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Abstract 

 There are several factors that influence computerized neurocognitive testing performance 

however, one factor that has not been examined is the potential deleterious effects of cognitive 

fatigue from an academic school day combined with time of computerized neurocognitive testing 

(CNT) administration. The primary purpose of this study was to compare before-and after-school 

CNT performance and total symptoms in non-concussed high school student athletes. The 

secondary purpose of this study was to compare before-school and after-school CNT 

performance and total symptoms and chronotypes in non-concussed student athletes. A crossover 

design was used to compare before-and after-school CNT performance and total symptoms of 39 

non-concussed high school student athletes with an average age of 15.74 (SD = 1.04). Based on 

previous literature a hypothesis was made that high school student athletes would report higher 

self-reported fatigue after-school than before-school. Differences in CNT performance and total 

symptoms were measured by comparing composite scores of verbal memory, visual memory, 

processing speed, reaction time and total symptoms. In addition, to main outcome measures, 

several measures were used to control for potential confounding factors that could influence 

CNT performance. Before-school self-reported fatigue (M = 3.83, SD = 1.64) was significantly 

higher than after-school (M = 3.06, SD = 1.91) self-reported fatigue. There were no significant 

differences in verbal memory t(38) = 0.80, p = .43, visual memory t(38) = -0.78, p = .44, 

processing speed t(38) = .07, p = .94, reaction time t(38) = 1.45, p = .16, or total symptoms t(38) 

= -0.64, p = .52, between before-school and after-school. Lastly, there were no significant 

differences in verbal memory F (1, 37) = 1.17, p = .21, η2 = .04, visual memory F (1, 37) = .05, p 

= .28, η2 = .00, processing speed F (1, 37) = 0.75, p = .39, η2 = .02, reaction time F (1, 37) = 

1.65, p = .21, η2 = .04, or total symptoms F (1, 37) = 0.57, p = .46, η2 = .02 between morning and 



 

evening chronotypes. The results from this study suggest that sports medicine professionals can 

administer CNT before-or after-school depending on their schedule and the athlete’s academic 

and athletic schedule.  
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Introduction 

Approximately 1.6 to 3.8 million sport and recreation-related concussions (SRC) occur 

annually in the United States (Langlois, Rutland-Brown, & Wald, 2006). Sport-related 

concussion is a heterogeneous injury that requires a multifaceted assessment and management 

approach (McCrory et al., 2013). Sport-related concussion management has shifted from relying 

solely on athletes’ subjective, self-reported symptoms (i.e., “Tell me how you are feeling?”) to 

more objective neurocognitive assessments that provide quantifiable data on the current 

cognitive status of the injured athlete.  

Computerized neurocognitive testing (CNT) includes a battery of cognitive tasks, that are 

derived from traditional paper-and-pencil neuropsychological assessments that measure a wide 

range of executive functioning including verbal memory, visual design memory, concentration, 

visual processing speed, and reaction time which are commonly affected following SRC 

(Covassin, Elbin, Stiller-Ostrowski, & Kontos, 2009; Makdissi et al., 2001; Schatz, Pardini, 

Lovell, Collins, & Podell, 2006). Several factors negatively influence CNT performance in non-

concussed individuals that include history of concussion (Covassin, Elbin, Kontos, & Larson, 

2010), sex (Covassin, Elbin, Harris, Parker, & Kontos, 2012), attention deficit hyperactivity 

disorder (ADHD), learning disability (LD) (Elbin et al., 2013), sleep (Sufrinko, Johnson, & 

Henry, 2016), motivation (Bailey, Echemendia, & Arnett, 2006), and physical fatigue (Covassin, 

Weiss, Powell, & Womack, 2007). Other factors such as cognitive fatigue and time of day may 

also influence CNT performance. The potential deleterious effects of cognitive fatigue from an 

academic school day combined with the time of CNT administration (i.e., before or after school) 

have yet to be examined.  
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Cognitive fatigue is a common phenomenon, which is the result of sustained cognitive 

engagement that taxes mental resources (Mullette-Gillman, Leong, & Kurnianingsih, 2015). 

Previous research has demonstrated that cognitive fatigue leads to burnout, lower motivation, 

increased distractibility and poor information processing (Boksem, Meijman, & Lorist, 2005, 

2006; Demerouti, Bakker, Nachreiner, & Schaufeli, 2001; G. Hockey, John Maule, Clough, & 

Bdzola, 2000; Holding, 1983; Lorist, Boksem, & Ridderinkhof, 2005; Sanders & Sanders, 2013; 

van der Linden, Frese, & Meijman, 2003). In a previous study, healthy college students were 

instructed to perform a task continuously for three hours without rest (Boksem et al., 2005). The 

students reported an increase in difficulty staying alert and sustaining attention as the three hours 

elapsed (Boksem et al., 2005). In a more recent study, researchers explored whether cognitive 

fatigue influences students’ performance on a national standardized test (Sievertsen, Gino, & 

Piovesan, 2016). Students were administered the standardized test at 8:00 AM and were given 

breaks throughout the day (Sievertsen et al., 2016). The results of the study found that for every 

hour later in the day, the students’ test scores decreased by 0.9% of a standard deviation and after 

every break performance increased by 1.7% of a standard deviation (Sievertsen et al., 2016). The 

authors hypothesized that over the course of a school day, students’ cognitive resources become 

taxed and results in fatigue that decreases performance (Sievertsen et al., 2016). These findings 

suggest that cognitive fatigue may influence cognitive performance after an academic school 

day. In addition, to cognitive fatigue following a school day, time of day may also influence 

CNT performance.  

Adolescents’ cognitive performance may also suffer in the morning hours. At the time of 

pubertal onset, adolescents tend to have later sleep onset and later wake times (Frey, Balu, 

Greusing, Rothen, & Cajochen, 2009). This phenomenon can be attributed to two main 
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biological changes in sleep regulation (Carskadon, 2011; Carskadon, Acebo, & Jenni, 2004). 

First, adolescents’ transition from morning-type to evening-type due to changes in circadian 

phase preference (Frey et al., 2009). The second biological factor is an altered “sleep drive”, in 

which adolescents’ pressure to fall asleep accumulates more slowly (Jenni, Achermann, & 

Carskadon, 2005). In other words, adolescents take longer to fall asleep, leading to later sleep 

onset. In addition to intrinsic factors such as, puberty, circadian, and homeostatic changes 

(Dewald, Meijer, Oort, Kerkhof, & Bogels, 2010), adolescents also experience extrinsic factors 

that contribute to insufficient sleep, like early school times, social pressures, and academic 

workload (Dewald et al., 2010). These factors have been shown to influence mood, affect 

regulation, memory, behavior control, executive function and quality of life (Giedd, 2009; Holm 

et al., 2009; Moore et al., 2009; O'Brien & Mindell, 2005; Pasch, Laska, Lytle, & Moe, 2010; 

Soffer-Dudek & Shahar, 2011). Although there are many factors that may negatively influence 

adolescents’ cognitive performance throughout the day, such as cognitive fatigue and time of 

day, circadian arousal patterns may positively influence cognitive performance.  

 According to circadian arousal pattern, individuals can be described depending on their 

circadian typology or chronotype (Jovanovski & Bassili, 2007; Randler & Frech, 2006; 

Roenneberg, Wirz-Justice, & Merrow, 2003). Individuals can be categorized into three different 

chronotypes, depending on peak arousal: morning, evening, and intermediate types (Fabbri, 

Mencarelli, Adan, & Natale, 2013; Jovanovski & Bassili, 2007; Rahafar, Maghsudloo, 

Farhangnia, Vollmer, & Randler, 2016; Randler & Frech, 2006; Roenneberg et al., 2003). 

Morning-types are individuals who prefer morning activities, get up easily, are more alert in the 

morning, and go to bed early and wake up early (Preckel et al., 2013; Rahafar et al., 2016). In 

contrast, evening-types are individuals that prefer afternoon-evening activities, are more alert in 
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the evening, and are able to sleep late in the morning (Preckel et al., 2013). In addition, evening-

types are associated with behaviors involving impaired self-regulation, including emotional and 

behavioral problems (de Souza & Hidalgo, 2014; Diaz-Morales, Escribano, & Jankowski, 2015; 

Schlarb, Sopp, Ambiel, & Grunwald, 2014; Wang & Chartrand, 2015), substance abuse (Hasler, 

Sitnick, Shaw, & Forbes, 2013), obesity (Miller, Lumeng, & LeBourgeois, 2015), health risk 

behaviors (Giannotti, Cortesi, Sebastiani, & Ottaviano, 2002; Malone et al., 2016; Touitou, 

2013), and lower school performance (Rahafar et al., 2016; Short, Gradisar, Lack, & Wright, 

2013; Tonetti, Fabbri, Filardi, Martoni, & Natale, 2015; Tonetti, Natale, & Randler, 2015). 

Recent research suggests that an individual’s chronotype may influence various cognitive 

functions such as, attention (Matchock & Mordkoff, 2009), thinking style (Fabbri, Antonietti, 

Giorgetti, Tonetti, & Natale, 2007), visual search (Natale, Alzani, & Cicogna, 2003), cognitive 

failure (Mecacci, Righi, & Rocchetti, 2004), intelligence (Goldstein, Hahn, Hasher, Wiprzycka, 

& Zelazo, 2007; Roberts & Kyllonen, 1999) and academic achievement (Beşoluk, 2011; Digdon 

& Howell, 2008; Hess, Sherman, & Goodman, 2000; Randler & Frech, 2006, 2009). There is 

strong evidence to suggest that superior cognitive functioning occurs when testing times are 

synchronized with individuals’ peak circadian arousal periods (i.e., chronotype) (Anderson, 

Petros, Beckwith, Mitchell, & Fritz, 1991; Petros, Beckwith, & Anderson, 1990). This 

phenomenon is referred to as the synchrony effect (Anderson et al., 1991; Petros et al., 1990).  

Several studies have investigated the synchrony effect in adolescent samples. In a recent 

study, researchers investigated the influence of a synchrony effect on adolescents’ academic 

performance when administered subtests of the Wechsler Intelligence Scale for Children (WISC-

III) (Goldstein et al., 2007; Wechsler, 1991). Participants were assigned to four conditions by 

crossing chronotype (morning or evening-type) and testing time (morning or afternoon) 
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(Goldstein et al., 2007). The results of this study revealed a significant synchrony effect for fluid 

intelligence but no synchrony effect for vocabulary (Goldstein et al., 2007). In addition, 

researchers examined the effects of testing mode (individual vs. group) and chronotype on 

academic performance in a sample of adolescents (Clarisse, Le Floc'h, Kindelberger, & 

Feunteun, 2010). The results of the study reported that morning-type students performed superior 

in the morning and continued to make progress throughout the day, while evening-type students 

exhibited poor performance in the morning and improved as the day progressed, eventually 

matching the morning-type’s scores (Clarisse et al., 2010). Although there are several studies 

that demonstrate the synchrony effect in adolescents, little is known about circadian 

misalignment and cognition.  

Often times concussed high school athletes may still be required to complete an academic 

school day following a cerebral concussion. Recently, athletic trainers were asked to indicate the 

frequency of recommending academic accommodations to high school athletes (Kasamatsu, 

Cleary, Bennett, Howard, & McLeod, 2016). After SRC, 45% percent of athletic trainers 

recommended complete cognitive rest to high school athletes (Kasamatsu et al., 2016). In 

addition, athletic trainers recommended a variety of academic accommodations to athletes with 

SRC (Kasamatsu et al., 2016). Eighty-three percent of athletic trainers recommended postponed 

schoolwork due dates, 80% recommended rest breaks, and 78% recommended partial school 

attendance (Kasamatsu et al., 2016). When athletes return to school following SRC, the sports 

medicine professional is required to work around the athlete’s academic schedule when 

administering concussion assessments that include testing before and/or after school depending 

on the sports medicine professional, academic, and athletic schedules. Administering CNT after 

an academic school day may not be the optimal time to evaluate neurocognitive function due to 
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the potential confounding effects of decreased motivation, cognitive fatigue (Boksem et al., 

2005; Sievertsen et al., 2016), chronobiology (Horne, Brass, & Pettitt, 1980; Kleitman, 1963; 

Natale et al., 2003), and fluctuations in circadian rhythm (Benca et al., 2009).  

Although, there is growing literature on factors that influence CNT performance, little is 

known about the potential deleterious effects of cognitive fatigue from an academic school day 

combined with time of CNT administration (i.e., before, after school). This study will inform 

baseline and post-concussion testing best practices for sports-medicine professionals who work 

in the high school setting.   

Purpose of the Study 

The primary purpose of this study is to compare before-school CNT performance and 

total symptoms to after-school CNT performance and total symptoms in a sample of non-

concussed high school athletes. The secondary purpose of this study is to compare before-school 

and after-school CNT performance and total symptoms and morning and evening chronotypes in 

non-concussed high school student athletes.  

Hypotheses 

Hypothesis 1. After-school neurocognitive performance will be lower and total 

symptoms will be higher than before-school neurocognitive performance and total symptoms in 

high school student athletes.  

 Hypothesis 2. Morning chronotype athletes will demonstrate higher neurocognitive 

performance and lower total symptoms before-school compared to after-school.  

Hypothesis 3. Evening chronotype athletes will demonstrate higher neurocognitive 

performance and lower total symptoms after-school compared to before-school.  
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Review of Literature 

Sport-related concussion (SRC) continues to be a hot topic in sports medicine. 

Concussion is defined as a complex pathophysiological process affecting the brain, induced by 

biomechanical forces (McCrory et al., 2013). Concussion presents with a wide variety of signs, 

symptoms, and impairments that are unique to each concussed athlete. Recent incidence rates 

estimate that 1.6 to 3.8 million sport-related concussions occur annually in the United States 

(Langlois et al., 2006). However, this estimate is considered low because many concussions go 

unrecognized and unreported (Langlois et al., 2006).  

Prevalence of Sport-Related Concussion 

In a recent epidemiological review, researchers investigated the incidence and injury rates 

in a nationally representative sample of high school athletes (Gessel, Fields, Collins, Dick, & 

Comstock, 2007). Of the nine high school sports studied during 2005-2006, 4,431 injuries were 

reported and 396 (8.9%) were concussions (Gessel et al., 2007). The weighted national estimate 

for the number of concussions sustained in all sports was 135,901 (Gessel et al., 2007). Of the 

396 concussions recorded, 137 (34.6%) occurred in practice and 259 (65.4%) occurred in 

competition (Gessel et al., 2007). A total of 1,730,764 athletic exposures (AE) were recorded, 

resulting in a concussion injury rate of 0.23 concussions per 1000 AEs (Gessel et al., 2007). 

Based on the national estimate, the majority of concussions occurred in football (40.5%) 

followed by girls’ soccer (21.5%), boys’ soccer (15.4%) and girls’ basketball (9.5%) (Gessel et 

al., 2007). 

Previous epidemiological studies reported lower injury rates than this study, however this 

could be due to an important factor (Powell & Barber-Foss, 1999; Schulz et al., 2004). The 

higher injury rate may be due to increased awareness of the injury and symptoms as well as 
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better diagnosis and treatment of the injury (Guskiewicz et al., 2006). However, as participation 

in high school sports continue to increase, the number of concussion will likely increase as well.  

Biomechanics of Sport-Related Concussion 

A sport-related concussion can occur from the result of a linear impact or rotational 

movement (Bailes & Cantu, 2001). A linear impact occurs when the athlete’s body and head 

comes in contact with a solid object (Bailes & Cantu, 2001). Another scenario of linear impact 

occurs when an athlete’s head is stationary and is struck by a moving object (Bailes & Cantu, 

2001). Rotational movement occurs when the head is hit at an angle and responds by rotating 

(Stemper & Pintar, 2014). In recent years, technology has been utilized as a tool to inform sports 

medicine professionals of the likelihood of a concussion through a monitoring system. The Head 

Impact Telemetry System (HITS) is a wireless monitoring system that provides real time, post-

impact data to a clinician on the sideline (Broglio et al., 2009; Crisco, Chu, & Greenwald, 2004). 

An early study found that linear acceleration is mostly responsible for concussion with a mean 

threshold for injury to be 98g and an impact generating a minimum 70 – 75g necessary to cause 

injury in elite athletes (Pellman, Viano, Tucker, Casson, & Waeckerle, 2003). However, data 

collected from the high school level indicated that 271 impacts exceeded the 70g threshold and 

78 impacts exceeded the 98g magnitude with only five reported concussive injuries (Broglio et 

al., 2009). Another study found no relationship between magnitude of the impact and injury 

severity measured by decreases in postural control, neurocognitive functioning, and increases in 

symptom reporting (Guskiewicz et al., 2007). High school concussion incidence rates are nearly 

identical to those of collegiate athletes and professional athletes, researchers have concluded that 

a high school athlete’s immature musculoskeletal system and diminished ability to control and 

slow down their head after impact is to blame, even though high school football games are 
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slower and less physical, resulting in lower impact forces (Broglio et al., 2010; Broglio et al., 

2009). Injuries develop within the tissues of the brain as the strains are transferred from the outer 

to the inner regions by way of neurometabolic cascade (Stemper & Pintar, 2014).  

Pathophysiology of Sport-Related Concussion 

Immediately after a direct and/or indirect impact resulting in a cerebral concussion occurs 

to the brain a series of cellular events referred to as the neurometabolic cascade is set in motion. 

The neurometabolic cascade describes a complex series of functional and microstructural injury 

changes that occur after a biomechanical force to the brain (Giza & Hovda, 2014). Specifically, 

the neurometabolic cascade of events involves bioenergetic challenges, cytoskeletal and axonal 

alterations, impairments in neurotransmission, vulnerability to delayed cell death, and chronic 

dysfunction (Barkhoudarian, Hovda, & Giza, 2011; Giza & Hovda, 2001). Immediately after a 

biomechanical force to the brain, there is an influx of calcium ions and an efflux of potassium 

ions (Giza & Hovda, 2001). Glutamate binds to the N-methyl-D-aspartate (NMDA) receptor, 

which leads to further depolarization and an efflux of potassium and an influx of calcium (Giza 

& Hovda, 2001). In order to restore the neuronal membrane potential the sodium-potassium 

pump, which requires adenosine triphosphate (ATP), must go into overdrive, requiring more 

ATP (Giza & Hovda, 2001). This escalation of energy demand increases glucose metabolism 

into a hypermetabolic state (Giza & Hovda, 2001). In an environment of decreased cerebral 

blood flow, there becomes a cellular energy crisis results due to a mismatch between energy 

demand and energy supply (Giza & Hovda, 2001). Post-concussion physiological changes have 

been shown to increase the brains vulnerability to further injury, making it imperative that the 

athlete is properly managed to avoid catastrophic injury (Shrey, Griesbach, & Giza, 2011). If a 
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second injury occurs during this vulnerability stage, there could be catastrophic consequences, 

such as second impact syndrome (Cantu, 1998; Giza & Hovda, 2001).  

Signs, Symptoms, and Impairments of Sport-Related Concussion 

Sport-related concussion is characterized by a widely variable symptom presentation, 

meaning that the symptoms vary from athlete to athlete (McCrory et al., 2009). Not all athletes 

present with the same symptoms and impairments, which make the assessment and management 

of sport-related concussion difficult. Symptoms that present on-field include: confusion, 

headache, loss of consciousness, posttraumatic amnesia, retrograde amnesia, imbalance, 

dizziness, visual problems, personality changes, fatigue, sensitivity to light and noise, numbness, 

and vomiting (Collins et al., 2003). Recently, factors, such as, removal from play status (Elbin et 

al., 2016), on-field dizziness, loss of consciousness, sub-acute post-traumatic migraine and 

fogginess, have been identified as predictors for protracted recovery (Guskiewicz et al., 2004; 

Kontos et al., 2013; B. Lau, Lovell, Collins, & Pardini, 2009; B. C. Lau, Kontos, Collins, Mucha, 

& Lovell, 2011). Specifically, post-concussion symptoms can be categorized into four clusters: 

cognitive-fatigue-migraine (e.g., headache, difficulty concentrating, fatigue, dizziness), affective 

(e.g., sadness, nervousness), somatic (e.g., nausea, numbness), and sleep (e.g., trouble sleeping, 

sleeping less than usual) (Kontos et al., 2012).  

The assessment and management approach for SRC has shifted from relying on athletes’ 

subjective, self-reported symptoms (i.e., “Tell me how you are feeling?”) to objective 

neurocognitive assessments that provide objective quantifiable data on the cognitive status of the 

injured athlete. The post-concussion symptom assessment relies heavily on the athlete’s self-

reported symptoms and remains a centerpiece for concussion management. However, athletes 

tend to withhold and/or minimize their concussion symptoms in hopes to avoid being removed 
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from play or even expedite their return to play (RTP) (McCrea, Hammeke, Olsen, Leo, & 

Guskiewicz, 2004; Van Kampen, Lovell, Pardini, Collins, & Fu, 2006). As a result, recent 

consensus statements have advocated for the use of more objective measures when assessing the 

cognitive status of a concussed athlete that will help corroborate subjective symptom reports 

(McCrory et al., 2013). Computerized neurocognitive testing (CNT) is one tool that has been 

widely implemented for concussion management and provides an objective complement to 

athlete symptom reports (Van Kampen et al., 2006).  

Computerized Neurocognitive Assessment 

Computerized neurocognitive testing (CNT) includes a battery of cognitive tasks, based 

on traditional paper-and-pencil neuropsychological tests that measure verbal memory, visual 

design memory, attention, visual processing speed, and reaction time which are commonly 

affected following SRC (Covassin et al., 2009; Makdissi et al., 2001; Schatz et al., 2006). CNT 

has many advantages compared to traditional paper-and-pencil neuropsychological tests that 

include: the ability to baseline test groups of athletes concurrently, ease of administration and 

scoring, alternate test forms to reduce practice effects, and cost effectiveness (Guskiewicz et al., 

2004; Woodard & Rahman, 2012). 

Current consensus statements recommend, but do not require, neuropsychological 

baseline testing of athletes pre-season (McCrory et al., 2013). However, CNT is best 

administered in a prospective manner that involves a pre-season or baseline assessment to allow 

for comparison to post-concussion performance. Baseline neurocognitive testing provides an 

accurate representation of the athlete’s pre-injury neurocognitive performance and may assist 

sports medicine professionals on return to play decisions (Covassin et al., 2009; Guskiewicz et 

al., 2004). In the absence of a baseline assessment, normative data for age and gender are 
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available for post-concussion comparison of scores (Covassin et al., 2009). While CNT is a 

valuable tool for assessing and managing concussion, the sports medicine professional must be 

aware of confounding factors that may influence performance on this assessment. 

Factors that Influence Computerized Neurocognitive Testing  

Researchers have identified several factors that negatively influence CNT performance. 

History of concussion has been identified as a factor that influences CNT performance. Athletes 

with no history of concussion performed significantly better than athletes with a history of three 

or more concussions on the verbal memory and visual memory composite scores (Covassin et al., 

2010). Sex (Covassin et al., 2012) has also been identified as a factor that negatively influences 

CNT performance. A previous study compared female and male neurocognitive scores on verbal 

memory, visual memory, visual processing speed, and reaction time. Female athletes preformed 

worse on visual memory than male athletes (Covassin et al., 2012). A recent study indicated that 

athletes that report attention deficit hyperactivity disorder (ADHD) and learning disability (LD) 

diagnosis performed significantly worse on baseline CNT and reported a higher number of 

symptoms than athletes without LD and/or ADHD (Elbin et al., 2013). Motivation also 

influences baseline CNT performance. Sub-optimal motivation during baseline testing could lead 

to an invalid CNT score (Bailey et al., 2006; Bartlett, 1943; Boksem et al., 2005, 2006; R. 

Hockey, 1983; Meijman, 2000; Sanders & Sanders, 2013; van der Linden et al., 2003). Recently, 

researchers examined the effects of restricted sleep on CNT performance. Athletes that self-

report restricted sleep had worse CNT performance when compared to athletes who self-report 

optimal sleep (Sufrinko et al., 2016). Lastly, physical fatigue was identified as a factor that 

influences CNT performance. Athletes that were exposed to maximal exercise immediately 

before CNT baseline testing performed worse on verbal memory when compared to athletes who 
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rested prior to testing (Covassin et al., 2007). While these factors are all important for the sports 

medicine professional to consider, the potential combined deleterious effects that cognitive 

fatigue from the academic setting and time of CNT administration may have on CNT 

performance has not been examined.  

Cognitive Demand and Neurocognitive Performance 

High school athletes that sustain a concussion may still be required to attend classes and 

complete an academic school day. Therefore, the sports medicine professional is required to 

work around the athlete’s academic schedule, which may influence when CNT can be 

administered. Oftentimes the earliest opportunity for CNT administration is at the conclusion of 

the high school academic day (i.e., approximately 2-3pm in the afternoon), which may not be an 

optimal time to evaluate neurocognitive function due to the potential confounding effects of 

decreased motivation, increased cognitive fatigue following school (Boksem et al., 2005; 

Sievertsen et al., 2016), chronobiology (Horne et al., 1980; Kleitman, 1963; Natale et al., 2003), 

and fluctuations in circadian rhythm that occurs during the late afternoon hours (Barnard & 

Nolan, 2008; Benca et al., 2009; Czeisler & Gooley, 2007). 

Cognitive Fatigue and CNT Performance  

Cognitive fatigue is the result of sustained cognitive engagement that taxes people’s 

mental resources and is a relatively common phenomenon (Boksem et al., 2005; Mullette-

Gillman et al., 2015). Previous research has demonstrated that persistent mental resource burdens 

result in diminished motivation, increased distractibility, changes in information processing, and 

poorer mood (Bailey et al., 2006; Bartlett, 1943; Boksem et al., 2005, 2006; R. Hockey, 1983; 

Meijman, 2000; Sanders & Sanders, 2013; van der Linden et al., 2003). In an early study, pilots 

were required to fly a simulator for extended periods of time (Bartlett, 1943). The pilots reported 
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periods of decreased attention with increasing frequency and that the operators become more 

distracted (Bartlett, 1943). In a more recent study, researchers examined the effects of mental 

fatigue on attention (Boksem et al., 2005). Seventeen healthy college students performed a task 

continuously for three hours without rest (Boksem et al., 2005). The subjects reported an 

increase in difficulty staying alert and sustaining attention as the three hours went on (Boksem et 

al., 2005). In addition, cognitive performance is affected by natural fluctuations in circadian 

rhythm (Benca et al., 2009). 

Cognition and Circadian Rhythm 

Circadian rhythms are defined as endogenously driven biological variations that fluctuate 

with a periodicity of approximately 24 hours and can be synchronized with the external temporal 

environment by light and nonphonic cues (Benca et al., 2009). The circadian pacemaker is 

located in the hypothalamic surpachiasmatic nucleus (SCN) and controls many physiological and 

behavioral variables via clock controlled genes that regulate the output rhythms throughout the 

central nervous system and periphery (Benca et al., 2009). The circadian timing system regulates 

sleep-wake cycles as well as rhythms in cognitive processes including: subjective alertness, 

mathematical ability, arousal, learning, and memory (Benca et al., 2009). Cognition also varies 

across a 24-hour period (Wright, Lowry, & Lebourgeois, 2012). Cognition patterns are driven by 

three neurobiological processes: sleep inertia, the phenomenon of decreased performance and/or 

disorientation occurring immediately after awakening from sleep relative to pre-sleep status, 

homeostatic sleep drive, and circadian phase (Wright et al., 2012). Although there is a growing 

amount of literature suggesting misalignments in circadian rhythm influences cognition in adults, 

little is still known about misalignments in adolescents. However, several studies suggest that 
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circadian rhythm misalignments in adolescents could have a negative effect on cognitive 

functioning (Wright et al., 2012).  

In an early study researchers examined the effects of early school start time on adolescent 

sleep patterns, sleepiness, and circadian phase (Carskadon, Wolfson, Acebo, Tzischinsky, & 

Seifer, 1998). Early school start time was associated with sleep deprivation and daytime 

sleepiness (Carskadon et al., 1998). According to the US Department of Education (2011-2012),  

approximately 43% of all public high schools in the United States start school before 8:00 AM. 

The early start time requires adolescents to perform at a certain cognitive level before the 

waking-promoting effects of the circadian system are fully engaged (Carskadon et al., 1998). 

Second, executive function varies throughout the day, and studies suggest that adolescents 

perform better in the afternoon rather than the morning (van der Heijden, de Sonneville, & 

Althaus, 2010).  However, Sievertsen and colleagues (2016) explored whether cognitive fatigue 

influences students’ performance on a national standardized test (Sievertsen et al., 2016). 

Students were administered the test at 8:00 AM and were given breaks throughout the day 

(Sievertsen et al., 2016). The results of the study found that for every hour later in the day, the 

students’ test scores decreased by 0.9% of a standard deviation and after every break 

performance increased by 1.7% of a standard deviation (Sievertsen et al., 2016). The authors 

hypothesized that over the course of a school day, students’ cognitive resources become taxed, 

increasing fatigue and ultimately decreasing performance (Sievertsen et al., 2016). These 

findings suggest that fatigue may influence cognitive performance throughout the day.  

Sleep, Circadian Rhythm, and Cognitive Function 

The sleep-wake cycle is regulated by two mechanisms acting either in synchrony or in 

opposition to each other along the 24-hr cycle: the homeostatic process, which strives to balance 
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the time spent awake and asleep, and the circadian timing process, or biological clock (Schmidt, 

Collette, Cajochen, & Peigneux, 2007). The intention of the circadian process is for wakefulness 

to take place during the day and sleep to take place at night (Schmidt et al., 2007). Multiple 

studies show that effects of shortened sleep on daytime functioning include sleepiness, tiredness, 

difficulty waking, moodiness, and diminished attention difficulties in school (Carskadon, Vieira, 

& Acebo, 1993; Epstein, Chillag, & Lavie, 1998).   

An early study followed 24 healthy men to find the interaction between the sleep-wake 

cycle and circadian fluctuations on alertness and performance (Dijk, Duffy, & Czeisler, 1992). 

The study found that when the men’s environment was controlled, alertness and cognitive 

performance remained fairly stable throughout the waking hours of a day (Dijk et al., 1992). 

However, when wakefulness was extended, alertness and performance decreased significantly 

(Dijk et al., 1992). In a more recent study, researchers investigated the relationship between sleep 

duration and academic performance, daytime tiredness, behavioral persistence and positive 

attitude towards life (Perkinson-Gloor, Lemola, & Grob, 2013). These findings are particularly 

interesting when looking at the sleeping habits of adolescents. In a recent poll, the National Sleep 

Foundation found that 87% of high school students in the United States get less than the 

recommended 8.5 to 9.5 hours of sleep on a school night. Insufficient sleep in adolescents may 

be the result of an interaction of intrinsic (e.g. puberty, circadian or homeostatic changes) and 

extrinsic (e.g. early school times, social pressure, academic workload) factors (Dewald et al., 

2010).   

Morningness Versus Eveningness Chronotypes 

According to circadian arousal pattern, in chronopsychology and chronobiology, 

individuals can be described depending on their circadian typology or chronotype (Jovanovski & 
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Bassili, 2007; Randler & Frech, 2006; Roenneberg et al., 2003). Max arousal can be reached 

either in the morning or in the evening, according to circadian typology (Fabbri et al., 2013). The 

individual’s preference for the timing of daily activities is associated with markers of circadian 

physiology such as the peak, amplitude or period of core body temperature, melatonin, and 

cortisol (Baehr, Revelle, & Eastman, 2000; Duffy, Dijk, Hall, & Czeisler, 1999; Horne & 

Ostberg, 1976).   

The two chronotypes, morning-types and evening-types, differ in cognitive efficiency 

during the day (Horne et al., 1980; Natale et al., 2003). Previous research suggests that the 

individual differences in circadian arousal levels at particular times of day influence the type of 

information processing strategies that individuals adopt (Bodenhausen, 1990). Specifically, 

strong evidence suggests that superior cognitive functioning occurs when testing times are 

synchronized with individuals’ peak circadian arousal periods, referred to as the synchrony effect 

(Anderson et al., 1991; Petros et al., 1990). The synchrony effect echoes the idea that morning-

types perform better in the morning than in the afternoon and evening-types show the reverse 

pattern on a range of cognitive tasks, including negative priming, false memory, recognition and 

recall of prose and span materials, categorization, impression formation, judgment and control 

over distraction and working memory (Bodenhausen, 1990; Hasher, Chung, May, & Foong, 

2002; M. Intons-Peterson, Rocchi, West, McLellan, & Hackney, 1998; M. J. Intons-Peterson, 

Rocchi, West, McLellan, & Hackney, 1999; May & Hasher, 1998; May, Hasher, & Foong, 2005; 

May, Hasher, & Stoltzfus, 1993; Rowe, Hasher, & Turcotte, 2009; Yang, Hasher, & Wilson, 

2007).  
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Methods 

Research Design 

A crossover design will be used to compare differences in CNT performance and total 

symptoms between before-school and after-school testing sessions 

Participants 

Thirty-nine non-concussed high school athletes currently participating in the University 

of Arkansas Sport Concussion Surveillance Program were recruited to participate. Athletes that 

reported previous diagnosed learning disability (LD), attention deficit hyperactivity disorder 

(ADHD), endorsed English as a second language, were diagnosed with a concussion within six 

months of recruitment, reported not being tired after an academic school day and reported not 

having a difficult academic schedule were excluded from the study.  

Measures/Instrumentation 

 Main outcome measures and measures to control for confounding variables. The 

main outcome measure used in this study was Immediate Post-Concussion Assessment and 

Cognitive Testing (ImPACT) and the Post-Concussion Symptom Scale (PCSS). In addition, the 

Morningness-Eveningness Questionnaire (MEQ-SA) was used as a main outcome measure. 

Additionally, in order to control for potential confounding variables, the Effort Form, Pittsburgh 

Sleep Quality Index-per week, Food Intake Form, and Cognitive Demand of School Form were 

used.  

Demographics. Demographic data including age, sex, previous number of diagnosed 

concussions, and hours of sleep were obtained from the demographic section of ImPACT. In 

addition hours of sleep within the past week was obtained from the Pittsburgh Sleep Quality 

Index-per week. Diet information was obtained by the Food Intake form. Participants self-



19 

 

reported fatigue before-and after-school was obtained by the Visual Analogue Scale – Fatigue 

and effort was obtained by the Effort Form. 

Recruitment form. The recruitment form is a short questionnaire created by researchers 

that consisted of inclusion and exclusion criteria for the study. This short form (See Appendix A) 

was given in large groups to all possible participants. In order to be selected for study, 

participants were required to have transportation to their high school at 7:00AM, report an 

academic difficulty of class schedule of a three or higher, on a five point Likert scale (1 = not 

difficult, 5 = extremely difficult), and report perceived tiredness after a full day of school of a 

three or higher, on a five point Likert scale (1 = not tired at all, 5 = extremely tired). Lastly, all 

potential participants were required to report English as their first language, no history of LD, or 

ADHD and no diagnosed concussion within the last six months.  

Neurocognitive performance. CNT performance was measured using the Immediate 

Post-Concussion Assessment and Cognitive Testing (ImPACT) battery. The ImPACT test is 

comprised of three sections: demographic information, the Post-Concussion Symptom Scale 

(PCSS) and neurocognitive test modules (Elbin et al., 2013). The ImPACT battery takes 

approximately 25 minutes to complete, has five different test versions to minimize practice 

effects, and produces composite scores for the cognitive domains of verbal memory, visual 

memory, processing speed, and reaction time. The ImPACT battery has demonstrated acceptable 

validity and reliability over eight days across four administrations, yielding correlation 

coefficients ranging from 0.62 to 0.88 for outcome scores (Iverson, Lovell, & Collins, 2005). 

ImPACT also assesses current symptom reports via the Post-Concussion Symptoms Scale 

(PCSS), which is a 22-item, 7-point Likert symptom inventory. The reliability and validity of the 

PCSS have been well documented in previous studies (Lovell et al., 2006). In order to investigate 
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baseline and post-concussion symptoms more thoroughly, symptoms on the PCSS can be 

analyzed in clusters (Kontos et al., 2012). There are four baseline clusters: cognitive-sensory 

(e.g., sensitivity to light, difficulty concentrating), sleep-arousal (e.g., drowsiness, sleeping less 

than usual), vestibular-somatic (e.g., headache, dizziness), and affective (e.g., sadness, 

nervousness). In addition, there are four post-concussion factors: cognitive-fatigue-migraine 

(e.g., headache, difficulty concentrating, fatigue, dizziness), affective (e.g., sadness, 

nervousness), somatic (e.g., nausea, numbness) and sleep (e.g., trouble sleeping, sleeping less 

than usual) (Kontos et al., 2012). 

Morningness/Eveningness questionnaire (MEQ-SA). The MEQ-SA was used in this 

study to as a main outcome measure. The MEQ-SA is comprised of sleep-related questions to 

determine and evaluate circadian rhythm patterns. The questionnaire contains 19 questions that 

examine sleep habits and fatigue. After completion of the questionnaire, the score can be 

calculated by adding the number of points of each question. The points can range from 16 to 86. 

Scores 41 and below indicate “evening-types”, while scores 59 and above indicate “morning-

types”. Scores between 42 and 58 indicate “intermediate-types”. The reliability and validity of 

the MEQ-SA have been well documented in previous studies (Horne & Ostberg, 1976). In 

addition, Natale and colleagues (2002), further divided the “intermediate type” into two 

categories: intermediate morning and intermediate evening. With the addition of these two types, 

the MEQ-SA can be analyzed using six categories: definitely morning (70-86), moderately 

morning (59-69), intermediate-morning (50-58), intermediate-evening (42-49), moderately 

evening (31-41) and definitely evening (16-30) (Natale & Cicogna, 2002). See Appendix B.  

Fatigue assessment. The Visual Analogue Scale – Fatigue (VAS-F) was used to assess 

self-reported fatigue. The VAS-F is comprised of an 18-item, 10-point Likert scale ranging from 
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0 (“not at all tired”) to 10 (“extremely tired”). The VAS-F consists of two subscales: fatigue and 

energy. The fatigue subscale is calculated by averaging corresponding fatigue items and the 

energy subscale is calculated by averaging the corresponding energy items. Previous research 

has presented self-reported fatigue and energy, from the VAS-F, as means across time (Lee, 

Hicks, & Nino-Murcia, 1991). The VAS-F is a valid and reliable tool previously used to asses 

fatigue in healthy and sleep deprived individuals (Lee et al., 1991). Specifically, the fatigue 

subscale of the VAS-F has demonstrated acceptable reliability in healthy individuals with a 

Cronbach’s α = 0.91 in the evening and Cronbach’s α = 0.96 in the morning. The energy 

subscale of the VAS-F has demonstrated acceptable reliability in healthy individuals with a 

Cronbach’s α = 0.94 in the evening and Cronbach’s α = 0.95 in the morning (Lee et al., 1991). 

See Appendix C.  

Pittsburgh sleep-quality index per week (PSQI-pw). The PSQI-pw was used in this 

study to examine sleep quality. The PSQI-pw is comprised of 10 questions that examine sleep 

patterns and sleep quality of the previous week. The PSQI has a sensitivity of 89.6% and 

specificity of 86.5% (Buysse, Reynolds, Monk, Berman, & Kupfer, 1989). See Appendix D.  

Food intake form. The Food Intake Form was created by researchers. The Food Intake 

Form was used to obtain dietary information about the participants. This survey consists of four 

questions that ask the participants to indicate what they ate for breakfast and lunch, caffeine 

consumed, and supplements consumed before CNT administration. The Food Intake Form was 

administered to quantify food and caffeine consumption and to control for confounding factors 

that may influence CNT performance and symptoms. See Appendix E.  

Effort form. The Effort Form is a short survey created by researchers to quantify effort 

immediately after completion of CNT. The participants were asked to indicate the amount of 
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effort they gave while completing CNT. The effort form consists of one question and is scaled 

using a 4-point Likert scale (1 = “No effort” to 4 = “High effort”). See Appendix F.  

Cognitive demand of school intake form. The Cognitive Demand of School Intake 

Form, developed by the researchers, was used in this study to quantify perceived academic 

difficulty. The Cognitive Demand of School Intake Form consists of three questions. The form 

asked participants to report the number of classes in their academic schedule, specifically the 

number of advanced placement (AP) classes, pre-advanced placement (Pre-AP) and elective 

classes in their schedule. In addition the form asked participants to indicate the perceived 

difficulty of their academic school day on a five point Likert scale (1 = “not at all difficult” to 5 

= “extremely difficult”). See Appendix G.  

Procedures 

Upon obtaining University IRB approval (See Appendix H), researchers recruited 183 

non-concussed high school student athletes participating in the U of A Sport Concussion 

Surveillance Program using the Recruitment Form. The Recruitment Form was administered to 

all potential participants interested in participating in the study. After all potential participants 

completed the Recruitment Form, trained researchers confirmed inclusion and exclusion criteria 

via Recruitment Form. Participants that did not meet all inclusion and exclusion criteria were 

dismissed and participants that met inclusion and exclusion criteria were read the consent form 

and formally invited to participate in the study.  

After receiving parental consent and child assent, the participants were randomly and 

conveniently assigned into either a before-school/after-school (n = 18) testing order or an after-

school/before-school (n = 21) testing order. Four (10%) athletes were conveniently assigned to a 

testing order, because they participated in multiple sports during the time period of this study. 
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These athletes were assigned accordingly to accommodate for practices and games of their 

current sport. Fifteen (38%) athletes were also conveniently assigned to a testing order 

depending on the hour of their athletics period. The remaining 20 (51%) athletes were randomly 

assigned to a testing order.  

The participants were administered the VAS-F, ImPACT, Effort Form, Food Intake 

Form, MEQ-SA, and PSQI-pw during the before-school testing session. During the after-school 

testing session participants were administered the VAS-F, ImPACT, the Effort Form, Food 

Intake Form, PSQI-pw, and Cognitive Demand of School Intake Form. The before-and after-

school testing sessions, in which these measures were administered, took place approximately in 

the middle of the week (Wednesday/Thursday). In addition, there was approximately one week 

separation between the before-school testing session and the after-school testing session.  

All participants completed these measures in the high school’s designated computer lab at 

their assigned before-school or after-school order. All participants completed the ImPACT 

battery in supervised groups of 10 to 15 students. Upon completion of this visit the athletes 

reported for their final testing session to complete the measures the following week in opposite 

condition (before, after-school) (i.e., cross-over design). For example, participants assigned to 

the before-school/after-school testing order, completed the VAS-F, ImPACT, Effort Form, Food 

Intake Form, MEQ-SA, and PSQI-pw at approximately 7:00AM before-school. One week later, 

participants completed the VAS-F, ImPACT, Effort Form, Food Intake Form, PSQI-pw, and 

Cognitive Demand of School Intake Form at approximately 3:00PM after-school. In addition, 

when participants were not administered the outcome measures described above, they were still 

required to complete the VAS-F. For example, participants assigned to the before-school/after-

school testing order completed the VAS-F, ImPACT, Effort Form, Food Intake Form, MEQ-SA, 
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and PSQI-pw at approximately 7:00AM before-school and completed the VAS-F at 

approximately 3:00PM after-school on the same day. Approximately one week later the 

participants completed the VAS-F at approximately 7:00AM before-school and completed the 

VAS-F, ImPACT, Effort Form, Food Intake Form, PSQI-pw, and Cognitive Demand of School 

Intake Form at approximately 3:00PM after-school on the same day. A graphic figure depicting 

the cross-over design is presented in Figure 1.  

Figure 1.  

Representation of cross-over design and administration order of study measures.  

 

In an effort to mitigate poor effort when completing the neurocognitive battery, the 

current study used deception via an instructional script (See Appendix I). Specifically, 

participants were told that compensation for the study depended on their effort and performance 

on the CNT (i.e., higher effort and scores will equate to maximum cash prize). However, all 

participants who completed both the before-school and after-school testing sessions received the 

40 dollar cash prize, regardless of their effort. Participants did not receive remuneration until 

after the completion of their second session.  

 

 

 

 

 

Order 1: Fatigue, 

CNT, Food, MEQ-SA, 

PSQI-pw 

Order 2: Fatigue  

Order 1: Fatigue  

Order 2: Fatigue, CNT, 

Food, MEQ-SA, PSQI-

pw 

Order 1: Fatigue 

Order 2: Fatigue, CNT, 

Food, PSQI-pw, 

Cognitive Demand 

Order 1: Fatigue, 

CNT, Food, PSQI-pw, 

Cognitive Demand 

Order 2: Fatigue 

Before School  After School 

Session 1 

Session 2 



25 

 

Data Analysis 

 Descriptive statistics (e.g., means and standard deviations) were used to describe sample 

demographics (e.g., age, sex, history of concussion). In addition, data from the VAS-F, Effort 

Form, PSQI-pw, and Food Intake Form were analyzed in order to control for various 

confounding variables (i.e., fatigue, effort, diet, and sleep). Statistical analyses were conducted 

using SPSS.  

Controlling for effort, sleep, and diet among the before-and after-school testing 

sessions. In order to control for potential confounding variables all participants were 

administered the Effort Form, Food Intake Form, and PSQI-pw immediately after completing 

ImPACT at both before-and after-school testing sessions. These measures were used in order to 

gather information on potential confounding factors that could influence ImPACT performance. 

A series of paired samples t-tests were conducted in order to control for various confounding 

variables (i.e., sleep, effort) and to examine differences on these variables between the two-time 

points (before, after school). Statistical significance was set at a Bonferroni corrected p < .01.  In 

addition, a series of Chi-square tests were conducted to ensure equivalency of dietary 

consumption between the before-and after-school testing sessions. 

Preliminary analysis of study assumption – High school student athletes will report 

higher fatigue after-school than before-school. The assumption that high school student 

athletes will be more fatigued after-school than before-school was examined with a repeated 

measures ANOVA. A repeated measures ANOVA was conducted in order to investigate changes 

in self-reported fatigue of all athletes at four time points. The independent variable was time, 

which consisted of four levels (before-and after-school on testing session one and before-and 
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after-school on testing session two), and the dependent variable was VAS-F self-reported fatigue. 

Statistical significance was set at a Bonferroni corrected p < .01.  

Data analysis for H1 – After-school neurocognitive performance will be lower and 

total symptoms will be higher than before-school neurocognitive performance and total 

symptoms in high school student athletes. Hypothesis 1 was examined with a series of paired 

samples t-tests. The independent variable was time (i.e., before, after-school) and dependent 

variables were ImPACT composite scores of verbal memory, visual memory, processing speed, 

and reaction time. In addition, total symptom score on the PCSS was a dependent variable. 

Statistical level of significance was set at a Bonferroni corrected p < .01.  

Data analyses for H2 and H3 – Morning chronotypes will demonstrate higher 

before-school neurocognitive performance and lower total symptoms than after-school 

neurocognitive performance (H2) and Evening chronotypes will demonstrate higher after-

school neurocognitive performance and lower total symptoms than before-school 

neurocognitive performance (H3). Using the method Natale and colleagues (2002) applied, 

participants were categorized into six categories: definitely morning, moderate morning, 

intermediate morning, intermediate evening, moderate evening, and definitely evening. 

However, due to little variability between the six categories, definitely morning, moderate 

morning, and intermediate morning were combined to make one morning-type group, and 

definitely evening, moderate evening, and intermediate evening were combined to make one 

evening-group. Hypothesis 2 and 3 were analyzed using a series of 2 group (morning, evening-

type) x 2 time (before, after school) repeated measures within/between groups ANOVAs. The 

independent variables were time (before, after-school) and group (morning, evening-type), with 

time being the within-subjects factor and group being the between-groups factor. The dependent 
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variables were ImPACT composite scores of verbal memory, visual memory, processing speed, 

and reaction time. In addition, PCSS total symptom score was also used as a dependent variable. 

Statistical significance was set at a Bonferonni corrected p < .01.  
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Results 

Participant Recruitment Results 

A total of 183 athletes were screened for participation in the study. Fifty-nine percent 

(108/183) of the screened sample did not meet one or more of the following exclusion criteria 

and were not asked to participate in the study: endorsed English as a second language, reported a 

diagnosis of LD and/or ADHD, sustained a concussion within six months of the recruitment 

period, reported not being tired at the end of the academic school day, or reported that their 

academic schedule was not difficult. Seventy-six athletes met inclusion criteria and were 

enrolled in the study. However, 37 of the recruited athletes did not complete all testing sessions 

yielding an attrition rate of 49% (37/76).  

Demographics of the Final Sample  

The final sample included a total of 39 (39/76) non-concussed high school athletes, 

yielding a response rate of 51%. There were 34 males and 5 females in this sample, and the 

average age was 15.74 ± 1.04 (Range = 14 – 18) years. These athletes were current participants 

in football 64% (25/39), basketball 33% (13/39) and track and field 3% (1/39). The average 

number of previous concussions for the final sample was 0.26 (SD = 0.55; Range = 0 – 2). There 

was approximately one week (M = 7.10, SD = 0.31) between the two testing sessions. 

Information obtained during the recruitment of these athletes regarding self-reported perceived 

academic difficulty and tiredness after school are presented in Table 1. 
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Table 1.  

Means and standard deviations of demographic variables of the total sample (N = 39) 

 M SD 

Age (yrs.) 15.74 1.04 

Concussion History 0.26 0.55 

Perceived academic difficulty 3.28 0.51 

Perceived tiredness after school 3.69 0.61 

* p < .05 

Controlling the effects of effort, sleep, and diet among the before-and after-school 

testing sessions. There were no significant differences between hours of sleep t(38) = 0.37, p = 

.71, or effort t(38) = 0.57, p = .57, between the before-and after-school time points. Means and 

standard deviations of hours of sleep and effort given during the before-and after-school testing 

sessions are presented in Table 2.  

Table 2.  

Means and standard deviations of effort and hours of sleep between before-school and after-

school testing sessions (N = 39) 

 M SD 

Before-School Session   

Effort 3.95 0.22 

Hours of Sleep 7.45 1.05 

After-School Session   

Effort 3.92 0.27 

Hours of Sleep 7.38 1.68 

* p < .05 

The Chi-square test for independence (with Yates Continuity Correction) indicated no 

significant association between breakfast consumption between before-school and after-school 

testing sessions χ2 (1, n = 39) = 2.53, p = .11, phi = .32. A Chi-square test for caffeine 

consumption was inappropriate due to the low frequency of participants who reported consuming 

caffeine before each testing session. The minimum requirement count is five to run a Chi-square. 

Frequencies of breakfast, lunch, and caffeine consumption are presented in Table 3.  
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Table 3.  

Frequency of breakfast, lunch, and caffeine consumption before taking ImPACT before-school 

and after-school for the total sample (N = 39) 

 n % 

Before-School Session   

Breakfast 17 44% 

Caffeine 3 8% 

After-School Session   

Breakfast 31 80% 

Lunch 39 100% 

Caffeine 6 15% 

* p < .05 

Preliminary analysis – Examining self-reported fatigue before-and after-school. In 

order to investigate the hypothesis that after school ImPACT performance and symptoms would 

be worse than before-school ImPACT performance and symptoms, an assumption was made that 

high school student athletes would be more fatigued after-school than before-school. Self-

reported fatigue was measured at four time points and there was no significant main effect for 

time for fatigue F (3, 36) = 3.85, p = .02, η2 = .24. Information regarding changes in self-

reported fatigue before and after school at four time points are presented in Table 4. 

Table 4.  

Analysis of self-reported fatigue across four time points for the total sample (N = 39) 

 
Time Point 1 – 

Before-School 

Time Point 2 – 

After-School 

Time Point 3 – 

Before-School 

Time Point 4 – 

After-School 

 M SD M SD M SD M SD 

Fatigue 3.74 1.62 3.30 2.07 3.91 2.13 2.82 2.06 

*p < .01 

 

A different approach to investigating fatigue was also conducted. Self-reported fatigue at 

both before-school time points (i.e., time point 1 and 3 on Table 4) were averaged together as 

well as both after-school time points (i.e., time point 2 and 4 on Table 4). A paired samples t-test 

was conducted in order to compare before-school average self-reported fatigue to after-school 
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average self-reported fatigue. Before-school fatigue was significantly greater than after-school 

fatigue (t(38) = 2.84, p = .007). Means and standard deviations of the average self-reported 

fatigue between before-school and after-school are presented in Table 5. These findings 

prompted further exploratory investigations of fatigue used as an independent variable and are 

presented in the Supplemental Analyses section. 

Table 5. 

Analysis of before-school self-reported fatigue and after-school self-reported fatigue of total 

sample (N = 39) 

 Before-School After-School 

 M SD M SD 

Self-Reported Fatigue * 3.83 1.64 3.06 1.91 

* p < .01 

Evaluation of Hypotheses 

Hypothesis 1 – After-school neurocognitive performance will be lower and total 

symptoms will be higher than before-school neurocognitive performance in high school 

student athletes. The results of a series of paired sample t-tests yielded no significant 

differences in verbal memory t(38) = 0.80, p = .43, visual memory t(38) = -0.78, p = .44, 

processing speed t(38) = .07, p = .94, reaction time t(38) = 1.45, p = .16, or total symptoms t(38) 

= -0.64, p = .52. Means and standard deviations for these outcome variables are presented in 

Table 6.  
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Table 6.  

 

Analysis of before-and after-school ImPACT performance and total symptoms (N = 39) 

 Before-School After-School 

 M SD M SD 

Verbal Memory 88.43 9.39 87.03 10.67 

Visual Memory 79.62 13.43 81.21 11.09 

Processing Speed 39.83 6.61 39.77 5.70 

Reaction Time 0.59 .06 0.58 .07 

Total Symptoms 6.56 7.13 7.15 6.73 

*p < .01 

Hypothesis 2 – Early chronotype athletes will demonstrate higher neurocognitive 

performance and lower total symptoms before-school compared to after-school. Hypothesis 

3 – Late chronotype athletes will demonstrate higher neurocognitive performance and 

lower total symptoms after-school compared to before-school. Initially there were 3/39 (8%) 

morning-types, 35/39 (89%) intermediate-types, and 1/39 (3%) evening-types. After applying the 

method utilized by Natale and colleagues (2002), there were 15/39 (38%) morning-types and 

24/39 evening-types (62%) in the final sample. There were 22 males and 2 females categorized 

as evening-type and there were 12 males and 3 females categorized as morning-type. The results 

of the 2 group (morning, evening-type) x 2 time (before, after-school) repeated measures 

ANOVAs revealed no significant group x time interaction for verbal F (1, 37) = 1.60, p = .21, η2 

= .04, visual F (1, 37) = .05, p = .82, η2 = .00, processing speed F (1, 37) = 0.75, p = .39, η2 = 

0.02, reaction time F (1, 37) = 1.65, p = .21, η2 = 0.04, and total symptom score F (1, 37) = 0.57, 

p = .46, η2 = 0.02. In addition, there was no significant main effect for group for verbal F (1, 37) 

= .03, p = .86, η2 = .00, visual F (1, 37) = 0.22, p = .64, η2 = .01, processing speed F (1, 37) = 

1.25, p = .27, η2 = .03, reaction time F (1, 37) = .05, p = .83, η2 = .00, and total symptoms F (1, 

37) = 0.52, p = .48, η2 = 0.01 as well as no significant main effect for time for verbal F (1, 37) = 

1.17, p = .29, η2 = .03, visual F (1, 37) = 0.50, p = .49, η2 = 0.01, processing speed F (1, 37) = 
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.02, p = .90, η2 = .00, reaction time F (1, 37) = 2.95, p = .10, η2 = .07, and total symptoms F (1, 

37) = 0.64, p = .43, η2 = 0.02. Means and standard deviations of ImPACT composite scores and 

total symptoms between the two groups (i.e., morning and evening chronotypes) are presented in 

Table 7. 

Table 7.  

Means and standard deviations of ImPACT composite scores and total symptoms of morning (n 

= 15) and evening (n = 23) chronotypes 

 Morning-Type Evening-Type 

 Before-School After-School Before-School After-School 

 M SD M SD M SD M SD 

Verbal Memory 90.13 8.77 85.93 9.40 87.38 9.79 87.71 11.53 

Visual Memory 80.93 11.74 81.93 11.31 78.79 14.57 80.75 11.16 

Processing 

Speed 
40.62 4.32 41.49 4.98 39.34 7.76 38.69 5.95 

Reaction Time 0.59 .05 0.57 .07 0.59 .06 0.58 .07 

Total Symptoms 5.20 6.83 6.67 6.28 7.42 7.32 7.46 7.12 

*p < .01 
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Discussion 

General Discussion of Results 

 This study compared before-school neurocognitive performance and total symptoms to 

after-school neurocognitive performance and total symptoms in a sample of non-concussed high 

school athletes. The primary finding from this study was that before-school neurocognitive 

performance and total symptoms did not differ from after-school neurocognitive performance 

and total symptoms. This finding suggests that sports medicine professionals can administer 

CNT before-or after-school without fear of the confounding effects of time or cognitive fatigue 

from an academic school day. The secondary finding of this study was that morning-type CNT 

performance and total symptoms did not differ between before-and after-school and evening-

type CNT performance and total symptoms did not differ between before-and after-school.   

Preliminary Analysis – Examining Self-Reported Fatigue Before-and After-School.  

 Based on previous literature, an assumption was made that high school athletes would be 

more fatigued after-school than before-school. The result of this fatigue from an academic school 

day could decrease neurocognitive performance and increase symptoms. Cognitive fatigue has 

been shown to lead to diminished motivation, increased distractibility, changes in information 

processing and poorer mood (Boksem et al., 2005, 2006; Demerouti et al., 2001; G. Hockey et 

al., 2000; Holding, 1983; Lorist et al., 2005; Sanders & Sanders, 2013; van der Linden et al., 

2003). In addition, a recent study similar to the current study, reported worse performance on a 

standardized test as the day progressed (i.e., got later in the day) in high school students 

(Sievertsen et al., 2016). The authors hypothesized that performance decreases as cognitive 

resources get taxed (Sievertsen et al., 2016). However, this assumption was not corroborated in 

this study. Before-school self-reported fatigue was significantly higher than after-school self-
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reported fatigue. Although this finding is unexpected, there could be several explanations for this 

finding.  

Insufficient sleep (i.e., less than 8 hours per night) has increasingly become the norm for 

the adolescent (i.e., high school aged) population (Eaton et al., 2010; National Sleep 

Foundation). Athletes that participated in this study reported getting less than 8 hours of sleep 

recommended for adolescents. This could be due to several factors. At the time of puberty 

adolescents experience a sleep-wake “phase delay” (i.e., later sleep onset and wake times) (Au et 

al., 2014). Adolescents go to sleep at later times and tend to wake up at later times. In fact, many 

adolescents use the weekends to “catch up” on sleep missed throughout the week (Au et al., 

2014). Consequently, this method of catching up on sleep can worsen circadian disruption and 

can lead to morning sleepiness at school (Dahl & Carskadon, 1995; Fredriksen, Rhodes, Reddy, 

& Way, 2004; Jenni et al., 2005). In addition to early school times, increased social pressures 

and academic workload may contribute to insufficient sleep while in high school (Dewald et al., 

2010). Lastly, this finding (i.e., before-school self-reported fatigue higher than after-school self-

reported fatigue) could be due to the fact that adolescents shift in circadian phase preference 

from morning type to evening type, which could result in later bed times (Frey et al., 2009). 

Also, adolescents take longer to fall asleep at night due to an altered sleep drive (Jenni et al., 

2005). Therefore, the athletes in the current may have been more fatigued before-school than 

after-school due to insufficient sleep due to biologic changes as well as early start times.  

Discussion of Hypotheses 

Hypothesis 1 – After-school neurocognitive performance will be lower and total 

symptoms will be higher than before-school neurocognitive performance in high school 

student athletes. Due to the main findings of this study, Hypothesis 1 was not supported. There 
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could be several possible explanations for the lack of differences between before-and after-

school neurocognitive performance and total symptoms. Again, previous research suggests 

cognitive engagement taxes individuals’ mental resources leading to cognitive fatigue (Boksem 

et al., 2005; Mullette-Gillman et al., 2015). At the same time, as discussed above, high school 

students oftentimes do not get 8.5 to 9.5 hours of sleep (National Sleep Foundation) that is 

recommended for adolescents. In fact, athletes that participated in this study reported getting an 

average of 7.45 and 7.38 hours of sleep before each testing session, which is less than the 

recommended amount for adolescents. This combination of cognitive fatigue and insufficient 

sleep could potentially “even out” these influences, eliminating any differences between before-

and after-school neurocognitive performance and symptoms. However, more research is needed 

on this subject to further understand the differences in neurocognitive performance and total 

symptoms before-and after-school.  

Hypothesis 2 and 3 – Morning chronotypes will demonstrate higher before-school 

neurocognitive performance and lower total symptoms than after-school neurocognitive 

performance (H2) and Evening chronotypes will demonstrate higher after-school 

neurocognitive performance and lower total symptoms than before-school neurocognitive 

performance (H3). Before applying the method used by Natale and colleagues (2002) (i.e., 

splitting the intermediate-type athletes into intermediate-morning and intermediate-evening), 

athletes in the current study were categorized as more intermediate-type than morning and 

evening-types. This finding has also been documented in previous studies identifying 

chronotypes in adolescent-aged and college-aged populations. In a previous study, researchers 

identified morningness and eveningness existed on a continuum between the two extremes in a 

college-aged population (Natale & Cicogna, 2002). The two extreme typologies (i.e., morning 
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and evening) did not include a large number of individuals, in fact only about 10% of the 

population falls within the two extreme categories (Natale & Cicogna, 2002). In addition, this 

study suggests that most individuals (60-70%) fall within the intermediate type (Natale & 

Cicogna, 2002). This distribution was again identified in a recent study by Urbán and colleagues 

(2011) estimating the distribution of chronotype (i.e., morning, intermediate, evening) in an 

adolescent population. The authors identified 50.7% of the sample as intermediate type, 30.5% 

as morning type, and 18.8% as evening type (Urbán et al., 2011). There is reason that could 

explain the finding of no synchrony effect in the final sample. As explained above, only a small 

percentage of the population is categorized as the two extreme chronotypes: morning-type or 

evening-type (Natale & Cicogna, 2002). In addition, the MEQ-SA is a self-reported measure, so 

although the athletes in this study were categorized as morning-type and evening-type for the 

purpose of this study, these athletes could truly be intermediate-types.   

Discussion of Supplementary Analyses 

 One interesting finding from the supplementary analysis is that athletes who reported 

being fatigued after-school did not perform significantly worse or report more symptoms than 

athletes who did not report being fatigued after-school. This finding suggests that self-reported 

fatigue does not influence CNT performance or symptoms. One reason for this could be that an 

academic school day does not make high school athletes cognitively tired and does not constitute 

as a cognitively fatiguing activity. The previous study exploring how fatigue influences test 

scores has used standardized tests of reading, math and various sciences (i.e., geography, 

physics, chemistry and biology) to fatigue the students (Sievertsen et al., 2016). 
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Implications 

Many times, post-concussion CNT is administered before-or after-school depending on 

the sports medicine professional’s schedule as well as the athlete’s academic and athletic 

schedule. The results of this study suggest sports medicine professionals can administer CNT 

before-or after-school without concern of confounding factors, like time of day or cognitive 

fatigue, influencing CNT performance or symptoms.  

Limitations 

There are several limitations to this study. First, many measures (i.e., demographic, VAS-F, 

PSQI-pw, MEQ-SA, Food Intake Form, Effort Form, Cognitive Demand of School Intake Form) 

used in this study were self-reported by athletes. It is assumed that athletes reported honestly on 

all self-reported measures. Second, the same test version was given a both testing sessions, 

which may result in some learning effects because some stimuli are only reordered (Schatz et al., 

2014). Third, the athletes that participated in this study were from three different schools. Lastly, 

the sample size was relatively small. After running a post-hoc power analysis to determine an 

appropriate sample size for the paired samples t-test a sample size of over 100 is needed.  

Future Research 

 Future research should continue to explore the effects of cognitive fatigue and time of 

CNT administration on CNT performance and symptoms. An increase in sample size is needed 

to further understand how these potentially confounding factors could influence performance and 

symptoms. In addition, a larger sample size may result in an observed synchrony effect in 

morning types and evening types. Lastly, future research should investigate effects of cognitive 

fatigue and time of CNT administration on CNT performance and symptoms in college-aged 

athletes. The transition from high school student to college student is characterized by a shift in 
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personal responsibilities, decreased institutional support, and changes in social environment 

(Astin, 1984; Evans, 2009; Schulenberg, Sameroff, & Cicchetti, 2004). This transition period 

could influence regulation, which could affect CNT performance.  

Conclusions 

 The results of this study did not support the hypothesis that after-school neurocognitive 

performance and total symptoms would be worse than before-school neurocognitive performance 

and symptoms. In addition, there was no synchrony effect observed for morning types or evening 

types before-or after-school. The results of the current study suggest that sports medicine 

professionals can administer CNT before-or after-school without concern of confounding factors 

influencing performance and symptoms.  
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Supplemental Analyses 

Table 8.  

Supplemental Analyses of Results 

Question Exploratory Analysis Performed 

Are there differences in ImPACT symptom 

clusters before-and after-school? 

Paired samples t-tests (Non Significant)  

See Table 9. 

Does self-reported fatigue change before-and 

after-school (“Do athletes get more fatigued 

from school?”)? 

Paired samples t-test (Non Significant) 

See Table 10. 

Does self-reported energy levels change across 

time? 

Repeated measures ANOVA (Significant main 

effect for time) 

See Table 11. 

Does self-reported energy levels change 

before-and after-school (“Do athletes get less 

energized from school?”)? 

Paired samples t-test (Significant) 

See Table 12.  

Is there a relationship between before-school 

self-reported fatigue and energy between the 

two testing sessions (“Are self-reported 

fatigue and energy after school consistent 

across the two sessions?”)? 

Spearman correlation (Significant and non 

significant) See Table 13 and 14.  

Is there a relationship between after-school 

self-reported fatigue and energy between the 

two testing sessions (Are self-reported fatigue 

and energy after school consistent across the 

two sessions?”)? 

Spearman correlation (Significant) 

See Table 15 and 16. 

Is there a relationship between PCSS fatigue 

and VAS-F self-reported fatigue before and 

after school (“Is fatigue reported on the PCSS 

and VAS-F related before-and after-

school?”)? 

Spearman correlation (Significant and non 

significant) See Table 17.  

Is there a difference between ImPACT 

composite scores and total symptoms between 

athletes who took ImPACT before-school first 

and athletes who took ImPACT after-school 

first?  

Independent samples t-test (Non Significant) 

See Table 18. 

Are there differences in ImPACT composite 

scores and total symptoms in athletes that are 

and are not fatigued by school the first time 

they take ImPACT? 

Independent samples t-test (Non significant) 

See Table 19.  
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Table 8.  

 

Supplemental Analyses of Results (Cont.) 

Question Exploratory Analyses Performed 

Are there differences in PCSS baseline 

symptom clusters in athletes that are and are 

not fatigued by school the first time they take 

ImPACT? 

Independent samples t-test (Significant)  

See Table 20. 

 

Table 9.  

Analysis of PCSS baseline symptom clusters before-and after-school (N = 30) 

 Before-School After-School 

 M SD M SD 

Cognitive-Sensory 1.36 2.11 1.64 1.95 

Sleep-Arousal 3.00 3.32 3.13 3.17 

Vestibular-Somatic 0.72 1.72 0.64 1.51 

Affective 0.92 1.93 1.26 2.14 

* p < .01 

 

Table 10. 

Analysis of change in self-reported fatigue between Week 1 and Week 2 (N = 39) 

 Week 1 Week 2 

 M SD M SD 

Change in Self-Reported 

Fatigue 
0.44 1.96 1.09 2.19 

* p < .05 

 

Table 11.  

Analysis of self-reported energy across four time points (N = 39) 

 
Time Point 1 – 

Before-School 

Time Point 2 – 

After-School c 

Time Point 3 – 

Before-School a 

Time Point 4 – 

After-School c 

 M SD M SD M SD M SD 

Energy 5.39 1.38 5.56 1.78 4.30 1.25 5.73 1.87 

a significantly different from Time Point 1, b significantly different from Time Point 2, c 

significantly different from Time Point 3, d significantly different from Time Point 4 
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Table 12. 

Analysis of change in self-reported energy between Week 1 and Week 2 (N = 39)  

 Week 1 Week 2 

 M SD M SD 

Change in Self-Reported 

Energy* 
0.17 1.55 1.44 2.14 

* p < .05 

 

Table 13.  

Correlation between before school self-report fatigue at Week 1 and Week 2 (N = 39) 

 Week 1 Before-School 

Fatigue 

Week 2 Before-School 

Fatigue 

Week 1 Before School Fatigue - 0.49* 

Week 2 Before School Fatigue  - 

* p < .01 

 

Table 14.  

Correlation between before school self-reported energy at Week 1 and Week 2 (N = 39) 

 Week 1 Before-School 

Energy 

Week 2 Before-School 

Energy 

Week 1 Before-School 

Energy 

- 0.10 

Week 2 Before-School 

Energy 

 - 

* p < .05 

 

Table 15.  

Correlation between after school self-reported energy at Week 1 and Week 2 (N = 39) 

 Week 1 After-School Fatigue Week 2 After-School Fatigue 

Week 1 After-School Fatigue - 0.72* 

Week 2 After-School Fatigue  - 

* p < .01 
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Table 16.  

Correlation between after school self-reported energy at Week 1 and Week 2 (N = 39) 

 Week 1 After-School Energy Week 2 After-School Energy 

Week 1 After School Energy - 0.57* 

Week 2 After School Energy  - 

* p < .01 

 

Table 17.  

Correlations between before-and after-school PCSS self-reported fatigue and VAS-F self-

reported fatigue of Order 1 (n = 18) 

 Before-School 

PCSS Fatigue 

After-School 

PCSS Fatigue 

Before-School 

VAS-F Fatigue 

After-School 

VAS-F Fatigue 

Before-School 

PCSS Fatigue 

 

- 0.64* 0.41 0.11 

After-School 

PCSS Fatigue 

 

 - 0.46 0.16 

Before-School 

VAS-F Fatigue 

 

  - 0.36 

After-School 

VAS-F Fatigue 

   - 

* p < .01 
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Table 18. 

Correlations between before-and after-school PCSS self-reported fatigue and VAS-F self-

reported fatigue of Order 2 (n = 21) 

 Before-School 

PCSS Fatigue 

After-School 

PCSS Fatigue 

Before-School 

VAS-F Fatigue 

After-School 

VAS-F Fatigue 

Before School 

PCSS Fatigue 

 

- 0.68** 0.15 0.53* 

After School 

PCSS Fatigue 

 

 - .03 0.23 

Before School 

VAS-F Fatigue 

  

  - 0.54 

After School 

VAS-F Fatigue 

   - 

* p < .05 ** p < .01 

 

Table 19. 

Analysis of ImPACT composite scores of athletes fatigued by school (n = 23) and athletes not 

fatigued by school (n = 16) 

 Athletes Fatigued by School 
Athletes NOT Fatigued by 

School 

 M SD M SD 

Verbal Memory 87.70 10.37 87.06 11.38 

Visual Memory 77. 70 14.04 81.00 8.59 

Processing Speed 38.76 7.05 39.92 5.94 

Reaction Time 0.61 .06 0.58 .07 

Total Symptoms 8.65 7.28 4.69 6.23 

* p < .01 
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Table 20.  

Analysis of PCSS baseline symptom clusters of athletes fatigued by school (n = 23) and athletes 

not fatigued by school (n = 16) 

 Athletes Fatigued by School 
Athletes NOT fatigued by 

school 

 M SD M SD 

Cognitive Sensory 1.65 2.35 1.13 1.75 

Sleep-Arousal* 4.04 3.02 1.50 2.31 

Vestibular-Somatic 1.09 2.33 0.31 0.70 

Affective 1.26 2.24 1.13 2.00 

*p < .01 
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Appendices 

 

Appendix A. 

  

Recruitment Sheet: Before and After School Testing 
 
Name: ________________________________________  Date: _______________ 
 
 
Please fill out the following information:  
 
Parent name: ___________________________________________________________ 
 
Your parent’s phone number: __________________________________________________ 
 
Grade: __________________________________________________________________ 
 
Do you have transportation in order to be at school at 7 a.m.?              Yes  No 
 
How many academic classes do you have per day (e.g. History, Math, Science…) (Study Hall is 
not a class)? _____________________________________________________________. 
 

a. How many AP classes do you have per day?  _________________________. 
 

b. How many Pre-AP classes do you have per day? ______________________. 
 

c. How many elective classes do you have per day (e.g. Music, Band, Art)? 
________________________________. 

 
2. What grades to you typically make?             

 
Above Average: A’s-B’s                            Average: C’s      Below Average: C’s-below 
 

3. Rate the academic difficulty of your class schedule. (1 being not difficult, 5 being 
extremely difficult) 

 
1  2  3  4  5  

 
4. How tired (cognitively) do you feel after a full day of school? (1 being not tired at all, 5 

being extremely tired) 
 

1  2  3  4  5 
 
Please select all that apply:  
 
Is English your second language?      Yes No  
 
Have you ever been diagnosed with Learning Disability, ADHD?  Yes No 
 
Have you been diagnosed with a concussion within the last 6 months? Yes No 
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Appendix B.  
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Appendix C.  
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Appendix D.  
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Appendix E.  
 

Food Intake Survey 
 

Name: ____________________________     Date: ______________ 

 

 

5. Did you eat breakfast today?  Yes No 

IF YES -  

a. About what time did you eat breakfast (e.g., 6:30 am)? ___________________ 

b. Please describe what you ate for breakfast (e.g., 1 bowl of cereal with milk). 

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________ 

 

6. Did you eat lunch today?             Yes      No  

IF YES - 

a. About what time did you eat lunch (e.g., 12:30 pm)? _____________________ 

b. Please describe what you ate for lunch (e.g., hamburger with fries and a 

bottle of water). 

__________________________________________________________________

__________________________________________________________________

_________________________________________________________________ 

 

7. Did you drink any caffeine today (e.g., coffee, soda, energy drinks…)?     Yes   No 

IF YES - 
    

Exactly what did you drink 

(e.g., coffee, energy drinks, 

soda…)? 

When did you drink it (e.g., 

6:30 am)? 
Approximately how much did 

you drink? 

   

   

   

 
8. Do you take any supplements? Yes       No 

a. About what time did you take the supplements (e.g., 6:30 am, 12:30 pm)? 

____________________ 

b. Exactly what supplement did you take (e.g., creatine, protein, pre-workout 

drinks, amino acids)? 

__________________________________________________________________ 
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Appendix F. 

 
 

Name: ____________________________     Date: ______________ 

 

Effort Form 
 

AFTER YOU COMPLETE IMPACT 
 

Please CIRCLE your effort (i.e., how hard did you try) while taking this test:  

No Effort  

(I did not try at all) 
Low Average Effort 

(I tried a little bit) 
Average Effort 

(I tried, but could have 

tried harder) 

High Effort 

(I gave my best 

effort) 

1 2 3 4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 

 

Appendix G. 

 

Cognitive Demand of School Intake Form 
 

Name: ____________________________     Date: ______________ 

 

 

1. How many academic classes do you have per day (e.g. History, Math, Science…) 

(Study Hall is not a class)? ___________________________________________. 

a. How many AP classes do you have per day?  ___________________. 

b. How many Pre-AP classes do you have per day? _____________. 

c. How many elective classes do you have per day (e.g. Music, Band, Art)? 

______________ 

 

2. Generally speaking, what kind of student are you?             

 

Above Average: A’s-B’s      Average: C’s    Below Average: C’s-below 

 

 
3. Rate the academic difficulty of your class schedule. (1 being not difficult, 5 being extremely 

difficult) ______________________. 
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Appendix H. 
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Appendix I.  

 

Before-And-After School Study Script 

 

Good morning/Good afternoon, my name is_____________________. I am here from the 

University of Arkansas, specifically the Office of Sport Concussion Research. Today you will be 

completing a 20-minute computer test that will measure your memory and reaction time. It is 

very important that you try your best on this test as we want to know how you do on this test 

before and after school.  

 

Before we get started please turn off and put away any electronic devices. This 

morning/afternoon you will be completing the NFL concussion assessment called ImPACT. 

ImPACT will take approximately 25 minutes if there are no disruptions and everyone is quiet. 

We will all start and end together as a group.  

 

The first part of the test will ask you questions about your health and concussion history. Please 

begin now and follow the instructions. Once you have completed the background information a 

screen will prompt you to start the test. Please DO NOT click continue until I say so. We want to 

make sure there are no more questions or distractions before everyone starts the test. If you have 

any questions please raise your hand.  

 

The next part of the test will ask you questions about your current symptoms. Remember to 

answer the questions as to how you are feeling right now. Please begin now and follow the 

instructions. Once you have completed the background information a screen will prompt you to 

start the test. Please DO NOT click continue until I say so. We want to make sure there are no 

more questions or distractions before everyone starts the test. If you have any questions please 

raise your hand.  

 

Before you begin the actual cognitive tasks I want to talk about how you can earn a 40 dollar 

cash prize. If you give maximum effort on both of your testing sessions, you will earn a 40.00 

cash prize. If you give less than maximum effort, you will earn less than the 40.00 prize. Your 

effort will be measured by your overall scores on both your testing sessions. You will not be paid 

until your last visit is complete.  

 

After you complete ImPACT, there are 5 short questionnaires located under your keyboard. 

Please answer these questionnaires to the best of your ability. Please read and follow the 

directions carefully and raise your hand if you have any questions. 

 

Please DO NOT TALK to one another. You may begin the test.  
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