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Abstract

This thesis discusses massively parallel molecular dynamics simulations of nBLOCKs using graph-

ical processing units. nBLOCKs are nanoscale building blocks composed of gold nanoparticles

functionalized with single-stranded DNA molecules. To explore greater simulation time scales we

implement our nBLOCK computational model as an extension to the coarse grain molecular simu-

lator oxDNA. oxDNA is parameterized to match the thermodynamics of DNA strand hybridization

as well as the mechanics of single stranded DNA and double stranded DNA. In addition to an in-

depth review of our implementation details we also provide results of the model validation and

performance tests. These validation and performance tests are comprised of over a hundred sep-

arate simulations spanning in simulation length from one thousand to ten million times steps and

with simulation sizes ranging from 16 to 27832 particles. Together these tests show the ability

of our implementation to handle the full range of basic nBLOCK topologies in a diverse set of

conditions.

A selection of the utilities developed during the course of this thesis are also discussed. We

provide descriptions of the scripting utilities which support nBLOCK assembly generation, simu-

lation, and analysis.
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Chapter 1

Introduction

Molecular simulation is a way to study the physical interactions of atoms or molecules over

time. This thesis discusses techniques for simulating the molecular dynamics of deoxyribonu-

cleic acid (DNA) functionalized nanoparticles using software which utilizes graphical processing

units (GPU). In particular, with our molecular simulations we wish to model the dynamics of DNA

functionalized nanoparticles that are topologically consistent with the nBLOCK model [7]. The

experimental results obtained by the nBLOCK protocol have shown the ability to specify the spa-

tial configuration of gold nanoparticles by first strategically designing and placing DNA strands on

them which can be used to control their connectivity via DNA base pair complementarity.

To simulate the dynamics of nBLOCKs we implemented an extension to a coarse grain simu-

lation package called oxDNA [3]. The simulation techniques discussed within this thesis can be

used as a guide for adding additional functionality to the base oxDNA-nBLOCK extension or for

modifying it to fit the constraints of similar nanoparticle-ssDNA models.

We can use our oxDNA-nBLOCK extension to perform experiments that are difficult or impos-

sible to perform in the wet lab. After a simulation we can analyze particle trajectories for statistics

on target properties of our assembly. In order to trust these statistics it is necessary to embed the

characteristic properties of the chosen material into the simulator so that they can be observed. For

example, the base oxDNA DNA model captures the mechanical properties of DNA that allow for

ssDNA to be floppy and dsDNA to be rigid. The base model also captures the thermodynamic

properties of hybridization at certain temperatures and strand disassociation or melting at a certain

temperature. As is explained in [3] both of these targets were met by the oxDNA model by rigor-

ously parameterizing the potentials in the model to experimental data. By extending the oxDNA

model we are able to leverage this existing functionality.

This thesis also presents tests and their results for validating that the dynamics simulated by the

GPU implementation match the CPU. In addition we also provide the results of performance tests.
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Our performance tests cover simulations of nBLOCKs having from one to six anisotropic strand

attachments. Each of the six nBLOCK strand topologies were grouped into simulations ranging

in size from 22 to 27,432 particles. We then show the efficiency of our implementation through

comparisons between CPU and GPU simulation run times.

1.1 Outline

The remainder of this thesis is organized as follows. Background information is given in Chapter

2. Subsections of Chapter 2 include a more detailed review of the nBLOCK model, the oxDNA

molecular simulator, and the NVIDIA CUDA programming model. Details of our nBLOCK GPU

implementation can be found in Chapter 3. In particular we discuss how we are able to implement

our massively parallel nBLOCK model while without editing the highly optimized existing CUDA

DNA interaction class. We explain our implementation in terms of maintaining a data dependency

graph between bound and unbound particles in simulation. We show how our CUDA nanoparti-

cle backend, CUDA nBLOCK interaction class, and an adaptation of the standard Verlet-cell list

maintain this graph. Results of validation and performance tests are reported in Chapter 4. Chap-

ter 4 also includes a more detailed explanation of the Brownian thermostat and how it dictates test

design and interpretation of simulation results. Concluding remarks can be found in Chapter 5.
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Chapter 2

Background

2.1 The nBLOCK Model

The nBLOCK experimental protocol demonstrates a refinement to preceeding models by outlining

an experimental design which results in the anisotropic functionalization of gold nanoparticles with

ssDNA. This anisotropic functionalization allows for previously unprecedented levels of control

of the placement of gold nanoparticles by first strategically designing and placing strands on them

which can be used to control their combinations via DNA base pair complementarity.

2.1.1 Predecessors

In 1996 two papers were published in a single issue of Nature Letters that detailed separate ex-

perimental methodologies for attaching single stranded DNA to gold nanoparticles. The first of

these papers was by Alivisatos et al. [1] and demonstrated an experimental protocol for the mono-

functionalization of gold nanoparticles with DNA. They further demonstrated that mixing compli-

mentary batches of these nanostructures resulted in the expected arrangement of the nanoparticles

into one dimensional structures with spacing between nanoparticles determined by strand length.

The second paper was by Mirkin et al. [8] demonstrated a separate process by which many strands

of DNA could be anchored to a single gold nanoparticle. They showed that non-complimentary

batches of these isotropically functionalized gold nanoparticles would self-assemble into colloidal

aggregates once complimentary dsDNA linkers were added to the mixture.

2.1.2 nBLOCK Synthesis

An nBLOCK [7] is a gold nanoparticle (Au-NP) that has been functionalized with strands of de-

oxyribonucleic acid (DNA). DNA is a molecule that defines the development, functionality, and

replication of all known living organisms. DNA is composed of four bases, adenine (A), guanine
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Figure 2.1: Complementary DNA base pairs. On the left Adenine (A) and Thymine (T). On the
right Guanine (G) and Cytosine (C). The dotted lines represent hydrogen bonds and the solid lines
represent covalent bonds.

(G), cytosine (C), and thiamine (T), a sugar (deoxyribose), and a phosphate group. A and T share a

symmetric attraction as do G and C. Figure 2.1 gives a graphical representation of the nucleotides

bound with their Watson-Crick compliment. The bond that forms between these pairs is a hydro-

gen bond that is about one hundred times weaker [2] than the covalent bonding that occurs between

stacked bases in the backbone of single stranded DNA (ssDNA). Double stranded DNA (dsDNA)

is considered anisotropic due to the weak hydrogen bonding between the strands at the core of the

helix and the strong covalent bonds between the stacked bases. DNA is also anisotropic in the

sense that hybridization of two strands only occurs in an anti-parallel manner.

The average diameter of the nanoparticles used in [7] was 2.83± 0.47 nanometers (nm). Us-

ing the nBLOCK experimental protocol the first step in the synthesis of NP-DNA is to prepare

the nanoparticle surface with capping ligands. The nanoparticles are modified by two different

ligand types which cause the AU-NP to have a net negative charge. The 5′ ends of ssDNA are

functionalized (chemically modified) so that they can bind to the ligands on the surface of the NP.

These functionalized-ssDNA can then bound to the surface of the nanoparticle one at a time up to

a maximum of six strands as shown in Figure 2.2.

After the initial DNA strand (S0) has bound the remaining five strands bind sequentially with

the repulsive electrostatic forces between strand backbones as well as the negatively charged NP

surface guiding the placement of the strands towards the area on the NP surface with the minimum

repulsion. As a consequence the odd indexed strands (S1,S3,S5) will seek the antipodal point to the

4



Figure 2.2: nBLOCK Visualization. We extended Python scripts within oxDNA utilities for our
nBLOCK visualization within UCSF Chimera [14].

most recently bound strand. While the even index strands (S2,S4) bind to any point on the sphere

that is equidistant from the previously attached strands.

2.1.3 nBLOCK Simulation

We chose to extend the oxDNA molecular simulator with a coarse grain description of the nBLOCK

model. The goal of coarse grain molecular dynamics is to reduce the detail of the simulated com-

ponents from the atomistic scale to a polyatomic scale. Our nBLOCK extension to oxDNA models

gold nanoparticles as a single unit. In reality gold nanoparticles have many atomic components.

In addition we do not explicitly model the capping ligands covering the gold nanoparticles or the

chemically modified ends on the five prime ends of the ssDNA that are bound to these capping lig-

ands. Instead we implicitly account for the covalent bond between nanoparticle and ssDNA with a

modified version of the finitely extensible nonlinear elastic (FENE) spring potential. The isotropic

nature of this FENE Spring potential allows nanoparticle and nucleotides to rotate independently

of one another while maintaining an average distance interval.

By implementing the nBLOCK model as an extension to oxDNA we hope to capture all the

work that has gone into modeling the dynamics of DNA interaction ([13], [20], [19]) for our own
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Figure 2.3: Potentials and components of an nBLOCK in oxDNA.

investigations into the dynamics of self-assembling nBLOCKs.

2.2 oxDNA

oxDNA [11] is a molecular dynamics simulator built around a unique coarse-grain model of DNA.

This coarse grain description encorporates the geometric, thermodynamic, and mechanical prop-

erties of DNA which are considered relevant to DNA nanotechnology.

2.2.1 Coarse Grain Simulation

One of the principle differences between molecular dynamics simulators is the scale at which

simulation occurs. An atomistic resolution simulation computes interatomic forces for the atoms

in simulation. An atomistic simulation of an nBLOCK might include the ligands bound to the
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surface of the NP and or model the nanoparticles as packed spheres of gold atoms. In addition it

would also model an atomistic description of DNA molecules. As is noted in [15], the standard

molecular dynamics time step scales linearly with the number of particles (N) in the simulation.

As a result, the computational effort to perform 103 time steps for a system with 109 particles is

the same as performing 109 time steps for a system with 103 particles. Each atom or molecule

which doesn’t need to be explicitly modeled to capture the dynamics of the target system increases

the timescales accessible by that system. This is particularly important for many applications of

DNA nanotechnology which rely on the rigidity of a dsDNA and the flexibility of a ssDNA as

well as capturing the transition between them. For our purposes modeling the transition between

these states for ssDNA anchored to gold nanoparticles is one of the principal motivations behind

this work. The mechanical and thermodynamic model of oxDNA allows for these dual states to

be simulated as well as the transitional states between them. oxDNA is able to simulate these

transitions in a tractable amount of computation time due to a unique coarse-grained DNA model

and accompanied force potentials that describe these dynamics.

In general coarse-grained models reduce the number of atoms in simulation by combining them

into functional units. The atomic components of a molecule that have an effect on the properties

we wish to measure are simulated at a higher resolution, while the atoms or groups of atoms that

do not effect the simulation can be abstracted over. The coarse grain description of oxDNA mod-

els DNA strands at the scale of nucleotides. That is, although there many atoms in a nucleotide,

oxDNA groups them into a single point and emulates their bulk description through a set of po-

tentials. Figure 2.3 shows a graphical representation of these potentials between nucleotides [11]

as well highlighting the main components of our coarse grain nBLOCK description as modeled in

oxDNA. Within Figure 2.3 we have labeled the finitely extensible nonlinear elastic (FENE) spring

potential between consecutive backbone sites as Vbackbone, and the modified FENE spring between

nucleotide backbones and the nanoparticle as FENE Spring. Additionally in Figure 2.3 the hy-

drogen bonding between Watson-Crick compliments is labeled as Vh.b., the intra-strand stacking

potential is labeled as Vstack, and the cross stacking potential is labeled as Vcross stack. The Lennard

7



Jones excluded volume potential between nucleotides and between nucleotides and nanoparticles

is not shown.

2.2.2 Simulation Parameters

The oxDNA executable takes as input a single file which describes the scope of simulation. In-

formally we can group these parameters into four main categories: backend, interaction class, list,

and IO. The backend parameters include flags for hardware initialization such as the specification

of CPU or GPU, initialization seed, and the computational precision. In addition the backend also

takes parameters that modulate the macroscopic state of the simulation environment. These pa-

rameters include a designation of temperature T , the integration time step δt, choice of thermostat,

the interval at which thermalization occurs NNewtonian, and multiple ways to designate the diffusion

coefficient. The interaction class is in general specified by a single flag which is just the name

of the interaction type. For nBLOCK simulation the value for this flag should be set to NBLOCK.

Verlet-cell lists are the standard choice for particle non-bonded neighbor calculations. To increase

the area around each particle that is checked for non-bonded neighbors users may designate a float-

ing point value for the Verlet skin input flag. IO parameters in the input file include the relative

or absolute file system paths for the initial configuration topology and trajectory files. Other IO

parameters include specifying the interval (in simulation steps) that system energy profiles and

particle trajectories are saved.

2.2.3 Description of oxDNA Code Base

Currently the oxDNA code base consists of over fifty thousand lines of code split between classes

for particle data, particle lists, particle interactions, thermostats, logging, analysis, simulation

backends, and a simulation manager. Other than utilities written in the Python programming lan-

guage and CUDA code written for GPU enabled simulation, the standard programming language

of oxDNA is C++. C++ is a typed language that offers an abstraction for grouping related data and

functions called a class. In the following overview we use terminology associated with C++ and

8



call the data values associated with a class its ”members.”

The highest level component of the oxDNA code base is the simulation manager. This manager

has a polymorphic member for data management that also has members that define the extent of

simulation. For example part of the data management responsibilities of a backend is to load

particle configuration files into particle objects. The extent of simulation is defined by backend

members for particle interaction, particle lists, and a thermostat.

A model for representing nBLOCKs has been implemented for molecular dynamics (MD)

simulations. The molecular dynamics backend is responsible for loading the particle configuration

files into particle objects. The molecular dynamics backend also has a member for characterizing

the interaction between particles during a simulation. These are the interaction classes.

The MD simulation backend also contains a member for a data structure which is constructed

for each particle and designates a neighboring set of particles which this particle may interact with

during a simulation step.

The final member designates a system thermostat. The thermostat may take on different roles

depending on which ensemble the system is modeled under. In the NV T ensemble, where N stands

for the total number of particles, V stands for the volume of the simulation space, and T stands for

temperature, the system thermostat is called the Brownian thermostat. This thermostat introduces

Brownian motion to the dynamics of the system through random reinitialization of particle velocity

and particle angular momentum.

Each of the simulation backend members parses the input file and relevant parameters are

extracted. Some of these parameters may be shared between these classes.

The simulation manager has a member function run() which is called from the standard C++

global main() function. The simulation manager then iterates for the designated number of simula-

tion steps, calling the simulation step() function that is implemented as part of the simulation

backend. The CPU molecular dynamics backend simulation step() function is composed of

five functions. Three of these five functions calculate the Newtonian mechanics of the model. That

is, they calculate forces between the interacting particles and use these forces to update a particle’s

9



position and orientation. There is also a function for updating non-bonded neighbor lists and a

function which calls the system thermostat.

void Molecular_Dynamics_CPU_Backend::sim_step(llint curr_step)
{

first_step(curr_step);

if (!lists->is_updated())
lists->global_update();

compute_forces();

second_step();

if (curr_step % newtonian_steps == 0)
thermostat->apply(particles, curr_step);

}

The first function that is executed in a simulation step is called first step(). This function

updates particle positions and orientations based on the sum of the forces acting on the particles.

The second mandatory function is compute forces(). This function takes as input the output of

the first step and calculates new forces in a pairwise manner between each particle and its bound

and unbound neighbors. However, some of the particles in a neighbor list may not be included in

these calculations if they are greater than rcut distance away from the list owner. The final function

that is always called is second step(). This function updates the velocity and angular momentum

of each particle based on new values for forces and torques calculated in compute forces().

Between the first step() and compute forces() functions particle neighborhood lists may

be updated if the update to any particle’s position during first step() exceeds a threshold dis-

tance as measured from the initial position that the particle occupied when the current particle lists

were constructed. This threshold, known as the Verlet-skin, is a parameter that is specified by the

user in the input file. The final function that is called in simulation step() is thermalize().

This function checks the number of simulation steps that have been performed and if this number

modulo NNewtonian equals zero applies the system thermostat to the particle data. In the NV T en-

semble the system thermostat is constructed to maintain an average system temperature by making

adjustments to particle velocities and angular momentums.
10



2.3 NVIDIA GPU Programming Model and Architecture

The graphics processing unit (GPU) is made for problems which can be formulated in such a

way that the same set of instructions are executed on many data elements in parallel. CUDA

was released on November 2006 as a heterogeneous hardware and software platform for general

purpose parallel computing. Since release there have been several major hardware architecture

updates and corresponding API updates. In this thesis we will run simulations on a GTX780 from

the Kepler [10] compute architecture. The NVIDIA CUDA software platform [9] exposes an API

which can be executed natively in C++ and other languages such as C and Fortran.

2.3.1 Programming Model

Using Flynn’s taxonomy [4] of hardware architectures NVIDIA describes the type of data par-

allelism achieved by the model as single instruction multiple threads or (SIMT). In contrast, the

classic CPU architecture is described as single instruction single data under Flynn’s taxonomy.

The SIMT programming model exposes data parallelism by organizing threads into nested ad-

dressable groups, granting threads access to a number of memory types, and providing high-level

API function calls that can make threads share data and or synchronize execution as needed. The

GPU thread hierarchy is an abstraction for the underlying GPU hardware to which it maps. A

CUDA thread corresponds to a CUDA arithmetic-logic unit (ALU) which executes the thread in-

structions. Ordered groups of these threads are organized in what are called thread blocks which

which map to contiguous cores on a streaming multiprocessor (SMX on the Kepler Architecture

[10].) Each SMX may have one or more thread blocks under its control but the SMX as a whole is

addressable to a kernel grid. Figure 2.4 displays equivalent functions for both the host (CPU) and

device (GPU) as well as initialization details for host to device transfer.

A function which is executed on an NVIDIA GPU is called a kernel. Kernels can be invoked

from either the host (CPU) or device (GPU) but all of the execution occurs on the device. The

kernel function signatures on the host side have a separate parameter space which can be used to
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define the dimensions of the kernel grid. Sections of the kernel grid are mapped to SMX, and each

SMX distributes the kernel instructions among the CUDA cores by block. And again, these cores

execute in parallel and are addressable within the kernel function as threads.

2.3.2 Memory Types on the Kepler Architecture

Each CUDA thread executing on a GPU that is from the Kepler Architecture has access to six

memory types: register memory, local memory, shared memory (L1 Cache), global memory, con-

stant memory, and texture memory. Register memory is alloted on a per thread basis and in general

is managed by the compiler. The register file is 256 kilobytes implemented as 64k 32-bit registers.

These registers are partitioned among threads in an SMX. Registers are spilled to local memory as

needed during execution. Local memory has the same latency as global memory. It is possible to

share data among threads in a thread block (either loaded from global memory or as the product of

intermittent thread calculations) in the L1 Cache or ’Shared Memory’. The L1 Cache is located on

the chip along with the register file and has the second lowest latency. The lifetime of the data in

the L1 Cache is tied to the lifetime of the thread block and is addressable based on the components

of the thread id. Global memory is persistent between kernel invocations and can be read from and

written to by both the host and the device. Global memory has the highest latency of all the mem-

ory types. The size of the global memory is typically several gigabytes and is addressable based

on the components of the thread id. Constant and texture memory are both read only memory

types and similar in principal. The cache for each resides on chip. Constant memory has an access

pattern similar to global memory whereas the texture cache is optimized for 2D spatial locality.

2.3.3 Details of Memory Access for Addressable Memory

The threads in a thread block are bundled into groups called warps. Each warp holds exactly 32

threads. As a result a kernel grid should have a block size that is a multiple of 32. Memory

operations are issued by the warp. When the memory operation is a read or write from global

memory all threads within the warp will perform the memory transaction simultaneously. Global
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void host_func(Particle* particles , const int N) {
for (int i = 0; i < N; i++) {

Particle* p = particles[i];
float3 a = p->pos;
...

}
}

__global__ void device_func(float3* poss , const int N) {
int BID = gridDim.x * blockIdx.y + blockIdx.x; // block id
int TID = blockDim.x * threadIdx.y + threadIdx.x; // thread index in block
int IND = N * BID + TID; // thread index in poss
if (IND >= N) return;
float3 a = poss[IND];
...

}

int main() {
const int N = 32;
Particle* particles[N]; // Host side particle objects

/* Read particle object data from configuration files */

if (RUN_CUDA) {
float3* h_poss; // Host side particle positions
float3* d_poss; // Device side particle positions

/* Initialize h_poss and d_poss. */
/* Copy position data from particles array into h_poss. */
/* Perform a host to device memory copy (h_poss to d_poss) using CUDA API. */

int tib = 8; // threads in a block
int big = (N + tib - 1) / tib; // blocks in a grid
device_func <<<big, tib >>>(d_poss , N);

} else {
host_func(particles , N);

}

return 0;
}

Figure 2.4: CUDA code sample.

memory is off chip in an area called device memory. Device memory is accessed via 32-, 64-, or

128-byte memory transactions. To reduce the total number of fetches required it is best if the per

thread calculated addresses are aligned and the sum of the consecutive n-byte words requested is

32-, 64-, or 128-bytes.
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Chapter 3

Implementation

Our nBLOCK extension to the oxDNA CUDA code involved translating the host side implemen-

tation of the nBLOCK interaction class from C++ to CUDA C++. However, to accommodate the

nBLOCK model without making changes to the current CUDA DNA interaction class it was nec-

essary to implement a new backend, and make modifications to the Verlet-cell list, and Brownian

thermostat. As was discussed in the background chapter, a simulation backend links particle and

list objects to the interaction class. Lists are maintained for bonded and non-bonded neighbors.

Non-bonded neighbor lists are constructed according to the widely used Verlet-cell list algorithm.

An interaction class uses these lists to apply potentials between particles. Finally, the Brownian

Thermostat occasionally perturbs the Newtonian mechanics of the interaction class by introducing

non-physical movements to the system via adjustments to the velocity and angular momentum of

randomly selected particles.

All of the various forces acting on a nanoparticle or nucleotide can be calculated in isolation

and in any order, and then reduced into a single force or torque vector. Calculations are split up in

our nBLOCK GPU interaction class to exploit this fact.

Our CUDA nBLOCK interaction class first calls the CUDA DNA interaction class compute forces

function using the offset device arrays. Within the CUDA DNA compute forces forces and

torques are calculated pairwise between the bonded and the non-bonded neighbors of each nu-

cleotide. When the CUDA DNA interaction functions are complete our CUDA nBLOCK compute forces

then computes the pairwise forces and torques between nucleotides bound to each nanoparticle as

well as its non-bonded neighbors. The nature of these calculations which allows them to be carried

out in a non-deterministic order and concurrently is a natural fit to the computation model offered

by the GPU hardware and CUDA API

It is also worth noting that there are special backends written for GPU simulation in oxDNA.

These backends inherit from the base backend but also implement functions for data transfer be-
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tween the CPU (host) and GPU (device).

3.1 Implementation Constraints

A particle object on the host implementation contains members for its type, position, orientation,

velocity, angular momentum, as well as the index into the backend particle list of that particle’s

five prime and three prime bonded-neighbors. These indexes are referred to as pointers throughout

this discussion. For example, in Figure 3.2 (a) each box represents a particle and the black arrows

represent neighbor pointers.

As is shown in Figure 3.1 the host side list of particle objects is converted into a position

array, an orientation array, a velocity array, an angular momentum array, and an array for bonded

neighbor pointers. To access the data a GPU thread is spawned for every particle and given a

unique index into these device data arrays. The following code snippet depicts how each GPU

thread calculates its index value.

// block id
int BID = gridDim.x * blockIdx.y + blockIdx.x;

// thread index in block
int TID = blockDim.x * threadIdx.y + threadIdx.x;

// thread index in poss
int IND = N * BID + TID;

Representing particle data like this allows the device side force functions to spawn a thread

for each particle and calculate forces between them in parallel. This is in contrast to the host-side

method of iterating over the particle list and calling force functions between pairs of associated

particles. For the host nBLOCK interaction class the pair-wise iterative method allows force func-

tions between pairs of nucleotides to be calculated by its DNA interaction class member variable

as they arise. The assumption with the device side technique is that all of the particle data passed to

these functions is of the same type. While we could differentiate between nucleotide and nanopar-

ticle data on a per thread basis within the force functions of the GPU DNA interaction class, doing
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Figure 3.1: Host to device translation of particle data. Particle data is stored in objects on the
host side. On the device, particle data is split into arrays by member value label.

so would require editing these functions.

3.2 Implementation Strategy

Given the difference in particle data layout between host and device as well as the preexisting

CUDA DNA interaction class assumptions there were two identified strategies for implementing

the nBLOCK model in CUDA within oxDNA. The first and most obvious strategy would be to

copy the force functions from the CUDA DNA interaction class into our CUDA nBLOCK inter-

action class and then edit them such that they branch based on particle type. The second strategy

would be to make no changes or copies of the CUDA DNA interaction class and instead make

changes to the backends and neighbor lists. The first choice wouldn’t scale well in terms of code

complexity and overall maintenance. As a result we choose the second option. This option allows

our implementation to automatically benefit from any future updates to the DNA interaction class

by simply updating the files in the repository.

Instead of altering the CUDA DNA interaction class we edit nucleotide bonded neighbor in-

formation, and filter nanoparticles from nucleotide non-bonded neighbor lists. This information is

instead maintained in the nanoparticle data. The way we implemented this is to stably reorder the
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(a) (b) (c)

Figure 3.2: Stably reorder particle data nanoparticle first. (a) Shows pointers between bonded
neighbors. These points define the NP-DNA topology. (b) Depiction of particle data as a collection
of nanoparticle and nucleotide objects before and after reordering. (c) This sorting must preserve
the order of nucleotides within a strand.

five particle data arrays such that all nanoparticle data comes first as in Figure 3.2.

Before we can perform our particle reordering we must generate maps between a particle’s

current index and its future index once the reordering occurs. This process is initiated by the

following code:

void NP_MD_CUDABackend::set_index_data()
{

np_first_indices = new int[NUMB_N];
original_indices = new int[NUMB_N];
int np_count = 0;
int nucl_count = 0;
for (int i = 0; i < NUMB_N; i++) {

if (is_NP(this->_particles[i])) {
np_first_indices[i] = np_count;
original_indices[np_count] = i;
np_count++;

} else {
const int index = NUMB_NP + nucl_count;
np_first_indices[i] = index;
original_indices[index] = i;
nucl_count++;

}
}
for (int i = 0; i < NUMB_N; i++) {

inv_np_first[np_first_indices[i]] = i;
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inv_original[original_indices[i]] = i;
}

}

Before calling set index data() we precalculate the total number of nanoparticles using the

configuration files. np first indices matches the index of the current particle with the index to

which it will be swapped to when we reorder the particles. To perform the inverse of this index

swapping operation we also build an array original indices. Notice that the nucleotide particles

are also shifted right by NUMB NP, which equals the total number of nanoparticles. The final for-

loop in this function uses the results from the first to build maps that shift bonded neighbor pointers

according to the rearrangement that that particle. Graphically this step is depicted in Figure 3.2

(b).

After sorting the data in this way it is then necessary to adjust bonded neighbor pointers be-

tween nucleotides and nanoparticles such that they point to the new positions of their original

neighbors. Next, the nucleotides which are bound to nanoparticles must have their three prime

neighbor index assigned the value of −1. When a bonded-neighbor list pointer is assigned this

value it indicates that there is no bonded neighbor in that direction. In other words, −1 act as a

global sink node for nucleotides and nanoparticles for all unbound neighbor pointers. And finally,

all of the bonded neighbor nucleotide indexes are decremented by the number of nanoparticles,

NUMB NP. By editing neighbor data in this way we can then offset the data arrays passed to the

DNA interaction class force-function by the total number of nanoparticles using pointer arithmetic.

The CUDA DNA interaction class can then calculate bonded and non-bonded forces between nu-

cleotides without modification.

These maps are used as part of the functions in the nanoparticle-backend which perform host to

device memory transfers. The inverse of the routine is correspondingly a part of the nanoparticle-

backend device to host memory transfer functions.
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3.2.1 Simulation Step

Once the particle data is organized nanoparticle first we may begin performing simulation steps.

Our sim step function is slightly different than what was seen on the host side molecular dy-

namics backend. Because we update the non-bonded neighbor lists for all particles in parallel,

the decremented nucleotide bonded neighbors pointers must be temporarily fixed to accommodate

for the fact that nucleotide GPU thread index values with the update list functions aren’t offset by

the total number of nanoparticles, as is the case with the compute forces function. Note that the

increment LR bonds() and decrement LR bonds() are implemented on the device to increase

efficiency.

void NP_MD_CUDABackend::sim_step(llint curr_step)
{

first_step();

if (are_lists_old)
{
increment_LR_bonds();

cuda_lists->update(d_poss, d_list_poss, d_bonds);

decrement_LR_bonds();

decrement_edge_list_bonds();

are_lists_old = false;
}

forces_second_step();

thermalize(curr_step);
}

Within forces second step() the compute forces function is called. Code for this function

is seen below and a description follows.

void CUDANBLOCKInteraction::compute_forces(d_data)
{
DNA_interaction->compute_forces(
lists,
(d_data->poss + NUMB_NP),
(d_data->orientations + NUMB_NP),
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(d_data->forces + NUMB_NP),
(d_data->torques + NUMB_NP),
(d_data->bonds + NUMB_NP)

);

const dim3 blocks = launch_cfg.blocks;
const dim3 threads = launch_cfg.threads_per_block;
const int np_blocks = (NUMB_NP - 1) / threads.x + 1;
const int np_threads = threads.x;

np_nucl_bonded_part<<<np_blocks, np_threads>>>(
d_poss, d_orientations, d_forces,
d_torques, d_np_bonds

);

np_nucl_excluded_volume_lists<<<np_blocks, np_threads>>>(
d_poss, d_orientations, d_forces, d_torques,
_v_lists->_d_number_neighs, _v_lists->_d_matrix_neighs, d_np_bonds

);
}

By the time this function is called all particle data has been sorted according to our scheme. We

utilize the particle reordering so that we can call DNA interaction->compute forces function

on nucleotide only data. Because all of the nanoparticle data elements are at the front of each data

array, offsetting these arrays by the number of nanoparticles causes the ith GPU thread to access

the ith nucleotide past the last nanoparticle. In other words, when we adjust the device side pointers

in this way before invoking a kernel the thread index of each particle is effectively reduced by the

offset NUMB NP. The final operation (d) in Figure 3.3 adjusts the bonded neighbor pointers to match

the adjusted nucleotide indexes.

For the calculation of nanoparticle potentials that occur in the GPU functions np nucl bonded part

and np nucl excluded volume lists there is no need to utilize pointer arithmetic. Instead we

know that if a thread’s calculated index falls within a certain range then we have a particle of a

particular type. Importantly, all of this can be accomplished without altering any of the native

CUDA DNA interaction class code itself.

As of the current implementation of oxDNA the base simulation back-end only requests data

transfer between the CPU and GPU to write trajectory or energy data to a file, perform analysis,

or adjust particle position and orientation to maintain periodic boundary effects. The frequency of
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(a) (b) (c) (d)

Figure 3.3: Operations on Bonded Neighbor Pointers. (a) Depiction of pointers immediately
after ordering particle data nanoparticle first. (b) Correction of pointers such that original topology
is preserved. (c) Invalidate bonds pointing from nucleotides to nanoparticles while preserving
nanoparticle to nucleotide bonded neighbor pointers. (d) Decrement bonded nucleotide bonds by
the number of nanoparticles before passing data to CUDA DNA interaction class.

all three cases is determined by setting flags in the input file. The more host-to-device and device-

to-host transfers over the course of a simulation run the greater the sorting tax. However, as will

be seen in the tests of the results chapter, these operations have a negligible impact on the overall

performance of our implementation.

3.2.2 Accounting for Particle Mass

Originally the thermostat, first step, and second step functions assumed that simulations will con-

sist of homogeneous particle type and uniform mass. We modified the CUDA Brownian thermostat

and the step functions in the backend to accommodate the separate mass values for nanoparticles

and nucleotides. We differentiate mass on a per particle basis based by the index of that particle, or

correspondingly the index of the thread that performs calculations for that particle. If a thread has

an index value less than NUMB NP than we know it is a thread aligned with nanoparticle data and

use the corresponding mass constant that is set for all nanoparticles. If the thread index is greater

than NUMB NP than we know it is a thread aligned with nucleotide data and scale the calculations
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by the appropriate mass accordingly.

Currently the mass of all nanoparticles in a simulation share the same value. This value is

assigned to each nanoparticle within the C++ NBLOCK interaction class function read topology

using a hard coded value. So to change nanoparticle masses between simulations would currently

require adjusting this value by hand within the code. Note that changing the nanoparticle mass

would require a corresponding change in the nanoparticle’s diameter if you wish to keep the same

particle density. However, assuming that all nanoparticles of a particle elemental type (e.g. Au)

share the same density, the density value could be hard coded and the new diameter and radius

could be found by algebraic manipulation of the formula Mass = Density×Volume. To change

both nanoparticle mass and diameter between simulations a variable for nanoparticle mass could

then be added to the input file.

It is worth noting here that if we wanted to perform simulations of nBLOCKs using a range of

different mass values this could be accomplished without any major degradation to performance

of the device side implementation in terms of the first step, second step, and thermostat functions.

To do this we could construct an array of particle mass values during the initialization functions of

the nanoparticle backend at the same time that we construct the other particle data arrays such as

position, orientation, etc. It would be convenient to do so because particle objects already maintain

a member value for mass. We would also need to add the particle mass device array to the routines

which sort the particle arrays nanoparticle first so that data for a particle is aligned appropriately

in the device side memory.

Changes to diameter due to differing mass values would also have to be considered in the

nBLOCK interaction classes which offset the nanoparticle-bonded nucleotide positions in propor-

tion to the radius of the nanoparticle. We would then need to construct a particle radius device data

array in the same way we would construct the particle mass device data array. Sorting of this array

with all other device data would also be necessary. Visualization of nanoparticles with differing

radii would also need to be accounted for.
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3.2.3 oxDNA-nBLOCK Support Scripts

oxDNA offers a number of convenient tools for the generation of configurations and the analysis of

simulations. Some of these tools come in the form of Python scripts. In some cases the nBLOCK

Python scripts build on the functionality that was implemented previously for the oxDNA DNA

model. In many ways the utility scripts of a molecular simulator are as important as the simulation

model itself. The main output of a simulation is trajectory data or energy profiles and translating

those values into a more useful form is a great benefit when developing and analyzing the unerlying

model.

• nb fileio.py

Takes as a parameters the absolute or realteive paths to a a pair of complimentary configura-

tion files. One of these files defines the topology of each nBLOCK and the other file defines

the position, orientation, normals, velocity, and angular momentum of each particle. These

files are used to create an nBLOCK data container object. The nBLOCK data object is then

used in other scrips supporting our nBLOCK extension to oxDNA.

In addition this script calculates the orientation matrix of each particle from data in the

configuration file. That is, given the orientation vector v1 and the backbone normal v3 we

caclulate their cross product as the value v2. v1,v2,v3 then become the first, second, and

third rows of the particle orientaiton matrix.

• nb simcube.py

This script takes as input paths to configuartions files as well as an integer that designates

the number of lattice points along the edges of a cubic lattice, n. This script then reads in

the input configuration files and translates each partcile among the n3 lattice points. For

example if the input is a monofunctionalized nBLOCK assembly and n = 5 this script would

output a new set of initial configurations with 125 monofunctionalized nBLOCKs. The

nBLOCK lattice configurations can then be thermalized as desired to create inputs for tests

and experiments. Reference [5] has a good description of this general technique.
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• test fileio simdata obj.py

This script added regression testing to our fileio and simdata Python scripts. Regression

tests are designed to determine if any code modifcations have inadvertently changed some

aspect of the underlying script. Before this script can be used it must be initialized. To

perform the regression tests a large number of pregenerated configurations are fed into the

program. These configurations are turned into simulation data objects using nb fileio.py

and nb simdata.py. Once the simulation data objects are initialized we recursively XOR

the SHA-1 hexidecimal digest of their member values together. The result is a 160 bit long

hash value that (probably) uniquely represents the instantiated object. SHA-1 hashes are

generated like this for all test files and then persisted with the Python pickle library.

Then when we make changes to our simulation data scripts we can run this script which

recalculates new hashes from the test data and compares them to the persisted values.

• nb distances.py

Calculates the distances between each nanoparticle in a given set of configuration files. Due

to the use of periodic boundary conditions within the standard oxDNA simulation distances

bewteen NP are reported based on the minimum images of each. This distance is expressed

in the following Python code snippet:

def distance(np_i, np_j, box_size):
n = box_size / 2.0
xs = np_i - np_j
u = 0.8518
for i, k in enumerate(xs):

if k > n:
xs[i] -= box_size

elif k < -n:
xs[i] += box_size

return u * l2_norm(xs)
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3.2.4 Mixed Precision

It is considerably more expensive in terms of memory bandwidth to read a double floating point

value from the device main memory than it is to read a single floating point value. It may be

tempting to use floating point values due to their considerable performance gain. However, when

your intent is to simulate a physical process as accurately as possible the accumulation of round

off error due to the use of floating point precision causes errors in simulation. To work around

this oxDNA has implemented a mixed-precision backend. The techniques from this backend use

single precision to calculate forces and use double precision during the integration of positions

and momenta in the first and second step. We have implemented mixed precision for our model

and show comparisons between run times for single and mixed-precision simulations in our result

section.
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Chapter 4

Results

Our results section describes the tests used to validate and quantify the performance of our GPU-

based implementation of the nBLOCK extension to oxDNA. These tests fall into two categories:

validation tests, and performance tests. Through our validation tests we show that the device

and host implementations simulate the dynamics of nBLOCKs equivalently. This process is more

difficult than it may first appear because GPU simulations within oxDNA are not reproducible [16].

Despite this we expect the distribution of kinetic energy values on the host or device to follow the

Maxwell distribution. To validate potential energy logs between the host and device we borrow

a technique from the oxDNA testing utilities that bounds the allowable difference between the

mean potential energy of separate simulations of the same configuration. The performance tests

were designed to measure the relative run times of the host versus device implementations, and the

results presented in this section show comparisons between the run times of thirty six unique initial

configurations. As expected, the GPU implementation of the nBLOCK model is significantly faster

than the CPU implementation.

4.1 Simulation Techniques

Validation and performance test statistics were sampled from simulations using an Andersen-like

(aka Brownian) thermostat in the NV T ensemble. Under these macro parameters random collisions

with an implicit solvent are introduced to the simulation dynamics. The sequence and magnitude of

particle trajectory perturbations is not shared between host and device due to independent random

number generation. As a result we cannot test the validity of the device implementation by direct

comparison of particle trajectories. Instead we must make comparisons of the average behavior

of separately seeded simulations with matching initial configurations. For the validation tests we

gather statistics on the kinetic energy (KE) and potential energy (PE) across a range of carefully

designed simulations.
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The thermostat in an NV T ensemble is designed to keep the average temperature of the system

at a specified value. To accomplish this, every NNewtonian time steps the simulation backend passes

all of the particles to the Brownian thermostat. The thermostat then draws two random values from

a uniform distribution for each particle. If the first of these random values is below the threshold

value pV the velocity of that particle is reassigned to a vector drawn from a Gaussian distribution.

If the second random value is below a separate threshold pL the angular momentum of the particle

is reassigned to a vector drawn from a Gaussian distribution.

In other words, the thermostat intentionally breaks the time reversibility of the Newtonian

mechanics governing particle interactions by moving the particles in non-physically justified ways.

One of the purposes of these random adjustments to each particle is to model the interaction of the

particle with an implicit solvent. The global values pV and pL are a function of T , δt, NNewtonian,

and the diffusion coefficient. All of these parameters can be specified by the user in the input file

of a simulation.

4.2 Validation Tests

The process of generating validation datasets and the methods used to compare them must be done

with respect to how the Brownian thermostat effects the simulation dynamics. That is, without

consideration of the random non-physical moves introduced by the thermostat, direct comparison

of host and device trajectories for a given initial configuration will indicate that the device and host

implementation are not simulating the same dynamics. To make meaningful comparisons between

the host and device we characterize the average behavior of each by analyzing statistics for the

continuous random variables KE and PE.

4.2.1 Comparing Kinetic Energy

Under the NV T ensemble the distribution of kinetic energy values, KE ∼ P (µ, σ2) , should closely

approximate the Maxwell distribution with location µKE and scale σ2
KE. The distribution of KE

values should fit the Maxwell distribution regardless of the current micro-state of the simulation.
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In other words not only is the comparison device independent but it is also conformationally in-

dependent. That is, any stable simulation with the nBLOCK interaction class should produce a

distribution of KE energy values that closely match the Maxwell distribution.

To gather statistics for this test we simulated a two hundred particle nBLOCK duplex assembly

[7] for 106 simulation steps using both the device and host implementation. Both the device and

host simulations used the following initialization parameters: temperature T = 293K, a step size

of δt = 0.005, a Verlet-skin of length 0.5, the thermostat was called every 103 Newtonian steps,

the diffusion coefficient set to 2.5, and a [NA+]-concentration of 0.5. The KE of these simulations

was sampled and logged every 103 simulation steps. Using all 103 sample KE values in a single

plot (as is done in Figure 4.3) can be visually deceiving because outliers are overrepresented in

comparison to the hundreds of overlapping points that make up the majority of points. To give

intuition to this notion we generated Figures 4.1 and 4.2 which show Maxwell probability plots for

the host and device that were plotted using only 102 KE values randomly drawn from the full set

of 103 samples.

4.2.2 Probability Plot Results Analysis

Probability plots can be used to determine if a sample distribution may have been drawn from some

other target distribution. In this case we want to determine if the KE values taken intermittently

from nBLOCK simulations match the Maxwell distribution.

Let KE represent the kinetic energy values from a single simulation and let n represent the

number of values in KE. First we sort KE in ascending order. We then pair a value with each ith

index in KE using Filliben’s estimate represented here as the function F . Filliben’s estimate takes

the form of the following piecewise function:


1−0.5

1
n i = 1

(i−0.3175)
(n+0.365) 1 < i < n

0.5
1
n i = n
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Figure 4.1: Sparese CPU Maxwell probability plots. Each of these probability plots represents
random samples of 102 points taken from the full KE distribution gathered during the simulation
of a 200 particle nBLOCK duplex assembly. The complete plot of all 103 KE values is shown in
Figure 4.3 (a).
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Figure 4.2: Sparese GPU Maxwell probability plots. Each of these probability plots represents
random samples of 102 points taken from the full KE distribution gathered during the simulation
of a 200 particle nBLOCK duplex assembly. The complete plot of all 103 KE values is shown in
Figure 4.3 (b).
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We plot these points (KEi,F(i)) against the cumulative distribution function of the Maxwell

distribution that is centered on µKE and has the spread σ2
KE. The x-axis values of the points along

the Maxwell cumulative distribution function which are horizontal to each (KEi,F(i)) point are

designated by Mi. Our probability plot is composed of the points (KEi,Mi). If every ith point in

KE is approximately equal to the paired point in M then when we plot these points they should lie

along a straight line.

When building a probability plot from a large set of samples, as we have done in Figure 4.3, the

outliers at the distribution tails are visually overrepresented so it is no longer reliable to visually

inspect the plots for goodness of fit. To quantify goodness of fit for our Maxwell probability plots

we calculate the coefficient of determination for the all of the 103 KE samples. The coefficient of

determination (r) quantifies the straightness of our line. The closer that r is to 1.0 the stronger the

relationship is between the generated KE values and the Maxwell distribution.

The first step in calculating this coefficient is to draw a line through the center of mass of all

(KEi,Mi) points. This line is also known as the least squares line. Next we calculate the mean

value of M which we designate as y. If all we knew about M was that it had a mean y and we were

asked to make a prediction for the value of a random variable in M we would choose y. If we did

this for all the values in M we could say that equation 4.1 is the sum of our squared prediction

errors.

n

∑
i=1

(yi− y)2 (4.1)

We repeat the calculation for the sum of our prediction errors again, but this time we guess the

value ŷ from the y-axis of the least squares line.

n

∑
i=1

(yi− ŷ)2 (4.2)

The strength of the relationship between our plotted points and the least squares line is mea-

sured by
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n

∑
i=1

(yi− y)2−
n

∑
i=1

(yi− ŷ)2 (4.3)

Ideally the (KEi,Mi) points should be close to the least squares line so the value of the second

summation (4.2) should be relatively small in value compared to the first (4.1), and the larger the

value produced by this subtraction the greater the strength of the relationship.

Recall that ∑
n
i=1(yi− y)2 is a component in the measurement of variance. These subtractions

represent the reduction in variance that occurs by using the least squares line to predict values in

M. We divide the result of 4.3 by ∑
n
i=1(yi− y)2 to get our coefficient r2.

r2 =
∑

n
i=1(yi− y)2−∑

n
i=1(yi− ŷ)2

∑
n
i=1(yi− y)2 (4.4)

The square root of which is the coefficient of determination. The r values shown in each plot

indicates that in spite of the outliers a large proportion of our points can be predicted by the least

squares line, thus validating our implementation in terms of the kinetic energies of the simulated

particles.

4.2.3 Comparing Potential Energy

A potential energy measurement can be described as a summary statistic for the relative position

and orientation of each particle in a simulation. As particle positions and orientations are updated

in each simulation step the potential energy of the simulation will change. In an nBLOCK sim-

ulation potential energy is a function of the FENE spring potential between nucleotide backbone

sites and nucleotides bound to nanoparticles, hydrogen bonds between base pairs, the intra-strand

stacking potential, the cross stacking potential, the Lennard Jones excluded volume potential, and

a modulating potential that encourages helicity of dsDNA [11, 13]. Each of these potentials, for

all particles in the simulation, contributes to the total PE of the system.

Our methods of comparison were borrowed from the testing utilities of oxDNA. We also mim-

icked the strand topologies from these tests. The original strand topologies used to compare the
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(a) (b)

Figure 4.3: Maxwell probability plots. Figure Explanation. The Y-axis is scaled to match the
distribution of the gathered KE measurements. The X-axis shows the values corresponding to
quantiles of the Maxwell distribution. The blue dots in (a) and (b) represent one thousand KE
samples taken at an interval of one thousand time steps from the simulation of a two-hundred
particle diatomic nBLOCK assembly. The straight red line is plotted through the center of mass
for this points. Because there are many overlapping points in these plots we further quantify the
result using the square root of the coefficient of determination r which is shown in each figure.
An r value of 1.0 would indicate that the variance in the KE samples is completely predictable by
the Maxwell distribution. As such the reported r values demonstrate the KE distribution of our
nBLOCK simulations are a good fit the Maxwell distribution.

mean potential energy of DNA simulations include a fifteen base pair ssDNA composed of pure

Adenine (Poly-A-15) and a fully hybridized hairpin composed of eighteen base pairs. To closely

approximate these tests in the nBLOCK model we generated a Poly-A nBLOCK with fifteen nu-

cleotides and a fully hybridized diatomic nBLOCK assembly. These tests allowed for the com-

parison of PE between separately seeded simulations by removing the contribution of hydrogen

bonding to the potential energy of the system. As might be expected the distribution of PE values

for the hairpin loop has a smaller scale factor than what is sampled from the Poly-A ssDNA. This

is because the range of motion for the nucleotides within the hybridized hairpin is restricted. The

Poly-A topology has a wider range of conformations it can sample from but cannot get stuck in

any intermediary states due to hydrogen bonding between Watson-Crick complements.

To gather statistics for PE validation we ran a series simulations using identical initial configu-

rations of nBLOCK assemblies on both the host and device. These simulations were parameterized
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with a temperature T = 293K, a step size of δt = 0.005, a Verlet-skin of length 0.5, 103 Newtonian

steps, the diffusion coefficient set to 2.5, and a [NA+]-concentration of 0.5. During these simula-

tions potential energy values were logged at fixed intervals. For each simulation we calculated the

mean of the potential energy values reported by the host and by the device. A confidence interval

±5
σ√
n

around the mean potential energy of the host simulation was then constructed. Our valida-

tion tests then checked whether or not the mean potential energy of the GPU simulation fell within

this interval.

While we have translated the Poly-A and hairpin topologies of the original tests to similar

topologies for the nBLOCK computational model there are two important differences in the pa-

rameterization of these tests that should be considered. First, for nBLOCK simulations on the host

and device we used a Verlet skin with a value of 0.5. This is in contrast to the Verlet skin of the

original DNA simulations which used a value of 0.05. We used this increased Verlet skin size to

compensate for the large diameter of the nanoparticles. Because we used a larger Verlet skin for

our nBLOCK simulations the area that was included in each nucleotide’s non-bonded neighbor list

was greater than the area around each nucleotide in the original tests. Due to this larger volume

the potential energy for an nBLOCK simulation would have had on average a greater number of

pairwise particle interactions. Second, the original tests were designed to test the PE between sep-

arate simulations on the CPU, whereas our tests were used to compare the results between a CPU

nBLOCK simulation and a GPU nBLOCK simulation.

Additionally, while we can use probability plots to compare the distribution of logged KE

values against the Maxwell distribution there are in general no known standard statistical methods

for the comparison of PE distributions [18]. That is, while we can collect samples of the PE

distribution from our simulations the population distribution of PE is unknown.

The differences in parameterization between the original tests and our own along with having

no distribution to make strict statistical comparisons against prevent us from determining whether

our results for PE validation are statistically significant. Nonetheless, we can state that the mean

PE of the device side implementation is within the designated confidence interval in eleven of the
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twelve test cases presented in Figure 4.4, which provides strong evidence that our GPU implemen-

tation is accurately matching the CPU implementation. Additionally, the results for the nBLOCK

duplex assembly also demonstrate that our nBLOCK GPU implementation methodologies allow

hybridization to occur and to be maintained as expected.

4.3 Performance Tests

Performance tests were taken across thirty-six unique initial configurations on a CPU and a GPU.

As is to be expected the GPU implementation has a greatly reduced average milliseconds per

time step compared to the CPU. In addition the performance tests demonstrate the robustness

of the device implementation to a wide range of particle counts and the full range of nBLOCK

topologies. All of our GPU simulations were run on an NVIDIA GTX780 which has the Kepler

computer architecture [10]. The CPU performance test simulations were run on an Intel Xeon

X5670 processors [6].

4.3.1 Dataset Preparation

Generation of the dataset for the performance tests proceeded as follows. We started with six

sets of nanoparticles. Each set had a unique size (1, 8, 27, 64, 125, 216). The nanoparticles

from each set were then evenly spaced on a cubic lattice in proportion to the eventual volume

that each would occupy once functionalized with strands. We made six copies of each lattice

and then functionalized the nanoparticles in each copy with between one and six strands. Two

complimentary strands were used for all thirty six initial configurations and each nanoparticle was

functionalized with one strand type. The strand topologies are shown as S, S′ below.

S: 5′ ACA CAC ACA CAC ACA CAC ACA 3′

S′: 5′ TGT GTG TGT GTG TGT GTG TGT 3′

In simulations with multiple nBLOCKs the strands were alternated between neighbors along

the lattice points. Finally, before performance statistics were gathered each of the thirty six config-

urations were thermalized using the host implementation for 105 time steps using double precision,
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Figure 4.4: Potential energy plots. Figure explanation. The solid black line represents CPU PE
over time. The green line represents the GPU PE over time. The three horizontal dashed lines
represent the CPU mean PE and ± 5 standard errors of the mean, while the solid blue line is the
GPU mean PE. Column one. NP-PolyA-15 Plots the results from ten PE samples taken at 102

time steps intervals. Column two. Diatomic-nBLOCK Same simulation duration and sampling
interval as column one but taken from a simulation of a diatomic nBLOCK assembly with fifty
total particles. Column three, upper-half. The same nBLOCK topology as column two. One
hundred samples with interval of 103. Column three, lower-half. Diatomic-nBLOCK assembly
with one hundred particles. One thousand samples with interval of 103.
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Figure 4.5: Example initial configurations along 3D grid. a 126 nt and 1 NP b 1008 nt and 8 NP
c 3402 nt and 27 NP d 8064 nt and 64 NP

T = 293K, δt = 0.005, Verlet-skin of length 0.5, 103 Newtonian steps, the diffusion coefficient set

to 2.5, and a [NA+]-concentration of 0.5.

4.3.2 Performance Tests Results Analysis

To gather performance statistics each of the thermalized initial configurations were run for five

million simulation steps on the host and device implementations with the parameterization used for

thermalization. This process was repeated a total of four times for each configuration. The average

total run time and the average milliseconds per time step were then tabulated from the simulation

logs. Timings were tabulated at the end of each simulation using the preexisting oxDNA logging

utilities. In addition to logging simulation step timings we also set flags in our input files for

these tests that caused each simulation to record energy profiles every five hundred thousand time

steps. Before energy profiles can be calculated the device must transfer the data back to the host

causing our backend to return the particle data to its original order. As such the results in Figure

4.6 also indicate that the additional processing required by our nanoparticle backend during host-

to-device and device-to-host transfers of particle data is greatly outweighed by the overall increase

in computation efficiency offered by the GPU. The reported timings measure the average number

of milliseconds per time step for a given number of particles and nBLOCK topology.

The plots in Figure 4.6 show that considerable speed-up was achieved by our GPU nBLOCK
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implementation over the CPU version. But there are some interesting aspects of the plots that are

worth discussing. To give some background on our proceeding analysis we note that in [16] it is

stated that the simulations of DNA in oxDNA are weakly dependent on the density of the particles

in a simulation. This weak dependency is due to the highly anisotropic interactions between nu-

cleotides. That is, the orientation of the nucleotide screens out other nucleotides which are not as

closely aligned.

However, the spikes in the graphs of Figure 4.6 reveal some that nBLOCK simulations are to

some extent dependent on the local density of each nBLOCK assembly. Generally we define the

idea of local density to be a function of the number of arms on a particular nBLOCK. Occasionally

it can be seen that as we move along the x-axis the runtime decreases despite the increase in the total

number of particles. Note also that these spikes occur on both the GPU and CPU. The log-log plots

for CPU timings in subplot b and d smooth these spikes for the CPU timings to some extent. But in

the non-scaled axis of subplot a they are present. A closer inspection of the subplot c which is the

log-log scaled timings for the GPU tests more clearly demonstrates a few of these points. In these

circumstances the spikes are caused by sequential simulation timings that go from simulations with

proportionally fewer nanoparticles compared to nucleotides to simulations with a proportionately

greater number of nanoparticles with respect to the number of nucleotides. Because all strands in

our performance tests are of length 21 we can also state this shift in proportions as going from

nanoparticles with more arms to nanoparticles with fewer arms. In either case a downward spike

in the timings plot indicates a decrease in the local density of the nanoparticles. It is reasonable

to assume that the greater the local density around an nBLOCK the more the nucleotides between

each strand will interact. And it is certain that the nanoparticle-nucleotide interaction computations

will be greater.

Although the spikes occur on both the host and device implementations the severity of the

spikes on the device are greater. This is because we spawn a thread for each nanoparticle and the

workload of this thread increases in proportion to the number of arms and the relatively simple

arithmetic logic unit behind each thread is not as robust to this increase in workload as is the CPU.

38



Figure 4.6: Performance Tests. Figure explanation. All X-axes represent the number of particles
N. All Y-axes represent the average time step length, t in milliseconds. Figure (a) the left Y-axis
represents t scaled to the CPU timings. The right Y-axis represents t scaled to the GPU timings.
Floating precision and mixed precision calculations share the same scale, although pure floating
point precision simulations enjoy a considerable speed-up over the mixed point precision. Notice
that the spikes are mirrored across both GPU implementations and to a lesser extent the CPU
implementation. Figures (b) and (c) display log-log plots for the average CPU and GPU timings
respectively. In these plots average milliseconds per time step, the number of particles in the
simulation, and the nBLOCK topology are accounted for. We can also see that the intermittent
spikes present in the plots of (a) can occur as we move along the X-axis from a simulation with a
greater number of arms to a simulation with relatively fewer arms. Figure (d) displays a log-log
plot of CPU and GPU timings. The CPU timings are represented by the marks which have no fill.
Otherwise the markings follow the same legends of plots (b, c). We can see the GPU begins to
outperform the CPU at approximately eighty-five particles.
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Chapter 5

Conclusion

In conclusion this thesis details the implementation of a coarse grained nBLOCK computational

model for graphical processing units (GPUs) using the NV T ensemble and a Brownian thermostat

[17] for the modeling of kinetics. This implementation is an extension to the oxDNA molecular

simulator. The main contribution of these techniques is a design technique for the integration of

forces between heterogeneous particle types with separately implemented interaction classes using

the NVIDIA CUDA programming model. We have also demonstrated validation and performance

testing methodologies for our implementation. In particular we show that these nanoparticle-

nucleotide simulations maintain an appropriate KE distribution as dictated by the Brownian ther-

mostat in an NV T ensemble. We further validate our device implementation by borrowing metrics

from oxDNA’s testing utilities to make comparisons between the mean PE profiles of separate

simulations. Our performance tests showed 100-fold speedup for the simulation of configurations

which have a total number of particles greater than 104.

Ideas for future work may be taken from [12] in which T.E. Ouldridge outlines a list of compu-

tational methods used for the study of DNA in oxDNA. We will now list the techniques from that

list which have yet to be implemented for the oxDNA nBLOCK extension.

• The use of Virtual Move Monte Carlo for modeling thermodynamic properties.

• The implementation of umbrella sampling for the collection of statistics under thermody-

namic models.

• The use of a Langevin thermostat for additional modeling of dynamical properties beyond

what is provided by the Brownian thermostat.

• The implementation of forward flux sampling for the collection of statistics under dynam-

ical models. These dynamic models include our current implementation of the Brownian

thermostat as well as the proposed implementation of the Langevin thermostat.
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Other future work may include the extension of our current nBLOCK computational model

to include nanoparticles with differing masses and diameters. Other research groups which study

DNA-functionalized nanoparticles with different patterns of strand attachment to the nanoparticle

surface may find our nBLOCK extension to oxDNA as a good starting place for the implementation

of their own models.
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