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TIME AND LIFE: APPLICATIONS
OF MODERN CHRONOBIOLOGY

LAWRENCE E. SCHEVING1and JOHN E. PAULY' 2

Department of Anatomy1and Department
of Physiology and Biophysics 2

University of Arkansas for Medical Sciences
Little Rock, Arkansas 72205

ABSTRACT

Chronobiology is that branch of science which objectively quantifies and explores mechan-
isms of biological time structure. It is an integrating discipline that impacts onall forms of life.

When physiological functions are plotted along a time scale, they appear as regularly repeti-
tive wave forms with means, amplitudes, phasing and periods. Innature these rhythms are
found to have many frequencies, from a fraction of a second (ultradian) to a year or more (in-
fradian or circannual); and those with periods of about one day (circadian) have been explored
extensively.

Examples of several circadian rhythms are given for experimental animals and man. Evi-
dence is presented to show that it is particularly important to consider biological rhythmicity
when interpreting experimental results or attempting to extrapolate from one species to
another. An organism is indeed a different biochemical and morphological entity at different
times, and it may be expected to react differently to a stimulus at different circadian phases.
By taking advantage ofnatural rhythms in the susceptability to drugs, it is possible to optimize
chemotherapy and radiotherapy forcancer and other diseases.

THE RHYTHMICNATURE OF LIFE

Chronobiology is that branch of science that explores mechanisms
ofbiological time structure (Halberg and Katinas, 1973). Althoughit
is considered a comparatively young science, the writers of ancient
times, including the poets, were fascinated with rhythmic phenom-
ena, particularly as they pertained to plants (Scheving, 1976); and
many of the important early scientific investigations of rhythmic be-
havior were performed bybotanists. In 1963 E. Bunning summarized
the work that had been accomplished, including his own important
contributions, and Cumming and Wagner (1968) did a more recent
review onplants.

During the past 30 years a great number ofpublications on rhythms
in lower animals and humans have appeared. Rhythms withmany fre-
quencies at all levels of biological organization have been demon-
strated. Because of the regularity of these rhythms, some refer to
them as biological or physiological clocks. Oscillation has been firm-
ly established as a fundamental property of life (Scheving, 1976).
Ehert, (1979) considers chronobiology the newest of the four inte-
grating disciplines of biology, ranking in importance with genetics
(developmental biology and evolution are the other two).

At the same time that chronobiology was developing at an almost
exponential rate, the concept of "homeostasis" continued to be
taught inbiology classes. Homeostasis, introduced in1878 byClaude
Bernard and championed by Walter Cannon, claims that an organism
has capabilities of self-regulation which maintain body fluids andhor-
mones in a rather narrow range by negative feedback, preventing

I
live cells from damage that might be caused by strong varia-
, including those in the environment. This "steady-state" con-
as taught up to the present time, has governed the thinkingof

rations of biologists, despite the fact that 40 years ago italready
known that neither body fluids, hormones, organs nor cells
'ita constant composition.

Is
range of frequencies that has been found inliving systems ex-

from less than a second to a year or more. Itis noteworthy that
correspond to frequencies found in the physical environment

»s the approximate 24 hr light-dark cycle brought about by the
on of the earth on its axis. The rhythms themselves, however,
idogenous, innate and coded inthe genome. They willfreerun
i absence of a synchronizing force (Scheving, 1976). There is
5 evidence that many rhythms are adaptive and serve to adjust
isms in advance to the periodic changes in the environment
ving, 1976).

This paper will concentrate on circadian rhythms which have fre-
quencies that correspond to the 24-hr day (circa, about; dies, day).
The adjective "diurnal" is sometimes used synonymously withcircad-
ian, but it is more appropriate to use this term to describe animals
that are active during the day as opposed to nocturnal animals that
are active by night. Circadian rhythms are ubiquitous in eukaryotic
unicellular and multicellular organisms. Recent data on growth rate

of bacteria suggested that circadian as well as rhythms withhigher
frequencies (ultradian) also may characterize the prokaryotic cell
(Sturtevant, 1973); it should be kept inmind, however, that contro-
versy presently exists as to whether the prokaryotic organism is
characterized by circadian variation.

Most fluctuations inphysiological and biochemical variables are
not apparent in the same sense that the pulse, respiratory cycle or
menstrual rhythm are; they become overt only when properly
measured at frequent intervals along a 24 hr time-scale. Because of
their somewhat "invisible" nature, there has been a tendency on the
part of some investigators to slight or ignore them in experimental de-
sign. Inspite ofallthat isknown, they simply have not been accorded
the attention they deserve. This undoubtedly is due in large part to

the fact that the science is young (Scheving, 1974).

Illustrative Examples: The rhythm in serum steroids was one of the
first to be documented and has been studied extensively (Pincus,
1943). This rhythm, illustrated inFig. 1 for both rat and man, willbe
used to describe some of the basic properties of rhythms and
especially the terminology commonly employed.

In diurnally active man, the adrenal cortex secretes increased
amounts of cortisol before awakening, and peak titers are reached
shortly after arising. Inthe nocturnally active rat, the peak of serum
cortisterone (predominate steroid of the rodent) occurs shortly
before the period ofactivity begins (Scheving, et al., 1974). The four-
foldor greater change in the levelof the steroid seen along the 24hr
time-scale (amplitude) clearly shows that these variations are not
minor fluctuations around the 24 hr mean, and they cannot be ig-
nored in experimental design (Scheving, 1974). Itshould be realized
that fluctuations with higher than circadian frequencies (ultradian;
Weitzman and Hellman, 1974) and lower frequencies (infradian or
circannual; Haus and Halbert, 1970) also characterize the rhythm in
serum steroid as wellas inmany other variables. Notice inFig. 1 that
the rhythm insteroids of the nocturnally active rodent is 180° out of
phase withthe one fordiurnally active man. Itshould be stressed that
such a dramatic difference is not always the case, because some of
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the other rhythms are not so far out of phase between the two
species. Figure 2 illustrates just such a situation where the rhythmic
variations inserum prolactin of the rodent and man certainly are not
180° outof phase (Scheving and Dunn, 1974). These observations are
important, because they demonstrate that one must be careful when
extrapolating from data obtained on the rodent to man. Figure 3
demonstrates the rhythmic variation in the mitotic index of human
skin; the maximum cell divisioninskin takes place at night. Figure 4
depicts the rhythm in DNA synthesis in the bone marrow of the
rodent (Scheving and Pauly, 1973). Asimilar rhythm has been de-
scribed for the mitotic index inhuman bone marrow (Killman et al.,

1962) (Fig. 5). The rhythmic variations in DNA synthesis or the
mitotic index in bone marrow or gut become important considera-
tions when attempting to manage the treatment of a cancer such as
leukemia bychronotherapy or radiotherapy.

Figure 6 shows that the histological pattern ofglycogen activity in
the liver of the rat is dependent on the temporal organization of the
organism. Inshort, even morphology reflects circadian biochemical
or physiological changes; however few morphologists consider struc-
tural changes with reference to time when interpreting their results
(Scheving et al., 1974). Illustrated inFig. 7 is the reproducibility of
rhythms over a 72 hr span in a group of young men. Variables

Figure 2. The two chronograms depict the serum prolactin rhythm
for man and the rat. Note that the rhythms in the two species are not
180° out ofphase as was the case for the serum steroid rhythms illus-
trated in Fig. 1. Such data caution against extrapolating from data
obtained from the nocturnally active rodent to the diurnally active
man without knowledge of the rhythmic variation of the variables
under consideration. For man, meal times were 0700, 1330 and 1630
hours; rest or sleep time was 2215 to 0700. The subjects were
awakened, however, for sampling at 0100 and 0400. N = 13. Rats
were fed ad libitum and were standardized to 14 hours of light alter-
nating with 10 hours of darkness. N = 8/time point. (Scheving and
Dunn, 1974)

Figure 1. Prominent circadian fluctuation of the predominant serum
steroids of rat and man. The rats were standardized to a light-dark
cycle (14hours of light alternating with 10 hours of darkness) and fed
ad libitum for two weeks prior to the study. For man, the meal times
were 0700, 1245 and 1645 hours; rest or sleep time was 2100-0600.
The subjects were awakened, however, for sampling at 2400 and
0300. (Scheving, Mayersbach and Pauly, 1974)
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measured ranged from oral temperature to the ability to perform
mental and physical tasks (Kanabrocki et al., 1973; Scheving et al.,
1977) Note that the crest of the rhythm inperformance corresponds
to the time of poorest performance. Mood and vigor ratings,
depicted as chronograms, were determined on a scale of 1-7 by the
subjects themselves. Ithas been shown repeatedly that with minimal
training, individuals can accurately monitor their own circadian rhy-
thms for many diverse behavioral and physiological variables, includ-
ing blood pressure. Halberg has advanced the concept of self-
measurement or autorhythmometry (Halberg et al., 1972; Halberg,
1973). Such a concept has already been applied satisfactorily in the
monitoring of health and disease (for example, in hypertension).
Autorhythmometry promises to have even greater application,
especially ifit is taught early in life, preferably no later than high
school (Halberg etal., 1972).

Figure 8shows the same data as Pig. 7, but they are depicted after
having first been analyzed by an inferential statistical method com-
monly referred to as the "cosinor". The cosinor technique is one of
several objective methods by which time-series data can be analyzed.
Essentially the data were fitted to a 24hrcosine curve by the method
of least squares, and the rhythmic parameters were determined; this
is readily done by a computer. The rhythmic parameters include
"mesor" (overall 24 hr mean if the data are equidistant), amplitude,
and acrophase (Halberg et al., 1972). The computer-determined
acrophase (point estimate, illustrated by a dot) represents the time

Figure 3. The rhythm inthe mitotic index in the adult human epi-
dermis. Amajority of the cells divided at a predictable phase of the
circadian system. Remarkable reproducibility has been demon-

ated in studies done many miles (London and Chicago) and many
rs apart. (Scheving, Mayersbach and Pauly, 1974)

when the crest occurs inrelation to the rest-activity cycle. The confi-
dence limits also are shown (horizontal bars). Again, it is important
topointout that the acrophase forperformance corresponds with the
poorest performance. The percentage range of change, shown in

Figure 4. Reproducibility of the rhythm in 'H-thymidine uptake in
the bone marrow of rodents. The isotope rhythms were determined
by injecting subgroups ofanimals with 'H-thymidine during a single
24-hour period at the intervals shown on the chronograms. The
animals were sacrificed one hour after injection, and the tissues were
collected and analyzed by scintillation-counting techniques. (Schev-
ing, 1976)
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column 2, is the average difference between the lowest and highest
values over the three-day period; temperature, however, is an excep-
tion, because the actual change is shown in degrees rather than per-
centage. Figure 9is another acrophase map compiled from more ex-
tensive data obtained from a different study, two years earlier, on a
comparable group ofyoung men. In this case, 41 different variables
were measured on the same individuals (Kanabrocki et al., 1973;
Scheving et al., 1977). Itshould be pointed out that the individuals
essentially were synchronized to the same social routines. Itcan be
concluded that every variable amenable tomeasurement oscillates in
a rhythmic manner (Scheving, 1976).

Itshould not be assumed that all variations shown inFig. 8 and 9
are merely responses to food intake, because certain of these (cate-
cholamines, steroids, etc.) continue to oscillate inlower animals and
man deprived of food. Figure 10 compares the rhythms of the heart

rate and norepinephrine insubjects fed regular, three-meals-per-day
diet, withthose rhythms insubjects that fasted for 12 hrs prior to and
throughout the sampling. Ofcourse some variables, such as glucose,
are strongly influenced by diet (Scheving and Pauly, 1977). Under
certain circumstances food-intake can override the strong synchron-
izingforce of the light-dark cycle inanimals (Pauly et al., 1977). This
can be done by restricting food intake toprecise periods for the day
for example to 4-hr spans for rodents or to one meal per day for
human beings. Several rhythmic variables can be synchronized inthis
way,but others show evidence ofbeing synchronized to both the re-
stricted feeding schedules and the light-dark cycle, the net result
being a rhythmic waveform demonstrating an interaction between
the twopotential synchronizing forces (Philippens et al., 1977). Inter-
estingly, other variables remain strongly synchronized to the light-
dark cycle inspite of foodmanipulation (Scheving et al.,1974b).

Figure 5. Circadian variation in the mitotic index of bone-marrow
cells ina single subject.

Figure 6. These photographs demonstrate the circadian change in
ultrastructure of periportal hepatocytes in rats (fed ad libitum and
standardized to a light-dark cycle, light0600-1800). The upper figure

represents the glycogen pattern at the end of the dark period when
there is abundant glycogen; the rough endoplasmic reticulum is ar-
ranged in stacks and is associated with mitochondria. The lower
figure represents the end of the light phase when there is almost no
glycogen present; the rough endoplasmic reticulum is more evenly
dispersed in the cytoplasm surrounding individual mitochondria.
Smooth reticulum and free ribosome are clearly visible. x20,000.
(Courtesy ofH.v.Mayersbach, Hannover, German.)
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I
ice 7. Rhythmic variation in diverse variables in a group of 12
mmably healthy young men over a 72-hour period (sampled at 3-
rintervals). Note that the time ofpoorest performance represents
crest of the rhythm. Meal times: 0615, 1215 and 1630 hr; rest or
p time; 2100-0600, however subjects were awakened forsampling
400 and 0300 hours. (Scheving, 1977)

Figure 8. A different display (computer-determined acrophase
map) of all the data shown inFigure 7 as well as data on diastolic and
systolic blood presure obtained over the same 72-hour span. All
measurements were performed on the subjects themselves. Acro-
phase (represented by a dot) approximates the peak of the circadian
cycle in the variables measured, shown with reference to the rest-
activity schedule of the subjects. (Kanabrocki et al.. 1973)

. 0700 22115
C honge from lowest to highest

CaTt\oO%' iW»'ot 1ue
0
s
V""lnmded

n 24 HR = ACTI VITY ? RESTs"pAN

Figure 9. Acrophase map showing data obtained from studies on
man. The map illustrates 41 different rhythmic variables invitalsigns
and in constituents of serum and of urine. Meal times were 0830,
1430 and 1630; rest or sleep time was 2245-0700. The dot represents
the time when the crest of the rhythm occurs inrelation to the rest-
activity cycle. The horizontal bars represent the confidence interval.
The center column gives the average 24-hour range of change for the
group, that is, the percent difference between the highest recorded
means. (Kanabrocki etal., 1973)
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Drag Susceptibility Rhythms: The biological system is rhythmically
changing; it follows that an organism is biochemically a different

animals survived; whereas at another phase, only 6.6% survived
(Scheving et al., 1968b). The third example demonstrates that a
carcinostatic drug, cytosine arabinoside (ara-C), is far more toxic at

one phase of the mouse circadian system than another (Scheving et
al., 1974b).

Application to Cancer Chemotherapy: Recognition of the variation
inresponse to carcinostatic drugs has led to a series of studies that
have produced a critical mass of experimental data which suggests
that conventional chronotherapy of cancer can be optimized by
timing the administration of drugs according tobody rhythms. Figure
12 illustrates one of a number of examples of such optiminization in
the experimental mouse, where it is clearly evident that the circadian
stage at which the drugs are administered can dramatically affect the
results (Scheving et al., 1977).

Optimization of treatment of experimental cancer, in fact, has
been realized inthe rodent byquantifying and exploiting rhythms in:
(1)host susceptibility to drugs as well as their underline mechanisms
(i.e. cell division of the bone marrow, gut, thymus and spleen) and (2)
tumor susceptibility. The effect of the treatment can be gauged

Figure 10. Circadian variation inheart rate and urine epinephrine
in presumably healthy young men over a 72-hour span. Meals were
eaten at 0615, 1215 and 0630; rest or sleep time was from 2100-0600,
however the subjects were awakened forsampling at 2400 and 0300.
Note that the group designated as fasting had been subjected to the
regular three meal/day schedule through the evening meal of 23
May;after this meal, they didnot eat until after the 0600 sampling on
25 May. The only effect noted from fasting was a reduction in the
amplitude of the heart-beat rhythm. A third group of subjects all ate

a fixed amount of food every three hours over the same period that
the one group fasted; and for this group this feeding schedule had no
dramatic effect oneither variable. The data of the third group are not

shown simply to avoid an overly cluttered graph.

t Figure 11. Orcadian variation in susceptibility of rodents to pento-
3 barbital sodium, cytosine arabinoside and amphetamine. (For details
t of each see Scheving et al., 1968a, 1968b, and Scheving et al., 1974b.

respectively.)
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tumor size, mitotic activity or DNA formation, and in-directly by
rhythms in temperature of the tumor or excretory pro-directly by

ducts such as polyamines ;, certain amino acids and light-chains inthe
case of immunocytoma inLOUrats (Halbertet al!., 1977).

Itis concluded that consideration of time structure of organisms as
revealed by their rhythms, may lead to the elucidation of many un-

explained biological mechanisms. First, however, the "dogma" of a
"constancy of the internal environment" either has to be abandoned
ormodified. Biologists must think interms of alllifebeing a compos-
ite of highly organized rhythmic events. When this is widely recog-
nized, there will followa new era ofprogress inbiology and medicine.
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