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Abstract 

Quantum Dot LEDs with all inorganic materials are investigated in this thesis.  The 

research was motivated by the potential disruptive technology of core shell quantum dots in 

lighting and display applications.  These devices consisted of three main layers: hole transport 

layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons 

occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were 

synthesized following hot injection method.  The ETL and the HTL were formed of zinc oxide 

nanocrystals and nickel oxide, respectively.  Motivated by the low cost synthesis and deposition, 

NiO and ZnO were synthesized following sol-gel method and deposited using spin coating. The 

anode of the device was a commercial slide of indium tin oxide deposited on glass substrate 

while the cathode was a 100 nm aluminum layer that was deposited using an Auto 306T Edwards 

thermal evaporator.    

In this research, Raman spectroscopy, micro-photoluminescence spectroscopy, 

absorbance spectroscopy, X-ray diffraction (XRD) spectroscopy, and atomic force microscopy, 

were used to characterize the materials.  Three sharp peaks were observed in the XRD 

measurements of the NiO thin film related to three planes and indicated a proper level of 

crystallinity.  The AFM image of the same material indicated a roughness RMS value of 2 nm 

which was accepted for a device fabrication. 

The photoluminescence spectrum exhibited a peak at 515 nm for the quantum dots and a 

peak at 315 nm for the ZnO nanocrystals.  The narrow shape of these spectra proved a limited 

amount of size variation.  The transfer characteristics of the fabricated device indicated that the 

current density ramped up producing green light when the voltage was higher than 5 V to reach 

160 mA cm-2 at 9 V. 
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Chapter 1 Introduction 

During the past years, quantum dot LEDs (QD-LEDs) gained the interest of researchers 

as a potential alternative for the organic LEDs in display technology applications [1], [2], [3].  

Narrow bandwidth, high quality tunable color and high electrochemical stability are the most 

important features of the QDs [1], [2], [3].  With colloidal QDs, it is possible to produce a 

photoluminescence spectrum that is half the width of that produced by the regular organic LEDs 

[1], [2].  Such narrow spectrum is an indication of a pure color, which is a result of high QD size 

uniformity where the size variation can reach down to 4% to 5% [1], [3], [4].  For long life 

devices, it is crucial to use materials with high electrochemical stability.  Unlike organic LEDs, 

quantum dots have high electrochemical stability that makes them alternative competitive 

materials for long life display devices [1], [2].  However, some hurdles still exist, among which 

is the relatively low efficiency which is <1% for all inorganic LEDs and 18% for hybrid LED 

[4].  In addition, the mechanism of the device and the theoretical concepts are not completely 

understood yet [2], [4], [5], [6], [7].  Quantum dots are prepared by epitaxial and colloidal 

growths. The latter method is preferred in optoelectronic applications because of the high mono-

dispersity it offers.   

 

1.1 Quantum Dots Properties  

Quantum dots are semiconductors shaped as crystals in which charge carriers are 

confined in three dimensions.  Each single crystal contains hundreds, to thousands, of atoms [1], 

[8].  Because of the unique optical properties that QDs have, they have been expanding in the 

market in different kinds of optoelectronic applications [2].  The first attempt of marketing QDs 

was in optical filters where blue light, mostly produced by GaN LEDs, is absorbed and reemitted 
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at longer wavelengths [2], [6].  The size of the QDs controls the color of the emitted light so that 

different colors can be produced by the same QDs but with different sizes.  Usually the size of a 

QD ranges between 1.7 nm for blue light and 5 nm for red light [1].  High color purity emitted by 

a certain material is an interpretation of the width of the emission spectrum produced by that 

material.  The emission spectrum of QDs can have a full width at half-maximum (FWHM) as 

narrow as 20 nm  [4], [9].  The narrow bandwidth and the high quality tunable color of the 

colloidal quantum dots make them a desired material in lighting and display applications [2], [9].  

There are two main differences between spectrums of the QDs and that of the organic dye, the 

closest competitor in display application. Firstly, the width of the QDs emission spectrum is 

almost half than that of the organic dye used in organic LEDs, secondly, the absorbance intensity 

of the QDs increases with shorter wavelengths, which makes it possible for more than optical 

excitation to happen in the same time using the same blue or UV light source [2].   

The origin of the unique characteristics that QDs have comes from the concept of 

confinement. This concept means that the carriers inside the dots have more spacing between the 

discrete energy levels [1], [10].  The confinement effect takes place when the diameter of the 

quantum dots becomes close to the distance between an electron and a hole known as Bohr 

radius which can be calculated from the following equation: 

                                                       𝑟𝑟 =∈ 𝑎𝑎°𝑚𝑚°/𝑚𝑚P

*                                     (Equation 1.1)  

where 𝑟𝑟 is Bohr radius, ∈ is the dielectric constant of the material, 𝑎𝑎° is Bohr radius of a 

hydrogen atom, 𝑚𝑚° and 𝑚𝑚P

* are the electron basic and effective mass, respectively.  From the 

previous equation, it can be concluded that there is a wide range of distance at which the 

confinement effect starts to appear.  For example, the confinement appears in CdS QDs at a 

radius of 2 nm while it does not appear until 100 nm in PbTe QDs [1].  On the other hand, the 

QDs of two different materials that have the same size experience different level of confinement. 
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For example, the confinement energy of a 3 nm CdSe is half than that of PbSe, which has the 

same size [1].  

 

1.2 Core Shell Quantum Dots 

 The high surface to volume ratio of the quantum dots leads to the fact that a large number 

of the atoms of the QDs exist on the surface.  For example, almost 40% of the atoms exist on the 

surface of a PbSe single QD of 5 nm has [1], [9], [10].  Thus, the number of the potential 

dangling bonds that can act as surface traps is high.  In general, dangling bonds are unsatisfied 

covalent bonds that act as a state that traps electrons or holes since the energy of these states lie 

within the band gap of the QDs.  Usually, the organic ligands that are used in the synthesis 

procedure function as stabilizer and passivate the QD surface [1], [2], [4], [11].  However, some 

of the dangling bonds can still exist even after the organic ligands passivation.  In addition, the 

passivation increases the stability of the QDs by preventing further aggregation, which leads to 

increasing the QD size.  

Coating the QDs with another inorganic material is an effective approach to improve the 

passivation and results in what is known as core-shell quantum dots [1],[10],[12]. Core-shell 

QDs are classified into three types based on the material band gaps and band alignment.  These 

types are: type I, type II, and type II reverse.  In type I, the band gap of the shell material is 

higher than that of the core material [1], [12].  In this type, electrons are confined in the core 

because the conduction band level of the core is lower than that of the shell.  In addition, holes 

are also confined in the core because the valence band level of the core is higher than that of the 

shell. CdSe / ZnS and CdSe / CdS are common examples of type I.  In type II, both conduction 

and valence band levels of the core are either lower or higher than those of the shell [13].  Such 

structure has either electrons or holes to be confined in the core [12], [13].  A common example 
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of this type is CdSe/ ZnTe where electrons are confined in the core because the conduction band 

level of the CdSe is lower than that of the ZnTe.  In the same time, holes are confined in the 

ZnTe shell because its valence band level is higher than that of the CdSe.  In Type I reverse, the 

conduction and the valence band levels of the shell are located inside the band gap of the core, 

which makes both electrons and holes confined in the shell.  Examples of the last type are 

ZnSe/CdSe and CdS/HgS.   

Regardless of the type, adding shells causes a red shift to the PL spectrum of the QDs 

compared with the spectrum of the mere dots [1], [12], [14], [15].  The reason behind the red 

shift is the leakage of the excitons to the shell material [14].  Coating cores with shells increases 

the passivation which leads to higher PL intensity and this is the main purpose of doing so, but 

at the same time it lowers the confinement of the carriers which leads to the red shift [14], [16].  

In the mere dots, the wave function of the electron, exists in the whole space of the core and 

partially leaks into the organic ligand, but there is a less probability of holes to leak into the 

surrounding ligand because the hole mass is heavier than that of the electron [1], [12] [17].  In 

core shell quantum dots, the probability of tunneling into the shell material is higher with 

electron waves than with hole waves.  The lower the confinement, the lower the excitement 

energy states, which means a red shift in the PL spectrum.  Red shift is observed in all the types 

of QDs, but in different levels.  It is small in Type-I and big in Type-I reverse.  Red shift also 

depends on the size of the core.  In small cores, the leakage of the carriers has a large effect on 

the confinement energies, which leads to large amount of red shift.   

As mentioned earlier, coating mere dots with shells reduces the trap states and increases 

the intensity of the emission spectrum, since there will be less non-radiative decay.  The latter 

feature is the reason why core shell QDs is preferred in lighting applications.  As an example of 

the improvement in the PL spectrum, CdSe/ZnS QDs experience an increase in the emission 
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intensity that can reach up to 4 times that obtained from CdSe mere dots [1].  In addition, over-

coating of QD cores with shells introduces a high barrier to oxygen diffusion, which prevents 

the photo oxidation and increases the photo-stability.  

 

1.3 Lattice Mismatch 

The increase in the emission spectrum is accompanied by a lattice mismatch caused by 

the difference in the composition of the materials between the core and the shell.  Lattice 

mismatch plays an important role in limiting the efficiency of QD-LEDs [18], [19], [20].  The 

difference in the composition of the core and the shell produces strain at the core shell interface, 

which leads to a shape deformation of the QDs.  Based on the value of the lattice strain energy 

density, the shell surface might be affected having thin and thick areas [20].  It is reported that 

the value of the lattice strain energy density should be kept below 0.85 eV/nm2 to ensure that the 

QDs optical properties do not change [18].   

Usually, the lattice parameter of the core is smaller than that of the shell, which leads to 

an isotropic compression applied on the core and both radial compression and tangential tension 

applied on the shell.  Small cores can be compressed highly enough not to exceed the critical 

value of the strain energy density [18], [20].  Smith et al. investigated the effect of the lattice 

stain on CdTe/ ZnSe core shell QDs and confirmed that big changes to the energy levels of the 

conduction and valence bands can happen prompted by the lattice strain [20].   

Figure 1.1 illustrates how the lattice strain shifts the conduction and valence bands for 

different sizes of CdTe/ZnSe core shells QDs.  The reason behind this effect is that for group II-

VI and III-V that have zinc-blende crystals, the compressive force raises the band gap energy.   
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Figure 1.1: Schematic diagram of the effect of the lattice mismatch strain on the energy bands of 
core shell QDs. (a) CdTe/ ZnSe core shell QDs under stain conditions. (b) Conduction and 
valence band affected by the lattice strain. 
 

For the same types of materials, the tensile strain lowers the band gap energy.  Thus for 

the case of CdTe/ZnSe, the core is subjected to a compression so its conduction band gap gets 

higher, while the ZnSe is subjected to a tensile stain, so its conduction band gets lower.  This 

change in the energy of the conduction and valence bands leads to a change in the type of the 

QDs from type I to type II [20].     

Annealing at higher temperatures is an approach to overcome the lattice mismatch where 

high temperature annealing allows inter-diffusion between the materials of the core and the shell 

creating an alloy intermediate region between them.  With large alloy regions, the gradual 

change in composition from the core to shell materials reduces lattice mismatch strain and 

provides high photoluminescence quantum yield (PL QY) [18]. However, the problem with this 
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method is the aging of the nanocrystals (NCs) that takes place as a result of annealing which 

increases the range of the NC size distribution. 

 

1.4 Quantum Dot LED Mechanism 

Quantum dot LEDs consist of three main parts: emissive layer which is the quantum dots 

layer, hole transport layer, and electron transport layer as shown in Figure 1.2.  

 

 

Figure 1.2: Basic structure of QD-LED illustrates the three main layers HTL, QDs, and ETL  
with their relative band alignment. 
 

The whole mechanism of how QD-LEDs work is not understood yet but it is suggested 

that holes and electrons are produced by either direct injection method from the HTL and the 

ETL, respectively, to the emissive layer or by Forster transfer mechanism.   The combination 

between carriers excites the QDs to a higher state before they relax back to the initial states 

emitting photons with an energy level that is equal to the band gap of the QDs.  This process 

needs a balance in the injection rate of the holes and the electrons.  Without such balance, 
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carriers gather on the QDs making them either positively or negatively charged, which leads to 

non-radiative recombination or PL blinking [2], [21]. 

 In QD-LEDs, fluorescence intermittency or blinking is the continuous switching between 

the On and the Off states in the photoluminescence.  Up to now, there is no unified theory that 

can precisely explain the mechanism of this observation.  In general, the off state is believed to 

occur when photo-charged or ionized QDs experience a strong non-radiative decay.  On the other 

hand, there is a possibility that the trapped carriers neutralize the QDs allowing an emission to 

take place, which is the On state of the blinking. Up to now, it is still difficult to balance the 

injection rate from both layers because of the relatively high hole barriers compared with the 

electron barriers for most of the materials that are currently being used in fabricating the QD-

LEDs.  Thus, it is crucial to optimize the energy band alignment by selecting materials that offer 

equal barriers for both electrons and holes. 

 

1.4.1 Direct Injection Method 

 In this method, electrons and holes driven by the bias voltage are directly injected from 

the electron and hole injections layers to recombine in the QDs layer and emit photons.  As 

stated before, the mechanism is not clearly understood, but for the QD-LEDs with all inorganic 

materials, it is believed that the direct injection method is dominant [1], [4].  QD charging is 

more likely to take place with this method of injection.  Hybrid QD-LEDs with organic transport 

layers were designed to overcome the problem of QD charging by allowing the second type of 

injection known as FRET. 
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1.4.2 Forster Resonance Energy Transfer FRET in QDs-LEDs 

Forester Resonance Energy Transfer, referred to as FRET, is the second method of 

charge injection. The mechanism of the FRET in QD-LEDs is illustrated in Figure 1.3. In 

general, FRET is a way of non-radiative energy transfer between two molecules: donor and 

acceptor [22].  

 

Figure 1.3: Schematic diagram illustrating the FRET mechanism between the carriers of a QD-
LED. 

The efficiency of the energy transfer is inversely proportional to the sixth power of the 

distance between the donor and the acceptor, which makes it strongly sensitive to small changes 

in distance [22].  For a FRET to occur, the distance between the donor and the acceptor should 

be very small.  In addition, there must be an overlap between the absorption and the emission 

spectrum of the donor and the acceptor, respectively [22].  An exciton is formed on the organic 

molecules at the vicinity of the QDs, then the energy of the formed excitons is transferred to the 
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QDs by FRET mechanism [5] ,[23], [24].  In the past years, researchers focused on utilizing this 

mechanism to increase the efficiency of the QD-LEDs. 

 

1.4.3 Efficiency Calculations 

Up to now, the reported External Quantum Efficiency EQE of QD-LED is 1%, which is 

very low compared with what is obtained from the hybrid QD-LED or the QLED that can reach 

up to 24% [25].  The EQE of the device is defined in the following equation:  

                                                                𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑁𝑁/𝑁𝑁𝑁𝑁                                           (Equation 1.2)      

where Ne and Np are the number of injected electrons and the emitted photons per unit of time 

respectively.  The external quantum efficiency depends also on the luminescent quantum yield 

QY, which is the probability of emitting a photon by an exciton [21].   

Quantum yield can be represented in the following equation: 

                                                        𝐸𝐸𝑄𝑄 = (1 − 𝑁𝑁)𝑘𝑘𝑘𝑘                                                (Equation 1.3) 

where τ is the life time of an excitons, 𝑘𝑘𝑘𝑘 is the radiative decay rate of an exciton, and N is the 

fraction of QDs that are emitting during the operation of the device.  When charges are injected 

into the QD layer, N increases reducing the quantum yield [21].  Some of the injected charges 

are trapped and accumulated on the QD surface [1], [2], [11].  The latter process causes the 

exciton to transfer their energy to the charges on the QDs by a non-radiative mechanism.  As 

discussed earlier, coating QDs with appropriate cores reduce the charging process and thus 

results in higher QY [21].  Charging QDs is the driving force behind Auger recombination that is 

believed to have a major influence on reducing the efficiency of QD-LEDs when operating at a 

high value of current [26].  Auger recombination is a process that involves three carriers in 

which the energy of two opposite carriers (electron and hole) is transferred to the third carrier.  
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The third carrier is excited to higher states before going down again without producing photon. 

The last carrier can either be an electron or a hole for negative trions or biexcitons, respectively 

[21], [26], [27].   

 

1.5 Inverted Structure                   

     Inverted structure is the second form of QD-LED, in which the position of the HTL and 

the ETL are reversed so that the electrons are injected from the anode and transported to the 

emissive layer through the ETL.  Similarly, holes are injected from the metallic cathode and 

transported through the HTL [1], [28], [29].  It is believed that the electroluminescence of the 

inverted structure is higher than that of the conventional structure because the injection rate of 

electrons and holes is more balanced [28], [29].  As stated previously, the main reason behind the 

imbalance of the electrons and holes injection is the high barrier to holes compared with 

electrons.  This problem is partially solved by using the inverted structure because there is a high 

barrier for the electrons as well as for the holes.  Usually MoO3 is used in this structure as a hole 

injection layer that reduces the barrier for the holes and as a barrier for the electrons in the same 

time.  Bhaumik et al. reported obtaining higher electroluminescence with inverted structure using 

MoO3 as a hole injection layer, ZnO, and graphene oxide (GO) as an electron and hole transport 

layer, respectively. 
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Chapter 2 Materials Synthesis and Device Fabrication  

This chapter illustrates the methods of the colloidal synthesis used to prepare the 

materials of the device, and the significance of using such. It also, explains the step of the device 

fabrication.  

 
 
2.1 Sol-Gel Method  

Sol-gel is a common method in chemistry used to prepare solid materials from solutions 

by precipitating the solid from the sol.  A sol is a solution that contains two phases: continuous 

and dispersed which are liquid and solid [30],[31].  The continuous phase in a gel is solid while 

the dispersed phase is liquid. Figure 2.1 illustrates the main steps of a general sol-gel synthesis.   

 

 

Figure 2.1: Schematic diagram illustrating the basic steps of Sol-Gel synthesis method. 
 

When the nanoparticles inside a liquid aggregate to form a network of particles, the sol 

behaves as a precursor for the particle aggregation, which is transformed to gel making the 

viscosity increase. The reaction strongly depends on the temperature that affects the rate of the 
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nanoparticle formation and assembly where, at higher temperatures, the reaction can be fast so 

that it forms clumps instead of uniform network of nanoparticles [31].   

This method was followed in synthesizing the metal oxide transport layers of the device.   

 

2.2 Hot Injection Method 

In this method it is possible to obtain highly mono-disperse QDs [1], [32].  The 

nucleation is triggered by swiftly injecting a precursor at the room temperature into a hot 

solution at 300 oC.  After a few seconds from injecting the precursor, the temperature of the 

whole mixture drops to about 170 oC.  This drop in temperature prevents the formation of new 

nuclei and instead it results in monodisperse nuclei with precursors.  The existing nuclei grow 

forming nanocrystals when the temperature increases (still below 300 oC) but without the 

formation of new nuclei as shown in Figure 2.2. 

 

 

Figure 2.2: Flow chart illustrating the main stages of QDs synthesis by hot injection method. 
 

The growth temperature controls QD size i.e. at higher temperatures, the resulting QDs 

are bigger. These steps are controlled by the existence of stabilizers during the reaction.  The 

latter are surfactants that cap the surface of the nanocrystals which is an important process to 

stabilize the resulting QDs and make them form wurtzite lattice with minimum defects [32].      
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2.3 Nickel Oxide Thin Films  

Among the materials that are used as hole transport layer, PEDOT:PSS represents one of 

the most common options.  The advantages of using this material is that it can produce less rough 

thin film morphology when deposited on the indium tin oxide (ITO) slides where high roughness 

can decrease the device performance [33].  It is reported that the roughness of the HTL is mostly 

caused by the ITO substrate, but good HTL such as PEDOT:PSS can passivate this effect and 

RMS roughness value of 0.9 nm can be obtained [33].  However, the relatively high acidity of 

this materials makes it easy to degrade and difficult to use for long life devices [34], [35].  

PEDOT:PSS has a high PH value and acidity nature which is a limiting factor for transparent 

conductive materials that can be easily etched [34], [35].  Also, this material is hygroscopic 

which means that it is a good moisture absorbent which causes erosion in the transparent 

conductive material substrate [36].  This erosion causes water to damage the device allowing 

diffusion between the different layers [36].  All the above problems with PEDOT: PSS 

encouraged more research on different materials including NiO. 

Nickel oxide is a p-type semiconductor that can be used as a hole transport layer for 

both QD-LEDs and solar cells.  It has a wide band gap (Eg> 3 eV) and high transmittance that 

makes it a good option for use in optoelectronic devices [37], [38], [39].  The high 

electrochemical stability of NiO is its main advantages over PEDOT:PSS, which makes it a good 

option for long life devices [37], [38], [39].  The reason behind the p-type nature of NiO is 

basically the two positive charges produced by the NiO+2 vacancy [40],[41],[42]. 

Nickel oxide was prepared by sol-gel methods reported in literature. One mol of nickel 

acetate tetra hydrate was dissolved in 10 ml of ethanol under room temperature.  Then, an 

equimolar amount of diethanolamine was added to the solution before leaving it under stirring 

for two hours.  The result was a green solution nickel hydroxide as shown in Figure. 2.3, which 
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turned to nickel oxide after the annealing process, which was performed in a furnace at 500 oC. 

The other details of depositing the NiO thin films will be in the device fabrication section.  

 

 

Figure 2.3: Nickel oxide synthesis and deposition: (a) nickel hydroxide solution, (b) indium tin 
oxide substrate, and (c) resulting NiO thin film after depositing the nickel hydroxide over the 
ITO substrate and annealing at 500 oC. 
 

2.4 Zinc Oxide Nanocrystals 

 Zinc oxide is one of the most studied materials in optoelectronics and biomedical 

applications due to its abundance and easy synthesis [43], [44],[45].  The binding energy of ZnO 

at room temperature is reported to be 60 eV while its energy band gap is reported to be 3.37 eV 

at room temperature making the emission spectrum of this materials lie within the ultra violet 

region of light [46].  Naturally, ZnO is an intrinsic n-type semiconductor due to the existence of 

defects that change Fermi level accordingly [46], [43].  These defects must behave like donors to 

participate in the negative charges conductivity.   

To understand the nature of the conductivity in an intrinsic semiconductor, two key 

features of impurities need to be identified: the formation energy of the impurities and their 

positions (deep or shallow). To have a high number of conducting impurities, the formation 

energy should be low, while only shallow impurities can participate in the conductivity of the 
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material [43].  Previously, oxygen vacancies were thought to have a big role in creating the 

intrinsic carriers of ZnO. However, recent studies found that the oxygen vacancies are deep 

donors instead of shallow, which makes them unable to be part of ZnO conductivity regardless of 

the fact that among donors, oxygen vacancies need the least amount of energy to be created [43], 

[47],[48],[49].  The defects that have high formation energy are oxygen interstitials, oxygen 

antisites, zinc interstitials and zinc antisites.  On the other hand, the formation energy of zinc 

vacancies is low but they are but they are not donors.  To summarize the above, the n-type nature 

of zinc oxide cannot be attributed to one single type of impurity. In this research, zinc oxide 

nanocrystals were synthesized using sol-gel method resulting white nanocrystals as shown in 

Figure 2.4 (a).  

 

Figure 2.4: Nanocrystals synthesized in the lab after purification. (a) ZnO NCs in solution. (b) 
CdSe QDs in solution under white light, and (c) CdSe QDs in solution under UV light. 
 

The synthesis was initiated by dissolving 1 mol of zinc acetate in 50 ml of ethanol at 60 

oC until it completely dissolved.  In a separate beaker, 3.3 ml of tetramethylammonium was 

dissolved in 16 ml of ethanol. Under stirring, the second solution was slowly added to the first.  

After 30 minutes, the final mixture was cooled down to the room temperature.  The resulting 

nanocrystals were purified by using the centrifuge after adding toluene and methanol to 
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precipitate the nanocrystals.  Then, the precipitated nanocrystals were put under vacuum for 24 

hours to completely dry.  The dried crystals were dispersed in butanol for the deposition process. 

 

2.5 Cadmium Selenide / Zinc Sulfide Core-shell Quantum Dots  

One of the most commonly used QDs in optoelectronic application is CdSe/ZnS core 

shell quantum dots.  As indicated in Chapter 1, coating cores with appropriate shells enhances 

the photoluminescence of the QDs.  In this case the core is CdSe whose band gap is 1.7 eV is 

coated with ZnS whose band gap is 3.5 eV.  Both materials, CdSe and ZnS, are known to be n-

type intrinsic semiconductors and they can be synthesized with different sizes to cover the entire 

spectrum of the visible light.   

Green CdSe / ZnS core-shell quantum dots were synthesized using the hot injection 

method previously reported in literature [50].  Four mmol of zinc acetate and 0.1 mmol of CdO 

were thoroughly mixed with 5 ml of oleic acid in a 50 ml flask.  The temperature of the mixture 

was heated to 150 oC under degassing.  When it reached to the desired temperature, 15 m of 

octadecene was injected in the flask and heated to 300 oC.  At that temperature, another solution 

of 0.2 mmol of Se, 3 mmol of S, and 2 ml of trioctylphosphine was swiftly injected in the flask.  

The reaction lasted for 10 minutes, then the flask was cooled to room temperature to stop the 

reaction. The resulting quantum dots were purified four times using the centrifuge and by adding 

excess of methanol and hexane. Then, precipitated quantum dots were collected and dried under 

vacuum for 24 hours.  The produced powder was dispersed in hexane to form an orange solution 

for further use in the deposition. Figure 2.4 (b) and (c) show the resulting QDs in solution under 

white light and UV light, respectively.   
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2.6 Molybdenum Trioxide Nanocrystals  

 Molybdenum trioxide is a wide band gap semiconductor with an n-type conductivity 

[51], [52] [53], [54].  Its n-type nature is attributed to the oxygen vacancies that work as electron 

donors to the conduction band [53], [54].  It has been widely used in the fabrication of solar cells 

and QD-LEDs as a hole extraction layer and a hole injection layer, respectively [53], [54].  In 

this work, MoO3 nanoparticles were synthesized by following methods reported in literature 

[28].  A solution of 20 ml of oleylamine and 0.2 mmol of ammonium molybdate tetrahydrate 

were placed in a three neck flask under stirring for 30 minutes in order to degas the solution.  

Then, the temperature was raised to 100 oC and was kept at that temperature for 15 minutes 

before slowly raising it again to 250 oC.  After three hours, the flask was allowed to cool to room 

temperature.  Then the nanoparticles were purified by adding excess of acetone and using a 

centrifuge to separate the particles from the unwanted impurities.  Finally, the precipitated 

particles were dried under vacuum for 24 hours before dispersing them in chloroform to be used 

in the device. 

 

2.7 Device Fabrication  

 The structure of the fabricated device with the direction of the emitted light is illustrated 

in Figure 2.5. Two deposition techniques were followed in the fabrication of a QD-LED: spin 

coating, for the deposition of the device layers, and thermal evaporating for the metallization 

process. Commercial slides of indium tin oxide deposited on glass substrate were used as the 

anode of the device.  Ultrasonic cleaning was used to clean the ITO slides with three solvents: 

deionized water, acetone, and isopropanol consecutively for 10 minutes for each.  The prepared 

solution of nickel hydroxide was spin coated over the ITO substrate at 3000 rpm in a clean room, 
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and then the sample was annealed in a furnace for 15 minutes at 500 oC to produce a dark green 

thin film of nickel oxide. 

 

 

Figure 2.5: The complete structure of the fabricated QD-LED illustrating the bias voltage and  
the direction of the emitted light. 
 

The second step of the fabrication was the deposition of the QDs, which was performed 

by spin coating the dispersed QDs over the nickel oxide thin film with 1000 rpm in a clean room.  

Then, the sample was annealed at 100 oC under nitrogen environment.  

 Zinc oxide nanocrystals dispersed in butanol were spin coated over the surface of the QD 

thin film at 2000 rpm. The annealing process was also performed in nitrogen environment at 110 

oC.  The last step of the fabrication was the metallization of the cathode.  For this device, 100 nm 

of aluminum was deposited on the zinc oxide layer by using an Auto 306T Edwards thermal 

evaporator with a deposition rate as low as 1 nm per second to avoid a possible diffusion of the 

aluminum into the other layers and damaging the device.   



 

   20 

Chapter 3 Characterization Methods 

This chapter overviews the characterization techniques used to investigate the materials 

of this research and presents a summary of the theory of their working principles.       

 

3.1 X-Ray Diffraction Spectroscopy  

X-ray diffraction (XRD) spectroscopy is a non-destructive technique used to detect the 

crystallinity of an unknown material [55].  In this research, XRD was used to characterize the 

thin films of the nickel oxide.  The basic principle of this technique is when an incident beam of 

x-rays hits a crystal, they interfere with each other as they move away from the crystal as shown 

in Figure 3.1.   

 

Figure 3.1: Schematic diagram illustrates the mechanism of XRD and Bragg’s law. 
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The interference that takes place is constructive only when Bragg’s law is satisfied as 

below: 

𝑛𝑛𝑛𝑛 = 2𝑑𝑑 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠                                                  (Equation 3.1) 

where 𝑛𝑛 is an integer number, 𝑛𝑛 is the wavelength of the incident light, 𝑑𝑑 is the spacing between 

two planes in a crystal, and 𝑠𝑠 is the angle of the incident light. Thus, during the operation of this 

technique, the sample is rotated to cover a wide range of angles to detect the one that satisfies 

Bragg’s law.  The reason why X-ray waves are used in this technique is because the range of the 

spacing between planes is close to the wave length of X-rays.  

Using the graph obtained by XRD spectroscopy, the crystallite size can be estimated 

using the following formula known as Scherrer Equation: 

𝑙𝑙 = 𝑘𝑘𝑛𝑛/𝛽𝛽𝛽𝛽𝛽𝛽𝑠𝑠𝑠𝑠                                                  (Equation 3.2) 

where 𝑙𝑙 is the size of the grain, 𝑘𝑘 is the shape factor, 𝑛𝑛 is the wavelength of the incident X-ray 

beam, 𝛽𝛽 is the peak width measured at half of the maximum peak height , and 𝑠𝑠 is the angle of 

the X-ray beam.   

Four important parameters are usually investigated when obtaining an XRD 

measurement.  These parameters are location, intensity, shape, and width [56].  The location of 

the peak is simply a function of distance between the planes of the material as stated in Bragg’s 

law.  The peak shape on the other hand is not completely understood yet; it is reported that it is 

governed by Gaussian and Cauchy distributions, which results from two effects: coherent 

domain size and lattice strain, respectively [56]. The width of the peak is inversely proportional 

to the size of the grain according to Scherrer Equation. In this research, Scherrer equation was 

used to estimate the grain size of the NiO thin film deposited on glass. 
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3.2 Absorption Spectroscopy 

A Cary 500 UV-Vis spectrophotometer was used to obtain the absorbance spectrum of 

ZnO nanocrystals and CdSe-ZnS core-shell quantum dots.  Absorption spectroscopy is a 

technique that provides the absorption spectrum as a function of wavelength.  In this technique, a 

range of wavelengths hits the sample and the output waves are detected to measure how much 

absorption the reflected waves were subjected to [57].   

The main parts of a typical absorbance spectroscopy are shown in Fig. 3-2 (a). The 

amount of absorption is different at each wavelength and it is an indicator of the inter-band 

transitions that take place when the electromagnetic waves are absorbed.  The latter process is 

the transition of an electron from the valance band to the conduction band when it is excited by a 

photon [57], [58].   

As a condition for the transition to take place, the photon energy should be equal or 

higher than the energy difference between the valance band and the conduction band.  Thus, 

absorbance spectroscopy is a method to extract the band gap of a material. The following 

equation is Beer’s law, which is the simplest representation of the absorbance mechanism:  

𝐼𝐼(𝑧𝑧) = 𝐼𝐼° exp[−𝛼𝛼(𝜔𝜔)𝑧𝑧]                                               (Equation 3.3) 

where 𝐼𝐼(𝑧𝑧) and 𝐼𝐼° are the intensities of the electromagnetic wave at a distance 𝑧𝑧 inside the 

sample and at the surface of the sample respectively, and 𝛼𝛼(𝜔𝜔) is the absorption coefficient of 

the sample. Figure 3.2 (b) shows the Cary 500 UV-Vis spectrophotometer used to characterize 

the ZnO NCs and the QDs in solution.  The experiment was set up as follows: the baseline of the 

spectrum was measured by using the cuvette full of butanol for the ZnO measurements and 

chloroform for the QDs measurements. Then, the range of frequencies was set from 200 nm to 

800 nm to obtain the absorbance spectrum.  
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Figure 3.2 (a) Schematic diagram illustrating the working principle of the absorbance 
spectroscopy. (b) Carry 500 UV absorbance spectrometer. 
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3.3 Photoluminescence Spectroscopy  

Photoluminescence spectroscopy was used to observe the emission behavior of the ZnO 

nanocrystals and the quantum dots deposited on glass substrates.  Generally, photoluminescence 

spectroscopy identifies the emission spectrum of an unknown material, giving insight  about 

strain, doping, damage inside the crystal, microscopic defects, and thickness [58].  

Photoluminescence is a process by which an electron decays from the conduction band to the 

valence band and emits a photon [58].  The working principle of this technique is that a sample is 

hit by a laser beam, which excites the electrons of the samples before they decay back producing 

photoluminescence. Figure 3.3 shows a basic schematic diagram of the PL spectrometer and a 

photo of the one used in this research. To obtain the PL spectrum of the ZnO and the QDs, thin 

films of both materials deposited on glass substrates were used.  To obtain a better quality 

spectrum, it is preferred to have a multilayer thin film to increase the thickness.  

 

Figure 3.3: (a) Schematic diagram illustrating the working principles of the micro- 
photoluminescence spectroscopy. (b) Micro-photoluminescence spectrometer used in this 
research. 
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3.4 Raman Spectroscopy 

Raman spectroscopy depends on the inelastic scattering of light when it interacts with the 

atoms of the sample.  The obtained data are the intensity of light, which is a measurement of the 

number of photons versus the frequency shift.  The latter quantity is the difference between the 

frequency of the light source and that of the scattered light [44], [57].  When the frequency of the 

scattered light is more than the original frequency, the process is called Stokes-Raman shift. The 

anti-Stokes-Raman shift occurs when the scattered frequency is higher than the original 

frequency [44], [57].  Phonons (lattice vibrations) are mainly the reason behind this elastic 

scattering, by which Raman spectrum can provide information about the chemical composition 

and crystalline structure.  Raman spectrum depends on the following equation:   

                                                  𝑁𝑁 = 𝛼𝛼𝐸𝐸                                                    (Equation 3.4) 

where 𝑁𝑁 is the induced electrical dipole moment when the light hits the sample, 𝐸𝐸 is the electric 

field, and 𝛼𝛼 is the polarizability of the material.  The latter quantity is a measurement of how 

easy an external electric field can interrupt the electron distribution.   

Equation (3.4) is expanded to the following formula that contains the three types of 

scattering [57]: 

 
       𝑁𝑁 = 𝛼𝛼𝐸𝐸 cos(2𝜋𝜋𝜋𝜋𝑠𝑠𝑛𝑛) + 𝜕𝜕𝛼𝛼

𝜕𝜕𝑄𝑄
𝑄𝑄𝑄𝑄
2

[  cos 2𝜋𝜋𝜋𝜋(𝜋𝜋𝑠𝑠𝑛𝑛 − 𝜋𝜋𝑣𝑣𝑠𝑠𝑛𝑛) + 𝛽𝛽𝛽𝛽𝑠𝑠2𝜋𝜋𝜋𝜋(𝜋𝜋𝑠𝑠𝑛𝑛 + 𝜋𝜋𝑣𝑣𝑠𝑠𝑛𝑛)] (Equation 3.5) 
 

where 𝛼𝛼𝐸𝐸 cos(2𝜋𝜋𝜋𝜋𝑠𝑠𝑛𝑛)  is related to Raleigh scattering at which no change in energy takes place. 

cos 2𝜋𝜋𝜋𝜋(𝜋𝜋𝑠𝑠𝑛𝑛 − 𝜋𝜋𝑣𝑣𝑠𝑠𝑛𝑛) is related to Stokes-Raman scattering at which the output frequency is less 

than the input frequency, and cos 2𝜋𝜋𝜋𝜋(𝜋𝜋𝑠𝑠𝑛𝑛 + 𝜋𝜋𝑣𝑣𝑠𝑠𝑛𝑛) is related to the anti-Stokes-Raman shift, 

where the output frequency is more than the input frequency [57].  The positions of these shifts 

prove whether a certain material exists.  For this research, Raman spectrum was obtained for the 
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ZnO NCs and MoO3 using the same instrument in Figure 3.3 (b) which can be used to obtain 

both Raman and PL spectra.        

 

3.5 Atomic Force Microscopy  

Atomic force microscopy (AFM) is one of the techniques that are used to provide high 

resolution images of a surface.  In this work, AFM was used to obtain an image of the NiO thin 

film surface as well as the RMS value of the surface roughness [57].  The working principle of 

this technique is depicted in Figure 3.4.   

 

 

Figure 3.4: Schematic diagram illustrating the working principles and the main parts of the 
atomic force microscope. 
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During the measurements, the tip of the cantilever scans the surface of the sample.  When 

the tip is few nanometers from the surface of the sample, the effect of Van Der Waals forces, 

electrostatic forces, and several other surface forces starts to appear.  The effect of these forces 

deflects the tip of the cantilever, which diverts the reflected laser beam.  The controller adjusts 

the position of the cantilever based on the feedback of the reflected laser beam.  This technique 

provides a surface image of a sample with a high resolution (as high as hundreds of picometers) 

[57].   
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Chapter 4 Results and Discussion 

4.1 X-ray Diffraction Measurements 

The crystallinity of the nickel oxide thin films was investigated using XRD spectroscopy 

as illustrated in Figure 4.1.  The results exhibited a polycrystalline material with three diffraction 

peaks located at the angles 37o, 43o, and 64o which were related the planes (111), (200), and 

(220).  By using the Scherrer equation for the first peak, an estimation of the NiO grain size was 

found to be 12 nm.     

 

Figure 4.1: X-ray diffraction measurements of nickel oxide thin film exhibit three peaks at the 
angles 37o, 43o, and 64o. 

 

4.2 Nickel Oxide Surface Imaging  

The surface morphology of the NiO thin film was evaluated by obtaining AFM images as 

shown in Figure 4.2. It was found that the RMS roughness value of 1x1 mm surface area of NiO 
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thin film deposited on an ITO slide was 2 nm. This value was mainly attributed to the ITO 

substrate and the poor capability of the NiO to passivate this roughness.  Lower values of 

roughness are reported for glass and fluorine doped tin oxide (FTO) substrates.   

 

 
 
Figure 4.2: 2D and 3D images of 1x1 mm surface area of nickel oxide thin film obtained by 
atomic force microscopy. 
 

4.3 Absorbance and Photoluminescence Measurements   

Figure 4.3 illustrates the absorbance and photoluminescence spectrum of ZnO 

nanocrystals.  The threshold of the optical absorbance spectrum was located at 355 nm while the 

emission peak was located at 370 nm. Both peaks were related to the value of the material band 

gap, thus they should have had the same value at the same temperature. The reason behind the 

difference of the two values was the energy released to the lattice by the electron-phonon 

coupling [57]. In general, the absorption energy is higher than the emission energy by a factor 

called the Stokes shift which is an indicator of the electron-phonon coupling strength.   
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Figure 4.3: Micro-photoluminescence and absorbance spectra of zinc oxide nanocrystals 
deposited on glass substrate. The emission peak was observed at 370 nm of the PL spectrum, 
while the absorbance spectrum has a threshold value at 355 nm. 
 

    The same measurements were taken for the CdSe/ZnS QDs as shown in Figure 4.4.  

An emission peak was located at 515 nm indicating a green color and, similar to what was 

observed in the previous figure, the energies of the absorption spectrum were higher than that of 

the emission spectrum.  The FWHM of the QD PL spectrum was around 45 nm which reflected a 

fair amount of QD size variation.  Although it was clear that FWHM is an interpretation of the 

size variation, up to now, there is no direct method to numerically extract the percentage of the 

size variation from the PL spectrum.             

 



 

   31 

 

Figure 4.4: Micro-photoluminescence and absorbance spectrum of CdSe / ZnS core-shell 
quantum dots.  The emission peak is located at 515 with a FWHM of 45 nm 
 

4.4 Raman shifts 

Thin flim ZnO NCs deposited on a glass substrate were used to obtain the Raman 

spectrum.  ZnO usually takes the form of wurtzite crystal structure, which means it has 4 atoms 

in a unit cell and 12 phonon modes.  Three of these phonon modes are acoustic and the rest are 

optical [44].  Among those phonons, E2 high which is one of the phonon modes for this material 
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which has the sharpest peak located at 440 cm -1 and is related to the vibration of the oxygen 

atom as shown in Figure 4.5.        

 

Figure 4.5: Raman spectrum of zinc oxide NCs thin film with a center peak at 440 cm -1 and   
two adjacent peaks at 320 cm-1 and 580 cm-1. 
 

The peak located at 320 cm-1 was related to the second-order Raman scattering of E2-E1, 

which was the result of the interaction between the two mentioned phonons [58].  Unlike bulk 

ZnO, the Raman spectrum of ZnO nanostructure didn’t exhibit TO phonons as confirmed by 

these measurements [59].  On the other hand, a peak was observed at 580 cm-1, which was 

related to the A1 LO mode that is only seen in ZnO nanostructure material [59].      

Molybdenum trioxide was characterized using Raman spectroscopy.  For this purpose, a 

thin film of MoO3 deposited on a glass substrate was used as a sample. The obtained results 

coincided with what is reported in literature for MoO3 [14],[60]. Six peaks were observed at 270, 
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330, 370, 660, 820 and 990 cm−1 as shown in Figure 4.6. It is reported that the peaks located in 

the region 900 cm−1 to 600 cm−1 originate from the stretching mode of Mo-O while the bending 

mode results in the shifts located in the region 400 cm−1 to 200 cm−1. 

 
 
 

 
Figure 4.6: Raman spectrum of molybdenum trioxide nanocrystals deposited on glass substrate 
exhibits nine sharp peaks. 
 
 
4.5 Quantum Dots LED Current Voltage Characteristics 

The transfer characteristics curve was obtained using a Keithley SCS 4200 

semiconductor characterization. The range of the input voltage was set from 0 to 9 V.  An 

important feature of the device is the turn on voltage, which is the value of the bias voltage at 
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which the device starts to operate and produce clear light.  So far, the reported values of the QD-

LEDs turn on voltage are still high which is one of the challenges that needs to be addressed in 

the future. As illustrated in Figure 4.7, it is hard to identify one single point as the turn on 

voltage, but it can be observed that there was no current with a voltage less than 3 V and it 

started to ramp up after 5 V.  The inset images show the device with and without bias voltage 

with pure green light.  At 9 V, the value of the current density was 160 mA cm-2.           

 

 

Figure 4.7: Current voltage characteristic curve of the fabricated quantum dots LED. 
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Chapter 5 Summary and Future Work 

5.1 Summary of the Conducted Research  

 To summarize the work of this thesis, four inorganic materials were synthesized using 

methods reported in literature. These methods were modified as necessary.  The synthesized 

materials were NiO, ZnO, CdSe/ ZnS QDs, and MoO3 which were chosen because of their low 

cost and optimized synthesis procedure. Five characterization techniques were used to test the 

materials and to make sure they had a proper quality that was sufficient to fabricate a device.  

The deposition of the device layers was performed using a spin-coting technique also because of 

its low cost. For the purpose of metallization, Auto 306T Edwards thermal evaporator was used 

to deposit 100 nm of aluminum.  All the results obtained for this thesis in terms of material 

characterization and the device characteristics were consistent with data in literature.   

 

5.2 Future Work 

As mentioned previously, the whole mechanism and the working principle of this device 

is not well understood, so there is still much work to do to understand the theoretical principles 

behind it.  Up to now, the efficiency of all inorganic LEDs is less than 1%, which means it needs 

much improvement before they can be practically used in lighting applications.  Part of this 

improvement requires a clear understanding of the role of Auger recombination which is 

believed to have a big part of the non-radiative recombination. Another problem that needs to be 

addressed is the increasing number of the charged QDs when the device operates under high 

values of current.  This problem confines the usage of these devices to only low current 

applications.  Studying other materials as hole and electron transport layers will open the door 

for more efficient devices.  The balance between the injection rate of the holes and electrons is a 

key factor to having a more efficient device.  However, most of the materials studied so far 
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produce a high barrier for the holes compared with the barrier for electrons; new materials might 

overcome this problem.  Finally, obtaining lower turn on voltage for these devices has also been 

a focus of researchers and it mainly depends on the band alignment of the device, i.e. the barriers 

of transport layers and the QD band gap.  
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Appendix A: Description of Research for Popular Publication 

 A new generation of display technology such as TVs, cell phones, and tablets depends on 

the possibility to produce light with highly saturated color.  The light generated by quantum dots 

is saturated enough to be the core of ultra-high definition (HD) displays.  Up to now, Samsung 

and Sony have production lines for TVs with ultra HD images based on quantum dots 

technology. In addition, there is another direction for QDs marketing lighting application, but 

this will not be in the near future because more improvement is needed for the efficiency of these 

devices. Quantum dots LEDs are the devices that utilize the unique optical properties of QDs. In 

general, these devices consist of an emissive layer made of quantum dots sandwiched between 

two metal oxide layers function as hole transport layer and electron transport layer. To ensure a 

saturated color produced by these devices, the quantum dots should have an emission spectrum 

that is narrow enough to reflect a high quality saturated color. A narrow spectrum is a result of 

the QD monodispersity.  In this thesis, a QD-LED was fabricated at room temperature using a 

QDs produced by colloidal synthesis. The emission spectrum of the QDs has a FWHM of 45 nm 

centered at 515 nm, which results in a device with a saturated color. This work is an attempt to 

validate the theoretical principles behind QD-LEDs following and optimizing the methods of the 

materials synthesis deposition. 

 QD-LEDs consist of three main layers: electron transport layer (ETL), hole transport 

layer (HTL), and emissive layer which is the quantum dot layer. Motivated by low cost and the 

high electrochemical stability that inorganic materials have, ZnO and NiO were chosen to form 

the ETL and the HTL of the device, respectively. The electrochemical stability is an important 

trait for long life device which otherwise might experience a degradation in their structure.  

There are still hurdles that need to be overcomes in order for this new technology to enter 

the market starting with having better understating to the working principles of these devices. 
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Appendix B: Executive Summary of Newly Created Intellectual Property 

There was no newly created intellectual property in this research.  
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Appendix C: Potential Patent and Commercialization Aspects of listed Intellectual 

Property Items 

C.1 Patentability of Intellectual Property. 

Not applicable. There was no newly created intellectual property in this research.  

C.2 Commercialization Prospects  

Not applicable. There was no newly created intellectual property in this research.  

C.3 Possible Prior Disclosure of IP 

Not applicable. There was no newly created intellectual property in this research.  
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Appendix D: Broader Impact of Research 

D.1 Applicability of Research Methods to Other Problems 

All the methods used to produce materials in this research can be used in other 

applications. The same metal oxide layers are used with solar cells and biosensors. The spin-

coating used to deposit the QD-LED layers is also used to deposit layers for photodetectors and 

solar cells.   

D.2 Impact of Research Results on U.S. and Global Society 

 A direct significant impact is unlikely to happen in the short term, but the large-scale 

production of QD-LEDs will have an impact on the TV and cell phones industries as well as the 

industry of traditional light bulbs.  As in any new technology, some industries will adapt the new 

venture and others will fade.  If QD-LEDs become competitive in the lighting market, the impact 

will affect the electricity suppliers and bulb factories as well as any party that has ties to these 

two.           

 
D.3 Impact of Research Results on the Environment 

The marketing of QD LEDs in lighting applications at a large scale will have an impact 

on the environment.  Almost 20% of the consumed electrical energy goes to lighting, which is 

about 2,650 TWh [1]. The produced carbon dioxide emitted from such amount of energy was 

two billion tons in 2010 [1]. Because of the low efficiency of incandescent bulbs, only 10 percent 

of the energy used is actually converted to light while the other 90 percent is dissipated as heat 

[1]. On the other hand, fluorescent lamps waste 70-80% from the energy is the [1]. Driven by the 

evolving awareness of the carbon emission impact, great efforts have been spent to find 

alternative efficient light sources. LEDs represent the most efficient and longest lifetime. 

Currently, the common types of LEDs are those which are based on quantum well InGaN/GaN. 
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Despite the high efficiency of these LEDs, the fabrication cost is high and the devices suffer 

from defects that constrain their performance. Organic LEDs OLEDs offer low fabrication cost 

compared with the conventional LEDs, but the conversation efficiency is still low.  The third 

type of LEDs, presented in this thesis overcomes the cost problem and the lifetime but it also 

needs more research to increase the efficiency before the market can grow.   
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