworks.uark.edu/jaas/vol23/iss1/19

115

mortality, not to mention the rejection of fishes by the sportsman for being "grubby" or "wormy" (Sinderman, 1953). The parasite causes these effects by three methods: (1) mechanical injury to the host caused by the parasite, (2) physiological injury to the host through interference with the normal functioning of organs, and (3) physiological injury due to the toxins produced by the parasite (Van Cleave, 1919). Thus, "Parasites definitely affect all phases of fishery operations, production, preparation, marketing, and research. Many of their effects remain to be assessed. Undoubtedly, fishery science must pay increased attention to parasites, not only because they are commercially important but also because they have potential value as research tools" (Hargis, 1958).

Control or eradication of parasites in a large body of water is economically impossible. Therefore, the best temporary solution seems to be the applied chemical treatments at fish hatcheries prior to stocking of fishes. Of course this does not insure that these stocked fishes will not become parasitized at a later date. In small bodies of water practical solutions may be found in draining, or a complete kill of infected fishes with Rotenone. Restocking may then be accomplished with hatchery fishes, samples of which have been checked for parasites.

It is hoped that the information contained in this paper will be of value in future determinations of the geographic distribution of the parasites of fishes and their host-parasite relationships.

LITERATURE CITED

- Becker, D. A., R. G. Heard, and P. D. Holmes. 1966. A pre-impoundment survey of the helminth and copepod parasites of *Micropterus* spp. of Beaver Reservoir in northwest Arkansas. Trans. Amer. Fish. Soc., 95:23-34.
- Cable, R. M. 1950. An illustrated laboratory manual of parasitology. Burgess Publishing Co., Minneapolis. 152 p.

_____. 1958. An illustrated laboratory manual of parasitology. Burgess Publishing Co., Minneapolis. 165 p.

- Hargis, W. J., Jr. 1958. Parasites and fisheries problems. p. 70-75. In Proceedings of the Gulf and Caribbean Fisheries Institute. Eleventh annual session.
- Nelson, C. W. 1952. Limnological studies in Arkansas. V. Chemical, physcial and biological features of Lake Fort Smith during its fifteenth and sixteenth years of impoundment. Unpublished Master's Thesis, University of Arkansas, 55 p.
- Rorie, D. K. 1961. Some aspects of the physical, chemical, and biological features of Lake Shepherd Springs and Lake Fort Smith. Unpublished Master's Thesis, University of Arkansas. 92 p.

Published by Arkansas Academy of Science, 1969

Helminth Parasites in Lake Fort Smith

- Sinderman, C. J. 1953. Parasites of fishes of north central Massachusetts. Reprinted from Fisheries Report, 1950, Massachusetts Div. Fish., Game, Boston. 28 p.
- Van Cleave, H. J. 1919. Acanthocephala from the Illinois River, with descriptions of species and a synopsis of the family Neoechinorhynchidae. Illinois Natur. Hist. Surv. Bull., 13:225-257.