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Abstract 

Silicon is the most important semiconductor material used in microelectronic devices. As 

the number of transistors keep doubling every 24 months (Moore’s law), transistors continue 

scaling down in size, electrical interconnect is reaching its limits to keep up with the scaling 

down rate in integrated circuits. These limitations are related to interconnect density and power 

consumption. Hence, replacing electrical interconnect with optical interconnect on the chip or 

between chips has the ability to overcome these limitations. However, silicon has poor light 

emitting efficiency, and other substitutes such as III-V materials are not suitable due to high cost, 

lattice mismatch, and thermal mismatch with Si.  Recently researchers have been developing 

novel group IV alloys from silicon, germanium, and tin to overcome these problems. 

  In this research a less developed group IV alloy, GePb, as well as GeSn, have been 

studied for the development of optoelectronic devices. A physical vapor deposition method is 

used to evaporate the solid sources in a thermal evaporator chamber to deposit the films on a Si 

substrate.  The GeSn and GePb samples were deposited at room temperature then annealed in a 

Fisher Scientific furnace at different temperatures (300-600 °C) and times (15-60 min).  Material 

and optical characterization of the samples was performed using Raman spectroscopy, X-ray 

diffraction, photoluminescence, and scanning electron microscopy. 
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Chapter 1: Introduction 

1.1 Motivation  

 Silicon (Si) is the dominant material that can be found in every technical device such as 

phones, and computer chips, and other microelectronic systems.  Si is very important as a 

semiconductor material for several reasons. Silicon is the second most abundant element on the 

earth after oxygen (O) with 28% [1]. This is what makes silicon very cheap. It is widely used in 

electronic devices such as the fabrication of integrated circuits (IC), transistors, diodes, and solar 

cells. The lattice structure of crystalline Si easily allows impurities in the substitutional site with 

high doping concentration of 10
21 

atoms/cm
3
 [1]. This mean silicon has high carrier 

(holes/electrons) mobility, which typically leads to better device performance. Finally, silicon 

dioxide has good properties for chip design and it is the most extensively used insulator in IC 

technology. Even though there are a few materials that share some of the desirable properties of 

Si, such as Ge and GaAs, none of these materials have all of these properties together except Si. 

As a result of that, in fabrication of microelectronics, Si is the ideal choice of semiconductor.  

In 1965, Moore, the founder of Intel, predicted that the number of transistors placed into 

the chip would  nearly double every 24 months [2]. His prediction has become a law and in order 

to keep the rate of progress, the size of the transistors has decreased over time. There are two 

main aspects related to processing and fundamental materials that need to be considered in order 

to maintain Moore’s law on track. First, decreasing the size of transistors increases the speed of 

data processing. However, data transfer delay (Resistance-Capacitance RC) will not decrease at 

the same rate as the increase in data processing speed. For example, when doubling the number 

of transistors on the chip, the data processing speed will double.  However, the length of the 

metallic interconnects remains the same and results in delaying data transfer ratio even though 
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the data processing speed increases.  In addition, there is a limitation of the electrical 

interconnect scaling due to the physical properties of the electrical wire. Therefore, wires do not 

perform well with the transistors and cause interconnection delay.  Another issue of wire 

interconnect, is power consumption. To transport signals, electrical lines should be charged no 

less than the signaling voltage. Nowadays, the energy needed for charging and discharging the 

lines can simply exceed what is used for switching a logic gate. Therefore, replacing electrical 

interconnect with optical interconnection is good to keep up Moore’s law. The main reason that 

makes the optical interconnect a better choice than electrical interconnect, is its capability of 

transferring more data via modulation which results in decreasing the number of wire 

connections needed. 

1.2 Optical Interconnects 

  Lately, researchers have paid attention to the use of optical interconnect to benefit 

connection of devices on a chip. In addition, these days, circuits have more complex 

interconnects which make optical interconnects a priority over electrical interconnects. Optical 

interconnects can take less area than the electronic counterparts if it is used for replacing the top 

layers of metal contact. Also, optical interconnects are able to transmit the data at much higher 

rate than electrical interconnects and use less power [3]. Moreover, optical interconnection 

ensures less loss for data in a long distance chip [4]. However, implementing optical 

interconnects on a chip requires many optoelectronic devices such as modulators, lasers, 

waveguides, and detectors. Since these devices are based on light emitting approach, another 

challenge arises. Integrating optical interconnects with silicon, which has indirect band-gap, 

means very low light emitting efficiency. Therefore, researchers have been using group III-V 

compounds such as GaAs which have high light emitting efficiency compared to Si. However, 
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GaAs is produced at high cost and does not match Si technology because of thermal mismatch 

between them. Since Si has low light emitting efficiency, researchers are focusing on group IV 

alloys especially germanium (Ge).  

Generally, there are three main approaches that can be used to achieve direct bandgap 

transition in Ge in order to enhance the light emission/absorption efficiency:  heavy n-type 

doping, biaxial tensile-strain, and Ge alloys. 

1.3 Germanium Alloys  

 Recently, germanium alloys have grabbed researchers’ attention due to its ability to 

display direct band gap and its compatibility with silicon technologies. Ge reveals very little 

difference between the direct band (Γ-valley) with 0.8 eV and the indirect band (L-valley) with 

0.67 eV. This would make it easier for Ge alloys to achieve a direct band gap. Tin (Sn), which is 

also in group IV, comes in two forms which are β-tin and α-tin. The α-Sn is a semimetal with 

diamond cubic structure and conduction band minimum at Γ point equal to 0.41 eV below the 

valence band.  

When Sn is incorporated in Ge, both the Γ and L valley decrease at the same time 

although more so in the Γ valley which leads to direct bandgap materials. In addition, increasing 

the percentage of Sn atoms in the Ge alloy would lead to even lower band gap energy and a 

higher potential for a direct band gap [5]. Theoretical study on GePb also shows that the same 

trend in bandgap change happens by using Pb alloying in Ge [6]. The alloy of germanium-tin 

(GeSn) or germanium-lead (GePb) would help make the Ge band gap a direct one. In addition, 

they support more optical and electrical properties, since they give great combinations and high 
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performance semiconductors [6]. Researchers are looking for low cost materials with high light 

emitting efficiency; with Ge alloys this goal can be reached.  

 GeSn and GePb alloys were deposited by a thermal evaporator (PVD) system on a Si 

substrate and annealed at 300-600 
o
C. The quality of the crystal of GeSn and GePb was 

characterized by Raman spectroscopy. Photoluminescence (PL) was used to examine the optical 

properties of the alloys. X-ray diffraction (XRD) was used to study the composition of the 

material and strain. Scanning electron microscopy was used to determine surface texture, 

composition, and average layer thickness.   

1.4 Thesis organization 

This thesis includes six chapters. Chapter 1 starts with an introduction and explanation of 

the motivation behind utilizing Ge alloys, and different methods for obtaining a direct band gap. 

The related theoretical framework is included in the second chapter. In the third chapter, 

literature review is included. Chapter 4 discusses the experimental fabrication methods and 

concentrates on equipment used in this research for characterization. Results of both alloys 

(GeSn and GePb) are discussed in Chapter five. Chapter six, the final chapter, gives the 

conclusion of this research and suggests future work.  
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Chapter 2: Theoretical Framework 

2.1 Crystal Structure 

Atoms in materials are bonded through sharing electrons that are available in the valence 

band. Depending on the number of electrons available, they can form different numbers of 

bonds. The crystals are formed when the atoms bonded together are arranged in an ordered 

structure. When a set of atoms or molecules are arranged identically at the lattice point, crystal 

structure will form [7].  Depending on the number of electrons available in the valence band to 

form the bonds and their orbital, they form different types of crystal. All group IV elements (C, 

Si, Ge, and Sn) form diamond cubic crystal structure with (sp
3
 hybridized bonding between 

atoms) except for Pb which forms as face centered cubic (FCC) crystal structure. 

 

 

Figure 2.1. a) Diamond crystal, and b) Face center cubic lattice structure. 

2.2 Ge Alloys Structure  

2.2.1 Si-Ge-Sn Band Structure  

Ge band structure has two valleys, the lower one has a minimum at L point at 0.67 eV 

and the other one has a minimum at Γ point at 0.8 eV. This makes it possible to get direct band 

(a) (b) 



6 
  

gap since the gap is small. It is easier for the electron to migrate to the lower level, which makes 

indirect band gap. However, alloys of Ge can provide direct bandgap. The difference in the 

energy for the two valleys is very small, only 0.13 eV. Therefore, if this small energy barrier can 

be overcome by electrons present in the Γ valley, the emitting efficiency of light will be 

significantly raised due to the rate of radiative recombination for band-to-band recombination in 

the direct transition which is 10
5
 times higher than the indirect transition. In addition, this minor 

amount of energy change opens the door for more options of making direct band gap of Ge via 

bandgap engineering [5].  See Figure 2.1 for energy band diagram for germanium, tin, and 

germanium tin.  

 

 

 

 

 

Figure 2.2. Schematics of band structures of Ge, Sn, GeSn. 

Gamma (Γ), is the direct bandgap transition, whereas L and X represent the indirect 

transition.  After Sn is incorporated with Ge, GeSn has a lower band gap in the Γ valley since 

GeSn alloys decrease the band gap energy in general, yet the direct one decreases faster than 

indirect one. This can result in direct band gap of GeSn. Ge with Sn or Pb alloys can make a 

great combination because they create a high performance semiconductor with higher light 

emitting efficiency. This is because of a controlled bandgap and the opportunity for high carrier 
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mobility. Thus, Ge with direct bandgap is capable of making laser target in the optical 

interconnection in the chip.  

Using Vegard’s law, band gaps and lattice constants for GeSn and GePb can be 

calculated. Equation 2.1 and Equation 2.2  show the calculation of Γ energy change as a function 

of Ge and Sn. In those equations, the predicted values of band gaps and lattice constants for the 

research samples can be calculated.  

Eg 
GeSn= (1-x)Eg 

Ge +Eg
 Sn.x − 1.94 eV. x. (1 − x)             (Equation 2.1)                                                

ag 
GeSn= (1-x)ag 

Ge+ag
Sn.x − 0.0468 nm . x. (1 − x)  (Equation 2.2) 

Eg
 Ge and Eg

 Sn are the band gap energy, and  ag 
Ge, and ag

Sn are the lattice size while 1.94eV, and 

0.0468 nm are the bowing parameters for Γ valley Eg
 Ge = 0.8 eV and Eg

 Sn = −0.41 eV. Table 2.1 

illustrates the lattice constants of Ge, Sn, and GeSn materials 

Table 2.1 Ge and Sn lattice constant and band energy [8]. 

Material Band gap (eV) Lattice constant (nm) Band gap type 

Ge  0.67 0.5658 Indirect 

Sn -0.41 0.6489 Direct 

2.2.2 Si-Ge-Pb Band Structure  

 In order to be able to develop Vegard’s law for bandgap and lattice size of the GePb 

alloy, the energy band diagram and the lattice constant of Pb are needed.  However, as Pb does 

not form the same crystal structure, the available data could not be used the same way it could be 

used for Sn.  In order to do so, it is required to know if Pb can form the sp
3
 hybrid bonding the 

same way as C, Si, Ge, and Sn do.  As the crystal structure of Pb does not show that possibility, 
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the Pb hydride was studied as compared with C, Si, Ge, and Sn hydride.  Figure 2.3 shows that 

an unstable compound of plumbane does form which is similar to methane, silane, germane, 

stannane.  This implies that Pb could be modeled in diamond lattice structure as it forms the 

tetrahedral sp
3
 hybrid bonding.  

 

Figure. 2.3. Group IV hydrid. 

In order to estimate the lattice size of Pb in diamond structure, the lattice size of C, Si, 

Ge, and Sn were compared with their covalent bond size and hydride bond size. Using the 

covalent bond size and hydride bond size of Pb, the diamond lattice size of the Pb was estimated 

to be 6.82 Å (See Figure 2.4).  

 

Figure 2.4. Group IV element lattice sizes. 

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

140

160

180

200

C Si Ge Sn Pb

La
tt

ic
e 

Si
ze

 (
n

m
) 

B
o

n
d

 S
iz

e 
(p

m
) 

Element 

Covalent Bond

Hydrided IV

Diamond Lattice Size

https://en.wikipedia.org/wiki/%C3%85


9 
  

Using Vegard’s law, the lattice size of GePb is estimated by the following relationship: 

𝑎g 
𝐺𝑒𝑃𝑏 =  (1-x)𝑎 

Ge+𝑎 
Pb.x       (Equation 2.3)  

where 𝑎 
Ge = 5.568 A and 𝑎 

Pb = 6.82 A.  In Figure 2.5, the result of the GePb lattice calculation is 

compared with the cluster calculation performed using density functional theory (DFT) 

developed by Huang et al. [6]. However, they only studied three different combinations of 

12.5%, 25%, and 50% Pb incorporation in Ge and did not estimate the diamond lattice size of 

Pb.  Figure 2.5 shows the change in the lattice constant of GeSn as a result of Sn incorporation.  

 

Figure 2.5. Cluster calculation and Vegard’s law of GeSn and GePb. 

Vegard’s law for bandgap calculation of GePb has not been develped due to unavailablity 

of Pb band strucutre in diamond lattice.  However, the preliminary study by Huang et al. [6] 

stated that the GePb alloy band gap experienced transition from indirect to direct as the Pb 

composition increased. In addition, they specified that 1.5 % of Pb is able to convert the indirect 

Vegard’s law for bandgap calculation of GePb has not been develped due to unavailablity of Pb 
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bandgap to a direct bandgap.  However, their results have not been verified experimentally.  

Figure 2.6 shows their results. 

 

 

Figure 2.6. (a) band gap structure of GePb with different composition (0.5-2%), (b) the band gap 

at (L, Γ and X valleys) with the concentration dependence [6]. 

2.3 Solubility of Pb and Sn in Ge  

Obtaining high Sn or Pb composition in Ge1-x Snx and Ge1-x Pbx alloys is very 

challenging, because of the equilibrium solid solubility limitation of ˂ 1% for both Pb in Ge and 

Sn in Ge, and vice versa.  Therefore, incorporation of these elements in Ge is only possible in 

conditions away from thermal equilibrium.  Figure 2.7 shows the phase diagram of GePb and 

GeSn.  

2.4 Epitaxial Growth 

The process of growing a crystal on top of another crystal while the orientation is 

specified by the main crystal is called epitaxial growth [11].  In other words, growing a single 

crystal layer over a substrate that is also single crystal is called epitaxy [12]. Epitaxial growth is 

The process of growing a crystal on top of another crystal while the orientation is specified by 

(a) (b) 
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required in many applications, such as the making of different layers in semiconductor thin films 

and is particularly utilized to engineering optoelectronic devices.  

 

Figure 2.7. Phase diagram of (a) GePb and (b) GeSn [9] [10]. 

In the epitaxial films, the atoms have a specific location related to the underlying (main) 

crystal.  The outcome of this procedure is the development of crystalline wafers that can either 

be created on the same substrate material with exactly the same chemical composition and In the 

(b) 

(a) 
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arrangement of atoms or on a different substrate. In addition, crystalline wafers can be composed 

of just one layer, or several deposition layers. 

There are two types of epitaxy: homoepitaxy and heteroepitaxy. In the first type, the 

substrate and the growth layer are made of the same materials, whereas in the second type, the 

materials of the epitaxy films are different from the substrate [11]. The homoepitaxy method is 

utilized more in the growth of silicon on a silicon substrate. In this method, the epitaxially grown 

layers are capable of being doped independent of the substrate, and epitaxial films more pure 

than the substrate. Heteroepitaxy is used more in optoelectronics and bandgap engineering, and a 

good example of heteroepitaxy materials is GaAs on Si. Unfortunately, layer by layer growth, as 

in the case of heteroepitaxy, leads to mismatched lattice bonds, which results in strained growth 

and sometimes causes interfacial defects [12].  

2.5 Strained Lattice 

In several applications, near-matched lattices are the most desired since it reduces defects 

and raises electron mobility.  When the mismatch becomes larger, there is a potential of the alloy 

material to expand to suit the lattice structure of the wafer substrate. These scenarios, called 

pseudomorphic, happen in the initial steps of film formation and occur with materials of similar 

lattice assembly. 

 One example is the silicon germanium structure.  When strain accommodation is not 

likely, dislocation occurs, and defects at the interface might take place. This can cause the upper 

lattice to relax. As a result, the film reverts to its usual lattice structure on top of the interface. A 

schematic of lattice matched, strained, and relaxed films is shown in Figure 2.8. The equation 

below can determine lattice misfit.  
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                              𝑓 = [(𝑎˳(𝑠) − 𝑎˳(𝑓))/𝑎˳(𝑓)]                                           (Equation 1.4) 

𝑎˳(𝑠) , 𝑎˳(𝑓) are the lattice constants of both the film and substrate [13]. 

In the case of lattice mismatch less than 9%, the first layer of the film will produce 

pseudomorphically. So, very thin films will elastically strain to obtain an interatomic space 

similar to that of the substrate. In addition, when the thickness of the film increases, the 

increasing strain will cause sequences of mismatching dislocations, separated by areas of quite 

acceptable fit. In this way, they are considered to be in equilibrium [13]. 

 

Figure 2.8. Schematic of lattice matched, strained, and relaxed [14]. 

2.6 Film Deposition  

Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) are two 

techniques that can accomplish a vapor phase deposition of thin films. In the deposition via 

PVD, the metal species transforms to its’ molecular or atomic form, and then it is deposited on 

the sample substrate and on the chamber lid or walls. In this process, there is not any chemical 

reaction on the depositing substrate or even in the gas phase [14]. 

2.6.1 Thin Film Deposition 

Placing an extremely thin layer of material, from a few nanometers to around a hundred 

micrometers thickness, on a substrate area to be coated or deposited, is called thin film 
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deposition [14]. Thin film deposition on a surface is expected to occur in the following order. 

When atoms and molecules touch the surface, they are physically absorbed (physisorbed). Based 

on the energy of the incident particle and the substrate energy, the surface either absorbs the 

incident atoms or it is absorbed chemically (chemisorption). In both the physical and the 

chemical method of absorption, the surface mobility of the atoms is sufficient to transfer about 

on the growth area. In this phase, atoms combine to make a nucleus that can randomly collect or 

separate on the whole area.   

At this point, the size of the nuclei rises over critical size (meaning that increasing the 

surface energy resulting from the expanded size becomes greater than the stable energy which 

occurs due to the decreasing in the energy). Thus, the nuclei become steady and are able to 

continue growing. Moreover, once the nuclei hit other ones, they combine and begin forming a 

film. The roughness of the surface relies on some deposition circumstances such as evaporation 

rate, heat, and other evaporated materials [13]. This is shown in Figure 2.9. 

PVD sources such as thermal evaporator or e-beam can be considers as point sources.  

Therefore, having a the substrate  located  too far from  the source,> 30 cm will result in non-

uniform film deposition.   

The mass deposition per unit area, Rd may calculated as 

                                     Rd = (Me / r
2
) cos ɵ cos ɸ.

 [13]   
                                             (Equation 2.5) 

Where Me is the total mass of the evaporated area while r, ɵ, and ɸ are shown in Figure 2.10. 

 This equation is called the cosine law. It is important to rotate the substrate area to obtain 

satisfactory deposition uniformity on big parts of the substrate. Due to the difficulty of water 
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water vapor, it is necessary to prevent the chamber from being exposed to ambient air in order to 

increase the pumping rapidity. A liquid nitrogen trap inside the chamber also helps to get rid of 

moisture and works to prevent leaking oil in the back flow from the pump into the chamber [13]. 

 

Figure 2.9 Sketch of thin films nucleation and growth phenomena [13]. 

2.6.2 Chemical Vapor Deposition (CVD)  

 This system process depends on certain chemicals reacting with each other to combine 

and create the growth of thin layer of films. Reactive gases pass over the hot substrate on a  
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furnace in the CVD system. This method is very beneficial for growing different materials and it 

shows more developed step coverage than the PVD deposition system. However, the physical 

deposition works on some metals whereas CVD system cannot use certain metals. Usually the 

reactor in CVD consisted of a tube furnace and a vacuum pump scheme, in case the system is 

functioning at lower than the atmospheric pressure. The geometries of the reactor impact film 

parameters and deposition; therefore, it is crucial to characterize the exact reactor equipment 

consistently in every laboratory. Many vacuum systems like the common one utilized in the 

etching processes or sputtering, can be implemented in a plasma enhanced CVD (PECVD) 

system. The main benefit of using a PECVD system is that lower temperatures can be 

successfully used, in comparison to higher temperature usage in furnace procedures.  

 

Figure 2.10. Diagram that determines angles and parameters used in the deposition derivation 

rate in evaporation. 
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 In the integrated circuit, during the metallization phase of the fabrication system, the 

metals generally will not with stand high-temperature furnace processes. When depositing nitride 

or oxide passivation coatings following metallization, for instance, PECVD delivers a low 

temperature as an alternate step. However, one of the disadvantages of this process is that oxide 

layers deposited by CVD are fundamentally less dense than when the layers are deposited via 

thermal oxidation. 

In contrast, in the CVD technique, there is a chemical reaction between the depositing 

surface and gaseous species which create the thin film. Although there are many essential 

benefits of using the CVD method such as useful step coverage and conformal coating that are 

not obtainable in PVD, over all, the CVD of metals is under developed and requires a long 

process to improve [13]. The two main types of PVD are evaporation and sputtering, as 

displayed in Figure 2.1. Evaporation and sputtering systems have mainly been used for thin films 

metallization [13].  

2.7 Evaporation Sources 

PVD sources come in two forms: sputtering and evaporation.  

2.7.1 Evaporation  

For the deposition of thin films, evaporation is a simple technique. In this system, vapor 

is delivered from materials that are placed in a source heated by one of the techniques in Figure 

2.11. For instance, when heating Al or Au, they melt right away. After providing more heat 

energy, the metal atoms obtain enough kinetic energy to escape from the melted surface. Then, 

the atoms start to spread in all different directions bearing them far from the source. If these 
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atoms strike cooler walls of the chamber or surface, thin films of the evaporated materials (e.g. 

Al or Au) are formed by the condensing atoms [13].  

 

Figure 2.11. Different types of PVD. 

As known, most metals evaporate at temperatures ranging from 500°C up to 2000 °C, so 

there is a big concern that the metal or the material may react with the ambient gas while 

evaporation occurs. For instance, if Al is the metal being used, during the evaporation process 

there is a high possibility of Al reacting with the ambient gas, including oxygen or moisture in 

air creating aluminum oxide instead of pure aluminum. Therefore, it is important to have an 

evacuation system within a metal evaporation system in order to rid the chamber of any gases or 

moisture that may react with the materials. An additional benefit of a vacuum system is that 

during evaporation, the metal atoms do not hit any gaseous atoms before condensing on the 

substrate surface, which guarantees a higher deposition rate. In addition, it helps the atoms strike 

certain desired parts and not others [13].  
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2.7.1.1 Sputtering 

Sputtering is a procedure used to deposit a thin layer of material on a substrate surface. 

The initial step in the procedure is making vaporous plasma and then accelerating ions from the 

plasma to the target materials. The target source is eroded via the received ions by energy that is 

transformed and then ejected in the shape of neutral particles in a cluster of atoms (individual 

atoms or molecules).  When ejecting, the neutral atoms move in a direct line, except when they 

encounter other atoms or any close surface. For instance, if the substrate area is a silicon wafer 

that is located in the area of the ejected particles a thin layer of the target materials will cover the 

silicon wafer.  

In essence, plasma can be defined as the "fourth state of matter”, besides the well-known 

three states: solid, liquid, and gas. In fact, vaporous plasma is an active state at which neutral gas 

photons, ions, atoms, and electrons occur in a close balanced condition together. Using energy 

sources, such as a direct current (DC), or radio frequency (RF), is necessary to feed the plasma 

and maintain its condition while the plasma is missing energy. This dynamic state is produced by 

applying gas such as argon (Ar) in the pre-pump vacuum chamber and then allowing the 

chamber pressure to reach a specific level (0.1 Torr, for instance). Then by vacuum feedthrough, 

live electrodes can be introduced inside the low-pressure gas environment [15]. 

2.7.1.2 Physical Vapor Deposition (PVD) 

PVD is a process utilized in order to deposit very thin layers of metals, usually varying in 

thickness from a nanometer to several micrometers. The processes of this vacuum deposition 

system are safe for the environment. It includes three main stages: a) materials are evaporated 

from a solid source supported by either gaseous plasma or by using vacuum with high 
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temperature dependence; b) the vapor is then transported to the substrate surface in a vacuum or 

partial-vacuum; c) and, particles finally condense on the substrate area to produce thin films (see 

Figure 2.12).  

Many of PVD systems use all of the above stages, yet they differ in the method applied to 

produce and deposit metals. Thermal evaporation and sputtering are the main methods used in 

PVD systems. In general, the thermal evaporation technique focuses on the evaporation of base 

material. This is done by heating the metal via suitable approaches in a vacuum. On the other 

hand, sputtering is a plasma-dependent procedure which produces a vapor coming from the 

target that strike the substrate surface with fast moving ion, usually argon. 

In both evaporation techniques, the generated vapor is then deposited onto the anticipated 

substrate via a condensation technique. Depositing a thin layer can extend a range of chemical 

structures depending on the original materials in the source [16].  

PVD utilizes different vacuum deposition systems to deposit thin films via the buildup of a vapor 

condensing onto different sides of the work area.  The coating system includes physical 

procedures like the high temperature vacuum evaporation and resulting condensation. PVD also 

includes cathode arc deposition, electron beam physical vapor deposition, evaporation deposition 

and other vacuum deposition systems [17].  
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Figure 2.12. Physical deposition phases. 

2.7.1.3 Electron Beam Evaporation (E-Beam) Evaporation 

E-beam another PVD technique, is produced by a filament and driven by magnetic and 

electric field. This is in order to attack the source material then evaporate it in a vacuum 

condition. Once the source materials get hot enough as a result of the energy transferred to the 

source, surface atoms obtain enough energy to leave. At this time, the atoms attempt to traverse 

http://www.ajaint.com/atc-e-series-e-beam-evaporation-systems.html
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the vacuum surrounding, when the thermal energy is lower than 1 eV, and deposit as layers on 

the wafer substrate located above the evaporated metals. The average distance between the 

substrate and the source is generally between a few centimeters to one meter. A picture of the e-

beam evaporator is shown in Figure 2.13.  

 

Figure 2.13. E-beam evaporator [18]. 

Due to low energy in the thermal system, the chamber pressure should be less than the point 

at which the mean free-path is longer than the space in between the e-beam source materials and 

the substrate surface. The mean free-path can be explained as the average distance a molecule or 

atoms can travel in a vacuum before it hits another atom or particle which disturbs its path to  
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a certain degree. This value is generally 3×10
-4

 Torr or less.  

Other evaporation techniques without ion-beam support can be employed at a pressure less 

than 1×10
-4

 Torr, but the pressure increases constantly because of the outgassing of several 

components inside the vacuum chamber.  Allowing vaporized atoms to traverse the active 

distance between the substrate and the source materials undisturbed by the rest of the remaining 

atoms confirms “line of sight” influx of material that becomes huge when a specific type of mask 

is applied. Less arrival energy is considered beneficial for a substrate with more sensitivity, 

though the radiation coming from the powerful energy of electron beam transfer under the 

substrate area naturally will dominate [19]. 

2.7.1.4 Thermal Evaporator 

Another common PVD system is the thermal evaporator method. This method is used when 

it is crucial to apply very thin films in a high vacuum setting because this system provides high 

temperatures through applying Joule heating to a strong metal. When applying a high current 

through a resistive component like a light bulb, the filament will get hot. Gold and aluminum are 

heavy filaments and can be used as the metal wire. The metal wire will initially heat up and 

increase the filament temperature, then the metal evaporates from the filament or boats and 

travels inside the chamber [17].  

Basically, the source is heated until the materials inside reach the melting point and become 

liquid. This material is usually placed inside the bottom of the chamber, in a boat or crucible. 

Therefore, when these materials evaporate, the vapor will rise above the source and touch the 

inverted substrate which is on the top, opposite from the source. At this phase, the substrate 



24 
  

surface is coated and thin films are created. See a simple drawing of a thermal evaporator system 

in Figure 2.14 [20]. 

 

Figure. 2.14. Simple drawing of thermal evaporator system [21]. 

In the thermal evaporator system, a large electric current at a small voltage is delivered 

through a rigid metallic filament heater or in metal boats. These filaments or metal boats can 

come in a various form as shown in Figure 2.15.  

 The filament and spiral are individually prepared from multi-strand tungsten (W) rope and 

are very appropriate for aluminum vapor in general. Dimple boats and crucibles are usually made 

of tantalum (Ta), tungsten (W), and molybdenum (Mo). Boat filaments made of Mo and Ta work 

great and can be used several times without causing problems [13]. Moreover, these boat 

filaments are usually made with an isolating barrier coat of aluminum oxide in order to avoid 

reaction between the boat filaments and evaporated metal. This also helps to keep the current  
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from shorting over the heavy molten conductor films being evaporated. 

 

Figure 2.15. Different sources for thermal evaporation of materials [22]. 

For materials with a very high melting point such as Ta, W, and Mo, a thermal evaporator 

cannot be used to evaporate them.  Electron beam evaporation can be used to evaporate these 

metals quite easily [13]. 

2.8 Materials Background  

Si and Ge are very popular semiconductors and are the most popular choice for 

electronic, optoelectronic, and solar cell applications. Also, Ge alloys are recently used in 

optoelectronic devices to replace GaAs which is much more expensive and incompatible with 

silicon technology.  

2.8.1 Germanium (Ge) 

 Germanium is in group IV of the periodic table. This element is a metalloid crystalline in its 
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pure condition. Also, Ge is considered to be a great semiconductor material. There are many 

applications for the use of Ge. One important use for it is as a transistor in many electronic 

applications, as an impetus or catalyst, and in fluorescent lights by phosphor. The doping of Ge 

can be accomplished with gallium, arsenic, and other different elements of group III and V [23]. 

Even though Ge is very similar to silicon (Si), it is not easy to find Ge naturally, whereas Si is 

very common on earth. Some of the physical properties of Ge are:  its atomic number is 32; its 

atomic weight is 72.630; it melts at 1211.40 K; its density is 5.3234 g/cm
3
; it has diamond cubic 

structure with band gap 0.67 eV; its thermal conductivity is 60.2 W·m
-1

·K
-1

; and, the electrical 

resistivity at 20 °C is 1 ohm·m for un-doped Ge [24]. 

2.8.2 Tin (Sn) 

Sn and Ge are both group IV, and the atomic number of Sn is 50. It is crystalline, 

malleable, and its color is a combination of silver and white. It does not require a very high 

temperature to melt. Its melting point is 231.93 °C (449.47 °F). The thermal conductivity of Sn is 

66.8 W·m
-1

·K
-1

, and its electrical resistivity at 0 °C is 115 nohm·m. Below 3.72 K, tin converts 

into a superconductor. Sn has two allotropes, β and α-tin[25]. α-tin forms a diamond structure 

crystal but  is not stable above 13 °C.  β-tin is a more stable allotrope of Sn that forms a 

tetragonal crystal structure. Tin’s melting point is 231.9 °C and the boiling point is 2270 °C [24]. 

2.8.3 Lead (Pb) 

Pb is a solid metal element with atomic number 82. It is also in group IV in the periodic 

table of elements, with an atomic weight of 207.2 g/mol. Its conductivity of electricity is poor 

and it is very resistant to corrosion. Lead’s melting point is 327.46 °C and the boiling point is 

1749 °C [26]. 
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Chapter 3: Literature Review 

3.1 Growth of GePb  

Even though the growth of Ge on silicon is widely studied these days, only a few reports 

actually talk about the growth of GePb alloys in detail. Most of the studies concentrate on the 

growth of GeSn and SiGeSn and the optical properties of these alloys.  

One of the first reports of Ge-Si properties was published by Olesinski and Abbaschian at 

the University of Florida in 1984. They studied the germanium-silicon equilibrium phase 

diagram. The liquid and cubic diamond substitutional solid solution are the two steady states that 

were formed by Ge-Si and some basic materials properties of Ge and Si [27].  

 In 2014,  Huang,  Cheng,  Xue, and Li [28] reported that GePb and GeSn can achieve a 

direct bandgap by using a low concentration of Pb and Sn. Their bandgap calculation of super 

cell and virtual-crystal structure indicate that GePb alloys shifted to direct bandgap as the 

concentration of Pb increased. In addition to that, the transitional concentration of GePb alloys is 

far less than those for the GeSn ones. They used first principle theory to consider the influence of 

impurity clustering and they also discussed some optical and electrical properties of GeSn and 

GePb. They used the “Cambridge Serial Total Energy Package” (CASTEP) for the first 

principles calculations. For achieving the ground state assembly, they utilized the algorithm of 

Broyden Fletcher Goldfarb Shanno (BFGS). The tolerance for the entire energy difference was 

5.0×10
−7

 eV/atom, and their maximum force was equal to 0.02 eV/Å. Their results specified that 

the transition from indirect band to the direct band requires Sn concentration of the alloy to be 

more than 6%, while the Pb concentration for indirect to direct band transition was determined to 

be 0.93% [28]. 

http://www.sciencedirect.com/science/article/pii/S0921452614001653?np=y
http://www.sciencedirect.com/science/article/pii/S0921452614001653?np=y
http://www.sciencedirect.com/science/article/pii/S0921452614001653?np=y
http://www.sciencedirect.com/science/article/pii/S0921452614001653?np=y
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 In 2014 and 2016, Qian et al [29], [30], [31] published three papers on GePb. For the 

growth of single crystalline GePb, they used sputtering for deposition and laser induced epitaxy 

for annealing. In their initial studies, they stated that “pulsed laser induced epitaxy” was used to 

achieve GePb alloys and they were able to achieve substitutional Pb up to 3%. To examine the 

substitutional Pb, they used high-resolution Rutherford backscattering spectrometry (HRBS).  To 

define the full amount of Pb atoms, they used conventional Rutherford Backscattering (RBS). 

Their substrate was n-type germanium, which they cleaned with diluted hydrofluoric acid at 

1:100 ratios for three minutes. Using sputtering, they deposited GePb with a 30 nm layer 

thickness at room temperature. The sputter source was a mixture of both Ge and Pb, with 97% of 

it being Ge and the rest was Pb. SiO2 of 15 nm thickness was deposited as a second layer without 

breaking vacuum to avoid surface oxidation. They annealed the amorphous layer of GePb by a 

KrF pulsed laser with a wavelength 248 nm and a pulse time of 23 ns. The GePb film was 

crystallized after the laser annealing because of the high temperature produced by the laser.  

 In their TEM images, they compared the amorphous GePb layer before and after 

annealing and recrystallizing by the laser. TEM inferred that they obtained epitaxial layers of 

GePb. They characterized their samples using secondary ion mass spectrometry (SIMS). They 

concluded that by using sputtering for deposition and a laser for annealing, they were able to get 

single crystalline GePb films and also achieved almost 3% of lead in the substitutional side [30].  

In a later study, Qian et al. [30] used sputtering and laser induced epitaxy to form a GePb 

single crystalline layer, just like their previous studies. In addition, most of their characterization 

instruments and parameters stayed the same. Using sputtering, they deposited GePb layers with a 

thickness of 60 nm for one sample to use for the characterization of secondary ion mass 
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spectroscopy (SIMS), and the rest of samples at room temperature had a thickness of 40 nm. The 

chamber pressure was kept at 3×10
−3

 Torr, while the sputtering base pressure was 5×10
−7

 Torr. 

The sputter source was also a mixture of both Ge and Pb of very high purity. In the pulsed laser 

annealing process, they used varied laser fluence (300, 350, 400, 450, and 500 mJ/cm
2
)

 
with a 

248 nm wavelength and diverse capping layers depositions (SiO2, Si3N4, and Al 2O3). They 

illustrated single crystalline GePb at various laser fluences and capping deposition layers, yet the 

350 mJ/cm
2 

fluence was the one that formed a single crystalline layer of GePb [31]. However, 

the optical properties of GePb were not reported in any of their studies. 

3.2 Growth of GeSn 

GeSn alloys have been studied in more detail using a variety of methods such as CVD, 

MBE, PVD, etc. Here, GeSn films achieved using PVD are focused on. In 2013, Haofeng et al. 

[32] achieved a substitutional crystalline GeSn alloy with 8.7% atomic percent of Sn on a SiO2 

substrate with 10 nm layer thickness. The crystallinity of GeSn was formed at low temperatures 

ranging from 370 to 470 °C. They used a thermal co-evaporation PVD system to deposit Ge and 

Sn. Using cross sectional scanning electron microscopy (SEM), they were able to measure the 

thickness of thin films. They etched the segregated tin on the annealed GeSn films with a 

hydrochloric acid solution HCl:H2O (37.2%). The thickness of germanium was 100 nm, while 

the GeSn alloy was almost 300 nm. They also used Raman spectra with an excitation laser 

operating at wavelength of 514 nm. 

Overall, they obtained high crystalline GeSn, and improved the optical and electrical 

properties of the thin films at low temperatures not exceeding 470 °C. They also found that when 

increasing the Sn concentration, the crystallization temperature goes down. The band gap of the 
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GeSn films becomes much lower than the pure germanium, varying from 0.8 eV for the pure Ge 

to 0.5 eV for the alloyed thin film [32].  

In 2014, Ruben et al. [33] examined optical and structural properties of amorphous and 

crystalline GeSn annealed at 500 °C on a Si substrate.  They used an ultra-high vacuum (UHV) 

system to deposit Ge and Sn which they evaporated in different single effusion cells. The 

thickness of their amorphous GeSn ranged from 37 nm up to 65 nm. The chamber base pressure 

was 2 × 10
−10

 Torr. After annealing at 500 °C for one minute under a nitrogen environment, the 

amorphous material became single crystalline GeSn.  

They obtained GeSn with minimal concentration of Sn (4.5% and 11.3%). In the sample 

with a concentration of 4.5%, Sn seemed to form as substitutional in both the as-deposited GeSn 

and in the crystalline form with no clustering of Sn. Conversely, for crystalline GeSn at 

concentration of 11.3% Sn, they found the segregation of Sn and observed the presence of β-Sn 

by Extended X-ray Absorption Fine Structure (EXAFS). Their indirect amorphous GeSn 

changed to direct crystalline GeSn [33].  
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Chapter 4: Experimental Methodology and Equipment 

This chapter starts with the experimental processes that were followed during the 

deposition and growth of Ge alloys. Then it illustrates the equipment and characterization tools 

used in the process of characterizing the films. 

4.1 Experimental Procedures 

4.1.1 Sample Cleaning  

First, to clean the Si (100) substrate, piranha solution was used to remove the organic 

material and metals from the sample substrate.  Piranha etch is a mixture of two components, 

sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) combined with a 1:1 ratio.  The solution 

was prepared in the acid bench at University of Arkansas, High Density Electronics Center 

(HiDEC) clean room. Glass containers were used for preparation of piranha solution, as plastic 

containers could melt due to the heat generation during the process. It was necessary to add 

H2SO4 first then slowly add H2O2.  After that, the silicon wafers were placed in the solution using 

a suitable holder and a timer was set for 10 minutes.   

Hydrofluoric acid solution (HF) was later used to remove the oxide layer from the 

samples. This was also prepared in the acid bench in the clean room. This solution contains HF 

and deionized water (HF: H2O with 1:10 ratio).  Opposite from the piranha solution, HF solution 

should be prepared in a plastic container because HF is capable of dissolving glass. Si samples 

were dipped in the HF solution for 2 minutes then rinsed with DI water and dried using a 

nitrogen gun. After the cleaning process was completed, samples were kept in the container until 

the next step.  
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4.1.2 Deposition Process  

To grow GeSn and GePb on Si, a thermal evaporator was used to deposit the thin films 

under a high vacuum at room temperature. Then samples were annealed at different annealing 

temperatures and times. Etching was the last step before characterization, and hydrochloric acid 

(HCl) and acetic acid (CH3COOH) were two solutions used for etching the metal.  

Before putting the glass or Si substrates on the substrate holder, the glass substrates were 

cleaned using acetone, and the Si wafers were cleaned following the above mentioned procedure.  

Moreover, the thermal evaporator chamber was cleaned with 20% potassium hydroxide (KOH) 

to confirm that there was no contamination from other metals used in previous runs.  

4.1.2.1 GePb Deposition  

First, the Si and glass substrates were placed on the substrate holder before transferring it 

to the thermal system. Then, the Ge was placed in one boat and Pb in another before closing the 

chamber. After turning on the thermal evaporator, the rotary and diffusion pumps were turned 

on. Next, the handle was switched to the rough pump until the pressure reached 1×10
-1

 Torr, and 

then the handle was moved again to the backing and vent for five seconds. Following this, the 

handle was changed once again to the roughing pump until the pressure reached 1×10
-1

 Torr. 

This same step was repeated to purify the inside of the chamber from moisture before deposition.  

After the indicator was returned to the roughing pump and the pressure became 6×10
-2

 Torr, the 

handle was moved to the backing and the gate valve was opened.  After the pressure reached 

2.25×10
-5

 Torr, liquid N2 was poured into the trap to decrease the pressure to 5×10
-6

 Torr. At that 
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point, metal deposition could begin. A current was applied to the filament to heat the boat and 

evaporate the metal. First the metal (Pb or Sn) was deposited then Ge was deposited.  

The layer inversion method that was used for the deposition of GePb required that the 

metal layer (Pb) be deposited first and then the Ge layer deposited on the top.  In this method 

when the sample is annealed, Ge diffuses through the metal film to the substrate as crystalline Ge 

while also incorporating as certain concentration of metal.  See Table 4.1 for parameter details.  

4.1.2.2 GeSn Deposition  

The same process was used to grow GeSn, except that the first layer deposited was Sn 

instead of Pb and the second layer was Ge as it was explained above in the layer inversion 

method. See Table 4.2 for more parameter details. 

As previously mentioned, the layers were deposited at room temperature. The thickness 

of the layers varied from 50 nm to 200 nm, yet the last 20 experiments had deposited layers all 

with a thickness of 100 nm. The deposition rate and the amount of time after deposition differed 

from one run to another. After the deposition was done, chamber temperature was taken for each 

run. Table 4.3 shows the parameters used for Ge-Pb+Sn on Si sample.  

4.1.3 Sample Annealing Process   

At the beginning of this research, annealing was done in situ within the thermal 

evaporator at 200 °C. However, since the annealing temperature could not exceed 300 °C, a 

Fisher Scientific annealing furnace [34] was used instead for that purpose. The annealing 

temperatures were varied between 300-600 °C and the annealing time varied from 15 minutes to 
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60 minutes. Before starting the annealing process, the furnace was purged with dry N2 gas in 

order to prevent oxidation of the sample. 

Table 4.1. Parameters for Ge-Pb growth using thermal evaporator. 

Run 

number 

Layer Film 

Thickness 

(nm) 

Power 

Control 

Current 

(ampere) 

Deposition 

Rate 

(nm/S) 

Deposition 

Time 

(Min.Sec) 

 

Rn1 

Pb 100 4 20 ________ ________ 

Ge 100 8 60 ________ ________ 

Rn2 Pb 100 6 30 0.5-1 2.22 

 

Rn3 

Pb 100 5 20-40 1.2-1.3 1.21 

Ge 82 10 60 1.5-2 4 

 

Rn4 

Pb 60 6 40 0.8-0.9 2 

Ge 43 9 60 1-1.5 3 

 

Rn5 

Pb 50 4 30-40 5-6 1.30 

Ge 50 8 60 1.2-1.5 7 

Rn6 Pb 100 5 40 2-4 1 

Ge 100 9 60 1.5-2 6 

Rn7 Pb 100 5 40 2-4 1.5 

Ge 100 9.5 60 0.5-0.6 4 

Rn8 Pb 100 5 40 3-5 0.55 

Ge 100 8-9 60 0.4-0.5 7 

Rn9 Pb 100 5 40 2.7 1.15 

Ge 100 8-9 60 0.5 7 
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Table 4.2.  Parameters for Ge-Sn growth using thermal evaporator. 

Run 

number 

Layer Film 

Thickness 

(nm) 

Power 

Control 

Current 

(ampere) 

Deposition 

Rate 

(nm/S) 

Deposition 

Time 

(Min.Sec) 

 

Rn1 

Sn 50 7 60 0.5 6 

Ge 50 8 60 0.7 7 

Rn2 Sn 100 7 60 0.4-0.5 6 

 

Rn3 

Sn 200 7.5 60 1.6-2 2 

Ge 200 8.5 60 0.6-0.8 5.21 

 

Rn4 

Sn 200 7.7 60 1.5-1.8 2 

Ge 200 8.7 60 0.6 5.21 

 

Rn5 

Sn 200 7.5 60 1.5-1.6 2 

Ge 200 8.8 60 0.7 5 

Rn6 Sn 100 7 60 0.5 4 

Rn7 Sn 100 7.5 58 1 1.30 

Ge 100 9.5 77 1-1.3 4.30 

Rn8 Sn 100 8 60 0.8-1 3.50 

Ge 100 10 60 0.4-0.5 3.40 
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Table 4.3. Parameters for Ge-Pb-Sn growth using thermal evaporator 

Run 

number 

Layer Film 

Thickness 

(nm) 

Power 

Control 

Current 

(ampere) 

Deposition 

Rate 

(nm/S) 

Deposition 

Time 

(Min.Sec) 

 

RnPb+Sn 

Pb+Sn 100 4 40 4 2 

Ge 100 10 60 0.5-0.7 6 

4.1.4 Wet Etching Process  

HCl and CH3COOH were both solutions  used for metal (Pb or Sn) etching. Both 

solutions gave nearly identical results, yet HCl was more often used because of the convenience. 

Also, different HCl concentrations with different etching times were attempted, in order to 

compare and pick the best concentration. The HCl solution (HCl: H2O) was prepared in HiDEC 

clean room with a concentration of 20%, 30%, and 50%, and an etching time of 2 min, 5 min, 

and 10 min. The 30% etch solution worked very well and all subsequent samples were etched 

using 30% HCl for 2 minutes. Figure 4.1 shows the fabrication process of GePb/GeSn. 

4.2 Equipment  

4.2.1 Deposition Equipment 

4.2.1.1 Thermal Evaporator  

As previously mentioned in Chapter 2, thermal evaporation is a popular method of PVD. 

A thermal evaporator system includes a vacuum chamber to help with depositing thin films of 

pure materials onto a substrate. An Edwards Coating System E306A [35] shown in Figure 4.2 
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was used to deposit thin layers of Ge, Pb, and Sn for subsequent growth of GeSn and GePb.  

 

Figure. 4.1. Fabrication process of GePb/GeSn. 
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Figure. 4.2. Fabrication process of GePb/GeSn (picture taken by the author) 

4.2.1.2 Fisher Scientific Furnace  

 A Fisher Scientific furnace [34] shown in Figure 4.3 in the assembly lab was used to 

anneal samples under N2 environment at different annealing time (15-60 mins) and temperatures 

(300-600 °C).  

4.2.2 Characterization Equipment  

 For sample characterization, Raman spectroscopy, photoluminescence (PL), X-ray 

diffraction (XRD), and scanning electron microscopy (SEM) were used to examine the sample 
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crystallinity, band gap energy, and composition.  

 

Figure 4.3. Fisher scientific furnace (picture taken by the author).  

4.2.2.1 Raman Spectroscopy  

 Raman spectroscopy relies on inelastic scattering of monochromatic light, mostly from a 

laser source. The meaning of the term inelastic scattering is that photon frequency in the incident 

monochromatic light alters depending on the interaction with samples. When the lattice vibration 

of the target molecules or crystal interact with incident photons of the laser, the scattered light 

photons either gain of loose energy corresponding to absorption or emission of a vibration mode 

quantum. That creates the Raman effect, which gives the reemitted photons frequency shifted (up 
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or down) in contrast to the prime monochromatic frequency. Raman spectroscopy can also be 

used to study samples in different phases such as solid, liquid, and gas [36]. 

Raman spectroscopy contains four main components detector, wavelength selector, light 

collection optics and illumination structure, and laser source. Usually, the laser beam illuminates 

the sample in the range of the visible (Vis), ultraviolet (UV), or near infrared (NIR).  To get the 

Raman spectrum of the sample, lens collect the scattered light and then the scattered light is sent 

via interference filter or spectrophotometer [36]. A schematic diagram of the Raman 

spectroscopy system setup used in this research is shown in Figure 4.4.  

Generally, Raman scattering has sensitivity to degree of crystallinity in materials or 

alloys. A crystalline material gives a spectrum with intense and sharp Raman peaks while an 

amorphous material shows wider and less intense peaks. Both states (completely amorphous or 

completely crystalline) can be deemed spectral extremes. In addition, an intermediate state for 

Raman spectrum, for instance partly-crystalline, will have features which are intermediate in 

case of peak intensity and width [37]. 

Raman shift is the difference in energy between incident and scattered photons in cm
-1

 

[37]. Raman shift  can be calculated by: 

                                   = 
1

λ incident 
−

1

λ scattered
                                           (Equation 4.1)  

where λ incident and λ scattered are the wavelength in cm. 

Raman spectroscopy can be used in different applications for the following: chemical 

analysis, microscopic, non-destructive, and imaging. For both qualitative and quantitative data, 
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Raman analysis is capable of providing important information fast and easy [39]. 

In semiconductors, a Raman spectroscope (Figure 4.5) is used in several applications 

such as: characterization of strain or stress, alloy concentration, purity analysis, contamination 

identification, super-lattice structure, and hetero structure determination, defect analysis, 

photoluminescence microanalysis, and doping effects [40].  

 

Figure 4.4. Schematic diagram of Raman spectroscope setup [38]. 

To study the crystallinity of GePb and GeSn thin films, Raman measurements were taken 

using a helium–neon (He-Ne) laser at wavelength 632.8 nm and 10 mW output power at room 

temperature. For the last 12 samples measured, another laser was used which was a diode 

pumped solid state (DPSS) continuous wave (CW) at 532 nm wavelength and power of 500 mW 

at room temperature.  
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4.2.2.2 Photoluminescence  

Photoluminescence (PL) is a specific type of luminescence. The word photoluminescence 

includes all devices capable of absorbing light energy and after that, the energy released in the 

form of light [41]. When light is focused onto a sample, it is absorbed and conveys extra energy 

into the material in a procedure known as photoexcitation. The sample gives out a portion of that 

extra absorbed energy in the form of photons or light, and it is said to show photoluminescence 

[42]. Because of the photoexcitation, electrons in the material may be excited into higher energy 

states. When these electrons get back to their equilibrium state, the extra energy may be given 

out as a radiative process (emission of light) or in a non-radiative process [42]. 

 

Figure 4.5. Raman spectroscopy system (picture taken by the author). 
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Fluorescence and phosphorescence are the two kinds of photoluminescence. Fluorescent 

materials initially absorb light and emit it immediately at various wavelengths, while 

phosphorescent materials initially absorb small wavelength light and then gradually emit light 

through time at various longer wavelengths [43]. 

A laser with a wavelength near the band gap energy of the sample is pointed onto the 

sample, which can be held by cryostat to be take measurements that taken under low 

temperature. Once the laser beam falls on the sample, photoluminescence occurs and light is 

emitted at wavelengths depending on the sample composition.  

The sample is placed inside a cryostat, with the reflected beam and photoluminescence 

emission propagating in various directions. The emitted light is then guided through a fibre optic 

cable into a spectrometer. A computer is used to interpret the digital information, and can show a 

PL spectrum [44]. A diagram of photoluminescence set-up is shown in Figure 4.6.  

 

Figure 4.6. Diagram of photoluminescence set-up. 
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PL can be used to investigate discrete energy levels and to get values for semiconductor 

sample composition, thickness of quantum well, or sample monodispersity in the case of 

quantum dots [43]. 

PL was used in this research to determine the band gap edge. The PL peaks represent 

direct measurements of the energy level. Diode pumped solid state (DPSS) continuous wave 

(CW) laser at 532 nm wavelength and power of 500 mW was used at room temperature. A 

picture of the photoluminescence system used in this research is shown in Figure 4.7. 

 

Figure 4.7. Photoluminescence system (picture taken by the author). 

http://www2.warwick.ac.uk/fac/sci/physics/postgraduate/current/regs/mpags/ex5/lds/2d/
http://www2.warwick.ac.uk/fac/sci/physics/postgraduate/current/regs/mpags/ex5/lds/qd/
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4.2.2.3 X-ray Diffraction (XRD) 

When the atoms of a crystal scatter X-rays, an interference effect is produced. Therefore, 

the diffraction pattern offers information about the crystal structure or character of a crystalline 

substrate [45].  

In 1895, X-rays were discovered which helped scientists to analyze the crystalline 

structure at the atomic scale. There are two primary areas X-ray diffraction has been utilized: as 

a mark for crystalline materials characterization and for their structure identification [43]. Figure 

4.8 shows a XRD system. 

XRD can be used for different purposes such as defining the orientation of single crystal 

or grain, calculating the average spacing between planes of atoms, determining the crystal 

structure of an unidentified material, measuring internal stress, size, and shape of small 

crystalline areas [45]. 

 

Figure 4.8. A picture of XRD system [46]. 
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4.2.2.3.1 Bragg’s law 

Diffraction happens only if Bragg’s law can be satisfactorily implemented [44]. X-ray 

reflection from two planes of atoms in a crystal structure are shown in the Figure 4.9.  

 

Figure 4.9. Bragg’s low: X-ray interaction with the atoms. 

 

 Bragg’s law states: 

                                    nλ = 2dsinθ                                                    (Equation 4.4) 

where θ is the reflecting angle, d is the distance between planes, dsinθ is the extra path to reach 

the atom in the second plane, 2dsinθ is the path difference between the two waves. λ is the 

wavelength, and n is the number of wavelengths (normally n = 1). 

θ 
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   XRD was used in this work to determine the crystal structure and orientation of GePb and 

GeSn samples. In addition, it was used to measure the d spacing between atoms and to estimate 

the Pb and Sn composition of the alloy.  

4.2.2.4 Scanning Electron Microscopy (SEM) 

SEM utilizes an electron beam focused over a substrate area to produce an image. The 

sample and the beam electrons interact with each other, then generate different signals which can 

be used to get information about surface morphology and composition [47]. Figure 4.10 shows 

the SEM used in this research.  

 

Figure 4.10. SEM system (picture taken by the author). 

SEM creates an image with large magnification by replacing electrons instead of using 

light to produce an image.  At the top of the microscope, an electron gun produces a beam of 
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electrons which follow a vertical track through the microscope. That microscope is operated in a 

vacuum. The beam goes through electromagnetic fields and magnetic lenses which direct the 

beam down to the sample. When the beam strikes the sample, electrons and X-rays are produced 

from the sample. Detectors will collect X-rays, secondary electrons, and backscattered electrons 

in order to characterize the sample [48]. Secondary electrons emitted from the sample substrate 

create an image of the sample substrate commensurate with its surface composition and surface 

morphology. This signal is sent to a screen and creates the final image. The X-ray emission from 

the sample is characterized to determine the sample composition using energy dispersive analysis 

of emitted X-rays (EDX). A schematic of an SEM system is shown in Figure 4.11. 

 

Figure 4.11. A schematic of SEM system [49]. 
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Chapter 5: Results and Discussion 

 As part of this research, a number of experiments were done in order to grow crystalline 

GeSn and GePb and to possiblly obtain heteroepitaxy. Additionally, two different substrates 

were used, glass and Si.  

With the PVD system the GeSn and GePb samples were grown thermally. This was by 

using the thermal evaporator under a high vacuum pressure of 10
-6

 Torr. GeSn and GePb samples 

were characterized using different characterization methods: Raman spectroscopy, 

photoluminescence (PL), X-ray diffraction (XRD), and scanning electron microscopy (SEM). 

Four factors were controlled in the growth: layer thickness, annealing temperature, annealing 

time, and etching solution. Therefore, those factors were varied in order to find the best growth 

conditions. However, after trying two different etching solutions hydrochloric acid (HCl) and 

acetic acid (CH 3COOH), the result was almost exactly the same for both of them. So, the project 

was completed using only HCl as the etching solution.  

 There were two main variables used to study the growth of the samples; annealing time 

and annealing temperature.  To study the effect of annealing temperature, a sample from a 

deposition run was divided and used at four different annealing temperatures (300, 400, 500, and 

600 °C), three different times (15, 30, and 60 minutes) for each annealing temperature.  

The thickness of each layer was varied between (50-200 nm). However, it was observed 

that for thickness of 50, 60, and 80 nm, all samples failed to show any shift in the Raman 

spectroscopy measurement indicating no alloy formation. However, when using 100 nm 

thickness for each layer, for both Ge-Sn and Ge-Pb, a good shift in the Raman peaks were 

obtained.  

http://onlinelibrary.wiley.com/doi/10.1002/0471266965.com081.pub2/full
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For the thermal process, in order to obtain a pure dry deposition environment, a liquid 

nitrogen trap was used after the chamber pressure reached 3×10
-5

 Torr. This would preferentially 

pump out water vapor from the evaporator chamber. The vacuum in the thermal evaporator 

system provides a pure condition from ambient air particles and other contaminants. This assured 

clean deposition conditions.  All deposition occurred without deliberate substrate heating. 

However, the substrate temperature was measured to be around (60-80 °C) mainly due to 

radiation heating from the evaporation boat and convection heating from the evaporated Ge and 

metal.  

Moreover, in the annealing process via Fisher Scientific furnace, N2 gas was used during 

annealing to provide a clean dry surrounding.  

5.1 The Fabrication Process of Ge Alloy  

5.1.1 Fabrication Process of GeSn 

As Figure 5.1 shows, the sample with tin on a silicon substrate had a golden color before 

depositing germanium, but after depositing Ge its color was changed to dark gray. The samples 

got darker after increasing the annealing time and etching. For the sample annealed for 15 

minutes at 300°C, the color did not change more than the un-annealed GeSn. However, after 30 

minutes of anneal the sample started to get dark; the one hour annealed sample was almost black 

with some purple and golden color. Also, increasing the annealing temperature impacted the 

sample color the same way. For example, the sample annealed at 600 °C was very dark and 

glittery at the same time while the sample annealed at 400 °C was lighter with gray color and not 

shiny. 
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Figure 5.1. GeSn sample surface changes during the fabrication 
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5.1.2 Fabrication Process of GePb 

Figure 5.2 illustrates the noticeable changes of the GePb sample during the fabrication process. 

 

 

 

Figure 5.2. GePb sample surface changes during the fabrication process. 
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GePb sample surface color also changed after the annealing temperature was increased 

and after etching. Samples annealed at 300 °C and 400 °C did not show a lot of color change, yet 

the surface was less smooth and less shiny than the un-annealed sample. However, at 500 °C, the 

samples were rougher with cupreous color. Samples annealed at 600 °C were very dark and had 

more than one color (brown, blue, and black).  

From both GeSn and GePb samples annealed at various temperatures and times, it can be 

inferred that layer exchanged took place at 300 °C and annealing time above 30 minutes. At high 

temperature, however, optical interference due to SnO and PbO formation on the surface my 

have been occurring.  

5.2 GeSn Result  

5.2.1 Raman Spectroscopy  

In this research, Raman spectroscopy was used to determine the alloy composition and 

crystallinity of the GeSn and GePb films that were deposited on a silicon or glass substrate. After 

Raman spectroscopy measurement was done using helium–neon (He-Ne) laser at wavelength of 

632.8 nm and power of 10 mW, the data was used to generate a graph as shown in Figure 5.3. 

The GeSn sample depicted in Figure 5.3 was deposited using thermal evaporator PVD. It 

was deposited at room temperature under 5 × 10
-6

 Torr base pressure using layer-by-layer 

method on a Si substrate. The first layer was tin with 100 nm thickness, deposition rate of 8-10 

nm/s, and deposition time of  3 minutes 50 seconds. The second layer was germanium with 100 

nm thickness, deposition rate 4-5 nm/s, and deposition time of 3 minutes and 40 seconds.  After 

the deposition was completed, the chamber temperature was 68 °C
.  
Using Fisher Scientific 
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furnace in the assembly lab, the sample was annealed for 1 hour at 400 °C under nitrogen 

environment. Then, the sample was etched using a 30%  HCl in water solution for 2 minutes. 

Raman measurements were taken at room temperature. 

Figure 5.3. Comparison of the Raman spectroscopy of Ge reference and GeSn annealed for 1 

hour at 400 °C under N2 environment on a Si substrate. 

 As can be seen in Figure 5. 3 the GeSn sample behaved differently than the (001) Ge 

reference. The Ge-Ge peak was at 300 cm
-1

 while for GeSn sample the peak shifted to the left at 

296.31 cm
-1.  

This implies incorporation of Sn in Ge lattice. Left of the shifted peak, the shoulder 

is in the range of 287 cm
-1

 and Ge-Sn peak from 245 to 274 cm
-1

 refers to the incorporation of 

Ge-Sn at lower wavelength, because of the variation in the bonding energy of Ge-Ge via Sn 

atoms. The intensity was normalized to 1 in all Raman graphs, therefore, a low count background 

peak was observed from 200-250 nm. 
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5.2.1.2 Annealing Temperature Study 

At the same deposition condition, GeSn samples were annealed at different temperatures 

to study the effect of thermal annealing on the crystallinity of the GeSn.  Starting from 300 °C up 

to 600 °C, the samples were annealed for 1 hour then characterized by Raman scattering 

spectroscopy.  Figure 5. 4 shows, the Raman spectra of GeSn samples on Si substrate annealed at 

different annealing temperatures. Those samples were cleaned, deposited, and etched under the 

same condition, the only difference being that each of them was annealed at a different 

temperature for 1 hour. However, when characterized by Raman spectroscopy, they show shifts 

in the Ge-Ge peak. Comparing the samples with each other, it is obvious that the sample that was 

annealed at 400
 
°C produced larger Raman shift than other samples. This implies that annealing 

at 400
 
°C resulted in more incorporation of Sn. This can be due to a segregation of Sn at higher 

temperature while at lower temperature, such as 300 °C, there was not sufficient incorporation of 

Sn. From the shape of the Raman peak, it could also be inferred that the films were crystalline. 

5.2.1.3 GeSn on Glass Substrate  

This sample was different from the previous one in that the substrate was glass. The 

deposition was done at room temperature while the base pressure was 5×10
-6

 Torr, using the 

same deposition method as GeSn on silicon. In Figure 5.5, the GeSn on a glass substrate also had 

a shifted peak compared to the Ge reference. The Ge-Ge peak is ~ 300 cm
-1

 while for GeSn 

crystalline alloy the peak shifted to the left at 293.20 cm
-1.  

This means that there was an 

incorporation of  Sn in Ge lattice. Ge-Sn peak from 236 to 252.9 cm
-1

 refers to incorporation of 

Ge-Sn at lower wavelength. 
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Figure 5.4. Raman spectroscopy of GeSn at different annealing temperature (300-600 °C) for 1 

hour under N2 environment. 
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Figure 5.5. Comparison of the Raman spectroscopy of Ge reference and GeSn annealed for 1 

hour at 400 °C under N2 environment on glass substrate. 
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5.2.2 Photoluminescence Spectra (PL) 

In germanium, the L valley is the indirect band gap at an energy of 0.67 eV. While the 

direct band gap at the Γ valley with energy of 0.8 eV is at standard room temperature. When Sn 

incorporates in Ge, the conduction band decreases at the Γ valley at a much quicker rate 

compared to the L valley. In order to determine the bandgap edge for a GeSn sample, 

photoluminescence spectra (PL) measurements were taken, as illustrated in Figure 5.6. 

 

Figure 5.6. Photo luminesces spectra for Ge reference, GeSn film on Si and glass annealed at 

400 °C for one hour under N
2
 environment. 

From Figure 5.6 the Ge reference at wavelength 1784 nm is equal to the band gap energy 

of E = 0.6950 eV. The band gap energy of GeSn on silicon substrate was E = 0.544 eV  which is 
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lower than the Ge reference. For GeSn on glass substrate, the band gap was E = 0.545 eV. 

Therefore, PL results indicates that the band gap of Ge reduced by -0.15 eV as a result of 

alloying with Sn. This was a good sign for direct band gap and crystalline GeSn.  

For GeSn on glass substrate annealed at 400 ºC and 500 ºC, the band gap energy 

decreased to 0.5565 eV.  However, the band gap energy was a little lower for GeSn sample that 

was annealed for 1 hour at 500 ºC. To the right of both GeSn peaks, there are small curves at 

523nm due to the fifth order of the PL wavelength.  

 

Figure 5.7. Photoluminescence spectra for GeSn film on glass annealed at 400 ºC and 500 ºC for 

1 hour under N2 environment. 
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5.2.3 X-Ray Diffraction (XRD) Result 

XRD is used to calculate the typical spacing between planes of a crystal. This is in order 

to define the orientation of a grain or a single crystal. In addition, it is used to determine the 

crystal arrangement of a new material [50]. Figure 5.8 illustates the XRD patterns for GeSn/Si 

annealed at 300 ºC. 

 

Figure 5.8. XRD patterns for GeSn/Si annealed at 300 ºC for 1 hour under N2 environment. 

This GeSn sample was deposited at room temperature with 100 nm thickness for Ge layer 

and Sn layer, then the sample was annealed at 300 ºC. The Ge/Sn/Si (as grown) before annealing 

sample gave a higher intensity peak than GeSn after annealing and etching which gave low 

intensity peak at the 14% composition level. This could be due to substrate heating during 
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deposition, which can reach 100 °C and result in crystalline GeSn. Therefore, the annealed 

sample at 300 ºC gave less quality film than the as grown sample. 

5.3 GePb Results 

5.3.1 Raman Spectroscopy 

GePb was deposited on a Si substrate at room temperature under 5 ×10
-6

 Torr base 

pressure. The first layer was Pb with 100 nm thickness for a deposition rate of 0.15-0.2 nm/s and 

deposition time 1 minute and 30 seconds. The second layer was germanium with 100 nm 

thickness for a deposition rate of 0.5-0.6 nm/s and  deposition time of  7 minutes. After  

deposition was completed, the chamber temperature was 72 °C. The sample was annealed for 1 

hour at 400 °C under nitrogen environment using a Fisher Scientific furnace. Then, the sample 

was etched using 30% HCl in water solution for 2 minutes. 

 As can be seen in Figure 5. 9 the GePb sample behaved differently than the Ge 

reference. The Ge peak was ~ 300 cm
-1

 while for GePb sample the peak shifted to the left at 

297.14 cm
-1

. The left shoulder in the range of 275 cm
-1 

and Ge-Pb peak from 215 to 268 cm
-1

 

refers to incorporation of GePb at lower wavelength. The intensity was normalized in all Raman 

graphs. 

5.3.1.1 Annealing Temperature Study 

GePb samples were annealed at different annealing temperatures to study the effect of 

thermal annealing on the crystallinity of the Ge1-x-Pbx. The samples were annealed from 300 °C 

to 600 °C for 1 hour then characterized using Raman scattering spectroscopy.  
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Figure 5.9 Comparison of the Raman spectroscopy of the Ge reference and the GePb sample 

annealed for 1 hour at 400 °C
 
under N2 environment on a Si substrate. 

Figure 5.10 shows Raman spectra for the GePb samples on Si substrate. These samples 

were produced at the same conditions, except that each of them was annealed at a different 

temperature for 1 hour. Then, they were characterized by Raman spectroscopy. For 300 °C, there 

was almost no shifting at all, only the peak was a little wider. However, the graph shows shifting 

in the Ge peak at other samples. When comparing samples, the sample that was annealed at 400
 

°C showed more shifting than other samples at other annealing temperatures. This implies that 

annealing at 400
 
°C creates more incorporation. At lower temperatures such as 300 °C there was 

not sufficient incorporation between Ge and Pb as seen from the absence of any shift.  
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Figure 5.10. Raman spectroscopy of Ge reference and GePb on Si substrate at different 

annealing temperature (300-600 °C) for 1 hour under N2 environment. 

5.3.1.2 Annealing Time Study 

For further investigation, GePb samples were annealed at different times for each 

annealing temperature to study the effect of the annealing time on the crystallinity of  Ge1-x-Pbx. 

This was done by annealing each sample from 300 °C up to 600 °C at different times 15,30, or 

60 minutes.  

Figure 5.11 shows the Raman spectra for four Ge-Pb samples. Those GePb samples were 

grown on Si substrate at room temperature and annealed at 300°C for different annealing time 

15, 30, or 60 minutes. At this temperature for those altered times, there was not any good 

shifting;  all peaks were very similar to each other. This means, at 300 °C, there was not 

sufficieant growth and Pb did not incorporate in Ge. 

Figure 5.12 shows the Raman spectra for four GePb samples. Those samples were all 

processed under the same condition, except that each of them was annealed for a different time. 
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However, unlike the 300 °C annealed temperature, growth on Si substrate for 400 °C at different 

times 15, 30, or 60 minutes showed very good shifting.  

After characterization was done by Raman spectroscopy, the result showed shifting for 

both 30 and 60 minutes annealing time while the shifting did not exist at 15 minutes. Although at 

60 minutes there was shifting, yet it was less than the shifting obtained at 30 minutes. This 

indicates that there was more incorporation of Pb in Ge.  

Figure 5.13 shows Raman spectra of four GePb samples annealed at 500 °C for different 

annealing times (15-60 minutes). The growth process for those sample is very similar to the 

previous two except the annealing temperature was changed to 500°C.  The result was similar to 

those in Figure 5.12; no shifting appeared, but these samples had more noise and the peaks in 

samples annealed at 300 °C for a different time were sharper and much smoother. This means at 

higher temperature 500 °C there was no growth and Pb did not show incorporation in Ge. This 

could be due to Pb segregation at temperature 500 °C. 

 

Figure 5.11. Raman spectroscopy of the Ge reference and GePb annealed at 300 °C for 15-30-60 

min under N2 environment on a Si substrate. 
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Figure 5.12. Raman spectroscopy of the Ge reference and GePb annealed at 400 °C for 15-30- 

60 min under N2 environment on a Si substrate. 

 

Figure 5.13. Raman spectroscopy of the Ge reference and GePb annealed at 500 °C for 15-30-60 

min under N2 environment on a Si substrate. 
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For GePb annealed at 600 °C, the annealing time was varied (15, 30, 60 minutes) as 

illustrated in Figure 5.14. The results are similar to the samples annealed at 300 °C and 500 °C 

for the same times. There was almost no shifting, but the peaks for 600 °C annealing were 

sharper and smoother than for those annealed at 300 °C and 500 °C. Also, this could be due to Pb 

segregation at temperature ≥ 500 °C.  Overall, Raman Spectroscopy indicated that annealing at 

400 °C for 30 minutes was the ideal annealing temperature and time for growth condition of 

GePb.  

 

Figure 5.14 Raman spectroscopy of the Ge reference and GePb annealed at 600 °C for 15-30-60 

min under N2 environment on a Si substrate. 
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condition were taken to the photoluminescence spectra to see the optical properties of the 

samples and ensure the results of the Raman spectroscope.   

From Figure 5.15, the band gap energy of GePb sample on silicon substrate was E = 

0.5428 eV (equal to 2284nm) while  the band gap energy for the same sample on glass substrate 

was  E= 0.5659 eV (equal to 2191nm). The band gap energy of the Ge reference was almost 0.79 

eV, which was much bigger than the band gap energy of the GePb samples on silicon and glass 

substrate at 400 °C. PL measurements show that the films produced had good optical properties.  

Figure 5.15 shows that annealing at 400 ºC for 30 and 60 minutes gave a wider range of 

wavelengths and a smaller band gap energy, which means a smaller band gap than other samples 

which used different annealing temperatures.  

 

Figure 5.15.  Photoluminescence spectra for Ge reference, GePb film on Si substrate, and GePb 

film on Glass substrate. 
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Figures 5.16, and 5.17 confirm the Raman measurements in that the PL measurements for 

400 ºC annealing at 30 and 60 minutes on silicon substrate showed a wider peak and less 

bandgap energy than a 15 minutes annealing time. The band gap energy of GePb annealed for 60 

minutes was E = 0.5472 eV (equal to 2266nm).  The bandgap energy for the sample annealed for 

30 minutes was E = 0.5428 eV (equal to 2284nm),  which showed that annealing for 30 minutes 

or 60 minutes  at 400 ºC was  the preferred to get direct bandgap Ge alloys.  

 

Figure 5.16.  Photoluminescence spectra for GePb films on Si substrates at different annealing 

temperatures (300-600 ºC) for 1 hour under N2 environment. 
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Figure 5.17.  Photoluminescence spectra for GePb films on a Si substrate at 400 ºC for different 

annealing time  (15-30-60 min) under vacuum environment. 

5.3.3 X-Ray Diffraction (XRD) result 

XRD measuerments shown in Figure 5.18  and Figure 5.19  were taken for two samples 

one on a silicon substate and the other on a glass substrate. Both were deposited at room 

temperatue in a high vcuum enviernment by a thermal evaporator. Those samples have  thickness 

of 100 nm of Ge, and the same amount of  Pb. They were annealed at 400 ºC for 1 hour under 

nitrogen environment. Even though the GePb un-annealed sample gave more shifting to the left, 

it had less quality indicated by the lower intensity of the peak.  The XRD measurements in 

Figure 5.19 were taken for GePb on glass substrate with 400 ºC annealing temperature. However, 

GePb on Si substrate showed higher peak intensity at the same peak position, 2theta omega = 

65.2
o
 and a higher XRD intensity implied a better quality GePb film. 
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Figure 5.18. XRD patterns for GePb/Si annealed at 400 ºC for 1 hour under N2 environment. 

 

Figure 5.19. XRD patterns for GePb on a glass substrate annealed at 400ºC for 1 hour under N2 

environment. 
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5.3.4 X-Ray Powder Diffraction (XRD) Result 

 In order to investigate how much Ge was in different orientation peaks, a wide scan of 

GePb XRD was carried out as shown in Figure 5.20.  XRD powder diffraction pattern for both 

Ge and Pb were taken from the XRD powder data base and plotted in Figure 5.21 a and b. In a 

randomly oriented Ge or GePb polycrystalline film, the (004) peak is expected to be only about 

7% of the (111) peak,  whereas, in the GePb film of this research, the ratio was formed to be 

133% .  This resulted in a 94% preferential growth of (004) orientation from this film. In other 

words, epitaxial  growth was obtained.  

 

Figure 5.20.  Wide scan of XRD patterns of GePb/Si annealed at 400ºC for 1 hour under N2 

environment. 
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            Figure 5.21.  XRD powder data base for (a) Ge and (b) Pb. 

5.3.5 GePb SEM Results  

SEM images were taken for Ge/Pb/Si samples (un-annealed and un-etched) as shown in 

Figure 5.22, and then images were taken after annealing and etching at different annealing time 

Ge 

Pb 

a 

b 
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15, 30, or 60 mins as shown in Figures 22- 26. Those samples were deposited at room 

temperature under nitrogen environment, and then annealed at 400 ºC.  

Figure 5.22 shows a SEM image of a Ge-Pb-Si sample before annealing and etching.  

From the contras difference and the existence of small patches of  grey in a higher magnification 

field, it appears that some interaction had already taken place between Pb and Ge before 

annealing. The overall surface looked very smooth except for some protrusions that may have 

arisen from the sputtering of Pb during evaporation. 

 

Figure 5.22.  SEM images of Ge-Pb-Si (as grown sample) before annealing and etching process. 

Figure 5.23 shows SEM images at 300x and 5000x of a GePb film which was deposited 

on Si substrate at room temperature then annealed for 15 minutes at 400 ºC. It may be noted that 

Pb was etched away from the sample before SEM were taken. Figure 5.23 (a) shows the surface 
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of the GePb sample with 350x magnification. The surface of the sample still had some of the Pb 

protrusion, which could have been because of some Pb drops that did not go away after etching 

the sample, but the surface was not very rough. Figure 5.23 (b) was taken at a higher 

magnification of 5000x and shows microstructures of dimension 2-10 µm. This may have been 

due to insufficient annealing time to make the grains much bigger.  

 

Figure 5.23.  SEM pictures of GePb annealed at 400 ºC for 15 min. 

  Figure 5.24 (a) and (b) shows SEM images of GePb on Si substrate that was annealed for 

30 minutes at 400 ºC under N2 environment.  The result of SEM shows that the sample had big 

grains. Image (b) is for the same sample but with higher magnification of 5000x and shows the 

size of one of the grains to be 42 µm. This means that annealing GePb sample for 30 minutes at 

400 ºC resulted in a polycrystalline GePb material with huge grain sizes. 

a b 
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a 

Figure 5.24.  SEM images of GePb annealed at 400 ºC for 30min. 

 

 

b 

Ge GeSn Sn 
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  Figure 5.25 (a) and (b) shows SEM images of GePb annealed for 60 minutes at 400 ºC 

on Si substrate.  The SEM results show that the sample had small grains and a smooth surface. 

Image (a) shows a smooth surface and magnification of 5000x while image (b) is taken with 

higher magnification of 50,000x. Figure 5.25(b) shows a pitted surface which may have been 

caused by Pb segregation during subsequent etching. The size of the grains was very small 

compared to the grains of GePb sample annealed for 30 minutes. Both samples were grown at 

the same condition with the same layer thickness of 100 nm for each layer of Ge and Pb. This 

means annealing GePb sample for 30 minutes and 60 minutes at 400 ºC resulted in a 

polycrystalline GePb material, but the grain size of the sample annealed for 30 minutes was 

bigger than the grain size of the sample annealed for 60 minutes. Therefore, 30 minutes 

annealing seemed to be the most suited time, and 400 ºC is the preferred  annealing temperature 

for GePb. 

                                                                                 

       Figure 5.25.  SEM images of GePb annealed at 400 ºC for 60min. 

 Energy Dispersive X-ray (EDX) images and mapping were taken for the GePb sample 

annealed for 1 hour at 400 ºC in order to determine the type of materials in the GePb films 

a b 5µ
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surface and how Ge and Pb were distributied in the surface. Ge and Pb was equally distributed in 

the film and the film was homogeneous as Figure 5.26 shows.  

 

 

 

Figure 5.26. (a) and (b) are EDX images for GePb/Si annealed at 400C for 60 min, (c) GePb 

mapping. 

b 
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In order to confirm that the GePb alloy films  had layer inversion (layer exchange), a 

cross sectional image was taken for a GePb sample. As Figure 5.27 shows  most of the Pb which 

was deposited first moved up above the GePb film in the EDX image; only a small amount of  

Pb remained underneath the Ge which was the second layer deposited. This indicated that layer 

inversion has been sucssefuly obtained. 

 
 

                                           

Figure 5.27.  SEM images of GePb shows layer inversion. 
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SEM was used to measure the thickness of epitaxial layers grown for GePb annealed for 

400 ºC for 1 hour as shown in Fgure 5.28  The thickness monitor was previosly calibrated, 

therefore, the average layer thickness obtained, around 600nm, was more than the predicted 

average layer thicknes which was 200 nm.  However, 600 nm thickness was far beyond the 

critical thickness which meant that the GePb film was relaxed.  

 

Figure 5.28.  SEM images of GePb annealed at 400 ºC for 60 min with layer thickness. 
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Chapter 6: Conclusion 

In this research, GePb and GeSn deposition using layer inversion method was studied.  A 

systematic study on the effect of different substrates, annealing time, and temperature was done 

in order to maximize the crystallization of the GePb and GeSn alloys.  A thermal evaporator was  

employed for the deposition of the layers at room temperature. The samples were annealed at 

300-600 °C for 15-60 minutes. The results showed that annealing the layers resulted  in inversion 

of the layers and the Ge layer crystallized on the Si substrate with up to 94% in the same 

orientation as the substrate. The incorporation of Sn and Pb in the Ge lattice occurs as the upper 

layer Ge diffuses through the lower layer metal and deposits on the clean Si substrate while 

incorporating some metal. Studying the annealing temperatures showed that increasing the 

temperature resulted in higher incorporation and higher material quality. However, increasing the 

temperature above 400 °C resulted in lower material quality and more precipitation of Pb and Sn 

from Ge lattice. 

Material characterization of the samples using XRD showed up to 5% Pb and 14 % Sn 

incorporation in the Ge lattice.  The SEM and EDX scanning maps showed that the layer 

inversion had fully happened and the Ge(Pb/Sn) was directly deposited on Si substrate. The 

optical characterization of the samples showed that as a result of Sn/Pb incorporation the 

bandgap of Ge was shrunk from indirect 0.67 eV to 0.54 eV. The shift in the Raman peak 

position to lower wavenumbers verified the incorporation of Pb/Sn in Ge. 
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Appendix A: Description of Research for Popular Publication 

Faster electronic devices for bright future 

By: Hakimah Alahmed 

Electronic chips, such as chips in computers or phones, have been developed by 

researchers  in order to get high performance devices with higher speed at the same time. At the 

University of Arkansas in Fayetteville, Dr. Hameed Naseem who is a professor in the electrical 

engineering department and his group aim to enhance the optical properties of silicon to benefit 

the technology of chips.  One of Dr. Hameed Naseem’s group member, Hakimah Alahmed, a 

graduate student in the Microelectronics and Photonics program, working in silicon compatible 

material growth, claims that growing germanium films that is able to emit light, is capable of 

making chips with optical interconnect base for faster data transfer applications.    

Do light emitting materials really help enhance chip interconnects? Why should material 

used in the chip be compatible with silicon? Is it important for the interconnect material in the 

chips to be optical interconnect not electrical wires? In order to obtain devices that can track the 

recent rapid technology, light emitting materials are very important to replace electrical wire 

interconnect with optical ones and then can make LEDs and laser devices. Even though silicon is 

not a light emitting material, it is very important for every electronic circuit due to silicon 

physical and electrical properties.  Nowadays, wire interconnect is facing Resistance-Capacitor 

(RC). Therefore, transistors size on the chip decrease, yet RC does not decrease at the same rate. 

To overcome this issue, optical interconnect is the ideal solution.  

Growing germanium lead (GePb) or germanium tin (GeSn) in silicon wafer with specific 

composition of Pb in germanium or tin in germanium (10%  tin and half this value for lead) is 

capable of making germanium direct bangap materials, which have high light emitting 
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efficiency. Using Ge alloys (GeSn /GePb) on silicon is cheaper and better technology than using 

gallium arsenide (GaAs) because it is not cost effective (high cost) and is not compatible with Si 

(thermal mismatching between Si and GaAs).  
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Appendix B: Executive Summary of Newly Created Intellectual Property 

There is no new intellectual property matters in this research project. 
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Appendix C: Potential Patent and Commercialization Aspects of listed Intellectual 

Property Items 

There is no promising patent and commercialization aspects of the intellectual 

property items. 

C.1 Patentability of Intellectual Property (Could Each Item be Patented) 

No potential of patentability of intellectual property in this thesis. 

C.2 Commercialization Prospects (Should Each Item Be Patented) 

Not applicable.  

C.3 Possible Prior Disclosure of IP 

Not applicable.  
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Appendix D: Broader Impact of Research  

D.1 Applicability of Research Methods to Other Problems 

After characterizing Ge alloys, it was found that crystalline GePb with direct bandgap 

and high light emitting efficiency could be used as laser  source support beside the alloy of 

GeSn. Also, these alloys have the potential to be implemented in fabrication of integrated 

circuits, light emitting diodes, solar cells and transistors.   

D.2 Impact of Research Results on U.S. and Global Society 

 This research shows an opportunity to benefit the U.S and global society. One major 

objective of this project was to grow Ge alloys films that have direct bandgap and are capable of 

emitting light efficiently. This is in order to replace the electronic wire interconnect with the 

optical interconnect for high performance devices and faster data transfer. Having Ge alloys on a 

Si substrate to create Si base IC provides high quality optoelectronic material with low cost and 

easy fabrication process. 

D.3 Impact of Research Results on the Environment 

A thermal evaporator is a very cheap PVD system used to deposit GeSn and GePb on a 

silicon substrate.  Metals used in this research have very low toxicity and are safe for the 

environment except Pb which is toxic and need to be in a safe packaging to protect the 

environment from its toxicity.  Also the evaporation system used in this project does not have 

any bad impact on the environment. Obtaining GeSn and GePb with direct bandgap and high 

light emitting efficiency on Si helps electronic device performance and increases their efficiency 

which leads to low power consumption without harming the environment at all. 
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 Appendix E: Microsoft Project for MS MicroEP Degree Plan 
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Appendix F: Identification of All Software Used in Research and Thesis Generation 

Computer #1: 

Model Number: x86-64Full_14Sep 

Serial Number: Dell 1707FP 

Location: Engineering Research Center  

Owner: Department of Electrical Engineering 

 

Software #1: 

Name: Microsoft Office 2013 

Purchased by: Department of Electrical Engineering 

 

Computer #1: 

Model Number: HP virgin (10.0240) 

Serial Number: 5CD5520K41 

Location: 888. W Lawson St apt 2J  

Owner: Hakimah Alahmed 

 

Software #1: 

Name: Microsoft Office 2015 

Purchased by: Hakimah Alahmed 

 

Software #2:  

Name: Microsoft Project 2010  

Purchased by: MSDN Academy Alliance through Engineering 
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