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THE ROLE OF CENTRIOLAR MATRIX AND
STRIATED ROOTLETS IN CENTRIOLAR
PAIRING AND ORIENTATION DURING

SPERMATOGENESIS INHYDRACTINAECHINATA*

MAURICE G. KLEVE
Department of Biology

University of Arkansas at Little Rock
Little Rock, AR 72204

ABSTRACT

Transmission electron microscopy of the spermatogenic stages of the hydroid, Hydractinia echinata,
reveals a series of complex structural and positional changes in the centrioles of spermatocytes and sper-
matids. The newly generated centriolar pairs of spermatocytes form an unusual four-centriole aggregate
that persists until cell division. The distal centrioles of this aggregate are shrouded with a very dense
matrix that accumulates after centriolar replication. This matrix facilitates the mechanical attachment be-
tween distal centrioles and microtubular nucleating satellites, striated rootlets and pericentriolar processes.
The association of these accessory structures occurs sequentially and is repeated in spermatocytes and
spermatids. An electron dense plaque, which is an extension of distal centriolar matrix, is interposed be-
tween centriolar pairs of the aggregate. The plaque structurally maintains the centriolar aggregate and
apparently facilitates the orientation of centrioles to prevent spacial interference while satellites, rootlets
and pericentriolar processes associate with the distal centrioles. Striated rootlets are also involved inmain-
taining precise spacing and orientation between centriolar pairs. A single striated rootlet emanates from
the base of each distal centriole of the aggregate and attaches with the opposite distal centriole. The
attachment of rootlets to distal centrioles changes the spacing and orientation of centriolar pairs during
the process of precocial flagellar development seen in Hydractinia spermatogenesis.

INTRODUCTION

The scenario ofspermtogeneic centriolar propagation, movement and
association with specialized structures is extremely complex in the
Cnidaria (for review see Kleve, 1977). Several aspects of centriolar
behavior and the formation of centriolar specializations which include
microtubular nucleating satellites, striated rootlets, and pericentriolar
processes have been described (Dewel and Clark, 1972; Summers, 1972;
Hinsch and Clark, 1973; Clark and Dewel, 1974; Kleve and Clark, 1976).
These studies have not dealt with the process ofpropagation and move-
ment ofcenrioles and the formation ofcentriolar specializations in the
same organism. Also, the studies have not releated the various struc-
tures in a functional wayor demonstrated mechanisms that might ac-
count for changes in centriolar pair orientation during spermatogenesis.

Centriolar satellites and their associated microtubules have been
studied in many cell types (DeThe, 1964; Boisson et al., 1969; Tilney
and Gibbons, 1969; Tilney and Goddard, 1970). InCnidaria, satellites
are involved in both the organization of division centers and the
cytoskeletal phenomena of sperm differentiation (Kleve and Clark,
1976). Pericentriolar processes, which extend from the distal centriolar
matrix of many invertebrate sperm, have been studied in the Cnidaria
(Szollosi, 1964; Summers, 1972; Dewel and Clark, 1972; Kleve, 197;
Kleve and Clark, 1976, 1980). Pericentriolar processes have been shown
to contain the contractile protein actin and are thought to be involved
in the directed motilityofchemotactically stimulated sperm (Kleve, 1977;
Kleve and Clark, 1980). Centriolar or basal body rootlets and other
similar striated centriolar structures such as rhizoplasts and kinetoplasts
are ubiquitous components of ciliated eukaryotic cells and have been
studied extensively at the ultra-structural level (for review see Wheatley,
1982). Inthe last decade striated rootlets have also been studied at the
biochemical level (Stephens, 1975; Salisbury and Floyd, 1978). The
general consensus has been that these structures are in some way respon-
sible for anchoring cilia or flagella and absorbing the force of flagellar

?Supported in part by the Office ofResearch in Science and Technology,
College of Sciences, University ofArkansas at Little Rock and the Ben
J. Altheimer Foundation.

beating. Several investigators have suggested a more dynamic role for
rootlets involving chemical or motive functions. Since the presence of
a calcium dependent contractile protein has been demonstrated
(Salisbury, 1983) these possibilities are more likely.

This report willdescribe the role ofcentriolar matrix inpropagation
and movement of centriolar pairs and the association ofspecializations
withcentrioles ofHydractinia echinata spermatocytes and spermatids.
The dense matrix ofHydractinia spermatocyte and spermatid centrioles
and an extension of the matrix, the matrix plaque, facilitates aggrega-
tion and orientation ofcentriolar pairs to prevent special interference
when the centrioles associate withsatellites, rootlets and pericentriolar
processes. Centriolar rootlets appear to further orient centriolar pairs
to allow flagellar formation which occurs precocially in the sper-
matocytes of Hydractinia.

MATERIALSAND METHODS

Colonies ofHydractinia echinata were collected from shells occupied
by the hermit crab Pagurus sp. purchased from the Supply Department
of the Marine Biological Laboratory, Woods Hole, Massachusetts. With
few exceptions, the polyps on an individual shell are ofone sex allow-
ing easy isolation of male and female colonies. Synchronous gonadal
development of male colonies was induced by exposure to continuous
light for periods of one to seven days (Ballard, 1942).

Individual gonophores containing either synchronous primary and
secondary spermatocytes or spermatids were fixed at room temperature

for 60 min. in a glutaraldehyde-paraformaldehyde mixture (Karnov-
sky, 1965) buffered in 0.1 M sodium cacodylate (pH 7.2) or 0.1 M
sodium phosphate (pH 7.3). Following a buffer wash, the tissue was
post-fixed for 30 min. in 1.0% osmium tetroxide buffered as above,
rapidly dehydrated in a graded acetone series, and embedded in a low
viscosity epoxy resin (Spurr, 1969). All fixatives and buffers were
osmotically adjusted by the addition of 6% W/V glucose. Thin sec-
tions were cut with glass or diamond knives on a Porter Blum MT-2
Ultramicrotome, picked up on uncoated grids, and stained withuranyl
acetate (Watson, 1958) and lead citrate (Venable and Coggeshall, 1965).

64

Journal of the Arkansas Academy of Science, Vol. 39 [1985], Art. 16

Published by Arkansas Academy of Science, 1985



Arkansas Academy of Science Proceedings, Vol. XXXIX,1985 65

Maurice G. Kleve

Allpreparations were examined witha Hitachi HS-8 or RCA EMU 3
electron microscope.

tSpermatocyte stages were determined by cell diameter, ratio of
toplasm to nuclear volume, presence of a nucleolus, extent of

chromatin condensation, the number and position ofmitochondria, and
the amount endoplasmic reticulum (Hanisch, 1970; Zhihler, 1972; Dewel
and Clark, 1972).

RESULTS

The centrioles of Hydractinia spermatocytes and spermatids are
similar to those found in most eukaryotic cells. They consist of nine
microtubular triplets arranged in the typical 9 + 0 pattern (Fig. 1). The
centrioles are 250 nm in diameter and approximately 400 to 500 nm
in length. Inthe spermatids and mature sperm of Hydractinia a distal
centriole can be distinguished from a proximalcentriole by the perpen-
dicular arrangement ofthe centriolar pair (Fig. 2). The distal centriole
is oriented with the longitudinal axis of the sperm and the proximal
centriole lies perpendicular to the sperm axis.

In addition to their orientation and location, structural differences
exist between distal and proximal centrioles. The microtubular triplets
of distal centrioles are embedded in an electron dense matrix which
obscures the fibrous connectives seen between adjacent triplets (com-
pare Figs. 1 and 2). The proximal centrioles ofHydractinia spermatids
and sperm do not possess a matrix making the fibrous connectives readily
visible. Distal centrioles often demonstrate nucleoids in their core while
such structures are not observed in proximal centrioles (Fig. 3).

The differences between proximal and distal centrioles of spermatids
are evidenced in the newly generated parent-daughter centriolar pairs
of primary and secondary spermatocytes. In addition to the differences
in density of matrix seen between parent and daughter centrioles, the
daughter centriole of a spermatocyte centriolar pair contains a set of
internal radial spokes located in the centriolar core (Fig. 4). This "cart-
wheel" structure is similar to that seen in other newly generated daughter
centrioles (Anderson and Brenner, 1971). Cartwheels are rarely seen
inmature centrioles and have not been observed in the matrix-clad distal
centrioles ofHydractinia. Newly generated daughter centrioles are con-
sidered to form without a matrix which must accumulate as the cen-
triole ages (Anderson and Brenner, 1971). This report willrefer to the
dense matrix-clad centrioles as distal and the matrix-less centrioles as
proximal regardless of their age or location in spermatocytes or sper-
matids. This classifies the matrix-clad parent centriole ofa pair as distal
and the new matrix-less daughter centriole as proximal.

Centriolar replication occurs inprimary and secondary spermatocytes
immediately after cell division so four centrioles exist in each sper-
matocyte during interphase. The four centrioles form an aggregate (Fig.
5) that persists until separation to form spindle poles at the beginning
of the next cell division. The distal centrioles of each pair in the ag-
gregate lie in apposition to each other. Interposed between the distal
centrioles is an electron dense plaque-like structure that has a density
and texture similar to that of the distal centriolar matrix (Fig. 5). The
plaque extends from the centriolar matrix along the longitudinal axis
of the distal centriole. When viewed in cross section the plaque appears
tobe continuous with the centriolar matrix at one edge while the other
edge extends into the cytoplasm (Fig. 6). Electron opaque fibrous
material extends from the matrix of each distal centriole of the aggregate
to the interposed plaque, providing what appears to be a framework
for the maintenance of the four centriole aggregate (Fig. 5).

Inthe classic orthogonal parent-daughter arrangement ofpaired cen-
trioles the axis of the parent is perpendicular to that of the daughter
but lies in the same plane. This orientation is apparent in the centriolar
pair of the early primary spermatocytes before the replication of new
centrioles (Fig. 6). Aftercentriolar replication and aggregation, the axes
of the original distal-proximal centriolar pair have changed pitch and
now lie in different parallel planes (compare the two distal centrioles
ofFigure 5, which were a parent-daughter [proximal-distal] pair in the
previous cell cycle, with the pre-aggregation pair in Figure 6).

After aggregation, the four centrioles of primary and secondary sper-
matocytes migrate to a position near the plasma membrane. When the
centriolar aggregate reaches this polar position, microtubular nucleating

Figure 1. Cross section of a distal centriole found in a secondary sper-
matocyte. Note the very electron dense matrix in which the microtubular
triplets of the centriole are embedded. X80.000

Figure 2. Longitudinal section of a late spermatid showing the distal
centriole (D) and the proximal centriole (P) situated between two mid-
piece mitochondria (M). The arrows indicate the fibrous connectives
between the A and C triplet tubules of the proximal centriole. These
connectives are obscured by dense matrix in distal centrioles. X60.000

Figure 3. Longitudinal section ofa late spermatid showing a distal cen-
triole lying between two midpiece mitochondria (M). The centriole is
associated witha flagellum (F) and two nucleoids (arrows) which are
situated in the core of the distal centriole. These nucleoids are not seen
in proximal centrioles. X40.000

Figure 4. A cross section of a proximal centriole in a secondary sper-
matocyte seen shortly after centriolar replication. This centriole
demonstrates a thin matrix around the microtubular triplets. The core
of the centriole contains a cartwheel structure, composed of nine radial
spokes which are typical ofnewly generated daughter centrioles. X80.000

Figure 5. Athin section passing through two aggregated distal-proximal
centriolar pairs of a secondary spermatocyte. The distal centrioles (D)
demonstrate a dense matrix and a dense plaque is situated between them
(large arrow). A profile view of the central cartwheel (small arrows)
can be seen in the half of each proximal centriole (P) adjacent to the
distal centriole. The two centrioles marked distal (D) are the parent-
daughter pair from the preceding cell cycle. X60.000
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Fij^re 8. Electron micrograph depicting the event ofprecocial flagellar
(F) formation in a secondary spermatocyte. Two distal centrioles are
visible with intersposed plaque and striated rootlet. Several satellites
(S) are seen either attached to the distal centrioles or lying close to them.
X25.000

Figure 9. High magnification micrograph of the striated appearance
of the rootlet associated with distal centrioles. X180.000

satellites become attached to the distal centrioles and striated rootlets
and pericentriolar processes form. Each of these centriolar specializa-
tions appear in primary and secondary spermatocytes and then disap-
per as the centriolar pairs separate for spindle formation and cell divi-
sion. These specializations reappear in spermatids and again disappear
as spermiogenesis proceeds with the exception of pericentriolar pro-
cesses which persist in the mature sperm. There is a discernible sequen-
tial pattern to the appearance and disappearence ofcentriolar specializa-
tions. Satellites become attached to distal centrioles first followed by
rootlets and then pericentriolar processes.

As these centriolar specializations appear, percocial flagellar biogenesis
also begins. These flagella are complete and form in spermatocytes as
well as spermatids. Flagellar biogenesis begins as an outgrowth or bulge
in the plasma membrane adjacent to the posterior end of the distal cen-
triole (Fig. 8). Both distal centrioles of the aggregate acquire a flagellum.
The result of this precocial synthesis of flagella in spermatocytes are
secondary spermtocytes which are flagellated at the time of cell divi-
sion. When the second meiotic division is complete, each of the newly
formed spermatids already possesses a flagellum.

Satellites are often seen in the cytoplasm near distal centrioles before
replication and aggregation. After aggregation, satellites are also seen
attached to distal centrioles. These attachments are accomplished by

means of dense tapered stalks (Figs. 7 and 8). The stalks and satellites
are attached to distal centrioles via the centriolar plaque (Fig. 8).

A single striated rootlet (Fig. 8) associates witheach of the distal cen-
trioles of the centriolar aggregate just prior to the initiation ofprecocial
flagellar synthesis. Rootlets have not been observed in association with
proximal centrioles. The rootlets project from the matrix at the anterior
end (the flagellar end being considered posterior) of each distal cen-
triole (Fig. 8). They project into the cytoplasm at an angle 20 to 30
degrees from the centriolar axis, extending 800 to 1000 nm. They are
approximately 80 nm in width at their base where they emanate from
the distal centriolar matrix and gradually taper to a point at their ter-
mination. The rootlets have a striated banding pattern similar to that
of other cnidarian cell types (Westfall, 1965) which consists of alter-
nating major and minor bands (Fig. 9). The striated rootlet extending
from the anterior end ofone distal centriole is associated withthe matrix
of the second distal centriole in the aggregate (Figs. 10 and 11). This
association appears as a solid and consistent connection between the
extended matrix of the second distal centriole and the fifthand sixth
major bands of the rootlet counting out from the rootlet base.

The centrioles of the aggregate lie in a single plane before the ap-
pearance of the rootlets making itpossible to acquire all four centrioles
in a single thinsection (Fig. 5). As the rootlet appears there seems to
be a general repositioning of the centrioles in the aggregate making it
impossible to cut a thinsection that willpass through all four centrioles.
Most sections willreveal only two centrioles (Fig. 10) but in some for-
tuitous tangential sections three centrioles are seen (Fig.11). Serial sec-
tions of the aggregate have revealed that all four centrioles are still
present.

After rootlets form, and the centrioles change orientation, pericen-
triolar processes appear. These processes, which have been studied in
detail at both the ultra-structural (Kleve and Clark, 1976) and

Figure 10. Electron micrograph of two distal centrioles associated with
a striated rootlet. Two plaques (arrows) can be seen projecting from
the matrix of the distal centriole seen in cross section. Note the attach-
ment of the distal centriole (shown in cross section) to the rootlet by
the 5th and 6th striated bands (bars). X25.000Figure 6. A thin section electron micrograph ofa distal-proximal cen-

triolar pair found in a secondary spermatocyte. Note the distinct dif-
ference in density between the distal (D) and proximal (P) centriolar
matrix. The arrow indicates a dense plaque which emanates from the
distal centriolar matrix. X60.000

Figure 11.Electron micrograph of a tangential section showing three
centrioles. Note the twincentriolar plaques (arrows) which extend from
the middle distal centriole and the forming pericentriolar processes at-
tached to the rootlet baring distal centriole. X25.OOO

Figure 7. Electron micrograph of a distal centriole found in a secon-
dary spermatocyte. Asatellite (S) can be seen attached to the distal cen-
triole by means of a tapered stalk on which the satellite is situated. The
stalk appears to connect with the centriole by means of a plaque (ar-
row). X80.000

Figure 12. Electron micrograph ofa cross section of the posterior region
of a spermatid. The section passes through the distal centriole at the
level of the pericentriolar processes. Nine primary processes can be seen
extending from the centriolar matrix between triplets. X80,000
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biochemical level (Kleve and Clark, 1980), appear after precocial flagellar
biogenesis has begun. The distal centriolar matrix provides the struc-

tural media for attachment ofpericentriolar processes to the centriole
(Fig. 12). The pericentriolar processes of mature sperm are extensive
and complex with three orders of structure. They consist of primary
processes which attach directly to the centriolar matrix; secondary pro-
cesses which emanate from the first order primaries; and tertiary pro-
cesses which emanate from secondaries (Kleve and Clark, 1976). Only
rudimentary primary processes develop in the spermatocytes ofHydrac-
tinia. Secondary and tertiary processes appear only during final dif-
ferentiation of spermatids.

DISCUSSION

Several structural markers can be used to distinguish parent and
daughter centrioles (Anderson and Brenner, 1971). The centriolar matrix,
which accumulates as centrioles age, is always much more dense in the
parent centriole. The perpendicular position ofdaughter centrioles make
itonly possible to view both parent and daughter centriole in thin sec-
tion when the parent is cut in cross section. The cartwheel found only
in newly generated daughter centrioles provides another marker.
Using these markers, the daughter centrioles synthesized in spermato-
cytes can easily be distinguished from their parents. Ifit is possible to
judge the age and thus the parent-daughter relationship of a centriolar
pair by the amount of dense matrix accumulated, then the distal cen-
trioles of mature sperm should be parents to the matrix-less proximal
centrioles. Sperm distal and proximal centrioles, although they are
arranged perpendicular to each other, are the opposite arrangement to
parent-daughter pairs found in spermatocytes. Inmature sperm, both
distal and proximal centrioles are only visible at the same time in thin
section when the dense matrix-clad distal centriole is cut in profile and
the proximal is cut in cross section. Before aggregation and appearance
ofmatrix plaques and striated rootlets in spermatocytes, the only sec-
tion that shows both distal and proximal centrioles is one in which the
distal centriole is in cross section and the proximal is inprofile. Itap-
pears that the orthogonal parent-daughter arrangement of newly
generated centrioles is rearranged to the opposite configuration before
flagellar synthesis.

I
lost early researchers, studying ciliated epithelia, concluded that
ited rootlets performed an anchor function to absorb the stress of
iry action (Fawcett, 1958; Gibbons, 1966). Werner (1966) suggested
rootlets might aid in the separation and positioning of centriolar

s. Striated centriolar rootlets have been shown to contain ATPase
vity (Anderson, 1977), a calcium dependent contractile protein
isbury, 1983) and actin has been localized in rootlets (Gordon et
1980). The intimate association of rootlets with distal centrioles prior
lagellar synthesis, and the concomitant change in centriolar pair
ntation, suggests they are in some way involved in the maintenance
rearrangement of centriolar pairs during spermatogenesis. An an-
r function in the case of sperm flagella is unlikely since rootlets are
isient structures during spermatogenesis and are not present during
period of actual flagellar function.

The distal centrioles of spermatocytes and spermatids are functionally
different from proximal centrioles. Distal centrioles associate with
satellites, rootlets and pericentriolar processes and form the basal bodies
for flagella while proximal centrioles do not. The observation that
only distal centrioles are clad witha dense matrix suggests the unique
nature ofdistal centrioles may be due, in part, to their extensive matrix.
The centriolar plaque, which appears to facilitate the attachment of
specializations to distal centrioles, may be an extension of the matrix
material. Ultrastructurally, the plaque material is indistinguishable from
that of the matrix. The plaque appears to be involved in a variety of
activities. Structural continuity between satellites and the centriolar
matrix is afforded by the cenriolar plaque. The plaque appears to be
involved in some way in the relationship of the two daughter-parent
or proximal-distal centriolar pairs that make up the aggregates seen in
spermatocytes. The position ofthe plaque between the apposed distal
centrioles suggests that it may affect the maintenance of the aggregate
or the spacial relationship of the aggregated centrioles. The observa-

tion that the first appearance of plaques coincides with the change in
centriolar orientation in the aggregate leads credence to the contention
that plaque as well as striated rootlets may function in a dynamic way
to orient centriolar pairs.
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